Sample records for standing postural control

  1. Assisting people with multiple disabilities actively correct abnormal standing posture with a Nintendo Wii balance board through controlling environmental stimulation.

    PubMed

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling

    2010-01-01

    The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board functionality for standing posture correction (i.e., actively adjust abnormal standing posture) to assessed whether two persons with multiple disabilities would be able to actively correct their standing posture by controlling their favorite stimulation on/off using a Wii Balance Board with a newly developed standing posture correcting program (SPCP). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Data showed that both participants significantly increased time duration of maintaining correct standing posture (TDMCSP) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed.

  2. A New Standing Posture Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation by Changing Their Standing Posture through a Commercial Wii Balance Board

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…

  3. A new standing posture detector to enable people with multiple disabilities to control environmental stimulation by changing their standing posture through a commercial Wii Balance Board.

    PubMed

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Both participants significantly increased their target response (body swing) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed.

  4. The Control of Posture in Newly Standing Infants is Task Dependent

    ERIC Educational Resources Information Center

    Claxton, Laura J.; Melzer, Dawn K.; Ryu, Joong Hyun; Haddad, Jeffrey M.

    2012-01-01

    The postural sway patterns of newly standing infants were compared under two conditions: standing while holding a toy and standing while not holding a toy. Infants exhibited a lower magnitude of postural sway and more complex sway patterns when holding the toy. These changes suggest that infants adapt postural sway in a manner that facilitates…

  5. Standing Postural Control in Individuals with Autism Spectrum Disorder: Systematic Review and Meta-Analysis

    ERIC Educational Resources Information Center

    Lim, Yi Huey; Partridge, Katie; Girdler, Sonya; Morris, Susan L.

    2017-01-01

    Impairments in postural control affect the development of motor and social skills in individuals with autism spectrum disorder (ASD). This review compared the effect of different sensory conditions on static standing postural control between ASD and neurotypical individuals. Results from 19 studies indicated a large difference in postural control…

  6. Effects of disease severity and medication state on postural control asymmetry during challenging postural tasks in individuals with Parkinson's disease.

    PubMed

    Barbieri, Fabio A; Polastri, Paula F; Baptista, André M; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Beretta, Victor S; Gobbi, Lilian T B

    2016-04-01

    The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson's disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n=8) and bilateral group (n=11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups×medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups×medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior-posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior-posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Assisting People with Multiple Disabilities Actively Correct Abnormal Standing Posture with a Nintendo Wii Balance Board through Controlling Environmental Stimulation

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling

    2010-01-01

    The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board…

  8. Decreasing Internal Focus of Attention Improves Postural Control during Quiet Standing in Young Healthy Adults

    ERIC Educational Resources Information Center

    Nafati, Gilel; Vuillerme, Nicolas

    2011-01-01

    This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they…

  9. Impaired Postural Control Reduces Sit-to-Stand-to-Sit Performance in Individuals with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Janssens, Lotte; Brumagne, Simon; McConnell, Alison K.; Claeys, Kurt; Pijnenburg, Madelon; Goossens, Nina; Burtin, Chris; Janssens, Wim; Decramer, Marc; Troosters, Thierry

    2014-01-01

    Background Functional activities, such as the sit-to-stand-to-sit (STSTS) task, are often impaired in individuals with chronic obstructive pulmonary disease (COPD). The STSTS task places a high demand on the postural control system, which has been shown to be impaired in individuals with COPD. It remains unknown whether postural control deficits contribute to the decreased STSTS performance in individuals with COPD. Methods Center of pressure displacement was determined in 18 individuals with COPD and 18 age/gender-matched controls during five consecutive STSTS movements with vision occluded. The total duration, as well as the duration of each sit, sit-to-stand, stand and stand-to-sit phase was recorded. Results Individuals with COPD needed significantly more time to perform five consecutive STSTS movements compared to healthy controls (19±6 vs. 13±4 seconds, respectively; p = 0.001). The COPD group exhibited a significantly longer stand phase (p = 0.028) and stand-to-sit phase (p = 0.001) compared to the control group. In contrast, the duration of the sit phase (p = 0.766) and sit-to-stand phase (p = 0.999) was not different between groups. Conclusions Compared to healthy individuals, individuals with COPD needed significantly more time to complete those phases of the STSTS task that require the greatest postural control. These findings support the proposition that suboptimal postural control is an important contributor to the decreased STSTS performance in individuals with COPD. PMID:24533072

  10. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis.

    PubMed

    Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh

    2017-01-01

    Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12-18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central processing attentional resources under the dual-task postural control paradigm.

  11. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis

    PubMed Central

    Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh

    2017-01-01

    Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12–18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central processing attentional resources under the dual-task postural control paradigm. PMID:28713252

  12. Challenging Postural Tasks Increase Asymmetry in Patients with Parkinson’s Disease

    PubMed Central

    Beretta, Victor Spiandor; Gobbi, Lilian Teresa Bucken; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Barbieri, Fabio Augusto

    2015-01-01

    The unilateral predominance of Parkinson’s disease (PD) symptoms suggests that balance control could be asymmetrical during static tasks. Although studies have shown that balance control asymmetries exist in patients with PD, these analyses were performed using only simple bipedal standing tasks. Challenging postural tasks, such as unipedal or tandem standing, could exacerbate balance control asymmetries. To address this, we studied the impact of challenging standing tasks on postural control asymmetry in patients with PD. Twenty patients with PD and twenty neurologically healthy individuals (control group) participated in this study. Participants performed three 30s trials for each postural task: bipedal, tandem adapted and unipedal standing. The center of pressure parameter was calculated for both limbs in each of these conditions, and the asymmetry between limbs was assessed using the symmetric index. A significant effect of condition was observed, with unipedal standing and tandem standing showing greater asymmetry than bipedal standing for the mediolateral root mean square (RMS) and area of sway parameters, respectively. In addition, a group*condition interaction indicated that, only for patients with PD, the unipedal condition showed greater asymmetry in the mediolateral RMS and area of sway than the bipedal condition and the tandem condition showed greater asymmetry in the area of sway than the bipedal condition. Patients with PD exhibited greater asymmetry while performing tasks requiring postural control when compared to neurologically healthy individuals, especially for challenging tasks such as tandem and unipedal standing. PMID:26367032

  13. Decreasing internal focus of attention improves postural control during quiet standing in young healthy adults.

    PubMed

    Nafati, Gilel; Vuillerme, Nicolas

    2011-12-01

    This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they performed a short-term digit-span memory task. Decreased center-of-gravity displacements and decreased center-of-foot-pressure displacements minus center-of-gravity displacements were observed in the cognitive condition relative to the control condition. These results suggest that shifting the attentional focus away from postural control by executing a concurrent attention-demanding task could increase postural performance and postural efficiency.

  14. Contribution of Head Position, Standing Surface, and Vision to Postural Control in Community-Dwelling Older Adults.

    PubMed

    Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E

    2016-01-01

    Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  15. Voluntarily controlled but not merely observed visual feedback affects postural sway

    PubMed Central

    Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi

    2018-01-01

    Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421

  16. Understanding balance differences in individuals with multiple sclerosis with mild disability: an investigation of differences in sensory feedback on postural control during a Romberg task.

    PubMed

    Denommé, Luke T; Mandalfino, Patricia; Cinelli, Michael E

    2014-06-01

    A major presenting symptom in 'individuals with multiple sclerosis with mild balance disability' (IwMS) is poor postural control, resulting from slowed spinal somatosensory conduction. Postural control deficits in IwMS are most apparent when vision is removed and the base of support is reduced such is the case during tandem and single support stances. The current study used center of pressure (COP) measurements to determine whether postural control differences exist between IwMS and either 'healthy age-matched individuals' (HAMI) or 'community-dwelling older adults' (OA). Postural control was evaluated using a Romberg standing task, which required participants to stand with their feet together and hands by their sides for 45 s with either their eyes open or closed. Results revealed that COP velocity root mean square was greater in IwMS and their COP position was closer to their self-selected maximum stability limits (e.g., greater Standing Index proportion) when vision was removed compared to HAMI. Conversely, IwMS displayed similar postural control characteristics to OA. The current study highlights two novel findings: (1) the utility of novel COP measurements to assess differences in the level of postural control in IwMS; and (2) the benefit of assessing postural control levels in IwMS to not only a population with a fully intact and functional postural control system (HAMI) but also to another population that is thought to experience postural control deficits (OA).

  17. Effect of intermittent feedback control on robustness of human-like postural control system

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  18. Effect of intermittent feedback control on robustness of human-like postural control system.

    PubMed

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-02

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  19. Effect of intermittent feedback control on robustness of human-like postural control system

    PubMed Central

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-01-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281

  20. Temporal parameter change of human postural control ability during upright swing using recursive least square method

    NASA Astrophysics Data System (ADS)

    Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi

    2010-01-01

    The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.

  1. Postural response latencies are related to balance control during standing and walking in patients with multiple sclerosis

    PubMed Central

    Huisinga, Jessie M.; St. George, Rebecca J.; Spain, Rebecca; Overs, Shannon; Horak, Fay B.

    2015-01-01

    Objective To understand examined the relationship between postural response latencies obtained during postural perturbations and representative measures of balance during standing (sway variables) and during walking (trunk motion). Design Cross-sectional Setting University medical center balance disorders laboratory Participants Forty persons with MS were compared with 20 similar aged control subjects. Twenty subjects with MS had normal walking velocity group and 20 had slow walking velocity based on the 25-foot walk time greater than 5 seconds. Interventions None Main Outcome Measures Postural response latency, sway variables, trunk motion variables Results: We found that subjects with MS with either slow or normal walking velocities had significantly longer postural response latencies than the healthy control group. Postural response latency was not correlated with the 25-ft walk time. Postural response latency was significantly correlated with center of pressure sway variables during quiet standing: root mean square (ρ = 0.334, p=0.040), range (ρ=0.385, p=0.017), mean velocity (ρ=0.337, p=0.038), and total sway area (ρ=0.393, p=0.015). Postural response latency was also significantly correlated with motion of the trunk during walking: sagittal plane range of motion (ρ=0.316, p=0.050) and standard deviation of transverse plane range of motion (ρ=-0.430, p=0.006). Conclusions These findings clearly indicate that slow postural responses to external perturbations in patients with MS contribute to disturbances in balance control, both during standing and walking. PMID:24445088

  2. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults.

    PubMed

    Manor, Brad; Costa, Madalena D; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C K; Novak, Vera; Lipsitz, Lewis A

    2010-12-01

    The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = -0.34, P = 0.002) and percent (R = -0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.

  3. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults

    PubMed Central

    Costa, Madalena D.; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C. K.; Novak, Vera; Lipsitz, Lewis A.

    2010-01-01

    The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = −0.34, P = 0.002) and percent (R = −0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors. PMID:20947715

  4. Postural control during quiet bipedal standing in rats

    PubMed Central

    Sato, Yota; Fujiki, Soichiro; Sato, Yamato; Aoi, Shinya; Tsuchiya, Kazuo; Yanagihara, Dai

    2017-01-01

    The control of bipedal posture in humans is subject to non-ideal conditions such as delayed sensation and heartbeat noise. However, the controller achieves a high level of functionality by utilizing body dynamics dexterously. In order to elucidate the neural mechanism responsible for postural control, the present study made use of an experimental setup involving rats because they have more accessible neural structures. The experimental design requires rats to stand bipedally in order to obtain a water reward placed in a water supplier above them. Their motions can be measured in detail using a motion capture system and a force plate. Rats have the ability to stand bipedally for long durations (over 200 s), allowing for the construction of an experimental environment in which the steady standing motion of rats could be measured. The characteristics of the measured motion were evaluated based on aspects of the rats’ intersegmental coordination and power spectrum density (PSD). These characteristics were compared with those of the human bipedal posture. The intersegmental coordination of the standing rats included two components that were similar to that of standing humans: center of mass and trunk motion. The rats’ PSD showed a peak at approximately 1.8 Hz and the pattern of the PSD under the peak frequency was similar to that of the human PSD. However, the frequencies were five times higher in rats than in humans. Based on the analysis of the rats’ bipedal standing motion, there were some common characteristics between rat and human standing motions. Thus, using standing rats is expected to be a powerful tool to reveal the neural basis of postural control. PMID:29244818

  5. The effects of anxiety and external attentional focus on postural control in patients with Parkinson's disease

    PubMed Central

    Jazaeri, Seyede Zohreh; Azad, Akram; Mehdizadeh, Hajar; Habibi, Seyed Amirhassan; Mandehgary Najafabadi, Mahbubeh; Saberi, Zakieh Sadat; Rahimzadegan, Hawre; Moradi, Saeed; Behzadipour, Saeed; Parnianpour, Mohamad; Khalaf, Kinda

    2018-01-01

    Background Although anxiety is a common non-motor outcome of Parkinson's disease (PD) affecting 40% of patients, little attention has been paid so far to its effects on balance impairment and postural control. Improvement of postural control through focusing on the environment (i.e. external focus) has been reported, but the role of anxiety, as a confounding variable, remains unclear. Objectives This study aimed to investigate the influence of anxiety and attentional focus instruction on the standing postural control of PD patients. Methods Thirty-four patients with PD (17 with high anxiety (HA-PD) and 17 with low anxiety (LA-PD)), as well as 17 gender- and age-matched healthy control subjects (HC) participated in the study. Postural control was evaluated using a combination of two levels of postural difficulty (standing on a rigid force plate surface with open eyes (RO) and standing on a foam surface with open eyes (FO)), as well as three attentional focus instructions (internal, external and no focus). Results Only the HA-PD group demonstrated significant postural control impairment as compared to the control, as indicated by significantly greater postural sway measures. Moreover, external focus significantly reduced postural sway in all participants especially during the FO condition. Conclusion The results of the current study provide evidence that anxiety influences balance control and postural stability in patients with PD, particularly those with high levels of anxiety. The results also confirmed that external focus is a potential strategy that significantly improves the postural control of these patients. Further investigation of clinical applicability is warranted towards developing effective therapeutic and rehabilitative treatment plans. PMID:29390029

  6. The effect of methylphenidate on postural stability under single and dual task conditions in children with attention deficit hyperactivity disorder - a double blind randomized control trial.

    PubMed

    Jacobi-Polishook, Talia; Shorer, Zamir; Melzer, Itshak

    2009-05-15

    To investigate the effects of Methylphenidate (MPH) on postural stability in attention deficit hyperactivity disorder (ADHD) children in single and dual task conditions. A randomized controlled double-blind study analyzing postural stability in 24 ADHD children before and after MPH vs. placebo treatments, in three task conditions: (1) Single task, standing still; (2) dual task, standing still performing a memory-attention demanding task; (3) standing still listening to music. MPH resulted in a significant improvement in postural stability during the dual task condition and while listening to music, with no equivalent improvement in placebo controls. MPH improves postural stability in ADHD, especially when an additional task is performed. This is probably due to enhanced attention abilities, thus contributing to improved balance control during performance of tasks that require attention. MPH remains to be studied as a potential drug treatment to improve balance control and physical functioning in other clinical populations.

  7. Comparison of standing postural control and gait parameters in people with and without chronic low back pain: a cross-sectional case-control study.

    PubMed

    MacRae, Catharine Siân; Critchley, Duncan; Lewis, Jeremy S; Shortland, Adam

    2018-01-01

    Differences in postural control and gait have been identified between people with and without chronic low back pain (CLBP); however, many previous studies present data from small samples, or have used methodologies with questionable reliability. This study, employing robust methodology, hypothesised that there would be a difference in postural control, and spatiotemporal parameters of gait in people with CLBP compared with asymptomatic individuals. This cross-sectional case-control study age-matched and gender-matched 16 CLBP and 16 asymptomatic participants. Participants were assessed barefoot (1) standing, over three 40 s trials, under four posture challenging conditions (2) during gait. Primary outcome was postural stability (assessed by root mean squared error of centre of pressure (CoP) displacement (CoP RMSEAP ) and mean CoP velocity (CoP VELAP ), both in the anteroposterior direction); gait outcomes were hip range of movement and peak moments, walking speed, cadence and stride length, assessed using force plates and a motion analysis system. There were no differences between groups in CoP RMSEAP (P=0.26), or CoP VELAP (P=0.60) for any standing condition. During gait, no differences were observed between groups for spatiotemporal parameters, maximum, minimum and total ranges of hip movement, or peak hip flexor or extensor moments in the sagittal plane. In contrast to previous research, this study suggests that people with mild to moderate CLBP present with similar standing postural control, and parameters of gait to asymptomatic individuals. Treatments directed at influencing postural stability (eg, standing on a wobble board) or specific parameters of gait may be an unnecessary addition to a treatment programme.

  8. Increased alertness, better than posture prioritization, explains dual-task performance in prosthesis users and controls under increasing postural and cognitive challenge.

    PubMed

    Howard, Charla L; Perry, Bonnie; Chow, John W; Wallace, Chris; Stokic, Dobrivoje S

    2017-11-01

    Sensorimotor impairments after limb amputation impose a threat to stability. Commonly described strategies for maintaining stability are the posture first strategy (prioritization of balance) and posture second strategy (prioritization of concurrent tasks). The existence of these strategies was examined in 13 below-knee prosthesis users and 15 controls during dual-task standing under increasing postural and cognitive challenge by evaluating path length, 95% sway area, and anterior-posterior and medial-lateral amplitudes of the center of pressure. The subjects stood on two force platforms under usual (hard surface/eyes open) and difficult (soft surface/eyes closed) conditions, first alone and while performing a cognitive task without and then with instruction on cognitive prioritization. During standing alone, sway was not significantly different between groups. After adding the cognitive task without prioritization instruction, prosthesis users increased sway more under the dual-task than single-task standing (p ≤ 0.028) during both usual and difficult conditions, favoring the posture second strategy. Controls, however, reduced dual-task sway under a greater postural challenge (p ≤ 0.017), suggesting the posture first strategy. With prioritization of the cognitive task, sway was unchanged or reduced in prosthesis users, suggesting departure from the posture second strategy, whereas controls maintained the posture first strategy. Individual analysis of dual tasking revealed that greater postural demand in controls and greater cognitive challenge in prosthesis users led to both reduced sway and improved cognitive performance, suggesting cognitive-motor facilitation. Thus, activation of additional resources through increased alertness, rather than posture prioritization, may explain dual-task performance in both prosthesis users and controls under increasing postural and cognitive challenge.

  9. The Complexity of Standing Postural Sway Associates with Future Falls in Community-Dwelling Older Adults: The MOBILIZE Boston Study.

    PubMed

    Zhou, Junhong; Habtemariam, Daniel; Iloputaife, Ikechukwu; Lipsitz, Lewis A; Manor, Brad

    2017-06-07

    Standing postural control is complex, meaning that it is dependent upon numerous inputs interacting across multiple temporal-spatial scales. Diminished physiologic complexity of postural sway has been linked to reduced ability to adapt to stressors. We hypothesized that older adults with lower postural sway complexity would experience more falls in the future. 738 adults aged ≥70 years completed the Short Physical Performance Battery test (SPPB) test and assessments of single and dual-task standing postural control. Postural sway complexity was quantified using multiscale entropy. Falls were subsequently tracked for 48 months. Negative binomial regression demonstrated that older adults with lower postural sway complexity in both single and dual-task conditions had higher future fall rate (incident rate ratio (IRR) = 0.98, p = 0.02, 95% Confidence Limits (CL) = 0.96-0.99). Notably, participants in the lowest quintile of complexity during dual-task standing suffered 48% more falls during the four-year follow-up as compared to those in the highest quintile (IRR = 1.48, p = 0.01, 95% CL = 1.09-1.99). Conversely, traditional postural sway metrics or SPPB performance did not associate with future falls. As compared to traditional metrics, the degree of multi-scale complexity contained within standing postural sway-particularly during dual task conditions- appears to be a better predictor of future falls in older adults.

  10. Cerebellar transcranial direct current stimulation improves adaptive postural control.

    PubMed

    Poortvliet, Peter; Hsieh, Billie; Cresswell, Andrew; Au, Jacky; Meinzer, Marcus

    2018-01-01

    Rehabilitation interventions contribute to recovery of impaired postural control, but it remains a priority to optimize their effectiveness. A promising strategy may involve transcranial direct current stimulation (tDCS) of brain areas involved in fine-tuning of motor adaptation. This study explored the effects of cerebellar tDCS (ctDCS) on postural recovery from disturbance by Achilles tendon vibration. Twenty-eight healthy volunteers participated in this sham-ctDCS controlled study. Standing blindfolded on a force platform, four trials were completed: 60 s quiet standing followed by 20 min active (anodal-tDCS, 1 mA, 20 min, N = 14) or sham-ctDCS (40 s, N = 14) tDCS; three quiet standing trials with 15 s of Achilles tendon vibration and 25 s of postural recovery. Postural steadiness was quantified as displacement, standard deviation and path derived from the center of pressure (COP). Baseline demographics and quiet standing postural steadiness, and backwards displacement during vibration were comparable between groups. However, active-tDCS significantly improved postural steadiness during vibration and reduced forward displacement and variability in COP derivatives during recovery. We demonstrate that ctDCS results in short-term improvement of postural adaptation in healthy individuals. Future studies need to investigate if multisession ctDCS combined with training or rehabilitation interventions can induce prolonged improvement of postural balance. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  11. Postural strategy and trunk muscle activation during prolonged standing in chronic low back pain patients.

    PubMed

    Ringheim, Inge; Austein, Helene; Indahl, Aage; Roeleveld, Karin

    2015-10-01

    Prolonged standing has been associated with development and aggravation of low back pain (LBP). However, the underlying mechanisms are not well known. The aim of the present study was to investigate postural control and muscle activation during and as a result of prolonged standing in chronic LBP (cLBP) patients compared to healthy controls (HCs). Body weight shifts and trunk and hip muscle activity was measured during 15 min standing. Prior and after the standing trial, strength, postural sway, reposition error (RE), flexion relaxation ratio (FRR), and pain were assessed and after the prolonged standing, ratings of perceived exertion. During prolonged standing, the cLBP patients performed significantly more body weight shifts (p<.01) with more activated back and abdominal muscles (p=.01) and similar temporal variability in muscle activation compared to HCs, while the cLBP patients reported more pain and perceived exertion at the end of prolonged standing. Moreover, both groups had a similar change in strength, postural sway, RE and FRR from before to after prolonged standing, where changes in HC were towards pre-standing values of cLBP patients. Thus, despite a more variable postural strategy, the cLBP patients did not have higher muscle activation variability, but a general increased muscle activation level. This may indicate a reduced ability to individually deactivate trunk muscles. Plausibly, due to the increased variable postural strategy, the cLBP patients could compensate for the relatively high muscle activation level, resulting in normal variation in muscle activation and normal reduction in strength, RE and FRR after prolonged standing. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The effects of trunk extensor and abdominal muscle fatigue on postural control and trunk proprioception in young, healthy individuals.

    PubMed

    Larson, Dennis J; Brown, Stephen H M

    2018-02-01

    The purpose of this study was to induce both trunk extensor and abdominal muscle fatigue, on separate occasions, and compare their effects on standing postural control and trunk proprioception, as well as look at the effects of a recovery period on these outcome measures. A total of 20 individuals participated, with 10 (5 males and 5 females) completing either a standing postural control or lumbar axial repositioning protocol. Participants completed their randomly assigned protocol on two occasions, separated by at least 4  days, with either their trunk extensor or abdominal muscles being fatigued on either day. Postural control centre of pressure variables and trunk proprioception errors were compared pre- and post-fatigue. Results showed that both trunk extensor and abdominal muscle fatigue significantly degraded standing postural control immediately post-fatigue, with recovery occurring within 2 min post-fatigue. In general, these degradative effects on postural control appeared to be greater when the trunk extensor muscles were fatigued compared to the abdominal muscles. No statistically significant changes in trunk proprioception were found after either fatigue protocol. The present findings demonstrate our body's ability to quickly adapt and reweight somatosensory information to maintain postural control and trunk proprioception, as well as illustrate the importance of considering the abdominal muscles, along with the trunk extensor muscles, when considering the impact of fatigue on trunk movement and postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Components of Standing Postural Control Evaluated in Pediatric Balance Measures: A Scoping Review.

    PubMed

    Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Paterson, Marie; Wittmeier, Kristy D

    2017-10-01

    To identify measures of standing balance validated in pediatric populations, and to determine the components of postural control captured in each tool. Electronic searches of MEDLINE, Embase, and CINAHL databases using key word combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests, and child/pediatrics; gray literature; and hand searches. Inclusion criteria were measures with a stated objective to assess balance, with pediatric (≤18y) populations, with at least 1 psychometric evaluation, with at least 1 standing task, with a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. There were 21 measures included. Two reviewers extracted descriptive characteristics, and 2 investigators independently coded components of balance in each measure using a systems perspective for postural control, an established framework for balance in pediatric populations. Components of balance evaluated in measures were underlying motor systems (100% of measures), anticipatory postural control (72%), static stability (62%), sensory integration (52%), dynamic stability (48%), functional stability limits (24%), cognitive influences (24%), verticality (9%), and reactive postural control (0%). Assessing children's balance with valid and comprehensive measures is important for ensuring development of safe mobility and independence with functional tasks. Balance measures validated in pediatric populations to date do not comprehensively assess standing postural control and omit some key components for safe mobility and independence. Existing balance measures, that have been validated in adult populations and address some of the existing gaps in pediatric measures, warrant consideration for validation in children. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. [Descending control of quiet standing and walking: a plausible neurophysiological basis of falls in elderly people].

    PubMed

    Nakajima, Masashi

    2011-03-01

    Quiet standing and walking are generally considered to be an automatic process regulated by sensory feedback. In our report "Astasia without abasia due to peripheral neuropathy," which was published in 1994, we proposed that forced stepping in patients lacking the ankle torque is a compensatory motor control in order to maintain an upright posture. A statistical-biomechanics approach to the human postural control system has revealed open-loop (descending) control as well as closed-loop (feedback) control in quiet standing, and fractal dynamics in stride-to-stride fluctuations of walking. The descending control system of bipedal upright posture and gait may have a functional link to cognitive domains. Increasing dependence on the descending control system with aging may play a role in falls in elderly people.

  15. Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait.

    PubMed

    Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas

    2014-12-01

    Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.

  16. Childhood obesity affects postural control and aiming performance during an upper limb movement.

    PubMed

    Boucher, François; Handrigan, Grant A; Mackrous, Isabelle; Hue, Olivier

    2015-07-01

    Obesity reduces the efficiency of postural and movement control mechanisms. However, the effects of obesity on a functional motor task and postural control in standing and seated position have not been closely quantified among children. The aim of this study is to examine the effects of obesity on the execution of aiming tasks performed in standing and seated conditions in children. Twelve healthy weight children and eleven obese children aged between 8 and 11 years pointed to a target in standing and seated position. The difficulty of the aiming task was varied by using 2 target sizes (1.0 cm and 5.0 cm width; pointing to the smaller target size needs a more precise movement and constitutes a more difficult task). Hand movement time (MT) and its phases were measured to quantify the aiming task. Mean speed of the center of pressure displacement (COP speed) was calculated to assess postural stability during the movement. Obese children had significantly higher MTs compared to healthy-weight children in seated and standing conditions explained by greater durations of deceleration phase when aiming. Concerning the COP speed during the movement, obese children showed significantly higher values when standing compared to healthy-weight children. This was also observed in the seated position. In conclusion, obesity adds a postural constraint during an aiming task in both seated and standing conditions and requires obese children to take more time to correct their movements due to a greater postural instability of the body when pointing to a target with the upper-limb. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Tai Chi training reduced coupling between respiration and postural control

    PubMed Central

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2015-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body’s center-of-mass including those caused by spontaneous respiration. Both aging and disease increase “posturo-respiratory synchronization;” which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86±5yrs) or educational-control program (n=34, 85±6yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. PMID:26518241

  18. Dynamic postural control and associated attentional demands in contemporary dancers versus non-dancers

    PubMed Central

    Sirois-Leclerc, Geneviève; Remaud, Anthony

    2017-01-01

    Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources. PMID:28323843

  19. Dynamic postural control and associated attentional demands in contemporary dancers versus non-dancers.

    PubMed

    Sirois-Leclerc, Geneviève; Remaud, Anthony; Bilodeau, Martin

    2017-01-01

    Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources.

  20. Postural control is altered in patients with ankylosing spondylitis.

    PubMed

    Vergara, Martin E; O'Shea, Finbar D; Inman, Robert D; Gage, William H

    2012-05-01

    Ankylosing spondylitis is a chronic inflammatory disorder that can lead to increased axial and peripheral joint stiffness, impairing joint mobility. Impaired axial mobility due to vertebral ankylosis may result in changes in standing postural control. Little research has addressed changes in standing postural control in the ankylosing spondylitis population, nor how these issues might affect clinical understanding and treatment. Sixteen ankylosing spondylitis patients, and 17 healthy controls participated. Each individual completed two 120-second quiet standing trials with eyes open and eyes closed, while standing upon two force platforms. Net center of pressure displacement and mean power frequency in the frontal and sagittal planes were calculated. A Spearman's rank correlation analysis was performed between net center of pressure measures and several clinical measures of disease activity. Frontal plane net center of pressure displacement and frequency content, and sagittal plane net center of pressure displacement were significantly greater within the ankylosing spondylitis patient group. Ankylosing spondylitis patients demonstrated a significant increase in frontal plane net center of pressure displacement in the eyes-closed condition. Net center of pressure displacement and frequency were significantly correlated to the Bath Ankylosing Spondylitis Functional Index, and individual components of the Bath Ankylosing Spondylitis Metrology Index. Quiet standing postural control was altered particularly so in the frontal plane in patients with ankylosing spondylitis, which may be associated with increased fall risk. Posturographic measures of postural control may serve as valuable clinical tools for the monitoring of disease progression and disease status in ankylosing spondylitis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Sitting and standing postures are corrected by adjustable furniture with lowered muscle tension in high-school students.

    PubMed

    Koskelo, R; Vuorikari, K; Hänninen, O

    2007-10-01

    This study compared the effect of 24 months of adjustable school desks and chairs usage (the intervention) and traditional non-adjustable usage (the control condition) on sitting and standing postures, muscle strength, classroom muscle tension, pain and learning in 15 (8 female and 7 male) high-school students and 15 anthropometrically and gender matched control students from neighbouring schools. It was assessed whether any responses took place after growth cessation. In comparison with controls, the intervention group of students' sitting postures standing kyphosis, scoliosis and lordosis became significantly better, both before and after growth cessation. Trunk muscle strength increased in the intervention students whose muscle tension during classes fell significantly in the trapezius and lumbar muscles, whereas in control students' lumbar tension increased. Headache and low-back pain correlated with neck-shoulder pain and trapezius muscle tension. Intervention students reported that they experienced benefits from the adjustable tables and chairs. They also received significantly better overall marks than the controls at the end of high school. It is concluded that the adjustable school desks and chairs promoted better sitting and standing postures, increased muscle strength, alleviated pain and appeared to be associated with better overall academic marks.

  2. Coordination between posture and movement: interaction between postural and accuracy constraints.

    PubMed

    Berrigan, Félix; Simoneau, Martin; Martin, Olivier; Teasdale, Normand

    2006-04-01

    We examined the interaction between the control of posture and an aiming movement. Balance control was varied by having subjects aim at a target from a seated or a standing position. The aiming difficulty was varied using a Fitts'-like paradigm (movement amplitude=30 cm; target widths=0.5, 1.0, 2.5 and 5 cm). For both postural conditions, all targets were within the reaching space in front of the subjects and kept at a fixed relative position with respect to the subjects' body. Hence, for a given target size, the aiming was differentiated only by the postural context (seated vs. upright standing). For both postural conditions, movement time (MT) followed the well-known Fitts' law, that is, it increased with a decreasing target size. For the smallest target width, however, the increased MT was greater when subjects were standing than when they were seated suggesting that the difficulty of the aiming task could not be determined solely by the target size. When standing, a coordination between the trunk and the arm was observed. Also, as the target size decreased, the center of pressure (CP) displacement increased without any increase in CP speed suggesting that the subjects were regulating their CP to provide a controlled referential to assist the hand movement. When seated, the CP kinematics was scaled with the hand movement kinematics. Increasing the index of difficulty led to a strong correlation between the hand speed and CP displacement and speed. The complex organization between posture and movement was revealed only by examining the specific interactions between speed-accuracy and postural constraints.

  3. Impaired perception of surface tilt in progressive supranuclear palsy

    PubMed Central

    Dale, Marian L.; Horak, Fay B.; Wright, W. Geoffrey; Schoneburg, Bernadette M.; Nutt, John G.; Mancini, Martina

    2017-01-01

    Introduction Progressive supranuclear palsy (PSP) is characterized by early postural instability and backward falls. The mechanisms underlying backward postural instability in PSP are not understood. The aim of this study was to test the hypothesis that postural instability in PSP is a result of dysfunction in the perception of postural verticality. Methods We gathered posturography data on 12 subjects with PSP to compare with 12 subjects with idiopathic Parkinson’s Disease (PD) and 12 healthy subjects. Objective tests of postural impairment included: dynamic sensory perception tests of gravity and of surface oscillations, postural responses to surface perturbations, the sensory organization test of postural sway under altered sensory conditions and limits of stability in stance. Results Perception of toes up (but not toes down) surface tilt was reduced in subjects with PSP compared to both control subjects (p≤0.001 standing, p≤0.007 seated) and subjects with PD (p≤0.03 standing, p≤0.04 seated). Subjects with PSP, PD and normal controls accurately perceived the direction of gravity when standing on a tilting surface. Unlike PD and control subjects, subjects with PSP exerted less postural corrective torque in response to toes up surface tilts. Discussion Difficulty perceiving backward tilt of the surface or body may account for backward falls and postural impairments in patients with PSP. These observations suggest that abnormal central integration of sensory inputs for perception of body and surface orientation contributes to the pathophysiology of postural instability in PSP. PMID:28267762

  4. Support surface related changes in feedforward and feedback control of standing posture

    PubMed Central

    Mohapatra, Sambit; Kukkar, Komal K.; Aruin, Alexander S.

    2013-01-01

    The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed. Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface. Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance. PMID:24268589

  5. Support surface related changes in feedforward and feedback control of standing posture.

    PubMed

    Mohapatra, Sambit; Kukkar, Komal K; Aruin, Alexander S

    2014-02-01

    The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed. Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface. Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Influence of prolonged wearing of unstable shoes on upright standing postural control.

    PubMed

    Sousa, Andreia S P; Macedo, Rui; Santos, Rubim; Sousa, Filipa; Silva, Andreia; Tavares, João Manuel R S

    2016-02-01

    To study the influence of prolonged wearing of unstable shoes on standing postural control in prolonged standing workers. The participants were divided into two groups: one wore unstable shoes while the other wore conventional shoes for 8weeks. Stabilometry parameters related to centre of pressure (CoP), rambling (RM) and trembling (TR) as well as the total agonist/antagonist muscle activity, antagonist co-activation and reciprocal activation were evaluated during upright standing, before and after the 8weeks period. In both moments, the subjects were evaluated wearing the unstable shoes and in barefoot. The unstable shoe condition presented increased CoP displacement related variables and decreased co-activation command compared to barefoot before and after the intervention. The prolonged wearing of unstable shoes led to: (1) reduction of medial-lateral CoP root mean square and area; (2) decreased anteroposterior RM displacement; (3) increased anteroposterior RM mean velocity and mediolateral RM displacement; (4) decreased anteroposterior TR RMS; and (5) increased thigh antagonist co-activation in the unstable shoe condition. The unstable shoe condition is associated to a higher destabilising effect that leads to a selection of more efficient and accurate postural commands compared to barefoot. Prolonged wearing of unstable shoes provides increased effectiveness and performance of the postural control system, while wearing of unstable shoes in upright standing, that are reflected by changes in CoP related variables and by a reorganisation of postural control commands. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Rim and the Ancient Mariner: The Nautical Horizon Affects Postural Sway in Older Adults

    PubMed Central

    Wade, Michael G.; Stergiou, Nick

    2016-01-01

    On land, the spatial magnitude of postural sway (i.e., the amount of sway) tends to be greater when participants look at the horizon than when they look at nearby targets. By contrast, on ships at sea, the spatial magnitude of postural sway in young adults has been greater when looking at nearby targets and less when looking at the horizon. Healthy aging is associated with changes in the movement patterns of the standing body sway, and these changes typically are interpreted in terms of age-related declines in the ability to control posture. To further elucidate the mechanisms associated with these changes we investigated control of posture in a setting that poses substantial postural challenges; standing on a ship at sea. In particular, we explored postural sway on a ship at sea when older adults looked at the horizon or at nearby targets. We evaluated the kinematics of the center of pressure in terms of spatial magnitude (i.e., the amount of sway) and multifractality (a measure of temporal dynamics). We found that looking at the horizon significantly affected the multifractality of standing body, but did not systematically influence the spatial magnitude of sway. We discuss the results in terms of age-related changes in the perception and control of dynamic body orientation. PMID:27973576

  8. The influence of the aquatic environment on the control of postural sway.

    PubMed

    Marinho-Buzelli, Andresa R; Rouhani, Hossein; Masani, Kei; Verrier, Mary C; Popovic, Milos R

    2017-01-01

    Balance training in the aquatic environment is often used in rehabilitation practice to improve static and dynamic balance. Although aquatic therapy is widely used in clinical practice, we still lack evidence on how immersion in water actually impacts postural control. We examined how postural sway measured using centre of pressure and trunk acceleration parameters are influenced by the aquatic environment along with the effects of visual information. Our results suggest that the aquatic environment increases postural instability, measured by the centre of pressure parameters in the time-domain. The mean velocity and area were more significantly affected when individuals stood with eyes closed in the aquatic environment. In addition, a more forward posture was assumed in water with eyes closed in comparison to standing on land. In water, the low frequencies of sway were more dominant compared to standing on dry land. Trunk acceleration differed in water and dry land only for the larger upper trunk acceleration in mediolateral direction during standing in water. This finding shows that the study participants potentially resorted to using their upper trunk to compensate for postural instability in mediolateral direction. Only the lower trunk seemed to change acceleration pattern in anteroposterior and mediolateral directions when the eyes were closed, and it did so depending on the environment conditions. The increased postural instability and the change in postural control strategies that the aquatic environment offers may be a beneficial stimulus for improving balance control. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluation of the lambda model for human postural control during ankle strategy.

    PubMed

    Micheau, Philippe; Kron, Aymeric; Bourassa, Paul

    2003-09-01

    An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.

  10. Influence of visual inputs on quasi-static standing postural steadiness in individuals with spinal cord injury.

    PubMed

    Lemay, Jean-François; Gagnon, Dany; Duclos, Cyril; Grangeon, Murielle; Gauthier, Cindy; Nadeau, Sylvie

    2013-06-01

    Postural steadiness while standing is impaired in individuals with spinal cord injury (SCI) and could be potentially associated with increased reliance on visual inputs. The purpose of this study was to compare individuals with SCI and able-bodied participants on their use of visual inputs to maintain standing postural steadiness. Another aim was to quantify the association between visual contribution to achieve postural steadiness and a clinical balance scale. Individuals with SCI (n = 15) and able-bodied controls (n = 14) performed quasi-static stance, with eyes open or closed, on force plates for two 45 s trials. Measurements of the centre of pressure (COP) included the mean value of the root mean square (RMS), mean COP velocity (MV) and COP sway area (SA). Individuals with SCI were also evaluated with the Mini-Balance Evaluation Systems Test (Mini BESTest), a clinical outcome measure of postural steadiness. Individuals with SCI were significantly less stable than able-bodied controls in both conditions. The Romberg ratios (eyes open/eyes closed) for COP MV and SA were significantly higher for individuals with SCI, indicating a higher contribution of visual inputs for postural steadiness in that population. Romberg ratios for RMS and SA were significantly associated with the Mini-BESTest. This study highlights the contribution of visual inputs in individuals with SCI when maintaining quasi-static standing posture. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [The significance of visual analyzer in controlling the standing posture in individuals with the spastic form of child cerebral paralysis while wearing "Adel" suit].

    PubMed

    Sologubov, E G; Iavorskii, A B; Kobrin, V I

    1996-01-01

    The paper discussed the results of stabilographic examination of the children suffered from the spastic form of child cerebral paralysis (CCP) treated by means of graded wearing of "Adel" suit which is a modification of the "Penguin" spacesuit. There has been studied the state of 30 children before treatment with the use of "Adel" suit and after the treatment as well as following the several courses of wearing the suit. Besides the patients, eleven healthy volunteer subjects (control group) were examined. There have been obtained the results pointing to the fact that in the healthy persons when they try to achieve the standing posture the leading role pertains to visual analyzer, at the same time, in the patients with spastic form of CCP the realization of standing posture depends upon the severity of the motor function disorders. When in the process of control stabilographic examination the patients suffered from spastic form of CCP demonstrate the significant role of the visual analyzer in achieving the standing posture, the use of the "Adel" suit is most desirable. The use of the "Adel" suit in the CCP patients with a decreased role of visual analyzer in achieving the standing pose as it was found under control examination enhances its significance in controlling the position of the center of gravity of the body.

  12. Postural control system influences intrinsic alerting state.

    PubMed

    Barra, Julien; Auclair, Laurent; Charvillat, Agnès; Vidal, Manuel; Pérennou, Dominic

    2015-03-01

    Numerous studies using dual-task paradigms (postural and cognitive) have shown that postural control requires cognitive resources. However, the influence of postural control on attention components has never been directly addressed. Using the attention network test (ANT), which assesses specifically each of the 3 components of attention-alertness, orientation, and executive control-within a single paradigm, we investigated the effect of postural balance demand on these 3 components. Forty-two participants completed the ANT in 3 postural conditions: (a) supine, a very stable position; (b) sitting on a chair, an intermediate position; and (c) standing with feet lined up heel to toe, a very instable position known as the Romberg position. Our results revealed that the difficulty of postural control does modulate alerting in such a way that it improves with the level of instability of the position. Regarding the orienting and executive control components of attention, performance was not different when participants were standing upright or seated, whereas in the supine position, performance dropped. The strong and specific interaction between postural control and the alerting system suggests that these mechanisms may share parts of the underlying neural circuits. We discuss the possible implication of the locus coeruleus, known to be involved in both postural balance and alerting. Also, our findings concerning orienting and executive control systems suggest that supine posture could have a specific effect on cognitive activities. These effects are discussed in terms of particularities resulting from the supine position. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  13. Trial-to-trial adaptation in control of arm reaching and standing posture

    PubMed Central

    Pienciak-Siewert, Alison; Horan, Dylan P.

    2016-01-01

    Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability. PMID:27683888

  14. Trial-to-trial adaptation in control of arm reaching and standing posture.

    PubMed

    Pienciak-Siewert, Alison; Horan, Dylan P; Ahmed, Alaa A

    2016-12-01

    Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability. Copyright © 2016 the American Physiological Society.

  15. Neuromuscular Control and Coordination during Cycling

    ERIC Educational Resources Information Center

    Li, Li

    2004-01-01

    The neuromuscular control aspect of cycling has been investigated through the effects of modifying posture and cadence. These studies show that changing posture has a more profound influence on neuromuscular coordination than does changing slope. Most of the changes with standing posture occur late in the downstroke: increased ankle and knee joint…

  16. Tai Chi training reduced coupling between respiration and postural control.

    PubMed

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Postural orientation and standing postural alignment in ambulant children with bilateral cerebral palsy.

    PubMed

    Domagalska-Szopa, Małgorzata; Szopa, Andrzej

    2017-11-01

    Standing postural alignment in children with cerebral palsy is usually altered by central postural control disorders. The primary aim of this study is to describe body alignment in a quiet standing position in ambulatory children with bilateral cerebral palsy compared with children with typical development. Fifty-eight children with bilateral cerebral palsy (aged 7-13years) and 45 age-matched children with typical development underwent a surface topography examination based on Moiré topography and were classified according to their sagittal postural profiles. The following eight grouping variables were extracted using a data reduction technique: angle of trunk inclination, pelvic tilt, and lordosis, the difference between kyphosis and lordosis, angle of vertebral lateral curvature, shoulder inclination, and shoulder and pelvic rotation. According to the cluster analysis results, 25% of the participants were classified into Cluster 1, 9% into Cluster 2, 49% in Cluster 3, and 17% in Cluster 4. Three different postural patterns emerged in accordance with the sagittal postural profiles in children with bilateral cerebral palsy and were defined as follows: 1) a lordotic postural pattern corresponding to forward-leaning posture; 2) a swayback postural pattern corresponding to backward-leaning posture; and 3) a balanced postural pattern corresponding to balanced posture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Clinical correlates of between-limb synchronization of standing balance control and falls during inpatient stroke rehabilitation.

    PubMed

    Mansfield, Avril; Mochizuki, George; Inness, Elizabeth L; McIlroy, William E

    2012-01-01

    Stroke-related sensorimotor impairment potentially contributes to impaired balance. Balance measures that reveal underlying limb-specific control problems, such as a measure of the synchronization of both lower limbs to maintain standing balance, may be uniquely informative about poststroke balance control. This study aimed to determine the relationships between clinical measures of sensorimotor control, functional balance, and fall risk and between-limb synchronization of balance control. The authors conducted a retrospective chart review of 100 individuals with stroke admitted to inpatient rehabilitation. Force plate-based measures were obtained while standing on 2 force plates, including postural sway (root mean square of anteroposterior and mediolateral center of pressure [COP]), stance load asymmetry (percentage of body weight borne on the less-loaded limb), and between-limb synchronization (cross-correlation of the COP recordings under each foot). Clinical measures obtained were motor impairment (Chedoke-McMaster Stroke Assessment), plantar cutaneous sensation, functional balance (Berg Balance Scale), and falls experienced in rehabilitation. Synchronization was significantly related to motor impairment and prospective falls, even when controlling for other force plate-based measures of standing balance control (ie, postural sway and stance load symmetry). Between-limb COP synchronization for standing balance appears to be a uniquely important index of balance control, independent of postural sway and load symmetry during stance.

  19. REVIEW: Restoring standing capabilities with feedback control of functional neuromuscular stimulation following spinal cord injury

    PubMed Central

    Nataraj, Raviraj; Audu, Musa L.; Triolo, Ronald J.

    2017-01-01

    This paper reviews the field of feedback control for neuroprosthesis systems that restore advanced standing function to individuals with spinal cord injury. Investigations into closed-loop control of standing by functional neuromuscular stimulation (FNS) have spanned three decades. The ultimate goal for FNS standing control systems is to facilitate hands free standing and enabling the user to perform manual functions at self-selected leaning positions. However, most clinical systems for home usage currently only provide basic upright standing using preprogrammed stimulation patterns. To date, online modulation of stimulation to produce advanced standing functions such as balance against postural disturbances or the ability to assume leaning postures have been limited to simulation and laboratory investigations. While great technological advances have been made in biomechanical sensing and interfaces for neuromuscular stimulation, further progress is still required for finer motor control by FNS. Another major challenge is the development of sophisticated control schemes that produce the necessary postural adjustments, adapt against accelerating muscle fatigue, and consider volitional actions of the intact upper-body of the user. Model-based development for novel control schemes are proven and sensible approaches to prototype and test the basic operating efficacy of potentially complex and multi-faceted control systems. The major considerations for further innovation of such systems are summarized in this paper prior to describing the evolution of closed-loop FNS control of standing from previous works. Finally, necessary emerging technologies to for implementing FNS feedback control systems for standing are identified. These technological advancements include novel electrodes that more completely and selectively activate paralyzed musculature and implantable sensors and stimulation modules for flexible neuroprosthesis system deployment. PMID:28215399

  20. Restoring standing capabilities with feedback control of functional neuromuscular stimulation following spinal cord injury.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J

    2017-04-01

    This paper reviews the field of feedback control for neuroprosthesis systems that restore advanced standing function to individuals with spinal cord injury. Investigations into closed-loop control of standing by functional neuromuscular stimulation (FNS) have spanned three decades. The ultimate goal for FNS standing control systems is to facilitate hands free standing and enabling the user to perform manual functions at self-selected leaning positions. However, most clinical systems for home usage currently only provide basic upright standing using preprogrammed stimulation patterns. To date, online modulation of stimulation to produce advanced standing functions such as balance against postural disturbances or the ability to assume leaning postures have been limited to simulation and laboratory investigations. While great technological advances have been made in biomechanical sensing and interfaces for neuromuscular stimulation, further progress is still required for finer motor control by FNS. Another major challenge is the development of sophisticated control schemes that produce the necessary postural adjustments, adapt against accelerating muscle fatigue, and consider volitional actions of the intact upper-body of the user. Model-based development for novel control schemes are proven and sensible approaches to prototype and test the basic operating efficacy of potentially complex and multi-faceted control systems. The major considerations for further innovation of such systems are summarized in this paper prior to describing the evolution of closed-loop FNS control of standing from previous works. Finally, necessary emerging technologies to for implementing FNS feedback control systems for standing are identified. These technological advancements include novel electrodes that more completely and selectively activate paralyzed musculature and implantable sensors and stimulation modules for flexible neuroprosthesis system deployment. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Effect of higher muscle coactivation on standing postural response to perturbation in older adults.

    PubMed

    Nagai, Koutatsu; Okita, Yusuke; Ogaya, Shinya; Tsuboyama, Tadao

    2017-04-01

    Although several studies have reported that muscle coactivation during postural control increases with age, the effect of higher muscle coactivation on standing postural response to perturbation is unknown. To investigate whether higher muscle coactivation affects standing postural response to perturbation in older adults. Thirty-four community-dwelling older participants were randomly assigned either to the coactivation group (CG), where muscle coactivation was increased intentionally, or to the non-coactivation group (NCG). The participants were instructed to stand on a force plate that moved forward or backward. Electromyography data were collected from the lower leg muscles. We requested the participants in the CG to increase the activity of their tibialis anterior, and to maintain this posture during the tasks. We moved the force plate with a constant amplitude and velocity, and measured kinematic data with a camera during the tasks. During forward transfer, the knee extension and hip flexion decreased in the CG after perturbation compared to NCG, and the trunk extension angle increased. The center of pressure (COP) displacement decreased around the peak of the movement in the CG compared to NCG. During backward transfer, ankle dorsal and knee flexion changed after perturbation in the CG compared to NCG. Our study found that higher muscle coactivation inhibits lower limb and COP movement as well as increases trunk tilt and the risk for falls during forward perturbations. Postural control with higher coactivation appears to be inefficient for maintaining balance during the backward sway of posture.

  2. Experimental neck muscle pain impairs standing balance in humans.

    PubMed

    Vuillerme, Nicolas; Pinsault, Nicolas

    2009-02-01

    Impaired postural control has been reported in patients with chronic neck pain of both traumatic and non-traumatic etiologies, but whether painful stimulation of neck muscle per se can affect balance control during quiet standing in humans remains unclear. The purpose of the present experiment was thus to investigate the effect of experimental neck muscle pain on standing balance in young healthy adults. To achieve this goal, 16 male university students were asked to stand upright as still as possible on a force platform with their eyes closed in two conditions of No pain and Pain of the neck muscles elicited by experimental painful electrical stimulation. Postural control and postural performance were assessed by the displacements of the center of foot pressure (CoP) and of the center of mass (CoM), respectively. The results showed increased CoP and CoM displacements variance, range, mean velocity, and mean and median frequencies in the Pain relative to the No pain condition. The present findings emphasize the destabilizing effect of experimental neck muscle pain per se, and more largely stress the importance of intact neck neuromuscular function on standing balance.

  3. Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control

    PubMed Central

    Donker, Stella F.; Roerdink, Melvyn; Greven, An J.

    2007-01-01

    The influence of attention on the dynamical structure of postural sway was examined in 30 healthy young adults by manipulating the focus of attention. In line with the proposed direct relation between the amount of attention invested in postural control and regularity of center-of-pressure (COP) time series, we hypothesized that: (1) increasing cognitive involvement in postural control (i.e., creating an internal focus by increasing task difficulty through visual deprivation) increases COP regularity, and (2) withdrawing attention from postural control (i.e., creating an external focus by performing a cognitive dual task) decreases COP regularity. We quantified COP dynamics in terms of sample entropy (regularity), standard deviation (variability), sway-path length of the normalized posturogram (curviness), largest Lyapunov exponent (local stability), correlation dimension (dimensionality) and scaling exponent (scaling behavior). Consistent with hypothesis 1, standing with eyes closed significantly increased COP regularity. Furthermore, variability increased and local stability decreased, implying ineffective postural control. Conversely, and in line with hypothesis 2, performing a cognitive dual task while standing with eyes closed led to greater irregularity and smaller variability, suggesting an increase in the “efficiency, or “automaticity” of postural control”. In conclusion, these findings not only indicate that regularity of COP trajectories is positively related to the amount of attention invested in postural control, but also substantiate that in certain situations an increased internal focus may in fact be detrimental to postural control. PMID:17401553

  4. Effect of alternating postures on cognitive performance for healthy people performing sedentary work.

    PubMed

    Schwartz, Bernhard; Kapellusch, Jay M; Schrempf, Andreas; Probst, Kathrin; Haller, Michael; Baca, Arnold

    2018-06-01

    Prolonged sitting is a risk factor for several diseases and the prevalence of worksite-based interventions such as sit-to-stand workstations is increasing. Although their impact on sedentary behaviour has been regularly investigated, the effect of working in alternating body postures on cognitive performance is unclear. To address this uncertainty, 45 students participated in a two-arm, randomised controlled cross-over trial under laboratory conditions. Subjects executed validated cognitive tests (working speed, reaction time, concentration performance) either in sitting or alternating working postures on two separate days (ClinicalTrials.gov Identifier: NCT02863731). MANOVA results showed no significant difference in cognitive performance between trials executed in alternating, standing or sitting postures. Perceived workload did not differ between sitting and alternating days. Repeated measures ANOVA revealed significant learning effects regarding concentration performance and working speed for both days. These results suggest that working posture did not affect cognitive performance in the short term. Practitioner Summary: Prior reports indicated health-related benefits based on alternated (sit/stand) body postures. Nevertheless, their effect on cognitive performance is unknown. This randomised controlled trial showed that working in alternating body postures did not influence reaction time, concentration performance, working speed or workload perception in the short term.

  5. Invariant density analysis: modeling and analysis of the postural control system using Markov chains.

    PubMed

    Hur, Pilwon; Shorter, K Alex; Mehta, Prashant G; Hsiao-Wecksler, Elizabeth T

    2012-04-01

    In this paper, a novel analysis technique, invariant density analysis (IDA), is introduced. IDA quantifies steady-state behavior of the postural control system using center of pressure (COP) data collected during quiet standing. IDA relies on the analysis of a reduced-order finite Markov model to characterize stochastic behavior observed during postural sway. Five IDA parameters characterize the model and offer physiological insight into the long-term dynamical behavior of the postural control system. Two studies were performed to demonstrate the efficacy of IDA. Study 1 showed that multiple short trials can be concatenated to create a dataset suitable for IDA. Study 2 demonstrated that IDA was effective at distinguishing age-related differences in postural control behavior between young, middle-aged, and older adults. These results suggest that the postural control system of young adults converges more quickly to their steady-state behavior while maintaining COP nearer an overall centroid than either the middle-aged or older adults. Additionally, larger entropy values for older adults indicate that their COP follows a more stochastic path, while smaller entropy values for young adults indicate a more deterministic path. These results illustrate the potential of IDA as a quantitative tool for the assessment of the quiet-standing postural control system.

  6. Continuous and difficult discrete cognitive tasks promote improved stability in older adults.

    PubMed

    Lajoie, Yves; Jehu, Deborah A; Richer, Natalie; Chan, Alan

    2017-06-01

    Directing attention away from postural control and onto a cognitive task affords the emergence of automatic control processes. Perhaps the continuous withdrawal of attention from the postural task facilitates an automatization of posture as opposed to only intermittent withdrawal; however this is unknown in the aging population. Twenty older adults (69.9±3.5years) stood with feet together on a force platform for 60s while performing randomly assigned discrete and continuous cognitive tasks. Participants were instructed to stand comfortably with their arms by their sides while verbally responding to the auditory stimuli as fast as possible during the discrete tasks, or mentally performing the continuous cognitive tasks. Participants also performed single-task standing. Results demonstrate significant reductions in sway amplitude and sway variability for the difficult discrete task as well as the continuous tasks relative to single-task standing. The continuous cognitive tasks also prompted greater frequency of sway in the anterior-posterior direction compared to single-standing and discrete tasks, and greater velocity in both directions compared to single-task standing, which could suggest ankle stiffening. No differences in the simple discrete condition were shown compared to single-task standing, perhaps due to the simplicity of the task. Therefore, we propose that the level of difficulty of the task, the specific neuropsychological process engaged during the cognitive task, and the type of task (discrete vs. continuous) influence postural control in older adults. Dual-tasking is a common activity of daily living; this work provides insight into the age-related changes in postural stability and attention demand. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Advantages and disadvantages of stiffness instructions when studying postural control.

    PubMed

    Bonnet, Cédrick T

    2016-05-01

    To understand the maintenance of upright stance, researchers try to discover the fundamental mechanisms and attentional resources devoted to postural control and eventually to the performance of other tasks (e.g., counting in the head). During their studies, some researchers require participants to stand as steady as possible and other simply ask participants to stand naturally. Surprisingly, a clear and direct explanation of the usefulness of the steadiness requirement seems to be lacking, both in experimental and methodological discussions. Hence, the objective of the present note was to provide advantages and disadvantages of this steadiness requirement in studies of postural control. The advantages may be to study fundamental postural control, to eliminate useless postural variability, to control spurious body motions and to control the participants' thoughts. As disadvantages, this steadiness requirement only leads to study postural control in unnatural upright stance, it changes the focus of attention (internal vs. external) and the nature of postural control (unconscious vs. conscious), it increases the difficulty of a supposedly easy control task and it eliminates or reduces the opportunity to record exploratory behaviors. When looking carefully at the four advantages of the steadiness requirement, one can believe that they are, in fact, more disadvantageous than advantageous. Overall therefore, this requirement seems illegitimate and it is proposed that researchers should not use it in the study of postural control. They may use this requirement only if they search to know the limit until which participants can consciously reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Both anticipatory and compensatory postural adjustments are adapted while catching a ball in unstable standing posture.

    PubMed

    Scariot, Vanessa; Rios, Jaqueline L; Claudino, Renato; Dos Santos, Eloá C; Angulski, Hanna B B; Dos Santos, Marcio J

    2016-01-01

    The main objective of this study was to analyze the role of balance exercises on anticipatory (APA) and compensatory (CPA) postural adjustments in different conditions of postural stability. Sixteen subjects were required to catch a ball while standing on rigid floor, trampoline and foam cushion surfaces. Electromyographic activities (EMG) of postural muscles were analyzed during time windows typical for APAs and CPAs. Overall there were a reciprocal activation of the muscles around the ankle and co-activations between ventral and dorsal muscles of the thigh and trunk during the catching a ball task. Compared to the rigid floor, the tibialis anterior activation was greater during the trampoline condition (CPA: p = 0.006) and the soleus muscle inhibition was higher during foam cushion condition (APA: p = 0.001; CPA: p = 0.007). Thigh and trunk muscle activities were similar across the conditions. These results advance the knowledge in postural control during body perturbations standing on unstable surfaces. Published by Elsevier Ltd.

  9. The role of the antigravity musculature during quiet standing in man.

    PubMed

    Soames, R W; Atha, J

    1981-01-01

    The view that postural regulation is achieved by controlling the destabilising effects of gravity through myotatic reflex activity was examined using surface electromyography. Forty seconds of recordings were made of myograms from eighteen muscles in each of a sample of nine young adults. It was observed that antigravity muscular activity in standing is generally low and often absent, and that the myograms from the muscles of the right and left sides of the body differed appreciably, the two sides rarely working together. Some sudden and united bursts of antigravity muscle activity could be observed. These might well have been stretch reflex induced, but they were transient and rare. It is concluded that the view that postural control in quiet standing is continuously mediated in a simple way by stretch reflex mechanisms is probably not valid, and that other mechanisms for controlling posture remain to be identified.

  10. Organization of Functional Postural Responses Following Perturbations in Multiple Directions in Elderly Fallers Standing Quietly

    ERIC Educational Resources Information Center

    Matjacic, Zlatko; Sok, David; Jakovljevic, Miroljub; Cikajlo, Imre

    2013-01-01

    The objective of the study was to assess functional postural responses by analyzing the center-of-pressure trajectories resulting from perturbations delivered in multiple directions to elderly fallers. Ten elderly individuals were standing quietly on two force platforms while an apparatus delivered controlled perturbations at the level of pelvis…

  11. Vibrotactile Feedback Alters Dynamics Of Static Postural Control In Persons With Parkinson's Disease But Not Older Adults At High Fall Risk.

    PubMed

    High, Carleigh M; McHugh, Hannah F; Mills, Stephen C; Amano, Shinichi; Freund, Jane E; Vallabhajosula, Srikant

    2018-06-01

    Aging and Parkinson's disease are often associated with impaired postural control. Providing extrinsic feedback via vibrotactile sensation could supplement intrinsic feedback to maintain postural control. We investigated the postural control response to vibrotactile feedback provided at the trunk during challenging stance conditions in older adults at high fall risk and individuals with Parkinson's disease compared to healthy older adults. Nine older adults at high fall risk, 9 persons with Parkinson's disease and 10 healthy older adults performed 30s quiet standing on a force platform under five challenging stance conditions with eyes open/closed and standing on firm/foam surface with feet together, each with and without vibrotactile feedback. During vibrotactile feedback trials, feedback was provided when participants swayed >10% over the center of their base of support. Participants were instructed vibrations would be in response to their movement. Magnitude of postural sway was estimated using center of pressure path length, velocity, and sway area. Dynamics of individuals' postural control was evaluated using detrended fluctuation analysis. Results showed that vibrotactile feedback induced a change in postural control dynamics among persons with Parkinson's disease when standing with intact intrinsic visual input and altered intrinsic somatosensory input, but there was no change in sway magnitude. However, use of vibrotactile feedback did not significantly alter dynamics of postural control in older adults with high risk of falling or reduce the magnitude of sway. Considering the effects of vibrotactile feedback were dependent on the population and stance condition, designing an optimal therapeutic regimen for balance training should be carefully considered and be specific to a target population. Furthermore, our results suggest that explicit instructions on how to respond to the vibrotactile feedback could affect training outcome. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Experimental muscle pain challenges the postural stability during quiet stance and unexpected posture perturbation.

    PubMed

    Hirata, Rogério Pessoto; Ervilha, Ulysses Fernandes; Arendt-Nielsen, Lars; Graven-Nielsen, Thomas

    2011-08-01

    Musculoskeletal pain impairs postural control and stability. Nine subjects stood as quietly as possible on a moveable force platform before, during, and after experimental pain in the right leg muscles. A moveable force platform was used to measure the center of pressure and provided unexpected perturbations. Lower limb muscle activity, joint angles, and foot pressure distributions were measured. Hypertonic saline was used to induce pain in the vastus lateralis, vastus medialis, or biceps femoris muscle of the right leg. Compared to baseline and control sessions, pain in the knee extensor muscles during quiet standing evoked: 1) larger sway area, greater medial-lateral center of pressure displacement and higher speed (P < .05); 2) increased sway displacement in the anterior-posterior direction (P < .05); and 3) increased electromyography (EMG) activity for left tibialis anterior and left erector spinae muscles (P < .05). Pain provoked longer time to return to an equilibrium posture after forward EMG activity for, and pain in vastus medialis muscle decreased the time for the maximum hip flexion during this perturbation (P < .05). These results show that muscle pain impairs postural stability during quiet standing and after unexpected perturbation, which suggest that people suffering from leg muscle pain are more vulnerable to falls. This article presents the acute responses to leg muscle pain on the postural control. This measure could potentially help clinicians who seek to assess how pain responses may contribute to patient's postural control and stability during quiet standing and after recovering from unexpected perturbations. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  13. Influence of real and virtual heights on standing balance.

    PubMed

    Cleworth, Taylor W; Horslen, Brian C; Carpenter, Mark G

    2012-06-01

    Fear and anxiety induced by threatening scenarios, such as standing on elevated surfaces, have been shown to influence postural control in young adults. There is also a need to understand how postural threat influences postural control in populations with balance deficits and risk of falls. However, safety and feasibility issues limit opportunities to place such populations in physically threatening scenarios. Virtual reality (VR) has successfully been used to simulate threatening environments, although it is unclear whether the same postural changes can be elicited by changes in virtual and real threat conditions. Therefore, the purpose of this study was to compare the effects of real and virtual heights on changes to standing postural control, electrodermal activity (EDA) and psycho-social state. Seventeen subjects stood at low and high heights in both real and virtual environments matched in scale and visual detail. A repeated measures ANOVA revealed increases with height, independent of visual environment, in EDA, anxiety, fear, and center of pressure (COP) frequency, and decreases with height in perceived stability, balance confidence and COP amplitude. Interaction effects were seen for fear and COP mean position; where real elicited larger changes with height than VR. This study demonstrates the utility of VR, as simulated heights resulted in changes to postural, autonomic and psycho-social measures similar to those seen at real heights. As a result, VR may be a useful tool for studying threat related changes in postural control in populations at risk of falls, and to screen and rehabilitate balance deficits associated with fear and anxiety. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Children's catching performance when the demands on the postural system is altered.

    PubMed

    Angelakopoulos, Georgios T; Tsorbatzoudis, Haralambos; Grouios, George

    2014-07-01

    In many dynamic interceptive actions performers need to integrate activity of manual and postural subsystems for successful performance. Groups of different skill level (poor and good catchers), (mean age = 9.1 and 9.4 respectively) were required to perform one-handed catches under different postural constraints: standing; standing in contact with a postural support aid by their side (PSAS) or to the left of their trunk (PSAF); Tandem; and sitting (control). Results revealed that, for poor catchers, the number of successful catches increased and grasp errors decreased significantly when sitting and with both postural aids in comparison with standing alone and Tandem conditions. Kinematic analyses showed that the postural aid devices reduced head sway in the anterior-posterior direction, while the PSAF reduced lateral head sway. The poor catchers' performance benefited from an enlarged support surface, and reduction of lateral sway. Good catchers performed successfully under all task constraints, signifying the existence of a functional relationship between postural and grasping subsystems during performance. The results are discussed in the frame of Bernstein's (1967) and Newell's (1986) theory.

  15. Age-Related Differences in Postural Control and Attentional Cost During Tasks Performed in a One-Legged Standing Posture.

    PubMed

    Ihira, Hikaru; Makizako, Hyuma; Mizumoto, Atsushi; Makino, Keitarou; Matsuyama, Kiyoji; Furuna, Taketo

    2016-01-01

    In dual-task situations, postural control is closely associated with attentional cost. Previous studies have reported age-related differences between attentional cost and postural control, but little is known about the association in conditions with a one-legged standing posture. The purpose of this study was to determine age-related differences in postural control and attentional cost while performing tasks at various difficulty levels in a one-legged standing posture. In total, 29 healthy older adults aged 64 to 78 years [15 males, 14 females, mean (SD) = 71.0 (3.8) years] and 29 healthy young adults aged 20 to 26 years [14 males, 15 females, mean (SD) = 22.5 (1.5) years] participated in this study. We measured the reaction time, trunk accelerations, and lower limb muscle activity under 3 different one-legged standing conditions-on a firm surface, on a soft surface with a urethane mat, and on a softer more unstable surface with 2 piled urethane mats. Reaction time as an indication of attentional cost was measured by pressing a handheld button as quickly as possible in response to an auditory stimulus. A 2-way repeated-measures analysis of variance was performed to examine the differences between the 3 task conditions and the 2 age groups for each outcome. Trunk accelerations showed a statistically significant group-by-condition interaction in the anteroposterior (F = 9.1, P < .05), mediolateral (F = 9.9, P < .05), and vertical (F = 9.3, P < .05) directions. Muscle activity did not show a statistically significant group-by-condition interaction, but there was a significant main effect of condition in the tibialis anterior muscle (F = 33.1, P < .01) and medial gastrocnemius muscle (F = 14.7, P < .01) in young adults and the tibialis anterior muscle (F = 24.8, P < .01) and medial gastrocnemius muscle (F = 10.8, P < .01) in older adults. In addition, there was a statistically significant interaction in reaction time (F = 8.2, P < .05) for group-by-condition. The study results confirmed that reaction times in older adults are more prolonged than young adults in the same challenging postural control condition.

  16. Intermittent use of an "anchor system" improves postural control in healthy older adults.

    PubMed

    Freitas, Milena de Bem Zavanella; Mauerberg-deCastro, Eliane; Moraes, Renato

    2013-07-01

    Haptic information, provided by a non-rigid tool (i.e., an "anchor system"), can reduce body sway in individuals who perform a standing postural task. However, it was not known whether or not continuous use of the anchor system would improve postural control after its removal. Additionally, it was unclear as to whether or not frequency of use of the anchor system is related to improved control in older adults. The present study evaluated the effect of the prolonged use of the anchor system on postural control in healthy older individuals, at different frequencies of use, while they performed a postural control task (semi-tandem position). Participants were divided into three groups according to the frequency of the anchor system's use (0%, 50%, and 100%). Pre-practice phase (without anchor) was followed by a practice phase (they used the anchor system at the predefined frequency), and a post-practice phase (immediate and late-without anchor). All three groups showed a persistent effect 15min after the end of the practice phase (immediate post-practice phase). However, only the 50% group showed a persistent effect in the late post-practice phase (24h after finishing the practice phase). Older adults can improve their postural control by practicing the standing postural task, and use of the anchor system limited to half of their practice time can provide additional improvement in their postural control. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Spinal postural training: Comparison of the postural and mobility effects of electrotherapy, exercise, biofeedback trainer in addition to postural education in university students.

    PubMed

    Çelenay, Şeyda Toprak; Kaya, Derya Özer; Özüdoğru, Anıl

    2015-01-01

    Spinal posture and mobility are significant for protecting spine. The aim was to compare effects of different postural training interventions on spinal posture and mobility. Ninety-six university students (ages: 18–25 years) were allocated into Electrical Stimulation (ES) (n = 24), Exercise (n = 24), Biofeedback Posture Trainer (Backtone) (n = 24), and Postural Education (n = 24, Controls) groups. All the groups got postural education. The interventions were carried out 3 days a week for 8 weeks. Spinal Mouse device (Idiag, Fehraltorf, Switzerland) was used to detect thoracic and lumbar curvatures and mobility (degrees) in standing and sitting positions. Paired Student’s t-test, one-way ANOVA, and pairwise post-hoc tests were used. ES decreased thoracic curvature, the exercise decreased thoracic and lumbar curvature and increased thoracic mobility in standing position between pre-post training (p < 0.05). Exercise and Backtone improved thoracic curvature in sitting (p <0.05). In Exercise Group, thoracic curvature decreased compared to Backtone and Education Groups, and thoracic mobility increased compared to all groups (p < 0.05). The exercise was effective and superior in improving thoracic and lumbar curves, and mobility among university students. ES decreased thoracic curve. Biofeedback posture trainer improved sitting posture. A prospective randomized controlled trial, Level 1.

  18. The variability of the force produced by the plantar flexor muscles does not associate with postural sway in older adults during upright standing.

    PubMed

    Barbosa, Roberto N; Silva, Nilson R S; Santos, Daniel P R; Moraes, Renato; Gomes, Matheus M

    2018-05-31

    The force variability of the plantar flexor muscles (PFM) appears to be directly related to the control of upright standing. Nevertheless, this association is still uncertain in older adults. This study aimed to evaluate the relationship between PFM force variability and postural sway in the upright standing in older women. Forty older women performed submaximal plantar flexion movements measured by force transducers coupled to an experimental chair. They performed this task during three sets of 20 s at 5% and 10% of their maximum voluntary isometric contraction with and without the aid of visual feedback of the force produced. The volunteers then stood barefoot, with eyes closed and feet parallel on a force platform, which allowed the measurement of the center of pressure displacement in the anteroposterior direction. The results did not indicate a significant association between force variability of the PFMs and postural sway in older women. It can be inferred that the force variability of the PFM does not play an important role in controlling the posture in this population, suggesting that other factors may influence the functioning of the postural control system in older adults. Copyright © 2018. Published by Elsevier B.V.

  19. Cognitive tasks promote automatization of postural control in young and older adults.

    PubMed

    Potvin-Desrochers, Alexandra; Richer, Natalie; Lajoie, Yves

    2017-09-01

    Researchers looking at the effects of performing a concurrent cognitive task on postural control in young and older adults using traditional center-of-pressure measures and complexity measures found discordant results. Results of experiments showing improvements of stability have suggested the use of strategies such as automatization of postural control or stiffening strategy. This experiment aimed to confirm in healthy young and older adults that performing a cognitive task while standing leads to improvements that are due to automaticity of sway by using sample entropy. Twenty-one young adults and twenty-five older adults were asked to stand on a force platform while performing a cognitive task. There were four cognitive tasks: simple reaction time, go/no-go reaction time, equation and occurrence of a digit in a number sequence. Results demonstrated decreased sway area and variability as well as increased sample entropy for both groups when performing a cognitive task. Results suggest that performing a concurrent cognitive task promotes the adoption of an automatic postural control in young and older adults as evidenced by an increased postural stability and postural sway complexity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The influence of an auditory-memory attention-demanding task on postural control in blind persons.

    PubMed

    Melzer, Itshak; Damry, Elad; Landau, Anat; Yagev, Ronit

    2011-05-01

    In order to evaluate the effect of an auditory-memory attention-demanding task on balance control, nine blind adults were compared to nine age-gender-matched sighted controls. This issue is particularly relevant for the blind population in which functional assessment of postural control has to be revealed through "real life" motor and cognitive function. The study aimed to explore whether an auditory-memory attention-demanding cognitive task would influence postural control in blind persons and compare this with blindfolded sighted persons. Subjects were instructed to minimize body sway during narrow base upright standing on a single force platform under two conditions: 1) standing still (single task); 2) as in 1) while performing an auditory-memory attention-demanding cognitive task (dual task). Subjects in both groups were required to stand blindfolded with their eyes closed. Center of Pressure displacement data were collected and analyzed using summary statistics and stabilogram-diffusion analysis. Blind and sighted subjects had similar postural sway in eyes closed condition. However, for dual compared to single task, sighted subjects show significant decrease in postural sway while blind subjects did not. The auditory-memory attention-demanding cognitive task had no interference effect on balance control on blind subjects. It seems that sighted individuals used auditory cues to compensate for momentary loss of vision, whereas blind subjects did not. This may suggest that blind and sighted people use different sensorimotor strategies to achieve stability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission. V - Postural responses following exposure to weightlessness

    NASA Technical Reports Server (NTRS)

    Kenyon, R. V.; Young, L. R.

    1986-01-01

    The four science crewmembers of Spacelab-1 were tested for postural control before and after a 10 day mission in weightlessness. Previous reports have shown changes in astronaut postural behavior following a return to earth's 1-g field. This study was designed to identify changes in EMG latency and amplitudes that might explain the instabilities observed post-flight. Erect posture was tested having the subject stand on a pneumatically driven posture platform which pitched rapidly and unexpectedly about the ankles causing dorsi- and plantarflexion. Electromyographic (EMG) activity from the tibialis anterior and the gastrocnemius-soleus muscles was measured during eyes open and eyes closed trials. The early (pre 500 ms) EMG response characteristics (latency, amplitude) in response to a disturbance in the posture of the subject were apparently unchanged by the 10 days of weightlessness. However, the late (post 500 ms) response showed higher amplitudes than was found pre-flight. General postural control was quantitatively measured pre- and post-flight by a 'sharpened Romberg Rails test'. This test showed decrements in standing stability with eyes closed for several days post-flight.

  2. Study of the human postural control system during quiet standing using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro

    2009-05-01

    The detrended fluctuation analysis is used to study the behavior of different time series obtained from the trajectory of the center of pressure, the output of the activity of the human postural control system. The results suggest that these trajectories present two different regimes in their scaling properties: persistent (for high frequencies, short-range time scale) to antipersistent (for low frequencies, long-range time scale) behaviors. The similitude between the results obtained for the measurements, done with both eyes open and eyes closed, indicate either that the visual system may be disregarded by the postural control system while maintaining the quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with the type of analysis performed here.

  3. The Effects of Slackline Balance Training on Postural Control in Older Adults.

    PubMed

    Thomas, Monika; Kalicinski, Michael

    2016-07-01

    The present study investigated whether slackline training enhances postural control in older adults. Twenty-four participants were randomized into an intervention and a control group. The intervention group received 6 weeks of slackline training, two times per week. Pre-post measurement included the time of different standing positions on a balance platform with and without an external disturbance and the acceleration of the balance platform. Results showed significantly improved standing times during one-leg stance without external disturbance and a significantly reduced acceleration of the balance platform for the intervention group after the training period during tandem stance with and without an external disturbance. We conclude that slackline training in older adults has a positive impact on postural control and thus on the reduction of fall risk.

  4. Computerized Posturographic Measurement in Elderly Women with Unilateral Knee Osteoarthritis

    PubMed Central

    Lim, Kil-Byung

    2012-01-01

    Objective To identify the subtle change of postural control in elderly patients with unilateral knee osteoarthritis (OA) with computerized dynamic posturography. Method Twenty-two healthy women and twenty-six women with unilateral knee OA, aged 60 and over, were enrolled. The computerized posturographic measures included a weight bearing pattern during squatting and sit-to-stand, sway velocity of center of gravity (COG) during one leg standing, on-axis velocity and directional control of COG during rhythmic weight shift, rising index during sit-to-stand, end sway during tandem walk, and movement time during step up/over. Results It was shown that patients bore significantly less weight on the affected side during the 30° and 60° squat and sit-to-stand. Sway velocity of COG during one leg standing was greater whereas the on-axis velocity and directional control during the front/back rhythmic weight shift were significantly lower in the patient group. The rising index during sit-to-stand was significantly lower and movement time during step up/over with the affected side was significantly longer in patients. Conclusion This study demonstrated in detail a decline of postural balance by utilizing computerized posturography in elderly women with unilateral knee OA. They had less weight-bearing, more sway, and less ability of intentional postural control on the affected side. PMID:23185725

  5. Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD).

    PubMed

    Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W

    2016-01-01

    Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial perception of their postural limitation boundary towards target directions and reduced time to correct this error during dynamic postural sways but not during static stance. Regarding postural equilibrium, they showed a compromised ability to decouple ankle dorsi-/plantar-flexion and hip abduction/adduction processes during dynamic stances. These results suggest that deficits in both postural orientation and equilibrium processes contribute to reduced postural stability in ASD. Specifically, increased postural sway in ASD appears to reflect patients' impaired perception of their body movement relative to their own postural limitation boundary as well as a reduced ability to decouple distinct ankle and hip movements to align their body during standing. Our findings that deficits in postural orientation and equilibrium are more pronounced during dynamic compared to static stances suggests that the increased demands of everyday activities in which children must dynamically shift their COP involve more severe postural control deficits in ASD relative to static stance conditions that often are studied. Systematic assessment of dynamic postural control processes in ASD may provide important insights into new treatment targets and neurodevelopmental mechanisms.

  6. Effects of sensory augmentation on postural control and gait symmetry of transfemoral amputees: a case description.

    PubMed

    Pagel, Anna; Arieta, Alejandro Hernandez; Riener, Robert; Vallery, Heike

    2016-10-01

    Despite recent advances in leg prosthetics, transfemoral amputees still experience limitations in postural control and gait symmetry. It has been hypothesized that artificial sensory information might improve the integration of the prosthesis into the human sensory-motor control loops and, thus, reduce these limitations. In three transfemoral amputees, we investigated the effect of Electrotactile Moving Sensation for Sensory Augmentation (EMSSA) without training and present preliminary findings. Experimental conditions included standing with open/closed eyes on stable/unstable ground as well as treadmill walking. For standing conditions, spatiotemporal posturographic measures and sample entropy were derived from the center of pressure. For walking conditions, step length and stance duration were calculated. Conditions without feedback showed effects congruent with findings in the literature, e.g., asymmetric weight bearing and step length, and validated the collected data. During standing, with EMSSA a tendency to influence postural control in a negative way was found: Postural control was less effective and less efficient and the prosthetic leg was less involved. Sample entropy tended to decrease, suggesting that EMSSA demanded increased attention. During walking, with EMSSA no persistent positive effect was found. This contrasts the positive subjective assessment and the positive effect on one subject's step length.

  7. Validity of the Microsoft Kinect for assessment of postural control.

    PubMed

    Clark, Ross A; Pua, Yong-Hao; Fortin, Karine; Ritchie, Callan; Webster, Kate E; Denehy, Linda; Bryant, Adam L

    2012-07-01

    Clinically feasible methods of assessing postural control such as timed standing balance and functional reach tests provide important information, however, they cannot accurately quantify specific postural control mechanisms. The Microsoft Kinect™ system provides real-time anatomical landmark position data in three dimensions (3D), and given that it is inexpensive, portable and simple to setup it may bridge this gap. This study assessed the concurrent validity of the Microsoft Kinect™ against a benchmark reference, a multiple-camera 3D motion analysis system, in 20 healthy subjects during three postural control tests: (i) forward reach, (ii) lateral reach, and (iii) single-leg eyes-closed standing balance. For the reach tests, the outcome measures consisted of distance reached and trunk flexion angle in the sagittal (forward reach) and coronal (lateral reach) planes. For the standing balance test the range and deviation of movement in the anatomical landmark positions for the sternum, pelvis, knee and ankle and the lateral and anterior trunk flexion angle were assessed. The Microsoft Kinect™ and 3D motion analysis systems had comparable inter-trial reliability (ICC difference=0.06±0.05; range, 0.00-0.16) and excellent concurrent validity, with Pearson's r-values >0.90 for the majority of measurements (r=0.96±0.04; range, 0.84-0.99). However, ordinary least products analyses demonstrated proportional biases for some outcome measures associated with the pelvis and sternum. These findings suggest that the Microsoft Kinect™ can validly assess kinematic strategies of postural control. Given the potential benefits it could therefore become a useful tool for assessing postural control in the clinical setting. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Nonlinear Variability of Body Sway in Patients with Phobic Postural Vertigo

    PubMed Central

    Schniepp, Roman; Wuehr, Max; Pradhan, Cauchy; Novozhilov, Sergej; Krafczyk, Siegbert; Brandt, Thomas; Jahn, Klaus

    2013-01-01

    Background: Subjective postural imbalance is a key symptom in the somatoform phobic postural vertigo (PPV). It has been assumed that more attentional control of body posture and / or co-contraction of leg muscles during standing is used to minimize the physiological body sway in PPV. Here we analyze nonlinear variability of body sway in patients with PPV in order to disclose changes in postural control strategy associated with PPV. Methods: Twenty patients with PPV and 20 age-matched healthy subjects (HS) were recorded on a stabilometer platform with eyes open (EO), eyes closed (EC), and while standing on a foam rubber with eyes closed (ECF). Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed to assess the structure of postural variability by computing the scaling exponent α and the sample entropy (SEn) of the time series. Results: With EO on firm ground α and SEn of CoP displacement were significantly lower in patients (p < 0.001). For more difficult conditions (EC, ECF) postural variability in PPV assimilated to that of HS. Conclusion: Postural control in PPV patients differs from HS under normal stance condition. It is characterized by a reduced scaling behavior and higher regularity. These changes in the structure of postural variability might suggest an inappropriate attentional involvement with stabilizing strategies, which are used by HS only for more demanding balance tasks. PMID:23966974

  9. Stiffness control of balance during dual task and prospective falls in older adults: the MOBILIZE Boston Study.

    PubMed

    Kang, Hyun Gu; Quach, Lien; Li, Wenjun; Lipsitz, Lewis A

    2013-09-01

    Outdoor fallers differ from indoor fallers substantially in demographics, lifestyle, health condition and physical function. Biomechanical predictors of outdoor falls have not been well characterized. Current validated measures of postural deficits, which describe only the overall postural behavior, are predictive of indoor falls but not outdoor falls. We hypothesized that a model-based description of postural muscle tone and reflexes, particularly during dual tasking, would predict outdoor falls. We tested whether postural stiffness and damping from an inverted pendulum model were predictive of future indoor and outdoor falls among older adults from the MOBILIZE Boston Study. The center of pressure data during standing were obtained from 717 participants aged 77.9±5.3 years. Participants stood barefoot with eyes open for 30s per trial, in two sets of five standing trials. One set included a serial subtractions task. Postural stiffness and damping values were determined from the postural sway data. After the postural measurements, falls were monitored prospectively using a monthly mail-in calendar over 6-36 months. Associations of postural measures with fall rates were determined using negative binomial regressions. After covariate adjustments, postural stiffness (p=0.02-0.05) and damping (p=0.007-0.1) were associated with lower outdoor falls risk, but not with indoor falls. Results were invariant by direction (anteroposterior versus mediolateral) or by condition (quiet standing versus dual task). Outdoor fall risk may be tied to postural control more so than indoor falls. Dual tasking is likely related to fall risk among older and sicker older adults, but not those relatively healthy. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Stiffness Control of Balance during Dual Task and Prospective Falls in Older Adults: The MOBILIZE Boston Study

    PubMed Central

    Kang, Hyun Gu; Quach, Lien; Li, Wenjun; Lipsitz, Lewis A.

    2013-01-01

    Outdoor fallers differ from indoor fallers substantially in demographics, lifestyle, health condition and physical function. Biomechanical predictors of outdoor falls have not been well characterized. Current validated measures of postural deficits, which describe only the overall postural behavior, are predictive of indoor falls but not outdoor falls. We hypothesized that a model-based description of postural muscle tone and reflexes, particularly during dual tasking, would predict outdoor falls. We tested whether postural stiffness and damping from an inverted pendulum model were predictive of future indoor and outdoor falls among older adults from the MOBILIZE Boston Study. The center of pressure data during standing were obtained from 717 participants aged 77.9±5.3 years. Participants stood barefoot with eyes open for 30 seconds per trial, in two sets of five standing trials. One set included a serial subtractions task. Postural stiffness and damping values were determined from the postural sway data. After the postural measurements, falls were monitored prospectively using a monthly mail-in calendar over 6-36 months. Associations of postural measures with fall rates were determined using negative binomial regressions. After covariate adjustments, postural stiffness (p=0.02-0.05) and damping (p=0.007-0.1) were associated with lower outdoor falls risk, but not with indoor falls. Results were invariant by direction (anteroposterior versus mediolateral) or by condition (quiet standing versus dual task). Outdoor fall risk may be tied to postural control more so than indoor falls. Dual tasking is likely related to fall risk among older and sicker older adults, but not those relatively healthy. PMID:23623606

  11. Dementia alters standing postural adaptation during a visual search task in older adult men.

    PubMed

    Jor'dan, Azizah J; McCarten, J Riley; Rottunda, Susan; Stoffregen, Thomas A; Manor, Brad; Wade, Michael G

    2015-04-23

    This study investigated the effects of dementia on standing postural adaptation during performance of a visual search task. We recruited 16 older adults with dementia and 15 without dementia. Postural sway was assessed by recording medial-lateral (ML) and anterior-posterior (AP) center-of-pressure when standing with and without a visual search task; i.e., counting target letter frequency within a block of displayed randomized letters. ML sway variability was significantly higher in those with dementia during visual search as compared to those without dementia and compared to both groups during the control condition. AP sway variability was significantly greater in those with dementia as compared to those without dementia, irrespective of task condition. In the ML direction, the absolute and percent change in sway variability between the control condition and visual search (i.e., postural adaptation) was greater in those with dementia as compared to those without. In contrast, postural adaptation to visual search was similar between groups in the AP direction. As compared to those without dementia, those with dementia identified fewer letters on the visual task. In the non-dementia group only, greater increases in postural adaptation in both the ML and AP direction, correlated with lower performance on the visual task. The observed relationship between postural adaptation during the visual search task and visual search task performance--in the non-dementia group only--suggests a critical link between perception and action. Dementia reduces the capacity to perform a visual-based task while standing and thus, appears to disrupt this perception-action synergy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. The internal representation of head orientation differs for conscious perception and balance control

    PubMed Central

    Dalton, Brian H.; Rasman, Brandon G.; Inglis, J. Timothy

    2017-01-01

    Key points We tested perceived head‐on‐feet orientation and the direction of vestibular‐evoked balance responses in passively and actively held head‐turned postures.The direction of vestibular‐evoked balance responses was not aligned with perceived head‐on‐feet orientation while maintaining prolonged passively held head‐turned postures. Furthermore, static visual cues of head‐on‐feet orientation did not update the estimate of head posture for the balance controller.A prolonged actively held head‐turned posture did not elicit a rotation in the direction of the vestibular‐evoked balance response despite a significant rotation in perceived angular head posture.It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Abstract Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head‐on‐feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head‐turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole‐body balance responses. Visual recalibration of head‐on‐feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular‐evoked balance response was not orthogonal to perceived head‐on‐feet orientation, regardless of the visual information provided. For prolonged head‐turned postures, balance responses consistent with actual head‐on‐feet posture occurred only during the active condition. Our results indicate that conscious perception of head‐on‐feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head‐on‐feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head‐on‐feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. PMID:28035656

  13. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture?

    PubMed

    Gehlen, Manuel; Eklund, Anders; Kurtcuoglu, Vartan; Malm, Jan; Schmid Daners, Marianne

    2017-08-01

    Three different types of anti-siphon devices (ASDs) have been developed to counteract siphoning-induced overdrainage in upright posture. However, it is not known how the different ASDs affect CSF dynamics under the complex pressure environment seen in clinic due to postural changes. We investigated which ASDs can avoid overdrainage in upright posture best without leading to CSF accumulation. Three shunts each of the types Codman Hakim with SiphonGuard (flow-regulated), Miethke miniNAV with proSA (gravitational), and Medtronic Delta (membrane controlled) were tested. The shunts were compared on a novel in vitro setup that actively emulates the physiology of a shunted patient. This testing method allows determining the CSF drainage rates, resulting CSF volume, and intracranial pressure in the supine, sitting, and standing posture. The flow-regulated ASDs avoided increased drainage by closing their primary flow path when drainage exceeded 1.39 ± 0.42 mL/min. However, with intraperitoneal pressure increased in standing posture, we observed reopening of the ASD in 3 out of 18 experiment repetitions. The adjustable gravitational ASDs allow independent opening pressures in horizontal and vertical orientation, but they did not provide constant drainage in upright posture (0.37 ± 0.03 mL/min and 0.26 ± 0.03 mL/min in sitting and standing posture, respectively). Consequently, adaptation to the individual patient is critical. The membrane-controlled ASDs stopped drainage in upright posture. This eliminates the risk of overdrainage, but leads to CSF accumulation up to the volume observed without shunting when the patient is upright. While all tested ASDs reduced overdrainage, their actual performance will depend on a patient's specific needs because of the large variation in the way the ASDs influence CSF dynamics: while the flow-regulated shunts provide continuous drainage in upright posture, the gravitational ASDs allow and require additional adaptation, and the membrane-controlled ASDs show robust siphon prevention by a total stop of drainage.

  14. [Posture and aging. Current fundamental studies and management concepts].

    PubMed

    Mourey, F; Camus, A; Pfitzenmeyer, P

    2000-02-19

    FUNDAMENTAL IMPORTANCE OF POSTURE: In the elderly subject, preservation of posture is fundamental to maintaining functional independence. In recent years, there has been much progress in our understanding of the mechanisms underlying strategies used to control equilibrium in the upright position. Physiological aging, associated with diverse disease states, dangerously alters the postural function, particularly anticipated adjustments which allow an adaptation of posture to movement. CLINICAL ASSESSMENT OF POSTURE: Several tests have been developed to assess posture in the elderly subject, particularly the time it takes to start walking. We selected certain tests which can be used in everyday practice to predict falls: the stance test, the improved Romberg test, the "timed get up and go test", measurement of walking cadence, assessment of balance reactions, sitting-standing and standing-sitting movements and capacity to get up off the floor. PATIENT CARE: Elderly patients with equilibrium disorders can benefit from specific personalized rehabilitation protocols. Different techniques have been developed for multiple afferential stimulation, reprogramming postural strategies, and correcting for deficient motor automatisms.

  15. Relationship of multiscale entropy to task difficulty and sway velocity in healthy young adults.

    PubMed

    Lubetzky, Anat V; Price, Robert; Ciol, Marcia A; Kelly, Valerie E; McCoy, Sarah W

    2015-01-01

    Multiscale entropy (MSE) is a nonlinear measure of postural control that quantifies how complex the postural sway is by assigning a complexity index to the center of pressure (COP) oscillations. While complexity has been shown to be task dependent, the relationship between sway complexity and level of task challenge is currently unclear. This study tested whether MSE can detect short-term changes in postural control in response to increased standing balance task difficulty in healthy young adults and compared this response to that of a traditional measure of postural steadiness, root mean square of velocity (VRMS). COP data from 20 s of quiet stance were analyzed when 30 healthy young adults stood on the following surfaces: on floor and foam with eyes open and closed and on the compliant side of a Both Sides Up (BOSU) ball with eyes open. Complexity index (CompI) was derived from MSE curves. Repeated measures analysis of variance across standing conditions showed a statistically significant effect of condition (p < 0.001) in both the anterior-posterior and medio-lateral directions for both CompI and VRMS. In the medio-lateral direction there was a gradual increase in CompI and VRMS with increased standing challenge. In the anterior-posterior direction, VRMS showed a gradual increase whereas CompI showed significant differences between the BOSU and all other conditions. CompI was moderately and significantly correlated with VRMS. Both nonlinear and traditional measures of postural control were sensitive to the task and increased with increasing difficulty of standing balance tasks in healthy young adults.

  16. Mechanisms of postural control in alcoholic men and women: biomechanical analysis of musculoskeletal coordination during quiet standing.

    PubMed

    Sullivan, Edith V; Rose, Jessica; Pfefferbaum, Adolf

    2010-03-01

    Excessive sway during quiet standing is a common sequela of chronic alcoholism even with prolonged sobriety. Whether alcoholic men and women who have remained abstinent from alcohol for weeks to months differ from each other in the degree of residual postural instability and biomechanical control mechanisms has not been directly tested. We used a force platform to characterize center-of-pressure biomechanical features of postural sway, with and without stabilizing conditions from touch, vision, and stance, in 34 alcoholic men, 15 alcoholic women, 22 control men, and 29 control women. Groups were matched in age (49.4 years), general intelligence, socioeconomic status, and handedness. Each alcoholic group was sober for an average of 75 days. Analysis of postural sway when using all 3 stabilizing conditions versus none revealed diagnosis and sex differences in ability to balance. Alcoholics had significantly longer sway paths, especially in the anterior-posterior direction, than controls when maintaining erect posture without balance aids. With stabilizing conditions the sway paths of all groups shortened significantly, especially those of alcoholic men, who demonstrated a 3.1-fold improvement in sway path difference between the easiest and most challenging conditions; the remaining 3 groups, each showed a approximately 2.4-fold improvement. Application of a mechanical model to partition sway paths into open-loop and closed-loop postural control systems revealed that the sway paths of the alcoholic men but not alcoholic women were characterized by greater short-term (open-loop) diffusion coefficients without aids, often associated with muscle stiffening response. With stabilizing factors, all 4 groups showed similar long-term (closed loop) postural control. Correlations between cognitive abilities and closed-loop sway indices were more robust in alcoholic men than alcoholic women. Reduction in sway and closed-loop activity during quiet standing with stabilizing factors shows some differential expression in men and women with histories of alcohol dependence. Nonetheless, enduring deficits in postural instability of both alcoholic men and alcoholic women suggest persisting liability for falling.

  17. Transfer of Dynamic Learning Across Postures

    PubMed Central

    Wolpert, Daniel M.

    2009-01-01

    When learning a difficult motor task, we often decompose the task so that the control of individual body segments is practiced in isolation. But on re-composition, the combined movements can result in novel and possibly complex internal forces between the body segments that were not experienced (or did not need to be compensated for) during isolated practice. Here we investigate whether dynamics learned in isolation by one part of the body can be used by other parts of the body to immediately predict and compensate for novel forces between body segments. Subjects reached to targets while holding the handle of a robotic, force-generating manipulandum. One group of subjects was initially exposed to the novel robot dynamics while seated and was then tested in a standing position. A second group was tested in the reverse order: standing then sitting. Both groups adapted their arm dynamics to the novel environment, and this movement learning transferred between seated and standing postures and vice versa. Both groups also generated anticipatory postural adjustments when standing and exposed to the force field for several trials. In the group that had learned the dynamics while seated, the appropriate postural adjustments were observed on the very first reach on standing. These results suggest that the CNS can immediately anticipate the effect of learned movement dynamics on a novel whole-body posture. The results support the existence of separate mappings for posture and movement, which encode similar dynamics but can be adapted independently. PMID:19710374

  18. Complexity-Based Measures Inform Effects of Tai Chi Training on Standing Postural Control: Cross-Sectional and Randomized Trial Studies

    PubMed Central

    Wayne, Peter M.; Gow, Brian J.; Costa, Madalena D.; Peng, C.-K.; Lipsitz, Lewis A.; Hausdorff, Jeffrey M.; Davis, Roger B.; Walsh, Jacquelyn N.; Lough, Matthew; Novak, Vera; Yeh, Gloria Y.; Ahn, Andrew C.; Macklin, Eric A.; Manor, Brad

    2014-01-01

    Background Diminished control of standing balance, traditionally indicated by greater postural sway magnitude and speed, is associated with falls in older adults. Tai Chi (TC) is a multisystem intervention that reduces fall risk, yet its impact on sway measures vary considerably. We hypothesized that TC improves the integrated function of multiple control systems influencing balance, quantifiable by the multi-scale “complexity” of postural sway fluctuations. Objectives To evaluate both traditional and complexity-based measures of sway to characterize the short- and potential long-term effects of TC training on postural control and the relationships between sway measures and physical function in healthy older adults. Methods A cross-sectional comparison of standing postural sway in healthy TC-naïve and TC-expert (24.5±12 yrs experience) adults. TC-naïve participants then completed a 6-month, two-arm, wait-list randomized clinical trial of TC training. Postural sway was assessed before and after the training during standing on a force-plate with eyes-open (EO) and eyes-closed (EC). Anterior-posterior (AP) and medio-lateral (ML) sway speed, magnitude, and complexity (quantified by multiscale entropy) were calculated. Single-legged standing time and Timed-Up–and-Go tests characterized physical function. Results At baseline, compared to TC-naïve adults (n = 60, age 64.5±7.5 yrs), TC-experts (n = 27, age 62.8±7.5 yrs) exhibited greater complexity of sway in the AP EC (P = 0.023), ML EO (P<0.001), and ML EC (P<0.001) conditions. Traditional measures of sway speed and magnitude were not significantly lower among TC-experts. Intention-to-treat analyses indicated no significant effects of short-term TC training; however, increases in AP EC and ML EC complexity amongst those randomized to TC were positively correlated with practice hours (P = 0.044, P = 0.018). Long- and short-term TC training were positively associated with physical function. Conclusion Multiscale entropy offers a complementary approach to traditional COP measures for characterizing sway during quiet standing, and may be more sensitive to the effects of TC in healthy adults. Trial Registration ClinicalTrials.gov NCT01340365 PMID:25494333

  19. Complexity-Based Measures Inform Effects of Tai Chi Training on Standing Postural Control: Cross-Sectional and Randomized Trial Studies.

    PubMed

    Wayne, Peter M; Gow, Brian J; Costa, Madalena D; Peng, C-K; Lipsitz, Lewis A; Hausdorff, Jeffrey M; Davis, Roger B; Walsh, Jacquelyn N; Lough, Matthew; Novak, Vera; Yeh, Gloria Y; Ahn, Andrew C; Macklin, Eric A; Manor, Brad

    2014-01-01

    Diminished control of standing balance, traditionally indicated by greater postural sway magnitude and speed, is associated with falls in older adults. Tai Chi (TC) is a multisystem intervention that reduces fall risk, yet its impact on sway measures vary considerably. We hypothesized that TC improves the integrated function of multiple control systems influencing balance, quantifiable by the multi-scale "complexity" of postural sway fluctuations. To evaluate both traditional and complexity-based measures of sway to characterize the short- and potential long-term effects of TC training on postural control and the relationships between sway measures and physical function in healthy older adults. A cross-sectional comparison of standing postural sway in healthy TC-naïve and TC-expert (24.5±12 yrs experience) adults. TC-naïve participants then completed a 6-month, two-arm, wait-list randomized clinical trial of TC training. Postural sway was assessed before and after the training during standing on a force-plate with eyes-open (EO) and eyes-closed (EC). Anterior-posterior (AP) and medio-lateral (ML) sway speed, magnitude, and complexity (quantified by multiscale entropy) were calculated. Single-legged standing time and Timed-Up-and-Go tests characterized physical function. At baseline, compared to TC-naïve adults (n = 60, age 64.5±7.5 yrs), TC-experts (n = 27, age 62.8±7.5 yrs) exhibited greater complexity of sway in the AP EC (P = 0.023), ML EO (P<0.001), and ML EC (P<0.001) conditions. Traditional measures of sway speed and magnitude were not significantly lower among TC-experts. Intention-to-treat analyses indicated no significant effects of short-term TC training; however, increases in AP EC and ML EC complexity amongst those randomized to TC were positively correlated with practice hours (P = 0.044, P = 0.018). Long- and short-term TC training were positively associated with physical function. Multiscale entropy offers a complementary approach to traditional COP measures for characterizing sway during quiet standing, and may be more sensitive to the effects of TC in healthy adults. ClinicalTrials.gov NCT01340365.

  20. Differences in intermittent postural control between normal-weight and obese children.

    PubMed

    Villarrasa-Sapiña, Israel; García-Massó, Xavier; Serra-Añó, Pilar; Garcia-Lucerga, Consolación; Gonzalez, Luis-Millán; Lurbe, Empar

    2016-09-01

    The main objective of this study was to determine differences in postural control between obese and non-obese children. The study design was cross-sectional, prospective, between-subjects. Postural control variables were obtained from a group of obese children and a normal-weight control group under two different postural conditions: bipedal standing position with eyes open and bipedal standing with eyes closed. Variables were obtained for each balance condition using time domain and sway-density plot analysis of the center of pressure signals acquired by means of a force plate. Pairwise comparisons revealed significant differences between obese and normal-weight children in mean velocity in antero-posterior and medio-lateral directions, ellipse area and mean distance with both eyes open and eyes closed. Normal-weight subjects obtained lower values in all these variables than obese subjects. Furthermore, there were differences between both groups in mean peaks with eyes open and in mean time with eyes closed. Alterations were detected in the intermittent postural control in obese children. According to the results obtained, active anticipatory control produces higher center of pressure displacement responses in obese children and the periods during which balance is maintained by passive control and reflex mechanisms are of shorter duration. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Comparison of postural stability between injured and uninjured ballet dancers.

    PubMed

    Lin, Cheng-Feng; Lee, I-Jung; Liao, Jung-Hsien; Wu, Hong-Wen; Su, Fong-Chin

    2011-06-01

    Ballet movements require a limited base of support; thus, ballet dancers require a high level of postural control. However, postural stability in ballet dancers is still unclear and needs to be understood. To evaluate ballet dancers' postural stability in performing single-leg standing, the en pointe task, and the first and fifth positions and to determine differences in task performance among healthy nondancers, healthy dancers, and dancers with ankle sprains. Controlled laboratory study. Injured dancers, uninjured dancers, and nondancers were recruited for this study (N = 33 age-matched participants; n= 11 per group). The tasks tested were single-leg standing with eyes open and closed, first position, fifth position, and en pointe. Center of pressure parameters were calculated from the ground-reaction force collected with 1 force plate. Analysis of variance was used to assess the differences of center of pressure parameters among 3 groups in single-leg standing; independent t test was used to examine the differences of center of pressure parameters between injured and uninjured dancers. During single-leg standing, injured dancers had significantly greater maximum displacement in the medial-lateral direction and total trajectory of center of pressure, compared with the uninjured dancers and nondancers. During the first and fifth positions, the injured dancers demonstrated significantly greater standard deviation of center of pressure position in the medial-lateral and anterior-posterior directions, compared with the uninjured dancers. During en pointe, the injured dancers had significantly greater maximum displacement in the medial-lateral direction and the anterior-posterior direction, compared with the uninjured dancers. The injured and uninjured dancers demonstrated differences in postural stability in the medial-lateral direction during single-leg standing and the ballet postures. Although the injured dancers received ballet training, their postural stability may still be inferior to that of the nondancers. This study is a first step in understanding that injured ballet dancers do not have the same postural stability as uninjured dancers and that it is even inferior to that of nondancers, which is important to understand for further study on rehabilitation. The future development of effective balance training programs for ballet dancers with ankle injuries should emphasize improvements in medial-lateral directional balance.

  2. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input.

    PubMed

    Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided.

  3. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input

    PubMed Central

    Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided. PMID:28919878

  4. Reaching while standing in microgravity: a new postural solution to oversimplify movement control.

    PubMed

    Casellato, Claudia; Tagliabue, Michele; Pedrocchi, Alessandra; Papaxanthis, Charalambos; Ferrigno, Giancarlo; Pozzo, Thierry

    2012-01-01

    Many studies showed that both arm movements and postural control are characterized by strong invariants. Besides, when a movement requires simultaneous control of the hand trajectory and balance maintenance, these two movement components are highly coordinated. It is well known that the focal and postural invariants are individually tightly linked to gravity, much less is known about the role of gravity in their coordination. It is not clear whether the effect of gravity on different movement components is such as to keep a strong movement-posture coordination even in different gravitational conditions or whether gravitational information is necessary for maintaining motor synergism. We thus set out to analyze the movements of eleven standing subjects reaching for a target in front of them beyond arm's length in normal conditions and in microgravity. The results showed that subjects quickly adapted to microgravity and were able to successfully accomplish the task. In contrast to the hand trajectory, the postural strategy was strongly affected by microgravity, so to become incompatible with normo-gravity balance constraints. The distinct effects of gravity on the focal and postural components determined a significant decrease in their reciprocal coordination. This finding suggests that movement-posture coupling is affected by gravity, and thus, it does not represent a unique hardwired and invariant mode of control. Additional kinematic and dynamic analyses suggest that the new motor strategy corresponds to a global oversimplification of movement control, fulfilling the mechanical and sensory constraints of the microgravity environment.

  5. Comparison of Biodynamic Responses in Standing and Seated Human Bodies

    NASA Astrophysics Data System (ADS)

    MATSUMOTO, Y.; GRIFFIN, M. J.

    2000-12-01

    The dynamic responses of the human body in a standing position and in a sitting position have been compared. The apparent mass and transmissibilities to the head, six locations along the spine, and the pelvis were measured with eight male subjects exposed to vertical whole-body vibration. In both postures, the principal resonance in the apparent mass occurred in the range 5-6 Hz, with slightly higher frequencies and lower apparent mass in the standing posture. There was greater transmission of vertical vibration to the pelvis and the lower spine and greater relative motion within the lower spine in the standing posture than in the sitting posture at the principal resonance and at higher frequencies. Transmissibilities from the supporting surface (floor or seat) to the thoracic region had similar magnitudes for both standing and sitting subjects. The lumbar spine has less lordosis and may be more compressed and less flexible in the sitting posture than in the standing posture. This may have reduced the relative motions between lumbar vertebrae and both the supporting vibrating surface and the other vertebrae in the sitting posture. The characteristics of the vibration transmitted to the pelvis may have differed in the two postures due to different transmission paths. Increased forward rotation of the pelvis in the standing posture may have caused the differences in responses of the pelvis and the lower spine that were observed between the two postures.

  6. Adaptation of postural responses during different standing perturbation conditions in individuals with incomplete spinal cord injury.

    PubMed

    Thigpen, Mary T; Cauraugh, James; Creel, Gwen; Day, Kristin; Flynn, Sheryl; Fritz, Stacy; Frost, Shirley; Respess, Robert; Gardner-Smith, Portia; Brack, Mia; Behrman, Andrea

    2009-01-01

    Incomplete spinal cord injury (ISCI) frequently disrupts afferent and efferent neural pathways underlying co-requisite voluntary and involuntary muscle activation required for functional standing and walking. To understand involuntary postural control mechanisms necessary for standing, we compared eight individuals with ISCI to eight controls with no impairment. The aim of this study was to investigate anticipatory and reactive balance responses in individuals with ISCI. The ability to adapt to changes in balance conditions was assessed by monitoring automatic postural responses (APRs) during a series of expected and unexpected changes in perturbation direction (backward translation versus toes-up rotation). Both groups were able to modulate appropriately within one or two trials following an unexpected change in condition. Onset times of anterior tibialis and medial gastrocnemius (MG) were significantly slower in the ISCI group during expected and unexpected conditions. These findings demonstrate that persons with mild to moderate lower extremity sensorimotor deficits are able to generate and adapt APRs to a rapid and unexpected contextual change during a simple standing balance task.

  7. Differences in standing and sitting postures of youth with idiopathic scoliosis from quantitative analysis of digital photographs.

    PubMed

    Fortin, Carole; Ehrmann Feldman, Debbie; Cheriet, Farida; Labelle, Hubert

    2013-08-01

    The objective of this study was to explore whether differences in standing and sitting postures of youth with idiopathic scoliosis could be detected from quantitative analysis of digital photographs. Standing and sitting postures of 50 participants aged 10-20-years-old with idiopathic scoliosis (Cobb angle: 15° to 60°) were assessed from digital photographs using a posture evaluation software program. Based on the XY coordinates of markers, 13 angular and linear posture indices were calculated in both positions. Paired t-tests were used to compare values of standing and sitting posture indices. Significant differences between standing and sitting positions (p < 0.05) were found for head protraction, shoulder elevation, scapula asymmetry, trunk list, scoliosis angle, waist angles, and frontal and sagittal plane pelvic tilt. Quantitative analysis of digital photographs is a clinically feasible method to measure standing and sitting postures among youth with scoliosis and to assist in decisions on therapeutic interventions.

  8. Static Postural Stability Is Normal in Dyslexic Children.

    ERIC Educational Resources Information Center

    Brown, Brian; And Others

    1985-01-01

    An experiment on 15 dyslexic and 23 carefully matched control subjects (10- to 12-year-old males), examining their ability to maintain standing posture with eyes open and closed and with standard and tandem foot placement, revealed no differences under any condition tested and no differences in use of visual information to maintain their posture.…

  9. Acute Cutaneous Microvascular Flow Responses to Whole-Body Tilting in Humans

    NASA Technical Reports Server (NTRS)

    Breit, Gregory A.; Watenpaugh, Donald E.; Ballard, Richard E.; Hargens, Alan R.

    1993-01-01

    The transition from upright to head-down tilt (HDT) posture in humans increases blood pressure superior to the heart and decreases pressure inferior to the heart. Consequently, above heart level, myogenic arteriolar tone probably increases with HDT, in opposition to the withdrawal of baroreceptor-mediated sympathetic tone. We hypothesized that due to antagonism between central and local controls, the response of the facial cutaneous micro- circulation to acute postural change will be weaker than that in the leg, where these two mechanisms reinforce each other. Cutaneous microvascular flow was measured by laser Doppler flowmetry simultaneously at the shin and the neck of 7 male and 3 female subjects. Subjects underwent a stepwise tilt protocol from standing control to 54 deg head-up tilt (HUT), 30 deg, 12 deg, 0 deg, -6 deg (HDT), -12 deg, -6 deg, 0 deg, 12 deg, 30 deg, 54 deg, and standing, for 30-sec periods with 10-sec transitions between postures. Flows at the shin and the neck increased significantly (P < 0.05) from standing baseline to 12 deg HUT (252 +/- 55 and 126 +/- 9% (bar-X +/- SE) of baseline, respectively). From 12 deg to -12 deg tilt, flows continued to increase at the shin (509 +/- 71% of baseline) but decreased at the neck to baseline levels (100 +/- 15% of baseline). Cutaneous microvascular flow recovered at both sites during the return to standing posture with significant hysteresis. Flow increases from standing to near-supine posture are attributed at both sites to baroreceptor-mediated vasodilation. The great dissimilarity in flow response magnitudes at the two measurement sites may be indicative of central/local regulatory antagonism above heart level and reinforcement below heart level.

  10. Acute Cutaneous Microvascular Flow Responses to Whole-Body Tilting in Humans

    NASA Technical Reports Server (NTRS)

    Breit, Gregory A.; Watenpaugh, Donald E.; Ballard, Richard E.; Hargens, Alan R.

    1993-01-01

    The transition from upright to head-down tilt (HDT) posture in humans increases blood pressure superior to the heart and decreases pressure inferior to the heart. Consequently, above heart level, myogenic arteriolar tone probably increases with HDT, in opposition to the withdrawal of baroreceptor-mediated sympathetic tone. We hypothesized that due to antagonism between central and local controls, the response of the facial cutaneous microcirculation to acute postural change will be weaker than that in the leg, where these two mechanisms reinforce each other. Cutaneous microvascular flow was measured by laser Doppler flowmetry simultaneously at the shin and the neck of 7 male and 3 female subjects. Subjects underwent a stepwise tilt protocol from standing control to 54 deg head-up tilt (HUT), 30 deg, 12 deg, O deg, -6 deg (HDT), -12 deg, -6 deg, O deg, 12 deg, 30 deg, 54 deg, and standing, for 30-sec periods with 10-sec transitions between postures. Flows at the shin and the neck increased significantly (P less than 0.05) from standing baseline to 12 deg HUT (252 +/- 55 and 126 +/- 9% (bar X +/- SE) of baseline, respectively). From 12 deg to -12 deg tilt, flows continued to increase at the shin (509 +/- 71% of baseline) but decreased at the neck to baseline levels (100 +/- 15% of baseline). Cutaneous microvascular flow recovered at both sites during the return to standing posture with significant hysteresis. Flow increases from standing to near-supine posture are attributed at both sites to baroreceptor-mediated vasodilation. The great dissimilarity in flow response magnitudes at the two measurement sites may be indicative of central/local regulatory antagonism above heart level and reinforcement below heart level.

  11. The internal representation of head orientation differs for conscious perception and balance control.

    PubMed

    Dalton, Brian H; Rasman, Brandon G; Inglis, J Timothy; Blouin, Jean-Sébastien

    2017-04-15

    We tested perceived head-on-feet orientation and the direction of vestibular-evoked balance responses in passively and actively held head-turned postures. The direction of vestibular-evoked balance responses was not aligned with perceived head-on-feet orientation while maintaining prolonged passively held head-turned postures. Furthermore, static visual cues of head-on-feet orientation did not update the estimate of head posture for the balance controller. A prolonged actively held head-turned posture did not elicit a rotation in the direction of the vestibular-evoked balance response despite a significant rotation in perceived angular head posture. It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head-on-feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head-turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole-body balance responses. Visual recalibration of head-on-feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular-evoked balance response was not orthogonal to perceived head-on-feet orientation, regardless of the visual information provided. For prolonged head-turned postures, balance responses consistent with actual head-on-feet posture occurred only during the active condition. Our results indicate that conscious perception of head-on-feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head-on-feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head-on-feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  12. Evaluating a novel analgesic strategy for ring castration of ram lambs.

    PubMed

    Paull, David R; Small, Alison H; Lee, Caroline; Palladin, Pierre; Colditz, Ian G

    2012-09-01

    To evaluate the analgesic efficacy of the NSAIDs flunixin and meloxicam administered locally to the scrotum before ring castration. Randomised, controlled, prospective study. Forty eight single born male Merino lambs. Lambs, aged approximately 4 weeks, were allocated to four groups for castration. Groups were: sham control; castration + saline; castration + flunixin; castration + meloxicam. Drugs (5 mL) were administered subcutaneously around the circumference of the scrotum immediately before castration. Cortisol, rectal temperature, haematology and plasma haptoglobin were measured before and up to 48 hours after treatment. Behaviour recorded by video for 12 hours after treatment was classified as pain avoidance behaviours in the first hour and postural behaviours in three 4 hour intervals. Ring castration (saline group) induced a bi-phasic increase in cortisol with peaks at 90 minutes and 24 hours but no significant changes in haematology, haptoglobin or rectal temperature. Pain avoidance behaviours were increased and teat seeking decreased. Normal lying and normal standing postures were decreased and abnormal ventral lying, statue standing, abnormal standing and total abnormal postures increased. Flunixin decreased cortisol at 90 minutes (60.3 versus 117.3 nmol L(-1) ) and cortisol AUC (0-6 hours), decreased elevated leg movement (2.5 versus 5.4 events) and sum of pain avoidance behaviours (8.5 versus 16.7 events), improved time spent in normal ventral lying and decreased abnormal ventral lying and total abnormal postures compared to saline treated lambs. In a similar contrast, meloxicam caused non-significant decreases in cortisol at 90 minutes, cortisol AUC (0-6 hours) and pain avoidance behaviours, and significantly improved the postural behaviours normal ventral lying (26.7 versus 15.4%) and normal standing (13.9 versus 7.5%), and reduced abnormal standing and total abnormal postures. Physiological and behavioural responses associated with ring castration for both NSAID treatment groups were generally greater than sham controls. Locally administered NSAIDs provided partial analgesia for ring castration. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  13. Effects of voluntary and automatic control of center of pressure sway during quiet standing.

    PubMed

    Ueta, Kozo; Okada, Yohei; Nakano, Hideki; Osumi, Michihiro; Morioka, Shu

    2015-01-01

    The authors investigated the effects of voluntary and automatic control on the spatial variables (envelope area, maximal amplitude, and root mean square [RMS]) of center of pressure (COP) displacement during quiet standing and identified differences in their postural control strategies (mean velocity [MV], mean power frequency [MPF], and power density). COP data were recorded under relaxed (experimental control), still (voluntary control), and dual (automatic control) conditions. RMS was significantly lower in the still and dual conditions than in the relaxed condition. MV, MPF, and power density were significantly higher in the still condition than in the dual condition. These results indicate that both voluntary and automatic control decrease the spatial variables of COP displacement; however, their postural control strategies are different.

  14. Altered postural control strategies in quiet standing more than 20 years after rupture of the anterior cruciate ligament.

    PubMed

    Stensdotter, Ann-Katrin; Tengman, Eva; Häger, Charlotte

    2016-05-01

    To explore long-term consequences of anterior cruciate ligament (ACL) rupture on postural sway and control strategies during bilateral quiet standing, in subjects treated with or without reconstructive surgery compared to uninjured controls. 70 individuals who had unilateral ACL rupture 23±2.4 years ago (33 received ACL reconstructive surgery, ACLR, and 37 had physiotherapy only, ACLPT) and 33 uninjured matched controls (CTRL) (mean age 46±5.3) stood quietly with eyes closed for 3min on a firm and on a compliant surface, respectively. Center of pressure (CoP) was registered with a force plate and postural sway was calculated from center of mass (CoM) derived from 3D kinematics. Sway density (SD) analyses of CoP assessed distance and duration of stable phases. The torque controlling postural sway was estimated from CoP-CoM. Comparisons across conditions to CTRL revealed larger CoP-CoM-area in ACLR (p=0.017, CI: 10.95, 143.10), but not in ACLPT. Mean distance between SD-peaks was greater for ACLR (p<0.001, CI: 1.73, 5.31) than for ACLPT (p=0.006, CI: 0.56, 4.12) relative to CTRL. Duration of SD-peaks was smaller for both ACLR and ACLPT (p<0.001, CI: -4.04, -1.23 and -3.82, -1.03, respectively) compared to CTRL. CoM-area in the ACL-groups did not differ from CTRL. ACL-injured subjects demonstrated greater postural control efforts than CTRL but without significant differences in postural sway. Control efforts were thus not directly associated with sway and further research should be focused on variance in postural control strategies. Copyright © 2016. Published by Elsevier B.V.

  15. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-axial Accelerometer of the iPod Touch.

    PubMed

    Kosse, Nienke M; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J C

    2015-08-01

    Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study was to establish the validity and reliability of the iPod Touch for gait and posture assessment. Sixty healthy participants (aged 18-75 years) were measured with an iPod Touch and stand-alone accelerometer while they walked under single- and dual-task conditions, and while standing in parallel and semi-tandem stance with eyes open, eyes closed and when performing a dual task. Cross-correlation values (CCV) showed high correspondence of anterior-posterior and medio-lateral signal patterns (CCV's ≥ 0.88). Validity of gait parameters (foot contacts, index of harmonicity, and amplitude variability) and standing posture parameters [root mean square of accelerations, median power frequency (MPF) and sway area] as indicated by intra-class correlation (ICC) was high (ICC = 0.85-0.99) and test-retest reliability was good (ICC = 0.81-0.97), except for MPF (ICC = 0.59-0.87). Overall, the iPod Touch obtained valid and reliable measures of gait and postural control in healthy adults of all ages under different conditions. Additionally, smart devices have the potential to be used for clinical gait and posture assessments.

  16. Foam pad of appropriate thickness can improve diagnostic value of foam posturography in detecting postural instability.

    PubMed

    Liu, Bo; Leng, Yangming; Zhou, Renhong; Liu, Jingjing; Liu, Dongdong; Liu, Jia; Zhang, Su-Lin; Kong, Wei-Jia

    2018-04-01

    The present study investigated the effect of foam thickness on postural stability in patients with unilateral vestibular hypofunction (UVH) during foam posturography. Static and foam posturography were performed in 33 patients (UVH group) and 30 healthy subjects (control group) with eyes open (EO) and closed (EC) on firm surface and on 1-5 foam pad(s). Sway velocity (SV) of center of pressure, standing time before falling (STBF) and falls reaction were recorded and analyzed. (1) SVs had an increasing tendency in both groups as the foam pads were added under EO and EC conditions. (2) STBFs, only in UVH group with EC, decreased with foam thickness increasing. (3) Significant differences in SV were found between the control and UVH group with EO (except for standing on firm surface, on 1 and 2 foam pad(s)) and with EC (all surface conditions). (4) Receiver operating characteristic curve analysis showed that the SV could better reflect the difference in postural stability between the two groups while standing on the 4 foam pads with EC. Our study showed that diagnostic value of foam posturography in detecting postural instability might be enhanced by using foam pad of right thickness.

  17. The influence of age, anxiety and concern about falling on postural sway when standing at an elevated level.

    PubMed

    Sturnieks, Daina L; Delbaere, Kim; Brodie, Matthew A; Lord, Stephen R

    2016-10-01

    Psychological processes may influence balance and contribute to the risk of falls in older people. While a self-reported fear of falling is associated with increased postural sway, inducing fear using an elevated platform can lead to reduced sway, suggesting different underlying mechanisms whereby fear may influence balance control. This study examined changes in postural sway, muscle activity and physiological measures of arousal while standing on a 65cm elevated platform, compared to floor level, in young and older adults. The older adults were classified as fall concerned or not fall concerned based on the Falls Efficacy Scale-International and anxious or not anxious based on the Goldberg Anxiety Scale. Fall concern did not affect the physiological and sway response to the elevated platform. In response to the postural threat, the anxious participants increased their sway frequency (p=0.001) but did not reduce sway range (p=0.674). Conversely, non-anxious participants showed an adaptive tightening of balance control, effectively reducing sway range in the elevated condition (p<0.001). Generalised anxiety in older adults appears to differentially affect postural control strategies under threatening conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A method for paraplegic upper-body posture estimation during standing: a pilot study for rehabilitation purposes.

    PubMed

    Pages, Gaël; Ramdani, Nacim; Fraisse, Philippe; Guiraud, David

    2009-06-01

    This paper presents a contribution for restoring standing in paraplegia while using functional electrical stimulation (FES). Movement generation induced by FES remains mostly open looped and stimulus intensities are tuned empirically. To design an efficient closed-loop control, a preliminary study has been carried out to investigate the relationship between body posture and voluntary upper body movements. A methodology is proposed to estimate body posture in the sagittal plane using force measurements exerted on supporting handles during standing. This is done by setting up constraints related to the geometric equations of a two-dimensional closed chain model and the hand-handle interactions. All measured quantities are subject to an uncertainty assumed unknown but bounded. The set membership estimation problem is solved via interval analysis. Guaranteed uncertainty bounds are computed for the estimated postures. In order to test the feasibility of our methodology, experiments were carried out with complete spinal cord injured patients.

  19. Postural Analysis in Time and Frequency Domains in Patients with Ehlers-Danlos Syndrome

    ERIC Educational Resources Information Center

    Galli, Manuela; Rigoldi, Chiara; Celletti, Claudia; Mainardi, Luca; Tenore, Nunzio; Albertini, Giorgio; Camerota, Filippo

    2011-01-01

    The goal of this work is to analyze postural control in Ehlers-Danlos syndrome (EDS) participants in time and frequency domain. This study considered a pathological group composed by 22 EDS participants performing a postural test consisting in maintaining standing position over a force platform for 30 s in two conditions: open eyes (OE) and closed…

  20. Standing postural instability in patients with schizophrenia: Relationships with psychiatric symptoms, anxiety, and the use of neuroleptic medications.

    PubMed

    Matsuura, Yukako; Fujino, Haruo; Hashimoto, Ryota; Yasuda, Yuka; Yamamori, Hidenaga; Ohi, Kazutaka; Takeda, Masatoshi; Imura, Osamu

    2015-03-01

    The purpose of this study was to assess postural instability in patients with schizophrenia using a pressure-sensitive platform and to examine the effects of anxiety, psychiatric symptoms, and the use of neuroleptic medications on postural sway. Participants were 23 patients with schizophrenia and 23 healthy controls. We found that the patients showed greater overall postural instability than the controls. Furthermore, they demonstrated greater instability when the test was performed with the eyes closed than with the eyes open. However, removal of visual input had less impact on the indices of postural instability in the patients than in the controls, suggesting that schizophrenia is associated with difficulties in integrating visual information and proprioceptive signals. Furthermore, in contrast to the controls, anxiety exacerbated postural instability in the patients. There were significant associations between postural stability and psychiatric symptoms in the patients without extrapyramidal symptoms, whereas medication dose did not significantly correlate with postural stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Stabilisation times after transitions to standing from different working postures.

    PubMed

    DiDomenico, Angela; McGorry, Raymond W; Banks, Jacob J

    2016-10-01

    Transitioning to standing after maintaining working postures may result in imbalance and could elicit a fall. The objective of this study was to quantify the magnitude of imbalance using a stabilisation time metric. Forty-five male participants completed three replications of conditions created by one of four working postures (bent at waist, squat, forward kneel, reclined kneel) and three durations within posture. Participants transitioned to quiet standing at a self-selected pace. Stabilisation time, based on changes in centre of pressure velocity, was used to indicate the initiation of steady state while standing. Stabilisation time was significantly affected by static postures but not duration within posture. The largest stabilisation times resulted from transitions initiated from a bent at waist posture. The smallest were associated with the kneeling postures, which were not significantly different from each other. Findings may lead to recommendations for redesign of tasks, particularly in high-risk environments such as construction. Statement of Relevance: Task performance on the jobsite often requires individuals to maintain non-erect postures. This study suggests that working posture affects stabilisation during transition to a standing position. Bending at the waist and squatting resulted in longer stabilisation times, whereas both kneeling postures evaluated resulted in greater imbalance but for a shorter duration.

  2. The association of antihypertensives with postural blood pressure and falls among seniors residing in the community: a case-control study.

    PubMed

    Zia, Anam; Kamaruzzaman, Shahrul B; Myint, Phyo K; Tan, Maw P

    2015-10-01

    A drop in postural blood pressure (BP) may contribute to falls, while antihypertensives have been considered to induce postural drop or orthostatic hypotension (OH) and falls among older people. However, this relationship between antihypertensives, postural BP and the risk of falls has never been evaluated in a single study. To examine the association of postural BP changes and BP therapy with the risk of falls among community-dwelling older people in a case-control manner. Cases (n = 202) included participants aged ≥ 65 years with two falls or one injurious fall while controls (n = 156) included participants ≥ 65 years with no falls in the preceding 12 months. Antihypertensives usage and medical history were recorded. Supine BP measurements were obtained at 10 min rest and at 1, 2 and 3 min after standing. Orthostatic hypotension was defined as a reduction in BP of 20/10 mmHg within 3 min of standing. Individual antihypertensive classes were not associated with falls. Minimal standing systolic BP (SBP) was significantly lower among fallers [128 (± 27·3) vs. 135·7 (± 24·7) mmHg; P = 0·01], but fallers were not more likely to fulfil the diagnostic criteria for OH. Diuretics were associated with OH and α-blockers were associated with minimal standing SBP. Univariate analysis revealed that the use of ≥ 2 antihypertensives was associated with recurrent and injurious falls [OR,1.97;CI,1.2-3.1], which was no longer significant aftermultivariateadjustment for age and number of comorbidities [OR, 1.6; CI, 0.95-2.6]. Minimal standing SBP or a lower SBP at 2 or 3minutes standing was associated with falls rather than OH using consensus definition. Association between ≥ 2 antihypertensives and falls was attenuated by increasing age and comorbidities. Our findings challenge previous assumptions that OH or the use of antihypertensives is associated with falls. Future studies should now seek to link these findings prospectively with falls in order to guide decision-making for BP lowering therapy among older patients. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  3. Impact of soft and hard insole density on postural stability in older adults.

    PubMed

    Losa Iglesias, Marta Elena; Becerro de Bengoa Vallejo, Ricardo; Palacios Peña, Domingo

    2012-01-01

    A significant predictor of falls in the elderly population is attributed to postural instability. Thus, it is important to identify and implement practical clinical interventions to enhance postural stability in older adults. Shoe insoles have been identified as a mechanism to enhance postural control, and our study aimed to evaluate the impact of 2 shoe insoles on static standing balance in healthy, older adults compared with standing posture while barefoot. We hypothesized that both hard and soft shoe insoles would decrease postural sway compared with the barefoot condition. Indeed, excursion distances and sway areas were reduced, and sway velocity was decreased when wearing insoles. The hard insole was also effective when visual feedback was removed, suggesting that the more rigid an insole, the greater potential reduction in fall risk. Thus, shoe insoles may be a cost-effective, clinical intervention that is easy to implement to reduce the risk of falling in the elderly population. Copyright © 2012 Mosby, Inc. All rights reserved.

  4. Postural Control in Children, Teenagers and Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Rigoldi, Chiara; Galli, Manuela; Mainardi, Luca; Crivellini, Marcello; Albertini, Giorgio

    2011-01-01

    The goal of this work was to analyze postural control in Down syndrome (DS) participants considering three different groups composed by children, teenagers and adults with DS. An analysis of the centre of pressure (COP) displacement during standing position was therefore performed for the three groups of subjects. The obtained signal of COP was…

  5. The contribution of proprioceptive information to postural control in elderly and patients with Parkinson's disease with a history of falls.

    PubMed

    Bekkers, Esther M J; Dockx, Kim; Heremans, Elke; Vercruysse, Sarah; Verschueren, Sabine M P; Mirelman, Anat; Nieuwboer, Alice

    2014-01-01

    Proprioceptive deficits negatively affect postural control but their precise contribution to postural instability in Parkinson's disease (PD) is unclear. We investigated if proprioceptive manipulations differentially affect balance, measured by force plates, during quiet standing in 13 PD patients and 13 age-matched controls with a history of falls. Perceived limits of stability (LoS) were derived from the differences between maximal center of pressure (CoP) displacement in anterior-posterior (AP) and medio-lateral (ML) direction during a maximal leaning task. Task conditions comprised standing with eyes open (EO) and eyes closed (EC): (1) on a stable surface; (2) an unstable surface; and (3) with Achilles tendon vibration. CoP displacements were calculated as a percentage of their respective LoS. Perceived LoS did not differ between groups. PD patients showed greater ML CoP displacement than elderly fallers (EF) across all conditions (p = 0.043) and tended to have higher postural sway in relation to the LoS (p = 0.050). Both groups performed worse on an unstable surface and during tendon vibration compared to standing on a stable surface with EO and even more so with EC. Both PD and EF had more AP sway in all conditions with EC compared to EO (p < 0.001) and showed increased CoP displacements when relying on proprioception only compared to standing with normal sensory input. This implies a similar role of the proprioceptive system in postural control in fallers with and without PD. PD fallers showed higher ML sway after sensory manipulations, as a result of which these values approached their perceived LoS more closely than in EF. We conclude that despite a similar fall history, PD patients showed more ML instability than EF, irrespective of sensory manipulation, but had a similar reliance on ankle proprioception. Hence, we recommend that rehabilitation and fall prevention for PD should focus on motor rather than on sensory aspects.

  6. Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition.

    PubMed

    Clarke, Sarah B; Deighton, Kevin; Newman, Caroline; Nicholson, Gareth; Gallagher, Liam; Boos, Christopher J; Mellor, Adrian; Woods, David R; O'Hara, John P

    2018-01-01

    Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years). Postural control (sway velocity measured by a portable force platform) during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation) and at 3 research camps (3619m, 4600m and 5140m) on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9) and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6) was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9). Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.

  7. A radiographic assessment of lumbar spine posture in four different upright standing positions.

    PubMed

    Gallagher, Kaitlin M; Sehl, Michael; Callaghan, Jack P

    2016-08-01

    Approximately 50% of a sample population will develop prolonged standing induced low back pain. The cause of this pain may be due to their lumbar spine posture. The purpose of this study was to investigate differences in lumbar posture between 17 participants categorized as a pain or non-pain developers during level ground standing. A secondary purpose was to evaluate the influence of two standing aids (an elevated surface to act as a foot rest and declined sloped surface) on lumbopelvic posture. Four sagittal plane radiographs were taken: a normal standing position on level ground, when using an elevated foot rest, using a declined sloped surface, and maximum lumbar spine extension as a reference posture. Lumbosacral lordosis, total lumbar lordosis, and L1/L2 and L5/S1 intervertebral joint angles were measured on each radiograph. There was a significant difference between the lumbosacral lordosis angle and L5/S1 angles in upright versus maximum extension; however, this was independent of pain group. The elevated surface was most effective at causing lumbosacral spine flexion. Potentially successful postures for eliminating low back pain during prolonged standing mainly influence the lower lumbar lordosis. Future work should assess the influence of hip posture on low back pain development during standing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Letter to the Editor: On "Advantages and disadvantages of stiffness instructions when studying postural control" by C.T. Bonnet: You just can't win: Advantages and disadvantages of the postural stability requirement.

    PubMed

    Lajoie, Y; Richer, N; Jehu, D A; Polskaia, N; Saunders, D

    2016-05-01

    In the examination of postural control, instructions to stand as still as possible are common and promote a relatively unnatural sway pattern. The validity of the stability requirement is discussed in the present commentary in response to the discussion initiated by Cedrick T. Bonnet. The advantages of using the stability requirement include: evaluating unbiased postural control, reducing variability in postural sway, manipulating focus of attention, examining the ability to maintain an upright stance, and ecological validity of testing. The disadvantages include: constraining natural postural sway, increasing the complexity of the control condition, promoting an internal focus of attention, and reducing the ability to detect exploratory behaviour. After evaluating the aforementioned advantages and disadvantages, the present commentary suggests that researchers should strive to provide specific instructions to maintain feet, arm and eye position without specifically requiring participants to reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Three components of postural control associated with pushing in symmetrical and asymmetrical stance.

    PubMed

    Lee, Yun-Ju; Aruin, Alexander S

    2013-07-01

    A number of occupational and leisure activities that involve pushing are performed in symmetrical or asymmetrical stance. The goal of this study was to investigate early postural adjustments (EPAs), anticipatory postural adjustments (APAs), and compensatory postural adjustments (CPAs) during pushing performed while standing. Ten healthy volunteers stood in symmetrical stance (with feet parallel) or in asymmetrical stance (staggered stance with one foot forward) and were instructed to use both hands to push forward the handle of a pendulum attached to the ceiling. Bilateral EMG activity of the trunk and leg muscles and the center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the EPAs, APAs, and CPAs. The EMG activity and the COP displacement were different between the symmetrical and asymmetrical stance conditions. The COP displacements in the ML direction were significantly larger in staggered stance than in symmetrical stance. In staggered stance, the EPAs and APAs in the thigh muscles of the backward leg were significantly larger, and the CPAs were smaller than in the forward leg. There was no difference in the EMG activity of the trunk muscles between the stance conditions. The study outcome confirmed the existence of the three components of postural control (EPAs, APAs, and CPAs) in pushing. Moreover, standing asymmetrically was associated with asymmetrical patterns of EMG activity in the lower extremities reflecting the stance-related postural control during pushing. The study outcome provides a basis for studying postural control during other daily activities involving pushing.

  10. Locomotor Sensory Organization Test: How Sensory Conflict Affects the Temporal Structure of Sway Variability During Gait.

    PubMed

    Chien, Jung Hung; Mukherjee, Mukul; Siu, Ka-Chun; Stergiou, Nicholas

    2016-05-01

    When maintaining postural stability temporally under increased sensory conflict, a more rigid response is used where the available degrees of freedom are essentially frozen. The current study investigated if such a strategy is also utilized during more dynamic situations of postural control as is the case with walking. This study attempted to answer this question by using the Locomotor Sensory Organization Test (LSOT). This apparatus incorporates SOT inspired perturbations of the visual and the somatosensory system. Ten healthy young adults performed the six conditions of the traditional SOT and the corresponding six conditions on the LSOT. The temporal structure of sway variability was evaluated from all conditions. The results showed that in the anterior posterior direction somatosensory input is crucial for postural control for both walking and standing; visual input also had an effect but was not as prominent as the somatosensory input. In the medial lateral direction and with respect to walking, visual input has a much larger effect than somatosensory input. This is possibly due to the added contributions by peripheral vision during walking; in standing such contributions may not be as significant for postural control. In sum, as sensory conflict increases more rigid and regular sway patterns are found during standing confirming the previous results presented in the literature, however the opposite was the case with walking where more exploratory and adaptive movement patterns are present.

  11. Investigation of postural hypotension due to static prolonged standing in female workers.

    PubMed

    Kabe, Isamu; Tsuruoka, Hiroko; Tokujitani, Yoko; Endo, Yuichi; Furusawa, Mami; Takebayashi, Toru

    2007-07-01

    The "Just-in-Time system" improves productivity and efficiency through cost reduction while it makes workers work in a standing posture. The aim of this study was to investigate the prevalence of postural hypotension in females during prolonged standing work, and to discuss preventive methods. Twelve female static standing workers (mean age+/-standard deviation; 32+/-14 yr old), 6 male static standing workers (30+/-4 yr old), 10 female walking workers (27+/-7 yr old) and 9 female desk workers (31+/-5 yr old) in a certain telecommunications equipment manufacturing factory agreed to participate in this study. All participants received an interview with an occupational physician, and performed the standing up test before working and ambulatory blood pressure monitoring (ABPM) while working. Although the blood pressure of the standing up test did not differ among the groups, mean pulse rates on standing up significantly increased in every group. Hypotension rates in the female standing workers' group by ABPM were 9 persons of 12 participants (75%) for systolic blood pressure (SBP), and were 11 persons of 12 participants (92%) for diastolic blood pressure (DBP). There were significantly higher than those in the female desk workers' group, none of 9 participants (0%) for SBP and 2 of 9 participants (22%) for DBP. The hypotension rates both male standing and female walking worker groups did not differ. Because all 8 workers who were found to have postural hypotension by the standing up test had decreased SBP and/or DBP by ABPM, it is suggested that persons at high risk of postural hypotension during standing work could be screened by the standing up test. The mechanism of postural hypotension may be a decrease of venous return due to leg swelling, and neurocardiogenic or vasovagal response. Preventing the congestion of the lower limbs by walking, managing standing time and wearing elastic hose to keep the amount of the venous return could prevent postural hypotension during prolonged standing work.

  12. Posture in dentists: Sitting vs. standing positions during dentistry work--An EMG study.

    PubMed

    Pejcić, Natasa; Jovicić, Milica Đurić; Miljković, Nadica; Popović, Dejan B; Petrović, Vanja

    2016-01-01

    Adequate working posture is important for overall health. Inappropriate posture may increase fatigue, decrease efficiency, and eventually lead to injuries. The purpose was to examine posture positions used during dentistry work. In order to quantify different posture positions, we recorded muscle activity and positions of body segments. The position (inclination) data of the back was used to assess two postures: sitting and standing during standard dental interventions. During standard interventions, whether sitting or standing, a tilt of less than 20 degrees was most prevalent in the forward and lateral flexion directions. Amplitude of electromyography signals corresponding to the level of muscle activity were higher in sitting compared with the electromyography in standing position for all muscle groups on the left and right side of the body. Significant difference between muscle activity in two working postures was evident in splenius capitis muscle on the left (p = 0.032), on the right side of the body (p = 0.049) and in muscle activity of mastoid muscle on the left side (p = 0.029). These findings show that risk for increased fatigue and possible injures can be reduced by combining the sitting and standing occupational postures.

  13. Effect of Social Stimuli on Postural Responses in Individuals with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Ghanouni, Parisa; Memari, Amir-Hossein; Gharibzadeh, Shahriar; Eghlidi, Jandark; Moshayedi, Pouria

    2017-01-01

    This study was aimed to investigate the effects of social versus non-social stimuli on postural responses in 21 boys with autism spectrum disorder (ASD) (mean age of 11.6 ± 1.5) compared with 30 typically developing (TD) boys (mean age of 11.7 ± 1.8). Postural control of children was examined while they were standing on a force plate and viewing…

  14. Postural control and ventilatory drive during voluntary hyperventilation and carbon dioxide rebreathing.

    PubMed

    David, Pascal; Laval, David; Terrien, Jérémy; Petitjean, Michel

    2012-01-01

    The present study sought to establish links between hyperventilation and postural stability. Eight university students were asked to stand upright under two hyperventilation conditions applied randomly: (1) a metabolic hyperventilation induced by 5 min of hypercapnic-hyperoxic rebreathing (CO(2)-R); and, (2) a voluntary hyperventilation (VH) of 3 min imposed by a metronome set at 25 cycles per min. Recordings were obtained with eyes open, with the subjects standing on a force plate over 20-s periods. Ventilatory response, displacements in the centre of pressure in both the frontal and sagittal planes and fluctuations in the three planes of the ground reaction force were monitored in the time and frequency domains. Postural changes related to respiratory variations were quantified by coherence analysis. Myoelectric activities of the calf muscles were recorded using surface electromyography. Force plate measurements revealed a reduction in postural stability during both CO(2)-R and VH conditions, mainly in the sagittal plane. Coherence analysis provided evidence of a ventilatory origin in the vertical ground reaction force fluctuations during VH. Electromyographic analyses showed different leg muscles strategies, assuming the existence of links between the control of respiration and the control of posture. Our results suggest that the greater disturbing effects caused by voluntary hyperventilation on body balance are more compensated when respiration is under automatic control. These findings may have implications for understanding the organisation of postural and respiratory activities and suggest that stability of the body may be compromised in situations in which respiratory demand increases and requires voluntary control.

  15. Postural stability and the influence of concurrent muscle activation--Beneficial effects of jaw and fist clenching.

    PubMed

    Ringhof, Steffen; Leibold, Timo; Hellmann, Daniel; Stein, Thorsten

    2015-10-01

    Recent studies reported on the potential benefits of submaximum clenching of the jaw on human postural control in upright unperturbed stance. However, it remained unclear whether these effects might also be observed among active controls. The purpose of the present study, therefore, was to comparatively examine the influence of concurrent muscle activation in terms of submaximum clenching of the jaw and submaximum clenching of the fists on postural stability. Posturographic analyses were conducted with 17 healthy young adults on firm and foam surfaces while either clenching the jaw (JAW) or clenching the fists (FIST), whereas habitual standing served as the control condition (CON). Both submaximum tasks were performed at 25% maximum voluntary contraction, assessed, and visualized in real time by means of electromyography. Statistical analyses revealed that center of pressure (COP) displacements were significantly reduced during JAW and FIST, but with no differences between both concurrent clenching activities. Further, a significant increase in COP displacements was observed for the foam as compared to the firm condition. The results showed that concurrent muscle activation significantly improved postural stability compared with habitual standing, and thus emphasize the beneficial effects of jaw and fist clenching for static postural control. It is suggested that concurrent activities contribute to the facilitation of human motor excitability, finally increasing the neural drive to the distal muscles. Future studies should evaluate whether elderly or patients with compromised postural control might benefit from these physiological responses, e.g., in the form of a reduced risk of falling. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults.

    PubMed

    Zhou, Diange; Zhou, Junhong; Chen, Hu; Manor, Brad; Lin, Jianhao; Zhang, Jue

    2015-08-01

    Transcranial direct current stimulation (tDCS) targeting the prefrontal cortex reduces the size and speed of standing postural sway in younger adults, particularly when performing a cognitive dual task. Here, we hypothesized that tDCS would alter the complex dynamics of postural sway as quantified by multiscale entropy (MSE). Twenty healthy older adults completed two study visits. Center-of-pressure (COP) fluctuations were recorded during single-task (i.e., quiet standing) and dual-task (i.e., standing while performing serial subtractions) conditions, both before and after a 20-min session of real or sham tDCS. MSE was used to estimate COP complexity within each condition. The percentage change in complexity from single- to dual-task conditions (i.e., dual-task cost) was also calculated. Before tDCS, COP complexity was lower (p = 0.04) in the dual-task condition as compared to the single-task condition. Neither real nor sham tDCS altered complexity in the single-task condition. As compared to sham tDCS, real tDCS increased complexity in the dual-task condition (p = 0.02) and induced a trend toward improved serial subtraction performance (p = 0.09). Moreover, those subjects with lower dual-task COP complexity at baseline exhibited greater percentage increases in complexity following real tDCS (R = -0.39, p = 0.05). Real tDCS also reduced the dual-task cost to complexity (p = 0.02), while sham stimulation had no effect. A single session of tDCS targeting the prefrontal cortex increased standing postural sway complexity with concurrent non-postural cognitive task. This form of noninvasive brain stimulation may be a safe strategy to acutely improve postural control by enhancing the system's capacity to adapt to stressors.

  17. Attenuated or absent HRV response to postural change in subjects with primary insomnia.

    PubMed

    Jiang, Xiao-ling; Zhang, Zheng-gang; Ye, Cui-ping; Lei, Ying; Wu, Lei; Zhang, Ying; Chen, Yuan-yuan; Xiao, Zhong-ju

    2015-03-01

    Previous studies have compared rest heart rate variability (HRV) between insomniacs and good sleepers, but the results have not been consistent. The altered HRV behavior in response to postural change was considered useful as another sensitive measure for evaluating the autonomic nervous function, however, to our knowledge, no study was found using HRV response to postural change in primary insomnia. Our study aimed to examine HRV response to postural change maneuver (PCM) in both primary insomniacs and controls between 22 and 39 years of age to gain insights into the characteristics of the autonomic nervous system (ANS) function in primary insomnia subjects. HRV was recorded for 5 min at seated rest, and then, the subjects quickly stood up from a seated position in up to 3s and remained standing for 15 min. HRV was recorded at the following times: seated rest and 0-5 min, 5-10 min and 10-15 min in the standing position. In primary insomnia subjects, attenuated or absent HRV response to postural change was identified, the increase in LF/HF ratio and the decrease in HF and SD1 from seated to standing were much slower than in the normal controls. In conclusion, this study provided evidence of the possible bi-directional relationship between insomnia and autonomic nervous system (ANS) function, which will move us closer to developing a new sensitive method for measuring autonomic impairment and early sympathetic damage in primary insomnia subjects. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Multi-joint postural behavior in patients with knee osteoarthritis.

    PubMed

    Turcot, Katia; Sagawa, Yoshimasa; Hoffmeyer, Pierre; Suvà, Domizio; Armand, Stéphane

    2015-12-01

    Previous studies have demonstrated balance impairment in patients with knee osteoarthritis (OA). Although it is currently accepted that postural control depends on multi-joint coordination, no study has previously considered this postural strategy in patients suffering from knee OA. The objectives of this study were to investigate the multi-joint postural behavior in patients with knee OA and to evaluate the association with clinical outcomes. Eighty-seven patients with knee OA and twenty-five healthy elderly were recruited to the study. A motion analysis system and two force plates were used to investigate the joint kinematics (trunk and lower body segments), the lower body joint moments, the vertical ground reaction force ratio and the center of pressure (COP) during a quiet standing task. Pain, functional capacity and quality of life status were also recorded. Patients with symptomatic and severe knee OA adopt a more flexed posture at all joint levels in comparison with the control group. A significant difference in the mean ratio was found between groups, showing an asymmetric weight distribution in patients with knee OA. A significant decrease in the COP range in the anterior-posterior direction was also observed in the group of patients. Only small associations were observed between postural impairments and clinical outcomes. This study brings new insights regarding the postural behavior of patients with severe knee OA during a quiet standing task. The results confirm the multi-joint asymmetric posture adopted by this population. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability.

    PubMed

    Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind

    2017-07-26

    Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Separate physical tests of lower extremities and postural control are associated with cognitive impairment. Results from the general population study Good Aging in Skåne (GÅS-SNAC)

    PubMed Central

    Bramell-Risberg, Eva; Jarnlo, Gun-Britt; Elmståhl, Sölve

    2012-01-01

    Purpose To investigate whether separate physical tests of the lower extremities, that assess movement speed and postural control, were associated with cognitive impairment in older community-dwelling subjects. Subjects and methods In this population-based, cross-sectional, cohort study, the following items were assessed: walking speed, walking 2 × 15 m, Timed Up and Go (TUG) at self-selected and fast speeds, one-leg standing, and performance in step- and five chair-stand tests. The study comprised 2115 subjects, aged 60–93 years, with values adjusted for demographics, health-related factors, and comorbidity. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE), and cognitive impairment was defined by the three-word delayed recall task of the MMSE. Subjects who scored 0/3 on the three-word delayed recall task were defined as cases (n = 328), those who scored 1/3 were defined as intermediates (n = 457), and the others as controls (n = 1330). Results Physical tests performed rapidly were significantly associated with cognitive impairment; this was the case in increased time of five chair stands (P = 0.009, odds ratio [OR] = 1.03), TUG (P < 0.001, OR = 1.11) and walking 2 × 15 m (P < 0.001, OR = 1.05). Inability to stand on one leg for 10 seconds was associated with increased risk of being a case (P < 0.001, OR = 1.78), compared to those able to stand for 30 seconds or longer. More steps during the step test (P < 0.001, OR = 0.95) and higher fast walking speed (P < 0.001, OR = 0.51) were associated with lower risk of being a case. Conclusion Slower movements and reduced postural control were related to an increased risk of being cognitively impaired. All tests that were performed rapidly were able to separate cases from controls. These findings suggest that physical tests that are related to lower extremity and postural control, emphasizing velocity, might be useful in investigating relationships between physical and cognitive function; furthermore, they can be used to complement cognitive impairment diagnoses. PMID:22807629

  1. Fatigue does not conjointly alter postural and cognitive performance when standing in a shooting position under dual-task conditions.

    PubMed

    Bermejo, José Luis; García-Massó, Xavier; Paillard, Thierry; Noé, Frédéric

    2018-02-01

    This study investigated the effects of fatigue on balance control and cognitive performance in a standing shooting position. Nineteen soldiers were asked to stand while holding a rifle (single task - ST). They also had to perform this postural task while simultaneously completing a cognitive task (dual task - DT). Both the ST and DT were performed in pre- and post-fatigue conditions. In pre-fatigue, participants achieved better balance control in the DT than in the ST, thus suggesting that the increased cognitive activity associated with the DT improves balance control by shifting the attentional focus away from a highly automatised activity. In post-fatigue, balance control was degraded in both the ST and DT, while reaction time was enhanced in the first minutes following the fatiguing exercise without affecting the accuracy of response in the cognitive task, which highlights the relative independent effects of fatigue on balance control and cognitive performance.

  2. Effect of sacroiliac manipulation on postural sway in quiet standing: a randomized controlled trial.

    PubMed

    Farazdaghi, Mohammad Reza; Motealleh, Alireza; Abtahi, Forough; Panjan, Andrej; Šarabon, Nejc; Ghaffarinejad, Farahnaz

    Sacroiliac joint manipulation can alter joint and muscle control mechanisms through local and remote effects. Postural balance is controlled by supraspinal (rambling) and spinal-peripheral (trembling) mechanisms. A manipulation may interfere with postural control in quiet standing. To evaluate the immediate effects of sacroiliac joint manipulation on postural control in patients with (1) sacroiliac dysfunction and (2) to determine whether rambling and trembling are affected by sacroiliac joint manipulation. 32 patients aged between 20 and 50 years old were selected by convenience after confirmation of sacroiliac joint dysfunction by clinical examination. These patients were randomly allocated either to manipulation or sham manipulation group. Displacement, velocity and frequency of the center of pressure, rambling and trembling in the anterior-posterior and medial-lateral directions were our primary outcomes and analyzed immediately before and after the intervention in quiet standing. The physical therapists who performed the physical, biomechanical and statistical examinations, were all blinded to the patients' grouping. No differences were found between the two groups but trembling velocity (0.14 and -0.11 for intervention and sham group, respectively) and frequency (0.17 and 0.11 for intervention and sham group respectively) increased after intervention in the treatment group in the anterior-posterior direction. Generally, sacroiliac joint manipulation had no superiority than sham treatment regarding postural control as measured by rambling-trembling analysis of center of pressure. Manipulation may increase muscle activation in the treatment group due to increased trembling parameters. Trial number: IRCT2014072715932N8 - http://www.irct.ir/searchresult.php?keyword=%D8%B3%D9%88%DB%8C%D9%87&id=15932&field=&number=8&prt=13&total=10&m=1. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  3. Moving beyond quiet stance: applicability of the inverted pendulum model to stooping and crouching postures.

    PubMed

    Weaver, Tyler B; Glinka, Michal N; Laing, Andrew C

    2014-11-07

    Currently, it is unknown whether the inverted pendulum model is applicable to stooping or crouching postures. Therefore, the aim of this study was to determine the degree of applicability of the inverted pendulum model to these postures, via examination of the relationship between the centre of mass (COM) acceleration and centre of pressure (COP)-COM difference. Ten young adults held static standing, stooping and crouching postures, each for 20s. For both the anterior-posterior (AP) and medio-lateral (ML) directions, the time-varying COM acceleration and the COP-COM were computed, and the relationship between these two variables was determined using Pearson's correlation coefficients. Additionally, in both directions, the average absolute COM acceleration, average absolute COP-COM signal, and the inertial component (i.e., -I/Wh) were compared across postures. Pearson correlation coefficients revealed a significant negative relationship between the COM acceleration and COP-COM signal for all comparisons, regardless of the direction (p<0.001). While no effect of posture was observed in the AP direction (p=0.463), in the ML direction, the correlation coefficients for stooping were different (i.e., stronger) than standing (p=0.008). Regardless of direction, the average absolute COM acceleration for both the stooping and crouching postures was greater than standing (p<0.002). The high correlations indicate that the inverted pendulum model is applicable to stooping and crouching postures. Due to their importance in completing activities of daily living, there is merit in determining what type of motor strategies are used to control such postures and whether these strategies change with age. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  4. Postural Stability is Altered by Blood Shift

    NASA Astrophysics Data System (ADS)

    Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.

    2008-06-01

    Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.

  5. Do older adults perceive postural constraints for reach estimation?

    PubMed

    Cordova, Alberto; Gabbard, Carl

    2014-01-01

    BACKGROUND/STUDY CONTEXT: Recent evidence indicates that older persons have difficulty mentally representing intended movements. Furthermore, in an estimation of reach paradigm using motor imagery, a form of mental representation, older persons significantly overestimated their ability compared with young adults. The authors tested the notion that older adults may also have difficulty perceiving the postural constraints associated with reach estimation. The authors compared young (Mage = 22 years) and older (Mage = 67) adults on reach estimation while seated and in a more postural demanding standing and leaning forward position. The expectation was a significant postural effect with the standing condition, as evidenced by reduced overestimation. Whereas there was no difference between groups in the seated condition (both overestimated), older adults underestimated whereas the younger group once again overestimated in the standing condition. From one perspective, these results show that older adults do perceive postural constraints in light of their own physical capabilities. That is, that group perceived greater postural demands with the standing posture and elected to program a more conservative strategy, resulting in underestimation.

  6. Human body area factors for radiation exchange analysis: standing and walking postures

    NASA Astrophysics Data System (ADS)

    Park, Sookuk; Tuller, Stanton E.

    2011-09-01

    Effective radiation area factors ( f eff) and projected area factors ( f p) of unclothed Caucasians' standing and walking postures used in estimating human radiation exchange with the surrounding environment were determined from a sample of adults in Canada. Several three-dimensional (3D) computer body models were created for standing and walking postures. Only small differences in f eff and f p values for standing posture were found between gender (male or female) and body type (normal- or over-weight). Differences between this study and previous studies were much larger: ≤0.173 in f p and ≤0.101 in f eff. Directionless f p values for walking posture also had only minor differences between genders and positions in a stride. However, the differences of mean directional f p values of the positions dependent on azimuth angles were large enough, ≤0.072, to create important differences in modeled radiation receipt. Differences in f eff values were small: 0.02 between the normal-weight male and female models and up to 0.033 between positions in a stride. Variations of directional f p values depending on solar altitudes for walking posture were narrower than those for standing posture. When both standing and walking postures are considered, the mean f eff value, 0.836, of standing (0.826) and walking (0.846) could be used. However, f p values should be selected carefully because differences between directional and directionless f p values were large enough that they could influence the estimated level of human thermal sensation.

  7. A standing posture is associated with increased susceptibility to the sound-induced flash illusion in fall-prone older adults.

    PubMed

    Stapleton, John; Setti, Annalisa; Doheny, Emer P; Kenny, Rose Anne; Newell, Fiona N

    2014-02-01

    Recent research has provided evidence suggesting a link between inefficient processing of multisensory information and incidence of falling in older adults. Specifically, Setti et al. (Exp Brain Res 209:375-384, 2011) reported that older adults with a history of falling were more susceptible than their healthy, age-matched counterparts to the sound-induced flash illusion. Here, we investigated whether balance control in fall-prone older adults was directly associated with multisensory integration by testing susceptibility to the illusion under two postural conditions: sitting and standing. Whilst standing, fall-prone older adults had a greater body sway than the age-matched healthy older adults and their body sway increased when presented with the audio-visual illusory but not the audio-visual congruent conditions. We also found an increase in susceptibility to the sound-induced flash illusion during standing relative to sitting for fall-prone older adults only. Importantly, no performance differences were found across groups in either the unisensory or non-illusory multisensory conditions across the two postures. These results suggest an important link between multisensory integration and balance control in older adults and have important implications for understanding why some older adults are prone to falling.

  8. Should Ballet Dancers Vary Postures and Underfoot Surfaces When Practicing Postural Balance?

    PubMed

    Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren

    2018-01-01

    Postural balance (PB) is an important component skill for professional dancers. However, the effects of different types of postures and different underfoot surfaces on PB have not adequately been addressed. The main aim of this study was to investigate the effect of different conditions of footwear, surfaces, and standing positions on static and dynamic PB ability of young ballet dancers. A total of 36 male and female young professional ballet dancers (aged 14-19 years) completed static and dynamic balance testing, measured by head and lumbar accelerometers, while standing on one leg in the turnout position, under six different conditions: (1) "relaxed" posture; (2) "ballet" posture; (3) barefoot; (4) ballet shoes with textured insoles; (5) barefoot on a textured mat; and (6) barefoot on a spiky mat. A condition effect was found for static and dynamic PB. Static PB was reduced when dancers stood in the ballet posture compared with standing in the relaxed posture and when standing on a textured mat and on a spiky mat (p < .05), and static PB in the relaxed posture was significantly better than PB in all the other five conditions tested. Dynamic PB was significantly better while standing in ballet shoes with textured insoles and when standing on a spiky mat compared with all other conditions (p < .05). The practical implications derived from this study are that both male and female dancers should try to be relaxed in their postural muscles when practicing a ballet aligned position, including dance practice on different types of floors and on different types of textured/spiky materials may result in skill transfer to practice on normal floor surfaces, and both static and dynamic PB exercises should be assessed and generalized into practical dance routines.

  9. Rasterstereographic analysis of axial back surface rotation in standing versus forward bending posture in idiopathic scoliosis.

    PubMed

    Hackenberg, Lars; Hierholzer, Eberhard; Bullmann, Viola; Liljenqvist, Ulf; Götze, Christian

    2006-07-01

    The forward bending test according to Adams and rib hump quantification by scoliometer are common clinical examination techniques in idiopathic scoliosis, although precise data about the change of axial surface rotation in forward bending posture are not available. In a pilot study the influence of leg length inequalities on the back shape of five normal subjects was clarified. Then 91 patients with idiopathic scoliosis with Cobb-angles between 20 degrees and 82 degrees were examined by rasterstereography, a 3D back surface analysis system. The axial back surface rotation in standing posture was compared with that in forward bending posture and additionally with a scoliometer measurement in forward bending posture. The changes of back shape in forward bending posture were correlated with the Cobb-angle, the level of the apex of the scoliotic primary curve and the age of the patient. Averaged over all patients, the back surface rotation amplitude increased from 23.1 degrees in standing to 26.3 degrees in forward bending posture. The standard deviation of this difference was high (6.1 degrees ). The correlation of back surface rotation amplitude in standing with that in forward bending posture was poor (R (2)=0.41) as was the correlation of back surface rotation in standing posture with the scoliometer in forward bending posture measured rotation (R (2)=0.35). No significant correlation could be found between the change of back shape in forward bending and the degree of deformity (R (2)=0.07), likewise no correlation with the height of the apex of the scoliosis (R (2)=0.005) and the age of the patient (R (2)=0.001). Before forward bending test leg length inequalities have to be compensated accurately. Compared to the standing posture, forward bending changes back surface rotation. However, this change varies greatly between patients, and is independent of the type and degree of scoliosis. Furthermore remarkable differences were found between scoliometer measurement of the rib hump and rasterstereographic measurement of the vertebral rotation. Therefore the forward bending test and the identification of idiopathic scoliosis rotation by scoliometer can be markedly different compared to rasterstereographic surface measurement in the standing posture.

  10. Active self-correction of spinal posture in pain-free women in response to the command "straighten your back".

    PubMed

    Barczyk-Pawelec, Katarzyna; Sipko, Tomasz

    2017-10-01

    Evidence is limited regarding the regional changes in spinal posture after self-correction. The aim of the present study was to evaluate whether active self-correction improved standing and sitting spinal posture. Photogrammetry was used to assess regional spinal curvatures and vertical global spine orientation (GSO) in 42 asymptotic women aged 20-24 years. Upper thoracic spine angle and GSO increased in response to self-correction, while the thoracolumbar and lumbosacral angles decreased. Self-correction in the standing position resulted in decreased inclination of the upper thoracic and thoracolumbar spinal angles. Correction of sitting posture reduced the angle of the upper thoracic spine and GSO. The effects of active self-correction on spinal curvature and GSO were different for the standing versus sitting position; the greatest effects of active correction were noted in the thoracic spine. Balanced and lordotic postures were most prevalent in the habitual and actively self-corrected standing positions, whereas the kyphotic posture was most prevalent in the habitual sitting position, indicative that self-correction back posture in the standing position could be an important health-related daily activity, especially during prolonged sitting.

  11. Postural adjustments associated with voluntary contraction of leg muscles in standing man.

    PubMed

    Nardone, A; Schieppati, M

    1988-01-01

    The postural adjustments associated with a voluntary contraction of the postural muscles themselves have been studied in the legs of normal standing men. We focussed on the following questions. Do postural adjustments precede the focal movement as in the case of movements of the upper limb? Which muscle(s) are involved in the task of stabilizing posture? Can the same postural muscle be activated in postural stabilization and in voluntary movement at the same time, in spite of the opposite changes in activity possibly required by these conditions? Six subjects standing on a dynamometric platform were asked to rise onto the tips their toes by contracting their soleus muscles, or to rock on their heels by contracting their tibialis anterior muscles. The tasks were made in a reaction time (RT) situation or in a self-paced mode, standing either freely or holding onto a stable structure. Surface EMGs of leg and thigh muscles, and the foot-floor reaction forces were recorded. The following results were obtained in the RT mode, standing freely. 1. Rising onto toe tips: a striking silent period in soleus preceded its voluntary activation; during this silent period, a tibialis anterior burst could be observed in three subjects; these anticipatory activities induced a forward sway, as monitored by a change in the force exerted along the x axis of the platform. 2. Rocking on heels: an enhancement in tonic EMG of soleus was observed before tibialis anterior voluntary burst, at a mean latency from the go-signal similar to that of the silent period; this anticipatory activity induced a backward body sway. 3. Choice RT conditions showed that the above anticipatory patterns in muscle activity were pre-programmed, specific for the intended tasks, and closely associated with the focal movement. When both tasks were performed in a self-paced mode, all the above EMG and mechanical features were more pronounced and unfolded in time. If the subjects held onto the frame, the early features in the soleus or tibialis anterior EMG were absent, and the corresponding changes in the foot-floor reaction forces were lacking. The anticipatory phenomena observed are considered postural adjustments because they appear only in the free-standing situation, and induce a body sway in the appropriate direction to counteract the destabilizing thrust due to the voluntary contraction of soleus or tibialis anterior. The central organization and descending control of posture and movements are briefly discussed in the light of the short latency of the anticipatory phenomena and of their close association with the focal movement.

  12. A hip abduction exercise prior to prolonged standing increased movement while reducing cocontraction and low back pain perception in those initially reporting low back pain.

    PubMed

    Viggiani, Daniel; Callaghan, Jack P

    2016-12-01

    Persons who develop low back pain from prolonged standing exhibit increased muscle cocontraction, decreased movement and increased spine extension. However, it is unclear how these factors relate to pain development. The purpose of this study was to use hip abductor fatigue to manipulate muscle activity patterns and determine its effects on standing behaviours and pain development. Forty participants stood for two hours twice, once following a hip abductor fatigue exercise (fatigue), and once without exercise beforehand (control). Trunk and gluteal muscle activity were measured to determine cocontraction. Lumbo-pelvic angles and force plates were used to assess posture and movement strategies. Visual analog scales differentiated pain (PDs) and non-pain developers (NPDs). PDs reported less low back pain during the fatigue session, with females having earlier reductions of similar scale than males. The fatigue session reduced gluteal and trunk cocontraction and increased centre of pressure movement; male and female PDs had opposing spine posture compensations. Muscle fatigue prior to standing reduced cocontraction, increased movement during standing and reduced the low back pain developed by PDs; the timing of pain reductions depended on spine postures adopted during standing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Influences of arm proprioception and degrees of freedom on postural control with light touch feedback.

    PubMed

    Rabin, Ely; DiZio, Paul; Ventura, Joel; Lackner, James R

    2008-02-01

    Lightly touching a stable surface with one fingertip strongly stabilizes standing posture. The three main features of this phenomenon are fingertip contact forces maintained at levels too low to provide mechanical support, attenuation of postural sway relative to conditions without fingertip touch, and center of pressure (CP) lags changes in fingertip shear forces by approximately 250 ms. In the experiments presented here, we tested whether accurate arm proprioception and also whether the precision fingertip contact afforded by the arm's many degrees of freedom are necessary for postural stabilization by finger contact. In our first experiment, we perturbed arm proprioception and control with biceps brachii vibration (120-Hz, 2-mm amplitude). This degraded postural control, resulting in greater postural sway amplitudes. In a second study, we immobilized the touching arm with a splint. This prevented precision fingertip contact but had no effect on postural sway amplitude. In both experiments, the correlation and latency of fingertip contact forces to postural sway were unaffected. We conclude that postural control is executed based on information about arm orientation as well as tactile feedback from light touch, although precision fingertip contact is not essential. The consistent correlation and timing of CP movement and fingertip forces across conditions in which postural sway amplitude and fingertip contact are differentially disrupted suggests posture and the fingertip are controlled in parallel with feedback from the fingertip in this task.

  14. [Neuronal control of posture and locomotion in decerebrated and spinalized animals].

    PubMed

    Musienko, P E; Gorskiĭ, O V; Kilimnik, V A; Kozlovskaia, I B; Courtine, G; Edgerton, V R; Gerasimenko, Iu P

    2013-03-01

    We have found that the brainstem-spinal cord circuitry of decerebrated cats actively maintain the equilibrium during standing, walking and imposed mechanical perturbations similar to that observed in intact animals. The corrective hindlimb motor responses during standing included redistribution of the extensor activity ipsilateral and contralateral to perturbation. The postural corrections in walking cats were due to considerable modification of EMG pattern in the limbs as well as changing of the swing-stance phases of the step cycle and ground reaction forces depending of perturbation side. Thus the basic mechanisms for balance control of decerebrated animals in these two forms of motor behavior are different. Balance-related adjustments relied entirely on the integration of somatosensory information arising from the moving hindquarters because of the suppression of vestibular, visual, and head-neck-trunk sensory input. We propose that the somatosensory input from the hindquarters in concert with the lumbosacral spinal circuitry can control the dynamics of the hindquarters sufficient to sustain balance. We found that, after isolation from the brainstem or forebrain, lumbosacral circuits receiving tonic epidural electrical stimulation can effectively control equilibrium during standing and stepping. Detailed analyses of the relationships among muscle activity, trunk kinematics, and limb kinetics indicate that spinal motor systems utilize a combination of feedback and feedforward strategies to maintain dynamic equilibrium during walking. The unexpected ability of spinal circuitries to exert efficient postural control in the presence of epidural electrical stimulation in decerebrated and spinal cats have significant implications for the potential of humans with a severe spinal cord injury to regain a significant level of functional standing and walking capacities.

  15. Postural effects on the noninvasive baselines of ventricular performance

    NASA Technical Reports Server (NTRS)

    Lance, V. Q.; Spodick, D. H.

    1977-01-01

    The effects of posture on time-based noninvasive measurements were determined utilizing the sequence supine-sitting-standing in a formal protocol in which observer biases were eliminated by blinding the measurement and calculation phases. Compared to the supine posture, the sitting and standing postures produced significant increases in heart rate, isovolumic contraction time, pre-ejection period and pre-ejection period/left-ventricular ejection time and significant decreases in ejection time and ejection time index. The response patterns are consistent with the hemodynamic correlates cited in the literature which show increased adrenergic activity and decreased venous return in the sitting and standing postures, the effect on venous return being dominant.

  16. Diagnosing Postural Tachycardia Syndrome: Comparison of Tilt Test versus Standing Hemodynamics

    PubMed Central

    Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R

    2012-01-01

    Postural tachycardia syndrome (POTS) is characterized by increased heart rate (ΔHR) of ≥30 bpm with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of TILT and STAND testing. ΔHR values were analyzed at 5 min intervals. Receiver Operating Characteristics analysis was performed to determine optimal cut point values of ΔHR for both TILT and STAND. TILT produced larger ΔHR than STAND for all 5 min intervals from 5 min (38±3 bpm vs. 33±3 bpm; P=0.03) to 30 min (51±3 bpm vs. 38±3 bpm; P<0.001). Sensitivity (Sn) of the 30 bpm criterion was similar for all tests (TILT-10=93%, STAND-10=87%, TILT30=100%, and STAND30=93%). Specificity (Sp) of the 30 bpm criterion was less at both 10 and 30 min for TILT (TILT10=40%, TILT30=20%) than STAND (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for TILT (with lower specificity for POTS diagnosis) than STAND at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min TILT. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used. PMID:22931296

  17. Diagnosing postural tachycardia syndrome: comparison of tilt testing compared with standing haemodynamics.

    PubMed

    Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R

    2013-01-01

    POTS (postural tachycardia syndrome) is characterized by an increased heart rate (ΔHR) of ≥30 bpm (beats/min) with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of tilt and stand testing. ΔHR values were analysed at 5 min intervals. ROC (receiver operating characteristic) analysis was performed to determine optimal cut point values of ΔHR for both tilt and stand. Tilt produced larger ΔHR than stand for all 5 min intervals from 5 min (38±3 bpm compared with 33±3 bpm; P=0.03) to 30 min (51±3 bpm compared with 38±3 bpm; P<0.001). Sn (sensitivity) of the 30 bpm criterion was similar for all tests (TILT10=93%, STAND10=87%, TILT30=100%, and STAND30=93%). Sp (specificity) of the 30 bpm criterion was less at both 10 and 30 min for tilt (TILT10=40%, TILT30=20%) than stand (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for tilt (with lower Sp for POTS diagnosis) than stand at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min tilt. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used.

  18. Blood Pressure Associates with Standing Balance in Elderly Outpatients

    PubMed Central

    Pasma, Jantsje H.; Bijlsma, Astrid Y.; Klip, Janneke M.; Stijntjes, Marjon; Blauw, Gerard Jan; Muller, Majon; Meskers, Carel G. M.; Maier, Andrea B.

    2014-01-01

    Objectives Assessment of the association of blood pressure measurements in supine and standing position after a postural change, as a proxy for blood pressure regulation, with standing balance in a clinically relevant cohort of elderly, is of special interest as blood pressure may be important to identify patients at risk of having impaired standing balance in routine geriatric assessment. Materials and Methods In a cross-sectional cohort study, 197 community-dwelling elderly referred to a geriatric outpatient clinic of a middle-sized teaching hospital were included. Blood pressure was measured intermittently (n = 197) and continuously (subsample, n = 58) before and after a controlled postural change from supine to standing position. The ability to maintain standing balance was assessed during ten seconds of side-by-side, semi-tandem and tandem stance, with both eyes open and eyes closed. Self-reported impaired standing balance and history of falls were recorded by questionnaires. Logistic regression analyses were used to examine the association between blood pressure and 1) the ability to maintain standing balance; 2) self-reported impaired standing balance; and 3) history of falls, adjusted for age and sex. Results Blood pressure decrease after postural change, measured continuously, was associated with reduced ability to maintain standing balance in semi-tandem stance with eyes closed and with increased self-reported impaired standing balance and falls. Presence of orthostatic hypotension was associated with reduced ability to maintain standing balance in semi-tandem stance with eyes closed for both intermittent and continuous measurements and with increased self-reported impaired standing balance for continuous measurements. Conclusion Continuous blood pressure measurements are of additional value to identify patients at risk of having impaired standing balance and may therefore be useful in routine geriatric care. PMID:25222275

  19. The Contribution of Proprioceptive Information to Postural Control in Elderly and Patients with Parkinson’s Disease with a History of Falls

    PubMed Central

    Bekkers, Esther M. J.; Dockx, Kim; Heremans, Elke; Vercruysse, Sarah; Verschueren, Sabine M. P.; Mirelman, Anat; Nieuwboer, Alice

    2014-01-01

    Proprioceptive deficits negatively affect postural control but their precise contribution to postural instability in Parkinson’s disease (PD) is unclear. We investigated if proprioceptive manipulations differentially affect balance, measured by force plates, during quiet standing in 13 PD patients and 13 age-matched controls with a history of falls. Perceived limits of stability (LoS) were derived from the differences between maximal center of pressure (CoP) displacement in anterior–posterior (AP) and medio-lateral (ML) direction during a maximal leaning task. Task conditions comprised standing with eyes open (EO) and eyes closed (EC): (1) on a stable surface; (2) an unstable surface; and (3) with Achilles tendon vibration. CoP displacements were calculated as a percentage of their respective LoS. Perceived LoS did not differ between groups. PD patients showed greater ML CoP displacement than elderly fallers (EF) across all conditions (p = 0.043) and tended to have higher postural sway in relation to the LoS (p = 0.050). Both groups performed worse on an unstable surface and during tendon vibration compared to standing on a stable surface with EO and even more so with EC. Both PD and EF had more AP sway in all conditions with EC compared to EO (p < 0.001) and showed increased CoP displacements when relying on proprioception only compared to standing with normal sensory input. This implies a similar role of the proprioceptive system in postural control in fallers with and without PD. PD fallers showed higher ML sway after sensory manipulations, as a result of which these values approached their perceived LoS more closely than in EF. We conclude that despite a similar fall history, PD patients showed more ML instability than EF, irrespective of sensory manipulation, but had a similar reliance on ankle proprioception. Hence, we recommend that rehabilitation and fall prevention for PD should focus on motor rather than on sensory aspects. PMID:25505395

  20. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans

    PubMed Central

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D.; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G.; Joyner, Michael J.; Cortelli, Pietro

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBRS with the sequence technique in healthy male subjects during passive head-up tilt test (HUTT, n = 58), during supine wakefulness, supine slow-wave sleep (SWS), and in the seated and active standing positions (n = 8), and during progressive loss of 1 L blood (n = 8) to decrease central venous pressure in the supine position. HUTT, SWS, the seated, and the standing positions, but not blood loss, entailed significant increases in the positive correlation between HP and the previous SAP values, which is the expected result of arterial baroreflex control, compared with baseline recordings in the supine position during wakefulness. These increases were mirrored by increases in the low-frequency variability of SAP in each condition but SWS. cBRS decreased significantly during HUTT, in the seated and standing positions, and after blood loss compared with baseline during wakefulness. These decreases were mirrored by decreases in the RMSSD index, which reflects cardiac vagal modulation. These results support the view that the cBRS decrease associated with the upright posture is a byproduct of decreased cardiac vagal modulation, triggered by the arterial baroreflex in response to central hypovolemia. Conversely, the greater baroreflex contribution to cardiac control associated with upright posture may be explained, at least in part, by enhanced fluctuations of SAP, which elicit a more effective entrainment of HP fluctuations by the arterial baroreflex. These SAP fluctuations may result from enhanced fluctuations of vascular resistance specific to the upright posture, and not be driven by the accompanying central hypovolemia. PMID:28396638

  1. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans.

    PubMed

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G; Joyner, Michael J; Cortelli, Pietro

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBRS with the sequence technique in healthy male subjects during passive head-up tilt test (HUTT, n = 58), during supine wakefulness, supine slow-wave sleep (SWS), and in the seated and active standing positions ( n = 8), and during progressive loss of 1 L blood ( n = 8) to decrease central venous pressure in the supine position. HUTT, SWS, the seated, and the standing positions, but not blood loss, entailed significant increases in the positive correlation between HP and the previous SAP values, which is the expected result of arterial baroreflex control, compared with baseline recordings in the supine position during wakefulness. These increases were mirrored by increases in the low-frequency variability of SAP in each condition but SWS. cBRS decreased significantly during HUTT, in the seated and standing positions, and after blood loss compared with baseline during wakefulness. These decreases were mirrored by decreases in the RMSSD index, which reflects cardiac vagal modulation. These results support the view that the cBRS decrease associated with the upright posture is a byproduct of decreased cardiac vagal modulation, triggered by the arterial baroreflex in response to central hypovolemia. Conversely, the greater baroreflex contribution to cardiac control associated with upright posture may be explained, at least in part, by enhanced fluctuations of SAP, which elicit a more effective entrainment of HP fluctuations by the arterial baroreflex. These SAP fluctuations may result from enhanced fluctuations of vascular resistance specific to the upright posture, and not be driven by the accompanying central hypovolemia.

  2. Should high-power posing be integrated in physical therapy?

    PubMed

    Ge, Weiqing; Bennett, Teale K; Oller, Jeremy C

    2017-04-01

    [Purpose] Postural assessment and correction is a common approach in patient management to decrease symptoms and improve function for patients. The purpose of this study was to determine the effects of high-power posing on muscle strength and pain threshold. [Subjects and Methods] Thirty-one subjects, 16 females and 15 males, mean age 28.9 (SD 10.8) years old, were recruited through a convenience sampling on the university campus. The research design was a randomized controlled trial. In the experimental group, the subjects were instructed to stand in a high-power posture. In the control group, the subjects were instructed to stand in a low-power posture. Grip strength and pain threshold measurements were conducted before and after the postural intervention. [Results] The grip strength changed by -3.4 (-3.7, 0.3) % and 1.7 (-3.6, 5.3) % for the experimental and control groups, respectively. The pain threshold changed by 0.6 (-9.9, 10.4) % and 15.1 (-9.3, 24.4) % for the experimental and control groups, respectively. However, both changes were not significant as all the 95% CIs included 0. [Conclusions] The data did not show significant benefits of high-power posing in increasing grip strength and pain threshold compared to low-power posing.

  3. Should high-power posing be integrated in physical therapy?

    PubMed Central

    Ge, Weiqing; Bennett, Teale K.; Oller, Jeremy C.

    2017-01-01

    [Purpose] Postural assessment and correction is a common approach in patient management to decrease symptoms and improve function for patients. The purpose of this study was to determine the effects of high-power posing on muscle strength and pain threshold. [Subjects and Methods] Thirty-one subjects, 16 females and 15 males, mean age 28.9 (SD 10.8) years old, were recruited through a convenience sampling on the university campus. The research design was a randomized controlled trial. In the experimental group, the subjects were instructed to stand in a high-power posture. In the control group, the subjects were instructed to stand in a low-power posture. Grip strength and pain threshold measurements were conducted before and after the postural intervention. [Results] The grip strength changed by −3.4 (−3.7, 0.3) % and 1.7 (−3.6, 5.3) % for the experimental and control groups, respectively. The pain threshold changed by 0.6 (−9.9, 10.4) % and 15.1 (−9.3, 24.4) % for the experimental and control groups, respectively. However, both changes were not significant as all the 95% CIs included 0. [Conclusions] The data did not show significant benefits of high-power posing in increasing grip strength and pain threshold compared to low-power posing. PMID:28533612

  4. Free-Standing Canes.

    ERIC Educational Resources Information Center

    Ehresman, Paul

    1995-01-01

    A precane device, called the "free-standing cane," was developed to help children with blindness along with other disabilities. The cane detects obstacles; guides the user's hands into a relaxed, static position in front of the hips; facilitates postural security and control; and offers tactile and kinesthetic feedback. (JDD)

  5. How proprioceptive impairments affect quiet standing in patients with multiple sclerosis.

    PubMed

    Rougier, P; Faucher, M; Cantalloube, S; Lamotte, D; Vinti, M; Thoumie, P

    2007-01-01

    To assess if multiple sclerosis patients with proprioceptive impairment are specifically affected during quiet standing with eyes open and how they can develop motor compensatory processes, 56 patients, classified from sensory clinical tests as ataxo-spastic (MS-AS) or only having spasticity (MS-S), were compared to 23 healthy adults matched for age. The postural strategies were assessed from the centre-of-pressure trajectories (CP), measured from a force platform in the eyes open standing condition for a single trial lasting 51.2 s. The vertical projection of the centre of gravity (CGv) and its vertical difference from the CP (CP-CGv) were then estimated through a biomechanical relationship. These two movements permit the characterization of the postural performance and the horizontal acceleration communicated to the CG and from that, the global energy expenditure, respectively. Both MS-AS and MS-S groups demonstrate larger CGv and CP-CGv movements than healthy individuals of the same age. Whilst similar CGv values are noticed in both MS subgroups, suggesting similar postural performances, statistically significant differences are observed for the CP-CGv component. Biomechanically, this feature expresses the necessity for the MS-AS group to develop augmented neuro-muscular means to control their body movements, as compared to the MS-S group. By demonstrating for both groups of patients similar postural performance accompanied by a varying degree of energy expenditure to maintain undisturbed upright stance, this study reveals that MS-AS patients which are affected by proprioceptive loss can compensate for this deficit with more efficient control strategies, when standing still with their eyes open.

  6. Cardio-postural interactions and short-arm centrifugation.

    NASA Astrophysics Data System (ADS)

    Blaber, Andrew; Goswami, Nandu; Xu, Da; Laurin, Alexendre

    INTRODUCTION: We are interested in mechanisms associated with orthostatic tolerance. In previous studies we have shown that postural muscles in the calf contribute to both posture and blood pressure regulation during orthostatic stress. In this study we investigated the relationship between cardiovascular and postural muscle control before, during and after short arm human centrifuge (SAHC) up to 2.2 G. METHODS: Eleven healthy young subjects (6 m, 5 f), with no history of cardiovascular disease, falls or orthostatic hypotension, participated. All were familiarized with the SAHC with 10 minutes at 1-G at the feet. Each subject was instrumented in the supine position on the SAHC for beat-to-beat ECG and blood pressure (Portapres derived SBP). Bilateral lower leg EMG was collected from four leg postural muscles: tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and medial soleus. Transdermal differential recording of signals was performed using an 8-channel EMG system, (Myosystem 1200, Noraxon Inc., Arizona, USA). Postural sway data of the body COP was computed from the force and moment data collected with a force platform (Accusway, AMTI, MA, USA). Before and after SAHC, the subject stood on a force platform with their gaze fixed on a point at eye level, closed their eyes and stood quietly for 5 min. A final stand was conducted 30 min after centrifugation with supine rest in between. During clockwise centrifugation (10-min 1g and 10-min 2.2g at the foot) the subjects’ head was hooded and in the dark. The subject’s body was restrained into the rotation arm with a parachute harness and given additional body support with a foot-plate. ECG, EMG and BP data were collected throughout and centre of pressure trajectory (COP) collected during the stand test. Subjects were requested to relax and not to voluntarily contract the leg muscles; however, they were not to suppress contractions as they occurred involuntarily or by reflex. A Continuous Wavelet Transform was applied to decompose the representative signals on a time-scale basis in a frequency region of [0.01 - 0.1] Hz. Their linear coupling was quantified through a coherence metric and the synchrony was characterised via the phase information to determine regions where pairs of signals were in phase lock and thereby inferring an interaction or coupling. From these data we investigate the percent time in each of two coupled interactions: EMG-SBP and COP-SBP. RESULTS: The time percentages from EMG-SBP was 6.2% (baseline), 8.1% (pre-stand), 7.7% (1g), 13.6% (2g), 10.8% (post-stand), and 8.2 (recovery-stand).ANOVA comparison (EMG-SBP) among baseline supine (6.2%), 1g (7.7%), and 2g (13.6%) yielded a p value of 0.04. Student-Newman-Keuls post hoc test showed that 2g is significantly higher than supine1 (p=0.04) and marginal significant difference between 1g and 2g (p=0.052). There was no effect of centrifugation on stand EMG-SBP, but COP-SBP was marginally increased in the recovery stand (pre-stand: 10.5%; post-stand 8.9%; recovery-stand 15.7%, p=0.20). CONCLUSION: These data indicated the activation of cardio-postural control system throughout stand and supine centrifugation, with elevation of the recruitment of muscle pump at 2g.

  7. Effect of different types of exercise on postural balance in elderly women: a randomized controlled trial.

    PubMed

    de Oliveira, Marcio R; da Silva, Rubens A; Dascal, Juliana B; Teixeira, Denilson C

    2014-01-01

    Different types of exercise are indicated for the elderly to prevent functional capacity limitations due to aging and reduce the risk of falls. This study aimed to evaluate the effect of three different exercises (mini-trampoline, MT; aquatic gymnastics, AG and general floor gymnastics, GG) on postural balance in elderly women. Seventy-four physically independent elderly women, mean age 69±4 years, were randomly assigned to three intervention groups: (1) MT (n=23), (2) AG (n=28), and (3) GG (n=23). Each group performed physical training, including cardiorespiratory, muscular strength and endurance, flexibility and sensory-motor exercises for 12 weeks. To determine the effects on each intervention group, five postural balance tasks were performed on a force platform (BIOMEC 400): the two-legged stand with eyes open (TLEO) and two-legged stand with eyes closed (TLEC); the semi-tandem stand with eyes open (STEO) and semi-tandem stand with eyes closed (STEC) and the one-legged stand. Three trials were performed for each task (with 30s of rest between them) and the mean was used to compute balance parameters such as center of pressure (COP) sway movements. All modalities investigated such as the MT, AG and GG were significantly (P<0.05) efficient in improving the postural balance of elderly women after 12 weeks of training. These results provide further evidence concerning exercise and balance for promoting health in elderly women. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Standing working posture compared in pregnant and non-pregnant conditions.

    PubMed

    Paul, J A; Frings-Dresen, M H

    1994-09-01

    During pregnancy, an increase in body weight occurs together with changes in body weight distribution and in fit between body dimensions and workplace layout. These changes may cause alterations in working posture which may, in turn, have adverse consequences for the biomechanical load on the musculoskeletal system and so increase the risk of musculoskeletal disorders. Using photographic posture registration, the standing working posture was studied in 27 women during the last stage of pregnancy and after delivery (the experimental group). The women performed an assembly task while standing at various workplace layouts. The postural differences between the pregnant condition and the non-pregnant condition were studied and the effect of the various workplace layouts assessed. Ten non-pregnant controls were also studied twice to establish the effect of the time interval between the measuring occasions. We found that the women of the experimental group stood further from the work surface in the pregnant condition compared to the non-pregnant condition, the hips were positioned more backwards, and, in order to reach the tesk, they increased the flexion of the trunk, increased the anteflexion of the upper arms, and extended the arms more. At the workplace layout in which the work surface height was self-selected, the postural differences due to pregnancy were smallest or even absent, compared to the postural differences in the other workplace layouts studied. Ergonomists and workers in occupational health services should be alert to the consequences for the biomechanical load on the musculoskeletal system and the risk of development of health complaints caused by postural changes due to pregnancy. An adjustable workplace layout may prevent some problems.

  9. Resisted side-stepping: the effect of posture on hip abductor muscle activation

    PubMed Central

    Berry, Justin W.; Lee, Theresa S.; Foley, Hanna D.; Lewis, Cara L.

    2016-01-01

    Study Design Controlled laboratory study, repeated-measures design. Objectives To compare hip abductor muscle activity and hip and knee joint kinematics in the moving limb to the stance limb during resisted side-stepping and also to determine if muscle activity was affected by the posture (upright standing versus squat) used to perform the exercise. Background Hip abductor weakness has been associated with a variety of lower extremity injuries. Resisted side-stepping is often used as an exercise to increase strength and endurance of the hip abductors. Exercise prescription would benefit from knowing the relative muscle activity level generated in each limb and for different postures during the side-stepping exercise. Methods Twenty-four healthy adults participated in this study. Kinematics and surface electromyographic (EMG) data from the gluteus maximus, gluteus medius, and tensor fascia lata (TFL) were collected as participants performed side-stepping with a resistive band around the ankle while maintaining each of 2 postures: 1) upright standing and 2) squat. Results Mean normalized EMG signal amplitude of the gluteus maximus, gluteus medius, and TFL was higher in the stance limb than the moving limb (P≤.001). Gluteal muscle activity was higher, while TFL muscle activity was lower, in the squat posture compared to the upright standing posture (P<.001). Hip abduction excursion was greater in the stance limb than in the moving limb (P<.001). Conclusions The 3 hip abductor muscles respond differently to the posture variations of side-stepping exercise in healthy individuals. When prescribing resisted side-stepping exercises, therapists should consider the differences in hip abductor activation across limbs and variations in trunk posture. PMID:26161629

  10. Effect of obesity on posture and hip joint moments during a standing task, and trunk forward flexion motion.

    PubMed

    Gilleard, W; Smith, T

    2007-02-01

    Effects of obesity on trunk forward flexion motion in sitting and standing, and postural adaptations and hip joint moment for a standing work task. Cross-sectional comparison of obese and normal weight groups. Ten obese subjects (waist girth 121.2+/-16.8 cm, body mass index (BMI) 38.9+/-6.6 kg m(-2)) and 10 age- and height-matched normal weight subjects (waist girth 79.6+/-6.4 cm, BMI 21.7+/-1.5 kg m(-2)). Trunk motion during seated and standing forward flexion, and trunk posture, hip joint moment and hip-to-bench distance during a simulated standing work task were recorded. Forward flexion motion of the thoracic segment and thoracolumbar spine was decreased for the obese group with no change in pelvic segment and hip joint motion. Obese subjects showed a more flexed trunk posture and increased hip joint moment and hip-to-bench distance for a simulated standing work task. Decreased range of forward flexion motion, differing effects within the trunk, altered posture during a standing work task and concomitant increases in hip joint moment give insight into the aetiology of functional decrements and musculoskeletal pain seen in obesity.

  11. Comparison of the effective dose rate to aircrew members using hybrid computational phantoms in standing and sitting postures.

    PubMed

    Alves, M C; Galeano, D C; Santos, W S; Lee, Choonsik; Bolch, Wesley E; Hunt, John G; da Silva, A X; Carvalho, A B

    2016-12-01

    Aircraft crew members are occupationally exposed to considerable levels of cosmic radiation at flight altitudes. Since aircrew (pilots and passengers) are in the sitting posture for most of the time during flight, and up to now there has been no data on the effective dose rate calculated for aircrew dosimetry in flight altitude using a sitting phantom, we therefore calculated the effective dose rate using a phantom in the sitting and standing postures in order to compare the influence of the posture on the radiation protection of aircrew members. We found that although the better description of the posture in which the aircrews are exposed, the results of the effective dose rate calculated with the phantom in the sitting posture were very similar to the results of the phantom in the standing posture. In fact we observed only a 1% difference. These findings indicate the adequacy of the use of dose conversion coefficients for the phantom in the standing posture in aircrew dosimetry. We also validated our results comparing the effective dose rate obtained using the standing phantom with values reported in the literature. It was observed that the results presented in this study are in good agreement with other authors (the differences are below 30%) who have measured and calculated effective dose rates using different phantoms.

  12. Sport Skill-Specific Expertise Biases Sensory Integration for Spatial Referencing and Postural Control.

    PubMed

    Thalassinos, Michalis; Fotiadis, Giorgos; Arabatzi, Fotini; Isableu, Brice; Hatzitaki, Vassilia

    2017-09-15

    The authors asked how sport expertise modulates visual field dependence and sensory reweighting for controlling posture. Experienced soccer athletes, ballet dancers, and nonathletes performed (a) a Rod and Frame test and (b) a 100-s bipedal stance task during which vision and proprioception were successively or concurrently disrupted in 20-s blocks. Postural adaptation was assessed in the mean center of pressure displacement, root mean square of center of pressure velocity and ankle muscles integrated electromyography activity. Soccer athletes were more field dependent than were nonathletes. During standing, dancers were more destabilized by vibration and required more time to reweigh sensory information compared with the other 2 groups. These findings reveal a sport skill-specific bias in the reweighing of sensory inputs for spatial orientation and postural control.

  13. Evaluation of the temporal structure of postural sway fluctuations based on a comprehensive set of analysis tools

    NASA Astrophysics Data System (ADS)

    Kirchner, M.; Schubert, P.; Schmidtbleicher, D.; Haas, C. T.

    2012-10-01

    The analysis of postural control has a long history. Traditionally, the amount of body sway is solely used as an index of postural stability. Although this leads to some extent to an effective evaluation of balance performance, the control mechanisms involved have not yet been fully understood. The concept of nonlinear dynamics suggests that variability in the motor output is not randomness but structure, providing the stimulus to reveal the functionality of postural sway. The present work evaluates sway dynamics by means of COP excursions in a quiet standing task versus a dual-task condition in three different test times (30, 60, 300 s). Besides the application of traditional methods-which estimate the overall size of sway-the temporal pattern of body sway was quantified via wavelet transform, multiscale entropy and fractal analysis. We found higher sensitivity of the structural parameters to modulations of postural control strategies and partly an improved evaluation of sway dynamics in longer recordings. It could be shown that postural control modifications take place on different timescales corresponding to the interplay of the sensory systems. A continued application of nonlinear analysis can help to better understand postural control mechanisms.

  14. Point-of-care-testing of standing posture with Wii balance board and Microsoft Kinect during transcranial direct current stimulation: a feasibility study.

    PubMed

    Dutta, Arindam; Chugh, Sanjay; Banerjee, Alakananda; Dutta, Anirban

    2014-01-01

    Non-invasive brain stimulation (NIBS) is a promising tool for facilitating motor function. NIBS therapy in conjunction with training using postural feedback may facilitate physical rehabilitation following posture disorders (e.g., Pusher Syndrome). The objectives of this study were, 1) to develop a low-cost point-of-care-testing (POCT) system for standing posture, 2) to investigate the effects of anodal tDCS on functional reach tasks using the POCT system. Ten community-dwelling elderly (age >50 years) subjects evaluated the POCT system for standing posture during functional reach tasks where their balance score on Berg Balance Scale was compared with that from Center-of-Mass (CoM) - Center-of-Pressure (CoP) posturography. Then, in a single-blind, sham-controlled study, five healthy right-leg dominant subjects (age: 26.4 ± 5.3 yrs) were evaluated using the POCT system under two conditions - with anodal tDCS of primary motor representations of right tibialis anterior muscle and with sham tDCS. The maximum CoP-CoM lean-angle was found to be well correlated with the BBS score in the elderly subjects The anodal tDCS strongly (p = 0.0000) affected the maximum CoP excursions but not the return reaction time in healthy. It was concluded that the CoM-CoP lean-line could be used for posture feedback and monitoring during tDCS therapy in conjunction with balance training exercises.

  15. Is the size of the useful field of view affected by postural demands associated with standing and stepping?

    PubMed

    Reed-Jones, James G; Reed-Jones, Rebecca J; Hollands, Mark A

    2014-04-30

    The useful field of view (UFOV) is the visual area from which information is obtained at a brief glance. While studies have examined the effects of increased cognitive load on the visual field, no one has specifically looked at the effects of postural control or locomotor activity on the UFOV. The current study aimed to examine the effects of postural demand and locomotor activity on UFOV performance in healthy young adults. Eleven participants were tested on three modified UFOV tasks (central processing, peripheral processing, and divided-attention) while seated, standing, and stepping in place. Across all postural conditions, participants showed no difference in their central or peripheral processing. However, in the divided-attention task (reporting the letter in central vision and target location in peripheral vision amongst distracter items) a main effect of posture condition on peripheral target accuracy was found for targets at 57° of eccentricity (p=.037). The mean accuracy reduced from 80.5% (standing) to 74% (seated) to 56.3% (stepping). These findings show that postural demands do affect UFOV divided-attention performance. In particular, the size of the useful field of view significantly decreases when stepping. This finding has important implications for how the results of a UFOV test are used to evaluate the general size of the UFOV during varying activities, as the traditional seated test procedure may overestimate the size of the UFOV during locomotor activities. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Distal Lower-Extremity Pain and Work Postures in the Quebec Population

    PubMed Central

    Messing, Karen; Tissot, France; Stock, Susan

    2008-01-01

    Objectives. Standing at work has been associated with discomfort and cardiovascular symptoms. Because standing postures vary in duration, mobility, and constraint, we explored associations between specific postures and pain in the lower extremities. Methods. We used multiple logistic regression to analyze associations between work factors and pain in the lower extremities during the previous 12 months that interfered with usual activities. We used data from among 7757 workers who were interviewed in the 1998 Quebec Health and Social Survey. Results. Among all respondents, 9.4% reported significant ankle or foot pain, and 6.4% had lower-leg or calf pain. Significantly more women than men had pain at both sites. Both leg or calf and ankle or foot pain were strongly associated with standing postures, whole-body vibration, psychological distress, female gender, and being aged 50 years or older. Constrained standing postures were associated with increased ankle or foot pain for both men and women and with leg or calf pain for women, compared with standing with freedom to sit at will. Conclusions. Freedom to sit at work may prevent lower-extremity pain. The effects of specific sitting and standing postures on cartilage, muscle, and the cardiovascular system may help explain discomfort in the lower extremities. PMID:17761561

  17. Balance control and anti‐gravity muscle activity during the experience of fear at heights

    PubMed Central

    Wuehr, Max; Kugler, Guenter; Schniepp, Roman; Eckl, Maria; Pradhan, Cauchy; Jahn, Klaus; Huppert, Doreen; Brandt, Thomas

    2014-01-01

    Abstract Fear of heights occurs when a visual stimulus causes the apprehension of losing balance and falling. A moderate form of visual height intolerance (vHI) affects about one third of the general population and has relevant consequences for the quality of life. A quantitative evaluation of balance mechanisms in persons susceptible to vHI during height exposure is missing. VHI‐related changes in postural control were assessed by center‐of‐pressure displacements and electromyographic recordings of selected leg, arm, and neck muscles in 16 subjects with vHI while standing at heights on an emergency balcony versus standing in the laboratory at ground level. Characteristics of open‐ and closed‐loop postural control were analyzed. Body sway and muscle activity parameters were correlated with the subjective estimates of fear at heights. During height exposure, (1) open‐loop control was disturbed by a higher diffusion activity (P < 0.001) and (2) the sensory feedback threshold for closed‐loop control was lowered (P < 0.010). Altered postural control was predominantly associated with increased co‐contraction of leg muscles. Body sway and leg and neck muscle co‐contraction correlated with the severity of subjective anxiety (P < 0.050). Alterations in postural control diminished if there were nearby stationary contrasts in the visual surrounding or if subjects stood with eyes closed. The performance of a cognitive dual task also improved impaired balance. Visual heights have two behavioral effects in vHI subjects: A change occurs in (1) open‐ and closed‐loop postural control strategy and (2) co‐contraction of anti‐gravity leg and neck muscles, both of which depend on the severity of evoked fear at heights. PMID:24744901

  18. Balance control and anti-gravity muscle activity during the experience of fear at heights.

    PubMed

    Wuehr, Max; Kugler, Guenter; Schniepp, Roman; Eckl, Maria; Pradhan, Cauchy; Jahn, Klaus; Huppert, Doreen; Brandt, Thomas

    2014-02-01

    Fear of heights occurs when a visual stimulus causes the apprehension of losing balance and falling. A moderate form of visual height intolerance (vHI) affects about one third of the general population and has relevant consequences for the quality of life. A quantitative evaluation of balance mechanisms in persons susceptible to vHI during height exposure is missing. VHI-related changes in postural control were assessed by center-of-pressure displacements and electromyographic recordings of selected leg, arm, and neck muscles in 16 subjects with vHI while standing at heights on an emergency balcony versus standing in the laboratory at ground level. Characteristics of open- and closed-loop postural control were analyzed. Body sway and muscle activity parameters were correlated with the subjective estimates of fear at heights. During height exposure, (1) open-loop control was disturbed by a higher diffusion activity (P < 0.001) and (2) the sensory feedback threshold for closed-loop control was lowered (P < 0.010). Altered postural control was predominantly associated with increased co-contraction of leg muscles. Body sway and leg and neck muscle co-contraction correlated with the severity of subjective anxiety (P < 0.050). Alterations in postural control diminished if there were nearby stationary contrasts in the visual surrounding or if subjects stood with eyes closed. The performance of a cognitive dual task also improved impaired balance. Visual heights have two behavioral effects in vHI subjects: A change occurs in (1) open- and closed-loop postural control strategy and (2) co-contraction of anti-gravity leg and neck muscles, both of which depend on the severity of evoked fear at heights.

  19. Postural Control Characteristics during Single Leg Standing of Individuals with a History of Ankle Sprain: Measurements Obtained Using a Gravicorder and Head and Foot Accelerometry.

    PubMed

    Abe, Yota; Sugaya, Tomoaki; Sakamoto, Masaaki

    2014-03-01

    [Purpose] This study aimed to validate the postural control characteristics of individuals with a history of ankle sprain during single leg standing by using a gravicorder and head and foot accelerometry. [Subjects] Twenty subjects with and 23 subjects without a history of ankle sprain (sprain and control groups, respectively) participated. [Methods] The anteroposterior, mediolateral, and total path lengths, as well as root mean square (RMS) of each length, were calculated using the gravicorder. The anteroposterior, mediolateral, and resultant acceleration of the head and foot were measured using accelerometers and were evaluated as the ratio of the acceleration of the head to the foot. [Results] There was no significant difference between the two groups in path length or RMS acceleration of the head and foot. However, the ratios of the mediolateral and resultant components were significantly higher in the sprain group than in the control group. [Conclusion] Our findings suggest that individuals with a history of ankle sprain have a higher head-to-foot acceleration ratio and different postural control characteristics than those of control subjects.

  20. Creative Dance Practice Improves Postural Control in a Child With Cerebral Palsy.

    PubMed

    Stribling, Kate; Christy, Jennifer

    2017-10-01

    To investigate the effect of creative dance instruction on postural control and balance in an 11-year-old with spastic triplegic cerebral palsy, Gross Motor Function Classification Scale level II. We conducted 1-hour dance interventions twice weekly for 8 weeks, with a focus on somatosensory awareness and movement in all planes of motion. Computerized dynamic posturography using the SMART Balance Master/EquiTest (NeuroCom) was used to assess postural control and balance reactions before the first class and following the final class. Gains in standing stability, balance recovery, directional control, and endpoint excursion of movement were found. Participation in creative dance lessons appears to improve somatosensory effectiveness and postural control in a child with cerebral palsy. Dance is a fun way to improve balance and coordination. These interventions could be easily implemented into programs for children with cerebral palsy.

  1. Does a mineral wristband affect balance? A randomized, controlled, double-blind study.

    PubMed

    Hansson, Eva Ekvall; Beckman, Anders; Persson, Liselott

    2015-06-26

    Having good balance is a facilitating factor in the performance of everyday activities. Good balance is also essential in various sport activities in order to both get results and prevent injury. A common measure of balance is postural sway, which can be measured both antero-posteriorly and medio-laterally. There are several companies marketing wristbands whose intended function is to improve balance, strength and flexibility. Randomized controlled trials have shown that wristbands with holograms have no effect on balance but studies on wristbands with minerals seem to be lacking. The aim of this study was to investigate if the mineral wristband had any effect on postural sway in a group of healthy individuals. Randomized, controlled, double-blind study. The study group consisted of 40 healthy persons. Postural sway was measured antero-posteriorly and medio-laterally on a force plate, to compare: the mineral wristband, a placebo wristband, and without any wristband. The measurements were performed for 30 s, in four situations: with open eyes and closed eyes, standing on a firm surface and on foam. Analyses were made with multilevel technique. The use of wristband with or without minerals did not alter postural sway. Closed eyes and standing on foam both prolonged the dependent measurement, irrespective if it was medio-lateral or antero-posterior. Wearing any wristband (mineral or placebo) gave a small (0.22-0.36 mm/s) but not statistically significant reduction of postural sway compared to not wearing wristband. This study showed no effect on postural sway by using the mineral wristband, compared with a placebo wristband or no wristband. Wearing any wristband at all (mineral or placebo) gave a small but not statistically significant reduction in postural sway, probably caused by sensory input.

  2. Differential effects of a visuospatial attention task on measures of postural control in young and older adults.

    PubMed

    Peterson, Jeffrey J; Keenan, Kevin G

    2018-02-01

    The purpose of this study was to examine the influence of a visuospatial attention task on three measures of postural control in young and older adults. 20 young (19-36  years) and 20 older (67-91 years) adults performed a choice stepping response time (CSRT) task, a submaximal dorsiflexion force steadiness task, and quiet standing in 3 bilateral stances. All tasks were performed with and without a visuospatial (VS) attention task that involved visualizing a star moving within a 2 × 2 grid. CSRT increased with the addition of the VS task in both groups (p  < .001), with a larger increase for older adults than young adults (p < .001). Older adults were less steady while performing the dorsiflexion task with the VS task (p  < .001), while the VS task did not influence steadiness in young adults (p = .235). Performance during quiet standing was not influenced by the VS task in any stance (p  > .084). The findings suggest that visuospatial attention differentially affects postural control in young and older adults and the effect is task-specific. These findings suggest the need to include stepping and force control tasks to further determine what role visuospatial attention plays in postural control. Copyright © 2017. Published by Elsevier Ltd.

  3. Postural Stability Margins as a Function of Support Surface Slopes.

    PubMed

    Dutt-Mazumder, Aviroop; Slobounov, Seymon M; Challis, John Henry; Newell, Karl Maxim

    2016-01-01

    This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe) Down, 0° Flat and 10°, 20°, 25° Facing (Toe) Up) and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length) had least motion at the baseline (0° Flat) platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC) dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy) as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.

  4. Peripheral neuropathy may not be the only fundamental reason explaining increased sway in diabetic individuals.

    PubMed

    Bonnet, Cédrick T; Ray, Christopher

    2011-08-01

    Individuals with diabetic neuropathy sway more than control individuals while standing. This review specifically evaluated whether peripheral sensory neuropathy can be the only fundamental reason accounting for significant increased sway within this population. Twenty-six experimental articles were selected using MEDLINE and reference lists of relevant articles. The articles chosen investigated kinematic data of postural behaviour in controls and individuals with diabetic neuropathy during stance. Results of literature were compared with four expectations related to the peripheral sensory neuropathy fundamental hypothesis. Consistent with the peripheral sensory neuropathy hypothesis, the literature showed that individuals with diabetic neuropathy sway more than controls in quiet stance and even more so if their visual or vestibular systems were perturbed. Inconsistent with the hypothesis, individuals with diabetic neuropathy are more destabilised than controls in conditions altering sensation of the feet and legs (standing on a sway-referenced surface). The review showed that the peripheral sensory neuropathy hypothesis may not be the only fundamental cause accounting for significant increased postural sway in individuals with diabetic neuropathy. Visual impairments and changes in postural coordination may explain the divergence between expectations and results. In order to develop interventions aimed at improving postural control in individuals with diabetic neuropathy, scientific exploration of these new expectations should be detailed. Also at the practical level, the review discussed which additional sensory information - at the level of the hands and feet - may be more beneficial in individuals with diabetic neuropathy to reduce their postural sway. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Study I: effects of 0.06% and 0.10% blood alcohol concentration on human postural control.

    PubMed

    Modig, F; Patel, M; Magnusson, M; Fransson, P A

    2012-03-01

    Alcohol intoxication causes many accidental falls presented at emergency departments, with the injury severity often related to level of blood alcohol concentration (BAC). One way to evaluate the decline in postural control and the fall risk is to assess standing stability when challenged. The study objective was to comprehensively investigate alcohol-related impairments on postural control and adaptive motor learning at specific BAC levels. Effects of alcohol intoxication at 0.06% and 0.10% BAC were examined with posturography when unperturbed or perturbed by calf vibration. Twenty-five participants (mean age 25.1 years) were investigated standing with either eyes open or closed. Our results revealed several significant findings: (1) stability declined much faster from alcohol intoxication between 0.06% and 0.10% BAC (60-140%) compared with between 0.0% and 0.06% BAC (30%); (2) sustained exposure to repeated balance perturbations augmented the alcohol-related destabilization; (3) there were stronger effects of alcohol intoxication on stability in lateral direction than in anteroposterior direction; and (4) there was a gradual degradation of postural control particularly in lateral direction when the balance perturbations were repeated at 0.06% and 0.10% BAC, indicating adaptation deficits when intoxicated. To summarize, alcohol has profound deteriorating effects on human postural control, which are dose dependent, time dependent and direction specific. The maximal effects of alcohol intoxication on physiological performance might not be evident initially, but may be revealed first when under sustained sensory-motor challenges. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Immediate Beneficial Effects of Mental Rotation Using Foot Stimuli on Upright Postural Stability in Healthy Participants

    PubMed Central

    Kawasaki, Tsubasa

    2013-01-01

    The present study was designed to investigate whether an intervention during which participants were involved in mental rotation (MR) of a foot stimulus would have immediate beneficial effects on postural stability (Experiment 1) and to confirm whether it was the involvement of MR of the foot, rather than simply viewing foot stimuli, that could improve postural stability (Experiment 2). Two different groups of participants (n = 16 in each group) performed MR intervention of foot stimuli in each of the two experiments. Pre- and postmeasurements of postural stability during unipedal and bipedal standing were made using a force plate for the intervention. Consistently, postural sway values for unipedal standing, but not for bipedal standing, were decreased immediately after the MR intervention using the foot stimuli. Such beneficial effects were not observed after the MR intervention using car stimuli (Experiment 1) or when participants observed the same foot stimuli during a simple reaction task (Experiment 2). These findings suggest that the MR intervention using the foot stimuli could contribute to improving postural stability, at least when it was measured immediately after the intervention, under a challenging standing condition (i.e., unipedal standing). PMID:24459588

  7. Effect of sitting pause times on postural stability after supine-to-standing transfer in dimly lit environments.

    PubMed

    Johnson, Eric G; Meltzer, Jonathan D

    2012-01-01

    Falls are common and often take place in the home. Risk of fall increases if the environment is dimly lit. Longer sitting pause times, before standing, might improve postural stability after standing from a supine position. The purpose of this investigation was to measure the effects of sitting pause times on postural sway velocity immediately following a supine-to-standing transfer in a dimly lit room in older and younger adult women. Five women aged 65 to 70 years and 5 aged 23 to 30 years participated in the study. On each of 2 consecutive days, study participants lay on a mat table with their eyes closed for 45 minutes before performing a supine-to-standing transfer in a dimly lit room. Sitting pause times of 2 seconds and 30 seconds preceded the transfers. Mean postural sway velocity for the whole sample and for younger and older groups was less after a 30-second pause time than that after a 2-second pause time (sample, P = .001; young, P = .019; old, P = .021). No significant difference in mean postural sway velocity was observed between the 2 groups (P > .05). Total mean postural sway velocity was less when study participants performed a sitting pause of 30 seconds before standing in a dimly lit room. These results suggest that longer sitting pause times may provide improved adaptability to dimly lit environments contributing to improved postural stability.

  8. Gait post-stroke: Pathophysiology and rehabilitation strategies.

    PubMed

    Beyaert, C; Vasa, R; Frykberg, G E

    2015-11-01

    We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke gait. In both non-disabled and post-stroke subjects, motor control is organized on a task-oriented basis using a common set of a few muscle modules to simultaneously achieve body support, balance control, and forward progression during gait. Hemiparesis following stroke is due to disruption of descending neural pathways, usually with no direct lesion of the brainstem and cerebellar structures involved in motor automatic processes. Post-stroke, improvements of motor activities including standing and locomotion are variable but are typically characterized by a common postural behaviour which involves the unaffected side more for body support and balance control, likely in response to initial muscle weakness of the affected side. Various rehabilitation strategies are regularly used or in development, targeting muscle activity, postural and gait tasks, using more or less high-technology equipment. Reduced walking speed often improves with time and with various rehabilitation strategies, but asymmetric postural behaviour during standing and walking is often reinforced, maintained, or only transitorily decreased. This asymmetric compensatory postural behaviour appears to be robust, driven by support and balance tasks maintaining the predominant use of the unaffected side over the initially impaired affected side. Based on these elements, stroke rehabilitation including affected muscle strengthening and often stretching would first need to correct the postural asymmetric pattern by exploiting postural automatic processes in various particular motor tasks secondarily beneficial to gait. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Lumbar Spine Alignment in Six Common Postures: An ROM Analysis With Implications for Deformity Correction.

    PubMed

    Hey, Hwee Weng Dennis; Lau, Eugene Tze-Chun; Tan, Kimberly-Anne; Lim, Joel L; Choong, Denise; Lau, Leok-Lim; Liu, Ka-Po G; Wong, Hee-Kit

    2017-10-01

    A cross-sectional study of prospectively collected data. To compare lumbar spine alignment in six common postures, and estimate loss in range of motion (ROM) relative to standing. Ideal position for fusion of lumbar spine remains unknown. Although surgical fusion is necessary for deformity correction and symptom relief, the final position in which the vertebrae are immobilized should provide maximum residual function. Data were collected prospectively from 70 patients with low back pain recruited over a year. All subjects had x-rays performed in slump sitting, forward bending, supine, half squatting, standing, and backward bending postures. ROM quantified in terms of sagittal global and segmental Cobb angles was measured from L1 to S1. Loss of ROM relative to standing was calculated for each posture. Analysis of variance and unpaired t tests were used to identify differences in alignment between postures. Slump sitting gives the greatest lumbar flexion followed by forward bending, and supine postures (P < 0.001). Backward bending produces greater lumbar extension than standing (P = 0.035). Half-squatting and standing postures were not significantly different (P = 0.938). For all postures, L4-5 and L5-S1 segments remained in lordosis, with L4-5 having greater ROM than L5-S1. L1-2 turns kyphotic in lying supine, L2-3 at forward bending, and L3-4 at slump sitting in the form of a "kyphosing cascade." Should the entire lumbar spine be fused in standing position from L1-S1, there would likely be a mean loss of 47.6° of lumbar flexion and 5.9° of lumbar extension. The present study demonstrates the extent of flexibility required of the lumbar spine in assuming various postures. It also enables comparison of the differences in degree of motion occurring in the lumbar spine, both across postures and across segments. Significant loss in ROM, particularly flexion, is anticipated with fusion modeled after the lordotic standing lumbar spine. 2.

  10. Effects of posture on shear rates in human brachial and superficial femoral arteries

    PubMed Central

    Newcomer, S. C.; Sauder, C. L.; Kuipers, N. T.; Laughlin, M. H.; Ray, C. A.

    2012-01-01

    Shear rate is significantly lower in the superficial femoral compared with the brachial artery in the supine posture. The relative shear rates in these arteries of subjects in the upright posture (seated and/or standing) are unknown. The purpose of this investigation was to test the hypothesis that upright posture (seated and/or standing) would produce greater shear rates in the superficial femoral compared with the brachial artery. To test this hypothesis, Doppler ultrasound was used to measure mean blood velocity (MBV) and diameter in the brachial and superficial femoral arteries of 21 healthy subjects after being in the supine, seated, and standing postures for 10 min. MBV was significantly higher in the brachial compared with the superficial femoral artery during upright postures. Superficial femoral artery diameter was significantly larger than brachial artery diameter. However, posture had no significant effect on either brachial or superficial femoral artery diameter. The calculated shear rate was significantly greater in the brachial (73 ± 5, 91 ± 11, and 97 ± 13 s−1) compared with the superficial femoral (53 ± 4, 39 ± 77, and 44 ± 5 s−1) artery in the supine, seated, and standing postures, respectively. Contrary to our hypothesis, our current findings indicate that mean shear rate is lower in the superficial femoral compared with the brachial artery in the supine, seated, and standing postures. These findings of lower shear rates in the superficial femoral artery may be one mechanism for the higher propensity for atherosclerosis in the arteries of the leg than of the arm. PMID:18245564

  11. Postural control in man: the phylogenetic perspective.

    PubMed

    Gramsbergen, Albert

    2005-01-01

    Erect posture in man is a recent affordance from an evolutionary perspective. About eight million years ago, the stock from which modern humans derived split off from the ape family, and from around sixty-thousand years ago, modern man developed. Upright gait and manipulations while standing pose intricate cybernetic problems for postural control. The trunk, having an older evolutionary history than the extremities, is innervated by medially descending motor systems and extremity muscles by the more recent, laterally descending systems. Movements obviously require concerted actions from both systems. Research in rats has demonstrated the interdependencies between postural control and the development of fluent walking. Only 15 days after birth, adult-like fluent locomotion emerges and is critically dependent upon postural development. Vesttibular deprivation induces a retardation in postural development and, consequently, a retarded development of adult-like locomotion. The cerebellum obviously has an important role in mutual adjustments in postural control and extremity movements, or, in coupling the phylogenetic older and newer structures. In the human, the cerebellum develops partly after birth and therefore is vulnerable to adverse perinatal influences. Such vulnerability seems to justify focusing our scientific research efforts onto the development of this structure.

  12. The effect of a haptic biofeedback system on postural control in patients with stroke: An experimental pilot study.

    PubMed

    Yasuda, Kazuhiro; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu

    2017-06-01

    Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation. The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke. Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system. Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group. A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.

  13. A test of fixed and moving reference point control in posture.

    PubMed

    Lee, I-Chieh; Pacheco, Matheus M; Newell, Karl M

    2017-01-01

    This study investigated two contrasting assumptions of the regulation of posture: namely, fixed and moving reference point control. These assumptions were tested in terms of time-dependent structure and data distribution properties when stability is manipulated. Fifteen male participants performed a tightrope simulated balance task that is, maintaining a tandem stance while holding a pole. Pole length (and mass) and the standing support surface (fixed surface/balance board) were manipulated so as to mechanically change the balance stability. The mean and standard deviation (SD) of COP length were reduced with pole length increment but only in the balance board surface condition. Also, the SampEn was lower with greater pole length for the balance board but not the fixed surface. More than one peak was present in the distribution of COP in the majority of trials. Collectively, the findings provide evidence for a moving reference point in the maintenance of postural stability for quiet standing. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The postural stability of children with foetal alcohol spectrum disorders during one-leg stance: A feasibility study

    PubMed Central

    2018-01-01

    Background Postural control may be impaired in children with foetal alcohol spectrum disorders (FASD). The study assessed the protocol feasibility in terms of (1) recruiting children with FASD in a rural, small town; (2) using the measurement instruments in a real-life setting; (3) the one-leg standing (OLS) task and (4) presenting preliminary results on postural stability of children with and without FASD. Methods Nine-year-old children diagnosed with and without FASD were invited to participate. Twenty-eight children performed OLS. Feasibility outcomes included recruitment, measurement instrument use and task instruction. Postural stability outcomes included standing duration, centre of pressure (COP) and body segment acceleration. Results Participants recruitment was feasible in terms of the (1) ability to sample a reasonable participant number in a rural town setting and the capacity to increase the sample size if more schools are included in the sampling frame and (2) use of assent and consent forms that were appropriate for this population. The measurement instruments were user-friendly, cost-effective and time-efficient. Instructions for the task require amendment to address foot placement of the non-weight–bearing leg. There was a significant difference between cases and controls on mean COP velocity (p = 0.001) and the pelvis segment acceleration in the mediolateral direction (p = 0.01) and the anteroposterior direction (p = 0.027). The control children took longer to achieve postural control. The girls demonstrated a significant difference for the COP anteroposterior displacement (p = 0.008) and velocity (p = 0.049). Conclusions The recruitment of children with and without FASD in a rural, small town and the administration of measurement instruments in a real-life, school-based setting was feasible. However, the verbal instructions for the task require revision. The male control group took longer to achieve postural control because the task was performed differently between the two groups. However, the case girls were slower to achieve postural control than control girls though performing the task similarly. PMID:29707515

  15. Assessing Somatosensory Utilization during Unipedal Postural Control.

    PubMed

    Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P

    2017-01-01

    Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.

  16. Assessing Somatosensory Utilization during Unipedal Postural Control

    PubMed Central

    Goel, Rahul; De Dios, Yiri E.; Gadd, Nichole E.; Caldwell, Erin E.; Peters, Brian T.; Reschke, Millard F.; Bloomberg, Jacob J.; Oddsson, Lars I. E.; Mulavara, Ajitkumar P.

    2017-01-01

    Multisensory—visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects “stood” supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control. PMID:28443004

  17. Standing orthostatic blood pressure measurements cannot be replaced by sitting measurements.

    PubMed

    Breeuwsma, Anna C; Hartog, Laura C; Kamper, Adriaan M; Groenier, Klaas H; Bilo, Henk Jg; Kleefstra, Nanne; Van Hateren, Kornelis Jj

    2017-08-01

    As many elderly patients are not able to stand for several minutes, sitting orthostatic blood pressure (BP) measurements are sometimes used as an alternative. We aimed to investigate the difference in BP response and orthostatic hypotension (OH) prevalence between the standard postural change to the sitting and the standing position in a cross-sectional observational study. BP was measured with a continuous BP measurement device during two postural changes, from supine to the sitting and from supine to the standing position. Linear mixed models were used to investigate the differences in changes (Δ) of systolic BP (SBP) and diastolic BP (DBP) between the two postural changes. The prevalence and the positive and negative proportions of agreement of OH were calculated of the two postural changes. One hundred and four patients with a mean age of 69 years were included. ΔSBP was significantly larger in the standing position compared with the sitting between 0 and 44 s. ΔDBP was significantly larger in the sitting position compared with the standing 75-224 s after postural change. The prevalence of OH was 66.3% (95% confidence interval (CI) 57.2, 75.4) in the standing position and 67.3% (95% CI 58.3, 76.3) in the sitting position. The positive proportion of agreement was 74.8% and the negative proportion of agreement was 49.3%. A clear difference was seen in BP response between the two postural changes. Although no significant difference in prevalence of OH was observed, the positive and negative proportion of agreement of the prevalence of OH were poor to moderate, which indicates a different outcome between both postural changes.

  18. The effects of upper and lower limb position on symmetry of vertical ground reaction force during sit-to-stand in chronic stroke subjects

    PubMed Central

    Lee, Jae Hong; Min, Dong Ki; Choe, Han Seong; Lee, Jin Hwan; Shin, So Hong

    2018-01-01

    [Purpose] The purpose of this study was to evaluate the influence of arm and leg posture elements on symmetrical weight bearing during Sit to Stand tasks in chronic stroke patients. [Subjects and Methods] The subjects were diagnosed with stroke and 22 patients (15 males and 7 females) participated in this study. All participants performed Sit to Stand tasks on three foot postures and two arm postures. Two force plates were used to measure peak of vertical ground reaction force and symmetrical ratio to peak Fz. The data were analyzed using independent t-test and two-way repeated ANOVA. [Results] The results of this study are as follows: 1) Peak Fz placed more weight in non-paretic leg during Sit to Stand. 2) A symmetrical ratio to Peak Fz indicated significant difference between foot and arm posture, and had non-paretic limb supported on a step and paretic at ground level (STP) and grasped arm posture that lock fingers together with shoulder flexion by 90°(GA) (0.79 ± 0.09). [Conclusion] These results suggest that STP posture of the legs and GA posture of the arms should be able to increase the use of the paretic side during Sit to Stand behavior and induce normal Sit to Stand mechanism through the anterior tilt of the hip in clinical practices, by which loads onto the knee joint and the ankle joint can be reduced, and the trunk righting response can be promoted by making the back fully stretched. The outcome of this study is expected to be a reference for exercise or prognosis of Sit to Stand in stroke patients. PMID:29545686

  19. A model-based approach to stabilizing crutch supported paraplegic standing by artificial hip joint stiffness.

    PubMed

    van der Spek, Jaap H; Veltink, Peter H; Hermens, Hermie J; Koopman, Bart F J M; Boom, Herman B K

    2003-12-01

    The prerequisites for stable crutch supported standing were analyzed in this paper. For this purpose, a biomechanical model of crutch supported paraplegic stance was developed assuming the patient was standing with extended knees. When using crutches during stance, the crutches will put a position constraint on the shoulder, thus reducing the number of degrees of freedom. Additional hip-joint stiffness was applied to stabilize the hip joint and, therefore, to stabilize stance. The required hip-joint stiffness for changing crutch placement and hip-joint offset angle was studied under static and dynamic conditions. Modeling results indicate that, by using additional hip-joint stiffness, stable crutch supported paraplegic standing can be achieved, both under static as well as dynamic situations. The static equilibrium postures and the stability under perturbations were calculated to be dependent on crutch placement and stiffness applied. However, postures in which the hip joint was in extension (C postures) appeared to the most stable postures. Applying at least 60 N x m/rad hip-joint stiffness gave stable equilibrium postures in all cases. Choosing appropriate hip-joint offset angles, the static equilibrium postures changed to more erect postures, without causing instability or excessive arm forces to occur.

  20. The relationship beween posture and back muscle endurance in industrial workers with flexion-related low back pain.

    PubMed

    O'Sullivan, Peter B; Mitchell, Tim; Bulich, Paul; Waller, Rob; Holte, Johan

    2006-11-01

    This preliminary cross-sectional study was undertaken to determine if there were measurable relationships between posture, back muscle endurance and low back pain (LBP) in industrial workers with a reported history of flexion strain injury and flexion pain provocation. Clinical reports state that subjects with flexion pain disorders of the lumbar spine commonly adopt passive flexed postures such as slump sitting and present with associated dysfunction of the spinal postural stabilising musculature. However, to date there is little empirical evidence to support that patients with back pain, posture their spines differently than pain-free subjects. Subjects included 21 healthy industrial workers and 24 industrial workers with flexion-provoked LBP. Lifestyle information, lumbo-pelvic posture in sitting, standing and lifting, and back muscle endurance were measured. LBP subjects had significantly reduced back muscle endurance (P < 0.01). LBP subjects sat with less hip flexion, (P = 0.05), suggesting increased posterior pelvic tilt in sitting. LBP subjects postured their spines significantly closer to their end of range lumbar flexion in 'usual' sitting than the healthy controls (P < 0.05). Correlations between increased time spent sitting, physical inactivity and poorer back muscle endurance were also identified. There were no significant differences found between the groups for the standing and lifting posture measures. These preliminary results support that a relationship may exist between flexed spinal postures, reduced back muscle endurance, physical inactivity and LBP in subjects with a history of flexion injury and pain.

  1. Inadequate interaction between open- and closed-loop postural control in phobic postural vertigo.

    PubMed

    Wuehr, M; Pradhan, C; Novozhilov, S; Krafczyk, S; Brandt, T; Jahn, K; Schniepp, R

    2013-05-01

    Phobic postural vertigo (PPV) is characterized by a subjective dizziness and postural imbalance. Changes in postural control strategy may cause the disturbed postural performance in PPV. A better understanding of the mechanisms behind this change in strategy is required to improve the diagnostic tools and therapeutic options for this prevalent disorder. Here we apply stabilogram diffusion analysis (SDA) to examine the characteristics and modes of interaction of open- and closed-loop processes that make up the postural control scheme in PPV. Twenty patients with PPV and 20 age-matched healthy controls were recorded on a stabilometer platform with eyes open and with eyes closed. Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed by means of SDA and complementary CoP amplitude measures. (1) Open-loop control mechanisms in PPV were disturbed because of a higher diffusion activity (p < 0.001). (2) The interaction of open- and closed-loop processes was altered in that the sensory feedback threshold of the system was lowered (p = 0.010). These two changes were comparable to those observed in healthy subjects during more demanding balance conditions such as standing with eyes closed. These data indicate that subjective imbalance in PPV is associated with characteristic changes in the coordination of open- and closed-loop mechanisms of postural control. Patients with PPV use sensory feedback inadequately during undisturbed stance, and this impairs postural performance. These changes are compatible with higher levels of anti-gravity muscle activity and co-contraction during the conscious concentration on control of postural stability.

  2. Hemispheric specificity for proprioception: Postural control of standing following right or left hemisphere damage during ankle tendon vibration.

    PubMed

    Duclos, Noémie C; Maynard, Luc; Abbas, Djawad; Mesure, Serge

    2015-11-02

    Right brain damage (RBD) following stroke often causes significant postural instability. In standing (without vision), patients with RBD are more unstable than those with left brain damage (LBD). We hypothesised that this postural instability would relate to the cortical integration of proprioceptive afferents. The aim of this study was to use tendon vibration to investigate whether these changes were specific to the paretic or non-paretic limbs. 14 LBD, 12 RBD patients and 20 healthy subjects were included. Displacement of the Centre of Pressure (CoP) was recorded during quiet standing, then during 3 vibration conditions (80 Hz - 20s): paretic limb, non-paretic limb (left and right limbs for control subjects) and bilateral. Vibration was applied separately to the peroneal and Achilles tendons. Mean antero-posterior position of the CoP, variability and velocity were calculated before (4s), during and after (24s) vibration. For all parameters, the strongest perturbation was during Achilles vibrations. The Achilles non-paretic condition induced a larger backward displacement than the Achilles paretic condition. This condition caused specific behaviour on the velocity: the LBD group was perturbed at the onset of the vibrations, but gradually recovered their stability; the RBD group was significantly perturbed thereafter. After bilateral Achilles vibration, RBD patients required the most time to restore initial posture. The reduction in use of information from the paretic limb may be a central strategy to deal with risk-of-fall situations such as during Achilles vibration. The postural behaviour is profoundly altered by lesions of the right hemisphere when proprioception is perturbed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Postural stability is altered by the stimulation of pain but not warm receptors in humans.

    PubMed

    Blouin, Jean-Sébastien; Corbeil, Philippe; Teasdale, Normand

    2003-10-17

    It is now recognized that large diameter myelinated afferents provide the primary source of lower limb proprioceptive information for maintaining an upright standing position. Small diameter afferents transmitting noxious stimuli, however, can also influence motor behaviors. Despite the possible influence of pain on motor behaviors, the effects of pain on the postural control system have not been well documented. Two cutaneous heat stimulations (experiment 1: non-noxious 40 degrees C; experiment 2: noxious 45 degrees C) were applied bilaterally on the calves of the subject with two thermal grills to stimulate A delta and C warm receptors and nociceptors in order to examine their effects on postural stability. The non-noxious stimulation induced a gentle sensation of warmth and the noxious stimulation induced a perception of heat pain (visual analogue scores of 0 and 46 mm, respectively). For both experiments, ten healthy young adults were tested with and without heat stimulations of the lower limbs while standing upright on a force platform with eyes open, eyes closed and eyes closed with tendon co-vibration of tibialis anterior and triceps surae muscles. The center of pressure displacements were analyzed to examine how both stimulations affected the regulation of quiet standing and if the effects were exacerbated when vision was removed or ankle proprioception perturbed. The stimulation of the warm receptors (40 degrees C) did not induce any postural deterioration. With pain (45 degrees C), subjects showed a significant increase in standard deviation, range and mean velocity of postural oscillations as well as standard deviation of the center of pressure velocity. The effects of heat pain were exacerbated when subjects had both their eyes closed and ankle tendons vibrated (increased standard deviation of the center of pressure velocity and mean velocity of the center of pressure). A non-noxious stimulation (40 degrees C) of the small diameter afferents is not a sufficiently intense sensory stimulation to alter the control of posture. A painful stimulation (45 degrees C) of the skin thermoreceptors, however, yielded a deterioration of the postural control system. The observed deteriorating effects of the combined stimulation of nociceptors and Ia afferents (when ankle tendons were vibrated) could result from the convergence of these afferents at the spinal level. This could certainly lead to the hypothesis that individuals suffering from lower limb pain present alterations of the postural control mechanisms; especially populations already at risk of falling (for example, frail elderly) or populations suffering from concomitant lower limb pain and sensory deficits (for example, diabetic polyneuropathy).

  4. Effect of Sitting Pause Times on Balance After Supine to Standing Transfer in Dim Light.

    PubMed

    Johnson, Eric G; Albalwi, Abdulaziz A; Al-Dabbak, Fuad M; Daher, Noha S

    2017-06-01

    The risk of falling for older adults increases in dimly lit environments. Longer sitting pause times, before getting out of bed and standing during the night, may improve postural stability. The purpose of this study was to measure the effect of sitting pause times on postural sway velocity immediately after a supine to standing transfer in a dimly lit room in older adult women. Eighteen healthy women aged 65 to 75 years who were able to independently perform supine to standing transfers participated in the study. On each of 2 consecutive days, participants assumed the supine position on a mat table and closed their eyes for 45 minutes. Then, participants were instructed to open their eyes and transfer from supine to sitting, with either 2- or 30-second pause in the sitting position followed by standing. The sitting pause time order was randomized. A significant difference was observed in postural sway velocity between the 2- and 30-second sitting pause times. The results revealed that there was less postural sway velocity after 30-second than 2-second sitting pause time (0.61 ± 0.19 vs 1.22 ± 0.68, P < .001). Falls related to bathroom usage at night are the most common reported falls among older adults. In the present study, the investigators studied the effect of sitting pause times on postural sway velocity after changing position from supine to standing in a dimly lit environment. The findings showed that the mean postural sway velocity was significantly less after 30-second sitting pause time compared with 2-second sitting pause time. Postural sway velocity decreased when participants performed a sitting pause of 30 seconds before standing in a dimly lit environment. These results suggest that longer sitting pause times may improve adaptability to dimly lit environments, contributing to improved postural stability and reduced risk of fall in older adult women when getting out of bed at night.

  5. A new methodology based on functional principal component analysis to study postural stability post-stroke.

    PubMed

    Sánchez-Sánchez, M Luz; Belda-Lois, Juan-Manuel; Mena-Del Horno, Silvia; Viosca-Herrero, Enrique; Igual-Camacho, Celedonia; Gisbert-Morant, Beatriz

    2018-05-05

    A major goal in stroke rehabilitation is the establishment of more effective physical therapy techniques to recover postural stability. Functional Principal Component Analysis provides greater insight into recovery trends. However, when missing values exist, obtaining functional data presents some difficulties. The purpose of this study was to reveal an alternative technique for obtaining the Functional Principal Components without requiring the conversion to functional data beforehand and to investigate this methodology to determine the effect of specific physical therapy techniques in balance recovery trends in elderly subjects with hemiplegia post-stroke. A randomized controlled pilot trial was developed. Thirty inpatients post-stroke were included. Control and target groups were treated with the same conventional physical therapy protocol based on functional criteria, but specific techniques were added to the target group depending on the subjects' functional level. Postural stability during standing was quantified by posturography. The assessments were performed once a month from the moment the participants were able to stand up to six months post-stroke. The target group showed a significant improvement in postural control recovery trend six months after stroke that was not present in the control group. Some of the assessed parameters revealed significant differences between treatment groups (P < 0.05). The proposed methodology allows Functional Principal Component Analysis to be performed when data is scarce. Moreover, it allowed the dynamics of recovery of two different treatment groups to be determined, showing that the techniques added in the target group increased postural stability compared to the base protocol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Competing effects of pain and fear of pain on postural control in low back pain?

    PubMed

    Mazaheri, Masood; Heidari, Elham; Mostamand, Javid; Negahban, Hossein; van Dieen, Jaap H

    2014-12-01

    A cross-sectional, observational study. To determine whether pain and fear of pain have competing effects on postural sway in patients with low back pain (LBP). Competing effects of pain and pain-related fear on postural control can be proposed as the likely explanation for inconsistent results regarding postural sway in the LBP literature. We hypothesized that although pain might increase postural sway, fear of pain might reduce sway through an increased cognitive effort or increased cocontraction to restrict body movement. The cognitive strategy would be less effective under dual-task conditions and the cocontraction strategy was expected to be less effective when standing on a narrow base of support surface. Postural sway was measured in combined conditions of base of support (full and narrow) and cognitive loading (single and dual tasks) in 3 experimental groups with current LBP, recent LBP, and no LBP. Sway amplitude, path length, mean power frequency, and sample entropy were extracted from center-of-pressure data. The current-LBP group and recent-LBP group reported significantly different levels of pain, but similar levels of pain catastrophizing and kinesiophobia. The current-LBP group tended to display larger sway amplitudes in the anteroposterior direction compared with the other 2 groups. Mean power frequency values in mediolateral direction were lower in patients with the current LBP compared with recent LBP. Smaller sample entropy was found in the current-LBP group than the other groups in most experimental conditions, particularly when standing on a narrow base of support. Alterations of postural sway are mostly mediated by pain but not pain-related fear. LBP tends to increase sway amplitude, which seems to be counteracted by increased effort invested in postural control leading to decreased frequency and increased regularity of sway particularly under increased task demands. Cross-sectional study.

  7. Developing Novel Machine Learning Algorithms to Improve Sedentary Assessment for Youth Health Enhancement.

    PubMed

    Golla, Gowtham Kumar; Carlson, Jordan A; Huan, Jun; Kerr, Jacqueline; Mitchell, Tarrah; Borner, Kelsey

    2016-10-01

    Sedentary behavior of youth is an important determinant of health. However, better measures are needed to improve understanding of this relationship and the mechanisms at play, as well as to evaluate health promotion interventions. Wearable accelerometers are considered as the standard for assessing physical activity in research, but do not perform well for assessing posture (i.e., sitting vs. standing), a critical component of sedentary behavior. The machine learning algorithms that we propose for assessing sedentary behavior will allow us to re-examine existing accelerometer data to better understand the association between sedentary time and health in various populations. We collected two datasets, a laboratory-controlled dataset and a free-living dataset. We trained machine learning classifiers separately on each dataset and compared performance across datasets. The classifiers predict five postures: sit, stand, sit-stand, stand-sit, and stand\\walk. We compared a manually constructed Hidden Markov model (HMM) with an automated HMM from existing software. The manually constructed HMM gave more F1-Macro score on both datasets.

  8. Neural Control of Posture in Individuals with Persisting Postconcussion Symptoms.

    PubMed

    Helmich, Ingo; Berger, Alisa; Lausberg, Hedda

    2016-12-01

    Postural instability has been shown to characterize individuals who suffered from long-term symptoms after mild traumatic brain injury. However, recordings of neural processes during postural control are difficult to realize with standard neuroimaging techniques. Thus, we used functional nearinfrared spectroscopy to investigate brain oxygenation of individuals with persistent postconcussion symptoms (pPCS) during postural control in altered environments. We compared brain oxygenation and postural sway during balance control in three groups: individuals suffering from pPCS, individuals with a history of mild traumatic brain injury but without pPCS, and healthy controls. Individuals were investigated during postural control tasks with six different conditions: i) eyes opened, ii) eyes closed, and iii) blurred visual input, each while standing a) on a stable and b) an unstable surface. In all groups, during the eyes closed/unstable surface condition as compared with the other conditions, the postural sway increased as well as the brain oxygenation in frontal brain cortices. In the most difficult balance condition, as compared with the other two groups, subjects with pPCS applied more force over time to keep balance as measured by the force plate system with a significantly greater activation in frontopolar/orbitofrontal areas of the right hemisphere. As subjects with pPCS applied more force over time to control balance, we propose that with regard to cognitive processes, the increase of cerebral activation in these individuals indicates an increase of attention-demanding processes during postural control in altered environments.

  9. Active ankle dorsiflexion and the Mingazzini manoeuvre: two clinical bedside tests related to prognosis of postural transferring, standing and walking ability in patients with stroke.

    PubMed

    Smania, N; Gambarin, M; Paolucci, S; Girardi, P; Bortolami, M; Fiaschi, A; Santilli, V; Picelli, A

    2011-09-01

    Lower limb paresis is one of the main determinants of postural transferring, standing and walking disability in patients with stroke. Early prognosis of recovery of lower limb function and of related functional disability is an important issue in neurorehabilitation clinical practice. Aim of this study was to assess the relationship between active ankle dorsiflexion and the Mingazzini manoeuvre with the prognosis of lower limb function and of postural transferring, standing and walking ability in patients with stroke. This was a longitudinal study with prospectively collected data. University hospital. The study included 53 patients with first unilateral brain ischemic stroke. Patients were evaluated initially (mean 4.02 days) and approximately at six months (mean 178.6 days) after stroke. Initial assessment included active ankle dorsiflexion and the Mingazzini manoeuvre. The assessment after six months included three outcome measures evaluating the rate of improvement of lower limb function and of postural transferring, standing and walking ability (Postural Assessment Scale for Stroke patients, Functional Ambulation Category, Motricity Index leg subtest). The active ankle dorsiflexion showed to be related with the prognosis of lower limb function and of walking ability, while the Mingazzini manoeuvre was related with the improvement of postural transferring and standing ability. Active ankle dorsiflexion and the Mingazzini manoeuvre are related with the prognosis of lower limb function and of postural transferring, standing and walking ability in patients with stroke. These simple bedside tests give a picture of improvement potential of motor activities connected to lower limb function in patients with acute stroke.

  10. Postural steadiness and ankle force variability in peripheral neuropathy

    PubMed Central

    Paxton, Roger J.; Feldman-Kothe, Caitlin; Trabert, Megan K.; Hitchcock, Leah N.; Reiser, Raoul F.; Tracy, Brian L.

    2015-01-01

    Introduction The purpose was to determine the effect of peripheral neuropathy (PN) on motor output variability for ankle muscles of older adults, and the relation between ankle motor variability and postural stability in PN patients. Methods Older adults with (O-PN) and without PN (O), and young adults (Y) underwent assessment of standing postural stability and ankle muscle force steadiness. Results O-PN displayed impaired ankle muscle force control and postural stability compared with O and Y groups. For O-PN, the amplitude of plantarflexor force fluctuations was moderately correlated with postural stability under no-vision conditions (r = 0.54, P = 0.01). Discussion The correlation of variations in ankle force with postural stability in PN suggests a contribution of ankle muscle dyscontrol to the postural instability that impacts physical function for older adults with PN. PMID:26284897

  11. Personality traits and individual differences predict threat-induced changes in postural control.

    PubMed

    Zaback, Martin; Cleworth, Taylor W; Carpenter, Mark G; Adkin, Allan L

    2015-04-01

    This study explored whether specific personality traits and individual differences could predict changes in postural control when presented with a height-induced postural threat. Eighty-two healthy young adults completed questionnaires to assess trait anxiety, trait movement reinvestment (conscious motor processing, movement self-consciousness), physical risk-taking, and previous experience with height-related activities. Tests of static (quiet standing) and anticipatory (rise to toes) postural control were completed under low and high postural threat conditions. Personality traits and individual differences significantly predicted height-induced changes in static, but not anticipatory postural control. Individuals less prone to taking physical risks were more likely to lean further away from the platform edge and sway at higher frequencies and smaller amplitudes. Individuals more prone to conscious motor processing were more likely to lean further away from the platform edge and sway at larger amplitudes. Individuals more self-conscious about their movement appearance were more likely to sway at smaller amplitudes. Evidence is also provided that relationships between physical risk-taking and changes in static postural control are mediated through changes in fear of falling and physiological arousal. Results from this study may have indirect implications for balance assessment and treatment; however, further work exploring these factors in patient populations is necessary. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Kinematic error magnitude in the single-mass inverted pendulum model of human standing posture.

    PubMed

    Fok, Kai Lon; Lee, Jae; Vette, Albert H; Masani, Kei

    2018-06-01

    Many postural control studies employ a single-mass inverted pendulum model (IPM) to represent the body during standing. However, it is not known to what degree and for what conditions the model's kinematic assumptions are valid. Our first objective was to quantify the IPM error, corresponding to a distance change between the ankle joint and center of mass (COM) during unrestricted, natural, unperturbed standing. A second objective was to quantify the error of having the ankle joint angle represent the COM angle. Eleven young participants completed five standing conditions: quiet standing with eyes open (EO) and closed (EC), voluntarily swaying forward (VSf) and backward (VSb), and freely moving (FR). The modified Helen-Hayes marker model was used to capture the body kinematics. The COM distance changed <0.1% during EO and EC, <0.25% during VSf and VSb, and <1.5% during FR. The ankle angle moderately and positively correlated with the COM angle for EO, EC, and VSf, indicating that temporal features of the ankle angle moderately represent those of the COM angle. However, a considerable offset between the two existed, which needs to be considered when estimating the COM angle using the ankle angle. For VSb and FR, the correlation coefficients were low and/or negative, suggesting that a large error would result from using the ankle angle as an estimate of the COM angle. Insights from this study will be critical for deciding when to use the IPM in postural control research and for interpreting associated results. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Control of vertical posture while standing on a sliding board and pushing an object.

    PubMed

    Lee, Yun-Ju; Chen, Bing; Liang, Jing-Nong; Aruin, Alexander S

    2018-03-01

    Voluntary pushing or translation perturbation of the support surface each induces a body perturbation that affects postural control. The objective of the study was to investigate anticipatory (APA) and compensatory (CPA) postural adjustments when pushing an object (that induces self-initiated perturbation) and standing on a sliding board (that induces translational perturbation). Thirteen healthy young participants were instructed to push a handle with both hands while standing on a sliding board that was either free to move in the anterior-posterior direction or stationary. Electromyographic activity (EMG) of trunk and lower extremity muscles, center of pressure (COP) displacements, and the forces exerted by the hand were recorded and analyzed during the APA and CPA phases. When the sliding board was free to move during pushing (translation perturbation), onsets of activity of ventral leg muscles and COP displacement were delayed as compared to pushing when standing on a stationary board. Moreover, magnitudes of shank muscle activity and the COP displacement were decreased. When pushing heavier weight, magnitudes of muscle activity, COP displacement, and pushing force increased. The magnitude of activity of the shank muscles during the APA and CPA phases in conditions with translational perturbation varied with the magnitude of the pushing weight. The outcome of the study suggests that the central nervous system prioritizes the pushing task while attenuates the source of additional perturbation induced by translation perturbation. These results could be used in the development of balance re-training paradigms involving pushing weight while standing on a sliding surface.

  14. Impact of exercise-induced fatigue on the strength, postural control, and gait of children with a neuromuscular disease.

    PubMed

    Hart, Raphael; Ballaz, Laurent; Robert, Maxime; Pouliot, Annie; D'Arcy, Sylvie; Raison, Maxime; Lemay, Martin

    2014-08-01

    Children with a neuromuscular disease are prone to early muscular fatigue. The objective of the present study was to evaluate the effects of fatigue induced by a walking exercise on the strength, postural control, and gait of children with a neuromuscular disease. Maximal isometric knee strength (extension and flexion), quiet standing postural control, and gait were evaluated in 12 children (8.8 [1.4] yrs) with a neuromuscular disease before and after a walking exercise. The participants were asked to stop walking when they considered themselves "very fatigued." After the exercise-induced fatigue, a significant increase in range of motion in pelvis obliquity, hip abduction and adduction, and ankle flexion and extension during gait was reported along with an increase in stride length variability. Fatigue also reduced the knee flexor strength and had a detrimental effect on postural control. Fatigue affects the strength, postural control, and gait of children with a neuromuscular disease and could notably increase the risks of falling and the occurrence of serious injuries.

  15. Effects of knee and ankle muscle fatigue on postural control in the unipedal stance.

    PubMed

    Bizid, Riadh; Margnes, Eric; François, Yrieix; Jully, Jean Louis; Gonzalez, Gerard; Dupui, Philippe; Paillard, Thierry

    2009-06-01

    The aim of this study was to compare the effects of acute muscle fatigue of the ankle and knee musculature on postural control by immediate measures after performing fatiguing tasks (POST condition). One group of subjects (n = 8) performed a fatiguing task by voluntary contractions of the triceps surae (group TRI) and the other (n = 9) performed a fatiguing task by voluntary contractions of the quadriceps femoris (group QUA). Each muscle group was exercised until the loss of maximal voluntary contraction torque reached 50% (isokinetic dynamometer). Posture was assessed by measuring the centre of foot pressure (COP) with a force platform during a test of unipedal quiet standing posture with eyes closed. Initially (in PRE condition), the mean COP velocity was not significantly different between group TRI and group QUA. In POST condition, the mean COP velocity increased more in group QUA than in group TRI. The postural control was more impaired by knee muscle fatigue than by ankle muscle fatigue.

  16. Assessment of postural asymmetry in mild to moderate Parkinson's disease.

    PubMed

    Geurts, A C H; Boonstra, T A; Voermans, N C; Diender, M G; Weerdesteyn, V; Bloem, B R

    2011-01-01

    Asymmetry of symptoms of Parkinson's disease is clinically most evident for appendicular impairments. For axial impairments such as freezing of gait, asymmetry is less obvious. To date, asymmetries in balance control in PD patients have seldom been studied. Therefore, in this study we investigated whether postural control can be asymmetrically affected in mild to moderate PD patients. Seventeen PD patients were instructed to stand as still and symmetrically as possible on a dual force-plate during two trials. Dynamic postural asymmetry was assessed by comparing the centre-of-pressure velocities between both legs. Results showed that four patients (24%) had dynamic postural asymmetry, even after correcting for weight-bearing asymmetry. Hence, this study suggests that postural control can be asymmetrical in early PD. However, future studies should investigate the prevalence of dynamic postural asymmetry, in a larger group of PD patients. It should also be further investigated whether this approach can be used as a tool to support the initial diagnosis or monitor disease progression, or as an outcome measure for interventions aimed at improving balance in PD. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Standing on a declining surface reduces transient prolonged standing induced low back pain development.

    PubMed

    Gallagher, Kaitlin M; Callaghan, Jack P

    2016-09-01

    While alternating standing position on a sloped surface has proven successful at reducing low back pain during standing, the purpose of this study was to evaluate standing solely on a declining surface to isolate the influence of the postural change. Seventeen participants performed two 75-min prolonged standing occupational simulations- level ground and declining surface. Fifty-three percent of participants (9/17) were categorized as pain developers during the level ground standing condition. For these same pain developers, their average maximum pain scores were 58% lower during sloped standing. All participants showed greater hip flexion, trunk-to-thigh angle flexion, and posterior translation of the trunk center of gravity when standing on the sloped surface. These postural changes could cause the muscles crossing the hip posteriorly to increase passive stiffness and assist with stabilizing the pelvis. This study stresses the importance of hip kinematics, not just lumbar spine posture, in reducing prolonged standing induced low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The Effects of Load Distribution and Gradient on Load Carriage

    DTIC Science & Technology

    2010-12-01

    and injury (Knapik & Reynolds, 1997). Grimmer, Danise, Milanese, Pirunsan, & Trott (2002) studied postural responses to backpack loads in... Innovations in Load Carriage System Design and Evaluation” (1-7). Kingston, Canada, 27–29 June 2000. Bloom, D. & Woodhull-McNeal, A.P. (1987...Danise, B., Milanese, S., Pirunsan, U., & Trott , P. (2002). Adolescent standing postural response to backpack loads: a randomized controlled

  19. The effect of backpack weight on the standing posture and balance of schoolgirls with adolescent idiopathic scoliosis and normal controls.

    PubMed

    Chow, Daniel H K; Kwok, Monica L Y; Cheng, Jack C Y; Lao, Miko L M; Holmes, Andrew D; Au-Yang, Alexander; Yao, Fiona Y D; Wong, M S

    2006-10-01

    Concerns have been raised regarding the effect of carrying a backpack on adolescent posture and balance, but the effect of backpack loading combined with other factors affecting balance, such as adolescent idiopathic scoliosis (AIS), has not been determined. This study examines the effects of backpack load on the posture and balance of schoolgirls with AIS and normal controls. The standing posture of 26 schoolgirls with mild AIS (mean age 13, Cobb angle 10-25 degrees ) and 20 age-matched normal schoolgirls were recorded without a backpack and while carrying a standard dual-strap backpack loaded at 7.5%, 10%, 12.5% and 15% of the subject's bodyweight (BW). Kinematics of the pelvis, trunk and head were recorded using a motion analysis system and centre of pressure (COP) data were recorded using a force platform. Reliable COP data could only be derived for 13 of the subjects with AIS. Increasing backpack load causes a significantly increased flexion of the trunk in relation to the pelvis and extension of the head in relation to the trunk, as well as increased antero-posterior range of COP motion. While backpack load appears to affect balance predominantly in the antero-posterior direction, differences between groups were more evident in the medio-lateral direction, with AIS subjects showing poor balance in this direction. Overall, carrying a backpack causes similar sagittal plane changes in posture and balance in both normal and AIS groups. Load size or subject group did not influence balance, but the additive effect of backpack carrying and AIS on postural control alters the risk of fall in this population. Therefore, load limit recommendations based on normal subjects should not be applicable to subjects with AIS.

  20. Increasing passive energy expenditure during clerical work.

    PubMed

    Beers, Erik A; Roemmich, James N; Epstein, Leonard H; Horvath, Peter J

    2008-06-01

    Sitting on a therapy ball or standing may be a passive means of increasing energy expenditure throughout the workday. The purpose of this study was to determine the energy expenditure and liking of performing clerical work in various postures. Subjects included 24 men and women employed in sedentary clerical occupations. Energy expenditure was measured while word processing in three standardized postures; sitting in an office chair, sitting on a therapy ball, and standing. Adults ranked their comfort, fatigue, and liking of each posture and were asked to perform their choice of 20 min of additional clerical work in one of the postures. Energy expenditure was 4.1 kcal/h greater (p or= 0.48). Subjects also liked sitting on a therapy ball as much as sitting in an office chair and liked sitting on a therapy ball more than standing (p

  1. Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects

    PubMed Central

    Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura

    2015-01-01

    The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with2 types of parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP),and inage-matched control subjects standing under perturbed conditions implementedby the Sensory Organization Test (SOT).Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measuredthe amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). Results showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions.PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use ofinertial sensors on the upper and lower body segments, isa promising and unobtrusive toolto characterize postural strategies performed to attain balance. PMID:24656713

  2. Effects of astigmatic axis orientation on postural stabilization with stationary equilibrium

    NASA Astrophysics Data System (ADS)

    Kanazawa, Masatsugu; Uozato, Hiroshi; Asakawa, Ken; Kawamorita, Takushi

    2018-02-01

    We evaluated 15 healthy participants by assessing their maintenance of postural control while standing on a platform stabilometer for 1 min under the following conditions: eyes open; eyes open with + 3.00 D on both eyes on same directions (45, 90, 135, 180 degree axis); right eye on 45 degree axis and left eye on 135 degree axis (inverted V-pattern), and right eye on 135 degree axis and left eye on axis 45 degree axis (V-pattern). The differences in the linear length, area and maximum velocity of center of pressure during postural control before and after the six types of positive cylinder-oriented axes were analyzed. Comparing the antero-posterior lengths and antero-posterior maximum velocities, there were significant differences between the V-pattern condition and the six other conditions. Astigmatic defocus in the antagonistic axes conditions, particularly the V-pattern condition, affects postural control of antero-posterior sway (143/150).

  3. Effect of whole-body vibration on center-of-mass movement during standing in children and young adults.

    PubMed

    Liang, Huaqing; Beerse, Matthew; Ke, Xiang; Wu, Jianhua

    2017-05-01

    Whole body vibration (WBV) can affect postural control and muscular activation. The purpose of this study was to investigate the center-of-mass (COM) movement of children and young adults before, during, immediately after, and 5min after 40-s WBV in quiet standing. Fourteen young adults (mean age 24.5 years) and fourteen children (mean age 8.1 years) participated in the study. A full-body 35-marker set was placed on the participants and used to calculate COM. Forty-second standing trials were collected before, during, immediately after, and 5min after WBV with an frequency of 28Hz and an amplitude of <1mm. Two visual conditions were provided: eyes-open (EO) and eyes-closed (EC). COM variables included time-domain measures (average velocity, range, sway area and fractal dimension), frequency-domain measures (total power and median frequency), and detrended fluctuation analysis (DFA) scaling exponent in both anterior-posterior (AP) and medial-lateral (ML) directions. Results show that during WBV both children and adults increased average velocity and median frequency, but decreased range and the DFA scaling exponent. Immediately after WBV both groups increased the range, but showed pre-vibration values for most of the COM variables. Comparing to adults, children displayed a higher COM velocity, range, fractal dimension, and total power, but a lower DFA scaling exponent at all phases. The results suggest that both children and adults can quickly adapt their postural control system to WBV and maintain balance during and after vibration. Children display some adult-like postural control during and after WBV; however, their postural development continues into adolescence. Published by Elsevier B.V.

  4. Postural sway and regional cerebellar volume in adults with attention-deficit/hyperactivity disorder

    PubMed Central

    Hove, Michael J.; Zeffiro, Thomas A.; Biederman, Joseph; Li, Zhi; Schmahmann, Jeremy; Valera, Eve M.

    2015-01-01

    Objective Motor abnormalities, including impaired balance and increased postural sway, are commonly reported in children with ADHD, but have yet to be investigated in adults with ADHD. Furthermore, although these abnormalities are thought to stem from cerebellar deficits, evidence for an association between the cerebellum and these motor deficits has yet to be provided for either adults or children with ADHD. Method In this study, we measured postural sway in adults with ADHD and controls, examining the relationship between sway and regional cerebellar gray matter volume. Thirty-two ADHD and 28 control participants completed various standing-posture tasks on a Wii balance board. Results Postural sway was significantly higher for the ADHD group compared to the healthy controls. Higher sway was positively associated with regional gray matter volume in the right posterior cerebellum (lobule VIII/IX). Conclusion These findings show that sway abnormalities commonly reported in children with ADHD are also present in adults, and for the first time show a relationship between postural control atypicalities and the cerebellum in this group. Our findings extend the literature on motor abnormalities in ADHD and contribute to our knowledge of their neural substrate. PMID:26106567

  5. Pilates improves lower limbs strength and postural control during quite standing in a child with hemiparetic cerebral palsy: A case report study.

    PubMed

    Dos Santos, Adriana Neves; Serikawa, Simoni Sayuri; Rocha, Nelci Adriana Cicuto Ferreira

    2016-08-01

    To verify the effect of Pilates exercises in a child with cerebral palsy (CP) with mild functional impairment. We evaluated average peak torque of ankle and knee extensors/flexors using a Biodex System, using concentric active-assisted test. We also evaluated amplitude of anterior-posterior and of medial-lateral displacement of the CoP and area of oscillation during quite standing with a BERTEC platform. We applied Pilates exercises for eight weeks. Peak torque/body weight of ankle and knee extensors/flexors of both affected and unaffected limbs increased after Pilates. Also, all kinetic variables decreased after Pilates' intervention. After one-month follow-up, isokinetic variable values were higher while kinetic variable values were lower than baseline values. Pilates may be an important rehabilitation technique for children with CP that present mild deficits in motor structures and high functional level, especially when the aims are to improve muscle strength and postural control during quite standing.

  6. Obesity Impact on the Attentional Cost for Controlling Posture

    PubMed Central

    Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent

    2010-01-01

    Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914

  7. Postural transitions during activities of daily living could identify frailty status – Application of wearable technology to identify frailty during unsupervised condition

    PubMed Central

    Parvaneh, Saman; Mohler, Jane; Toosizadeh, Nima; Grewal, Gurtej Singh; Najafi, Bijan

    2017-01-01

    Background Impairment of physical function is a major indicator of frailty. Functional performance tests have been shown to be useful for identification of frailty in older adults. However, these tests are often not translatable into unsupervised and remote monitoring of frailty status at home and/or community settings. Objective In this study, we explored daily postural transition quantified using a chest-worn wearable technology to identify frailty in community-dwelling older adults. Methods Spontaneous daily physical activity was monitored over 24 hours in 120 community dwelling (age: 78±8 years) using an unobtrusive wearable sensor (PAMSys™, Biosensics LLC). Participants were classified as non-frail and pre-frail/frail using Fried’s criteria. A validated software was used to identify body postures and postural transition between each independent postural activities such as sit-to-stand, stand-to-sit, stand-to-walk, and walk-to-stand. Transition from walking to sitting was further classified as quick-sitting and cautious-sitting based on presence/absence of a standing-posture pause between sitting and walking. General linear model univariate test was used for between groups comparison. Pearson’s correlation was used to determine the association between sensor-derived parameters with age. Logistic regression model was used to identify independent predictors of frailty. Results According to Fried’s criteria, 63% of participants were pre-frail/frail. The total number of postural transitions, stand-to-walk, and walk-to-stand were, respectively, 25.2%, 30.2%, and 30.6% lower in the pre-frail/frail group when compared to non-frails (p<0.05, Cohen’s d=0.73–0.79). Furthermore, ratio of cautious-sitting was significantly higher by 6.2% in pre-frail/frail compared to non-frail (p=0.025, Cohen’s d=0.22). Total number of postural transitions and ratio of cautious-sitting also showed significant negative and positive correlations with age, respectively (r=-0.51 and 0.29, p<0.05). After applying a logistic regression model, among tested parameters, walk-to-stand (OR=0.997 p=0.013), quick-sitting (OR=1.036, p=0.05), and age (OR=1.073, p=0.016) were recognized as independent variables to identify frailty status. Conclusions This study demonstrated that daily number of specific postural transitions such as walk-to-stand and quick-sitting could be used for monitoring frailty status by unsupervised monitoring of daily physical activity. Further study is warrant to explore whether tracking daily number of specific postural transitions are also sensitive to track change in status of frailty over time. PMID:28285311

  8. Older adults prioritize postural stability in the anterior-posterior direction to regain balance following volitional lateral step.

    PubMed

    Porter, Shaun; Nantel, Julie

    2015-02-01

    Postural control in the medial-lateral (ML) direction is of particular interest regarding the assessment of changes in postural control, as it is highly related to the risk of falling. To determine the postural strategies used to regain balance following a voluntary lateral step and compare these strategies between young and older adults. Sixteen older adults (60-90 years) and 14 young adults (20-40 years) were asked to stand quietly for 30s, walk in place and then take a lateral step and stand quietly (30s). Balance Post was divided into 10s intervals. Center of pressure displacement (CoP) and velocity (VCoP) in the anterio-posterior (AP) and ML directions were analyzed. In both groups, CoP and VCoP in AP and ML increased in Post1 compared to Pre (P<0.001). Dissimilar to young adults, VCoP-Post2, Post3 ML were larger than Pre (P=0.01) in older adults. Age correlated with all VCoP (Pre and Post) in both ML (P<0.05) and AP directions (P<0.01). Dissimilar to young adults, older adults use different postural strategies in ML and AP directions and prioritized postural stability in the AP direction to recover balance after completing a lateral step. In the ML direction, older adults took up to 30s to regain balance. Considering that age was related to larger CoP displacement and velocity, the AP strategy to recover postural balance following a lateral step could become less efficient as older adults age and therefore increasing the risk of falls. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine

    PubMed Central

    Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee

    2018-01-01

    Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s2 vs. 6.69 ± 0.87 cm/s2), and sway area (1.77 ± 0.22 cm2 vs. 1.04 ± 0.25 cm2). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness. PMID:29930534

  10. Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine.

    PubMed

    Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee

    2018-01-01

    Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s 2 vs. 6.69 ± 0.87 cm/s 2 ), and sway area (1.77 ± 0.22 cm 2 vs. 1.04 ± 0.25 cm 2 ). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness.

  11. Dynamical structure of center-of-pressure trajectories with and without functional taping in children with cerebral palsy level I and II of GMFCS.

    PubMed

    Pavão, Silvia Leticia; Ledebt, Annick; Savelsbergh, Geert J P; Rocha, Nelci Adriana C F

    2017-08-01

    Postural control during quiet standing was examined in typical children (TD) and children with cerebral palsy (CP) level I and II of GMFCS. The immediate effect on postural control of functional taping on the thighs was analyzed. We evaluated 43 TD, 17 CP children level I, and 10 CP children level II. Participants were evaluated in two conditions (with and without taping). The trajectories of the center of pressure (COP) were analyzed by means of conventional posturography (sway amplitude, sway-path-length) and dynamic posturography (degree of twisting-and-turning, sway regularity). Both CP groups showed larger sway amplitude than the TD while only the CP level II showed more regular COP trajectories with less twisting-and-turning. Functional taping didn't affect sway amplitude or sway-path-length. TD children exhibited more twisting-and-turning with functional taping, whereas no effects on postural sway dynamics were observed in CP children. Functional taping doesn't result in immediate changes in quiet stance in CP children, whereas in TD it resulted in faster sway corrections. Children level II invest more attention in postural control than level I, and TD. While quiet standing was more automatized in children level I than in level II, both CP groups showed a less stable balance than TD. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sit-to-Stand Movement in Children with Cerebral Palsy: A Critical Review

    ERIC Educational Resources Information Center

    dos Santos, Adriana Neves; Pavao, Silvia Leticia; Rocha, Nelci Adriana Cicuto Ferreira

    2011-01-01

    Sit-to-stand (STS) movement is widely performed in daily life and an important pre requisite for acquisition of functional abilities. However, STS is a biomechanical demanding task which requires high levels of neuromuscular coordination, muscle strength and postural control. As children with cerebral palsy (CP) exhibit a series of impairments in…

  13. The effects of spaceflight on open-loop and closed-loop postural control mechanisms: human neurovestibular studies on SLS-2

    NASA Technical Reports Server (NTRS)

    Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)

    1995-01-01

    Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes during undisturbed stance.

  14. Vertical Heterophoria and Postural Control in Nonspecific Chronic Low Back Pain

    PubMed Central

    Matheron, Eric; Kapoula, Zoï

    2011-01-01

    The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH) before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH), the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict. PMID:21479210

  15. Low Blood Pressure (Hypotension)

    MedlinePlus

    ... Low blood pressure on standing up (orthostatic, or postural, hypotension). This is a sudden drop in blood ... progressive damage to the autonomic nervous system, which controls involuntary functions such as blood pressure, heart rate, ...

  16. Lung volumes during sustained microgravity on Spacelab SLS-1

    NASA Technical Reports Server (NTRS)

    Elliott, Ann R.; Prisk, G. Kim; Guy, Harold J. B.; West, John B.

    1994-01-01

    Gravity is known to influence the mechanical behavior of the lung and chest wall. However, the effect of sustained microgravity (microgravity) on lung volumes has not been reported. Pulmonary function tests were performed by four subjects before, during, and after 9 days of microgravity exposure. Ground measurements were made in standing and supine postures. Tests were performed using a bag-in-box-and-flowmeter system and a respiratory mass spectrometer. Measurements included functional residual capacity (FRC), expiratory reserve volume (ERV), residual volume (RV), inspiratory and expiratory vital capacities (IVC and EVC), and tidal volume (V9sub T)). Total lung capacity (TLC) was derived from the measured EVC and RV values. With preflight standing values as a comparison, FRC was significantly reduced by 15% (approximately 500 ml) in microgravity and 32% in the supine posture. ERV was reduced by 10 - 20% in microgravity and decreased by 64% in the supine posture. RV was significantly reduced by 18% (310 ml) in microgravity but did not significantly change in the supine posture compared with standing. IVC and EVC were slightly reduced during the first 24 h of microgravity but returned to 1-G standing values within 72 h of microgravity exposure. IVC and EVC in the supine posture were significantly reduced by 12% compared with standing. During microgravity, V(sub T) decreased by 15% (approximately 90 ml), but supine V(sub T) was unchanged compared with preflight standing values. TLC decreased by approximately 8% during microgravity and in the supine posture compared with preflight standing. The reductions in FRC, ERV, and RV during microgravity are probably due to the cranial shift of the diaphragm, an increase in intrathoracic blood volume, and more uniform alveolar expansion.

  17. Lung volumes during sustained microgravity on Spacelab SLS-1.

    PubMed

    Elliott, A R; Prisk, G K; Guy, H J; West, J B

    1994-10-01

    Gravity is known to influence the mechanical behavior of the lung and chest wall. However, the effect of sustained microgravity (mu G) on lung volumes has not been reported. Pulmonary function tests were performed by four subjects before, during, and after 9 days of mu G exposure. Ground measurements were made in standing and supine postures. Tests were performed using a bag-in-box-and-flowmeter system and a respiratory mass spectrometer. Measurements included functional residual capacity (FRC), expiratory reserve volume (ERV), residual volume (RV), inspiratory and expiratory vital capacities (IVC and EVC), and tidal volume (VT). Total lung capacity (TLC) was derived from the measured EVC and RV values. With preflight standing values as a comparison, FRC was significantly reduced by 15% (approximately 500 ml) in mu G and 32% in the supine posture. ERV was reduced by 10-20% in mu G and decreased by 64% in the supine posture. RV was significantly reduced by 18% (310 ml) in mu G but did not significantly change in the supine posture compared with standing. IVC and EVC were slightly reduced during the first 24 h of mu G but returned to 1-G standing values within 72 h of mu G exposure. IVC and EVC in the supine posture were significantly reduced by 12% compared with standing. During mu G, VT decreased by 15% (approximately 90 ml), but supine VT was unchanged compared with preflight standing values. TLC decreased by approximately 8% during mu G and in the supine posture compared with preflight standing. The reductions in FRC, ERV, and RV during mu G are probably due to the cranial shift of the diaphragm, an increase in intrathoracic blood volume, and more uniform alveolar expansion.

  18. Orthostatic symptoms, blood pressure and working postures of factory and service workers over an observed workday.

    PubMed

    Ngomo, Suzy; Messing, Karen; Perrault, Hélène; Comtois, Alain

    2008-11-01

    North American workers usually stand while working, and prolonged standing is associated with discomfort and cardiovascular problems. Moving may alleviate the problems, but optimum mobility is unknown. The effects of variations in mobility were explored among (1) 34 health care workers whose symptoms of orthostatic intolerance (OI) were recorded after work; (2) 45 factory and laundry workers. Postures were observed over a workday and blood pressure (BP) and heart rate (HR) of both groups were recorded before and after work. Among health care workers, 65% manifested OI symptoms. In a multiple logistic regression, presence of >or= 1 symptom of OI was associated with static postures and being female (p=0.001). More static standing was associated with a larger drop in BP (p=0.04) in both populations. The results suggest that more static standing postures are associated with OI and musculoskeletal symptoms and with a subclinical drop in BP.

  19. Standing postural reaction to visual and proprioceptive stimulation in chronic acquired demyelinating polyneuropathy.

    PubMed

    Provost, Clement P; Tasseel-Ponche, Sophie; Lozeron, Pierre; Piccinini, Giulia; Quintaine, Victorine; Arnulf, Bertrand; Kubis, Nathalie; Yelnik, Alain P

    2018-02-28

    To investigate the weight of visual and proprioceptive inputs, measured indirectly in standing position control, in patients with chronic acquired demyelinating polyneuropathy (CADP). Prospective case study. Twenty-five patients with CADP and 25 healthy controls. Posture was recorded on a double force platform. Stimulations were optokinetic (60°/s) for visual input and vibration (50 Hz) for proprioceptive input. Visual stimulation involved 4 tests (upward, downward, rightward and leftward) and proprioceptive stimulation 2 tests (triceps surae and tibialis anterior). A composite score, previously published and slightly modified, was used for the recorded postural signals from the different stimulations. Despite their sensitivity deficits, patients with CADP were more sensitive to proprioceptive stimuli than were healthy controls (mean composite score 13.9 ((standard deviation; SD) 4.8) vs 18.4 (SD 4.8), p = 0.002). As expected, they were also more sensitive to visual stimuli (mean composite score 10.5 (SD 8.7) vs 22.9 (SD 7.5), p <0.0001). These results encourage balance rehabilitation of patients with CADP, aimed at promoting the use of proprioceptive information, thereby reducing too-early development of visual compensation while proprioception is still available.

  20. Lower regulatory frequency for postural control in patients with fibromyalgia and chronic fatigue syndrome.

    PubMed

    Rasouli, Omid; Vasseljen, Ottar; Fors, Egil A; Lorås, Håvard W; Stensdotter, Ann-Katrin

    2018-01-01

    As many similar symptoms are reported in fibromyalgia (FM) and chronic fatigue syndrome (CFS), underlying defcits may potentially also be similar. Postural disequilibrium reported in both conditions may thus be explained by similar deviations in postural control strategies. 75 females (25/group FM, CFS and control, age 19-49 years) performed 60 s of quiet standing on a force platform in each of three conditions: 1) firm surface with vision, 2) firm surface without vision and, 3) compliant surface with vision. Migration of center of pressure was decomposed into a slow and a fast component denoting postural sway and lateral forces controlling postural sway, analyzed in the time and frequency domains. Main effects of group for the antero-posterior (AP) and medio-lateral (ML) directions showed that patients displayed larger amplitudes (AP, p = 0.002; ML, p = 0.021) and lower frequencies (AP, p < 0.001; ML, p < 0.001) for the slow component, as well as for the fast component (amplitudes: AP, p = 0.010; ML, p = 0.001 and frequencies: AP, p = 0.001; ML, p = 0.029) compared to controls. Post hoc analyses showed no significant differences between patient groups. In conclusion, both the CFS- and the FM-group differed from the control group. Larger postural sway and insufficient control was found in patients compared to controls, with no significant differences between the two patient groups.

  1. Lower regulatory frequency for postural control in patients with fibromyalgia and chronic fatigue syndrome

    PubMed Central

    Rasouli, Omid; Vasseljen, Ottar; Fors, Egil A.; Lorås, Håvard W.

    2018-01-01

    As many similar symptoms are reported in fibromyalgia (FM) and chronic fatigue syndrome (CFS), underlying defcits may potentially also be similar. Postural disequilibrium reported in both conditions may thus be explained by similar deviations in postural control strategies. 75 females (25/group FM, CFS and control, age 19–49 years) performed 60 s of quiet standing on a force platform in each of three conditions: 1) firm surface with vision, 2) firm surface without vision and, 3) compliant surface with vision. Migration of center of pressure was decomposed into a slow and a fast component denoting postural sway and lateral forces controlling postural sway, analyzed in the time and frequency domains. Main effects of group for the antero-posterior (AP) and medio-lateral (ML) directions showed that patients displayed larger amplitudes (AP, p = 0.002; ML, p = 0.021) and lower frequencies (AP, p < 0.001; ML, p < 0.001) for the slow component, as well as for the fast component (amplitudes: AP, p = 0.010; ML, p = 0.001 and frequencies: AP, p = 0.001; ML, p = 0.029) compared to controls. Post hoc analyses showed no significant differences between patient groups. In conclusion, both the CFS- and the FM-group differed from the control group. Larger postural sway and insufficient control was found in patients compared to controls, with no significant differences between the two patient groups. PMID:29617424

  2. Childhood cerebral palsy and the use of positioning systems to control body posture: Current practices.

    PubMed

    Pérez-de la Cruz, S

    One of the consequences of poor postural control in children with cerebral palsy is hip dislocation. This is due to the lack of weight-bearing in the sitting and standing positions. Orthotic aids can be used to prevent onset and/or progression. The aim of this study is to analyse the effectiveness of positioning systems in achieving postural control in patients with cerebral palsy, and discuss these findings with an emphasis on what may be of interest in the field of neurology. We selected a total of 18 articles on interventions in cerebral palsy addressing posture and maintenance of ideal postures to prevent deformities and related problems. The main therapeutic approaches employed combinations of botulinum toxin and orthoses, which reduced the incidence of hip dislocation although these results were not significant. On the other hand, using positioning systems in 3 different positions decreases use of botulinum toxin and surgery in children under 5 years old. The drawback is that these systems are very uncomfortable. Postural control systems helps control hip deformities in children with cerebral palsy. However, these systems must be used for prolonged periods of time before their effects can be observed. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Performing saccadic eye movements or blinking improves postural control.

    PubMed

    Rougier, Patrice; Garin, Mélanie

    2007-07-01

    To determine the relationship between eye movement and postural control on an undisturbed upright stance maintenance protocol, 15 young, healthy individuals were tested in various conditions. These conditions included imposed blinking patterns and horizontal and vertical saccadic eye movements. The directions taken by the center of pressure (CP) were recorded via a force platform on which the participants remained in an upright position. The CP trajectories were used to estimate, via a low-pass filter, the vertically projected movements of the center of gravity (CGv) and consequently the difference CP-CGv. An analysis of the frequency shows that regular bilateral blinking does not produce a significant change in postural control. In contrast, performing saccadic eye movements induces some reduced amplitude for both basic CGv and CP-CGv movements principally along the antero-posterior axis. The present result supports the theory that some ocular movements may modify postural control in the maintenance of the upright standing position in human participants.

  4. Quantifying and Reducing Posture-Dependent Distortion in Ballistocardiogram Measurements

    PubMed Central

    Javaid, Abdul Q.; Wiens, Andrew D.; Fesmire, N. Forrest; Weitnauer, Mary A.; Inan, Omer T.

    2015-01-01

    Ballistocardiography is a non-invasive measurement of the mechanical movement of the body caused by cardiac ejection of blood. Recent studies have demonstrated that ballistocardiogram (BCG) signals can be measured using a modified home weighing scale, and used to track changes in myocardial contractility and cardiac output. With this approach, the BCG can potentially be used both for preventive screening and for chronic disease management applications. However, for achieving high signal quality, subjects are required to stand still on the scale in an upright position for the measurement; the effects of intentional (for user comfort) or unintentional (due to user error) modifications in the position or posture of the subject during the measurement have not been investigated in the existing literature. In this study, we quantified the effects of different standing and seated postures on the measured BCG signals, and on the most salient BCG-derived features compared to reference standard measurements (e.g., impedance cardiography). We determined that the standing upright posture led to the least distorted signals as hypothesized, and that the correlation between BCG-derived timing interval features (R-J interval) and the pre-ejection period, PEP (measured using ICG), decreased significantly with impaired posture or sitting position. We further implemented two novel approaches to improve the PEP estimates from other standing and sitting postures, using system identification and improved J-wave detection methods. These approaches can improve the usability of standing BCG measurements in unsupervised settings (i.e. the home), by improving the robustness to non-ideal posture, as well as enabling high quality seated BCG measurements. PMID:26058064

  5. Posture-specific phantoms representing female and male adults in Monte Carlo-based simulations for radiological protection

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; Kramer, R.; Brayner, C.; Khoury, H. J.

    2010-08-01

    Does the posture of a patient have an effect on the organ and tissue absorbed doses caused by x-ray examinations? This study aims to find the answer to this question, based on Monte Carlo (MC) simulations of commonly performed x-ray examinations using adult phantoms modelled to represent humans in standing as well as in the supine posture. The recently published FASH (female adult mesh) and MASH (male adult mesh) phantoms have the standing posture. In a first step, both phantoms were updated with respect to their anatomy: glandular tissue was separated from adipose tissue in the breasts, visceral fat was separated from subcutaneous fat, cartilage was segmented in ears, nose and around the thyroid, and the mass of the right lung is now 15% greater than the left lung. The updated versions are called FASH2_sta and MASH2_sta (sta = standing). Taking into account the gravitational effects on organ position and fat distribution, supine versions of the FASH2 and the MASH2 phantoms have been developed in this study and called FASH2_sup and MASH2_sup. MC simulations of external whole-body exposure to monoenergetic photons and partial-body exposure to x-rays have been made with the standing and supine FASH2 and MASH2 phantoms. For external whole-body exposure for AP and PA projection with photon energies above 30 keV, the effective dose did not change by more than 5% when the posture changed from standing to supine or vice versa. Apart from that, the supine posture is quite rare in occupational radiation protection from whole-body exposure. However, in the x-ray diagnosis supine posture is frequently used for patients submitted to examinations. Changes of organ absorbed doses up to 60% were found for simulations of chest and abdomen radiographs if the posture changed from standing to supine or vice versa. A further increase of differences between posture-specific organ and tissue absorbed doses with increasing whole-body mass is to be expected.

  6. Pelvic morphology, body posture and standing balance characteristics of adolescent able-bodied and idiopathic scoliosis girls.

    PubMed

    Stylianides, Georgios A; Dalleau, Georges; Begon, Mickaël; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds system. Standing balance was measured using a force plate to identify the center of pressure (COP), and its anteroposterior (AP) and mediolateral (ML) displacements. A multivariate analysis of variance (MANOVA) was performed to determine differences between the two groups. A factor analysis was used to identify factors that best describe both groups. Statistical differences were identified between the groups for each of the parameter types. While spatial orientation of the pelvis was similar in both groups, five of the eight trunk postural variables of the scoliotic group were significantly different that the able-bodied group. Also, five out of the seven standing balance variables were higher in the scoliotic girls. Approximately 60% of the variation is supported by 4 factors that can be associated with a set of variables; standing balance variables (factor 1), body posture variables (factor 2), and pelvic morphology variables (factors 3 and 4). Pelvic distortion, body posture asymmetry, and standing imbalance are more pronounced in scoliotic girls, when compared to able-bodied girls. These findings may be beneficial when addressing balance and ankle proprioception exercises for the scoliotic population.

  7. Are automatic postural responses in patients with Parkinson's disease abnormal due to their stooped posture?

    PubMed

    Bloem, B R; Beckley, D J; van Dijk, J G

    1999-02-01

    Abnormal automatic postural responses are thought to contribute to balance impairment in Parkinson's disease. However, because postural responses are modifiable by stance, we have speculated that some postural abnormalities in patients with Parkinson's disease are secondary to their stooped stance. We have studied this assumption by assessing automatic postural responses in 30 healthy subjects who were instructed either to stand upright or to assume a typical parkinsonian posture. During both conditions, subjects received 20 serial 4 degrees 'toe-up' rotational perturbations from a supporting forceplate. We recorded short-latency (SL) and medium-latency (ML) responses from stretched gastrocnemius muscles and long-latency (LL) responses from shortened tibialis anterior muscles. We also assessed changes in the center of foot pressure (CFP) and the center of gravity (COG). The results were qualitatively compared to a previously described group of patients with Parkinson's disease who, under these circumstances, typically have large ML responses, small LL responses and insufficient voluntary postural corrections, accompanied by a slow rate of backward CFP displacement and an increased posterior COG displacement. The stooped posture resulted in unloading of medial gastrocnemius muscles and loading of tibialis anterior muscles. Onset latencies of stretch responses in gastrocnemius muscles were delayed in stooped subjects, but the onset of LL responses was markedly reduced. Amplitudes of both ML and LL responses were reduced in stooped subjects. Prestimulus COG and, to a lesser extent, CFP were shifted forwards in stooped subjects. Posterior COG displacement and the rate of backward CFP displacement were diminished in stooped subjects. Voluntary postural corrections were unchanged while standing stooped. These results indicate that some postural abnormalities of patients with Parkinson's disease (most notably the reduced LL responses) can be reproduced in healthy subjects mimicking a stooped parkinsonian posture. Other postural abnormalities (most notably the increased ML responses and insufficient voluntary responses) did not appear in stooped controls and may contribute to balance impairment in Parkinson's disease.

  8. Universal and individual characteristics of postural sway during quiet standing in healthy young adults

    PubMed Central

    Yamamoto, Tomohisa; Smith, Charles E; Suzuki, Yasuyuki; Kiyono, Ken; Tanahashi, Takao; Sakoda, Saburo; Morasso, Pietro; Nomura, Taishin

    2015-01-01

    The time course of the center of pressure (CoP) during human quiet standing, corresponding to body sway, is a stochastic process, influenced by a variety of features of the underlying neuro-musculo-skeletal system, such as postural stability and flexibility. Due to complexity of the process, sway patterns have been characterized in an empirical way by a number of indices, such as sway size and mean sway velocity. Here, we describe a statistical approach with the aim of estimating “universal” indices, namely parameters that are independent of individual body characteristics and thus are not “hidden” by the presence of individual, daily, and circadian variations of sway; in this manner it is possible to characterize the common aspects of sway dynamics across healthy young adults, in the assumption that they might reflect underlying neural control during quiet standing. Such universal indices are identified by analyzing intra and inter-subject variability of various indices, after sorting out individual-specific indices that contribute to individual discriminations. It is shown that the universal indices characterize mainly slow components of sway, such as scaling exponents of power-law behavior at a low-frequency regime. On the other hand, most of the individual-specific indices contributing to the individual discriminations exhibit significant correlation with body parameters, and they can be associated with fast oscillatory components of sway. These results are consistent with a mechanistic hypothesis claiming that the slow and the fast components of sway are associated, respectively, with neural control and biomechanics, supporting our assumption that the universal characteristics of postural sway might represent neural control strategies during quiet standing. PMID:25780094

  9. Electromyographic control of functional electrical stimulation in selected patients.

    PubMed

    Graupe, D; Kohn, K H; Basseas, S; Naccarato, E

    1984-07-01

    The paper describes initial results of above-lesion electromyographic (EMG) controlled functional electrical stimulation (FES) of paraplegics. Such controlled stimulation is to provide upper-motor-neuron paraplegics (T5 to T12) with self-controlled standing and some walking without braces and with only the help of walkers or crutches. The above-lesion EMG signal employed serves to map the posture of the patient's upper trunk via a computerized mapping of the temporal patterns of that EMG. Such control also has an inherent safety feature in that it prevents the patient from performing a lower-limb movement via FES unless his trunk posture is adequate. Copyright 2013, SLACK Incorporated.

  10. The effect of Kinesio Taping on postural control in subjects with non-specific chronic low back pain.

    PubMed

    Abbasi, Soheila; Rojhani-Shirazi, Zahra; Shokri, Esmaeil; García-Muro San José, Francisco

    2018-04-01

    The aim of this study was to investigate the possible alterations in postural control during upright standing in subjects with non-specific chronic low back pain and the effect of Kinesio taping on the postural control. Twenty subjects with non-specific chronic low back pain and twenty healthy subjects participated in this study. The center of pressure excursion was evaluated before the intervention for both groups, and immediately after intervention for the low back pain group. Independent sample t-test, Mann-Whitney test and repeated measure ANOVA were used for the statistical analysis of the data. There were significant differences in the center of pressure excursion between the low back pain group versus the healthy group. The results of the ANOVA demonstrated a statistically significant difference in the mean COP displacement and velocity before Kinesio Taping, immediately after, and 24 h after in the low back pain group. There are poor postural control mechanisms in subjects with non-specific chronic low back pain. Kinesio taping seems to change postural control immediately and have lasting effects until the day after. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects.

    PubMed

    Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura

    2014-01-01

    The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with 2 types of Parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), and in age-matched control subjects standing under perturbed conditions implemented by the Sensory Organization Test (SOT). Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measured the amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions. PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use of inertial sensors on the upper and lower body segments, is a promising and unobtrusive tool to characterize postural strategies performed to attain balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effects of emotional videos on postural control in children.

    PubMed

    Brandão, Arthur de Freitas; Palluel, Estelle; Olivier, Isabelle; Nougier, Vincent

    2016-03-01

    The link between emotions and postural control has been rather unexplored in children. The objective of the present study was to establish whether the projection of pleasant and unpleasant videos with similar arousal would lead to specific postural responses such as postural freezing, aversive or appetitive behaviours as a function of age. We hypothesized that postural sway would similarly increase with the viewing of high arousal videos in children and adults, whatever the emotional context. 40 children participated in the study and were divided into two groups of age: group 7-9 years (n=23; mean age=8 years ± 0.7) and group 10-12 years (n=17; mean age=11 years ± 0.7). 19 adults (mean age=25.8 years ± 4.4) also took part in the experiment. They viewed emotional videos while standing still on a force platform. Centre of foot pressure (CoP) displacements were analysed. Antero-posterior, medio-lateral mean speed and sway path length increased similarly with the viewing of high arousal movies in the younger, older children, and adults. Our findings suggest that the development of postural control is not influenced by the maturation of the emotional processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Postural responses to unexpected perturbations of balance during reaching

    PubMed Central

    Trivedi, Hari; Leonard, Julia A.; Ting, Lena H.; Stapley, Paul J.

    2014-01-01

    To study the interaction between feedforward and feedback modes of postural control, we investigated postural responses during unexpected perturbations of the support surface that occurred during forward reaching in a standing position. We examined postural responses in lower limb muscles of 9 human subjects. Baseline measures were obtained when subjects executed reaching movements to a target placed in front of them (R condition) and during postural responses to forward and backward support-surface perturbations (no reaching, P condition) during quiet stance. Perturbations were also given at different delays after the onset of reaching movements (RP conditions) as well as with the arm extended in the direction of the target, but not reaching (P/AE condition). Results showed that during perturbations to reaching (RP), the initial automatic postural response, occurring around 100 ms after the onset of perturbations, was relatively unchanged in latency or amplitude compared to control conditions (P and P/AE). However, longer latency postural responses were modulated to aid in the reaching movements during forward perturbations but not during backward perturbations. Our results suggest that the nervous system prioritizes the maintenance of a stable postural base during reaching, and that later components of the postural responses can be modulated to ensure the performance of the voluntary task. PMID:20035321

  14. The influence of Pilates exercises on body balance in the standing position of hearing impaired people.

    PubMed

    Walowska, Jagoda; Bolach, Bartosz; Bolach, Eugeniusz

    2017-11-13

    Hearing impairment may affect the body posture maintenance. The aim of the study was to evaluate the effect of modified Pilates exercise program on the body posture maintenance in hearing impaired people. Eighty students (aged 13-24) were enrolled and randomly allocated into two groups: test group (n = 41) which attended an original program based on modified Pilates exercises and control group (n = 39) which attended standard physical education classes. Stabilographic tests were conducted at baseline and after 6-week training program. Both groups showed improved control of body balance in a standing position manifested in reductions of the length of path, surface area, and speed of deflection. Modified Pilates program was significantly more effective in improving body balance control in relaxed posture and with feet together than standard physical education classes. The greater efficiency of the modified Pilates program was expressed in a significant improvement in balance control parameters, i.e., path length, surface area, and speed of deflection. The modified Pilates program was more effective in improving body balance control in the hearing impaired people than standard physical education classes. Modification of physical activity recommendations for hearing impaired students may be considered; however, further research is required. Implications for Rehabilitation Hearing impairment impacts the mental, social and, physical spheres of life as well as deteriorates equivalent reactions and the way body posture is maintained. In hearing impaired people, control of body balance and muscle coordination is often disturbed, thus more attention should be paid to exercises associated with balance which may improve the ability to learn and develop motor skills. Modified Pilates program was significantly more effective in improving body balance control than standard physical education classes in hearing impaired people.

  15. Effect of expertise in shooting and Taekwondo on bipedal and unipedal postural control isolated or concurrent with a reaction-time task.

    PubMed

    Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali

    2013-06-01

    It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Walking delays anticipatory postural adjustments but not reaction times in a choice reaction task.

    PubMed

    Haridas, C; Gordon, I T; Misiaszek, J E

    2005-06-01

    During standing, anticipatory postural adjustments (APAs) and focal movements are delayed while performing a choice reaction task, compared with a simple reaction task. We hypothesized that APAs and focal movements of a choice reaction task would be similarly delayed during walking. Furthermore, reaction times are delayed during walking compared with standing. We further hypothesized that APAs and focal movements would be delayed during walking, compared with standing, for both simple and choice reaction tasks. Subjects either walked or stood on a treadmill while holding on to stable handles. They were asked to push or pull on the handles in response to a visual cue. Muscle activity was recorded from muscles of the leg (APA) and arm (RT). Our results were in agreement with previous work showing APA onset was delayed in the choice reaction task compared with the simple reaction task. In addition, the interval between the onset of APA and focal movement activity increased with choice reaction tasks. The task of walking did not delay the onset of focal movement for either the simple or choice reaction tasks. Walking did delay the onset of the APA, but only during choice reaction tasks. The results suggest the added demand of walking does not significantly modify the control of focal arm movements. However, additional attentional demands while walking may compromise anticipatory postural control.

  17. Phase-dependent organization of postural adjustments associated with arm movements while walking.

    PubMed

    Nashner, L M; Forssberg, H

    1986-06-01

    This study examines the interactions between anteroposterior postural responses and the control of walking in human subjects. In the experimental paradigm, subjects walked upon a treadmill, gripping a rigid handle with one hand. Postural responses at different phases of stepping were elicited by rapid arm pulls or pushes against the handle. During arm movements, EMG's recorded the activity of representative arm, ankle, and thigh segment muscles. Strain gauges in the handle measured the force of the arm movement. A Selspot II system measured kinematics of the stepping movements. The duration of support and swing phases were marked by heel and toe switches in the soles of the subjects' shoes. In the first experiment, subjects were instructed to pull on the handle at their own pace. In these trials all subjects preferred to initiate pulls near heel strikes. Next, when instructed to pull as rapidly as possible in response to tone stimuli, reaction times were similar for all phases of the step cycle. Leg muscle responses associated with arm pulls and pushes, referred to as "postural activations," were directionally specific and preceded arm muscle activity. The temporal order and spatial distribution of postural activations in the muscles of the support leg were similar when arm pull movements occurred while the subject was standing in place and after heel strike while walking. Activations began in the ankle and radiated proximally to the thigh and then the arm. Activations of swing leg muscles were also directionally specific and involved flexion and forward or backward thrust of the limb. When arm movements were initiated during transitions from support by one leg to the other, patterns of postural activations were altered. Alterations usually occurred 10-20 ms before hell strikes and involved changes in the timing and sometimes the spatial structure of postural activations. Postural activation patterns are similar during in-place standing and during the support phase of locomotion. Walking and posture control appear to be separately organized but interrelated activities. Our results also suggest that the stepping generators, not peripheral feedback time locked to heel strikes, modulate postural activation patterns.

  18. Regional differences in lumbar spinal posture and the influence of low back pain

    PubMed Central

    Mitchell, Tim; O'Sullivan, Peter B; Burnett, Angus F; Straker, Leon; Smith, Anne

    2008-01-01

    Background Spinal posture is commonly a focus in the assessment and clinical management of low back pain (LBP) patients. However, the link between spinal posture and LBP is not fully understood. Recent evidence suggests that considering regional, rather than total lumbar spine posture is important. The purpose of this study was to determine; if there are regional differences in habitual lumbar spine posture and movement, and if these findings are influenced by LBP. Methods One hundred and seventy female undergraduate nursing students, with and without LBP, participated in this cross-sectional study. Lower lumbar (LLx), Upper lumbar (ULx) and total lumbar (TLx) spine angles were measured using an electromagnetic tracking system in static postures and across a range of functional tasks. Results Regional differences in lumbar posture and movement were found. Mean LLx posture did not correlate with ULx posture in sitting (r = 0.036, p = 0.638), but showed a moderate inverse correlation with ULx posture in usual standing (r = -0.505, p < 0.001). Regional differences in range of motion from reference postures in sitting and standing were evident. BMI accounted for regional differences found in all sitting and some standing measures. LBP was not associated with differences in regional lumbar spine angles or range of motion, with the exception of maximal backward bending range of motion (F = 5.18, p = 0.007). Conclusion This study supports the concept of regional differences within the lumbar spine during common postures and movements. Global lumbar spine kinematics do not reflect regional lumbar spine kinematics, which has implications for interpretation of measures of spinal posture, motion and loading. BMI influenced regional lumbar posture and movement, possibly representing adaptation due to load. PMID:19014712

  19. Continuous cognitive task promotes greater postural stability than an internal or external focus of attention.

    PubMed

    Polskaia, Nadia; Richer, Natalie; Dionne, Eliane; Lajoie, Yves

    2015-02-01

    Research has demonstrated clear advantages of using an external focus of attention in postural control tasks, presumably since it allows a more automatic control of posture to emerge. However, the influence of cognitive tasks on postural stability has produced discordant results. This study aimed to compare the effects of an internal focus of attention, an external focus of attention and a continuous cognitive task on postural control. Twenty healthy participants (21.4±2.6 years) were recruited for this study. They were asked to stand quietly on a force platform with their feet together in three different attentional focus conditions: an internal focus condition (minimizing movements of the hips), an external focus condition (minimizing movements of markers placed on the hips) and a cognitive task condition (silently counting the total number of times a single digit was verbalized in a 3-digit sequence comprised of 30 numbers). Results demonstrated improved stability while performing the cognitive task as opposed to the internal and external focus conditions, as evidenced by a reduction in sway area, sway variability in the anterior-posterior (AP) and medial-lateral (ML) directions, and mean velocity (ML only). Results suggest that the use of a continuous cognitive task permits attention to be withdrawn from the postural task, thereby facilitating a more automatic control of posture. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Dynamic genetic linkage of intermediate blood pressure phenotypes during postural adaptations in a founder population

    PubMed Central

    Arenas, I. A.; Tremblay, J.; Deslauriers, B.; Sandoval, J.; Šeda, O.; Gaudet, D.; Merlo, E.; Kotchen, T.; Cowley, A. W.

    2013-01-01

    Blood pressure (BP) is a dynamic phenotype that varies rapidly to adjust to changing environmental conditions. Standing upright is a recent evolutionary trait, and genetic factors that influence postural adaptations may contribute to BP variability. We studied the effect of posture on the genetics of BP and intermediate BP phenotypes. We included 384 sib-pairs in 64 sib-ships from families ascertained by early-onset hypertension and dyslipidemia. Blood pressure, three hemodynamic and seven neuroendocrine intermediate BP phenotypes were measured with subjects lying supine and standing upright. The effect of posture on estimates of heritability and genetic covariance was investigated in full pedigrees. Linkage was conducted on 196 candidate genes by sib-pair analyses, and empirical estimates of significance were obtained. A permutation algorithm was implemented to study the postural effect on linkage. ADRA1A, APO, CAST, CORIN, CRHR1, EDNRB, FGF2, GC, GJA1, KCNB2, MMP3, NPY, NR3C2, PLN, TGFBR2, TNFRSF6, and TRHR showed evidence of linkage with any phenotype in the supine position and not upon standing, whereas AKR1B1, CD36, EDNRA, F5, MMP9, PKD2, PON1, PPARG, PPARGC1A, PRKCA, and RET were specifically linked to standing phenotypes. Genetic profiling was undertaken to show genetic interactions among intermediate BP phenotypes and genes specific to each posture. When investigators perform genetic studies exclusively on a single posture, important genetic components of BP are missed. Supine and standing BPs have distinct genetic signatures. Standardized maneuvers influence the results of genetic investigations into BP, thus reflecting its dynamic regulation. PMID:23269701

  1. Pelvic Morphology, Body Posture and Standing Balance Characteristics of Adolescent Able-Bodied and Idiopathic Scoliosis Girls

    PubMed Central

    Stylianides, Georgios A.; Dalleau, Georges; Begon, Mickaël; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds system. Standing balance was measured using a force plate to identify the center of pressure (COP), and its anteroposterior (AP) and mediolateral (ML) displacements. A multivariate analysis of variance (MANOVA) was performed to determine differences between the two groups. A factor analysis was used to identify factors that best describe both groups. Statistical differences were identified between the groups for each of the parameter types. While spatial orientation of the pelvis was similar in both groups, five of the eight trunk postural variables of the scoliotic group were significantly different that the able-bodied group. Also, five out of the seven standing balance variables were higher in the scoliotic girls. Approximately 60% of the variation is supported by 4 factors that can be associated with a set of variables; standing balance variables (factor 1), body posture variables (factor 2), and pelvic morphology variables (factors 3 and 4). Pelvic distortion, body posture asymmetry, and standing imbalance are more pronounced in scoliotic girls, when compared to able-bodied girls. These findings may be beneficial when addressing balance and ankle proprioception exercises for the scoliotic population. PMID:23875021

  2. Postural imbalance and falls in PSP correlate with functional pathology of the thalamus.

    PubMed

    Zwergal, A; la Fougère, C; Lorenzl, S; Rominger, A; Xiong, G; Deutschenbaur, L; Linn, J; Krafczyk, S; Dieterich, M; Brandt, T; Strupp, M; Bartenstein, P; Jahn, K

    2011-07-12

    To determine how postural imbalance and falls are related to regional cerebral glucose metabolism (PET) and functional activation of the cerebral postural network (fMRI) in patients with progressive supranuclear palsy (PSP). Sixteen patients with PSP, who had self-monitored their frequency of falls, underwent a standardized clinical assessment, posturographic measurement of balance during modified sensory input, and a resting [¹⁸F]FDG-PET. In addition, patients performed an fMRI paradigm using mental imagery of standing. Results were compared to healthy controls (n = 16). The frequency of falls/month in patients (range 1-40) correlated with total PSP rating score (r = 0.90). Total sway path in PSP significantly correlated with frequency of falls, especially during modulated sensory input (eyes open: r = 0.62, eyes closed: r = 0.67, eyes open/head extended: r = 0.84, eyes open/foam-padded platform: r = 0.87). Higher sway path values and frequency of falls were associated with decreased regional glucose metabolism (rCGM) in the thalamus (sway path: r = -0.80, falls: r = -0.64) and increased rCGM in the precentral gyrus (sway path: r = 0.79, falls: r = 0.64). Mental imagery of standing during fMRI revealed a reduced activation of the mesencephalic brainstem tegmentum and the thalamus in patients with postural imbalance and falls. The new and clinically relevant finding of this study is that imbalance and falls in PSP are closely associated with thalamic dysfunction. Deficits in thalamic postural control get most evident when balance is assessed during modified sensory input. The results are consistent with the hypothesis that reduced thalamic activation via the ascending brainstem projections may cause postural imbalance in PSP.

  3. Evaluating biomechanics of user-selected sitting and standing computer workstation.

    PubMed

    Lin, Michael Y; Barbir, Ana; Dennerlein, Jack T

    2017-11-01

    A standing computer workstation has now become a popular modern work place intervention to reduce sedentary behavior at work. However, user's interaction related to a standing computer workstation and its differences with a sitting workstation need to be understood to assist in developing recommendations for use and set up. The study compared the differences in upper extremity posture and muscle activity between user-selected sitting and standing workstation setups. Twenty participants (10 females, 10 males) volunteered for the study. 3-D posture, surface electromyography, and user-reported discomfort were measured while completing simulated tasks with each participant's self-selected workstation setups. Sitting computer workstation associated with more non-neutral shoulder postures and greater shoulder muscle activity, while standing computer workstation induced greater wrist adduction angle and greater extensor carpi radialis muscle activity. Sitting computer workstation also associated with greater shoulder abduction postural variation (90th-10th percentile) while standing computer workstation associated with greater variation for should rotation and wrist extension. Users reported similar overall discomfort levels within the first 10 min of work but had more than twice as much discomfort while standing than sitting after 45 min; with most discomfort reported in the low back for standing and shoulder for sitting. These different measures provide understanding in users' different interactions with sitting and standing and by alternating between the two configurations in short bouts may be a way of changing the loading pattern on the upper extremity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Embodied prosthetic arm stabilizes body posture, while unembodied one perturbs it.

    PubMed

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2016-10-01

    Senses of ownership (this arm belongs to me) and agency (I am controlling this arm) originate from sensorimotor system. External objects can be integrated into the sensorimotor system following long-term use, and recognized as one's own body. We examined how an (un)embodied prosthetic arm modulates whole-body control, and assessed the components of prosthetic embodiment. Nine unilateral upper-limb amputees participated. Four frequently used their prosthetic arm, while the others rarely did. Their postural sway was measured during quiet standing with or without their prosthesis. The frequent users showed greater sway when they removed the prosthesis, while the rare users showed greater sway when they fitted the prosthesis. Frequent users reported greater everyday feelings of postural stabilization by prosthesis and a larger sense of agency over the prosthesis. We suggest that a prosthetic arm maintains or perturbs postural control, depending on the prosthetic embodiment, which involves sense of agency rather than ownership. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Age-related effects on postural control under multi-task conditions.

    PubMed

    Granacher, Urs; Bridenbaugh, Stephanie A; Muehlbauer, Thomas; Wehrle, Anja; Kressig, Reto W

    2011-01-01

    Changes in postural sway and gait patterns due to simultaneously performed cognitive (CI) and/or motor interference (MI) tasks have previously been reported and are associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of a CI and/or MI task on static and dynamic postural control in young and elderly subjects, and to find out whether there is an association between measures of static and dynamic postural control while concurrently performing the CI and/or MI task. A total of 36 healthy young (n = 18; age: 22.3 ± 3.0 years; BMI: 21.0 ± 1.6 kg/m(2)) and elderly adults (n = 18; age: 73.5 ± 5.5 years; BMI: 24.2 ± 2.9 kg/m(2)) participated in this study. Static postural control was measured during bipedal stance, and dynamic postural control was obtained while walking on an instrumented walkway. Irrespective of the task condition, i.e. single-task or multiple tasks, elderly participants showed larger center-of-pressure displacements and greater stride-to-stride variability than younger participants. Associations between measures of static and dynamic postural control were found only under the single-task condition in the elderly. Age-related deficits in the postural control system seem to be primarily responsible for the observed results. The weak correlations detected between static and dynamic measures could indicate that fall-risk assessment should incorporate dynamic measures under multi-task conditions, and that skills like erect standing and walking are independent of each other and may have to be trained complementarily. Copyright © 2010 S. Karger AG, Basel.

  6. Closed loop kinesthetic feedback for postural control rehabilitation.

    PubMed

    Vérité, Fabien; Bachta, Wael; Morel, Guillaume

    2014-01-01

    Postural control rehabilitation may benefit from the use of smart devices providing biofeedback. This approach consists of increasing the patients perception of their postural state. Namely, postural state is monitored and fed back in real time to the patients through one or more sensory channels. This allows implementing rehabilitation exercises where the patients control their posture with the help of additional sensory inputs. In this paper, a closed loop control of the Center-Of-Pressure (CoP) based on kinesthetic feedback is proposed as a new form of biofeedback. The motion of a one Degree of Freedom (DoF) translational device, lightly touched by the patient's forefinger, is servoed to the patient's CoP position extracted from the measurements of a force plate on which he/she stands. As a result, the patient's CoP can be controllably displaced. A first set of experiments is used to prove the feasibility of this closed-loop control under ideal conditions favoring the perception of the kinesthetic feedback, while the subject is totally unaware of the context. A second set of experiments is then proposed to evaluate the robustness of this approach under experimental conditions that are more realistic with regards to the clinical context of a rehabilitation program involving biofeedback-based exercises.

  7. A Correlation-based Framework for Evaluating Postural Control Stochastic Dynamics

    PubMed Central

    Hernandez, Manuel E.; Snider, Joseph; Stevenson, Cory; Cauwenberghs, Gert; Poizner, Howard

    2016-01-01

    The inability to maintain balance during varying postural control conditions can lead to falls, a significant cause of mortality and serious injury among older adults. However, our understanding of the underlying dynamical and stochastic processes in human postural control have not been fully explored. To further our understanding of the underlying dynamical processes, we examine a novel conceptual framework for studying human postural control using the center of pressure (COP) velocity autocorrelation function (COP-VAF) and compare its results to Stabilogram Diffusion Analysis (SDA). Eleven healthy young participants were studied under quiet unipedal or bipedal standing conditions with eyes either opened or closed. COP trajectories were analyzed using both the traditional posturographic measure SDA and the proposed COP-VAF. It is shown that the COP-VAF leads to repeatable, physiologically meaningful measures that distinguish postural control differences in unipedal versus bipedal stance trials with and without vision in healthy individuals. More specifically, both a unipedal stance and lack of visual feedback increased initial values of the COP-VAF, magnitude of the first minimum, and diffusion coefficient, particularly in contrast to bipedal stance trials with open eyes. Use of a stochastic postural control model, based on an Ornstein-Uhlenbeck process that accounts for natural weight-shifts, suggests an increase in spring constant and decreased damping coefficient when fitted to experimental data. This work suggests that we can further extend our understanding of the underlying mechanisms behind postural control in quiet stance under varying stance conditions using the COP-VAF and provides a tool for quantifying future neurorehabilitative interventions. PMID:26011886

  8. Dynamic multi-segmental postural control in patients with chronic non-specific low back pain compared to pain-free controls: A cross-sectional study.

    PubMed

    McCaskey, Michael A; Wirth, Brigitte; Schuster-Amft, Corina; de Bruin, Eling D

    2018-01-01

    Reduced postural control is thought to contribute to the development and persistence of chronic non-specific low back pain (CNLBP). It is therefore frequently assessed in affected patients and commonly reported as the average amount of postural sway while standing upright under a variety of sensory conditions. These averaged linear outcomes, such as mean centre of pressure (CP) displacement or mean CP surface areas, may not reflect the true postural status. Adding nonlinear outcomes and multi-segmental kinematic analysis has been reported to better reflect the complexity of postural control and may detect subtler postural differences. In this cross-sectional study, a combination of linear and nonlinear postural parameters were assessed in patients with CNLBP (n = 24, 24-75 years, 9 females) and compared to symptom-free controls (CG, n = 34, 22-67 years, 11 females). Primary outcome was postural control measured by variance of joint configurations (uncontrolled manifold index, UI), confidence ellipse surface areas (CEA) and approximate entropy (ApEn) of CP dispersion during the response phase of a perturbed postural control task on a swaying platform. Secondary outcomes were segment excursions and clinical outcome correlates for pain and function. Non-parametric tests for group comparison with P-adjustment for multiple comparisons were conducted. Principal component analysis was applied to identify patterns of segmental contribution in both groups. CNLBP and CG performed similarly with respect to the primary outcomes. Comparison of joint kinematics revealed significant differences of hip (P < .001) and neck (P < .025) angular excursion, representing medium to large group effects (r's = .36 - .51). Significant (P's < .05), but moderate correlations of ApEn (r = -.42) and UI (r = -.46) with the health-related outcomes were observed. These findings lend further support to the notion that averaged linear outcomes do not suffice to describe subtle postural differences in CNLBP patients with low to moderate pain status.

  9. Characterizing the human postural control system using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro

    2010-01-01

    Detrended fluctuation analysis is used to study the behaviour of the time series of the position of the center of pressure, output from the activity of a human postural control system. The results suggest that these trajectories present a crossover in their scaling properties from persistent (for high frequencies, short-range time scale) to anti-persistent (for low frequencies, long-range time scale) behaviours. The values of the scaling exponent found for the persistent parts of the trajectories are very similar for all the cases analysed. The similarity of the results obtained for the measurements done with both eyes open and both eyes closed indicate either that the visual system may be disregarded by the postural control system, while maintaining quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with this technique.

  10. Light and heavy touch reduces postural sway and modifies axial tone in Parkinson’s disease

    PubMed Central

    Franzén, Erika; Paquette, Caroline; Gurfinkel, Victor; Horak, Fay

    2014-01-01

    Background Light touch with a stable object reduces postural sway by increasing axial postural tone in healthy subjects. However, it is unknown whether subjects with Parkinson’s disease (PD), who have more postural sway and higher axial postural tone than healthy subjects, can benefit from haptic touch. Objective To investigate the effect of light and heavy touch on postural stability and hip tone in subjects with PD. Methods Fourteen subjects with mid-stage PD, and 14 healthy control subjects were evaluated during quiet standing with eyes closed with their arms: 1) crossed, 2) lightly touching a fixed rigid bar in front of them and 3) firmly gripping the bar. Postural sway was measured with a forceplate and axial hip tone was quantified using a unique device that measures the resistance of the hips to yaw rotation while maintaining active stance. Results Subjects with PD significantly decreased their postural sway with light or heavy touch (p<0.001 vs. arms crossed), similarly as control subjects. Without touch, hip tone was larger in PD subjects. With touch, however, tone values were similar in both groups. This change in hip tone with touch was highly correlated with the initial amount of tone (PD: r=− 0.72 to −0.95 and controls: r=−0.74 to−0.85). Conclusions We showed, for the first time, that subjects with PD benefit from touch similarly to control subjects and that despite higher axial postural tone, PD subjects are able to modulate their tone with touch. Future studies should investigate the complex relationship between touch and postural tone. PMID:22415944

  11. The effect of standing desks on manual control in children and young adults.

    PubMed

    Britten, L; Shire, K; Coats, R O; Astill, S L

    2016-07-01

    The aim of the present study was to establish if and how the additional postural constraint of standing affects accuracy and precision of goal directed naturalistic actions. Forty participants, comprising 20 young adults aged 20-23 years and 20 children aged 9-10 years completed 3 manual dexterity tasks on a tablet laptop with a handheld stylus during two separate conditions (1) while standing and (2) while seated. The order of conditions was counterbalanced across both groups of participants. The tasks were (1) a tracking task, where the stylus tracked a dot in a figure of 8 at 3 speeds, (2) an aiming task where the stylus moved from dot to dot with individual movements creating the outline of a pentagram and (3) a tracing task, where participants had to move the stylus along a static pathway or maze. Root mean squared error (RMSE), movement time and path accuracy, respectively, were used to quantify the effect that postural condition had on manual control. Overall adults were quicker and more accurate than children when performing all 3 tasks, and where the task speed was manipulated accuracy was better at slower speeds for all participants. Surprisingly, children performed these tasks more quickly and more accurately when standing compared to when sitting. In conclusion, standing at a desk while performing goal directed tasks did not detrimentally affect children's manual control, and moreover offered a benefit. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A new method for sudden mechanical perturbation with axial load, to assess postural control in sitting and standing.

    PubMed

    Claus, Andrew P; Verrel, Julius; Pounds, Paul E I; Shaw, Renee C; Brady, Niamh; Chew, Min T; Dekkers, Thomas A; Hodges, Paul W

    2016-05-03

    Sudden application of load along a sagittal or coronal axis has been used to study trunk stiffness, but not axial (vertical) load. This study introduces a new method for sudden-release axial load perturbation. Prima facie validity was supported by comparison with standard mechanical systems. We report the response of the human body to axial perturbation in sitting and standing and within-day repeatability of measures. Load of 20% of body weight was released from light contact onto the shoulders of 22 healthy participants (10 males). Force input was measured via force transducers at shoulders, output via a force plate below the participant, and kinematics via 3-D motion capture. System identification was used to fit data from the time of load release to time of peak load-displacement, fitting with a 2nd-order mass-spring-damper system with a delay term. At peak load-displacement, the mean (SD) effective stiffness measured with this device for participants in sitting was 12.0(3.4)N/mm, and in standing was 13.3(4.2)N/mm. Peak force output exceeded input by 44.8 (10.0)% in sitting and by 30.4(7.9)% in standing. Intra-class correlation coefficients for within-day repeatability of axial stiffness were 0.58 (CI: -0.03 to 0.83) in sitting and 0.82(0.57-0.93) in standing. Despite greater degrees of freedom in standing than sitting, standing involved lesser time, downward displacement, peak output force and was more repeatable in defending upright postural control against the same axial loads. This method provides a foundation for future studies of neuromuscular control with axial perturbation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of Recipient Posture on Persuasion.

    ERIC Educational Resources Information Center

    Heesacker, Martin; Petty, Richard E.

    Sixty-five female undergraduate students who were either standing or reclining listened to a tape-recorded counterattitudinal speech containing either strong or weak arguments. Their evaluations revealed a significant interaction between posture (standing or reclining) and quality of arguments (strong or weak) on a measure of attitude change.…

  14. Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense.

    PubMed

    Zafar, H; Alghadir, A H; Iqbal, Z A

    2017-12-01

    To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn't affect head-neck relocation error in normal healthy subjects.

  15. Relationship between Spectral Characteristics of Spontaneous Postural Sway and Motion Sickness Susceptibility.

    PubMed

    Laboissière, Rafael; Letievant, Jean-Charles; Ionescu, Eugen; Barraud, Pierre-Alain; Mazzuca, Michel; Cian, Corinne

    2015-01-01

    Motion sickness (MS) usually occurs for a narrow band of frequencies of the imposed oscillation. It happens that this frequency band is close to that which are spontaneously produced by postural sway during natural stance. This study examined the relationship between reported susceptibility to motion sickness and postural control. The hypothesis is that the level of MS can be inferred from the shape of the Power Spectral Density (PSD) profile of spontaneous sway, as measured by the displacement of the center of mass during stationary, upright stance. In Experiment 1, postural fluctuations while standing quietly were related to MS history for inertial motion. In Experiment 2, postural stability measures registered before the onset of a visual roll movement were related to MS symptoms following the visual stimulation. Study of spectral characteristics in postural control showed differences in the distribution of energy along the power spectrum of the antero-posterior sway signal. Participants with MS history provoked by exposure to inertial motion showed a stronger contribution of the high frequency components of the sway signal. When MS was visually triggered, sick participants showed more postural sway in the low frequency range. The results suggest that subject-specific PSD details may be a predictor of the MS level. Furthermore, the analysis of the sway frequency spectrum provided insight into the intersubject differences in the use of postural control subsystems. The relationship observed between MS susceptibility and spontaneous posture is discussed in terms of postural sensory weighting and in relation to the nature of the provocative stimulus.

  16. Comparison of Sedentary Behaviors in Office Workers Using Sit-Stand Tables With and Without Semiautomated Position Changes.

    PubMed

    Barbieri, Dechristian França; Srinivasan, Divya; Mathiassen, Svend Erik; Oliveira, Ana Beatriz

    2017-08-01

    We compared usage patterns of two different electronically controlled sit-stand tables during a 2-month intervention period among office workers. Office workers spend most of their working time sitting, which is likely detrimental to health. Although the introduction of sit-stand tables has been suggested as an effective intervention to decrease sitting time, limited evidence is available on usage patterns of sit-stand tables and whether patterns are influenced by table configuration. Twelve workers were provided with standard sit-stand tables (nonautomated table group) and 12 with semiautomated sit-stand tables programmed to change table position according to a preset pattern, if the user agreed to the system-generated prompt (semiautomated table group). Table position was monitored continuously for 2 months after introducing the tables, as a proxy for sit-stand behavior. On average, the table was in a "sit" position for 85% of the workday in both groups; this percentage did not change significantly during the 2-month period. Switches in table position from sit to stand were, however, more frequent in the semiautomated table group than in the nonautomated table group (0.65 vs. 0.29 hr -1 ; p = .001). Introducing a semiautomated sit-stand table appeared to be an attractive alternative to a standard sit-stand table, because it led to more posture variation. A semiautomated sit-stand table may effectively contribute to making postures more variable among office workers and thus aid in alleviating negative health effects of extensive sitting.

  17. Monitoring Fatigue Status with HRV Measures in Elite Athletes: An Avenue Beyond RMSSD?

    PubMed

    Schmitt, Laurent; Regnard, Jacques; Millet, Grégoire P

    2015-01-01

    Among the tools proposed to assess the athlete's "fatigue," the analysis of heart rate variability (HRV) provides an indirect evaluation of the settings of autonomic control of heart activity. HRV analysis is performed through assessment of time-domain indices, the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (RMSSD) measured during short (5 min) recordings in supine position upon awakening in the morning and particularly the logarithm of RMSSD (LnRMSSD) has been proposed as the most useful resting HRV indicator. However, if RMSSD can help the practitioner to identify a global "fatigue" level, it does not allow discriminating different types of fatigue. Recent results using spectral HRV analysis highlighted firstly that HRV profiles assessed in supine and standing positions are independent and complementary; and secondly that using these postural profiles allows the clustering of distinct sub-categories of "fatigue." Since, cardiovascular control settings are different in standing and lying posture, using the HRV figures of both postures to cluster fatigue state embeds information on the dynamics of control responses. Such, HRV spectral analysis appears more sensitive and enlightening than time-domain HRV indices. The wealthier information provided by this spectral analysis should improve the monitoring of the adaptive training-recovery process in athletes.

  18. The effect of vision on postural strategies in Prader-Willi patients.

    PubMed

    Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Grugni, Graziano; Priano, Lorenzo; Capodaglio, Paolo

    2011-01-01

    The aim of this study was to quantify the role of visual contribution in patients with Prader-Willi syndrome (PWS) on balance maintenance using a force platform. We enrolled 14 individuals with PWS free from conditions associated with impaired balance, 44 obese (OG) and 20 healthy controls (CG). Postural sway was measured for 60s while standing on a force platform (Kistler, CH; acquisition frequency: 500 Hz) integrated with a video system. Patients maintained an upright standing position with Open Eyes (OE) and then with Closed Eyes (CE). The ratio between the value of the parameter under OE and CE conditions was measured. Under OE condition PWS and OG were characterized by higher postural instability than CG, with the PWS group showing poorer balance capacity than OG. The Romberg ratio showed that while OG and CG had lower balance without vision, PWS maintained the same performance changing from OE to CE. The integration of different sensory inputs appears similar in OG and CG with higher postural stability under OE than CE. Balance in PWS is not influenced by the elimination of visual input. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The effect of transcutaneous electrical nerve stimulation on postural sway on fatigued dorsi-plantar flexor.

    PubMed

    Yu, JaeHo; Lee, SoYeon; Kim, HyongJo; Seo, DongKwon; Hong, JiHeon; Lee, DongYeop

    2014-01-01

    The application of transcutaneous electrical nerve stimulation (TENS) enhances muscle weakness and static balance by muscle fatigue. It was said that TENS affects decrease of the postural sway. On the other hand, the applications of TENS to separate dorsi-plantar flexor and the comparison with and without visual input have not been studied. Thus, the aim of this study was to compare the effects of TENS on fatigued dorsi-plantar flexor with and without visual input. 13 healthy adult males and 12 females were recruited and agreed to participate as the subject (mean age 20.5 ± 1.4, total 25) in this study after a preliminary research. This experiment was a single group repeated measurements design in three days. The first day, after exercise-induced fatigue, the standing position was maintained for 30 minutes and then the postural sway was measured on eyes open(EO) and eyes closed(EC). The second, TENS was applied to dorsi flexor in standing position for 30 minutes after conducting exercise-induced fatigue. On the last day, plantar flexor applied by TENS was measured to the postural sway on EO and EC after same exercise-induced fatigue. The visual input was not statistically difference between the groups. However, when compared of dorsi-plantar flexor after applied to TENS without visual input, the postural sway of plantar flexor was lower than the dorsi flexor (p< 0.05). As the result, the application of TENS in GCM clinically decreases the postural sway with visual input it helps to stable posture control and prevent to falling down.

  20. Static and dynamic posture control in postlingual cochlear implanted patients: effects of dual-tasking, visual and auditory inputs suppression

    PubMed Central

    Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel

    2014-01-01

    Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older. PMID:24474907

  1. Static and dynamic posture control in postlingual cochlear implanted patients: effects of dual-tasking, visual and auditory inputs suppression.

    PubMed

    Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel

    2013-01-01

    Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older.

  2. Comparison of posture and balance in cancer survivors and age-matched controls.

    PubMed

    Schmitt, Abigail C; Repka, Chris P; Heise, Gary D; Challis, John H; Smith, Jeremy D

    2017-12-01

    The combination of peripheral neuropathy and other treatment-associated side effects is likely related to an increased incidence of falls in cancer survivors. The purpose of this study was to quantify differences in postural stability between healthy age-matched controls and cancer survivors. Quiet standing under four conditions (eyes open/closed, rigid/compliant surface) was assessed in 34 cancer survivors (2 males, 32 females; age: 54(13) yrs., height: 1.62(0.07) m; mass: 78.5(19.5) kg) and 34 age-matched controls (5 males, 29 females; age: 54(15) yrs.; height: 1.62(0.08) m; mass: 72.8(21.1) kg). Center of pressure data were collected for 30s and the trajectories were analyzed (100Hz). Three-factor (group*surface*vision) mixed model MANOVAs with repeated measures were used to determine the effect of vision and surface on postural steadiness between groups. Cancer survivors exhibited larger mediolateral root-mean square distance and velocity of the center of pressure, as well as increased 95% confidence ellipse area (P<0.01) when compared with their age-matched counterparts. For example, when removing visual input, cancer survivors had an average increase in 95% confidence ellipse area of 91.8mm 2 while standing on a rigid surface compared to a 68.6mm 2 increase for the control group. No frequency-based center of pressure measures differed between groups. Cancer survivors exhibit decreased postural steadiness when compared with age-matched controls. For cancer survivors undergoing rehabilitation focused on existing balance deficits, a small subset of the center of pressure measures presented here can be used to track progress throughout the intervention and potentially mitigate fall risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Falls and postural control in older adults with cataracts

    PubMed Central

    Nodehi Moghadam, Afsun; Goudarzian, Maryam; Azadi, Farhad; Hosseini, Seide Masume; Mosallanezhad, Zahra; Karimi, Nouraddin; Larne, Yassin; Habibi, Maryam; Yaghmaei, Poorya

    2015-01-01

    Background: There is increasing evidence that visual impairment contribute to falling. The aim of this study was to determine the influence of vision impairment of old adult patients with cataract on the occurrence of falls and postural control. Methods: According to the results of screening ophthalmic examination, 48 cataract patients (mean±SD aged 68.5 ± 6.08 yrs.) and 50 individuals without any obvious eye disorders (mean age ± SD 70.7 ± 5.97 yrs.) were enrolled in this study. The postural control was determined using the clinical test of Sensory Interaction and Balance (CTSIB) and Timed up and Go (TUG) test. Results: The results of this study revealed that 18% (n = 9) of the normal individuals and 22.9% (n =11) of the cataract patients had at least two falls in the past 12 months. However, the result of chisquare test did not show any differences between the two groups (p= 0.36). The mean ± SD TUG times in cataract and control groups in our study were15.17 ± 3.58 and13.77 ± 4.90, respectively. However, no significant differences were found between the two groups (p= 0.12).The results of CTSIB test showed no significant differences between the two groups on standing on the floor with eyes open and eyes closed (p= 0.61, p= 0.89) and on standing on the foam with eyes open and eyes closed (p= 0.32, p= 0.74 ). Conclusion: According to the results of CTSIB and TUG tests, vision impairment of old adult patients with cataract is not associated with falls and balance disorders. Further work including assessment of postural control with advanced devices and considering other falls risk factors are also required to identify predictors of falls in cataract patients. PMID:26913274

  4. Postural control deficit during sit-to-walk in patients with Parkinson's disease and freezing of gait.

    PubMed

    Mezzarobba, Susanna; Grassi, Michele; Valentini, Roberto; Bernardis, Paolo

    2018-03-01

    The intricate linkage between Freezing of Gait (FoG) and postural control in Parkinson's disease (PD) is unclear. We analyzed the impact of FoG on dynamic postural control. 24 PD patients, 12 with (PD + FoG), 12 without FoG (PD-FoG), and 12 healthy controls, were assessed in ON state. Mobility and postural control were measured with clinical scales (UPDRS III, BBS, MPAS) and with kinematic and kinetic analysis during three tasks, characterized by levels of increasing difficulty to plan sequential movement of postural control: walk (W), gait initiation (GI) and sit-to-walk (STW). The groups were balanced by age, disease duration, disease severity, mobility and balance. During STW, the spatial distribution of COP trajectories in PD + FoG patients are spread over medial-lateral space more than in the PD-FoG (p < .001). Moreover, the distribution of COP positions. in the transition between sit-to-stand and gait initiation, is not properly shifted toward the leading leg, as in PD-FoG and healthy controls, but it is more centrally dispersed (p < .01) with a delayed weight forward progression (p < .05). In GI task and walk task, COM and COP differences are less evident and even absent between PD patients. PD + FoG show postural control differences in STW, compared with PD-FoG and healthy. Different spatial distribution of COP trajectories, between two PD groups are probably due to a deficit to plan postural control during a more demanding motor pattern, such as STW. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Impact of Cognitive Loading on Postural Control in Parkinson’s Disease With Freezing of Gait

    PubMed Central

    Buated, Wannipat; Lolekha, Praween; Hidaka, Shohei; Fujinami, Tsutomu

    2016-01-01

    Objective:To assess standing balance in Parkinson’s disease (PD) patients with and without freezing of gait (FOG) during cognitive loading. Method:A balance assessment with cognitive loading, reading (RE) and counting backward (CB), was performed by the Nintendo Wii Fit in 60 PD patients (Hoehn and Yahr stages 1-3) at Thammasat University Hospital, Thailand. The participants were grouped into FOG and non-FOG according to the Freezing of Gait–Questionnaire (FOG-Q) scores. The center of pressure (CoP) in terms of path length (PL), sway area (SA), root mean square (RMS), medio-lateral (ML), and antero-posterior (AP) were analyzed. Results:Significant increases of PL were observed in both groups of PD patients during cognitive loading (p < .001). Meanwhile, the increased differences of PL during cognitive loading in PD-FOG were larger than in PD-non-FOG. The ML displacement during counting backward was significantly increased in PD-FOG (p = .012). Conclusion:Cognitive loading influenced standing balance and postural sway of PD patients. The effects were more prominent in PD-FOG. These findings represent the interactions between cognitive function, postural control, and FOG in PD. PMID:28680941

  6. Role of brain hemispheric dominance in anticipatory postural control strategies.

    PubMed

    Cioncoloni, David; Rosignoli, Deborah; Feurra, Matteo; Rossi, Simone; Bonifazi, Marco; Rossi, Alessandro; Mazzocchio, Riccardo

    2016-07-01

    Most of the cerebral functions are asymmetrically represented in the two hemispheres. Moreover, dexterity and coordination of the distal segment of the dominant limbs depend on cortico-motor lateralization. In this study, we investigated whether postural control may be also considered a lateralized hemispheric brain function. To this aim, 15 young subjects were tested in standing position by measuring center of pressure (COP) shifts along the anteroposterior axis (COP-Y) during dynamic posturography before and after continuous Theta Burst Stimulation (cTBS) intervention applied to the dominant or non-dominant M1 hand area as well as to the vertex. We show that when subjects were expecting a forward platform translation, the COP-Y was positioned significantly backward or forward after dominant or non-dominant M1 stimulation, respectively. We postulate that cTBS applied on M1 may have disrupted the functional connectivity between intra- and interhemispheric areas implicated in the anticipatory control of postural stability. This study suggests a functional asymmetry between the two homologous primary motor areas, with the dominant hemisphere playing a critical role in the selection of the appropriate postural control strategy.

  7. Postural control in subclinical neck pain: a comparative study on the effect of pain and measurement procedures.

    PubMed

    Amaral, Gabriela; Martins, Helena; Silva, Anabela G

    2018-04-25

    This study investigated whether young university students with neck pain (NP) have postural control deficits when compared to sex and age-matched asymptomatic subjects. Centre of pressure (COP) sway area, velocity, anterior-posterior and mediolateral distances were measured in participants with (n=27) and without (n=27) neck pain for different combinations of static standing (narrow stance, tandem stance and single leg stance) and measurement time (90, 60, 30 and 15 s) with eyes closed using a force plate. Additionally, static and dynamic clinical tests of postural control were used. No significant between group differences were found for the COP measurements (p>0.05). However, individuals with subclinical NP were more likely to fail the 90 s tandem test (p<0.05) in the force plate and univariate comparisons revealed significant between group differences in the tandem and single leg stance clinical test measurements. Taken together, the inconsistent results might suggest an emerging postural control deficit in university students with low disability and low intensity chronic idiopathic NP.

  8. Age-Related Changes in Dynamic Postural Control and Attentional Demands are Minimally Affected by Local Muscle Fatigue

    PubMed Central

    Remaud, Anthony; Thuong-Cong, Cécile; Bilodeau, Martin

    2016-01-01

    Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Participants (young adults: n = 15; healthy seniors: n = 13) performed a dynamic postural task along the antero-posterior (AP) and the medio-lateral (ML) axes, with and without the addition of a simple reaction time (RT) task. The dynamic postural task consisted in following a moving circle on a computer screen with the representation of the center of pressure (COP). This protocol was repeated before and after a fatigue task where ankle plantar flexor muscles were targeted. The mean COP-target distance and the mean COP velocity were calculated for each trial. Cross-correlation analyses between the COP and target displacements were also performed. RTs were recorded during dual-task trials. Results showed that while young adults adopted an anticipatory control mode to move their COP as close as possible to the target center, seniors adopted a reactive control mode, lagging behind the target center. This resulted in longer COP-target distance and higher COP velocity in the latter group. Concurrently, RT increased more in seniors when switching from static stance to dynamic postural conditions, suggesting potential alterations in the central nervous system (CNS) functions. Finally, plantar flexor muscle fatigue and dual-tasking had only minor effects on dynamic postural control of both young adults and seniors. Future studies should investigate why the fatigue-induced changes in quiet standing postural control do not seem to transfer to dynamic balance tasks. PMID:26834626

  9. Improvement of posture stability by vibratory stimulation following anterior cruciate ligament reconstruction.

    PubMed

    Brunetti, O; Filippi, G M; Lorenzini, M; Liti, A; Panichi, R; Roscini, M; Pettorossi, V E; Cerulli, G

    2006-11-01

    Surgical reconstruction of the anterior cruciate ligament (ACL) may reduce, but it does not always eliminate, knee and body instability because of a persisting proprioceptive deficit. In order to enhance body stability, a new protocol of treatment has been proposed consisting of mechanical vibration (100 Hz frequency and < 20 microm amplitude) of the quadriceps muscle in the leg that has undergone ACL reconstruction. In our trials, stimulation was performed when the quadriceps muscle was kept isometrically contracted. Treatment was started one month after surgery. Vibration was applied for short periods over three consecutive days. Nine months after treatment, postural stability was re-evaluated with the subjects standing on one leg with open and with closed eyes. The postural stability of the subjects having undergone vibration treatment, standing on the operated leg was significantly improved one day after treatment when evaluated as mean of speed and elliptic area of the center of pressure. The improvement persisted and increased during the following weeks. Peak torques of the operated leg extensor muscles also increased and reached values close to that of the leg, which had not been operated. Conversely, the balance of the untreated subjects standing on the operated leg did not improve and the restoration of the extensor muscle peak torque was poor. It is concluded that short lasting proprioceptive activation by vibration may lead to a faster and more complete equilibrium recovery probably by permanently changing the network controlling knee posture.

  10. The degree of postural automaticity influences the prime movement and the anticipatory postural adjustments during standing in healthy young individuals.

    PubMed

    Sakamoto, Sadanori; Iguchi, Masaki

    2018-06-08

    Less attention to a balance task reduces the center of foot pressure (COP) variability by automating the task. However, it is not fully understood how the degree of postural automaticity influences the voluntary movement and anticipatory postural adjustments. Eleven healthy young adults performed a bipedal, eyes closed standing task under the three conditions: Control (C, standing task), Single (S, standing + reaction tasks), and Dual (D, standing  +  reaction + mental tasks). The reaction task was flexing the right shoulder to an auditory stimulus, which causes counter-clockwise rotational torque, and the mental task was arithmetic task. The COP variance before the reaction task was reduced in the D condition compared to that in the C and S conditions. On average the onsets of the arm movement and the vertical torque (Tz, anticipatory clockwise rotational torque) were both delayed, and the maximal Tz slope (the rate at which the torque develops) became less steep in the D condition compared to those in the S condition. When these data in the D condition were expressed as a percentage of those in the S condition, the arm movement onset and the Tz slope were positively and negatively, respectively, correlated with the COP variance. By using the mental-task induced COP variance reduction as the indicator of postural automaticity, our data suggest that the balance task for those with more COP variance reduction is less cognitively demanding, leading to the shorter reaction time probably due to the attention shift from the automated balance task to the reaction task. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Postural orientation in microgravity depends on straightening up movement performed

    NASA Astrophysics Data System (ADS)

    Vaugoyeau, Marianne; Assaiante, Christine

    2009-08-01

    Whether the vertical body orientation depends on the initial posture and/or the type of straightening up movement is the main question raised in this paper. Another objective was to specify the compensatory role of visual input while adopting an erected posture during microgravity. The final body orientation was analysed in microgravity during parabolic flights. After either (1) straightening up movement from a crouching or (2) a sitting posture, with and without vision. The main results are the following: (1) a vertical erected final posture is correctly achieved after sit to stand movement, whereas all subjects were tilted forward after straightening up from a crouching posture and (2) vision may contribute to correct final posture. These results suggest the existence of a re-weighting of the remaining sensory information, visual information, contact cutaneous cues and proprioceptive information under microgravity condition. We can put forward the alternative hypothesis that the control of body orientation under microgravity condition may also be achieved on the basis of a postural body scheme, that seems to be dependant on the type of movement and/ or the initial position of the whole body.

  12. Trunk Acceleration for Neuroprosthetic Control of Standing – a Pilot Study

    PubMed Central

    Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    This pilot study investigated the potential of using trunk acceleration feedback control of center of pressure (COP) against postural disturbances with a standing neuroprosthesis following paralysis. Artificial neural networks (ANNs) were trained to use three-dimensional trunk acceleration as input to predict changes in COP for able-bodied subjects undergoing perturbations during bipedal stance. Correlation coefficients between ANN predictions and actual COP ranged from 0.67 to 0.77. An ANN trained across all subject-normalized data was used to drive feedback control of ankle muscle excitation levels for a computer model representing a standing neuroprosthesis user. Feedback control reduced average upper-body loading during perturbation onset and recovery by 42% and peak loading by 29% compared to optimal, constant excitation. PMID:21975251

  13. Trunk acceleration for neuroprosthetic control of standing: a pilot study.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2012-02-01

    This pilot study investigated the potential of using trunk acceleration feedback control of center of pressure (COP) against postural disturbances with a standing neuroprosthesis following paralysis. Artificial neural networks (ANNs) were trained to use three-dimensional trunk acceleration as input to predict changes in COP for able-bodied subjects undergoing perturbations during bipedal stance. Correlation coefficients between ANN predictions and actual COP ranged from 0.67 to 0.77. An ANN trained across all subject-normalized data was used to drive feedback control of ankle muscle excitation levels for a computer model representing a standing neuroprosthesis user. Feedback control reduced average upper-body loading during perturbation onset and recovery by 42% and peak loading by 29% compared with optimal, constant excitation.

  14. Effects of Levodopa on Postural Strategies in Parkinson’s disease

    PubMed Central

    Mancini, Martina; Rocchi, Laura; Horak, Fay

    2017-01-01

    Altered postural control and balance are major disabling issues of Parkinson’s disease (PD). Static and dynamic posturography have provided insight into PD’s postural deficits; however, little is known about impairments in postural coordination. We hypothesized that subjects with PD would show more ankle strategy during quiet stance than healthy control subjects, who would include some hip strategy, and this stiffer postural strategy would increase with disease progression. We quantified postural strategy and sway dispersion with inertial sensors (one placed on the shank and one on the posterior trunk at L5 level) while subjects were standing still with their eyes open. A total of 70 subjects with PD, including a mild group (H&Y≤2, N=33) and a more severe group (H&Y≥3, N=37), were assessed while OFF and while ON levodopa medication. We also included a healthy control group (N=21). Results showed an overall preference of ankle strategy in all groups while maintaining balance. Postural strategy was significantly lower ON compared to OFF medication (indicating more hip strategy), but no effect of disease stage was found. Instead, sway dispersion was significantly larger in ON compared to OFF medication, and significantly larger in the more severe PD group compared to the mild. In addition, increased hip strategy during stance was associated with poorer self-perception of balance. PMID:27131172

  15. Effects of Levodopa on Postural Strategies in Parkinson's disease.

    PubMed

    Baston, Chiara; Mancini, Martina; Rocchi, Laura; Horak, Fay

    2016-05-01

    Altered postural control and balance are major disabling issues of Parkinson's disease (PD). Static and dynamic posturography have provided insight into PD's postural deficits; however, little is known about impairments in postural coordination. We hypothesized that subjects with PD would show more ankle strategy during quiet stance than healthy control subjects, who would include some hip strategy, and this stiffer postural strategy would increase with disease progression. We quantified postural strategy and sway dispersion with inertial sensors (one placed on the shank and one on the posterior trunk at L5 level) while subjects were standing still with their eyes open. A total of 70 subjects with PD, including a mild group (H&Y≤2, N=33) and a more severe group (H&Y≥3, N=37), were assessed while OFF and while ON levodopa medication. We also included a healthy control group (N=21). Results showed an overall preference of ankle strategy in all groups while maintaining balance. Postural strategy was significantly lower ON compared to OFF medication (indicating more hip strategy), but no effect of disease stage was found. Instead, sway dispersion was significantly larger in ON compared to OFF medication, and significantly larger in the more severe PD group compared to the mild. In addition, increased hip strategy during stance was associated with poorer self-perception of balance. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Intermittent control with ankle, hip, and mixed strategies during quiet standing: a theoretical proposal based on a double inverted pendulum model.

    PubMed

    Suzuki, Yasuyuki; Nomura, Taishin; Casadio, Maura; Morasso, Pietro

    2012-10-07

    Human upright posture, as a mechanical system, is characterized by an instability of saddle type, involving both stable and unstable dynamic modes. The brain stabilizes such system by generating active joint torques, according to a time-delayed neural feedback control. What is still unsolved is a clear understanding of the control strategies and the control mechanisms that are used by the central nervous system in order to stabilize the unstable posture in a robust way while maintaining flexibility. Most studies in this direction have been limited to the single inverted pendulum model, which is useful for formalizing fundamental mechanical aspects but insufficient for addressing more general issues concerning neural control strategies. Here we consider a double inverted pendulum model in the sagittal plane with small passive viscoelasticity at the ankle and hip joints. Despite difficulties in stabilizing the double pendulum model in the presence of the large feedback delay, we show that robust and flexible stabilization of the upright posture can be established by an intermittent control mechanism that achieves the goal of stabilizing the body posture according to a "divide and conquer strategy", which switches among different controllers in different parts of the state space of the double inverted pendulum. Remarkably, it is shown that a global, robust stability is achieved even if the individual controllers are unstable and the information exploited for switching from one controller to another is severely delayed, as it happens in biological reality. Moreover, the intermittent controller can automatically resolve coordination among multiple active torques associated with the muscle synergy, leading to the emergence of distinct temporally coordinated active torque patterns, referred to as the intermittent ankle, hip, and mixed strategies during quiet standing, depending on the passive elasticity at the hip joint. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Posture changes and subfoveal choroidal blood flow.

    PubMed

    Longo, Antonio; Geiser, Martial H; Riva, Charles E

    2004-02-01

    To evaluate the effect of posture change on subfoveal choroidal blood flow (ChBF) in normal volunteers. The pulsatile, nonpulsatile, and mean ChBF were measured with laser Doppler flowmetry in 11 healthy volunteers with a mean age of 32 +/- 13 (SD) years. The posture of the subjects was changed from standing (90 degrees ), to supine (-8 degrees ), and back to standing, with a mechanically driven table. During the whole experimental procedure, ChBF and heart rate (HR) were continuously recorded. After 30 seconds in standing position, the subjects were tilted to supine during approximately 30 seconds. They remained in this position for approximately 2 minutes, after which they were tilted back to the standing position (recovery), where they remained for another approximately 2 minutes. Systemic brachial artery blood pressure (BP) was measured in the baseline, supine, and recovery positions. This procedure was repeated to measure the intraocular pressure (IOP) at the different postures. Mean BP did not change significantly throughout the experimental procedure. As the body was tilted from standing to supine, HR decreased by 16% (P < 0.0004), IOP increased by 29% (P < 0.001), and mean ChBF increased by 11% (P < 0.01). The increase in ChBF was primarily due to an increase in the nonpulsatile component of the blood velocity. Based on previously reported experimental data that indicate that the ocular perfusion pressure increases less than predicted by purely hydrostatic considerations when the body is tilted from the standing to the supine position, the observed increase in ChBF suggests a passive response of the choroidal circulation to the posture change.

  18. Postural asymmetries in young adults with cerebral palsy.

    PubMed

    Rodby-Bousquet, Elisabet; Czuba, Tomasz; Hägglund, Gunnar; Westbom, Lena

    2013-11-01

    The purpose was to describe posture, ability to change position, and association between posture and contractures, hip dislocation, scoliosis, and pain in young adults with cerebral palsy (CP). Cross-sectional data of 102 people (63 males, 39 females; age range 19-23 y, median 21 y) out of a total population with CP was analysed in relation to Gross Motor Function Classification System (GMFCS) levels I (n=38), II (n=21), III (n=13), IV (n=10), and V (n=20). The CP subtypes were unilateral spastic (n=26), bilateral spastic (n=45), ataxic (n=12), and dyskinetic CP (n=19). The Postural Ability Scale was used to assess posture. The relationship between posture and joint range of motion, hip dislocation, scoliosis, and pain was analysed using logistic regression and Spearman's correlation. At GMFCS levels I to II, head and trunk asymmetries were most common; at GMFCS levels III to V postural asymmetries varied with position. The odds ratios (OR) for severe postural asymmetries were significantly higher for those with scoliosis (OR=33 sitting), limited hip extension (OR=39 supine), or limited knee extension (OR=37 standing). Postural asymmetries correlated to hip dislocations: supine (r(s) =0.48), sitting (r(s) =0.40), standing (r(s) =0.41), and inability to change position: supine (r(s) =0.60), sitting (r(s) =0.73), and standing (r(s) =0.64). Postural asymmetries were associated with scoliosis, hip dislocations, hip and knee contractures, and inability to change position. © 2013 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

  19. Postural asymmetries in young adults with cerebral palsy

    PubMed Central

    Rodby-Bousquet, Elisabet; Czuba, Tomasz; Hägglund, Gunnar; Westbom, Lena

    2013-01-01

    Aim The purpose was to describe posture, ability to change position, and association between posture and contractures, hip dislocation, scoliosis, and pain in young adults with cerebral palsy (CP). Methods Cross-sectional data of 102 people (63 males, 39 females; age range 19–23y, median 21y) out of a total population with CP was analysed in relation to Gross Motor Function Classification System (GMFCS) levels I (n=38), II (n=21), III (n=13), IV (n=10), and V (n=20). The CP subtypes were unilateral spastic (n=26), bilateral spastic (n=45), ataxic (n=12), and dyskinetic CP (n=19). The Postural Ability Scale was used to assess posture. The relationship between posture and joint range of motion, hip dislocation, scoliosis, and pain was analysed using logistic regression and Spearman’s correlation. Results At GMFCS levels I to II, head and trunk asymmetries were most common; at GMFCS levels III to V postural asymmetries varied with position. The odds ratios (OR) for severe postural asymmetries were significantly higher for those with scoliosis (OR=33 sitting), limited hip extension (OR=39 supine), or limited knee extension (OR=37 standing). Postural asymmetries correlated to hip dislocations: supine (rs=0.48), sitting (rs=0.40), standing (rs=0.41), and inability to change position: supine (rs=0.60), sitting (rs=0.73), and standing (rs=0.64). Conclusions Postural asymmetries were associated with scoliosis, hip dislocations, hip and knee contractures, and inability to change position. This article is commented on by Novak on page 974 of this issue. PMID:23834239

  20. Anticipatory postural adjustments and focal performance during bilateral forward-reach task under different stance conditions.

    PubMed

    Yiou, Eric; Mezaour, Malha; Le Bozec, Serge

    2009-04-01

    This study investigated how young healthy subjects control their equilibrium in situations of instability specifically elicited by a reduced capacity of force production in the postural muscle system. Ten subjects displaced a bar forward with both hands at maximal velocity toward a target while standing on the dominant leg (UNID), on the nondominant leg (UNIND), or on both legs. In each stance condition, anticipatory postural adjustments (APAs) were elicited. Along the anteroposterior axis, APAs were two-times longer in UNID and UNIND than in bipedal stance, while the anticipatory inertia forces remained equivalent. The focal performance was maintained without any additive postural perturbation. A small effect of leg dominance could be detected on APAs along the mediolateral axis (i.e., anticipatory inertia forces were higher in UNIND than in UNID). These results stress the adaptability of the central nervous system to the instability specifically elicited by reduced postural muscle system efficiency.

  1. Skeletal Muscle Pump Drives Control of Cardiovascular and Postural Systems

    NASA Astrophysics Data System (ADS)

    Verma, Ajay K.; Garg, Amanmeet; Xu, Da; Bruner, Michelle; Fazel-Rezai, Reza; Blaber, Andrew P.; Tavakolian, Kouhyar

    2017-03-01

    The causal interaction between cardio-postural-musculoskeletal systems is critical in maintaining postural stability under orthostatic challenge. The absence or reduction of such interactions could lead to fainting and falls often experienced by elderly individuals. The causal relationship between systolic blood pressure (SBP), calf electromyography (EMG), and resultant center of pressure (COPr) can quantify the behavior of cardio-postural control loop. Convergent cross mapping (CCM) is a non-linear approach to establish causality, thus, expected to decipher nonlinear causal cardio-postural-musculoskeletal interactions. Data were acquired simultaneously from young participants (25 ± 2 years, n = 18) during a 10-minute sit-to-stand test. In the young population, skeletal muscle pump was found to drive blood pressure control (EMG → SBP) as well as control the postural sway (EMG → COPr) through the significantly higher causal drive in the direction towards SBP and COPr. Furthermore, the effect of aging on muscle pump activation associated with blood pressure regulation was explored. Simultaneous EMG and SBP were acquired from elderly group (69 ± 4 years, n = 14). A significant (p = 0.002) decline in EMG → SBP causality was observed in the elderly group, compared to the young group. The results highlight the potential of causality to detect alteration in blood pressure regulation with age, thus, a potential clinical utility towards detection of fall proneness.

  2. Improving Dual-Task Control With a Posture-Second Strategy in Early-Stage Parkinson Disease.

    PubMed

    Huang, Cheng-Ya; Chen, Yu-An; Hwang, Ing-Shiou; Wu, Ruey-Meei

    2018-03-31

    To examine the task prioritization effects on postural-suprapostural dual-task performance in patients with early-stage Parkinson disease (PD) without clinically observed postural symptoms. Cross-sectional study. Participants performed a force-matching task while standing on a mobile platform, and were instructed to focus their attention on either the postural task (posture-first strategy) or the force-matching task (posture-second strategy). University research laboratory. Individuals (N=16) with early-stage PD who had no clinically observed postural symptoms. Not applicable. Dual-task change (DTC; percent change between single-task and dual-task performance) of posture error, posture approximate entropy (ApEn), force error, and reaction time (RT). Positive DTC values indicate higher postural error, posture ApEn, force error, and force RT during dual-task conditions compared with single-task conditions. Compared with the posture-first strategy, the posture-second strategy was associated with smaller DTC of posture error and force error, and greater DTC of posture ApEn. In contrast, greater DTC of force RT was observed under the posture-second strategy. Contrary to typical recommendations, our results suggest that the posture-second strategy may be an effective dual-task strategy in patients with early-stage PD who have no clinically observed postural symptoms in order to reduce the negative effect of dual tasking on performance and facilitate postural automaticity. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Understanding balance differences in individuals with multiple sclerosis with mild disability: An investigation of differences in sensory feedback on postural and dynamic balance control

    NASA Astrophysics Data System (ADS)

    Denomme, Luke T.

    Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS) and causes a broad range of neurological symptoms. One of the most common symptoms experienced by individuals with MS is poor balance control during standing and walking. The main mechanism underlying impaired balance control in MS appears to result from slowed somatosensory conduction and impaired central integration. The current thesis assessed postural and dynamic control of balance of 'individuals with MS with mild disability' (IwMS). IwMS were compared to 'healthy age-matched individuals' (HAMI) and community-dwelling 'older adults' (OA). The purpose of this thesis was to quantify differences in postural and dynamic control of balance in IwMS to the two populations who display balance control differences across the lifespan and represent two extreme ends of the balance control continuum due to natural aging. IwMS (n = 12, x¯age: 44 +/- 9.4 years), HAMI (n = 12, x¯age: 45 +/- 9.9 years) and community-dwelling OA (n = 12, x¯ age: 68.1 +/- 4.5 years) postural and dynamic balance control were evaluated during a Romberg task as well as a dynamic steering task. The Romberg task required participants to stand with their feet together and hands by their sides for 45 seconds with either their eyes open or closed. The dynamic steering task required participants to walk and change direction along the M-L plane towards a visual goal. Results from these two tasks reveal that IwMS display differences in postural control when compared to HAMI when vision was removed as well as differences in dynamic stability margin during steering situations. During the postural control task IwMS displayed faster A-P and M-L COP velocities when vision was removed and their COP position was closer to their self-selected maximum stability limits compared to HAMI. Assessment of dynamic stability during the steering task revealed that IwMS displayed reduced walking speed and cadence during the straight walking portion of the task in addition to a smaller DSM range (i.e., COM remained close to lateral BOS) during the entire steering task. These results suggest that IwMS adopt postural and dynamic control strategies (i.e., increased COP velocity, smaller self-selected maximal sway comfort zones and reduced walking speed) in order to maintain stability and complete the tasks. Results further revealed that IwMS display similar levels of postural and dynamic stability to OA despite differences in the type of sensory impairment possessed by each group. The findings also provide insights into the comparison of IwMS to two populations who represent the two extreme ends of the balance control continuum: HAMI and OA. Our data indicates that the level of postural and dynamic balance control in IwMS appears to express similar characteristics and may be located closer to the OA population on this continuum. Future research should evaluate the level of somatosensory impairment (i.e., monofilament testing and tuning fork tendon tap testing) between IwMS and OA in order to better differentiate levels of postural and dynamic balance control between groups and to gain a better understanding of where each group may be specifically located on the age-related balance control continuum.

  4. Development of adaptive sensorimotor control in infant sitting posture.

    PubMed

    Chen, Li-Chiou; Jeka, John; Clark, Jane E

    2016-03-01

    A reliable and adaptive relationship between action and perception is necessary for postural control. Our understanding of how this adaptive sensorimotor control develops during infancy is very limited. This study examines the dynamic visual-postural relationship during early development. Twenty healthy infants were divided into 4 developmental groups (each n=5): sitting onset, standing alone, walking onset, and 1-year post-walking. During the experiment, the infant sat independently in a virtual moving-room in which anterior-posterior oscillations of visual motion were presented using a sum-of-sines technique with five input frequencies (from 0.12 to 1.24 Hz). Infants were tested in five conditions that varied in the amplitude of visual motion (from 0 to 8.64 cm). Gain and phase responses of infants' postural sway were analyzed. Our results showed that infants, from a few months post-sitting to 1 year post-walking, were able to control their sitting posture in response to various frequency and amplitude properties of the visual motion. Infants showed an adult-like inverted-U pattern for the frequency response to visual inputs with the highest gain at 0.52 and 0.76 Hz. As the visual motion amplitude increased, the gain response decreased. For the phase response, an adult-like frequency-dependent pattern was observed in all amplitude conditions for the experienced walkers. Newly sitting infants, however, showed variable postural behavior and did not systemically respond to the visual stimulus. Our results suggest that visual-postural entrainment and sensory re-weighting are fundamental processes that are present after a few months post sitting. Sensorimotor refinement during early postural development may result from the interactions of improved self-motion control and enhanced perceptual abilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The postural control can be optimized by the first movement initiation condition encountered when submitted to muscle fatigue.

    PubMed

    Monjo, Florian; Forestier, Nicolas

    2017-08-01

    We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be optimized by the initial movement IC experienced post-fatigue. Beyond the fundamental contributions arising from these results, we point out potential applications for trainers and sports instructors. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dimensional reduction in sensorimotor systems: A framework for understanding muscle coordination of posture

    PubMed Central

    Ting, Lena H.

    2014-01-01

    The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task variables such as center of mass position in a predictable direction following a postural perturbations. We propose a hierarchal feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation. PMID:17925254

  7. Rambling and trembling in response to body loading.

    PubMed

    Tahayor, Behdad; Riley, Zachary A; Mahmoudian, Armaghan; Koceja, David M; Hong, Siang Lee

    2012-04-01

    Various studies have suggested that postural sway is controlled by at least two subsystems. Rambling-Trembling analysis is a widely accepted methodology to dissociate the signals generated by these two hypothetical subsystems. The core assumption of this method is based on the equilibrium point hypothesis which suggests that the central nervous system preserves upright standing by transiently shifting the center of pressure (COP) from one equilibrium point to another. The trajectory generated by this shifting is referred to as rambling and its difference from the original COP signal is referred to as trembling. In this study we showed that these two components of COP are differentially affected when standing with external loads. Using Detrended Fluctuation analysis, we compared the pattern of these two signals in different configurations of body loading. Our findings suggest that by applying an external load, the dynamics of the trembling component is altered independently of the area of postural sway and also independently of the rambling component. The dynamics of rambling changed only during the backloading condition in which the postural sway area also substantially increased. It can be suggested that during loaded standing, the trembling mechanism (which is suggested to be activated by peripheral mechanisms and reflexes) is altered without affecting the central influence on the shifts of the equilibrium point.

  8. Postural time-to-contact as a precursor of visually induced motion sickness.

    PubMed

    Li, Ruixuan; Walter, Hannah; Curry, Christopher; Rath, Ruth; Peterson, Nicolette; Stoffregen, Thomas A

    2018-06-01

    The postural instability theory of motion sickness predicts that subjective symptoms of motion sickness will be preceded by unstable control of posture. In previous studies, this prediction has been confirmed with measures of the spatial magnitude and the temporal dynamics of postural activity. In the present study, we examine whether precursors of visually induced motion sickness might exist in postural time-to-contact, a measure of postural activity that is related to the risk of falling. Standing participants were exposed to oscillating visual motion stimuli in a standard laboratory protocol. Both before and during exposure to visual motion stimuli, we monitored the kinematics of the body's center of pressure. We predicted that postural activity would differ between participants who reported motion sickness and those who did not, and that these differences would exist before participants experienced subjective symptoms of motion sickness. During exposure to visual motion stimuli, the multifractality of sway differed between the Well and Sick groups. Postural time-to-contact differed between the Well and Sick groups during exposure to visual motion stimuli, but also before exposure to any motion stimuli. The results provide a qualitatively new type of support for the postural instability theory of motion sickness.

  9. Variation between seated and standing/walking postures among male and female call centre operators.

    PubMed

    Toomingas, Allan; Forsman, Mikael; Mathiassen, Svend Erik; Heiden, Marina; Nilsson, Tohr

    2012-03-02

    The dose and time-pattern of sitting has been suggested in public health research to be an important determinant of risk for developing a number of diseases, including cardiovascular disorders and diabetes. The aim of the present study was to assess the time-pattern of seated and standing/walking postures amongst male and female call centre operators, on the basis of whole-shift posture recordings, analysed and described by a number of novel variables describing posture variation. Seated vs. standing/walking was recorded using dichotomous inclinometers throughout an entire work shift for 43 male and 97 female call centre operators at 16 call centres. Data were analysed using an extensive set of variables describing occurrence of and switches between seated and standing/walking, posture similarity across the day, and compliance with standard recommendations for computer work. The majority of the operators, both male and female, spent more than 80% of the shift in a seated posture with an average of 10.4 switches/hour between seated and standing/walking or vice versa. Females spent, on average, 11% of the day in periods of sustained sitting longer than 1 hour; males 4.6% (p = 0.013). Only 38% and 11% of the operators complied with standard recommendations of getting an uninterrupted break from seated posture of at least 5 or 10 minutes, respectively, within each hour of work. Two thirds of all investigated variables showed coefficients of variation between subjects above 0.5. Since work tasks and contractual break schedules were observed to be essentially similar across operators and across days, this indicates that sedentary behaviours differed substantially between individuals. The extensive occurrence of uninterrupted seated work indicates that efforts should be made at call centres - and probably in other settings in the office sector - to introduce more physical variation in terms of standing/walking periods during the work day. We suggest the metrics used in this study for quantifying variation in sedentary behaviour to be of interest even for other dichotomous exposures relevant to occupational and public health, for instance physical activity/inactivity.

  10. Posture and performance: sitting vs. standing for security screening.

    PubMed

    Drury, C G; Hsiao, Y L; Joseph, C; Joshi, S; Lapp, J; Pennathur, P R

    2008-03-01

    A classification of the literature on the effects of workplace posture on performance of different mental tasks showed few consistent patterns. A parallel classification of the complementary effect of performance on postural variables gave similar results. Because of a lack of data for signal detection tasks, an experiment was performed using 12 experienced security operators performing an X-ray baggage-screening task with three different workplace arrangements. The current workplace, sitting on a high chair viewing a screen placed on top of the X-ray machine, was compared to a standing workplace and a conventional desk-sitting workplace. No performance effects of workplace posture were found, although the experiment was able to measure performance effects of learning and body part discomfort effects of workplace posture. There are implications for the classification of posture and performance and for the justification of ergonomics improvements based on performance increases.

  11. Step-Initiation Deficits in Children with Faulty Posture Diagnosed with Neurodevelopmental Disorders during Infancy.

    PubMed

    Stania, Magdalena; Sarat-Spek, Alina; Blacha, Teresa; Kazek, Beata; Słomka, Kajetan J; Emich-Widera, Ewa; Juras, Grzegorz

    2017-01-01

    Early detection of movement deficits during step initiation will facilitate the selection of the optimal physiotherapy management strategy. The main aim of the study was to assess potential differences in step initiation between 5- and 6-year-old children with faulty posture who had been diagnosed with neurodevelopmental disorders during infancy and healthy children. The experimental group consisted of 19 children aged 5-6 years with faulty posture, who had been diagnosed with neurodevelopmental disorders during infancy and were given physiotherapy in the first year of their lives. The control group comprised 19 nursery school children aged 5-6 years with no postural defects, no history of postural control or movement deficits, and no physiotherapy interventions in the first year of their lives. Step initiation was performed on force platforms under various conditions, i.e., with and without an obstacle, stepping up onto a platform placed at a higher level, stepping down onto a platform placed on a lower level. The recording of center of foot pressure (COP) displacements was divided into three phases: phase 1 (P1)-quiet standing before step initiation, phase 2 (P2)-transit, phase 3 (P3)-quiet standing until measurement completion. The Tukey post hoc test showed that the means of sway range (raCOP) and mean velocity (vCOP) in sagittal ( AP ) plane for phase 1 and vCOP in frontal ( ML ) plane for phase 3 registered in the step-up trial were significantly higher ( p  < 0.05) in children with faulty posture compared to children with typical development. P1vCOP ML , P3vCOP AP , P3raCOP ML , and P3vCOP ML of the step-down trial were also significantly higher in children with faulty posture ( p  < 0.05). Inclusion of functional movement exercises (stair-walking tasks) in physiotherapy interventions for children with postural defects seems well justified.The trial was registered in the Australian and New Zealand Clinical Trials Registry (no. ACTRN12617001068358).

  12. Posture Allocation Revisited: Breaking the Sedentary Threshold of Energy Expenditure for Obesity Management

    PubMed Central

    Miles-Chan, Jennifer L.; Dulloo, Abdul G.

    2017-01-01

    There is increasing recognition that low-intensity physical activities of daily life play an important role in achieving energy balance and that their societal erosion through substitution with sedentary (mostly sitting) behaviors, whether occupational or for leisure, impact importantly on the obesity epidemic. This has generated considerable interest for better monitoring, characterizing, and promoting countermeasures to sedentariness through a plethora of low-level physical activities (e.g., active workstations, standing desks, sitting breaks), amid the contention that altering posture allocation (lying, sitting, standing) can modify energy expenditure to impact upon body weight regulation and health. In addressing this contention, this paper first revisits the past and more recent literature on postural energetics, with particular emphasis on potential determinants of the large inter-individual variability in the energy cost of standing and the impact of posture on fat oxidation. It subsequently analyses the available data pertaining to various strategies by which posture allocations, coupled with light physical activity, may increase energy expenditure beyond the sedentary threshold, and their relevance as potential targets for obesity management. PMID:28690547

  13. Long-Term Effects from Bacterial Meningitis in Childhood and Adolescence on Postural Control

    PubMed Central

    Petersen, Hannes; Patel, Mitesh; Ingason, Einar F.; Einarsson, Einar J.; Haraldsson, Ásgeir; Fransson, Per-Anders

    2014-01-01

    Bacterial meningitis in childhood is associated with cognitive deficiencies, sensorimotor impairments and motor dysfunction later in life. However, the long-term effects on postural control is largely unknown, e.g., whether meningitis subjects as adults fully can utilize visual information and adaptation to enhance stability. Thirty-six subjects (20 women, mean age 19.3 years) treated in childhood or adolescence for bacterial meningitis, and 25 controls (13 women, mean age 25.1 years) performed posturography with eyes open and closed under unperturbed and perturbed standing. The meningitis subjects were screened for subjective vertigo symptoms using a questionnaire, clinically tested with headshake and head thrust test, as well as their hearing was evaluated. Meningitis subjects were significantly more unstable than controls during unperturbed (p≤0.014) and perturbed standing, though while perturbed only with eyes open in anteroposterior direction (p = 0.034) whereas in lateral direction both with eyes open and closed (p<0.001). Meningitis subjects had poorer adaption ability to balance perturbations especially with eyes open, and they frequently reported symptoms of unsteadiness (88% of the subjects) and dizziness (81%), which was found significantly correlated to objectively decreased stability. Out of the 36 subjects only 3 had unilateral hearing impairment. Hence, survivors of childhood bacterial meningitis may suffer long-term disorders affecting postural control, and would greatly benefit if these common late effects became generally known so treatments can be developed and applied. PMID:25405756

  14. Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense

    PubMed Central

    Zafar, Hamayun; Alghadir, Ahmad H.; Iqbal, Zaheen A.

    2017-01-01

    Objectives: To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. Methods: 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Results: Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. Conclusions: To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn’t affect head-neck relocation error in normal healthy subjects. PMID:29199196

  15. Cybersickness without the wobble: Experimental results speak against postural instability theory.

    PubMed

    Dennison, Mark Stephen; D'Zmura, Michael

    2017-01-01

    It has been suggested that postural instability is necessary for cybersickness to occur. Seated and standing subjects used a head-mounted display to view a virtual tunnel that rotated about their line of sight. We found that the offset direction of perceived vertical settings matched the direction of the tunnel's rotation, so replicating earlier findings. Increasing rotation speed caused cybersickness to increase, but had no significant impact on perceived vertical settings. Postural sway during rotation was similar to postural sway during rest. While a minority of subjects exhibited postural sway in response to the onset of tunnel rotation, the majority did not. Furthermore, cybersickness increased with rotation speed similarly for the seated and standing conditions. Finally, subjects with greater levels of cybersickness exhibited less variation in postural sway. These results lead us to conclude that the link between postural instability and cybersickness is a weak one in the present experiment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Using the systems framework for postural control to analyze the components of balance evaluated in standardized balance measures: a scoping review.

    PubMed

    Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Straus, Sharon E; Jaglal, Susan B

    2015-01-01

    To identify components of postural control included in standardized balance measures for adult populations. Electronic searches of MEDLINE, EMBASE, and CINAHL databases using keyword combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests/validation studies, instrument construction/instrument validation, geriatric assessment/disability evaluation, gray literature, and hand searches. Inclusion criteria were measures with a stated objective to assess balance, adult populations (18y and older), at least 1 psychometric evaluation, 1 standing task, a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. Sixty-six measures were included. A research assistant extracted descriptive characteristics and 2 reviewers independently coded components of balance in each measure using the Systems Framework for Postural Control, a widely recognized model of balance. Components of balance evaluated in these measures were underlying motor systems (100% of measures), anticipatory postural control (71%), dynamic stability (67%), static stability (64%), sensory integration (48%), functional stability limits (27%), reactive postural control (23%), cognitive influences (17%), and verticality (8%). Thirty-four measures evaluated 3 or fewer components of balance, and 1 measure-the Balance Evaluation Systems Test-evaluated all components of balance. Several standardized balance measures provide only partial information on postural control and omit important components of balance related to avoiding falls. As such, the choice of measure(s) may limit the overall interpretation of an individual's balance ability. Continued work is necessary to increase the implementation of comprehensive balance assessment in research and practice. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Two anomalous cardiovascular responses to active standing in essential hypertension.

    PubMed

    Bettencourt, M Joaquina; Pinto, Basílio Gomes; de Oliveira, E Infante; Silva-Carvalho, L

    2008-05-01

    In a previous work we studied, non-invasively, autonomic nervous system control of circulation in healthy subjects, observing the hemodynamic reaction to active standing. We now propose to extend this analysis to essential hypertension (EH), investigating possible autonomic dysfunction. The cardiovascular response to postural change from the supine position to active standing of 48 EH patients, of both sexes, with and without medication, was compared with that obtained for healthy subjects. We evaluated arterial systolic (SBP) and diastolic (DBP) blood pressure, stroke volume (SV), inotropic index (INOI), total vascular resistance (TVR), cardiac work (W), stroke work (SW), arterial compliance (AC) and heart rate (HR), using the entirely non-invasive BoMed NCCOM3 thoracic electrical bioimpedance monitor and sphygmomanometry. We found two patient groups characterized by different linear relationships between values of cardiovascular variables in active standing and in supine positions. Except for HR, in both groups these regression lines differed from normal. Compared to the supine position, in active standing, one group (EH-I) presented increased TVR, diminished SV, INOI, W, SW, and AC, and normal HR; the other group (EH-II) presented diminished TVR and HR and increased SV, INOI, W, SW and AC. The two patient groups could be separated on the basis of their age, but not on the basis of their systolic, diastolic and mean arterial blood pressures, gender or medication. The younger patient group (EH-I) included 28 subjects aged 24 to 69 years (50+/-10), of whom 11 were unmedicated, and the older patient group (EH-II) included 20 subjects aged 35 to 75 years (62+/-11), of whom 7 were unmedicated. Our results show a depressed response in postural change for older patients, which in the autonomic control of circulation expresses carotid baroreflex impairment, and conversely an enhanced response for younger patients, which can be caused by a maladjustment of the influence of cardiopulmonary mechanoreflexes in the alance with arterial baroreflexes. This work suggests the existence of two different levels of dysautonomia in EH, according to age. The deterministic changes in cardiovascular variables after postural change show that, regarding autonomic nervous system control to maintain homeostasis, certain circulatory statuses are favored.

  18. Specificity of Postural Sway to the Demands of a Precision Task at Sea

    ERIC Educational Resources Information Center

    Chen, Fu-Chen; Stoffregen, Thomas A.

    2012-01-01

    Mariners actively adjust their body orientation in response to ship motion. On a ship at sea, we evaluated relations between standing postural activity and the performance of a precision aiming task. Standing participants (experienced mariners) maintained the beam from a handheld laser on a target. Targets were large or small, thereby varying the…

  19. Take a stand on your decisions, or take a sit: posture does not affect risk preferences in an economic task.

    PubMed

    O'Brien, Megan K; Ahmed, Alaa A

    2014-01-01

    Physiological and emotional states can affect our decision-making processes, even when these states are seemingly insignificant to the decision at hand. We examined whether posture and postural threat affect decisions in a non-related economic domain. Healthy young adults made a series of choices between economic lotteries in various conditions, including changes in body posture (sitting vs. standing) and changes in elevation (ground level vs. atop a 0.8-meter-high platform). We compared three metrics between conditions to assess changes in risk-sensitivity: frequency of risky choices, and parameter fits of both utility and probability weighting parameters using cumulative prospect theory. We also measured skin conductance level to evaluate physiological response to the postural threat. Our results demonstrate that body posture does not significantly affect decision making. Secondly, despite increased skin conductance level, economic risk-sensitivity was unaffected by increased threat. Our findings indicate that economic choices are fairly robust to the physiological and emotional changes that result from posture or postural threat.

  20. Take a stand on your decisions, or take a sit: posture does not affect risk preferences in an economic task

    PubMed Central

    O’Brien, Megan K.

    2014-01-01

    Physiological and emotional states can affect our decision-making processes, even when these states are seemingly insignificant to the decision at hand. We examined whether posture and postural threat affect decisions in a non-related economic domain. Healthy young adults made a series of choices between economic lotteries in various conditions, including changes in body posture (sitting vs. standing) and changes in elevation (ground level vs. atop a 0.8-meter-high platform). We compared three metrics between conditions to assess changes in risk-sensitivity: frequency of risky choices, and parameter fits of both utility and probability weighting parameters using cumulative prospect theory. We also measured skin conductance level to evaluate physiological response to the postural threat. Our results demonstrate that body posture does not significantly affect decision making. Secondly, despite increased skin conductance level, economic risk-sensitivity was unaffected by increased threat. Our findings indicate that economic choices are fairly robust to the physiological and emotional changes that result from posture or postural threat. PMID:25083345

  1. Effects of sitting versus standing and scanner type on cashiers.

    PubMed

    Lehman, K R; Psihogios, J P; Meulenbroek, R G

    2001-06-10

    In the retail supermarket industry where cashiers perform repetitive, light manual material-handling tasks when scanning and handling products, reports of musculoskeletal disorders and discomfort are high. Ergonomics tradeoffs exist between sitting and standing postures, which are further confounded by the checkstand design and point-of-sale technology, such as the scanner. A laboratory experiment study was conducted to understand the effects of working position (sitting versus standing) and scanner type (bi-optic versus single window) on muscle activity, upper limb and spinal posture, and subjective preference of cashiers. Ten cashiers from a Dutch retailer participated in the study. Cashiers exhibited lower muscle activity in the neck and shoulders when standing and using a bi-optic scanner. Shoulder abduction was also less for standing conditions. In addition, all cashiers preferred using the bi-optic scanner with mixed preferences for sitting (n = 6) and standing (n = 4). Static loading of the muscles was relatively high compared with benchmarks, suggesting that during the task of scanning, cashiers may not have adequate recovery time to prevent fatigue. It is recommended that retailers integrate bi-optic scanners into standing checkstands to minimize postural stress, fatigue and discomfort in cashiers.

  2. Effects of body weight-support treadmill training on postural sway and gait independence in patients with chronic spinal cord injury.

    PubMed

    Covarrubias-Escudero, Felipe; Rivera-Lillo, Gonzalo; Torres-Castro, Rodrigo; Varas-Díaz, Gonzalo

    2017-10-23

    To examine the effects of a six-week body weight-support treadmill training (BWSTT) program on center-of-mass control and gait independence in chronic, incomplete spinal cord injury (iSCI) patients. Descriptive. Clinica Los Coihues. Neurorehabilitation center in Santiago, Chile. 17 chronic iSCI patients and 17 healthy subjects. An instrumented sway (ISway) test was performed before and after the implementation of a six-week BWSTT program. The standing balance of participants was measured by Normalized jerk (NJ) and root mean square (RMS). These values were used to assess the standing balance of participants, and were correlated with the scores obtained on the Walking Index Spinal Cord Injury (WISCI) II test. Significant differences were found in standing balance (i.e., through NJ) after the BWSTT program (P = 0.016), but no significant differences were found in RMS values for postural sway (P = 0.693). None of the patients obtained improved WISCI II scores pre- vs. post-intervention. While a BWSTT program can improve center-of-mass control in iSCI patients, no effects were recorded for gait independence. National Clinical Trials, registry number NCT02703883.

  3. Reaction to the sensory integration therapy in children with postural stability deficits.

    PubMed

    Maciaszek, Janusz; Kilan, Natalia; Bronikowski, Michal

    2016-10-05

    The goal was to examine the influence of sensory integration therapy (SIT) on one leg standing in children with deficits of the postural stability. 28 children 4 - 6 year old that could not stand on one leg for more than 20 seconds were randomly divided into control "C" and experimental "E" groups. Group "C" participated in standard classes in the kindergarten. Group "E" participated in sensory integration therapy (SIT) for 2 weeks, 5 times a week (additionally to the standard classes). Results of the experiment show that the skill of standing on one leg has significantly improved (p<0.01) in the group that underwent additional therapy. The change in time of standing on the right leg with eyes open in the E group was statistically and significantly higher than the changes observed in the same time in group C (F = 22.5, p = 0.001' η2 = 0.44). Similarly, significant changes in time of standing on the right leg with eyes closed were observed in group E. The foregoing changes were bigger in group E than in group C (F = 16. 1 , p = 0.004, η2 = 0.36). The analysis post hoc revealed that while there were no significant differences between the two groups on the pretest (p>0.05), there were significant differences between groups in right leg standing test with eyes open or closed on posttest. (p<0.05). Similar results were observed during on the one, left leg standing. The time of one leg standing with both eyes open and closed improved more significantly in group E than in group C (F = 20.4, p = 0.001, η2 = 0.42 respectively for the test with eyes open and F = 7.4, p = 0.010, η2 = 0.21 for the test with eyes closed). The analysis post hoc revealed that while there were no significant differences between the two groups on the pretest (p>0.05), there were significant differences between groups in left leg standing test with eyes open or closed on posttest. (p<0.05). Research conducted show that there is a positive influence of SIT on children with low level of postural stability. Its significant improvement in children with low levels of postural stability is important not only for the current functioning of those children but for their future - by protecting them from falling down and from injuries.

  4. Influence of fear of falling on anticipatory postural control of medio-lateral stability during rapid leg flexion.

    PubMed

    Yiou, E; Deroche, T; Do, M C; Woodman, T

    2011-04-01

    During leg flexion from erect posture, postural stability is organized in advance during "anticipatory postural adjustments" (APA). During these APA, inertial forces are generated that propel the centre of gravity (CoG) laterally towards stance leg side. This study examined how fear of falling (FoF) may influence this anticipatory postural control of medio-lateral (ML) stability. Ten young healthy participants performed a series of leg flexions at maximal velocity from low and high surface heights (6 and 66 cm above ground, respectively). In this latter condition with increased FoF, stance foot was placed at the lateral edge of the support surface to induce maximal postural threat. Results showed that the amplitude of ML inertial forces generated during APA decreased with FoF; this decrease was compensated by an increase in APA duration so that the CoG position at time of swing foot-off was located further towards stance leg side. With these changes in ML APA, the CoG was propelled in the same final (unipodal) position above stance foot as in condition with low FoF. These results contrast with those obtained in the literature during quiet standing which showed that FoF did not have any influence on the ML component of postural control. It is proposed that ML APA are modified with increased FoF, in such a way that the risk of a sideway fall induced by the large CoG motion is attenuated.

  5. Monitoring Fatigue Status with HRV Measures in Elite Athletes: An Avenue Beyond RMSSD?

    PubMed Central

    Schmitt, Laurent; Regnard, Jacques; Millet, Grégoire P.

    2015-01-01

    Among the tools proposed to assess the athlete's “fatigue,” the analysis of heart rate variability (HRV) provides an indirect evaluation of the settings of autonomic control of heart activity. HRV analysis is performed through assessment of time-domain indices, the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (RMSSD) measured during short (5 min) recordings in supine position upon awakening in the morning and particularly the logarithm of RMSSD (LnRMSSD) has been proposed as the most useful resting HRV indicator. However, if RMSSD can help the practitioner to identify a global “fatigue” level, it does not allow discriminating different types of fatigue. Recent results using spectral HRV analysis highlighted firstly that HRV profiles assessed in supine and standing positions are independent and complementary; and secondly that using these postural profiles allows the clustering of distinct sub-categories of “fatigue.” Since, cardiovascular control settings are different in standing and lying posture, using the HRV figures of both postures to cluster fatigue state embeds information on the dynamics of control responses. Such, HRV spectral analysis appears more sensitive and enlightening than time-domain HRV indices. The wealthier information provided by this spectral analysis should improve the monitoring of the adaptive training-recovery process in athletes. PMID:26635629

  6. More falls in cerebellar ataxia when standing on a slow up-moving tilt of the support surface

    PubMed Central

    PAQUETTE, Caroline; FRANZÉN, Erika; HORAK, Fay B

    2016-01-01

    We investigated how subjects with cerebellar ataxia (CA) adapt their postural stability and alignment to a slow and small tilt of the support surface allowing for online postural corrections. Eight subjects with CA and eight age- and gender-matched healthy control subjects participated in the study. Subjects stood eyes closed for 1 minute after which the support surface was tilted 5° toes-up at a ramp velocity of 1°/s. The toes-up position was held for 2.5 minutes after which the surface rotated back down to level with identical tilt characteristics. As reflected by the large number of falls, subjects with CA had marked difficulty adapting their posture to the up-moving incline in contrast to control subjects. Subjects with CA who lost their balance had faster trunk velocity and excessive backward trunk reorientation beginning within the first second after onset of the tilting surface. In contrast, the down-moving tilt to level did not result in instability in CA subjects. These results suggest that instability and falls associated with CA derives from an inability to maintain trunk orientation to vertical while standing on a slow-moving or unstable surface. This study underscores the importance of the cerebellum in the online sensory control of the upper body orientation during small amplitude and slow velocity movements of the support surface. PMID:26202671

  7. More Falls in Cerebellar Ataxia When Standing on a Slow Up-Moving Tilt of the Support Surface.

    PubMed

    Paquette, Caroline; Franzén, Erika; Horak, Fay B

    2016-06-01

    We investigated how subjects with cerebellar ataxia (CA) adapt their postural stability and alignment to a slow and small tilt of the support surface allowing for online postural corrections. Eight subjects with CA and eight age- and gender-matched healthy control subjects participated in the study. Subjects stood eyes closed for 1 min after which the support surface was tilted 5° toes-up at a ramp velocity of 1°/s. The toes-up position was held for 2.5 min after which the surface rotated back down to level with identical tilt characteristics. As reflected by the large number of falls, subjects with CA had marked difficulty adapting their posture to the up-moving incline in contrast to control subjects. Subjects with CA who lost their balance had faster trunk velocity and excessive backward trunk reorientation beginning within the first second after onset of the tilting surface. In contrast, the down-moving tilt to level did not result in instability in CA subjects. These results suggest that instability and falls associated with CA derive from an inability to maintain trunk orientation to vertical while standing on a slow-moving or unstable surface. This study underscores the importance of the cerebellum in the online sensory control of the upper body orientation during small amplitude and slow velocity movements of the support surface.

  8. Noise-Enhanced Human Balance Control

    NASA Astrophysics Data System (ADS)

    Priplata, Attila; Niemi, James; Salen, Martin; Harry, Jason; Lipsitz, Lewis A.; Collins, J. J.

    2002-11-01

    Noise can enhance the detection and transmission of weak signals in certain nonlinear systems, via a mechanism known as stochastic resonance. Here we show that input noise can be used to improve motor control in humans. Specifically, we show that the postural sway of both young and elderly individuals during quiet standing can be significantly reduced by applying subsensory mechanical noise to the feet. We further demonstrate with input noise a trend towards the reduction of postural sway in elderly subjects to the level of young subjects. These results suggest that noise-based devices, such as randomly vibrating shoe inserts, may enable people to overcome functional difficulties due to age-related sensory loss.

  9. Influence of obesity on accurate and rapid arm movement performed from a standing posture.

    PubMed

    Berrigan, F; Simoneau, M; Tremblay, A; Hue, O; Teasdale, N

    2006-12-01

    Obesity yields a decreased postural stability. The potentially negative impact of obesity on the control of upper limb movements, however, has not been documented. This study sought to examine if obesity imposes an additional balance control constraint limiting the speed and accuracy with which an upper limb goal-directed movement performed from an upright standing position can be executed. Eight healthy lean subjects (body mass index (BMI) between 20.9 and 25.0 kg/m(2)) and nine healthy obese subjects (BMI between 30.5 and 48.6 kg/m(2)) pointed to a target located in front of them from an upright standing posture. The task was to aim at the target as fast and as precisely as possible after an auditory signal. The difficulty of the task was varied by using different target sizes (0.5, 1.0, 2.5 and 5.0 cm width). Hand movement time (MT) and velocity profiles were measured to quantify the aiming. Centre of pressure and segmental kinematics were analysed to document postural stability. When aiming, the forward centre of pressure (CP) displacement was greater for the obese group than for the normal BMI group (4.6 and 1.9 cm, respectively). For the obese group, a decrease in the target size was associated with an increase in backward CP displacement and CP peak speed whereas for the normal BMI group backward CP displacements and CP peak speed were about the same across all target sizes. Obese participants aimed at the target moving their whole body forward whereas the normal BMI subjects predominantly made an elbow extension and shoulder flexion. For both groups, MT increased with a decreasing target size. Compare to the normal BMI group, this effect was exacerbated for the obese group. For the two smallest targets, movements were on average 115 and 145 ms slower for the obese than for the normal BMI group suggesting that obesity added a balance constraint and limited the speed with which an accurate movement could be done. Obesity, because of its effects on the control of balance, also imposes constraints on goal-directed movements. From a clinical perspective, obese individuals might be less efficient and more at risk of injuries than normal weight individuals in a large number of work tasks and daily activities requiring upper limb movements performed from an upright standing position.

  10. Stiffness and Damping in Postural Control Increase with Age

    PubMed Central

    Cenciarini, Massimo; Loughlin, Patrick J.; Sparto, Patrick J.; Redfern, Mark S.

    2011-01-01

    Upright balance is believed to be maintained through active and passive mechanisms, both of which have been shown to be impacted by aging. A compensatory balance response often observed in older adults is increased co-contraction, which is generally assumed to enhance stability by increasing joint stiffness. We investigated the effect of aging on standing balance by fitting body sway data to a previously-developed postural control model that includes active and passive stiffness and damping parameters. Ten young (24 ± 3 y) and seven older (75 ± 5 y) adults were exposed during eyes-closed stance to perturbations consisting of lateral pseudorandom floor tilts. A least-squares fit of the measured body sway data to the postural control model found significantly larger active stiffness and damping model parameters in the older adults. These differences remained significant even after normalizing to account for different body sizes between the young and older adult groups. An age effect was also found for the normalized passive stiffness, but not for the normalized passive damping parameter. This concurrent increase in active stiffness and damping was shown to be more stabilizing than an increase in stiffness alone, as assessed by oscillations in the postural control model impulse response. PMID:19770083

  11. Postural disorders and spatial neglect in stroke patients: a strong association.

    PubMed

    Pérennou, Dominic

    2006-01-01

    In this paper we analyse the arguments for a strong association between spatial neglect and postural disorders and attempt to better understand the mechanisms which underlie that. We first provide a general overview of the available tools for a rational assessment of postural control in a clinical context. We then analyse the arguments in favour of a close relationship, although not necessarily causal, between spatial neglect and: 1) body orientation with respect to gravity (including verticality perception i.e. the visual vertical, the haptic vertical, and the postural vertical); 2) body stabilisation with respect to the base of support; 3) posturographic features of stroke patients; 4) and finally their postural disability in daily life. This second part of the paper is based both on the literature review and on results of our current research. Neglect patients show a dramatic postural disability, due both to problems in body orientation with respect to gravity and to problems in body stabilisation. It might be that these problems are partly caused by a neglect phenomenon bearing on graviceptive (somaesthetic > vestibular) and visual information serving postural control. This could correspond to a kind of postural neglect involving both the bodily and nonbodily domains of spatial neglect. The existence of distorsion(s) in the body scheme are also probably involved, especially to explain the weight-bearing asymmetry in standing, and probably an impaired multisegmental postural coordination leading to an impaired body stabilisation. The present paper explains why neglect patients show longer/worse recovery of postural-walking autonomy than other stroke patients.

  12. Acute effects of Dry Immersion on kinematic characteristics of postural corrective responses

    NASA Astrophysics Data System (ADS)

    Sayenko, D. G.; Miller, T. F.; Melnik, K. A.; Netreba, A. I.; Khusnutdinova, D. R.; Kitov, V. V.; Tomilovskaya, E. S.; Reschke, M. F.; Gerasimenko, Y. P.; Kozlovskaya, I. B.

    2016-04-01

    Impairments in balance control are inevitable following exposure to microgravity. However, the role of particular sensory system in postural disorders at different stages of the exposure to microgravity still remains unknown. We used a method called Dry Immersion (DI), as a ground-based model of microgravity, to elucidate the effects of 6-h of load-related afferent inputs on kinematic characteristics of postural corrective responses evoked by pushes to the chest of different intensities during upright standing. The structure of postural corrective responses was altered following exposure to DI, which was manifested by: (1) an increase of the ankle and knee flexion during perturbations of medium intensity, (2) the lack of the compensatory hip extension, as well as diminished knee and ankle flexion with a further increase of the perturbation intensity to submaximal level. We suggest that the lack of weight-bearing increases the reactivity of the balance control system, whereas the ability to scale the responses proportionally to the perturbation intensity decreases. Disrupted neuromuscular coordination of postural corrective responses following DI can be attributed to adaptive neural modifications on the spinal and cortical levels. The present study provides evidence that even a short-term lack of load-related afferent inputs alters kinematic patterns of postural corrective responses, and can result in decreased balance control. Because vestibular input is not primarily affected during the DI exposure, our results indicate that activity and the state of the load-related afferents play critical roles in balance control following real or simulated microgravity.

  13. Comparison of conversion coefficients for equivalent dose in terms of air kerma for photons using a male adult voxel simulator in sitting and standing posture with geometry of irradiation antero-posterior

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Cavalcante, F. R.; Carvalho, A. B.; Hunt, J.

    2014-02-01

    The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature.

  14. Standing economy: does the heterogeneity in the energy cost of posture maintenance reside in differential patterns of spontaneous weight-shifting?

    PubMed

    Miles-Chan, Jennifer L; Fares, Elie-Jacques; Berkachy, Redina; Jacquet, Philippe; Isacco, Laurie; Schutz, Yves; Montani, Jean-Pierre; Dulloo, Abdul G

    2017-04-01

    Due to sedentarity-associated disease risks, there is much interest in methods to increase low-intensity physical activity. In this context, it is widely assumed that altering posture allocation can modify energy expenditure (EE) to impact body-weight regulation and health. However, we have recently shown the existence of two distinct phenotypes pertaining to the energy cost of standing-with most individuals having no sustained increase in EE during steady-state standing relative to sitting comfortably. Here, we investigated whether these distinct phenotypes are related to the presence/absence of spontaneous "weight-shifting", i.e. the redistribution of body-weight from one foot to the other. Using indirect calorimetry to measure EE in young adults during sitting and 10 min of steady-state standing, we examined: (i) heterogeneity in EE during standing (n = 36); (ii) EE and spontaneous weight-shifting patterns (n = 18); (iii) EE during spontaneous weight-shifting versus experimentally induced weight-shifting (n = 7), and; (iv) EE during spontaneous weight-shifting versus intermittent leg/body displacement (n = 6). Despite heterogeneity in EE response to steady-state standing, no differences were found in the amount or pattern of spontaneous weight-shifting between the two phenotypes. Whilst experimentally induced weight-shifting resulted in a mean EE increase of only 11% (range: 0-25%), intermittent leg/body displacement increased EE to >1.5 METs in all participants. Although the variability in spontaneous weight-shifting signatures between individuals does not appear to underlie heterogeneity in the energy cost of standing posture maintenance, these studies underscore the fact that leg/body displacement, rather than standing posture alone, is needed to increase EE above the currently defined sedentary threshold.

  15. Photographic measurement of head and cervical posture when viewing mobile phone: a pilot study.

    PubMed

    Guan, Xiaofei; Fan, Guoxin; Wu, Xinbo; Zeng, Ying; Su, Hang; Gu, Guangfei; Zhou, Qi; Gu, Xin; Zhang, Hailong; He, Shisheng

    2015-12-01

    With the dramatic growth of mobile phone usage, concerns have been raised with regard to the adverse health effects of mobile phone on spinal posture. The aim of this study was to determine the head and cervical postures by photogrammetry when viewing the mobile phone screen, compared with those in neutral standing posture. A total of 186 subjects (81 females and 105 males) aged from 17 to 31 years old participated in this study. Subjects were instructed to stand neutrally and using mobile phone as in daily life. Using a photographic method, the sagittal head and cervical postures were assessed by head tilt angle, neck tilt angle, forward head shift and gaze angle. The photographic method showed a high intra-rater and inter-rater reliability in measuring the sagittal posture of cervical spine and gaze angle (ICCs ranged from 0.80 to 0.99). When looking at mobile phone, the head tilt angle significantly increased (from 74.55° to 95.22°, p = 0.000) and the neck angle decreased (from 54.68° to 38.77°, p = 0.000). The forward head posture was also confirmed by the significantly increased head shift (from 10.90 to 13.85 cm, p = 0.000). The posture assumed in mobile phone use was significantly correlated with neutral posture (p < 0.05). Males displayed a more forward head posture than females (p < 0.05). The head tilt angle was positively correlated with the gaze angle (r = 0.616, p = 0.000), while the neck tilt angle was negatively correlated with the gaze angle (r = -0.628, p = 0.000). Photogrammetry is a reliable, quantitative method to evaluate the head and cervical posture during mobile phone use. Compared to neutral standing, subjects display a more forward head posture when viewing the mobile phone screen, which is correlated with neutral posture, gaze angle and gender. Future studies will be needed to investigate a dose-response relationship between mobile phone use and assumed posture.

  16. Measurement of hemodynamics during postural changes using a new wearable cephalic laser blood flowmeter.

    PubMed

    Fujikawa, Tetsuya; Tochikubo, Osamu; Kura, Naoki; Kiyokura, Takanori; Shimada, Junichi; Umemura, Satoshi

    2009-10-01

    Patients with orthostatic hypotension have pathologic hemodynamics related to changes in body posture. A new cephalic laser blood flowmeter that can be worn on the tragus to investigate the hemodynamics upon rising from a sitting or squatting posture was developed. The relationship between cephalic hemodynamics and cerebral ischemic symptoms in 63 subjects in a sitting, squatting, and standing positions using the new device was evaluated. Transient decrease in blood pressure within 15 s after rising to an erect position possibly causes dizziness, syncope, and fall. Subjects exhibiting dizziness upon standing showed a significant decrease in the cephalic blood flow (CBF) and indirect beat-to-beat systolic blood pressure, as monitored by the Finometer, and a significant correlation was observed between the drop ratio (drop value on rising/mean value in the squatting position) of CBF and that of systolic blood pressure. This new wearable CBF-meter is potentially useful for estimating cephalic hemodynamics and objectively diagnosing cerebral ischemic symptoms of subjects in a standing posture.

  17. What triggers the continuous muscle activity during upright standing?

    PubMed

    Masani, Kei; Sayenko, Dimitry G; Vette, Albert H

    2013-01-01

    The ankle extensors play a dominant role in controlling the equilibrium during bipedal quiet standing. Their primary role is to resist the gravity toppling torque that pulls the body forward. The purpose of this study was to investigate whether the continuous muscle activity of the anti-gravity muscles during standing is triggered by the joint torque requirement for opposing the gravity toppling torque, rather than by the vertical load on the lower limbs. Healthy adults subjects stood on a force plate. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the posture from the free standing one. During the supported condition, which eliminates the ankle torque requirement while maintaining both the vertical load on the lower limbs and the natural upright standing posture, the plantarflexor activity was attenuated to the resting level. Also, this attenuated plantarflexor activity was found only in one side when the ipsilateral leg was supported. Our results suggest that the vertical load on the lower limb is not determinant for inducing the continuous muscle activity in the anti-gravity muscles, but that it depends on the required joint torque to oppose the gravity toppling torque. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Development of a Protocol to Test Proprioceptive Utilization as a Predictor for Sensorimotor Adaptability

    NASA Technical Reports Server (NTRS)

    Goel, R.; De Dios, Y. E.; Gadd, N. E.; Caldwell, E. E.; Peters, B. T.; Bloomberg, J. J.; Oddsson, L. I. E.; Mulavara, A. P.

    2016-01-01

    Astronauts returning from space flight show significant inter-subject variations in their abilities to readapt to a gravitational environment because of their innate sensory weighting. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. We hypothesize participant's ability to utilize individual sensory information (vision, proprioception and vestibular) influences adaptation in sensorimotor performance after space flight. The goal of this study is to develop a reliable protocol to test proprioceptive utilization in a functional postural control task. Subjects "stand" in a supine position while strapped to a backpack frame holding a friction-free device using air-bearings that allow the subject to move freely in the frontal plane, similar to when in upright standing. The frame is attached to a pneumatic cylinder, which can provide different levels of a gravity-like force that the subject must balance against to remain "upright". The supine posture with eyes closed ensures reduced vestibular and visual contribution to postural control suggesting somatosensory and/or non-otolith vestibular inputs will provide relevant information for maintaining balance control in this task. This setup is called the gravity bed. Fourteen healthy subjects carried out three trials each with eyes open alternated with eyes closed, "standing" on their dominant leg in the gravity bed environment while loaded with 60 percent of their body weight. Subjects were instructed to: "use your sense of sway about the ankle and pressure changes under the foot to maintain balance." Maximum length of a trial was 45 seconds. A force plate underneath the foot recorded forces and moments during the trial and an inertial measurement unit (IMU) attached on the backpack's frame near the center of mass of the subject recorded upper body postural responses. Series of linear and non-linear analyses were carried out on several force plate and IMU data including stabilogram diffusion analysis on the center of pressure (COP) to find a subset of parameters that were sensitive to detect differences in postural performance between eyes open and closed conditions. Results revealed that seven parameters (root mean square (RMS) of medio-lateral (ML) COP, range of ML COP, RMS of roll moment, range of trunk roll, minimum time-to-boundary (TTB), integrated TTB, and critical mean square planar displacement (delta r (sup 2) (sub c)) were significantly different between eyes open and closed conditions. We will present data to show the efficacy of using performance in single leg stance with eyes closed on the gravity bed to assess individuals' ability to utilize proprioceptive information in a functional postural control task to predict re-adaptation for sensorimotor and functional performance.

  19. Effects of body lean and visual information on the equilibrium maintenance during stance.

    PubMed

    Duarte, Marcos; Zatsiorsky, Vladimir M

    2002-09-01

    Maintenance of equilibrium was tested in conditions when humans assume different leaning postures during upright standing. Subjects ( n=11) stood in 13 different body postures specified by visual center of pressure (COP) targets within their base of support (BOS). Different types of visual information were tested: continuous presentation of visual target, no vision after target presentation, and with simultaneous visual feedback of the COP. The following variables were used to describe the equilibrium maintenance: the mean of the COP position, the area of the ellipse covering the COP sway, and the resultant median frequency of the power spectral density of the COP displacement. The variability of the COP displacement, quantified by the COP area variable, increased when subjects occupied leaning postures, irrespective of the kind of visual information provided. This variability also increased when vision was removed in relation to when vision was present. Without vision, drifts in the COP data were observed which were larger for COP targets farther away from the neutral position. When COP feedback was given in addition to the visual target, the postural control system did not control stance better than in the condition with only visual information. These results indicate that the visual information is used by the postural control system at both short and long time scales.

  20. The role of haptic cues from rough and slippery surfaces in human postural control

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Lackner, J. R.

    1995-01-01

    Haptic information is critically important in complex sensory-motor tasks such as manipulating objects. Its comparable importance in spatial orientation is only beginning to be recognized. We have shown that postural sway in humans is significantly reduced by lightly touching a stable surface with a fingertip at contact force levels far below those physically necessary to stabilize the body. To investigate further the functional relationship between contact forces at the hand and postural equilibrium, we had subjects stand in the tandem Romberg stance while being allowed physically supportive (force contact) and non-physically supportive (touch contact) amounts of index fingertip force on surfaces with different frictional characteristics. Mean sway amplitude (MSA) was reduced by over 50% with both touch and force contact of the fingertip, compared to standing without fingertip contact. No differences in MSA were observed when touching rough or slippery surfaces. The amplitude of EMG activity in the peroneal muscles and the timing relationships between fingertip forces, body sway and EMG activity suggested that with touch contact of the finger or with force contact on a slippery surface long-loop "reflexes" involving postural muscles were stabilizing sway. With force contact of the fingertip on a rough surface, MSA reduction was achieved primarily through physical support of the body. This pattern of results indicates that light touch contact cues from the fingertip in conjunction with proprioceptive signals about arm configuration are providing information about body sway that can be used to reduce MSA through postural muscle activation.

  1. Sport-specific balance.

    PubMed

    Zemková, Erika

    2014-05-01

    This review includes the latest findings based on experimental studies addressing sport-specific balance, an area of research that has grown dramatically in recent years. The main objectives of this work were to investigate the postural sway response to different forms of exercise under laboratory and sport-specific conditions, to examine how this effect can vary with expertise, and to provide examples of the association of impaired balance with sport performance and/or increasing risk of injury. In doing so, sports where body balance is one of the limiting factors of performance were analyzed. While there are no significant differences in postural stability between athletes of different specializations and physically active individuals during standing in a standard upright position (e.g., bipedal stance), they have a better ability to maintain balance in specific conditions (e.g., while standing on a narrow area of support). Differences in magnitude of balance impairment after specific exercises (rebound jumps, repeated rotations, etc.) and mainly in speed of its readjustment to baseline are also observed. Besides some evidence on an association of greater postural sway with the increasing risk of injuries, there are many myths related to the negative influence of impaired balance on sport performance. Though this may be true for shooting or archery, findings have shown that in many other sports, highly skilled athletes are able to perform successfully in spite of increased postural sway. These findings may contribute to better understanding of the postural control system under various performance requirements. It may provide useful knowledge for designing training programs for specific sports.

  2. Trunk Accelerometry Reveals Postural Instability in Untreated Parkinson's Disease

    PubMed Central

    Mancini, Martina; Horak, Fay B.; Zampieri, Cris; Carlson-Kuhta, Patricia; Nutt, John G.; Chiari, Lorenzo

    2017-01-01

    While several studies have shown that subjects with advanced Parkinson's disease (PD) exhibit abnormalities in sway parameters during quiet standing, abnormalities of postural sway associated with untreated PD have not been reported. Although not clinically apparent, we hypothesized that spontaneous sway in quiet stance is abnormal in people with untreated PD. We examined 13 subjects, recently diagnosed with PD, who were not yet taking any anti-parkinsonian medications and 12 healthy, age-matched control subjects. Postural sway was measured with a linear accelerometer on the posterior trunk (L5 level) and compared with traditional forceplate measures of sway. Subjects stood for two minutes under two conditions: eyes open (EO) and eyes closed (EC). One of the most discriminative measures of postural changes in subjects with untreated PD was the increased ‘JERK’ of lower trunk in the EO condition, measured with the accelerometer. Root mean square and the frequency dispersion of postural sway in the EO condition also discriminated sway in untreated PD subjects compared to controls subjects. We conclude that accelerometer-based sway metrics could be used as objective measures of postural instability in untreated PD. Accelerometer-based analysis of spontaneous sway may provide a powerful tool for early clinical trials and for monitoring the effects of treatment of balance disorders in subjects with PD. PMID:21641263

  3. Design and Validation of a Low-Cost Portable Device to Quantify Postural Stability.

    PubMed

    Zhu, Yong

    2017-03-18

    Measurement of the displacement of the center-of-pressure (COP) is an important tool used in biomechanics to assess postural stability and human balance. The goal of this research was to design and validate a low-cost portable device that can offer a quick indication of the state of postural stability and human balance related conditions. Approximate entropy (ApEn) values reflecting the amount of irregularity hiding in COP oscillations were used to calculate the index. The prototype adopted a portable design using the measurements of the load cells located at the four corners of a low-cost force platform. The test subject was asked to stand on the device in a quiet, normal, upright stance for 30 s with eyes open and subsequently for 30 s with eyes closed. Based on the COP displacement signals, the ApEn values were calculated. The results indicated that the prototype device was capable of capturing the increase in regularity of postural control in the visual-deprivation conditions. It was also able to decipher the subtle postural control differences along anterior-posterior and medial-lateral directions. The data analysis demonstrated that the prototype would enable the quantification of postural stability and thus provide a low-cost portable device to assess many conditions related to postural stability and human balance such as aging and pathologies.

  4. Associations between Tactile Sensory Threshold and Postural Performance and Effects of Healthy Aging and Subthreshold Vibrotactile Stimulation on Postural Outcomes in a Simple Dual Task

    PubMed Central

    Dettmer, Marius; Pourmoghaddam, Amir; Lee, Beom-Chan; Layne, Charles S.

    2016-01-01

    Specific activities that require concurrent processing of postural and cognitive tasks may increase the risk for falls in older adults. We investigated whether peripheral receptor sensitivity was associated with postural performance in a dual-task and whether an intervention in form of subthreshold vibration could affect performance. Ten younger (age: 20–35 years) and ten older adults (70–85 years) performed repeated auditory-verbal 1-back tasks while standing quietly on a force platform. Foot sole vibration was randomly added during several trials. Several postural control and performance measures were assessed and statistically analyzed (significance set to α-levels of .05). There were moderate correlations between peripheral sensitivity and several postural performance and control measures (r = .45 to .59). Several postural performance measures differed significantly between older and younger adults (p < 0.05); addition of vibration did not affect outcome measures. Aging affects healthy older adults' performance in dual-tasks, and peripheral sensitivity may be a contributor to the observed differences. A vibration intervention may only be useful when there are more severe impairments of the sensorimotor system. Hence, future research regarding the efficacy of sensorimotor interventions in the form of vibrotactile stimulation should focus on older adults whose balance is significantly affected. PMID:27143967

  5. Foot anatomy specialization for postural sensation and control

    PubMed Central

    Ivanenko, Y. P.; Gurfinkel, V. S.

    2012-01-01

    Anthropological and biomechanical research suggests that the human foot evolved a unique design for propulsion and support. In theory, the arch and toes must play an important role, however, many postural studies tend to focus on the simple hinge action of the ankle joint. To investigate further the role of foot anatomy and sensorimotor control of posture, we quantified the deformation of the foot arch and studied the effects of local perturbations applied to the toes (TOE) or 1st/2nd metatarsals (MT) while standing. In sitting position, loading and lifting a 10-kg weight on the knee respectively lowered and raised the foot arch between 1 and 1.5 mm. Less than 50% of this change could be accounted for by plantar surface skin compression. During quiet standing, the foot arch probe and shin sway revealed a significant correlation, which shows that as the tibia tilts forward, the foot arch flattens and vice versa. During TOE and MT perturbations (a 2- to 6-mm upward shift of an appropriate part of the foot at 2.5 mm/s), electromyogram (EMG) measures of the tibialis anterior and gastrocnemius revealed notable changes, and the root-mean-square (RMS) variability of shin sway increased significantly, these increments being greater in the MT condition. The slow return of RMS to baseline level (>30 s) suggested that a very small perturbation changes the surface reference frame, which then takes time to reestablish. These findings show that rather than serving as a rigid base of support, the foot is compliant, in an active state, and sensitive to minute deformations. In conclusion, the architecture and physiology of the foot appear to contribute to the task of bipedal postural control with great sensitivity. PMID:22157121

  6. [Brief on the standardization of the practitioner's posture in acupuncture operation].

    PubMed

    Lu, Yonghui

    2015-07-01

    To discuss the standardization of the practitioner's posture in acupuncture operation. Based on the relevant discussion on 'way to holding needle' recorded in Lingshu (Miraculous Pivot) and in association with the clinical acupuncture practice, it was required to standardize the practitioner's posture in acupuncture operation in reference to Lingshu (Miraculous Pivot). The standard standing posture of the practitioner is the precondition of acupuncture operation; the standard holding needle with the puncture hand is the key to the exercise of acupuncture technique and the regular standing orientation is the need of acupuncture operation. The three aspects are complemented each other, which is the coordinative procedure in acupuncture operation and enable the practitioner's high concentration with the body, qi and mind involved.

  7. Comparison of postural sway depending on balance pad type

    PubMed Central

    Lee, DongGeon; Kim, HaNa; An, HyunJi; Jang, JiEun; Hong, SoungKyun; Jung, SunHye; Lee, Kyeongbong; Choi, Myong-Ryol; Lee, Kyung-Hee; Lee, GyuChang

    2018-01-01

    [Purpose] The purpose of the present study was to compare the postural sway of healthy adults standing on different types of balance pads. [Subjects and Methods] Nine healthy adults participated in this study. Postural body sway was measured while participants were standing on four different types of balance pads: Balance-pad Elite (BE), Aero-Step XL (AS), Dynair Ballkissen Senso (DBS), and Dynair Ballkissen XXL Meditation and Yoga (DBMY). A Wii Balance Board interfaced with Balancia software was used to measure postural body sway. [Results] In the sway velocity, sway path length, and sway area, no significant differences were found between baseline conditions (participants were standing on the floor with no balance pad) and the use of the BE or AS. However, significant increases in all parameters were found comparing baseline conditions to the use of either Dynair balance pad. Furthermore, the use of either Dynair balance pad significantly increased postural sway compared to both the BE and the AS. [Conclusion] These findings suggest that the DBS and DBMY balance pads may serve as superior tools for providing unstable condition for balance training than the BE and the AS balance pads. PMID:29545688

  8. Comparison of postural sway depending on balance pad type.

    PubMed

    Lee, DongGeon; Kim, HaNa; An, HyunJi; Jang, JiEun; Hong, SoungKyun; Jung, SunHye; Lee, Kyeongbong; Choi, Myong-Ryol; Lee, Kyung-Hee; Lee, GyuChang

    2018-02-01

    [Purpose] The purpose of the present study was to compare the postural sway of healthy adults standing on different types of balance pads. [Subjects and Methods] Nine healthy adults participated in this study. Postural body sway was measured while participants were standing on four different types of balance pads: Balance-pad Elite (BE), Aero-Step XL (AS), Dynair Ballkissen Senso (DBS), and Dynair Ballkissen XXL Meditation and Yoga (DBMY). A Wii Balance Board interfaced with Balancia software was used to measure postural body sway. [Results] In the sway velocity, sway path length, and sway area, no significant differences were found between baseline conditions (participants were standing on the floor with no balance pad) and the use of the BE or AS. However, significant increases in all parameters were found comparing baseline conditions to the use of either Dynair balance pad. Furthermore, the use of either Dynair balance pad significantly increased postural sway compared to both the BE and the AS. [Conclusion] These findings suggest that the DBS and DBMY balance pads may serve as superior tools for providing unstable condition for balance training than the BE and the AS balance pads.

  9. Effect of cognitive and motor tasks on postural stability in Parkinson's disease: a posturographic study.

    PubMed

    Marchese, Roberta; Bove, Marco; Abbruzzese, Giovanni

    2003-06-01

    To analyse the effect of concomitant cognitive or motor task performance on balance control in Parkinson's disease (PD), we performed a posturographic study in 24 PD patients and in 20 sex- and age-matched control subjects. Postural sway was measured with eyes open (EO) and eyes closed (EC) during quiet stance and during performance of calculation or motor sequence of thumb opposition to the other fingers. No difference of centre of foot pressure (COP) parameters was observed during quiet standing (either EO or EC) between patients and controls, but visual deprivation induced in both groups a worsening of postural stability. COP area was significantly increased in PD patients during dual task performance, whereas no difference of COP path and x-y axes was observed. The effects induced by the performance of cognitive or motor task were significantly more evident in PD patients with clinical evidence of postural instability (presence of prior falls in the history). This study demonstrates that dual task interference on postural control can be observed in PD patients during performance of cognitive as well as motor tasks. The balance deterioration during dual task performance was significantly enhanced in patients with history of prior falls. These findings have some implications for the strategies to be used in reducing the risk of fall in PD. Copyright 2003 Movement Disorder Society

  10. Age-related changes in human posture control: Sensory organization tests

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1989-01-01

    Postural control was measured in 214 human subjects ranging in age from 7 to 81 years. Sensory organization tests measured the magnitude of anterior-posterior body sway during six 21 s trials in which visual and somatosensory orientation cues were altered (by rotating the visual surround and support surface in proportion to the subject's sway) or vision eliminated (eyes closed) in various combinations. No age-related increase in postural sway was found for subjects standing on a fixed support surface with eyes open or closed. However, age-related increases in sway were found for conditions involving altered visual or somatosensory cues. Subjects older than about 55 years showed the largest sway increases. Subjects younger than about 15 years were also sensitive to alteration of sensory cues. On average, the older subjects were more affected by altered visual cues whereas younger subjects had more difficulty with altered somatosensory cues.

  11. Mechanical effort predicts the selection of ankle over hip strategies in nonstepping postural responses

    PubMed Central

    Jonkers, Ilse; De Schutter, Joris; De Groote, Friedl

    2016-01-01

    Experimental studies have shown that a continuum of ankle and hip strategies is used to restore posture following an external perturbation. Postural responses can be modeled by feedback control with feedback gains that optimize a specific objective. On the one hand, feedback gains that minimize effort have been used to predict muscle activity during perturbed standing. On the other hand, hip and ankle strategies have been predicted by minimizing postural instability and deviation from upright posture. It remains unclear, however, whether and how effort minimization influences the selection of a specific postural response. We hypothesize that the relative importance of minimizing mechanical work vs. postural instability influences the strategy used to restore upright posture. This hypothesis was investigated based on experiments and predictive simulations of the postural response following a backward support surface translation. Peak hip flexion angle was significantly correlated with three experimentally determined measures of effort, i.e., mechanical work, mean muscle activity and metabolic energy. Furthermore, a continuum of ankle and hip strategies was predicted in simulation when changing the relative importance of minimizing mechanical work and postural instability, with increased weighting of mechanical work resulting in an ankle strategy. In conclusion, the combination of experimental measurements and predictive simulations of the postural response to a backward support surface translation showed that the trade-off between effort and postural instability minimization can explain the selection of a specific postural response in the continuum of potential ankle and hip strategies. PMID:27489362

  12. Evaluation of two-dimensional accelerometers to monitor behavior of beef calves after castration.

    PubMed

    White, Brad J; Coetzee, Johann F; Renter, David G; Babcock, Abram H; Thomson, Daniel U; Andresen, Daniel

    2008-08-01

    To determine the accuracy of accelerometers for measuring behavior changes in calves and to determine differences in beef calf behavior from before to after castration. 3 healthy Holstein calves and 12 healthy beef calves. 2-dimensional accelerometers were placed on 3 calves, and data were logged simultaneous to video recording of animal behavior. Resulting data were used to generate and validate predictive models to classify posture (standing or lying) and type of activity (standing in place, walking, eating, getting up, lying awake, or lying sleeping). The algorithms developed were used to conduct a prospective trial to compare calf behavior in the first 24 hours after castration (n = 6) with behavior of noncastrated control calves (6) and with presurgical readings from the same castrated calves. On the basis of the analysis of the 2-dimensional accelerometer signal, posture was classified with a high degree of accuracy (98.3%) and the specific activity was estimated with a reasonably low misclassification rate (23.5%). Use of the system to compare behavior after castration revealed that castrated calves spent a significantly larger amount of time standing (82.2%), compared with presurgical readings (46.2%). 2-dimensional accelerometers provided accurate classification of posture and reasonable classification of activity. Applying the system in a castration trial illustrated the usefulness of accelerometers for measuring behavioral changes in individual calves.

  13. Behavior of medial gastrocnemius motor units during postural reactions to external perturbations after stroke.

    PubMed

    Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J

    2015-10-01

    This study investigated the behavior of medial gastrocnemius (GM) motor units (MU) during external perturbations in standing in people with chronic stroke. GM MUs were recorded in standing while anteriorly-directed perturbations were introduced by applying loads of 1% body mass (BM) at the pelvis every 25-40s until 5% BM was maintained. Joint kinematics, surface electromyography (EMG), and force platform measurements were assessed. Although external loads caused a forward progression of the anterior-posterior centre of pressure (APCOP), people with stroke decreased APCOP velocity and centre of mass (COM) velocity immediately following the highest perturbations, thereby limiting movement velocity in response to perturbations. MU firing rate did not increase with loading but the GM EMG magnitude increased, reflecting MU recruitment. MU inter spike interval (ISI) during the dynamic response was negatively correlated with COM velocity and hip angular velocity. The GM utilized primarily MU recruitment to maintain standing during external perturbations. The lack of MU firing rate modulation occurred with a change in postural central set. However, the relationship of MU firing rate with kinematic variables suggests underlying long-loop responses may be somewhat intact after stroke. People with stroke demonstrate alterations in postural control strategies which may explain MU behavior with external perturbations. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Single- and Dual-Task Balance Training Are Equally Effective in Youth

    PubMed Central

    Lüder, Benjamin; Kiss, Rainer; Granacher, Urs

    2018-01-01

    Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12–13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed (p < 0.001, d = 5.1), shorter stride length (p < 0.001, d = 4.8), and longer stride time (p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre–post decreases in DT costs for gait velocity (p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes (p > 0.05, d = 0–0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre–post increases (p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group (p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents. PMID:29928248

  15. Single- and Dual-Task Balance Training Are Equally Effective in Youth.

    PubMed

    Lüder, Benjamin; Kiss, Rainer; Granacher, Urs

    2018-01-01

    Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12-13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed ( p < 0.001, d = 5.1), shorter stride length ( p < 0.001, d = 4.8), and longer stride time ( p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre-post decreases in DT costs for gait velocity ( p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes ( p > 0.05, d = 0-0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre-post increases ( p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group ( p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents.

  16. Training for improved neuro-muscular control of balance in middle aged females.

    PubMed

    Anderson, Gregory S; Deluigi, Fabio; Belli, Guido; Tentoni, Claudio; Gaetz, Michael B

    2016-01-01

    This study examined improvements in static balance and muscle electromyographic (EMG) activity following a four week progressive training program in 16 middle aged females (mean age = 46.9 ± 8.7 yrs; height 161.1 ± 6.0 cm; weight 65.4 ± 11.2 kg). Participants trained 3 times per week for 4 weeks, for 50 min per session, progressing base of support, stability, vision, resistance and torque in each of six basic exercises. Pre and post training measures of balance included feet together standing, a tandem stance and a one-leg stand (unsupported leg in the saggital plane) performed with the eyes closed, and a Stork Stand (unsupported leg in the frontal plane) with both eyes open and closed. In each position postural deviations were tallied for each individual while muscle recruitment was determined using root mean squared (RMS) EMG activity for the soleus, biceps femoris, erector spinae, rectus abdominis and internal oblique muscles of the dominant foot side. Balance scores were significantly improved post training in both the Balance Error Score System (p < 0.05) and stork stand positions (p < 0.01). Muscle activity was reduced post-training in all muscles in each condition except the soleus in the tandem position, although not all significantly. Reduced biceps femoris activity suggest that improved core stability allowed participants to move from a hip to an ankle postural control strategy through improved coordination of muscles involved in balance and reduced body sway. The core muscles were able to control body position with less activity post training suggesting improved muscle coordination and efficiency. These results suggest that short term progressive floor to BOSU™ balance training can improve standing balance in middle aged women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Posture Control-Human-Inspired Approaches for Humanoid Robot Benchmarking: Conceptualizing Tests, Protocols and Analyses.

    PubMed

    Mergner, Thomas; Lippi, Vittorio

    2018-01-01

    Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1) four basic physical disturbances (support surface (SS) tilt and translation, field and contact forces) may affect the balancing in any given degree of freedom (DoF). Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with "reactive" balancing of external disturbances and "proactive" balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3) Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking criteria build on the evoked sway magnitude, normalized to robot weight and Center of mass (COM) height, in relation to reference ranges that remain to be established. The references may include human likeness features. The proposed benchmarking concept may in principle also be applied to wearable robots, where a human user may command movements, but may not be aware of the additionally required postural control, which then needs to be implemented into the robot.

  18. Analysis of the impact of a cognitive task on the posture of elderly subjects with depression compared with healthy elderly subjects.

    PubMed

    Casteran, Matthieu; Putot, Alain; Pfitzenmeyer, François; Thomas, Elizabeth; Manckoundia, Patrick

    2016-11-01

    While previous studies have demonstrated that depressive elderly subjects (DES) experience difficulties in the processing of simultaneous cognitive tasks, few have examined the coupling of cognitive tasks with seemingly 'automatic' tasks, such as standing upright. Current patient management focuses on pharmacological treatments and cognitive-behavioral therapies. Healthy elderly (HES) and non-treated DES were included. Postural sway in DES was compared with that in HES while in single-task and dual-task conditions. The single-task consisted of standing upright. For the dual-task, the subjects recalled various items from memory or counted while standing upright. Postural sway was evaluated by computing the center of pressure (CoP) area and path length. DES showed greater postural sway than HES in all conditions. The HES showed a greater CoP area in the dual-task than in the single-task conditions. In DES, the CoP area in the single-task condition was similar to that in the dual-task condition. The greater postural sway observed in DES may be a cause of a greater risk of falls. We showed that even seemingly automatic tasks, such as maintaining an upright posture, are affected by depression. These results are important for the management of DES. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Do children perceive postural constraints when estimating reach or action planning?

    PubMed

    Gabbard, Carl; Cordova, Alberto; Lee, Sunghan

    2009-03-01

    Estimation of whether an object is reachable from a specific body position constitutes an important aspect in effective motor planning. Researchers who estimate reachability by way of motor imagery with adults consistently report the tendency to overestimate, with some evidence of a postural effect (postural stability hypothesis). This idea suggests that perceived reaching limits depend on an individual's perceived postural constraints. Based on previous work with adults, the authors expected a significant postural effect with the Reach 2 condition, as evidenced by reduced overestimation. Furthermore, the authors hypothesized that the postural effect would be greater in younger children. They then tested these propositions among children aged 7, 9, and 11 years by asking them to estimate reach while seated (Reach 1) and in the more demanding posture of standing on 1 foot and leaning forward (Reach 2). Results indicated no age or condition difference, therefore providing no support for a postural effect. When the authors compared these data to a published report of adults, a developmental difference emerged. That is, adults recognize the perceived postural constraint of the standing position resulting in under- rather than overestimation, as displayed in the seated condition. Although preliminary, these observations suggest that estimates of reach (action planning) continue to be refined between late childhood and young adulthood.

  20. Postural control and freezing of gait in Parkinson's disease.

    PubMed

    Schlenstedt, Christian; Muthuraman, Muthuraman; Witt, Karsten; Weisser, Burkhard; Fasano, Alfonso; Deuschl, Günther

    2016-03-01

    The relationship between freezing of gait (FOG) and postural instability in Parkinson's disease (PD) is unclear. We analyzed the impact of FOG on postural control. 31 PD patients with FOG (PD+FOG), 27 PD patients without FOG (PD-FOG) and 22 healthy control (HC) were assessed in the ON state. Postural control was measured with the Fullerton Advanced Balance (FAB) scale and with center of pressure (COP) analysis during quiet stance and maximal voluntary forward/backward leaning. The groups were balanced concerning age, disease duration and disease severity. PD+FOG performed significantly worse in the FAB scale (21.8 ± 5.8) compared to PD-FOG (25.6 ± 5.0) and HC (34.9 ± 2.4) (mean ± SD, p < 0.01). PD+FOG had impaired ability to voluntary lean forward, difficulties to stand on foam with eyes closed and reduced limits of stability compared to PD-FOG (p < 0.05). During quiet stance the average anterior-posterior COP position was significantly displaced towards posterior in PD+FOG in comparison to PD-FOG and HC (p < 0.05). The COP position correlated with severity of FOG (p < 0.01). PD+FOG and PD-FOG did not differ in average COP sway excursion, sway velocity, sway regularity and postural control asymmetry. PD+FOG have reduced postural control compared to PD-FOG and HC. Our results show a relationship between the anterior-posterior COP position during quiet stance and FOG. The COP shift towards posterior in PD+FOG leads to a restricted precondition to generate forward progression during gait initiation. This may contribute to the occurrence of FOG or might be a compensatory strategy to avoid forward falls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A pilot study on the influence of exercising on unstable training machine on balance control and trunk muscles activity.

    PubMed

    Domeika, Aurelijus; Aleknaite-Dambrauskiene, Ieva; Poskaitis, Vytautas; Zaveckas, Vidmantas; Grigas, Vytautas; Zvironiene, Ausra

    2018-05-16

    The main position of the working population is becoming sitting. Immobile prolonged sedentary time may cause negative effects including reduced intervertebral discs nutrition. Main ways of mitigating them are regular position changes and exercising. To evaluate influence of the short term training on unstable training machine on balance control and trunk muscles activity in patients with lower back pain. Participants (n=16) experiencing lower back pain were trained on an unstable sculling machine "Rehabili". Their balance tested by (Biodex Balance System) and rectus abdominis, externus oblique, transverse abdominis, multifidus and erector spine muscles activity (measured by surface electromyography) while sitting and standing with usual and aligned body postures both before and after six weeks of training (three 15 minutes sessions per week) were compared in between. Balance control improved after the training program. Besides, more symmetrical activation of both sides rectus and transversus abdominis muscles, as well as increased transversus abdominis muscle activation of 19% (p< 0.05), were observed. Six weeks short sessions training on unstable training machine improved balance control and increased trunk muscles activity especially in aligned body posture when standing or sitting on unstable surface.

  2. Changes in Standing and Walking Performance Under Dual-Task Conditions Across the Lifespan.

    PubMed

    Ruffieux, Jan; Keller, Martin; Lauber, Benedikt; Taube, Wolfgang

    2015-12-01

    Simultaneous performance of a postural and a concurrent task is rather unproblematic as long as the postural task is executed in an automatic way. However, in situations where postural control requires more central processing, cognitive resources may be exceeded by the addition of an attentionally demanding task. This may lead to interference between the two tasks, manifested in a decreased performance in one or both tasks (dual-task costs). Owing to changes in attentional demands of postural tasks as well as processing capacities across the lifespan, it might be assumed that dual-task costs are particularly pronounced in children and older adults probably leading to a U-shaped pattern for dual-task costs as a function of age. However, these changes in the ability of dual-tasking posture from childhood to old age have not yet been systematically reviewed. Therefore, Web of Science and PubMed databases were searched for studies comparing dual-task performance with one task being standing or walking in healthy groups of young adults and either children or older adults. Seventy-nine studies met inclusion criteria. For older adults, the expected increase in dual-task costs could be confirmed. In contrast, in children there was only feeble evidence for a trend towards enlarged dual-task costs. More good-quality studies comparing dual-task ability in children, young, and, ideally, also older adults within the same paradigm are needed to draw unambiguous conclusions about lifespan development of dual-task performance in postural tasks. There is evidence that, in older adults, dual-task performance can be improved by training. For the other age groups, these effects have yet to be investigated.

  3. Comparative shoulder kinematics during free standing, standing depression lifts and daily functional activities in persons with paraplegia: considerations for shoulder health.

    PubMed

    Riek, L M; Ludewig, P M; Nawoczenski, D A

    2008-05-01

    Case series; nonparametric repeated-measures analysis of variance. To compare and contrast three-dimensional shoulder kinematics during frequently utilized upper extremity weight-bearing activities (standing depression lifts used in brace walking, weight-relief raises, transfers) and postures (sitting rest, standing in a frame) in spinal cord injury (SCI). Movement Analysis Laboratory, Department of Physical Therapy, Ithaca College, Rochester, NY, USA. Three female and two male subjects (39.2+/-6.1 years old) at least 12 months post-SCI (14.6+/-6.7 years old), SCI distal to T2 and with an ASIA score of A. The Flock of Birds magnetic tracking device was used to measure three-dimensional positions of the scapula, humerus and thorax during various activities. Standing in a frame resulted in significantly less scapular anterior tilt (AT) and greater glenohumeral external rotation (GHER) than standing depression lifts and weight-relief raises. Standing frame posture offers the most favorable shoulder joint positions (less scapular AT and greater GHER) when compared to sitting rest posture, weight-relief raises, transfers and standing depression lifts. Knowledge of kinematic patterns associated with each activity is an essential first step to understanding the potential impact on shoulder health. Choosing specific activities or modifying techniques within functional activities that promote favorable shoulder positions may preserve long-term shoulder health.

  4. Effect of yoga training on one leg standing and functional reach tests in obese individuals with poor postural control

    PubMed Central

    Jorrakate, Chaiyong; Kongsuk, Jutaluk; Pongduang, Chiraprapa; Sadsee, Boontiwa; Chanthorn, Phatchari

    2015-01-01

    [Purpose] The aim of the present study was to investigate the effect of yoga training on static and dynamic standing balance in obese individuals with poor standing balance. [Subjects and Methods] Sixteen obese volunteers were randomly assigned into yoga and control groups. The yoga training program was performed for 45 minutes per day, 3 times per week, for 4 weeks. Static and dynamic balance were assessed in volunteers with one leg standing and functional reach tests. Outcome measures were tested before training and after a single week of training. Two-way repeated measure analysis of variance with Tukey’s honestly significant difference post hoc statistics was used to analyze the data. [Results] Obese individuals showed significantly increased static standing balance in the yoga training group, but there was no significant improvement of static or dynamic standing balance in the control group after 4 weeks. In the yoga group, significant increases in static standing balance was found after the 2nd, 3rd, and 4th weeks. Compared with the control group, static standing balance in the yoga group was significantly different after the 2nd week, and dynamic standing balance was significantly different after the 4th week. [Conclusion] Yoga training would be beneficial for improving standing balance in obese individuals with poor standing balance. PMID:25642038

  5. Screening initial entry training trainees for postural faults and low back or hip pain.

    PubMed

    Lane, John R

    2014-01-01

    The frequency of postural faults and postural awareness in military trainees has not been assessed. Five hundred Soldiers entering Advanced Individual Training were screened for standing posture and completed an anonymous questionnaire during inprocessing. Postural faults were identified in 202 subjects. Chi square analysis demonstrated a relationship between posture observed and posture reported: 87% of subjects with postural faults were unaware of postural faults; 12% with proper posture reported having poor posture. Subjects reported comparable frequencies of back pain and hip pain with postural faults (33.2%, 21.2%) and without faults (28.5%, 14.7%). Anonymous reporting was higher than formal reporting and requests for care during the same period (37% vs 3.4%).

  6. Effect of epidural blood injection on upright posture intolerance in patients with headaches due to intracranial hypotension: A prospective study.

    PubMed

    Qureshi, Adnan I; Kherani, Danish; Waqas, Muhammad A; Qureshi, Mushtaq H; Raja, Faisal M; Wallery, Shawn S

    2018-06-19

    We performed a prospective study to quantify changes in various aspects of upright posture intolerance in patients with intracranial hypotension. Six patients were provided a standard questionnaire before, immediately after epidural blood patch injection and at follow-up visit within 1 month after epidural blood injection inquiring: (a) How long can they stand straight without any support? (b) Do they feel any sense of sickness when they sit or lie down after standing? (c) How long do they have to wait before they are comfortable standing again after they have stood straight? (d) How effectively and fast can they get up from sitting or lying position to stand straight? and (e) Rate their activities in upright posture without support on a standard vertical visual analogue scale between 100 (can do everything) and 0 (cannot do anything). All patients responded that they could not stand straight for ≥30 min (four responding <5 min) on pretreatment evaluation. All patients reported improvement in this measure immediately postprocedure with two reporting ≥30 min. At follow-up, three patients reported further improvement and one patient reported worsening in this measure. The magnitude of improvement ranged from 10 to 80 points increase immediately postprocedure in their ability to perform activities, while they are standing without any support on visual analogue scale. At follow-up, four patient reported additional improvement in their ability to perform activities, while they are standing without any support (ranged from 10 to 20 points increase compared with immediately postprocedure rating). We present semiquantitative data on various aspects of upright posture intolerance in patients with intracranial hypotension before and after epidural blood injection. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  7. Postural analysis in time and frequency domains in patients with Ehlers-Danlos syndrome.

    PubMed

    Galli, Manuela; Rigoldi, Chiara; Celletti, Claudia; Mainardi, Luca; Tenore, Nunzio; Albertini, Giorgio; Camerota, Filippo

    2011-01-01

    The goal of this work is to analyze postural control in Ehlers-Danlos syndrome (EDS) participants in time and frequency domain. This study considered a pathological group composed by 22 EDS participants performing a postural test consisting in maintaining standing position over a force platform for 30s in two conditions: open eyes (OE) and closed eyes (CE). In order to compare pathological group we acquired in the same conditions a control group composed by 20 healthy participants. The obtained center of pressure (COP) signal was analyzed in time and frequency domain using an AR model. Results revealed differences between pathological and control group: EDS participants pointed out difficulties in controlling COP displacements trying to keep it inside the BOS in AP direction and for this reason increased the use of ML mechanism in order to avoid the risk of fall. Also in CE conditions they demonstrated more difficulties in maintaining posture revealing the proprioceptive system is impaired, due to ligament laxity that characterized EDS participants. Frequency domain analysis showed no differences between the two groups, affirming that the changes in time domain reflected really the impairment to the postural control mechanism and not a different strategy assumed by EDS participants. These data could help in decision-making process to establish a correct rehabilitation approach, based on the reinforcing of muscle tone to supply the ligament laxity in order to prevent risks of falls and its consequences. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Effects of experimental leg length discrepancies on body posture and dental occlusion.

    PubMed

    Maeda, Nozomi; Sakaguchi, Kiwamu; Mehta, Noshir R; Abdallah, Emad F; Forgione, Albert G; Yokoyama, Atsuro

    2011-07-01

    The purpose of this study was to quantitatively evaluate the effects of experimental leg length discrepancies on body posture and dental occlusion. Thirty asymptomatic subjects (15 males and 15 females, ages 19-33, mean age 25.6 years) were included in this study and randomly assigned to one of two groups based on a table of random numbers. The only difference between group A and group B was the sequence of testing. Experimental leg length discrepancies were provided by using ten types of insoles with heights ranging from one to ten mm at one mm intervals, placed under both feet. The MatScan (Nitta Corp., Osaka, Japan) system was used to measure changes in body posture (center of foot pressure: COP) while subjects maintained the following three postural positions: 1. natural standing posture (control); 2. control with a heel lift under the right foot; or 3. control with a heel lift under the left foot. The T-Scan II system (Nitta Corp., Osaka, Japan) was used to analyze the results of changes in dental occlusion (center of occlusal force: COF) in the above-mentioned three postural positions. When subjects used a heel lift of six mm or more under the right foot, lateral weight distribution (LWD) shifted to the right side compared to the control (p<0.05). When a heel lift of four mm or more was used under the left foot, LWD shifted to the left side compared to the control (p<0.05). When subjects used a heel lift of eight mm or more under the right foot, occlusal force shifted to the right side compared to the control (p<0.05). When subjects used a heel lift of seven mm or more under the left foot, occlusal force shifted to the left side compared to the control (p<0.05). Based on these findings, it was concluded that leg length discrepancy affected body posture and dental occlusion.

  9. Effect of standing on neurohumoral responses and plasma volume in healthy subjects

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Ertl, A. C.; Shannon, J. R.; Furlan, R.; Robertson, R. M.; Robertson, D.

    1998-01-01

    Upright posture leads to rapid pooling of blood in the lower extremities and shifts plasma fluid into surrounding tissues. This results in a decrease in plasma volume (PV) and in hemoconcentration. There has been no integrative evaluation of concomitant neurohumoral and PV shifts with upright posture in normal subjects. We studied 10 healthy subjects after 3 days of stable Na+ and K+ intake. PV was assessed by the Evans blue dye method and by changes in hematocrit. Norepinephrine (NE), NE spillover, epinephrine (Epi), vasopressin, plasma renin activity, aldosterone, osmolarity, and kidney response expressed by urine osmolality and by Na+ and K+ excretion of the subjects in the supine and standing postures were all measured. We found that PV fell by 13% (375 +/- 35 ml plasma) over approximately 14 min, after which time it remained relatively stable. There was a concomitant decrease in systolic blood pressure and an increase in heart rate that peaked at the time of maximal decrease in PV. Plasma Epi and NE increased rapidly to this point. Epi approached baseline by 20 min of standing. NE spillover increased 80% and clearance decreased 30% with 30 min of standing. The increase in plasma renin activity correlated with an increase in aldosterone. Vasopressin increased progressively, but there was no change in plasma osmolarity. The kidney response showed a significant decrease in Na+ and an increase in K+ excretion with upright posture. We conclude that a cascade of neurohumoral events occurs with upright posture, some of which particularly coincide with the decrease in PV. Plasma Epi levels may contribute to the increment in heart rate with maintained upright posture.

  10. Postural stability and ankle sprain history in athletes compared to uninjured controls.

    PubMed

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Verhagen, Evert A L M; van Dieën, Jaap H

    2014-02-01

    Diminished postural stability is a risk factor for ankle sprain occurrence and ankle sprains result in impaired postural stability. To date, ankle sprain history has not been taken into account as a determinant of postural stability, while it could possibly specify subgroups of interest. Postural stability was compared between 18 field hockey athletes who had recovered from an ankle sprain (mean (SD); 3.6 (1.5) months post-injury), and 16 uninjured controls. Force plate and kinematics parameters were calculated during single-leg standing: mean center of pressure speed, mean absolute horizontal ground reaction force, mean absolute ankle angular velocity, and mean absolute hip angular velocity. Additionally, cluster analysis was applied to the 'injured' participants, and the cluster with diminished postural stability was compared to the other participants with respect to ankle sprain history. MANCOVA showed no significant difference between groups in postural stability (P = 0.68). A self-reported history of an (partial) ankle ligament rupture was typically present in the cluster with diminished postural stability. Subsequently, a 'preceding rupture' was added as a factor in the MANCOVA, which showed a significant association between diminished postural stability and a 'preceding rupture' (P = 0.01), for all four individual parameters (P: 0.001-0.029; Cohen's d: 0.96-2.23). Diminished postural stability is not apparent in all previously injured athletes. However, our analysis suggests that an (mild) ankle sprain with a preceding severe ankle sprain is associated with impaired balance ability. Therefore, sensorimotor training may be emphasized in this particular group and caution is warranted in return to play decisions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Orthostatic hypertension as a predisposing factor for masked hypertension: the J-SHIPP study.

    PubMed

    Tabara, Yasuharu; Igase, Michiya; Miki, Tetsuro; Ohyagi, Yasumasa; Matsuda, Fumihiko; Kohara, Katsuhiko

    2016-09-01

    Masked hypertension (HT) is a known risk factor for cardiovascular outcomes. Postural blood pressure (BP) dysregulation is another BP phenomenon representing cardiovascular frailty. Given their several shared risk factors, we suspected an inter-relationship between these two BP phenomena. Here we investigated a possible relationship between masked HT and postural BP dysregulation in a general population. Study subjects were 884 apparently healthy individuals (aged 66.3±8.9 years). Masked HT was assessed on the basis of the ambulatory monitored average awake BP and office-measured BP values. Orthostatic BP change was measured at our office after a subject was asked to actively stand up. A strong inverse relationship was noted for orthostatic systolic BP (SBP) change and office-to-awake SBP differences (office-awake BP) (r=-0.422, P<0.001), and these relationships were replicated in the second-visit measurements (n=101, r=-0.326, P=0.001). Multivariate analysis revealed that the inverse association was independent (β=-0.23, P<0.001) of possible covariates, including baseline office BP and antihypertensive treatment. Orthostatic HT (OHT), which is defined as postural increases in SBP >10 mm Hg, 3 min after standing (P=0.001), but not transient HT at only 1 min (P=0.767), was associated with greater office-to-awake SBP differences than in orthostatic normotensive subjects. Among apparently normotensive subjects, the frequency of masked HT was therefore significantly greater in subjects who showed OHT 3 min after standing (52.1%) compared with controls (27.5%) (odds ratio=3.01, P=0.001). We observed an intra-individual relationship between the postural BP change and the office-to-awake BP differences, and subjects who showed OHT were likely to have masked HT irrespective of antihypertensive treatment.

  12. Feasibility of magnetic resonance imaging (MRI) in obtaining nucleus pulposus (NP) water content with changing postures.

    PubMed

    Nazari, Jalil; Pope, Malcolm H; Graveling, Richard A

    2015-05-01

    Opportunities to evaluate spinal loading in vivo are limited and a large majority of studies on the mechanical functions of the spine have been in vitro cadaveric studies and/or models based on many assumptions that are difficult to validate. The purpose of this study was to investigate the feasibility of magnetic resonance imaging (MRI) in obtaining nucleus pulposus (NP) water content measurements with changing postures. MRI studies were conducted on 25 healthy males with no history of low back pain (age 20-38). The L1 to S1 intradiscal levels were imaged in supine, sitting and standing postures using an upright 0.6 Tesla magnet, where a set of H2O: D2O7 phantoms were mounted on the back of the subjects. A calibration curve, provided from these phantoms, was applied to the absolute proton density image, yielding a pixel-by-pixel map of the water content of the NP. The NP at all levels showed a highly significant water loss (p<0.001) in sitting and standing postures compared with the supine posture. A trend towards higher levels of water was observed at all levels in the standing posture relative to sitting postures, however statistically significant differences were found only at L4-L5 and L5-S1 levels. This study demonstrates that variations in water content of the NP in different postures are in agreement with those determined from published invasive disc pressure measurements. The result of study demonstrates the feasibility of using MRI to determine the water content of the NP with changing postures and to use these data to evaluate spinal loading in these postures. This measurement method of water content by quantitative MR imaging could become a powerful tool for both clinical and ergonomic applications. The proposed methodology does not require invasive pressure measurement techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. (De)stabilization of Required and Spontaneous Postural Dynamics with Learning

    ERIC Educational Resources Information Center

    Faugloire, Elise; Bardy, Benoit G.; Stoffregen, Thomas A.

    2009-01-01

    The present research examined how learning a new ankle-hip coordination influenced the preexisting postural repertoire. Standing participants learned a new ankle-hip coordination mode (relative phase of 90[degrees]). Before and after practice, postural patterns were evaluated in two different tasks. In the required task, specific ankle-hip…

  14. Evaluation of biofeedback seat insert for improving active sitting posture in children with cerebral palsy. A clinical report.

    PubMed

    Bertoti, D B; Gross, A L

    1988-07-01

    Biofeedback devices have been used successfully to improve head control and symmetrical standing in children with cerebral palsy. This clinical report describes a biofeedback seat insert developed to improve erect sitting posture in children with cerebral palsy who have inadequate trunk control. The seat insert is easily placed against the back of any seating device. A momentary-contact pressure switch on the seat insert is activated when the child exerts pressure on it by extending his trunk. The pressure switch then activates a videocassette recorder or can be adapted to activate a television or radio. Five children with spastic cerebral palsy participated in this evaluation of the biofeedback seat insert. The results of this evaluation show that the children used the biofeedback seat insert effectively to actively improve their sitting posture by voluntarily extending their trunk against the pressure switch. The biofeedback seat insert offers physical therapists a valuable therapeutic training tool to encourage carry-over of improved sitting posture away from the clinical setting for children with cerebral palsy.

  15. Activation timing of postural muscles of lower legs and prediction of postural disturbance during bilateral arm flexion in older adults.

    PubMed

    Yaguchi, Chie; Fujiwara, Katsuo; Kiyota, Naoe

    2017-12-22

    Activation timings of postural muscles of lower legs and prediction of postural disturbance were investigated in young and older adults during bilateral arm flexion in a self-timing task and an oddball task with different probabilities of target presentation. Arm flexion was started from a standing posture with hands suspended 10 cm below the horizontal level in front of the body, in which postural control focused on the ankles is important. Fourteen young and 14 older adults raised the arms in response to the target sound signal. Three task conditions were used: 15 and 45% probabilities of the target in the oddball task and self-timing. Analysis items were activation timing of postural muscles (erector spinae, biceps femoris, and gastrocnemius) with respect to the anterior deltoid (AD), and latency and amplitude of the P300 component of event-related brain potential. For young adults, all postural muscles were activated significantly earlier than AD under each condition, and time of preceding gastrocnemius activation was significantly longer in the order of the self-timing, 45 and 15% conditions. P300 latency was significantly shorter, and P300 amplitude was significantly smaller under the 45% condition than under the 15% condition. For older adults, although all postural muscles, including gastrocnemius, were activated significantly earlier than AD in the self-timing condition, only activation timing of gastrocnemius was not significantly earlier than that of AD in oddball tasks, regardless of target probability. No significant differences were found between 15 and 45% conditions in onset times of all postural muscles, and latency and amplitude of P300. These results suggest that during arm movement, young adults can achieve sufficient postural preparation in proportion to the probability of target presentation in the oddball task. Older adults can achieve postural control using ankle joints in the self-timing task. However, in the oddball task, older adults experience difficulty predicting the timing of target presentation, which could be related to deteriorated cognitive function, resulting in reduced use of the ankle joints for postural control.

  16. [Postural control disorders in initial phases of whiplash].

    PubMed

    Pleguezuelos Cobo, Eulogio; García-Alsina, Joan; García Almazán, Concepción; Ortiz Fandiño, Javier; Pérez Mesquida, M Engracia; Guirao Cano, Lluis; Samitier Pastor, Beatriz; Perucho Pont, Cristina; Coll Serra, Estel; Matarrubias, Carlos; Reveron, Genoveva

    2009-05-02

    Dizziness of variable intensity is a frequent complaint in patients who suffered whiplash and largely documented balance disturbances. The objective of the study was to identify balance disorders in early stage of whiplash after road traffic accidents. Ninety nine women were included in the study. Fifty four women had suffered whiplash within two weeks and 45 were included in a healthy control group. Static posturography on a force platform was carried out in all study participants, by means of the Romberg test in four sequential phases, using the postural sway area (SA) as a dependent variable. Visual Analogic Scale (VAS) and Northwick Park Neck Pain Questionnaire (NPH) were used to evaluate pain and function. Postural sway area increased significantly in each of the consecutive phases in both groups. The differences of the means of the postural sway area were statistically significant in all Romberg phases (p=.009 to P=.000). No correlation was found between SA and VAS or NPH scores. There was a positive correlation between the postural sway area standing on a thick foam cushion placed over the plate with closed eyes and the number of days of transitory incapacity (r=0.414; P=.009). Patients with recent whiplash show a postural control disturbance revealed trough a sequential static posturography analysis. This suggests that the balance disorder is not only a consequence of late whiplash syndrome evolution. Therefore, we should promote early instauration of a specific therapeutic approach if and when the patient refers dizziness and related symptoms.

  17. Relationship between morphologic somatotypes and standing posture equilibrium.

    PubMed

    Allard, P; Nault, M L; Hinse, S; LeBlanc, R; Labelle, H

    2001-01-01

    Previous studies have identified height and weight as important factors affecting quiet standing stability but studies have not addressed body morphology as a global factor. Using anthropometric measurements, the morphologic somatotypes were defined in terms of body composition and structure. The aim of this study was to test the hypothesis that morphologic somatotypes were related to standing posture equilibrium in able-bodied girls. A total of 43 able-bodied girls having a mean age of 13.8 +/- 2.2 years participated in this study. Somatotype measurements were taken to determine their endomorphic, mesomorphic or ectomorphic components. Then, subjects were asked to stand still on a force platform for 64 s with their eyes opened, feet about 23 cm apart and arms aligned with the trunk. Afterwards, subjects were grouped based on the highest value of their somatotype component. There was no statistical difference in age, height and weight among the groups. The surface area of an ellipse delineated by the displacement of the centre of pressure (COP) was statistically larger (236.9 +/- 134.3 mm2) for the ectomorphs than for the endomorphs 137.7 +/- 71.4 mm2). The minor axis was longer (8.1 +/- 2.9 mm) for the ectomorphs than for the endomorphs (5.7 +/- 2.2 mm). The decrease in standing posture stability of the ectomorphic group was attributed to a relatively low muscle component, a high height weight ratio and an elevated position of the body centre of mass in this population of girls. Somatotypes should be considered when assessing standing posture in both able-bodied subjects and patients.

  18. Assessment of postural balance function.

    PubMed

    Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz

    2009-01-01

    Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers.

  19. Postural stability in the elderly during sensory perturbations and dual tasking: the influence of refractive blur.

    PubMed

    Anand, Vijay; Buckley, John G; Scally, Andy; Elliott, David B

    2003-07-01

    To determine the influence of refractive blur on postural stability during somatosensory and vestibular system perturbation and dual tasking. Fifteen healthy, elderly subjects (mean age, 71 +/- 5 years), who had no history of falls and had normal vision, were recruited. Postural stability during standing was assessed using a force platform, and was determined as the root mean square (RMS) of the center of pressure (COP) signal in the anterior-posterior (A-P) and medial-lateral directions collected over a 30-second period. Data were collected under normal standing conditions and with somatosensory and vestibular system perturbations. Measurements were repeated with an additional physical and/or cognitive task. Postural stability was measured under conditions of binocular refractive blur of 0, 1, 2, 4, and 8 D and with eyes closed. The data were analyzed with a population-averaged linear model. The greatest increases in postural instability were due to disruptions of the somatosensory and vestibular systems. Increasing refractive blur caused increasing postural instability, and its effect was greater when the input from the other sensory systems was disrupted. Performing an additional cognitive and physical task increased A-P RMS COP further. All these detrimental effects on postural stability were cumulative. The findings highlight the multifactorial nature of postural stability and indicate why the elderly, many of whom have poor vision and musculoskeletal and central nervous system degeneration, are at greater risk of falling. The findings also highlight that standing instability in both normal and perturbed conditions was significantly increased with refractive blur. Correcting visual impairment caused by uncorrected refractive error could be a useful intervention strategy to help prevent falls and fall-related injuries in the elderly.

  20. Posture Control—Human-Inspired Approaches for Humanoid Robot Benchmarking: Conceptualizing Tests, Protocols and Analyses

    PubMed Central

    Mergner, Thomas; Lippi, Vittorio

    2018-01-01

    Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1) four basic physical disturbances (support surface (SS) tilt and translation, field and contact forces) may affect the balancing in any given degree of freedom (DoF). Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with “reactive” balancing of external disturbances and “proactive” balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3) Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking criteria build on the evoked sway magnitude, normalized to robot weight and Center of mass (COM) height, in relation to reference ranges that remain to be established. The references may include human likeness features. The proposed benchmarking concept may in principle also be applied to wearable robots, where a human user may command movements, but may not be aware of the additionally required postural control, which then needs to be implemented into the robot. PMID:29867428

  1. Control of paraplegic ankle joint stiffness using FES while standing.

    PubMed

    Hunt, K J; Gollee, H; Jaime, R P

    2001-10-01

    The goal of this work was to investigate the feasibility of ankle stiffness control using functional electrical stimulation (FES) while standing, as relevant to the development of feedback systems for balance control in paraplegia. The work was carried out using apparatus in which the subject stands with all joints above the ankles braced, and where ankle moment is provided via FES of the ankle flexor and extensor muscles. A feedback control strategy for ankle stiffness control is proposed in which the ankle moment is controlled to a reference value equal to the product of the desired stiffness and the measured ankle angle. Two subjects participated in the study: one neurologically-intact person, and one paraplegic person with a complete thoracic spinal cord lesion. The results show that during forward-leaning postures, when the plantarflexor muscles are stimulated, relatively high ankle moments of up to 60 Nm can be generated and accurate moment tracking is achieved. As a consequence, ankle stiffness is close to the desired value. During backward lean, on the other hand, the dorsiflexor muscles are stimulated. These muscles are relatively weak and only modest ankle moments of up to around 15 Nm can be produced. As a result, dorsiflexor stimulation readily saturates giving poor stiffness control. It was further observed that when the desired stiffness is higher more external force has to be applied to perturb the body away from the neutral (upright) position. We conclude that: (i) accurate ankle stiffness control, up to the fundamental strength limits of the muscles, can be achieved with controlled FES; (ii) ankle stiffness control using FES in paraplegia has the potential to ease the task of stabilising upright posture by application of additional upper-body forces.

  2. Impact of visual and somatosensory deprivation on dynamic balance in adolescent idiopathic scoliosis.

    PubMed

    Kuo, Fang-Chuan; Wang, Nai-Hwei; Hong, Chang-Zern

    2010-11-01

    A cross-sectional study of balance control in adolescents with idiopathic scoliosis (AIS). To investigate the impact of visual and somatosensory deprivation on the dynamic balance in AIS patients and to discuss electromyographic (EMG) and posture sway findings. Most studies focus on posture sway in quiet standing controls with little effort on examining muscle-activated patterns in dynamic standing controls. Twenty-two AIS patients and 22 age-matched normal subjects were studied. To understand how visual and somatosensory information could modulate standing balance, balance tests with the Biodex stability system were performed on a moving platform under 3 conditions: visual feedback provided (VF), eyes closed (EC), and standing on a sponge pad with visual feedback provided (SV). Muscular activities of bilateral lumbar multifidi, gluteus medii, and gastrocnemii muscles were recorded with a telemetry EMG system. AIS patients had normal balance index and amplitude and duration of EMG similar to those of normal subjects in the balance test. However, the onset latency of right gastrocnemius was earlier in AIS patients than in normal subjects. In addition, body-side asymmetry was noted on muscle strength and onset latency in AIS subjects. Under EC condition, lumbar multifidi, and gluteus medii activities were higher than those under SV and VF conditions (P < 0.05). Under SV condition, the medial-lateral tilting angle was less than that under VF and EC conditions. In addition, the active duration of right gluteus medius was shorter under SV condition (P < 0.05). The dynamic balance control is particularly disruptive under visual deprivation with increasing lumbar multifidi and gluteus medii activities for compensation. Sponge pad can cause decrease in frontal plane tilting and gluteus medii effort. The asymmetric muscle strength and onset timing are attributed to anatomic deformation as opposed to neurologic etiological factors.

  3. Study on an advanced early rehabilitation training system for postural control using a tilting bed

    NASA Astrophysics Data System (ADS)

    Yu, Chang-Ho; Kim, Kyong; Kwon, Tae-Kyu; Hong, Chul-Un; Kim, Nam-Gyun

    2005-12-01

    It proposed a new early rehabilitation training system for postural control using a tilting bed, a visual display and a force plate. The conventional rehabilitation systems for postural control can't be applied to the patients lying in bed because the rehabilitation training using those systems is only possible when the patient can stand up by himself or herself. Moreover, there did not exist any device that could provide the sense of balance or the sensation of walking to the patients in bed. The software for the system consists of the training program and the analysis program. The training program was designed to improve the ability of postural control of the subjects by repeated training of moving the center of pressure (COP) applied to the forceplate. The training program consists of the COP maintaining training and the COP movement training in horizontal, vertical, 45° and -45° directions. The analysis program consists of the COP moving time analysis modules, the COP maintaining time analysis module. Through the experiments with real people, it verified the effectiveness of the new early rehabilitation training system. The results showe that this system is an effective system for early rehabilitation training and that our system might be useful as clinical equipment.

  4. How does practise of internal Chinese martial arts influence postural reaction control?

    PubMed

    Gorgy, Olivier; Vercher, Jean-Louis; Coyle, Thelma

    2008-04-01

    The aim of this study was to determine the effects of Chinese martial arts practice on postural reaction control after perturbation. Participants standing in Romberg tandem posture were subjected to an unexpected lateral platform translation with the eyes open or closed at two translation amplitudes. The peak displacement of the centre of pressure and of the centre of mass, and the onset latency of muscular activity (tibialis anterior, gastrocnemius, lumbodorsal muscular group, and rectus abdominis), were evaluated for martial arts practitioners and for sport and non-sport participants. Compared with the sport and non-sport participants, the martial arts group showed lower maximal centre of pressure and centre of mass peak displacements in both the lateral and anterior - posterior directions, but no difference was found in the onset of muscular responses. We conclude that martial arts practice influences postural reaction control during a fixed-support strategy in a tandem task. The martial arts group used the ankle joint more frequently than the sport and non-sport participants, especially in the eyes-closed conditions. Our results suggest that the better balance recovery in the martial arts group is a consequence of better control of biomechanical properties of the lower limbs (e.g. through muscular response by co-contraction), not a change in the neuromuscular temporal pattern.

  5. Testing the tripartite model in young adolescents: is hyperarousal specific for anxiety and not depression?

    PubMed

    Greaves-Lord, Kirstin; Ferdinand, Robert F; Sondeijker, Frouke E P L; Dietrich, Andrea; Oldehinkel, Albertine J; Rosmalen, Judith G M; Ormel, Johan; Verhulst, Frank C

    2007-09-01

    To clarify the distinction between anxiety and depression, the tripartite model was introduced. According to this model, physiological hyperarousal (PH, i.e. autonomic hyperactivity) is specific for anxiety and not depression. Research on the relation between anxiety, depression and physiological measures representing arousal is lacking. Parent- and self-reported anxiety and depressive problems were assessed using the CBCL and RCADS. Heart rate (HR), heart rate variability in the low frequency (HRV LF) and respiratory sinus arrythmia (RSA) were used as indices for autonomic arousal. Parent-reported anxiety was associated with low RSA in supine posture. This association was also found for self-reported anxiety problems, but only in boys. These findings point towards high arousal in anxiety. Self-reported depressive problems were associated with low HRV LF in standing posture and high RSA in supine posture in boys, pointing towards low arousal in depression. However, self-reported depressive problems were also associated with high HR in standing posture and with low HRV LF in supine posture in girls, suggesting high arousal in depression. Although HRV LF in standing posture is primarily sympathetically mediated, and HRV LF in supine posture is primarily vagally mediated, the association between HRV LF and sympathetic versus vagal function is not exclusive. Thus, HRV LF measures are merely approaches of high or low arousal. Some evidence was found for hyperarousal in anxiety, but also for hyperarousal in depression. Apparently, the idea of hyperarousal in anxiety and not in depression is too simple to reflect the more complex reality.

  6. Effect of stretching program in an industrial workplace on hamstring flexibility and sagittal spinal posture of adult women workers: a randomized controlled trial.

    PubMed

    Muyor, José M; López-Miñarro, Pedro A; Casimiro, Antonio J

    2012-01-01

    To determine the effect of a stretching program performed in the workplace on the hamstring muscle extensibility and sagittal spinal posture of adult women. Fifty-eight adult women volunteers (mean age of 44.23 ± 8.87 years) from a private fruit and vegetable company were randomly assigned to experimental (n=27) or control (n=31) groups. The experimental group performed three exercises of hamstrings stretching of 20 seconds per exercise, three sessions a week for a period of 12 weeks. The control group did not participate in any hamstring stretching program. Hamstring flexibility was evaluated through the passive straight leg raise test and toe-touch test, performed both before and after the stretching program. Thoracic and lumbar curvatures and pelvic inclination were measured in relaxed standing and toe-touch test with a Spinal Mouse. Significant increases (p < 0.01) in toe-touch score and straight leg raise angle (in both legs) were found in the experimental group during post-test, while the control group showed a non-significant decrease for both toe-touch score and straight leg raise test. A significant decrease in thoracic curve and significant increase in pelvic inclination were found in the toe-touch test for the experimental group (p <0.05). However, no significant changes were found in standing posture for any group. Hamstring stretching exercises performed in the working place are effective for increasing hamstring muscle extensibility. This increase generates a more aligned thoracic curve and more anterior pelvic inclination when maximal trunk flexion is performed.

  7. Influence of paravertebral muscles training on brain plasticity and postural control in chronic low back pain.

    PubMed

    Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril

    2016-07-01

    Isometric activation (ISOM) of deep multifidi muscles (MF) can influence postural adjustments and primary motor cortex (M1) function in chronic low back pain (CLBP). In order to better understand how ISOM impacts on CLBP condition, the present study contrasted ISOM after-effects on M1 function, MF postural activation and pain with another training, the global activation of paravertebral muscles (GLOB, hip extension). The main objective of this study was to compare the effects of ISOM and GLOB (3-week training each) on MF postural activation and M1 function in a CLBP population. Twenty-four people with CLBP were randomly allocated to ISOM and GLOB groups for a 3-week daily practice. Pre/post-training after-effects were assessed by the onset of superficial MF (MF-S) activation during ballistic limb movements (bilateral shoulder flexion in standing; unilateral hip extension in prine lying), MF-S corticomotor control tested by transcranial magnetic stimulation of M1, and assessment of pain, kinesiophobia and disability by standardized questionnaires. Both ISOM and GLOB improved pain and disability. However, only ISOM influenced M1 function (decreased corticospinal excitability and increased intracortical inhibition), fastened MF-S postural activation and decreased kinesiophobia. Changes of corticospinal excitability and of MF-S postural adjustments suggest that ISOM better influenced brain plasticity. Future studies should further test whether our novel findings relate to an influence of the exercises on the lumbopelvic control of different muscles and on cognitive function. Clinically, individual's evaluation remains warranted before prescribing one or the other of these two conventional exercises for reducing pain. This original study presents how motor control exercises can influence brain plasticity and postural control in chronic low back pain. This knowledge will impact on the decision of clinicians to prescribe specific exercises with a view of improving motor control in this musculoskeletal condition. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  8. Augmented feedback of COM and COP modulates the regulation of quiet human standing relative to the stability boundary.

    PubMed

    Kilby, Melissa C; Slobounov, Semyon M; Newell, Karl M

    2016-06-01

    The experiment manipulated real-time kinematic feedback of the motion of the whole body center of mass (COM) and center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions to investigate the variables actively controlled in quiet standing of young adults. The feedback reflected the current 2D postural positions within the 2D functional stability boundary that was scaled to 75%, 30% and 12% of its original size. The findings showed that the distance of both COP and COM to the respective stability boundary was greater during the feedback trials compared to a no feedback condition. However, the temporal safety margin of the COP, that is, the virtual time-to-contact (VTC), was higher without feedback. The coupling relation of COP-COM showed stable in-phase synchronization over all of the feedback conditions for frequencies below 1Hz. For higher frequencies (up to 5Hz), there was progressive reduction of COP-COM synchronization and local adaptation under the presence of augmented feedback. The findings show that the augmented feedback of COM and COP motion differentially and adaptively influences spatial and temporal properties of postural motion relative to the stability boundary while preserving the organization of the COM-COP coupling in postural control. Copyright © 2016. Published by Elsevier B.V.

  9. Vibratory noise to the fingertip enhances balance improvement associated with light touch.

    PubMed

    Magalhães, Fernando Henrique; Kohn, André Fabio

    2011-03-01

    Light touch of a fingertip on an external stable surface greatly improves the postural stability of standing subjects. The hypothesis of the present work was that a vibrating surface could increase the effectiveness of fingertip signaling to the central nervous system (e.g., by a stochastic resonance mechanism) and hence improve postural stability beyond that achieved by light touch. Subjects stood quietly over a force plate while touching with their right index fingertip a surface that could be either quiescent or randomly vibrated at two low-level noise intensities. The vibratory noise of the contact surface caused a significant decrease in postural sway, as assessed by center of pressure measures in both time and frequency domains. Complementary experiments were designed to test whether postural control improvements were associated with a stochastic resonance mechanism or whether attentional mechanisms could be contributing. A full curve relating body sway parameters and different levels of vibratory noise resulted in a U-like function, suggesting that the improvement in sway relied on a stochastic resonance mechanism. Additionally, no decrease in postural sway was observed when the vibrating contact surface was attached to the subject's body, suggesting that no attentional mechanisms were involved. These results indicate that sensory cues obtained from the fingertip need not necessarily be associated with static contact surfaces to cause improvement in postural stability. A low-level noisy vibration applied to the contact surface could lead to a better performance of the postural control system.

  10. Postural control and low back pain in elite athletes comparison of static balance in elite athletes with and without low back pain.

    PubMed

    Oyarzo, Claudio A; Villagrán, Claudio R; Silvestre, Rony E; Carpintero, Pedro; Berral, Francisco J

    2014-01-01

    Although current research findings suggest that postural control or static balance is impaired in subjects with low back pain, few studies have specifically addressed the effect of low back pain on static balance in elite athletes. Forty-four athletes belonging to Chilean national teams took part in this study; 20 had low back pain and the remaining 24 were healthy controls. Displacement of the centre of pressure was analyzed by computerized platform posturography, using a standardized protocol; subjects were required to stand upright on both feet, with eyes first open then closed. The results showed that, athletes with low back pain used significantly more energy (p< 0.0182) and had a greater displacement of the centre of pressure (p< 0.005) with open eyes to control posture than healthy athletes. It may be concluded that static balance is impaired in elite athletes with low back pain and that analysis of two-footed stance provides a sensitive assessment of static balance in athletes.

  11. Targeted spine strengthening exercise and posture training program to reduce hyperkyphosis in older adults: results from the study of hyperkyphosis, exercise, and function (SHEAF) randomized controlled trial.

    PubMed

    Katzman, W B; Vittinghoff, E; Lin, F; Schafer, A; Long, R K; Wong, S; Gladin, A; Fan, B; Allaire, B; Kado, D M; Lane, N E

    2017-10-01

    A 6-month randomized controlled trial of spine-strengthening exercise and posture training reduced both radiographic and clinical measures of kyphosis. Participants receiving the intervention improved self-image and satisfaction with their appearance. Results suggest that spine-strengthening exercise and postural training may be an effective treatment option for older adults with hyperkyphosis. The purpose of the present study is to determine in a randomized controlled trial whether spine-strengthening exercises improve Cobb angle of kyphosis in community-dwelling older adults. We recruited adults ≥60 years with kyphosis ≥40° and enrolled 99 participants (71 women, 28 men), mean age 70.6 ± 0.6 years, range 60-88, with baseline Cobb angle 57.4 ± 12.5°. The intervention included group spine-strengthening exercise and postural training, delivered by a physical therapist, 1-h, three times weekly for 6 months. Controls received four group health education meetings. The primary outcome was change in the gold standard Cobb angle of kyphosis measured from standing lateral spine radiographs. Secondary outcomes included change in kyphometer-measured kyphosis, physical function (modified Physical Performance Test, gait speed, Timed Up and Go, Timed Loaded Standing, 6-Min Walk), and health-related quality of life (HRQoL) (PROMIS global health and physical function indexes, SRS-30 self-image domain). ANCOVA was used to assess treatment effects on change from baseline to 6 months in all outcomes. There was a -3.0° (95% CI -5.2, -0.8) between-group difference in change in Cobb angle, p = 0.009, favoring the intervention and approximating the magnitude of change from an incident vertebral fracture. Kyphometer-measured kyphosis (p = 0.03) and SRS-30 self-esteem (p < 0.001) showed favorable between-group differences in change, with no group differences in physical function or additional HRQoL outcomes, p > 0.05. Spine-strengthening exercise and posture training over 6 months reduced kyphosis compared to control. Our randomized controlled trial results suggest that a targeted kyphosis-specific exercise program may be an effective treatment option for older adults with hyperkyphosis. ClinicalTrials.gov; identifier NCT01751685.

  12. Influence of musical groove on postural sway.

    PubMed

    Ross, Jessica M; Warlaumont, Anne S; Abney, Drew H; Rigoli, Lillian M; Balasubramaniam, Ramesh

    2016-03-01

    Timescales of postural fluctuation reflect underlying neuromuscular processes in balance control that are influenced by sensory information and the performance of concurrent cognitive and motor tasks. An open question is how postural fluctuations entrain to complex environmental rhythms, such as in music, which also vary on multiple timescales. Musical groove describes the property of music that encourages auditory-motor synchronization and is used to study voluntary motor entrainment to rhythmic sounds. The influence of groove on balance control mechanisms remains unexplored. We recorded fluctuations in center of pressure (CoP) of standing participants (N = 40) listening to low and high groove music and during quiet stance. We found an effect of musical groove on radial sway variability, with the least amount of variability in the high groove condition. In addition, we observed that groove influenced postural sway entrainment at various temporal scales. For example, with increasing levels of groove, we observed more entrainment to shorter, local timescale rhythmic musical occurrences. In contrast, we observed more entrainment to longer, global timescale features of the music, such as periodicity, with decreasing levels of groove. Finally, musical experience influenced the amount of postural variability and entrainment at local and global timescales. We conclude that groove in music and musical experience can influence the neural mechanisms that govern balance control, and discuss implications of our findings in terms of multiscale sensorimotor coupling. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Relationship between static foot posture and foot mobility

    PubMed Central

    2011-01-01

    Background It is not uncommon for a person's foot posture and/or mobility to be assessed during a clinical examination. The exact relationship, however, between static posture and mobility is not known. Objective The purpose of this study was to determine the degree of association between static foot posture and mobility. Method The static foot posture and foot mobility of 203 healthy individuals was assessed and then analyzed to determine if low arched or "pronated" feet are more mobile than high arched or "supinated" feet. Results The study demonstrated that those individuals with a lower standing dorsal arch height and/or a wider standing midfoot width had greater mobility in their foot. In addition, those individuals with higher Foot Posture Index (FPI) values demonstrated greater mobility and those with lower FPI values demonstrated less mobility. Finally, the amount of foot mobility that an individual has can be predicted reasonably well using either a 3 or 4 variable linear regression model. Conclusions Because of the relationship between static foot posture and mobility, it is recommended that both be assessed as part of a comprehensive evaluation of a individual with foot problems. PMID:21244705

  14. Preliminary results of dancing exercise on postural stability in adolescent females.

    PubMed

    Cheng, Hsu-Sheng; Law, Cheung-Lun; Pan, Hui-Fang; Hsiao, Yueh-Ping; Hu, Jeng-Ho; Chuang, Fu-Kai; Huang, Mao-Hsiung

    2011-12-01

    Twenty-six female student dancers of Chung-hua school of Art (mean age 17.5 ± 0.5 years) and twenty-five healthy active female collegiate students (mean age 18.1 ± 1.0 years) participated in this study to investigate the effects of dancing exercise on postural stability of adolescent female through a comparison study of two cohorts. The groups were matched in height and weight. Participants were excluded for left-side dominance, sustained lower extremity injury, any known vestibular system dysfunction, uncorrected visual problems, and other neurological conditions. Static and dynamic standing balances were measured by means of Biodex Stability System in six conditions include bilateral, dominant, and nondominant single leg stances with eye-open and eye-closed conditions. To investigate the difference between static and dynamic stabilities, two protocols were performed: the first protocol consisted of four positions including static position, Level 8, Level 4, and Level 1, respectively. They were instructed to maintain a level platform as stably as possible for a period of 30 seconds for each test and given a 30-second rest between tests. The second protocol was descending stability level that was gradually changed from Level 12 to Level 1 for 60 seconds. Balance indices included overall stability index, anterior-posterior stability index (APSI), and medial-lateral stability index. The results of first protocol showed that there were significant differences in overall stability index score between study and control groups at Level 8 with dominant single leg standing in the eye-open condition and the APSI score at Level 8 and at Level 4 with dominant single-leg standing in the eye-closed condition. There was no significant difference in the second protocol. The possible explanation is loss of familiarization adaptation because of level change consequently in both the groups, not step-by-step as in the first protocol study. Furthermore, a positive correlation was found between the dancing experience and the APSI at Level 8 and Level 4 with dominant single-leg standing in the eye-closed condition. In conclusion the findings implied that dancing exercise results in better postural stability and less visual dependence on postural control in adolescent females. Copyright © 2011. Published by Elsevier B.V.

  15. Rater reliability and construct validity of a mobile application for posture analysis

    PubMed Central

    Szucs, Kimberly A.; Brown, Elena V. Donoso

    2018-01-01

    [Purpose] Measurement of posture is important for those with a clinical diagnosis as well as researchers aiming to understand the impact of faulty postures on the development of musculoskeletal disorders. A reliable, cost-effective and low tech posture measure may be beneficial for research and clinical applications. The purpose of this study was to determine rater reliability and construct validity of a posture screening mobile application in healthy young adults. [Subjects and Methods] Pictures of subjects were taken in three standing positions. Two raters independently digitized the static standing posture image twice. The app calculated posture variables, including sagittal and coronal plane translations and angulations. Intra- and inter-rater reliability were calculated using the appropriate ICC models for complete agreement. Construct validity was determined through comparison of known groups using repeated measures ANOVA. [Results] Intra-rater reliability ranged from 0.71 to 0.99. Inter-rater reliability was good to excellent for all translations. ICCs were stronger for translations versus angulations. The construct validity analysis found that the app was able to detect the change in the four variables selected. [Conclusion] The posture mobile application has demonstrated strong rater reliability and preliminary evidence of construct validity. This application may have utility in clinical and research settings. PMID:29410561

  16. Rater reliability and construct validity of a mobile application for posture analysis.

    PubMed

    Szucs, Kimberly A; Brown, Elena V Donoso

    2018-01-01

    [Purpose] Measurement of posture is important for those with a clinical diagnosis as well as researchers aiming to understand the impact of faulty postures on the development of musculoskeletal disorders. A reliable, cost-effective and low tech posture measure may be beneficial for research and clinical applications. The purpose of this study was to determine rater reliability and construct validity of a posture screening mobile application in healthy young adults. [Subjects and Methods] Pictures of subjects were taken in three standing positions. Two raters independently digitized the static standing posture image twice. The app calculated posture variables, including sagittal and coronal plane translations and angulations. Intra- and inter-rater reliability were calculated using the appropriate ICC models for complete agreement. Construct validity was determined through comparison of known groups using repeated measures ANOVA. [Results] Intra-rater reliability ranged from 0.71 to 0.99. Inter-rater reliability was good to excellent for all translations. ICCs were stronger for translations versus angulations. The construct validity analysis found that the app was able to detect the change in the four variables selected. [Conclusion] The posture mobile application has demonstrated strong rater reliability and preliminary evidence of construct validity. This application may have utility in clinical and research settings.

  17. Assessment of postural instability in patients with Parkinson's disease.

    PubMed

    Błaszczyk, J W; Orawiec, R; Duda-Kłodowska, D; Opala, G

    2007-10-01

    Postural instability is one of the most disabling features of idiopathic Parkinson's disease (PD). In this study, we focused on postural instability as the main factor predisposing parkinsonians to falls. For this purpose, changes in sway characteristics during quiet stance due to visual feedback exclusion were studied. We searched for postural sway measures that could be potential discriminators for an increased fall risk. A group of 110 subjects: 55 parkinsonians (Hoehn and Yahr: 1-3), and 55 age-matched healthy volunteers participated in the experiment. Their spontaneous sway characteristics while standing quiet with eyes open and eyes closed were analyzed. We found that an increased mediolateral sway and sway area while standing with eyes closed are characteristic of parkinsonian postural instability and may serve to quantify well a tendency to fall. These sway indices significantly correlated with disease severity rated both by the Hoehn and Yahr scale as well as by the Motor Section of the UPDRS. A forward shift of a mean COP position in parkinsonians which reflects their flexed posture was also significantly greater to compare with the elderly subjects and exhibited a high sensitivity to visual conditions. Both groups of postural sway abnormalities identified here may be used as accessible and reliable measures which allow for quantitative assessment of postural instability in Parkinson's disease.

  18. Analysis of WBV on standing and seated passengers during off-peak operation in KL monorail

    NASA Astrophysics Data System (ADS)

    Hasnan, K.; Bakhsh, Q.; Ahmed, A.; Ali, D.; Jamali, A. R.

    2018-03-01

    In this study, the Whole-Body Vibration (WBV) was analyzed on the standing and seated passenger during off-peak operating hours when train was on the track. The experiments were conducted on two car train at one constant location (bogie-1, which is near to driver’s cabin) during downward direction from KL sentral station towards Titiwangsa station. The aim of this study was to analyze that, in which posture of passenger’s exposures the maximum level of WBV. Since, one passenger was performed the whole journey in standing posture whereas, the other passenger was in seated posture. The result obtained from experiments for the RMS accelerations (Arms), maximum acceleration (Amax) and minimum acceleration (Amin) during the trip. As per standard ISO 2631-1, the daily vibration exposure (A8), Vibration Dose value (VDV) and Crest Factor (CF) of this trip for both standing and sitting orientations were calculated. Results shows that the seated passenger was exposed to longer periods of continuous vibration as compared to the standing passenger. Whereas, the Vibration Dose value (VDV) value was greater than the action value as per ISO 2631-1 and within the limit values. The study concluded that whole body vibration transmitted towards both passengers either standing or seated during their journey. But in overall results comparison of both orientations, the seated passengers gained higher vibration than the standing one.

  19. Ankle and hip postural strategies defined by joint torques

    NASA Technical Reports Server (NTRS)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control patterns into a continuum of postural corrections.

  20. Development of prolonged standing strain index to quantify risk levels of standing jobs.

    PubMed

    Halim, Isa; Omar, Abdul Rahman

    2012-01-01

    Many occupations in industry such as metal stamping workers, electronics parts assembly operators, automotive industry welders, and lathe operators require working in a standing posture for a long time. Prolonged standing can contribute to discomfort and muscle fatigue particularly in the back and legs. This study developed the prolonged standing strain index (PSSI) to quantify the risk levels caused by standing jobs, and proposed recommendations to minimize the risk levels. Risk factors associated with standing jobs, such as working posture, muscles activity, standing duration, holding time, whole-body vibration, and indoor air quality, were the basis for developing the PSSI. All risk factors were assigned multipliers, and the PSSI was the product of those multipliers. Recommendations for improvement are based on the PSSI; however, extensive studies are required to validate their effectiveness. multipliers, and the PSSI was the product of those multipliers. Recommendations for improvement are based on the PSSI; however, extensive studies are required to validate their effectiveness.

  1. Effects of semi-rigid arch-support orthotics: an investigation with potential ergonomic implications.

    PubMed

    Kelaher, D; Mirka, G A; Dudziak, K Q

    2000-10-01

    For many years, arch-support orthotics have been prescribed for individuals with discomfort and/or abnormal skeletal alignments in the structures of the lower extremity. Recently there has been an increased interest in promoting semi-rigid orthotics as an ergonomic aid for asymptomatic workers who must stand all day at their workplace. A laboratory study was performed to assess the biomechanical impact of prefabricated semi-rigid orthotics on asymptomatic individuals. Ten subjects wore semi-rigid arch-support orthotics (experimental condition) for two months and flexible polyurethane/Sorbothane shoe inserts (control condition) for two months. Throughout this 18-week testing period, the subjects returned to the lab to perform a battery of assessment tests at regularly scheduled intervals. These tests examined subject strength, standing posture, stability, fatigue effects, and body part discomfort. The results of this study showed no significant changes in the strength, posture, or stability as a function of insert type. The subjects reported a reduction in low-back discomfort along with an increase in foot discomfort during a fatiguing exertion task while wearing the semi-rigid orthotics as compared to the control condition.

  2. Temporal Structure of Support Surface Translations Drive the Temporal Structure of Postural Control During Standing

    PubMed Central

    Rand, Troy J.; Myers, Sara A.; Kyvelidou, Anastasia; Mukherjee, Mukul

    2015-01-01

    A healthy biological system is characterized by a temporal structure that exhibits fractal properties and is highly complex. Unhealthy systems demonstrate lowered complexity and either greater or less predictability in the temporal structure of a time series. The purpose of this research was to determine if support surface translations with different temporal structures would affect the temporal structure of the center of pressure (COP) signal. Eight healthy young participants stood on a force platform that was translated in the anteroposterior direction for input conditions of varying complexity: white noise, pink noise, brown noise, and sine wave. Detrended fluctuation analysis was used to characterize the long-range correlations of the COP time series in the AP direction. Repeated measures ANOVA revealed differences among conditions (P < .001). The less complex support surface translations resulted in a less complex COP compared to normal standing. A quadratic trend analysis demonstrated an inverted-u shape across an increasing order of predictability of the conditions (P < .001). The ability to influence the complexity of postural control through support surface translations can have important implications for rehabilitation. PMID:25994281

  3. Development of posture-specific computational phantoms using motion capture technology and application to radiation dose-reconstruction for the 1999 Tokai-Mura nuclear criticality accident

    NASA Astrophysics Data System (ADS)

    Vazquez, Justin A.; Caracappa, Peter F.; Xu, X. George

    2014-09-01

    The majority of existing computational phantoms are designed to represent workers in typical standing anatomical postures with fixed arm and leg positions. However, workers found in accident-related scenarios often assume varied postures. This paper describes the development and application of two phantoms with adjusted postures specified by data acquired from a motion capture system to simulate unique human postures found in a 1999 criticality accident that took place at a JCO facility in Tokai-Mura, Japan. In the course of this accident, two workers were fatally exposed to extremely high levels of radiation. Implementation of the emergent techniques discussed produced more accurate and more detailed dose estimates for the two workers than were reported in previous studies. A total-body dose of 6.43 and 26.38 Gy was estimated for the two workers, who assumed a crouching and a standing posture, respectively. Additionally, organ-specific dose estimates were determined, including a 7.93 Gy dose to the thyroid and 6.11 Gy dose to the stomach for the crouching worker and a 41.71 Gy dose to the liver and a 37.26 Gy dose to the stomach for the standing worker. Implications for the medical prognosis of the workers are discussed, and the results of this study were found to correlate better with the patient outcome than previous estimates, suggesting potential future applications of such methods for improved epidemiological studies involving next-generation computational phantom tools.

  4. Development of posture-specific computational phantoms using motion capture technology and application to radiation dose-reconstruction for the 1999 Tokai-Mura nuclear criticality accident.

    PubMed

    Vazquez, Justin A; Caracappa, Peter F; Xu, X George

    2014-09-21

    The majority of existing computational phantoms are designed to represent workers in typical standing anatomical postures with fixed arm and leg positions. However, workers found in accident-related scenarios often assume varied postures. This paper describes the development and application of two phantoms with adjusted postures specified by data acquired from a motion capture system to simulate unique human postures found in a 1999 criticality accident that took place at a JCO facility in Tokai-Mura, Japan. In the course of this accident, two workers were fatally exposed to extremely high levels of radiation. Implementation of the emergent techniques discussed produced more accurate and more detailed dose estimates for the two workers than were reported in previous studies. A total-body dose of 6.43 and 26.38 Gy was estimated for the two workers, who assumed a crouching and a standing posture, respectively. Additionally, organ-specific dose estimates were determined, including a 7.93 Gy dose to the thyroid and 6.11 Gy dose to the stomach for the crouching worker and a 41.71 Gy dose to the liver and a 37.26 Gy dose to the stomach for the standing worker. Implications for the medical prognosis of the workers are discussed, and the results of this study were found to correlate better with the patient outcome than previous estimates, suggesting potential future applications of such methods for improved epidemiological studies involving next-generation computational phantom tools.

  5. Movements of older adults during exergaming interventions that are associated with the Systems Framework for Postural Control: A systematic review.

    PubMed

    Tahmosybayat, Robin; Baker, Katherine; Godfrey, Alan; Caplan, Nick; Barry, Gill

    2018-05-01

    One in three older adults fall annually, in part due to impairments in the physiological systems that make up the postural control (PC) system. Exercise, particularly balance training, helps to prevent deterioration and even to improve outcomes in the PC system. Exergaming (exercise-gaming) is interactive computer gaming whereby an individual moves the body in response to onscreen cues in a playful format. Exergaming is an alternative method to standard practice for improving PC outcomes, which has been shown to reduce the risk of falling. Exergaming has received research attention, yet the intervention is still in its infancy. There could be benefit in exploring the movements trained with respect to a framework known for identifying underlying deficits in the PC system, the Systems Framework for Postural Control (SFPC). This may help target areas for improvement in balance training using exergames and shed light on the impact for fall prevention. A literature search was therefore conducted across six databases (CINAHL, EMBASE, PubMed, ISI, SPORTdiscus and Science Direct) using a range of search terms and combinations relating to exergaming, balance, exercise, falls and elderly. Quality assessment was conducted using the PEDro Scale and a custom-made quality assessment tool. Movements were rated by two reviewers based on the 9 operational definitions of the SFPC. Eighteen publications were included in the analysis, with a mean PEDro score of 5.6 (1.5). Overall, 4.99 (1.27) of the 9 operational definitions of the SFPC are trained in exergaming interventions. Exergaming does encourage individuals to stand up (3), lean while standing (4), move upper limbs and turn heads (6) and dual-task while standing (9), to some extent move the body forwards, backwards and sideways (1), and coordinate movements (2) but hardly at all to kick, hop, jump or walk (7), or to force a postural reaction from a physical force to the individual (5) and it does not mimic actual changes in sensory context (8). This is the first review, to our knowledge, that synthesises the literature on movements trained in exergaming interventions with respect to an established theoretical framework for PC. This review could provide useful information for designing exergames with PC outcomes in mind, which could help target specific exergames for multi-factorial training to overcome balance deficits. Some elements of PC are too unsafe to be trained using exergames, such as restricting sensory inputs or applying physical perturbations to an individual to elicit postural responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Mobile Phone Use Behaviors and Postures on Public Transportation Systems.

    PubMed

    Liang, Huey-Wen; Hwang, Yaw-Huei

    2016-01-01

    Mobile phones are common in our daily life, but the users' preferences for postures or screen operating styles have not been studied. This was a cross-sectional and observational study. We randomly sampled passengers who used mobile phones on the Mass Rapid Transit (MRT) system in metropolitan Taipei. A checklist was used to observe their body postures and screen operating styles while sitting or standing. As a result, 1,230 subjects from 400 trips were observed. Overall, of all the passengers who were sitting, 41% of them were using mobile phones. The majority of the tasks involved browsing (84%) with their phones in a portrait orientation (93%). Different-hand holding/operating was the most commonly used operating style while sitting (46%) and same-hand holding/operating was the most common while standing (46%). The distribution of screen operating styles was significantly different for those sitting than for those standing and for different genders and age groups. The most frequently observed postures while sitting were having one's trunk against a backrest, feet on the floor and with or without an arm supported (58%). As for the users who were standing, the both- and different-hands groups had a high proportion of arms unsupported, feet on the floor and either their trunk supported or not. In contrast, the same-hand group tended to have their trunk unsupported, were holding a pole or handstrap and had both feet on floor. Further studies are warranted to characterize the ergonomic exposure of these commonly used postures and operating styles, and our results will help guide the selection of experimental conditions for laboratory settings.

  7. Sequencing sit-to-stand and upright posture for mobility limitation assessment: determination of the timing of the task phases from force platform data.

    PubMed

    Mazzà, Claudia; Zok, Mounir; Della Croce, Ugo

    2005-06-01

    The identification of quantitative tools to assess an individual's mobility limitation is a complex and challenging task. Several motor tasks have been designated as potential indicators of mobility limitation. In this study, a multiple motor task obtained by sequencing sit-to-stand and upright posture was used. Algorithms based on data obtained exclusively from a single force platform were developed to detect the timing of the motor task phases (sit-to-stand, preparation to the upright posture and upright posture). To test these algorithms, an experimental protocol inducing predictable changes in the acquired signals was designed. Twenty-two young, able-bodied subjects performed the task in four different conditions: self-selected natural and high speed with feet kept together, and self-selected natural and high speed with feet pelvis-width apart. The proposed algorithms effectively detected the timing of the task phases, the duration of which was sensitive to the four different experimental conditions. As expected, the duration of the sit-to-stand was sensitive to the speed of the task and not to the foot position, while the duration of the preparation to the upright posture was sensitive to foot position but not to speed. In addition to providing a simple and effective description of the execution of the motor task, the correct timing of the studied multiple task could facilitate the accurate determination of variables descriptive of the single isolated phases, allowing for a more thorough description of the motor task and therefore could contribute to the development of effective quantitative functional evaluation tests.

  8. Dual processing of visual rotation for bipedal stance control.

    PubMed

    Day, Brian L; Muller, Timothy; Offord, Joanna; Di Giulio, Irene

    2016-10-01

    When standing, the gain of the body-movement response to a sinusoidally moving visual scene has been shown to get smaller with faster stimuli, possibly through changes in the apportioning of visual flow to self-motion or environment motion. We investigated whether visual-flow speed similarly influences the postural response to a discrete, unidirectional rotation of the visual scene in the frontal plane. Contrary to expectation, the evoked postural response consisted of two sequential components with opposite relationships to visual motion speed. With faster visual rotation the early component became smaller, not through a change in gain but by changes in its temporal structure, while the later component grew larger. We propose that the early component arises from the balance control system minimising apparent self-motion, while the later component stems from the postural system realigning the body with gravity. The source of visual motion is inherently ambiguous such that movement of objects in the environment can evoke self-motion illusions and postural adjustments. Theoretically, the brain can mitigate this problem by combining visual signals with other types of information. A Bayesian model that achieves this was previously proposed and predicts a decreasing gain of postural response with increasing visual motion speed. Here we test this prediction for discrete, unidirectional, full-field visual rotations in the frontal plane of standing subjects. The speed (0.75-48 deg s(-1) ) and direction of visual rotation was pseudo-randomly varied and mediolateral responses were measured from displacements of the trunk and horizontal ground reaction forces. The behaviour evoked by this visual rotation was more complex than has hitherto been reported, consisting broadly of two consecutive components with respective latencies of ∼190 ms and >0.7 s. Both components were sensitive to visual rotation speed, but with diametrically opposite relationships. Thus, the early component decreased with faster visual rotation, while the later component increased. Furthermore, the decrease in size of the early component was not achieved by a simple attenuation of gain, but by a change in its temporal structure. We conclude that the two components represent expressions of different motor functions, both pertinent to the control of bipedal stance. We propose that the early response stems from the balance control system attempting to minimise unintended body motion, while the later response arises from the postural control system attempting to align the body with gravity. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  9. Electromyographic analysis of standing posture and demi-plié in ballet and modern dancers.

    PubMed

    Trepman, E; Gellman, R E; Solomon, R; Murthy, K R; Micheli, L J; De Luca, C J

    1994-06-01

    Surface electromyography was used to analyze lower extremity muscle activity during standing posture and demi-plié in first position with lower extremities turned out, in five ballet and seven modern female professional dancers. In standing posture, increased electromyographic (EMG) activity above baseline was detected most frequently at the medial gastrocnemius (54% standing repetitions) and tibialis anterior (29%) electrodes (all dancers); in ballet dancers, increased EMG activity during standing was significantly less frequent at the medial gastrocnemius, but more frequent at the tibialis anterior, than in modern dancers. In demi-plié, the tibialis anterior had a discrete peak of EMG activity at midcycle in all dancers (97% demi-pliés). All dancers also had midcycle EMG activity in both vastus lateralis and medialis (100% demi-pliés). At the end of rising phase of demi-plié, ballet dancers had greater EMG activity than at midcycle in vastus lateralis (100% demi-pliés) and medialis (92%); in modern dancers, end-rising phase voltage was lower than at midcycle for vastus lateralis (71% demi-pliés) and medialis (83%). Genu recurvatum > or = 10 degrees was observed at the beginning and end of demi-plié in all ballet dancers, but not in modern dancers. There was marked variation of EMG activity during demi-plié in the lateral gastrocnemius, medial gastrocnemius, gluteus maximus, hamstrings, and adductors. The results support the hypothesis that ballet and modern dancers have different patterns of muscle use in standing posture and demi-plié, which in part may be a result of differences in genu recurvatum and turnout between the two groups.

  10. Analysis of static and dynamic balance in healthy elderly practitioners of Tai Chi Chuan versus ballroom dancing

    PubMed Central

    Rahal, Miguel Antônio; Alonso, Angélica Castilho; Andrusaitis, Felix Ricardo; Rodrigues, Thuam Silva; Speciali, Danielli Souza; Greve, Júlia Maria D′Andréa; Leme, Luiz Eugênio Garcez

    2015-01-01

    OBJECTIVE: To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. METHODS: We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master® force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance) and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test). RESULTS: In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. CONCLUSION: The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test. PMID:26017644

  11. Analysis of static and dynamic balance in healthy elderly practitioners of Tai Chi Chuan versus ballroom dancing.

    PubMed

    Rahal, Miguel Antônio; Alonso, Angélica Castilho; Andrusaitis, Felix Ricardo; Rodrigues, Thuam Silva; Speciali, Danielli Souza; Greve, Júlia Maria D Andréa; Leme, Luiz Eugênio Garcez

    2015-03-01

    To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master¯ force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance) and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test). In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test.

  12. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss?

    PubMed

    Rusaw, David; Hagberg, Kerstin; Nolan, Lee; Ramstrand, Nerrolyn

    2012-01-01

    The use of vibration as a feedback modality to convey motion of the body has been shown to improve measures of postural stability in some groups of patients. Because individuals using transtibial prostheses lack sensation distal to the amputation, vibratory feedback could possibly be used to improve their postural stability. The current investigation provided transtibial prosthesis users (n = 24, mean age 48 yr) with vibratory feedback proportional to the signal received from force transducers located under the prosthetic foot. Postural stability was evaluated by measuring center of pressure (CoP) movement, limits of stability, and rhythmic weight shift while participants stood on a force platform capable of rotations in the pitch plane (toes up/toes down). The results showed that the vibratory feedback increased the mediolateral displacement amplitude of CoP in standing balance and reduced the response time to rapid voluntary movements of the center of gravity. The results suggest that the use of vibratory feedback in an experimental setting leads to improvements in fast open-loop mechanisms of postural control in transtibial prosthesis users.

  13. Quantitative Postural Analysis of Children With Congenital Visual Impairment.

    PubMed

    de Pádua, Michelle; Sauer, Juliana F; João, Silvia M A

    2018-01-01

    The aim of this study was to compare the postural alignment of children with visual impairment with that of children without visual impairment. The sample studied was 74 children of both sexes ages 5 to 12 years. Of these, 34 had visual impairment and 40 were control children. Digital photos from the standing position were used to analyze posture. Postural variables, such as tilt of the head, shoulder position, scapula position, lateral deviation of the spine, ankle position in the frontal plane and head posture, angle of thoracic kyphosis, angle of lumbar lordosis, pelvis position, and knee position in the frontal and sagittal planes, were measured with the Postural Assessment Software 0.63, version 36 (SAPO, São Paulo, Brazil), with markers placed in predetermined bony landmarks. The main results of this study showed that children with visual impairment have increased head tilt (P < .001), shoulder deviation in frontal plane (P = .004), lateral deviation of the spine (P < .001), changes in scapula position (P = .012), higher thoracic kyphosis (P = .004), and lower lumbar lordosis (P < .001). Visual impairment influences postural alignment. Children with visual impairment had increased head tilt, uneven shoulders, greater lateral deviation of the spine, thoracic kyphosis, lower lumbar lordosis, and more severe valgus deformities on knees. Copyright © 2017. Published by Elsevier Inc.

  14. A small sample test of the factor structure of postural movement and bilateral motor integration using structural equation modeling.

    PubMed

    Lin, Chin-Kai; Wu, Huey-Min; Lin, Chung-Hui; Wu, Yuh-Yih; Wu, Pei-Fang; Kuo, Bor-Chen; Yeung, Kwok-Tak

    2012-10-01

    The goal of this study was to examine the relationship between the validity of postural movement and bilateral motor integration in terms of sensory integration theory. Participants in this study were 61 Chinese children ages 48 to 70 months. Structural equation modeling was applied to assess the relation between measures tapping postural movement and bilateral motor integration: for postural movement, the measures involve the Monkey Task, Side-Sit Co-contraction, Prone on Elbows, Wheelbarrow Walk, Airplane, and Scooter Board Co-contraction from the DeGangi-Berk Test of Sensory Integration, and Standing Balance with Eyes Closed/Opened in Southern California Sensory Integration Tests. For bilateral motor integration, the measures chosen were the Rolling Pin Activity, Jump and Turn, Diadokokinesis, Drumming, and Upper Extremity Control from the DeGangi-Berk Test of Sensory Integration, and Cross the Midline in Southern California Sensory Integration Tests (SCSIT). Postural movement was highly correlated with the bilateral motor integration. The factor structure fit the theoretical conceptualization, classifying postural movement and bilateral motor integration together in the same category. Therapists could combine two separate objectives (postural movement and bilateral motor integration) of intervention in an activity to improve the adaptive skills based on the vestibular-proprioceptive integration.

  15. THE ELEMENTARY SCHOOL CHILD AND HIS POSTURE PATTERNS.

    ERIC Educational Resources Information Center

    DAVIES, EVELYN A.

    A CHILD'S POSTURE PATTERNS MAY LEAD TO AN ADULT'S PHYSICAL HANDICAP. THE MAIN THEME OF THIS BOOK IS TO SERVE AS A GUIDE FOR THE ELEMENTARY TEACHER OR PARENT IN THE DETECTION AND UNDERSTANDING OF DEVIATIONS FROM THE NORMAL POSTURE PATTERNS WHILE THE CHILD IS SITTING, STANDING, OR MOVING ABOUT SO AS TO PREVENT FUTURE HANDICAPPING CONDITIONS.…

  16. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity.

    PubMed

    Takeda, Kenta; Mani, Hiroki; Hasegawa, Naoya; Sato, Yuki; Tanaka, Shintaro; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-07-19

    The benefit of visual feedback of the center of pressure (COP) on quiet standing is still debatable. This study aimed to investigate the adaptation effects of visual feedback training using both the COP and center of gravity (COG) during quiet standing. Thirty-four healthy young adults were divided into three groups randomly (COP + COG, COP, and control groups). A force plate was used to calculate the coordinates of the COP in the anteroposterior (COP AP ) and mediolateral (COP ML ) directions. A motion analysis system was used to calculate the coordinates of the center of mass (COM) in both directions (COM AP and COM ML ). The coordinates of the COG in the AP direction (COG AP ) were obtained from the force plate signals. Augmented visual feedback was presented on a screen in the form of fluctuation circles in the vertical direction that moved upward as the COP AP and/or COG AP moved forward and vice versa. The COP + COG group received the real-time COP AP and COG AP feedback simultaneously, whereas the COP group received the real-time COP AP feedback only. The control group received no visual feedback. In the training session, the COP + COG group was required to maintain an even distance between the COP AP and COG AP and reduce the COG AP fluctuation, whereas the COP group was required to reduce the COP AP fluctuation while standing on a foam pad. In test sessions, participants were instructed to keep their standing posture as quiet as possible on the foam pad before (pre-session) and after (post-session) the training sessions. In the post-session, the velocity and root mean square of COM AP in the COP + COG group were lower than those in the control group. In addition, the absolute value of the sum of the COP - COM distances in the COP + COG group was lower than that in the COP group. Furthermore, positive correlations were found between the COM AP velocity and COP - COM parameters. The results suggest that the novel visual feedback training that incorporates the COP AP -COG AP interaction reduces postural sway better than the training using the COP AP alone during quiet standing. That is, even COP AP fluctuation around the COG AP would be effective in reducing the COM AP velocity.

  17. Time course and dimensions of postural control changes following neuromuscular training in youth field hockey athletes.

    PubMed

    Zech, Astrid; Klahn, Philipp; Hoeft, Jon; zu Eulenburg, Christine; Steib, Simon

    2014-02-01

    Injury prevention effects of neuromuscular training have been partly attributed to postural control adaptations. Uncertainty exists regarding the magnitude of these adaptations and on how they can be adequately monitored. The objective was to determine the time course of neuromuscular training effects on functional, dynamic and static balance measures. Thirty youth (14.9 ± 3 years) field hockey athletes were randomised to an intervention or control group. The intervention included a 20-min neuromuscular warm-up program performed twice weekly for 10 weeks. Balance assessments were performed at baseline, week three, week six and post-intervention. They included the star excursion balance test (SEBT), balance error scoring system (BESS), jump-landing time to stabilization (TTS) and center of pressure (COP) sway velocity during single-leg standing. No baseline differences were found between groups in demographic data and balance measures. Adherence was at 86%. All balance measures except the medial-lateral TTS improved significantly over time (p < 0.05) in both groups. Significant group by time interactions were found for the BESS score (p < 0.001). The intervention group showed greater improvements (69.3 ± 10.3%) after 10 weeks in comparison to controls (31.8 ± 22.1%). There were no significant group by time interactions in the SEBT, TTS and COP sway velocity. Neuromuscular training was effective in improving postural control in youth team athletes. However, this effect was not reflected in all balance measures suggesting that the neuromuscular training did not influence all dimensions of postural control. Further studies are needed to confirm the potential of specific warm-up programs to improve postural control.

  18. Time scale dependence of the center of pressure entropy: What characteristics of the neuromuscular postural control system influence stabilographic entropic half-life?

    PubMed

    Federolf, Peter; Zandiyeh, Payam; von Tscharner, Vinzenz

    2015-12-01

    The center of pressure (COP) movement in studies of postural control reveals a highly regular structure (low entropy) over short time periods and a highly irregular structure over large time scales (high entropy). Entropic half-life (EnHL) is a novel measure that quantifies the time over which short-term temporal correlations in a time series deteriorate to an uncorrelated, random structure. The current study suggested and tested three hypotheses about how characteristics of the neuromuscular postural control system may affect stabilometric EnHL: (H1) control system activity hypothesis: EnHL decreases with increased frequency of control system interventions adjusting COP motion; (H2) abundance of states hypothesis: EnHL decreases with increased number of mechanically equivalent states available to the postural system; and (H3) neurologic process hierarchy hypothesis: EnHL increases if postural control functions shift from the spinal level to the motor cortex. Thirty healthy participants performed quiet stance tests for 90 s in 18 different conditions: stance (bipedal, one-legged, and tandem); footwear (bare foot, regular sports shoe, and rocker sole shoes); and simultaneous cognitive task (two-back working memory task, no challenge). A four-way repeated-measures ANOVA revealed significant changes in EnHL for the different stance positions and for different movement directions (medio-lateral, anterior-posterior). These changes support H1 and H2. Significant differences were also found between rocker sole shoes and normal or barefoot standing, which supports H3. This study contributes to the understanding of how and why EnHL is a useful measure to monitor neuromuscular control of balance.

  19. Balance control during gait initiation: State-of-the-art and research perspectives.

    PubMed

    Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis

    2017-11-18

    It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.

  20. Balance control during gait initiation: State-of-the-art and research perspectives

    PubMed Central

    Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis

    2017-01-01

    It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices. PMID:29184756

  1. Effect of long-term bedrest on lower leg muscle activation patterns during quiet standing.

    PubMed

    Miyoshi, T; Sato, T; Sekiguchi, H; Yamanaka, K; Miyazaki, M; Igawa, S; Komeda, T; Nakazawa, K; Yano, H

    2001-07-01

    It has been well known that balance instabilities after long-term exposure to microgravity (e.g., Anderson et al. 1986) or bedrest (BR) can be related to alterations and/or adaptations to postural control strategies. Little is known, however, how the reduced muscular activity affects the activation pattern of the lower limb muscles during quiet standing (QS). The purpose of this study was to investigate whether or not any changes in the lower limb muscle activation patterns during QS would occur after BR.

  2. [Stabilometry, Electromyography and Electroencephalography in Postmenopausal Women after Training of the Leg Support Sensation].

    PubMed

    Bazanova, O M; Kholodina, N V; Podoinikov, A S; Nikolenko, E D

    2015-01-01

    Ageing, lack of physical activity and sedentary lifestyle cause disorders of the sensorimotor system of postural control. The role of support afferentation in the changes in cortical activity in balance impairments has not been studied yet. The purpose of this study was to investigate the changes in the stabilographic parameters of the body center of gravity, alpha activity indices of the electroencephalography (EEG) and electromyographic (EMG) measurements of forehead muscle tone in response to visual activation in standing and sitting positions in postmenopausal women after and without training of leg support sensation (LSS) The variables were compared between 3 groups: Group A (n = 12, age: 66 ± 9 years)--women who have trained LSS with the help of Aikido techniques for 8 years; group F (n = 12, age: 65 ± 6 years)--women who have attended Fitness training for 8 years; group N (n = 11, age: 66 ± 7 years)--women who have not taken physical exercises for the last 8 years. It was found that in group N a change in body position from "sitting" to "standing" leads to a much greater increase in the area of stabilogram and in the energy expenditure needed to maintain the bal- ance than in groups A and F. Posture changes from sitting to standing position increases the tension of the forehead muscles and the suppression of alpha-1-amplitude, but decreases the power in high- and low-frequency alpha-band of EEG and the width of alpha-band in group N. In women ofgroup F the posture change does not result in an increase in EMG and signs of activation or tension in EEG; in group A it leads to a decrease of visual activation indices and psychoemotional tension and to an increase in power in alpha-2-band which is a sign of neuronal efficiency. Basing on these data, we can conclude that training focused on support afferentation in postmenopausal women decreases the psychoemotional tension and increases neuronal efficiency ofsensorimotor integration of postural control system and can be used in the prevention of falls in elderly people.

  3. Symbolic dynamics of heart rate variability - a promising tool to investigate cardiac sympathovagal control in attention deficit/hyperactivity disorder (ADHD)?

    PubMed

    Tonhajzerova, Ingrid; Farsky, Ivan; Mestanik, Michal; Visnovcova, Zuzana; Mestanikova, Andrea; Hrtanek, Igor; Ondrejka, Igor

    2016-06-01

    We aimed to evaluate complex cardiac sympathovagal control in attention deficit/hyperactivity disorder (ADHD) by using heart rate variability (HRV) nonlinear analysis - symbolic dynamics. We examined 29 boys with untreated ADHD and 25 healthy boys (age 8-13 years). ADHD symptoms were evaluated by ADHD-RS-IV scale. ECG was recorded in 3 positions: baseline supine position, orthostasis, and clinostasis. Symbolic dynamics indices were used for the assessment of complex cardiac sympathovagal regulation: normalised complexity index (NCI), normalised unpredictability index (NUPI), and pattern classification measures (0V%, 1V%, 2LV%, 2UV%). The results showed that HRV complexity was significantly reduced at rest (NUPI) and during standing position (NCI, NUPI) in ADHD group compared to controls. Cardiac-linked sympathetic index 0V% was significantly higher during all posture positions and cardiovagal index 2LV% was significantly lower to standing in boys suffering from ADHD. Importantly, ADHD symptom inattention positively correlated with 0V%, and negatively correlated with NCI, NUPI. Concluding, symbolic dynamics revealed impaired complex neurocardiac control characterised by potential cardiac beta-adrenergic overactivity and vagal deficiency at rest and to posture changes in boys suffering from ADHD that is correlated with inattention. We suggest that symbolic dynamics indices could represent promising cardiac biomarkers in ADHD.

  4. Previous exposure to musical auditory stimulation immediately influences the cardiac autonomic responses to the postural change maneuver in women.

    PubMed

    de Castro, Bianca Cr; Guida, Heraldo L; Roque, Adriano L; de Abreu, Luiz Carlos; Ferreira, Lucas L; Raimundo, Rodrigo D; Monteiro, Carlos Bm; Goulart, Flávia C; Ferreira, Celso; Marcomini, Renata S; Ribeiro, Vivian F; Ré, Alessandro Hn; Vanderlei, Luiz Carlos M; Valenti, Vitor E

    2013-08-14

    Chronic exposure to musical auditory stimulation has been reported to improve cardiac autonomic regulation. However, it is not clear if music acutely influences it in response to autonomic tests. We evaluated the acute effects of music on heart rate variability (HRV) responses to the postural change maneuver (PCM) in women. We evaluated 12 healthy women between 18 and 28 years old and HRV was analyzed in the time (SDNN, RMSSD, NN50 and pNN50) and frequency (LF, HF and LF/HF ratio) domains. In the control protocol, the women remained at seated rest for 10 minutes and quickly stood up within three seconds and remained standing still for 15 minutes. In the music protocol, the women remained at seated rest for 10 minutes, were exposed to music for 10 minutes and quickly stood up within three seconds and remained standing still for 15 minutes. HRV was recorded at the following time: rest, music (music protocol) 0-5, 5-10 and 10-15 min during standing. In the control protocol the SDNN, RMSSD and pNN50 indexes were reduced at 10-15 minutes after the volunteers stood up, while the LF (nu) index was increased at the same moment compared to seated rest. In the protocol with music, the indexes were not different from control but the RMSSD, pNN50 and LF (nu) were different from the music period. Musical auditory stimulation attenuates the cardiac autonomic responses to the PCM.

  5. System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.

    1997-01-01

    We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.

  6. Impaired visually guided weight-shifting ability in children with cerebral palsy.

    PubMed

    Ballaz, Laurent; Robert, Maxime; Parent, Audrey; Prince, François; Lemay, Martin

    2014-09-01

    The ability to control voluntary weight shifting is crucial in many functional tasks. To our knowledge, weight shifting ability in response to a visual stimulus has never been evaluated in children with cerebral palsy (CP). The aim of the study was (1) to propose a new method to assess visually guided medio-lateral (M/L) weight shifting ability and (2) to compare weight-shifting ability in children with CP and typically developing (TD) children. Ten children with spastic diplegic CP (Gross Motor Function Classification System level I and II; age 7-12 years) and 10 TD age-matched children were tested. Participants played with the skiing game on the Wii Fit game console. Center of pressure (COP) displacements, trunk and lower-limb movements were recorded during the last virtual slalom. Maximal isometric lower limb strength and postural control during quiet standing were also assessed. Lower-limb muscle strength was reduced in children with CP compared to TD children and postural control during quiet standing was impaired in children with CP. As expected, the skiing game mainly resulted in M/L COP displacements. Children with CP showed lower M/L COP range and velocity as compared to TD children but larger trunk movements. Trunk and lower extremity movements were less in phase in children with CP compared to TD children. Commercially available active video games can be used to assess visually guided weight shifting ability. Children with spastic diplegic CP showed impaired visually guided weight shifting which can be explained by non-optimal coordination of postural movement and reduced muscular strength. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Young, Healthy Subjects Can Reduce the Activity of Calf Muscles When Provided with EMG Biofeedback in Upright Stance

    PubMed Central

    Vieira, Taian M.; Baudry, Stéphane; Botter, Alberto

    2016-01-01

    Recent evidence suggests the minimization of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimizing the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG) recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimize the level of muscle activation during standing without increasing the excursion of the center of pressure (CoP). CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from 10 healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects' responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P < 0.05) and an increase in tibialis anterior EMG (~10%; P < 0.05). Furthermore, CoP mean position significantly shifted backward (~30 mm). In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at assisting subjects in more efficiently controlling leg muscle activity during standing. PMID:27199773

  8. Minimalist, standard and no footwear on static and dynamic postural stability following jump landing.

    PubMed

    Zech, Astrid; Argubi-Wollesen, Andreas; Rahlf, Anna-Lina

    2015-01-01

    In recreational sports, uncushioned, light-weight and minimalist shoes are increasingly used to imitate barefoot situations. Uncertainty exists whether these shoes provide sufficient stability during challenging movements. In this randomised crossover study, 35 healthy distance runners performed jump landing stabilisation and single-leg stance tests on a force plate, using four conditions in random order: barefoot, uncushioned minimalist shoes, cushioned ultraflexible shoes and standard running shoes. Ground reaction force (GRF) and centre of pressure (COP) data were used to determine unilateral jump landing stabilisation time and COP sway velocity during single-leg stance. Repeated measures analysis of variance revealed significant footwear interactions for medial-lateral (p < 0.001) and anterior-posterior COP sway velocity during standing (p < 0.001). The barefoot condition produced significantly greater postural sway velocities (p < 0.001) compared to all footwear conditions. No significant effects were found for jump landing stabilisation time. In conclusion, the results of this study indicate that increased shoe flexibility and reduced sole support have no, or only minor influence on static and dynamic postural control, and therefore, may not increase the risk of traumatic events during sports activities. However, barefoot conditions should be considered carefully when adequate postural control is needed.

  9. The effect of foot posture on capacity to apply free moments to the ground: implications for fighting performance in great apes

    PubMed Central

    Cunningham, Christopher

    2017-01-01

    ABSTRACT In contrast to most other primates, great apes have feet in which the heel supports body weight during standing, walking and running. One possible advantage of this plantigrade foot posture is that it may enhance fighting performance by increasing the ability to apply free moments (i.e. force couples) to the ground. We tested this possibility by measuring performance of human subjects when performing from plantigrade and digitigrade (standing on the ball of the foot and toes) postures. We found that plantigrade posture substantially increased the capacity to apply free moments to the ground and to perform a variety of behaviors that are likely to be important to fighting performance in great apes. As predicted, performance in maximal effort lateral striking and pushing was strongly correlated with free moment magnitude. All else being equal, these results suggest species that can adopt plantigrade posture will be able to apply larger free moments to the ground than species restricted to digitigrade or unguligrade foot posture. Additionally, these results are consistent with the suggestion that selection for physical competition may have been one of the factors that led to the evolution of the derived plantigrade foot posture of great apes. PMID:28202470

  10. The effect of foot posture on capacity to apply free moments to the ground: implications for fighting performance in great apes.

    PubMed

    Carrier, David R; Cunningham, Christopher

    2017-02-15

    In contrast to most other primates, great apes have feet in which the heel supports body weight during standing, walking and running. One possible advantage of this plantigrade foot posture is that it may enhance fighting performance by increasing the ability to apply free moments (i.e. force couples) to the ground. We tested this possibility by measuring performance of human subjects when performing from plantigrade and digitigrade (standing on the ball of the foot and toes) postures. We found that plantigrade posture substantially increased the capacity to apply free moments to the ground and to perform a variety of behaviors that are likely to be important to fighting performance in great apes. As predicted, performance in maximal effort lateral striking and pushing was strongly correlated with free moment magnitude. All else being equal, these results suggest species that can adopt plantigrade posture will be able to apply larger free moments to the ground than species restricted to digitigrade or unguligrade foot posture. Additionally, these results are consistent with the suggestion that selection for physical competition may have been one of the factors that led to the evolution of the derived plantigrade foot posture of great apes. © 2017. Published by The Company of Biologists Ltd.

  11. Energy Cost of Standing in a Multi-Ethnic Cohort: Are Energy-Savers a Minority or the Majority?

    PubMed Central

    Monnard, Cathríona R.

    2017-01-01

    Background The disease risks associated with sedentary behavior are now firmly established, and consequently there is much interest in methods of increasing low-intensity physical activity. In this context, it is a widely held belief that altering posture allocation can modify energy expenditure (EE) to impact upon body weight regulation and health. However, we recently showed the existence of two distinct phenotypes pertaining to the energy cost of standing–with the majority of a Caucasian cohort showing no sustained increase in EE during standing relative to sitting. Here we investigated whether this phenomenon is also observed across a multi-ethnic male cohort. Objective To determine the magnitude and time-course of changes in EE and respiratory quotient (RQ) during steady-state standing versus sitting, and to explore inter-individual variability in these responses across 4 ethnic groups (European, Indian, Chinese, African) Design Min-by-min monitoring using posture-adapted ventilated-hood indirect calorimetry was conducted in 35 healthy, men (20–43 years) during 10 min of steady-state standing versus sitting comfortably. Results 69% of subjects showed little or no increase (<5%) in EE during standing compared to sitting (energy savers). Furthermore, the proportion of energy savers did not significantly differ between ethnic groups, despite ethnic differences in anthropometry; with body weight as the primary predictor of the energy cost of standing maintenance (r2 = 0.30, p = 0.001). Conclusion Our results indicate that the majority of individuals in a multi-ethnic cohort display a postural energy-saver phenotype. The mechanisms by which the large majority of individuals appear to maintain sitting and standing postures at the same energetic cost remains to be elucidated but is of considerable importance to our understanding of the spontaneous physical activity compartment of EE and its potential as a target for weight regulation. PMID:28056094

  12. Mechanical Characteristics of Reflex Durign Upright Posture in Paralyzed Subjects

    NASA Astrophysics Data System (ADS)

    Kim, Yongchul; Youm, Youngil; Lee, Bumsuk; Kim, Youngho; Choi, Hyeonki

    The characteristics of flexor reflexes have been investigated in the previous studies with human subjects who were seated or supine position. However, researchers did not describe how the spinal circuits are used in different hip angles for paralyzed subjects, such as the standing position with walker or cane. In upright posture the compatibility between a flexor reflex of leg and body balance is a special problem for lower limb injured subjects. Therefore, the purpose of this study was to investigate the effects of hip angle change on the flexor reflex evoked in standing paralyzed subjects supported by walker. In this study, six spinal cord injured and four stroke subjects were recruited through the inpatient physical therapy clinics of Korea national rehabilitation hospital. A single axis electronic goniometer was mounted on the lateral side of the hip joint of the impaired limb to record movements in the sagittal plane at this joint. The electronic goniometer was connected to a data acquisition system, through amplifiers to a computer. Since subject' posture influenced characteristics of the flexion reflex response, the subjects were supported in an upright posture by the help of parallelogram walder. Two series of tests were performed on each leg. The first series of the tests investigated the influence of hip angle during stationary standing posture on flexion reflex response. The hip angle was adjusted by the foot plate. The second examined the effect of the voluntary action of subject on swing motion during the gait. The electrically induced flexion reflex simultaneously produced the flexion of the hip, knee and dorsiflexion of the ankle enabling the swing phase of walking. Form the experimental results we observed that the reflex response of hip joint was largerwith the hip in the extended position than in the flexed position during standing posture. Under voluntary movement on flexion reflex during gaint, the peak hip angle induced by stimulation was increased in spinal cord injury and stroke patients by subject' voluntary movement.

  13. Coupling of Head and Body Movement with Motion of the Audible Environment

    ERIC Educational Resources Information Center

    Stoffregen, Thomas A.; Villard, Sebastien; Kim, ChungGon; Ito, Kiyohide; Bardy, Benoit G.

    2009-01-01

    The authors asked whether standing posture could be controlled relative to audible oscillation of the environment. Blindfolded sighted adults were exposed to acoustic flow in a moving room, and were asked to move so as to maintain a constant distance between their head and the room. Acoustic flow had direct (source) and indirect (reflected)…

  14. Lower Extremity Biomechanics in Athletes With Ankle Instability After a 6-Week Integrated Training Program

    PubMed Central

    Huang, Pi-Yin; Chen, Wen-Ling; Lin, Cheng-Feng; Lee, Heng-Ju

    2014-01-01

    Context: Plyometric exercise has been recommended to prevent lower limb injury, but its feasibility in and effects on those with functional ankle instability (FAI) are unclear. Objective: To investigate the effect of integrated plyometric and balance training in participants with FAI during a single-legged drop landing and single-legged standing position. Design: Randomized controlled clinical trial. Setting: University motion-analysis laboratory. Patients or Other Participants: Thirty athletes with FAI were divided into 3 groups: plyometric group (8 men, 2 women, age = 23.20 ± 2.82 years; 10 unstable ankles), plyometric-balance (integrated)–training group (8 men, 2 women, age = 23.80 ± 4.13 years; 10 unstable ankles), and control group (7 men, 3 women, age = 23.50 ± 3.00 years; 10 unstable ankles). Intervention(s): A 6-week plyometric-training program versus a 6-week integrated-training program. Main Outcome Measure(s): Postural sway during single-legged standing with eyes open and closed was measured before and after training. Kinematic data were recorded during medial and lateral single-legged drop landings after a 5-second single-legged stance. Results: Reduced postural sway in the medial-lateral direction and reduced sway area occurred in the plyometric- and integrated-training groups. Generally, the plyometric training and integrated training increased the maximum angles at the hip and knee in the sagittal plane, reduced the maximum angles at the hip and ankle in the frontal and transverse planes in the lateral drop landing, and reduced the time to stabilization for knee flexion in the medial drop landing. Conclusions: After 6 weeks of plyometric training or integrated training, individuals with FAI used a softer landing strategy during drop landings and decreased their postural sway during the single-legged stance. Plyometric training improved static and dynamic postural control and should be incorporated into rehabilitation programs for those with FAI. PMID:24568224

  15. A mobile system for assessment of physiological response to posture transitions.

    PubMed

    Jovanov, Emil; Milosevic, Mladen; Milenković, Aleksandar

    2013-01-01

    Posture changes initiate a dynamic physiological response that can be used as an indicator of the overall health status. We introduce an inconspicuous mobile wellness monitoring system (imWell) that continuously assesses the dynamic physiological response to posture transitions during activities of daily living. imWell utilizes a Zephyr BioHarness 3 physiological monitor that continually reports heart activity and physical activity via Bluetooth to a personal device (e.g. smartphone). The personal device processes the reported activity data in real-time to recognize posture transitions from the accelerometer data and to characterize dynamic heart response to posture changes. It annotates, logs, and uploads the heart activity data to our mHealth server. In this paper we present algorithms for detection of posture transitions and heart activity characterization during a sit-to-stand transition. The proposed system was tested on seven healthy subjects performing a predefined protocol. The total average and standard deviation for sit-to-stand transition time is 2.7 ± 0.69 s, resulting in the change of heart rate of 27.36 ± 9.30 bpm (from 63.3 ± 9.02 bpm to 90.66 ± 10.09 bpm).

  16. Confounding compression: the effects of posture, sizing and garment type on measured interface pressure in sports compression clothing.

    PubMed

    Brophy-Williams, Ned; Driller, Matthew William; Shing, Cecilia Mary; Fell, James William; Halson, Shona Leigh; Halson, Shona Louise

    2015-01-01

    The purpose of this investigation was to measure the interface pressure exerted by lower body sports compression garments, in order to assess the effect of garment type, size and posture in athletes. Twelve national-level boxers were fitted with sports compression garments (tights and leggings), each in three different sizes (undersized, recommended size and oversized). Interface pressure was assessed across six landmarks on the lower limb (ranging from medial malleolus to upper thigh) as athletes assumed sitting, standing and supine postures. Sports compression leggings exerted a significantly higher mean pressure than sports compression tights (P < 0.001). Oversized tights applied significantly less pressure than manufacturer-recommended size or undersized tights (P < 0.001), yet no significant differences were apparent between different-sized leggings. Standing posture resulted in significantly higher mean pressure application than a seated posture for both tights and leggings (P < 0.001 and P = 0.002, respectively). Pressure was different across landmarks, with analyses revealing a pressure profile that was neither strictly graduated nor progressive in nature. The pressure applied by sports compression garments is significantly affected by garment type, size and posture assumed by the wearer.

  17. A comparison of ballet dancers with different level of experience in performing single-leg stance on retiré position.

    PubMed

    Lin, Chia-Wei; Lin, Cheng-Feng; Hsue, Bih-Jen; Su, Fong-Chin

    2014-04-01

    The purpose of the current study was to evaluate the postural stability of single-leg standing on the retiré position in ballet dancers having three different levels of skill. Nine superior experienced female ballet dancers, 9 experienced, and 12 novice dancers performed single-leg standing in the retiré position. The parameters of center of pressure (COP) in the anterior-posterior and medial-lateral directions and the maximum distance between COP and the center of mass (COM) were measured. The inclination angles of body segments (head, torso, and supporting leg) in the frontal plane were also calculated. The findings showed that the novice dancers had a trend of greater torso inclination angles than the experienced dancers but that the superior experienced dancers had greater maximum COM-COP distance in the anterior-posterior direction. Furthermore, both experienced and novice dancers had better balance when standing on the nondominant leg, whereas the superior experienced dancers had similar postural stability between legs. Based on the findings, ballet training should put equal focus on both legs and frontal plane control (medial-lateral direction) should be integrated to ballet training program.

  18. Postural strategies in Prader-Willi and Down syndrome patients.

    PubMed

    Cimolin, Veronica; Galli, Manuela; Grugni, Graziano; Vismara, Luca; Precilios, Helmer; Albertini, Giorgio; Rigoldi, Chiara; Capodaglio, Paolo

    2011-01-01

    Patients affected by Down (DS) and Prader-Willi syndrome (PWS) are characterised by some common clinical and functional features including gait disorders and reduced postural control. The aim of our study was to quantitatively compare postural control in adult PWS and DS. We studied 12 PWS and 19 DS adult patients matched for age, height, weight and body mass index. They were instructed to maintain an upright standing position on a force platform for 30s with open eyes (OE) and we calculated the range of center of pressure (CoP) displacement in the A/P direction (RANGE(AP)) and in the M/L direction (RANGE(ML)) and the total CoP trajectory length during quiet stance (Sway Path, SP). The range of oscillations in PWS and DS in both AP and ML direction were higher than in controls. PWS and DS were statistically different for RANGE(AP), with PWS showing higher mean values. Our results confirm a reduced capacity of both PWS and DS in maintaining postural stability. This appears to be in some respect different in PWS and DS, with PWS showing poorer control in AP. DS and, particularly, PWS should be encouraged to undergo specific balance training and strengthening of the ankle muscles as part of a comprehensive rehabilitation program to enhance daily functioning and quality of life. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Variable Cadence Walking and Ground Adaptive Standing with a Powered Ankle Prosthesis

    PubMed Central

    Shultz, Amanda H.; Lawson, Brian E.; Goldfarb, Michael

    2015-01-01

    Abstract This paper describes a control approach that provides walking and standing functionality for a powered ankle prosthesis, and demonstrates the efficacy of the approach in experiments in which a unilateral transtibial amputee subject walks with the prosthesis at variable cadences, and stands on various slopes. Both controllers incorporate a finite-state structure that emulates healthy ankle joint behavior via a series of piecewise passive impedance functions. The walking controller incorporates an algorithm to modify impedance parameters based on estimated cadence, while the standing controller incorporates an algorithm to modulate the ankle equilibrium angle in order to adapt to the ground slope and user posture, and the supervisory controller selects between the walking and standing controllers. The system is shown to reproduce several essential biomechanical features of the healthy joint during walking, particularly relative to a passive prosthesis, and is shown to adapt to variable cadences. The system is also shown to adapt to slopes over a range of ± 15 deg and to provide support to the user in a manner that is biomimetic, as validated by quasi-static stiffness measurements recorded by the prosthesis. Data from standing trials indicate that the user places more weight on the powered prosthesis than on his passive prosthesis when standing on sloped surfaces, particularly at angles of 10 deg or greater. The authors also demonstrated that the prosthesis typically began providing support within 1 s of initial contact with the ground. Further, the supervisory controller was shown to be effective in switching between walking and standing, as well as in determining ground slope just prior to the transition from the standing controller to the walking controller, where the estimated ground slope was within 1.25 deg of the actual ground slope for all trials. PMID:25955789

  20. Changes in Postural Control After a Ball-Kicking Balance Exercise in Individuals With Chronic Ankle Instability

    PubMed Central

    Conceição, Josilene Souza; Schaefer de Araújo, Felipe Gustavo; Santos, Gilmar Moraes; Keighley, John

    2016-01-01

    Context:  Rehabilitation programs for patients with chronic ankle instability (CAI) generally involve balance-perturbation training (BPT). Anticipatory postural adjustments (APAs) and compensatory postural adjustments (CPAs) are the primary strategies used to maintain equilibrium during body perturbations. Little is known, however, about how APAs and CPAs are modified to promote better postural control for individuals with CAI after BPT. Objective:  To investigate the effect of BPT that involves kicking a ball on postural-control strategies in individuals with CAI. Design:  Randomized controlled clinical trial. Setting:  Laboratory. Patients or Other Participants:  We randomly assigned 44 volunteers with CAI to either a training group (TG; 11 women, 11 men; age = 24 ± 4 years, height = 173.0 ± 9.8 cm, mass = 72.64 ± 11.98 kg) or control group (CG; 11 women, 11 men; age = 22 ± 3 years, height = 171.0 ± 9.7 cm, mass = 70.00 ± 11.03 kg). Intervention(s):  The TG performed a single 30-minute training session that involved kicking a ball while standing on 1 foot. The CG received no intervention. Main Outcome Measure(s):  The primary outcome was the sum of the integrated electromyographic activity (∑∫EMG) of the lower extremity muscles in the supporting limb that were calculated during typical intervals for APAs and CPAs. A secondary outcome was center-of-pressure displacement during similar intervals. Results:  In the TG after training, the ∑∫EMG decreased in both dorsal and ventral muscles during compensatory adjustment (ie, the time interval that followed lower limb movement). During this interval, muscle activity (∑∫EMG) was less in the TG than in the CG. Consequently, center-of-pressure displacement increased during the task after training. Conclusions:  A single session of ball-kicking BPT promoted changes in postural-control strategies in individuals with CAI. These results should stimulate new and more comprehensive studies to investigate the effect of this and other BPT techniques on postural control in patients with CAI. PMID:27295488

  1. Mobile Phone Use Behaviors and Postures on Public Transportation Systems

    PubMed Central

    Liang, Huey-Wen; Hwang, Yaw-Huei

    2016-01-01

    Mobile phones are common in our daily life, but the users’ preferences for postures or screen operating styles have not been studied. This was a cross-sectional and observational study. We randomly sampled passengers who used mobile phones on the Mass Rapid Transit (MRT) system in metropolitan Taipei. A checklist was used to observe their body postures and screen operating styles while sitting or standing. As a result, 1,230 subjects from 400 trips were observed. Overall, of all the passengers who were sitting, 41% of them were using mobile phones. The majority of the tasks involved browsing (84%) with their phones in a portrait orientation (93%). Different-hand holding/operating was the most commonly used operating style while sitting (46%) and same-hand holding/operating was the most common while standing (46%). The distribution of screen operating styles was significantly different for those sitting than for those standing and for different genders and age groups. The most frequently observed postures while sitting were having one’s trunk against a backrest, feet on the floor and with or without an arm supported (58%). As for the users who were standing, the both- and different-hands groups had a high proportion of arms unsupported, feet on the floor and either their trunk supported or not. In contrast, the same-hand group tended to have their trunk unsupported, were holding a pole or handstrap and had both feet on floor. Further studies are warranted to characterize the ergonomic exposure of these commonly used postures and operating styles, and our results will help guide the selection of experimental conditions for laboratory settings. PMID:26828797

  2. Postural threat influences vestibular-evoked muscular responses.

    PubMed

    Lim, Shannon B; Cleworth, Taylor W; Horslen, Brian C; Blouin, Jean-Sébastien; Inglis, J Timothy; Carpenter, Mark G

    2017-02-01

    Standing balance is significantly influenced by postural threat. While this effect has been well established, the underlying mechanisms of the effect are less understood. The involvement of the vestibular system is under current debate, and recent studies that investigated the effects of height-induced postural threat on vestibular-evoked responses provide conflicting results based on kinetic (Horslen BC, Dakin CJ, Inglis JT, Blouin JS, Carpenter MG. J Physiol 592: 3671-3685, 2014) and kinematic (Osler CJ, Tersteeg MC, Reynolds RF, Loram ID. Eur J Neurosci 38: 3239-3247, 2013) data. We examined the effect of threat of perturbation, a different form of postural threat, on coupling (cross-correlation, coherence, and gain) of the vestibulo-muscular relationship in 25 participants who maintained standing balance. In the "No-Threat" conditions, participants stood quietly on a stable surface. In the "Threat" condition, participants' balance was threatened with unpredictable mediolateral support surface tilts. Quiet standing immediately before the surface tilts was compared to an equivalent time from the No-Threat conditions. Surface EMG was recorded from bilateral trunk, hip, and leg muscles. Hip and leg muscles exhibited significant increases in peak cross-correlation amplitudes, coherence, and gain (1.23-2.66×) in the Threat condition compared with No-Threat conditions, and significant correlations were observed between threat-related changes in physiological arousal and medium-latency peak cross-correlation amplitude in medial gastrocnemius (r = 0.408) muscles. These findings show a clear threat effect on vestibular-evoked responses in muscles in the lower body, with less robust effects of threat on trunk muscles. Combined with previous work, the present results can provide insight into observed changes during balance control in threatening situations. This is the first study to show increases in vestibular-evoked responses of the lower body muscles under conditions of increased threat of postural perturbation. While robust findings were observed in hip and leg muscles, less consistent results were found in muscles of the trunk. The present findings provide further support in the ongoing debate for arguments that vestibular-evoked balance responses are influenced by fear and anxiety and explain previous threat-related changes in balance. Copyright © 2017 the American Physiological Society.

  3. The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.

    PubMed

    Du, Yue; Clark, Jane E

    2018-05-03

    This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.

  4. Assessment of postural control in patients with Parkinson's disease: sway ratio analysis.

    PubMed

    Błaszczyk, Janusz W; Orawiec, Renata

    2011-04-01

    Analysis of the postural stability impairments in neurodegenerative diseases is a very demanding task. Age-related declines in posturographic indices are usually superimposed on effects associated with the pathology and its treatment. We present the results of a novel postural sway ratio (SR) analysis in patients with Parkinson's disease (PD) and age-matched healthy subjects. The sway ratios have been assessed based upon center of foot-pressure (CP) signals recorded in 55 parkinsonians (Hoehn and Yahr: 1-3) and 55 age-matched healthy volunteers while standing quiet with eyes open (EO) and then with eyes closed (EC). Complementing classical sway measure abnormalities, the SR exhibited a high discriminative power for all controlled factors: pathology, vision, and direction of sway. Both the anteroposterior (AP) and mediolateral (ML) sway ratios were significantly increased in PD patients when compared to the control group. An additional SR increase was observed in the response to eyes closure. The sway ratio changes documented here can be attributed to a progressive decline of a postural stability control due to pathology. In fact, a significant correlation between the mediolateral SR under EO conditions and Motor Exam (section III) score of the UPDRS was found. The mediolateral sway ratios computed for EO and EC conditions significantly correlated with the CP path length (r = .87) and the mean anteroposterior CP position within the base of support (r = .38). Both indices reflect postural stability decline and fall tendency # in parkinsonians. The tremor-type PD patients (N=34) showed more pronounced relationships between the mediolateral SR and selected items from the UPDRS scale, including: falls (Kendall Tau=.47, p < .05), rigidity (.45, p < .05), postural stability (retropulsion) (.52), and the Motor Exam score (.73). The anteroposterior SR correlated only with tremor (Kendal Tau = .77, p < .05). It seems that in force plate posturography the SR can be recommended as a single reliable measure that allows for a better quantitative assessment of postural stability impairments. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Standing Tall: The Benefits of Standing Devices

    ERIC Educational Resources Information Center

    Warner, Mark P.

    2007-01-01

    In the author's opinion as a pediatric physical therapist, with the exception of a wheelchair, there is no other piece of assistive technology that is more beneficial to children and adults with special needs than a standing device. Postural symmetry during standing and walking activities is extremely important for everyone. Very few children…

  6. The influence of a seated break on prolonged standing induced low back pain development.

    PubMed

    Gallagher, Kaitlin M; Campbell, Troy; Callaghan, Jack P

    2014-01-01

    With the recent attention to 'sitting disease', health practitioners and scientists are promoting standing in the workplace to decrease sedentary time, despite a high prevalence of low back pain (LBP) development during prolonged standing. The purpose of this study was to assess how a seated break inserted between bouts of prolonged standing would influence LBP development, posture and movement. A total of 20 participants stood for 45 minutes, sat for 15 minutes and repeated this sequence while lumbar and thoracic angles were measured, and LBP visual analogue scale reports were taken. Of the sample, 55% participants reported LBP in standing. A stand to sit ratio of 3:1 did not provide lasting recovery of LBP from standing and pain developers utilised a limited range of their lumbar spine angle and increased thoracic extension, resulting in static postures that caused tissue aggravation that was not resolved after 15 minutes of sitting. Prolonged standing in the workplace has the potential to result in LBP for some workers and alternate ways to reduce sedentary time should be investigated.

  7. Effect of smart phone use on dynamic postural balance.

    PubMed

    Cho, Sung-Hak; Choi, Mun-Hee; Goo, Bong-Oh

    2014-07-01

    [Purpose] The present study investigated what kind of effect smart phone use has on dynamic postural balance. [Subjects] The study subjects were 30 healthy students in their 20's who were recruited from a University in Busan, Korea. [Methods] The present experiment was quasi-experimental research which measured the postural balance (Biodex) of subjects while they sent text messages via smart phones in the standing position with the eyes open, and while they used two-way SNS. [Results] There were significant differences between standing and the dual-task situations. Among dual tasks using smart phones, SNS using situations showed the highest instability. [Conclusion] The use of smart phones in less stable conditions such as while walking or in moving vehicles should be discouraged.

  8. A method to quantify the "cone of economy".

    PubMed

    Haddas, Ram; Lieberman, Isador H

    2018-05-01

    A non-randomized, prospective, concurrent control cohort study. The purpose of this study is to develop and evaluate a method to quantify the dimensions of the cone of economy (COE) and the energy expenditure associated with maintaining a balanced posture within the COE, scoliosis patients and compare them to matched non-scoliotic controls in a group of adult degenerative. Balance is defined as the ability of the human body to maintain its center of mass (COM) within the base of support with minimal postural sway. The cone of economy refers to the stable region of upright standing posture. The underlying assumption is that deviating outside one's individual cone challenges the balance mechanisms. Adult degenerative scoliosis (ADS) patients exhibit a variety of postural changes within their COE, involving the spine, pelvis and lower extremities, in their effort to compensate for the altered posture. Ten ADS patients and ten non-scoliotic volunteers performed a series of functional balance tests. The dimensions of the COE and the energy expenditure related to maintaining balance within the COE were measured using a human motion video capture system and dynamic surface electromyography. ADS patients presented more COM sway in the sagittal (ADS: 1.59 cm vs. H: 0.61 cm; p = 0.049) and coronal (ADS: 2.84 cm vs. H: 1.72 cm; p = 0.046) directions in comparison to the non-scoliotic control. ADS patients presented with more COM (ADS: 33.30 cm vs. H: 19.13 cm; p = 0.039) and head (ADS: 31.06 cm vs. H: 19.13 cm; p = 0.013) displacements in comparison to the non-scoliotic controls. Scoliosis patients expended more muscle activity to maintain static standing, as manifest by increased muscle activity in their erector spinae (ADS: 37.16 mV vs. H: 20.31 mV; p = 0.050), and gluteus maximus (ADS: 33.12 mV vs. H: 12.09 mV; p = 0.001) muscles. We were able to develop and evaluate a method that quantifies the COE boundaries, COM displacement, and amount of sway within the COE along with the energy expenditure for a specific patient. This method of COE measurement will enable spine care practitioners to objectively evaluate their patients in an effort to determine the most appropriate treatment options, and in objectively documenting the effectiveness of their intervention.

  9. Automatic recognition of postural allocations.

    PubMed

    Sazonov, Edward; Krishnamurthy, Vidya; Makeyev, Oleksandr; Browning, Ray; Schutz, Yves; Hill, James

    2007-01-01

    A significant part of daily energy expenditure may be attributed to non-exercise activity thermogenesis and exercise activity thermogenesis. Automatic recognition of postural allocations such as standing or sitting can be used in behavioral modification programs aimed at minimizing static postures. In this paper we propose a shoe-based device and related pattern recognition methodology for recognition of postural allocations. Inexpensive technology allows implementation of this methodology as a part of footwear. The experimental results suggest high efficiency and reliability of the proposed approach.

  10. Can smartwatches replace smartphones for posture tracking?

    PubMed

    Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid

    2015-10-22

    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed.

  11. The effect of anatomic variations of circle of Willis on cerebral blood distribution during posture change from supination to standing: a model study.

    PubMed

    Zhang, Chi; Li, Shuyu; Pu, Fang; Fan, Yubo; Li, Deyu

    2014-01-01

    The anatomic variation of Circle of Willis (CoW) has great impact on its compensatory capacity during stroke and cerebral ischemia. In the present study, a series of lumped parameter models were developed and used to simulate the effect of postural changes on the cerebral blood flow in ICA stenosis patients with different anatomic variants of the CoW. The results showed that the asymmetric distribution of cerebral blood flow caused by stenosis was attenuated in standing position in complete and half-complete CoW. However, in incomplete CoW, the decrease in blood flow in the ipsilateral cerebral arteries caused by unilateral ICA stenosis was dramatic in both supine and standing positions, a likely result of inadequate collateral circulation within the CoW. In conclusion, the anatomic variation of CoW plays a significant role in maintaining the balance of cerebral blood supply in patients with ICA stenosis, especially during postural change.

  12. Is there a relationship between pain intensity and postural sway in patients with non-specific low back pain?

    PubMed

    Ruhe, Alexander; Fejer, René; Walker, Bruce

    2011-07-15

    Increased center of pressure excursions are well documented in patients suffering from non-specific low back pain, whereby the altered postural sway includes both higher mean sway velocities and larger sway area. No investigation has been conducted to evaluate a relationship between pain intensity and postural sway in adults (aged 50 or less) with non-specific low back pain. Seventy-seven patients with non-specific low back pain and a matching number of healthy controls were enrolled. Center of pressure parameters were measured by three static bipedal standing tasks of 90 sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11), an equal number of patients (n = 11) was enrolled per pain score. Generally, our results confirmed increased postural instability in pain sufferers compared to healthy controls. In addition, regression analysis revealed a significant and linear increase in postural sway with higher pain ratings for all included COP parameters. Statistically significant changes in mean sway velocity in antero-posterior and medio-lateral direction and sway area were reached with an incremental change in NRS scores of two to three points. COP mean velocity and sway area are closely related to self-reported pain scores. This relationship may be of clinical use as an objective monitoring tool for patients under treatment or rehabilitation.

  13. Investigation of force, contact area, and dwell time in finger-tapping tasks on membrane touch interface.

    PubMed

    Liu, Na; Yu, Ruifeng

    2018-06-01

    This study aimed to determine the touch characteristics during tapping tasks on membrane touch interface and investigate the effects of posture and gender on touch characteristics variables. One hundred participants tapped digits displayed on a membrane touch interface on sitting and standing positions using all fingers of the dominant hand. Touch characteristics measures included average force, contact area, and dwell time. Across fingers and postures, males exerted larger force and contact area than females, but similar dwell time. Across genders and postures, thumb exerted the largest force and the force of the other four fingers showed no significant difference. The contact area of the thumb was the largest, whereas that of the little finger was the smallest; the dwell time of the thumb was the longest, whereas that of the middle finger was the shortest. Relationships among finger sizes, gender, posture and touch characteristics were proposed. The findings helped direct membrane touch interface design for digital and numerical control products from hardware and software perspectives. Practitioner Summary: This study measured force, contact area, and dwell time in tapping tasks on membrane touch interface and examined effects of gender and posture on force, contact area, and dwell time. The findings will direct membrane touch interface design for digital and numerical control products from hardware and software perspectives.

  14. Cortical Contribution to Linear, Non-linear and Frequency Components of Motor Variability Control during Standing.

    PubMed

    König Ignasiak, Niklas; Habermacher, Lars; Taylor, William R; Singh, Navrag B

    2017-01-01

    Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.

  15. Generation of the Human Biped Stance by a Neural Controller Able to Compensate Neurological Time Delay

    PubMed Central

    Jiang, Ping; Chiba, Ryosuke; Takakusaki, Kaoru; Ota, Jun

    2016-01-01

    The development of a physiologically plausible computational model of a neural controller that can realize a human-like biped stance is important for a large number of potential applications, such as assisting device development and designing robotic control systems. In this paper, we develop a computational model of a neural controller that can maintain a musculoskeletal model in a standing position, while incorporating a 120-ms neurological time delay. Unlike previous studies that have used an inverted pendulum model, a musculoskeletal model with seven joints and 70 muscular-tendon actuators is adopted to represent the human anatomy. Our proposed neural controller is composed of both feed-forward and feedback controls. The feed-forward control corresponds to the constant activation input necessary for the musculoskeletal model to maintain a standing posture. This compensates for gravity and regulates stiffness. The developed neural controller model can replicate two salient features of the human biped stance: (1) physiologically plausible muscle activations for quiet standing; and (2) selection of a low active stiffness for low energy consumption. PMID:27655271

  16. Postural control strategies related to anticipatory perturbation and quick perturbation in adolescent idiopathic scoliosis.

    PubMed

    Kuo, Fang-Chuan; Hong, Chang-Zern; Lai, Chung-Liang; Tan, Shih-Hsin

    2011-05-01

    Cross-sectional study. To investigate the automatic balance correction related to anticipatory perturbation (AP) and quick backward perturbation in adolescent idiopathic scoliosis (AIS). Most previous studies on AIS patients focused on posture sway and lacked analysis of muscle activated patterns in dynamic standing control. Thirty-two AIS patients and 23 age-matched normal subjects received perturbation balance tests on an unstable platform. The tilting angle of the platform and the muscle activity of the bilateral lumbar multifidi, gluteus medii, and gastrocnemii muscles were recorded. Electromyographic (EMG) amplitude, onset latencies, and duration were calculated with software accompanied with machine. The AIS group had less posture tilting but higher muscle activities than normal subjects under both perturbation conditions (P < 0.05). Under the AP test, AIS showed earlier onset and prolonged activation of left multifidus and right gastrocnemius compared with normal subjects (P < 0.05). The latency of the multifidus on the lumbar convex side occurred earlier than on the concave side. However, the asymmetric onset timing of the gastrocnemius was the opposite of the multifidi in the AIS group (P < 0.05). In contrast to the AP condition, bilateral leg and trunk muscles activated at similar latencies and durations in the AIS group (P < 0.05). Under the quick backward perturbation test, the control group had longer active duration of right multifidus and bilateral gastrocnemii than AIS to cope with larger platform tilting. In addition, asymmetric onset of gluteus medii and duration of multifidi was observed in the control group (P < 0.05). There were significant differences in posture control patterns between AIS and normal subjects. AIS subjects have asymmetric habitual muscle activities for AP, whereas when coping with sudden balance threats, they react with synchronized recruitment of bilateral postural muscles.

  17. Influence of meteorological elements on balance control and pain in patients with symptomatic knee osteoarthritis

    NASA Astrophysics Data System (ADS)

    Peultier, Laetitia; Lion, Alexis; Chary-Valckenaere, Isabelle; Loeuille, Damien; Zhang, Zheng; Rat, Anne-Christine; Gueguen, René; Paysant, Jean; Perrin, Philippe P.

    2017-05-01

    This study aimed to determine if pain and balance control are related to meteorological modifications in patients with knee osteoarthritis (OA). One hundred and thirteen patients with knee OA (mean age = 65 ± 9 years old, 78 women) participated in this study. Static posturography was performed, sway area covered and sway path traveled by the center of foot pressure being recorded under six standing postural conditions that combine three visual situations (eyes open, eyes closed, vision altered) with two platform situations (firm and foam supports). Knee pain score was assessed using a visual analog scale. Balance control and pain measurements recorded in the morning were correlated with the meteorological data. Morning and daily values for temperature, precipitation, sunshine, height of rain in 1 h, wind speed, humidity, and atmospheric pressure were obtained from the nearest data collecting weather station. The relationship between postural control, pain, and weather variations were assessed for each patient on a given day with multiple linear regressions. A decrease of postural stability was observed when atmospheric pressure and maximum humidity decreased in the morning ( p < 0.05) and when atmospheric pressure decreased within a day ( p < 0.05). Patient's knee pain was more enhanced when it is warmer in the morning ( p < 0.05) and when it is wetter and warmer within a day ( p < 0.05). The relationship between weather, pain, and postural control can help patients and health professionals to better manage daily activities.

  18. Evaluation of influence of stretching therapy and ergonomic factors on postural control in patients with chronic non-specific low back pain.

    PubMed

    Gawda, Piotr; Dmoszyńska-Graniczka, Magdalena; Pawlak, Halina; Cybulski, Marek; Kiełbus, Michał; Majcher, Piotr; Buczaj, Agnieszka; Buczaj, Marcin

    2015-01-01

    The vertical orientation of the body in the upright standing position is maintained by keeping the body's centre of gravity (COG) upright, above the base of support, by a dynamic interplay of visual, vestibular, and somatosensory control systems. The objectives of this study were: to compare the postural control strategy between people with and without low back pain (LBP), to estimate the influence of the stretching therapy on the postural control strategy, and to discover the relationship between the restriction of spine mobility and occurrence of some ergonomic factors. The study consisted of 32 patients with LBP and 25 healthy controls. Postural characteristics of the subjects were measured with the use of a computerized force platform. The software programme filters and measures COG sway velocity in different conditions. Additional measurements and tests were conducted in patients after stretching therapy. Based on survey research, all individuals were selected and evaluated from the aspect of ergonomics. The results of the COG sway velocity vary under the testing conditions. From the aspect of ergonomic attitude and influence of the rehabilitation, results varied in the groups. Ergonomic factors are often accompanied by the appearance of LBP. The restrictions within the musculoskeletal system cause disorders in muscle synergies, which is expressed by an increase in the angular velocity of the COG. In patients with chronic back pain syndrome, selected stretching therapy techniques improves the range of motion of the spine and reduces pain.

  19. Influence of dopaminergic medication on automatic postural responses and balance impairment in Parkinson's disease.

    PubMed

    Bloem, B R; Beckley, D J; van Dijk, J G; Zwinderman, A H; Remler, M P; Roos, R A

    1996-09-01

    It is still unclear why balance impairment in Parkinson's disease (PD) often responds insufficiently to dopaminergic medication. We have studied this issue in 23 patients with idiopathic PD and 24 healthy controls. Our specific purposes were (a) to investigate the contribution of abnormal automatic postural responses to balance impairment in PD and (b) to assess the influence of dopaminergic medication on abnormal automatic postural responses and balance impairment. Standing subjects received 4 degrees "toe-up" rotational perturbations of a supporting forceplate. We bilaterally recorded posturally destabilizing medium latency (ML) responses from the stretched gastrocnemius muscles and functionally corrective long latency (LL) responses from the shortened tibialis anterior (TA) muscles. We also assessed changes in the center of foot pressure (CFP) and the center of gravity (COG). All patients were tested in the "off" and "on" phases. All controls were tested and retested after 1 h. During the off phase, we found enlarged ML amplitudes and diminished LL amplitudes in patients, together with a markedly increased posterior displacement of the COG. The abnormal ML and LL responses were partially responsible for the increased body sway in patients because the initial forward (destabilizing) displacement of the CFP was increased, while the subsequent backward displacement of the CFP (a measure of the corrective braking action of LL responses) was delayed. Abnormal late automatic or possibly more voluntary postural corrections also contributed substantially to the increased body sway. During the on phase, ML amplitudes were reduced in patients but remained increased compared with controls. LL amplitudes no longer differed between both groups due to a modest, possibly dopamine-related increase in patients and a simultaneous decrease in controls. The abnormal CFP displacement was only partially improved by dopaminergic medication. The later postural corrections were not improved at all. Consequently, the increased posterior COG displacement was not ameliorated during the on phase. We conclude that (a) a combination of abnormal automatic and perhaps more voluntary postural corrections contributes to increased body sway in PD and (b) dopaminergic medication fails to improve balance impairment in PD because early automatic postural responses are only partially corrected, while later occurring postural corrections are not improved at all. These electrophysiological results support clinical observations and suggest that nondopaminergic lesions play a significant role in the pathophysiology of postural abnormalities in PD.

  20. The influence of aging and attentional demands on recovery from postural instability.

    PubMed

    Stelmach, G E; Zelaznik, H N; Lowe, D

    1990-06-01

    It is well known that the risk of a debilitating injury from a fall is much higher for elderly than for young individuals. In addition, it is well documented that healthy elderly subjects exhibit increased postural sway during normal stance tasks. In the present experiment, we explored the notion that control of minor postural instability in elderly subjects is attention demanding. Postural sway of eight elderly (mean age = 70.0 years) and eight young (mean age = 20.0 years) subjects was measured under two different secondary demands during stable and mildly unstable upright stance. There were two types of work loads. Either a cognitive (math task) or motor (hand-squeeze) task was performed during the second segment of a 50-second standing trial. The effect of these work loads on mean velocity, range, and variability of range of center of foot pressure was measured during the destabilizing activity of arm swinging and subsequent recovery period. Following seven seconds of 1 Hz arm-swinging activity, elderly subjects showed a marked increase in recovery time to normal stance when concurrently performing an arithmetic task. This result suggests that recovery from a posturally destabilizing activity, involving proprioceptive and vestibular information, places increased attentional demands on the postural support system of the elderly.

  1. Posture-cognitive dual-tasking: A relevant marker of depression-related psychomotor retardation. An illustration of the positive impact of repetitive transcranial magnetic stimulation in patients with major depressive disorder.

    PubMed

    Deschamps, Thibault; Sauvaget, Anne; Pichot, Anne; Valrivière, Pierre; Maroulidès, Maxime; Bois, Aurore; Bulteau, Samuel; Thomas-Ollivier, Véronique

    2016-12-01

    This study examined whether postural control variables, particularly the center-of-pressure (COP) velocity-based parameters, could be a relevant hallmark of depression-related psychomotor retardation (PMR). We first aimed at investigating the interplay between the PMR scores and the COP performance in patients with major depressive disorder (MDD), as compared to age-matched healthy controls; secondly, we focused on the impact of a repetitive transcranial magnetic stimulation (rTMS) treatment on depression, PMR scores and postural performance. 16 MDD patients, and a control group of 16 healthy adults, were asked to maintain quiet standing balance during two trials with or without vision, and while backward counting (dual task). All the position and velocity-based COP variables were computed. Before and after the rTMS session (n eligible MDD = 10), we assessed the depression level with the Montgomery-Asberg Depression Rating Scale (MADRS), the PMR scores with the French Retardation Rating Scale for Depression (ERD), and postural performance. Before the treatment, significant positive partial correlations were found between the pre-ERD scores and the velocity-based COP variables, especially in the dual-task conditions (p < 0.05). In contrast, there was no significant correlation between the post-ERD scores and any postural parameter after the treatment. The MADRS and ERD scores showed a significant decrease between before and after the rTMS intervention. For the first time, the findings clearly validated the view that the assessment of postural performance - easy to envisage in clinical settings-constitutes a reliable and objective marker of PMR in MDD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Continuous Cognitive Task Promotes Greater Postural Stability than an Internal or External Focus of Attention in Older Adults.

    PubMed

    Richer, Natalie; Polskaia, Nadia; Lajoie, Yves

    2017-01-01

    Background/Study Context: Recent evidence suggests that removing attention from postural control using either an external focus or a cognitive task will improve stability in healthy young adults. Due to increases in attentional requirements of upright stance in older adults, it is unclear if similar benefits would be observed in this population. The aim of the present study was to examine the effect of attentional focus and of a continuous cognitive task on postural control in older adults. Sixteen healthy older adults (71.9 ± 4.32 years) were asked to stand quietly on a force platform with feet together in three different conditions: internal focus (minimizing movement of the hips), external focus (minimizing movement of markers placed on the hips), and cognitive task (silently counting the occurrence of a single digit in a 3-digit number sequence). A one-way analysis of variance with repeated measures on condition was performed for each postural control measure. Hypotheses were partially supported because the cognitive task led to greater stability than both focus conditions, as evidenced by a smaller sway area (p < .01, η p 2 = .41), reduced sway variability (anterior-posterior: p = .001, η p 2 = .37; medial-lateral: p < .0001, η p 2 = .49), and higher mean power frequency in the anterior-posterior direction (p = .01, η p 2 = .78). However, no difference was observed between internal and external focus conditions. A continuous, attention-demanding cognitive task significantly improved stability in older adults compared with an internal or external focus of attention. This suggests that older adults were able to effectively allocate their attention away from postural control, allowing a more automatic type of control to operate. Future studies should investigate a variety of cognitive tasks to determine the degree of postural improvement that can be observed in older adults.

  3. Organ and effective dose conversion coefficients for a sitting female hybrid computational phantom exposed to monoenergetic protons in idealized irradiation geometries.

    PubMed

    Alves, M C; Santos, W S; Lee, Choonsik; Bolch, Wesley E; Hunt, John G; Carvalho Júnior, A B

    2014-12-21

    The conversion coefficients (CCs) relate protection quantities, mean absorbed dose (DT) and effective dose (E), with physical radiation field quantities, such as fluence (Φ). The calculation of CCs through Monte Carlo simulations is useful for estimating the dose in individuals exposed to radiation. The aim of this work was the calculation of conversion coefficients for absorbed and effective doses per fluence (DT/ Φ and E/Φ) using a sitting and standing female hybrid phantom (UFH/NCI) exposure to monoenergetic protons with energy ranging from 2 MeV to 10 GeV. The radiation transport code MCNPX was used to develop exposure scenarios implementing the female UFH/NCI phantom in sitting and standing postures. Whole-body irradiations were performed using the recommended irradiation geometries by ICRP publication 116 (AP, PA, RLAT, LLAT, ROT and ISO). In most organs, the conversion coefficients DT/Φ were similar for both postures. However, relative differences were significant for organs located in the abdominal region, such as ovaries, uterus and urinary bladder, especially in the AP, RLAT and LLAT geometries. Anatomical differences caused by changing the posture of the female UFH/NCI phantom led an attenuation of incident protons with energies below 150 MeV by the thigh of the phantom in the sitting posture, for the front-to-back irradiation, and by the arms and hands of the phantom in the standing posture, for the lateral irradiation.

  4. Influence of Input Hardware and Work Surface Angle on Upper Limb Posture in a Hybrid Computer Workstation.

    PubMed

    Kingston, David C; Riddell, Maureen F; McKinnon, Colin D; Gallagher, Kaitlin M; Callaghan, Jack P

    2016-02-01

    We evaluated the effect of work surface angle and input hardware on upper-limb posture when using a hybrid computer workstation. Offices use sit-stand and/or tablet workstations to increase worker mobility. These workstations may have negative effects on upper-limb joints by increasing time spent in non-neutral postures, but a hybrid standing workstation may improve working postures. Fourteen participants completed office tasks in four workstation configurations: a horizontal or sloped 15° working surface with computer or tablet hardware. Three-dimensional right upper-limb postures were recorded during three tasks: reading, form filling, and writing e-mails. Amplitude probability distribution functions determined the median and range of upper-limb postures. The sloped-surface tablet workstation decreased wrist ulnar deviation by 5° when compared to the horizontal-surface computer when reading. When using computer input devices (keyboard and mouse), the shoulder, elbow, and wrist were closest to neutral joint postures when working on a horizontal work surface. The elbow was 23° and 15° more extended, whereas the wrist was 6° less ulnar deviated, when reading compared to typing forms or e-mails. We recommend that the horizontal-surface computer configuration be used for typing and the sloped-surface tablet configuration be used for intermittent reading tasks in this hybrid workstation. Offices with mobile employees could use this workstation for alternating their upper-extremity postures; however, other aspects of the device need further investigation. © 2015, Human Factors and Ergonomics Society.

  5. Stability analysis via the concept of Lyapunov exponents: a case study in optimal controlled biped standing

    NASA Astrophysics Data System (ADS)

    Sun, Yuming; Wu, Christine Qiong

    2012-12-01

    Balancing control is important for biped standing. In spite of large efforts, it is very difficult to design balancing control strategies satisfying three requirements simultaneously: maintaining postural stability, improving energy efficiency and satisfying the constraints between the biped feet and the ground. In this article, a proportional-derivative (PD) controller is proposed for a standing biped, which is simplified as a two-link inverted pendulum with one additional rigid foot-link. The genetic algorithm (GA) is used to search for the control gain meeting all three requirements. The stability analysis of such a deterministic biped control system is carried out using the concept of Lyapunov exponents (LEs), based on which, the system stability, where the disturbance comes from the initial states, and the structural stability, where the disturbance comes from the PD gains, are examined quantitively in terms of stability region. This article contributes to the biped balancing control, more significantly, the method shown in the studied case of biped provides a general framework of systematic stability analysis for certain deterministic nonlinear dynamical systems.

  6. Measurement of three-dimensional posture and trajectory of lower body during standing long jumping utilizing body-mounted sensors.

    PubMed

    Ibata, Yuki; Kitamura, Seiji; Motoi, Kosuke; Sagawa, Koichi

    2013-01-01

    The measurement method of three-dimensional posture and flying trajectory of lower body during jumping motion using body-mounted wireless inertial measurement units (WIMU) is introduced. The WIMU is composed of three-dimensional (3D) accelerometer and gyroscope of two kinds with different dynamic range and one 3D geomagnetic sensor to adapt to quick movement. Three WIMUs are mounted under the chest, right thigh and right shank. Thin film pressure sensors are connected to the shank WIMU and are installed under right heel and tiptoe to distinguish the state of the body motion between grounding and jumping. Initial and final postures of trunk, thigh and shank at standing-still are obtained using gravitational acceleration and geomagnetism. The posture of body is determined using the 3D direction of each segment updated by the numerical integration of angular velocity. Flying motion is detected from pressure sensors and 3D flying trajectory is derived by the double integration of trunk acceleration applying the 3D velocity of trunk at takeoff. Standing long jump experiments are performed and experimental results show that the joint angle and flying trajectory agree with the actual motion measured by the optical motion capture system.

  7. Reinforcement learning for stabilizing an inverted pendulum naturally leads to intermittent feedback control as in human quiet standing.

    PubMed

    Michimoto, Kenjiro; Suzuki, Yasuyuki; Kiyono, Ken; Kobayashi, Yasushi; Morasso, Pietro; Nomura, Taishin

    2016-08-01

    Intermittent feedback control for stabilizing human upright stance is a promising strategy, alternative to the standard time-continuous stiffness control. Here we show that such an intermittent controller can be established naturally through reinforcement learning. To this end, we used a single inverted pendulum model of the upright posture and a very simple reward function that gives a certain amount of punishments when the inverted pendulum falls or changes its position in the state space. We found that the acquired feedback controller exhibits hallmarks of the intermittent feedback control strategy, namely the action of the feedback controller is switched-off intermittently when the state of the pendulum is located near the stable manifold of the unstable saddle-type upright equilibrium of the inverted pendulum with no active control: this action provides an opportunity to exploit transiently converging dynamics toward the unstable upright position with no help of the active feedback control. We then speculate about a possible physiological mechanism of such reinforcement learning, and suggest that it may be related to the neural activity in the pedunculopontine tegmental nucleus (PPN) of the brainstem. This hypothesis is supported by recent evidence indicating that PPN might play critical roles for generation and regulation of postural tonus, reward prediction, as well as postural instability in patients with Parkinson's disease.

  8. Posture in ovo as a precursor of footedness in ostriches (Struthio camelus).

    PubMed

    Baciadonna, Luigi; Zucca, Paolo; Tommasi, Luca

    2010-01-01

    Two categories of behaviour involving lateralized posture were observed in semi-natural conditions in ostriches (Struthio camelus). Observing preferences for left or right foot, both in the forward foot posture (the foot standing in front at rest) and the starting foot used to initiate locomotion, a population-level right-foot preference was shown for the whole group and for each of the three age ranges considered (chick, young and adult). Ostriches are known to rely upon a lateralized behaviour during hatching (using their right foot to break the egg shell) suggesting the hypothesis that the precocious motor laterality observed at hatching might stand as a precursor of limb preference later in development, as already observed in other avian species. 2009 Elsevier B.V. All rights reserved.

  9. Remote monitoring of soldier safety through body posture identification using wearable sensor networks

    NASA Astrophysics Data System (ADS)

    Biswas, Subir; Quwaider, Muhannad

    2008-04-01

    The physical safety and well being of the soldiers in a battlefield is the highest priority of Incident Commanders. Currently, the ability to track and monitor soldiers rely on visual and verbal communication which can be somewhat limited in scenarios where the soldiers are deployed inside buildings and enclosed areas that are out of visual range of the commanders. Also, the need for being stealth can often prevent a battling soldier to send verbal clues to a commander about his or her physical well being. Sensor technologies can remotely provide various data about the soldiers including physiological monitoring and personal alert safety system functionality. This paper presents a networked sensing solution in which a body area wireless network of multi-modal sensors can monitor the body movement and other physiological parameters for statistical identification of a soldier's body posture, which can then be indicative of the physical conditions and safety alerts of the soldier in question. The specific concept is to leverage on-body proximity sensing and a Hidden Markov Model (HMM) based mechanism that can be applied for stochastic identification of human body postures using a wearable sensor network. The key idea is to collect relative proximity information between wireless sensors that are strategically placed over a subject's body to monitor the relative movements of the body segments, and then to process that using HMM in order to identify the subject's body postures. The key novelty of this approach is a departure from the traditional accelerometry based approaches in which the individual body segment movements, rather than their relative proximity, is used for activity monitoring and posture detection. Through experiments with body mounted sensors we demonstrate that while the accelerometry based approaches can be used for differentiating activity intensive postures such as walking and running, they are not very effective for identification and differentiation between low activity postures such as sitting and standing. We develop a wearable sensor network that monitors relative proximity using Radio Signal Strength indication (RSSI), and then construct a HMM system for posture identification in the presence of sensing errors. Controlled experiments using human subjects were carried out for evaluating the accuracy of the HMM identified postures compared to a naÃve threshold based mechanism, and its variations over different human subjects. A large spectrum of target human postures, including lie down, sit (straight and reclined), stand, walk, run, sprint and stair climbing, are used for validating the proposed system.

  10. Balance versus resistance training on postural control in patients with Parkinson's disease: a randomized controlled trial.

    PubMed

    Santos, Suhaila M; da Silva, Rubens A; Terra, Marcelle B; Almeida, Isabela A; de Melo, Lúcio B; Ferraz, Henrique B

    2017-04-01

    Evidences have shown that physiotherapy programs may improve the balance of individuals with Parkinson's disease (PD), although it is not clear which specific exercise program is better. The aim of this study was to compare the effectiveness of balance versus resistance training on postural control measures in PD patients. Randomized controlled trial. The study was conducted in a physiotherapy outpatient clinic of a university hospital. A total of 40 PD participants were randomly divided into two groups: balance training (BT) and resistance training (RT). The BT group focused on balance training, functional independence and gait while the RT group performed resistance exercises emphasizing the lower limbs and trunk, both supervised by trained physiotherapists. Therapy sessions were held twice a week (at 60 minutes), totaling 24 sessions. The primary outcome was evaluated by force platform with center of pressure sway measures in different balance conditions and the secondary outcome was evaluated by Balance Evaluation Systems Test (BESTest) scale to determine the effects of the intervention on postural control. Significant improvement of postural control (pre vs. post 15.1 vs. 9.6 cm2) was only reported in favor of BT group (d=1.17) for one-legged stand condition on force platform. The standardized mean difference between groups was significantly (P<0.02), with 36% of improvement for BT vs. 0.07% for RT on this condition. Significant improvement (P<0.05) was also observed in favor of BT (in mean 3.2%) for balance gains in some BESTest scores, when compared to RT group (-0.98%). Postural control in Parkinson's disease is improved when training by a directional and specific balance program than a resistance training program. Balance training is superior to resistance training in regard to improving postural control of individuals with PD. Gold standard instruments (high in cost and difficult to access) were used to assess balance, as well as scales with clinical applicability (low cost, easily acceptable, applicable and valid), which can guide the management of physiotherapists both in their decision-making and in clinical practice.

  11. The influence of changes in trunk and pelvic posture during single leg standing on hip and thigh muscle activation in a pain free population.

    PubMed

    Prior, Simon; Mitchell, Tim; Whiteley, Rod; O'Sullivan, Peter; Williams, Benjamin K; Racinais, Sebastien; Farooq, Abdulaziz

    2014-03-27

    Thigh muscle injuries commonly occur during single leg loading tasks and patterns of muscle activation are thought to contribute to these injuries. The influence trunk and pelvis posture has on hip and thigh muscle activation during single leg stance is unknown and was investigated in a pain free population to determine if changes in body posture result in consistent patterns of changes in muscle activation. Hip and thigh muscle activation patterns were compared in 22 asymptomatic, male subjects (20-45 years old) in paired functionally relevant single leg standing test postures: Anterior vs. Posterior Trunk Sway; Anterior vs. Posterior Pelvic Rotation; Left vs. Right Trunk Shift; and Pelvic Drop vs. Raise. Surface EMG was collected from eight hip and thigh muscles calculating Root Mean Square. EMG was normalized to an "upright standing" reference posture. Repeated measures ANOVA was performed along with associated F tests to determine if there were significant differences in muscle activation between paired test postures. In right leg stance, Anterior Trunk Sway (compared to Posterior Sway) increased activity in posterior sagittal plane muscles, with a concurrent deactivation of anterior sagittal plane muscles (p: 0.016 - <0.001). Lateral hip abductor muscles increased activation during Left Trunk Shift (compared to Right) (p :≤ 0.001). Lateral Pelvic Drop (compared to Raise) decreased activity in hip abductors and increased hamstring, adductor longus and vastus lateralis activity (p: 0.037 - <0.001). Changes in both trunk and pelvic posture during single leg stance generally resulted in large, predictable changes in hip and thigh muscle activation in asymptomatic young males. Changes in trunk position in the sagittal plane and pelvis position in the frontal plane had the greatest effect on muscle activation. Investigation of these activation patterns in clinical populations such as hip and thigh muscle injuries may provide important insights into injury mechanisms and inform rehabilitation strategies.

  12. The Effect of Sensory Noise Created by Compliant and Sway-Referenced Support Surfaces on Postural Stability

    NASA Technical Reports Server (NTRS)

    Forth, Katharine E.; Taylor, Laura C.; Paloski, William H.

    2006-01-01

    The purpose of the present experiment was to compare in normal human subjects the differential effects on postural stability of introducing somatosensory noise via compliant and/or sway-referenced support surfaces during quiet standing. The use of foam surfaces (two thicknesses: thin (0.95cm) and thick (7.62cm)) and sway-referenced support allowed comparison between two different types of destabilizing factors that increased ankle/foot somatosensory noise. Under some conditions neck extensions were used to increase sensory noise by deviating the vestibular system from its optimal orientation for balance control. The impact of these conditions on postural control was assessed through objective measures of instability. Thick foam and sway-referenced support conditions generated comparable instability in subjects, as measured by equilibrium score and minimum time-to-contact. However, simultaneous application of the conditions resulted in greater instability, suggesting a higher level of generated sensory noise and thus, different receptor types affected during each manipulation. Indeed, sway-referenced support generated greater anterior-posterior center-of-mass (COM) sway, while thick foam generated greater medio-lateral COM sway and velocity. Neck extension had minimal effect on postural stability until combined with simultaneous thick foam and sway-referenced support. Thin foam never generated enough sensory noise to affect postural stability even with noise added by sway-reference support or neck extension. These results provide an interesting window into the central integration of redundant sensory information and indicate the postural impact of sensory inputs is not solely based on their existence, but also their level of noise.

  13. [Evaluation of the electromyography activity of pelvic floor muscle during postural exercises using the Wii Fit Plus©. Analysis and perspectives in rehabilitation].

    PubMed

    Steenstrup, B; Giralte, F; Bakker, E; Grise, P

    2014-12-01

    The aim of this work was to evaluate the effect of postural awareness by using the Wii Fit Plus© on the quality of the baseline (automatic) activity of the pelvic floor muscles (PFM) measured by intravaginal surface electromyography (sEMG). Four healthy continent female subjects, all able to perform a voluntary contraction, undertook 2 sets of 3 various exercises offered by the software Wii Fit Plus© using the Wii balance board© (WBB): one set without any visual control and the second set with postural control and sEMG visual feedback. Simultaneously, we recorded the sEMG activity of the PFM. Mean baseline activity of PFM in standing position at start was 2.87 mV, at submaximal voluntary contraction the sEMG activity raised at a mean of 14.43 mV (7.87-21.89). In the first set of exercises on the WBB without any visual feedback, the automatic activity of the PFM increased from 2.87 mV to 8.75 mV (7.96-9.59). In the second set, with visual postural and sEMG control, mean baseline sEMG activity even raised at 11.39 mV (10.17-11.58). Among women able of a voluntary contraction of PFM, visualisation of posture with the help of the WBB and of sEMG activity of the PFM during static and dynamic Wii Fit Plus© activities, may improve the automatic activation of the PFMs. 4. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Effectuation of adaptive stability and postural alignment strategies are decreased by alcohol intoxication.

    PubMed

    Hafström, A; Modig, F; Magnusson, M; Fransson, P A

    2014-06-01

    Human stability control is a complex process comprising contributions from several partly independent mechanisms such as coordination, feedback and feed-forward control, and adaptation. Acute alcohol intoxication impairs these functions and is recognized as a major contributor to fall traumas. The study aimed to investigate how alcohol intoxication at .06% and .10% blood alcohol concentration (BAC) affected the movement spans and control of posture alignment. The angular positions of the head, shoulder, hip and knees relative to the ankles were measured with a 3D motion analysis system in 25 healthy adults during standing with eyes open or closed and with or without vibratory balance perturbations. Alcohol intoxication significantly increased the movement spans of the head, shoulders, hip and knees in anteroposterior and lateral directions during quiet stance (p < or = .047 and p < or = .003) and balance perturbations (p<.001, both directions). Alcohol intoxication also decreased the ability to reduce the movement spans through adaptation in both anteroposterior (p < or = .011) and lateral (p < or = .004) directions. When sober and submitted to balance perturbations, the subjects aligned the head, shoulders, hip and knees more forward relative to the ankle joint (p < .001), hence adopting a more resilient posture increasing the safety margin for backward falls. Alcohol intoxication significantly delayed this forward realignment (p < or = .022). Alcohol intoxication did not cause any significant posture realignment in the lateral direction. Thus, initiation of adaptive posture realignments to alcohol or other disruptions might be context dependent and associated with reaching a certain level of stability threats. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. PREHAB vs. REHAB - presurgical treatment in vestibular schwannoma surgery enhances recovery of postural control better than postoperative rehabilitation: Retrospective case series.

    PubMed

    Tjernström, Fredrik; Fransson, Per-Anders; Kahlon, Babar; Karlberg, Mikael; Lindberg, Sven; Siesjö, Peter; Magnusson, Måns

    2018-01-01

    To evaluate post-surgical postural stability when treating patients with remaining vestibular function with intratympanic gentamicin (PREHAB) prior to schwannoma surgery. 44 consecutive patients with some form remaining vestibular function scheduled for vestibular schwannoma surgery. 20 were medically deafferented with intratympanic gentamicin before surgery and 24 were not. Both groups were of the same age, had the same tumor size, same type of surgery, and same perioperative sensory rehabilitation (training exercises), and no surgical complications. Postural stability measured as energy expenditure while standing on a force platform during vibratory stimulation of the calf muscles, performed prior to surgery (or gentamicin treatment) and 6 months after surgery. Patients pretreated with gentamicin had significantly better postural stability at the time for follow-up (p < 0.05) and displayed a better adaptive capacity when faced with a postural challenge (p < 0.01). They were also able to use vision more efficiently to control their stability (p < 0.05). By separating the sensory loss (through intratympanic gentamicin, that ablates the remaining vestibular function) from the intracranial surgical trauma, the postural control system benefited from a better short-term (adaptation) and long-term (habituation) recovery, when experiencing a postural challenge or resolving a sensory conflict. The benefits could be attributed to; active and continuous motor learning as the vestibular function slowly attenuates; no concomitant central nervous dysfunction due to effects from neurosurgery, thus allowing time for a separate unimpeded recovery process with more limited challenges and objectives; and the initiation and certain progression of sensory reweighting processes allowed prior to surgery. In contrast, worse compensation could be due to; immobilization from nausea after surgery, harmful amount of stress and cognitive dysfunction from the combination of surgical and sensory trauma and an abrupt vestibular deafferentation and its consequences on sensory reweighting.

  16. Benefits of multimodal exercise intervention for postural control and frontal cognitive functions in individuals with Alzheimer's disease: a controlled trial.

    PubMed

    de Andrade, Larissa P; Gobbi, Lilian T B; Coelho, Flávia G M; Christofoletti, Gustavo; Costa, José L Riani; Stella, Florindo

    2013-11-01

    To verify the effects of a systematized multimodal exercise intervention program on frontal cognitive function, postural control, and functional capacity components of individuals with Alzheimer's disease (AD). Nonrandomized controlled trial with pre- and posttraining tests in a training group and a control group. Kinesiotherapy program for seniors with AD, São Paulo State University. Convenience sample of older adults with AD (n = 30) were assigned to a training (n = 14; aged 78.6 ± 7.1) and a control (n = 16; aged 77.0 ± 6.3) group. The intervention program was structured with the aim of simultaneously promoting better balance and frontal cognitive capacity. The participants attended a 1-hour session three times a week for 16 weeks, whereas the control group did not participate in any activity during the same period. Frontal cognitive function was evaluated using the Montreal Cognitive Assessment, the Clock Drawing Test, the Frontal Assessment Battery, and the Symbol Search Subtest. Postural control (center of pressure area) was analyzed under four dual-task conditions. Functional capacity components were analyzed using the Timed Up and Go Test, the 30-second sit-to-stand test, the sit-and-reach test, and the Berg Functional Balance Scale. Intervention group participants showed a significant increase in frontal cognitive function (P < .001, partial η(2) = 0.838), with less body sway (P = .04, partial η(2) = 0.04) during the dual tasks, and greater functional capacity (P = .001, partial η(2) = 0.676) after the 16-week period. Intervention participants performed better on dual-task activities and had better postural balance and greater functional capacity than controls. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.

  17. Static postural stability in women with stress urinary incontinence: Effects of vision and bladder filling.

    PubMed

    Chmielewska, Daria; Stania, Magdalena; Słomka, Kajetan; Błaszczak, Edward; Taradaj, Jakub; Dolibog, Patrycja; Juras, Grzegorz

    2017-11-01

    This case-control study was designed to compare static postural stability between women with stress urinary incontinence and continent women and it was hypothesized that women with incontinence aged around 50 years also have balance disorders. Eighteen women with incontinence and twelve women without incontinence aged 50-55 years participated in two 60-s trials of each of four different testing conditions: eyes open/full bladder, eyes open/empty bladder, eyes closed/full bladder, eyes closed/empty bladder. The center of foot pressure (COP): sway range, root mean square, velocity (in the antero-posterior and medio-lateral directions), and COP area were recorded. The stabilograms were decomposed into rambling and trembling components. The groups of women with and without incontinence differed during the full bladder condition in antero-posterior COP sway range, COP area, and rambling trajectory (range in the antero-posterior and medio-lateral directions, root mean square in the antero-posterior and medio-lateral directions and velocity in the antero-posterior direction). The women with incontinence had more difficulty controlling their postural balance than continent women while standing with a full bladder. Therefore, developing therapeutic management focused on strengthening the women's core muscles and improving their postural balance seems advisable. © 2017 Wiley Periodicals, Inc.

  18. Dynamical Properties of Postural Control in Obese Community-Dwelling Older Adults †.

    PubMed

    Frames, Christopher W; Soangra, Rahul; Lockhart, Thurmon E; Lach, John; Ha, Dong Sam; Roberto, Karen A; Lieberman, Abraham

    2018-05-24

    Postural control is a key aspect in preventing falls. The aim of this study was to determine if obesity affected balance in community-dwelling older adults and serve as an indicator of fall risk. The participants were randomly assigned to receive a comprehensive geriatric assessment followed by a longitudinal assessment of their fall history. The standing postural balance was measured for 98 participants with a Body Mass Index (BMI) ranging from 18 to 63 kg/m², using a force plate and an inertial measurement unit affixed at the sternum. Participants' fall history was recorded over 2 years and participants with at least one fall in the prior year were classified as fallers. The results suggest that body weight/BMI is an additional risk factor for falling in elderly persons and may be an important marker for fall risk. The linear variables of postural analysis suggest that the obese fallers have significantly higher sway area and sway ranges, along with higher root mean square and standard deviation of time series. Additionally, it was found that obese fallers have lower complexity of anterior-posterior center of pressure time series. Future studies should examine more closely the combined effect of aging and obesity on dynamic balance.

  19. Feasibility and reliability of a virtual reality oculus platform to measure sensory integration for postural control in young adults.

    PubMed

    Lubetzky, Anat V; Kary, Erinn E; Harel, Daphna; Hujsak, Bryan; Perlin, Ken

    2018-01-24

    Using Unity for the Oculus Development-Kit 2, we have developed an affordable, portable virtual reality platform that targets the visuomotor domain, a missing link in current clinical assessments of postural control. Here, we describe the design and technical development as well as report its feasibility with regards to cybersickness and test-retest reliability in healthy young adults. Our virtual reality paradigm includes two functional scenes ('City' and 'Park') and four moving dots scenes. Twenty-one healthy young adults were tested twice, one to two weeks apart. They completed a simulator sickness questionnaire several times per session. Their postural sway response was recorded from a forceplate underneath their feet while standing on the floor, stability trainers, or a Both Sides Up (BOSU) ball. Sample entropy, postural displacement, velocity, and excursion were calculated and compared between sessions given the visual and surface conditions. Participants reported slight-to-moderate transient side effects. Intra-Class Correlation values mostly ranged from 0.5 to 0.7 for displacement and velocity, were above 0.5 (stability trainer conditions) and above 0.4 (floor mediolateral conditions) for sample entropy, and minimal for excursion. Our novel portable VR platform was found to be feasible and reliable in healthy young adults.

  20. The effects of muscle hypotonia and weakness on balance: a study on Prader-Willi and Ehlers-Danlos syndrome patients.

    PubMed

    Galli, Manuela; Cimolin, Veronica; Vismara, Luca; Grugni, Graziano; Camerota, Filippo; Celletti, Claudia; Albertini, Giorgio; Rigoldi, Chiara; Capodaglio, Paolo

    2011-01-01

    Prader-Willi syndrome (PWS) and Ehlers-Danlos syndrome (EDS) are two different genetical disorders both characterized, among other features, by muscular hypotonia. Postural control seems to be impaired in both conditions. The aim of the present study was to quantitatively compare postural control in adult PWS and EDS using stabilometric platform to unveil possible common determinants of impaired balance. We enrolled 11 PWS and 21 EDS adult patients and 20 age-matched controls. They were instructed to maintain an upright standing position for 30s with open eyes (OEs) focusing on a 6 cm black circle positioned at a distance of 1.5m. Both PWS and EDS patients were characterized by higher RANGEML, RANGEAP and trajectory length of CoP values as compared to CG. No statistically differences were found between PWS and EDS in terms of any of these parameters. The results demonstrated that both PWS and EDS are characterized by a severe postural instability. Muscle hypotonia and weakness may account for reduced balance capacity. Quantitative characterization of instability is important to identify, develop and enhance rehabilitation interventions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Do quiet standing centre of pressure measures within specific frequencies differ based on ability to recover balance in individuals with stroke?

    PubMed Central

    Schinkel-Ivy, Alison; Singer, Jonathan C.; Inness, Elizabeth L.; Mansfield, Avril

    2016-01-01

    Objective To determine whether quiet standing measures at specific frequency levels (representative of reactive control) differed between individuals with stroke based on their ability to recover balance (failed or successful responses to external perturbations). Methods Individuals with stroke completed a clinical assessment, including 30 s of quiet standing and lean-and-release postural perturbations, at admission to in-patient rehabilitation. Quiet standing centre of pressure (COP) signals were calculated and discrete wavelet decomposition was performed. Net COP amplitude, between-limb synchronization, and ratios of individual-limb COP were determined for each frequency level of interest, and for the non-decomposed signal (all frequency levels). Outcome measures were compared between individuals who exhibited failed and successful responses during a) unconstrained and b) encouraged-use lean-and-release trials. Results Individuals with failed responses during the unconstrained lean-and-release trials displayed greater net COP amplitude than those with successful responses, specifically within a frequency range of 0.40–3.20 Hz. Conclusions Reduced ability to recover balance among individuals with stroke may be reflected in impaired reactive control of quiet standing. Significance These results provide insight into the mechanism by which reactive control of quiet standing is impaired in individuals with stroke, and may inform assessment and rehabilitation strategies for post-stroke reactive balance control. PMID:27178866

  2. Forced expirations and maximum expiratory flow-volume curves during sustained microgravity on SLS-1.

    PubMed

    Elliott, A R; Prisk, G K; Guy, H J; Kosonen, J M; West, J B

    1996-07-01

    Gravity is known to influence the mechanical behavior of the lung and chest wall. However, the effect of sustained microgravity (microG) on forced expirations has not previously been reported. Tests were carried out by four subjects in both the standing and supine postures during each of seven preflight and four postflight data-collection sessions and four times during the 9 days of microG exposure on Spacelab Life Sciences-1. Compared with preflight standing values, peak expiratory flow rate (PEFR) was significantly reduced by 12.5% on flight day 2 (FD2), 11.6% on FD4, and 5.0% on FD5 but returned to standing values by FD9. The supine posture caused a 9% reduction in PEFR. Forced vital capacity and forced expired volume in 1 s were slightly reduced (approximately 3-4%) on FD2 but returned to preflight standing values on FD4 and FD5, and by FD9 both values were slightly but significantly greater than standing values. Forced vital capacity and forced expiratory volume in 1 s were both reduced in the supine posture (approximately 8-10%). Forced expiratory flows at 50% and between 25 and 75% of vital capacity did not change during microG but were reduced in the supine posture. Analysis of the maximum expiratory flow-volume curve showed that microG caused no consistent change in the curve configuration when individual in-flight days were compared with preflight standing curves, although two subjects did show a slight reduction in flows at low lung volumes from FD2 to FD9. The interpretation of the lack of change in curve configuration must be made cautiously because the lung volumes varied from day to day in flight. Therefore, the flows at absolute lung volumes in microG and preflight standing are not being compared. The supine curves showed a subtle but consistent reduction in flows at low lung volumes. The mechanism responsible for the reduction in PEFR is not clear. It could be due to a lack of physical stabilization when performing the maneuver in the absence of gravity or a transient reduction in respiratory muscle strength.

  3. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.

    PubMed

    Mazumder, Oishee; Kundu, Ananda Sankar; Lenka, Prasanna Kumar; Bhaumik, Subhasis

    2016-10-01

    Ambulatory activity classification is an active area of research for controlling and monitoring state initiation, termination, and transition in mobility assistive devices such as lower-limb exoskeletons. State transition of lower-limb exoskeletons reported thus far are achieved mostly through the use of manual switches or state machine-based logic. In this paper, we propose a postural activity classifier using a 'dendogram-based support vector machine' (DSVM) which can be used to control a lower-limb exoskeleton. A pressure sensor-based wearable insole and two six-axis inertial measurement units (IMU) have been used for recognising two static and seven dynamic postural activities: sit, stand, and sit-to-stand, stand-to-sit, level walk, fast walk, slope walk, stair ascent and stair descent. Most of the ambulatory activities are periodic in nature and have unique patterns of response. The proposed classification algorithm involves the recognition of activity patterns on the basis of the periodic shape of trajectories. Polynomial coefficients extracted from the hip angle trajectory and the centre-of-pressure (CoP) trajectory during an activity cycle are used as features to classify dynamic activities. The novelty of this paper lies in finding suitable instrumentation, developing post-processing techniques, and selecting shape-based features for ambulatory activity classification. The proposed activity classifier is used to identify the activity states of a lower-limb exoskeleton. The DSVM classifier algorithm achieved an overall classification accuracy of 95.2%. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of Textured Insoles on Balance in People with Parkinson’s Disease

    PubMed Central

    Qiu, Feng; Cole, Michael H.; Davids, Keith W.; Hennig, Ewald M.; Silburn, Peter A.; Netscher, Heather; Kerr, Graham K.

    2013-01-01

    Background Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson’s disease (PD) patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. Methods 20 healthy older adults (controls) and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam), under three footwear conditions: 1) barefoot; 2) smooth insoles; and 3) textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway. Results On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed. Conclusions Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD. PMID:24349486

  5. Evidence for a general stiffening motor control pattern in neck pain: a cross sectional study.

    PubMed

    Meisingset, Ingebrigt; Woodhouse, Astrid; Stensdotter, Ann-Katrin; Stavdahl, Øyvind; Lorås, Håvard; Gismervik, Sigmund; Andresen, Hege; Austreim, Kristian; Vasseljen, Ottar

    2015-03-17

    Neck pain is associated with several alterations in neck motion and motor control. Previous studies have investigated single constructs of neck motor control, while few have applied a comprehensive set of tests to investigate cervical motor control. This comparative cross- sectional study aimed to investigate different motor control constructs in neck pain patients and healthy controls. A total of 166 subjects participated in the study, 91 healthy controls (HC) and 75 neck pain patients (NP) with long-lasting moderate to severe neck pain. Neck flexibility, proprioception, head steadiness, trajectory movement control, and postural sway were assessed using a 3D motion tracking system (Liberty). The different constructs of neck motion and motor control were based on tests used in previous studies. Neck flexibility was lower in NP compared to HC, indicated by reduced cervical ROM and conjunct motion. Movement velocity was slower in NP compared to HC. Tests of head steadiness showed a stiffer movement pattern in NP compared to HC, indicated by lower head angular velocity. NP patients departed less from a predictable trajectory movement pattern (figure of eight) compared to healthy controls, but there was no difference for unpredictable movement patterns (the Fly test). No differences were found for postural sway in standing with eyes open and eyes closed. However, NP patients had significantly larger postural sway when standing on a balance pad. Proprioception did not differ between the groups. Largest effect sizes (ES) were found for neck flexibility (ES range: 0.2-0.8) and head steadiness (ES range: 1.3-2.0). Neck flexibility was the only construct that showed a significant association with current neck pain, while peak velocity was the only variable that showed a significant association with kinesiophobia. NP patients showed an overall stiffer and more rigid neck motor control pattern compared to HC, indicated by lower neck flexibility, slower movement velocity, increased head steadiness and more rigid trajectory head motion patterns. Only neck flexibility showed a significant association with clinical features in NP patients.

  6. Use of motor abundance in old adults in the regulation of a narrow-based stance.

    PubMed

    Hsu, Wei-Li; Lin, Kwan-Hwa; Yang, Rong-Sen; Cheng, Chih-Hsiu

    2014-02-01

    The ability to maintain stable balance while standing decreases with age. The body must coordinate multiple joints using "freeze" or "free" strategy, or a combination of both to ensure balance stability. The purpose of this study was to examine age-related changes in the use of motor abundance during upright stance on a narrow base without visual input. Uncontrolled manifold (UCM) analysis was used to decompose the movement variability of joints into goal-equivalent variability (GEV) and non-goal-equivalent variability (NGEV). The ratio between GEV and NGEV (UCM(ratio)) quantifies the joint coordination related to postural stability, and a high UCM(ratio) value indicates flexible control of joints. To perform balance tests, participants in this study (healthy young and old adults, 20 each) were asked to stand on a flat platform and on narrow wooden blocks with their eyes open and then eyes closed. In upright balance tests, both old and young adults maintained postural stability. GEV was greater than NGEV across all participants and conditions. However, GEV was higher in the young adults than in the old adults, whereas NGEV was higher in the old adults than in the young adults. Therefore, the old adults exhibited a lower UCM(ratio) than the young adults. The old adults were unable to exploit motor abundance and used a less flexible multi-joint coordination pattern to achieve stable balance. The UCM(ratio) value reflects the quality of postural control and can be used for assessing joint coordination in balance disorders.

  7. Biomechanical analysis of low back load when sneezing.

    PubMed

    Hasegawa, Tetsuya; Katsuhira, Junji; Matsudaira, Ko; Iwakiri, Kazuyuki; Maruyama, Hitoshi

    2014-09-01

    Although sneezing is known to induce low back pain, there is no objective data of the load generated when sneezing. Moreover, the approaches often recommended for reducing low back pain, such as leaning with both hands against a wall, are not supported by objective evidence. Participants were 12 healthy young men (mean age 23.25 ± 1.54 years) with no history of spinal column pain or low back pain. Measurements were taken using a three-dimensional motion capture system and surface electromyograms in three experimental conditions: normal for sneezing, characterized by forward trunk inclination; stand, in which the body was deliberately maintained in an upright posture when sneezing; and table, in which the participants leaned with both hands on a table when sneezing. We analyzed and compared the intervertebral disk compressive force, low back moment, ground reaction force, trunk inclination angle, and co-contraction of the rectus abdominis and erector spinae muscles in the three conditions. The intervertebral disk compressive force and ground reaction force were significantly lower in the stand and table conditions than in the normal condition. The co-contraction index value was significantly higher in the stand condition than in the normal and table conditions. When sneezing, body posture in the stand or table condition can reduce load on the low back compared with body posture in the normal sneezing condition. Thus, placing both hands on a table or otherwise maintaining an upright body posture appears to be beneficial for reducing low back load when sneezing. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fingertip touch improves postural stability in patients with peripheral neuropathy.

    PubMed

    Dickstein, R; Shupert, C L; Horak, F B

    2001-12-01

    The purpose of this work was to determine whether fingertip touch on a stable surface could improve postural stability during stance in subjects with somatosensory loss in the feet from diabetic peripheral neuropathy. The contribution of fingertip touch to postural stability was determined by comparing postural sway in three touch conditions (light, heavy and none) in eight patients and eight healthy control subjects who stood on two surfaces (firm or foam) with eyes open or closed. In the light touch condition, fingertip touch provided only somatosensory information because subjects exerted less than 1 N of force with their fingertip to a force plate, mounted on a vertical support. In the heavy touch condition, mechanical support was available because subjects transmitted as much force to the force plate as they wished. In the no touch condition, subjects held the right forefinger above the force plate. Antero-posterior (AP) and medio-lateral (ML) root mean square (RMS) of center of pressure (CoP) sway and trunk velocity were larger in subjects with somatosensory loss than in control subjects, especially when standing on the foam surface. The effects of light and heavy touch were similar in the somatosensory loss and control groups. Fingertip somatosensory input through light touch attenuated both AP and ML trunk velocity as much as heavy touch. Light touch also reduced CoP sway compared to no touch, although the decrease in CoP sway was less effective than with heavy touch, particularly on the foam surface. The forces that were applied to the touch plate during light touch preceded movements of the CoP, lending support to the suggestion of a feedforward mechanism in which fingertip inputs trigger the activation of postural muscles for controlling body sway. These results have clinical implications for understanding how patients with peripheral neuropathy may benefit from a cane for postural stability in stance.

  9. The influence of diabetic peripheral neuropathy on local postural muscle and central sensory feedback balance control.

    PubMed

    Toosizadeh, Nima; Mohler, Jane; Armstrong, David G; Talal, Talal K; Najafi, Bijan

    2015-01-01

    Poor balance control and increased fall risk have been reported in people with diabetic peripheral neuropathy (DPN). Traditional body sway measures are unable to describe underlying postural control mechanism. In the current study, we used stabilogram diffusion analysis to examine the mechanism under which balance is altered in DPN patients under local-control (postural muscle control) and central-control (postural control using sensory cueing). DPN patients and healthy age-matched adults over 55 years performed two 15-second Romberg balance trials. Center of gravity sway was measured using a motion tracker system based on wearable inertial sensors, and used to derive body sway and local/central control balance parameters. Eighteen DPN patients (age = 65.4±7.6 years; BMI = 29.3±5.3 kg/m2) and 18 age-matched healthy controls (age = 69.8±2.9; BMI = 27.0±4.1 kg/m2) with no major mobility disorder were recruited. The rate of sway within local-control was significantly higher in the DPN group by 49% (healthy local-controlslope = 1.23±1.06×10-2 cm2/sec, P<0.01), which suggests a compromised local-control balance behavior in DPN patients. Unlike local-control, the rate of sway within central-control was 60% smaller in the DPN group (healthy central-controlslope-Log = 0.39±0.23, P<0.02), which suggests an adaptation mechanism to reduce the overall body sway in DPN patients. Interestingly, significant negative correlations were observed between central-control rate of sway with neuropathy severity (rPearson = 0.65-085, P<0.05) and the history of diabetes (rPearson = 0.58-071, P<0.05). Results suggest that in the lack of sensory feedback cueing, DPN participants were highly unstable compared to controls. However, as soon as they perceived the magnitude of sway using sensory feedback, they chose a high rigid postural control strategy, probably due to high concerns for fall, which may increase the energy cost during extended period of standing; the adaptation mechanism using sensory feedback depends on the level of neuropathy and the history of diabetes.

  10. Perception-Action and Adaptation in Postural Control of Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    Barela, Jose A.; Focks, Grietje M. Jaspers; Hilgeholt, Toke; Barela, Ana M. F.; Carvalho, Raquel de P.; Savelsbergh, Geert J. P.

    2011-01-01

    The aim of this study was to examine the coupling between visual information and body sway and the adaptation in this coupling of individuals with cerebral palsy (CP). Fifteen children with and 15 without CP, 6-15 years old, were required to stand upright inside of a moving room. All children first performed two trials with no movement of the room…

  11. A comparison of trunk biomechanics, musculoskeletal discomfort and productivity during simulated sit-stand office work.

    PubMed

    Karakolis, Thomas; Barrett, Jeff; Callaghan, Jack P

    2016-10-01

    Sedentary office work has been shown to cause low back discomfort and potentially cause injury. Prolonged standing work has been shown to cause discomfort. The implementation of a sit-stand paradigm is hypothesised to mitigate discomfort and prevent injury induced by prolonged exposure to each posture in isolation. This study explored the potential of sit-stand to reduce discomfort and prevent injury, without adversely affecting productivity. Twenty-four participants performed simulated office work in three different conditions: sitting, standing and sit-stand. Variables measured included: perceived discomfort, L4-L5 joint loading and typing/mousing productivity. Working in a sit-stand paradigm was found to have the potential to reduce discomfort when compared to working in a sitting or standing only configuration. Sit-stand was found to be associated with reduced lumbar flexion during sitting compared to sitting only. Increasing lumbar flexion during prolonged sitting is a known injury mechanism. Therefore, sit-stand exhibited a potentially beneficial response of reduced lumbar flexion that could have the potential to prevent injury. Sit-stand had no significant effect on productivity. Practitioner Summary: This study has contributed foundational elements to guide usage recommendations for sit-stand workstations. The sit-stand paradigm can reduce discomfort; however, working in a sit-stand ratio of 15:5 min may not be the most effective ratio. More frequent posture switches may be necessary to realise the full benefit of sit-stand.

  12. Comprehensive joint feedback control for standing by functional neuromuscular stimulation-a simulation study.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2010-12-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint feedback control against postural disturbances using a bipedal, 3-D computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage.

  13. Comprehensive Joint Feedback Control for Standing by Functional Neuromuscular Stimulation – a Simulation Study

    PubMed Central

    Nataraj, Raviraj; Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint-feedback control against postural disturbances using a bipedal, three-dimensional computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint-feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage. PMID:20923741

  14. School Furniture Dimensions: Standing and Reaching.

    ERIC Educational Resources Information Center

    Department of Education and Science, London (England).

    Performance of school children in regard to their standing and reach postures are described with dimensions given on the limits of their performance only. The facts of task performances are presented for the following tasks--(1) seeing into a shelf, (2) reaching into a shelf, (3) drawing on a vertical surface, (4) sitting or standing while…

  15. Fluence-to-dose conversion coefficients based on the posture modification of Adult Male (AM) and Adult Female (AF) reference phantoms of ICRP 110

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Santos, W. S.; Alves, M. C.; Souza, D. N.; Carvalho, A. B.

    2016-04-01

    The aim of this work was to modify the standing posture of the anthropomorphic reference phantoms of ICRP publication 110, AM (Adult Male) and AF (Adult Female), to the sitting posture. The change of posture was performed using the Visual Monte Carlo software (VMC) to rotate the thigh region of the phantoms and position it between the region of the leg and trunk. Scion Image software was used to reconstruct and smooth the knee and hip contours of the phantoms in a sitting posture. For 3D visualization of phantoms, the VolView software was used. In the change of postures, the organ and tissue masses were preserved. The MCNPX was used to calculate the equivalent and effective dose conversion coefficients (CCs) per fluence for photons for six irradiation geometries suggested by ICRP publication 110 (AP, PA, RLAT, LLAT, ROT and ISO) and energy range 0.010-10 MeV. The results were compared between the standing and sitting postures, for both sexes, in order to evaluate the differences of scattering and absorption of radiation for different postures. Significant differences in the CCs for equivalent dose were observed in the gonads, colon, prostate, urinary bladder and uterus, which are present in the pelvic region, and in organs distributed throughout the body, such as the lymphatic nodes, muscle, skeleton and skin, for the phantoms of both sexes. CCs for effective dose showed significant differences of up to 16% in the AP irradiation geometry, 27% in the PA irradiation geometry and 13% in the ROT irradiation geometry. These results demonstrate the importance of using phantoms in different postures in order to obtain more precise conversion coefficients for a given exposure scenario.

  16. Effects of high-heeled footwear on static and dynamic pelvis position and lumbar lordosis in experienced younger and middle-aged women.

    PubMed

    Schroeder, Jan; Hollander, Karsten

    2018-01-01

    There is still conflicting evidence about the effect of high-heeled footwear on posture, especially if methodological confounders are taken into account. The purpose of this study was to investigate the effect of high-heeled footwear on lumbopelvic parameters in experienced younger and middle-aged women while standing and walking. Thirty-seven experienced younger (n=19:18-25 years) and middle-aged (n=18:26-56 years) women were included in this randomized crossover study. Using a non-invasive back shape reconstruction device (rasterstereography), static (pelvic tilt and lumbar lordosis angle) and dynamic (pelvic rotation, median lumbar lordosis angle and range of motion) parameters representing pelvis position and lumbar curvature were measured. In order to analyse standing and walking on a treadmill (0.83m/s), the effects of high-heels (7-11cm) were compared to standard control shoes. There were no effects on the lumbar lordosis angle or range of motion under static or dynamic conditions (p>0.05, d≤0.06). But there was a small effect for a reduced pelvic tilt (p=0.003, d=0.24) and a moderate effect for an increased transversal pelvic rotation (p=0.001, d=0.63) due to high heel shoed standing or walking, respectively. There were no significant age-group or interaction effects (p>0.05). Altered pelvic parameters may be interpreted as compensatory adaptations to high-heeled footwear rather than lumbar lordosis adaptations in experienced wearers. The impact of these findings on back complaints should be revisited carefully, because muscular overuse as well as postural load relieving may contribute to chronic consequences. Further research is necessary to examine clinically relevant outcomes corresponding to postural alterations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Investigating the Feasibility and Utility of Bedside Balance Technology Acutely After Pediatric Concussion: A Pilot Study.

    PubMed

    Rhine, Tara D; Byczkowski, Terri L; Clark, Ross A; Babcock, Lynn

    2016-05-01

    To examine postural instability in children acutely after concussion, using the Wii Balance Board (WBB). We hypothesized that children with traumatic brain injury would have significantly worse balance relative to children without brain injury. Prospective case-control pilot study. Emergency department of a tertiary urban pediatric hospital. Cases were a convenience sample 11-16 years old who presented within 6 hours of sustaining concussion. Two controls, matched on gender, height, and age, were enrolled for each case that completed study procedures. Controls were children who presented for a minor complaint that was unlikely to affect balance. Not applicable. The participant's postural sway expressed as the displacement in centimeters of the center of pressure during a timed balance task. Balance testing was performed using 4 stances (single or double limb, eyes open or closed). Three of the 17 (17.6%) cases were too dizzy to complete testing. One stance, double limbs eyes open, was significantly higher in cases versus controls (85.6 vs 64.3 cm, P = 0.04). A simple test on the WBB consisting of a 2-legged standing balance task with eyes open discriminated children with concussion from non-head-injured controls. The low cost and feasibility of this device make it a potentially viable tool for assessing postural stability in children with concussion for both longitudinal research studies and clinical care. These pilot data suggest that the WBB is an inexpensive tool that can be used on the sideline or in the outpatient setting to objectively identify and quantify postural instability.

  18. Effects of 4 Weeks of Explosive-type Strength Training for the Plantar Flexors on the Rate of Torque Development and Postural Stability in Elderly Individuals.

    PubMed

    Kobayashi, Y; Ueyasu, Y; Yamashita, Y; Akagi, R

    2016-06-01

    This study aimed to investigate the effect of a 4-week explosive-type strength training program for the plantar flexors on the rate of torque development and postural stability. The participants were 56 elderly men and women divided into training (17 men and 15 women) and control (14 men and 10 women) groups. The participants in the training group underwent explosive-type strength training of the plantar flexors 2 days per week for 4 weeks. Training consisted of 3 sets of 10 repetitions of explosive plantar flexion lasting less than 1 s. The following parameters were determined: muscle volume of the plantar flexors estimated by the muscle thickness and lower leg length, maximal voluntary contraction torque and rate of torque development of plantar flexion, and one-leg standing ability. The training increased the maximal voluntary contraction torque and rate of torque development, but corresponding increases in muscle volume and one-leg standing ability were not found. These results suggest that, for elderly individuals, the 4-week explosive-type strength training of the plantar flexors is effective for increasing the maximal voluntary contraction torque and rate of torque development of plantar flexion but is not effective for improving postural stability. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Promoting balance and strength in the middle-aged workforce.

    PubMed

    Granacher, U; Wick, C; Rueck, N; Esposito, C; Roth, R; Zahner, L

    2011-01-01

    The prevalence of sustaining fall-related injuries is high in the middle-aged workforce. Deficits in postural control/muscle strength represent important fall-risk factors. The objective of this study was to examine the impact of balance and strength training followed by detraining on postural control and muscle strength in the workforce. Thirty-two adults with sedentary office work participated in this study and were assigned to an intervention (age 56.0 ± 3.7 yrs) or a control group (age 55.5 ± 3.4 yrs). The intervention group participated in 8 weeks of balance and strength training conducted at the worksite, followed by 8 weeks of detraining. Tests included the measurement of (a) total centre of pressure (COP) displacements during one-legged standing, (b) gait velocity and stride-to-stride variability, (c) peak isometric/isokinetic torque and rate of torque development (RTD) of the plantar flexors, and (d) jumping height. After training, significant improvements in COP displacements, gait velocity, peak isometric/isokinetic torque, RTD, and jumping height were observed. During detraining, muscle strength deteriorated, whereas postural control improved. This fall-preventive training program conducted at the worksite proved to be feasible and effective. It is suggested that this training program should be permanently conducted to maintain/improve muscle strength. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Postural synergies associated with a stepping task.

    PubMed

    Mercer, V S; Sahrmann, S A

    1999-12-01

    Synergistic relationships among multiple muscle components are thought to exist to simplify control of posture and movement. The purpose of this study was to examine the extent to which children, young adults, and older adults exhibit consistent sequences of postural muscle activation when lifting the right foot onto a step from a standing position. Twenty subjects without known impairments of the neuromuscular system (10 male, 10 female) in each of 3 age groups--children (8-12 years), young adults (25-35 years), and older adults (65-73 years)--participated. A pressure switch taped to the subject's right foot was used to determine movement onset and offset. Latencies of muscle activation were determined using surface electromyography. A preferred postural synergy was defined as the sequence of postural muscle activation observed during the majority of trials for each subject. Mean movement times did not differ among age groups. Although the left tibialis anterior (TA) muscle was the first of the postural muscles activated in 93% of the trials, subjects displayed considerable variability in the subsequent order of postural muscle activation. Across subjects, a total of 14 different preferred postural synergies were observed. Age groups did not differ in the number of different synergies. Early TA activation may reflect biomechanical constraints of the stepping task, producing forward displacement of the center of mass over the changing base of support. The fact that subjects of all ages were quite variable in the specific sequences of muscles activated subsequent to the TA suggests that, for this type of task, therapists should not focus their interventions on facilitating execution of particular synergy patterns.

Top