Science.gov

Sample records for stanford linear collider

  1. The Stanford Linear Collider

    SciTech Connect

    Seeman, J.T.

    1990-10-01

    The Stanford Linear Collider (SLC) has been in operation for several years with the initial and accelerator physics experiments just completed. A synopsis of these results is included. The second round of experiments is now under preparation to install the new physics detector (SLD) in Fall 1990 and to increase the luminosity significantly by late 1991. Collisions at high intensity and with polarized electrons are planned. Many beam dynamics and technological advances are in progress to meet these goals. 10 refs., 15 figs., 1 tab.

  2. The status of the Stanford Linear Collider

    SciTech Connect

    Stiening, R.

    1987-03-01

    The Stanford Linear Collider is described, and the status of commissioning of the major SLC systems is given, including the electron source and 1.2 GeV linac, storage rings, 50 GeV linac, and positron source. Beam transport between the linac and final focus, and the final focus optical system are described. (LEW)

  3. Design and performance of the Stanford Linear Collider Control System

    SciTech Connect

    Melen, R.E.

    1984-10-01

    The success of the Stanford Linear Collider (SLC) will be dependent upon the implementation of a very large advanced computer-based instrumentation and control system. This paper describes the architectural design of this system as well as a critique of its performance. This critique is based on experience obtained from its use in the control and monitoring of 1/3 of the SLAC linac and in support of an expensive experimental machine physics experimental program. 11 references, 3 figures.

  4. New timing system for the Stanford Linear Collider

    SciTech Connect

    Paffrath, L.; Bernstein, D.; Kang, H.; Koontz, R.; Leger, G.; Ross, M.; Pierce, W.; Wilmunder, A.

    1984-11-01

    In order to be able to meet the goals of the Stanford Linear Collider, a much more precise timing system had to be implemented. This paper describes the specification and design of this system, and the results obtained from its use on 1/3 of the SLAC linac. The functions of various elements are described, and a programmable delay unit (PDU) is described in detail.

  5. Emittance calculations for the Stanford Linear Collider injector

    SciTech Connect

    Sheppard, J.C.; Clendenin, J.E.; Helm, R.H.; Lee, M.J.; Miller, R.H.; Blocker, C.A.

    1983-03-01

    A series of measurements have been performed to determine the emittance of the high intensity, single bunch beam that is to be injected into the Stanford Linear Collider. On-line computer programs were used to control the Linac for the purpose of data acquisition and to fit the data to a model in order to deduce the beam emittance. This paper will describe the method of emittance calculation and present some of the measurement results.

  6. Neutrino counting with the SLD at the Stanford Linear Collider

    SciTech Connect

    Band, H.; Bugg, W.; Chadwick, G.; Coyne, D.; Gyure, M.; Hertzbach, S.; Messner, R.; Mincer, A.; Mockett, P.; Nauenberg, U.

    1989-06-01

    One of the fundamental measurements to be made at the e/sup +/e/sup /minus// colliders, SLC and LEP, is the determination of the number of neutrino families produced in Z/sup 0/ boson decays. In the event that a fourth generation of light Dirac neutrinos exists, the experimental consequences at the Z/sup 0/ resonances are easily seen; the total width will be increased by 171 MeV over its three generation value, to be compared to the /approx/30 MeV precision that should be achievable once the systematic limit has been reached. A reasonable figure of merit for the precision of a neutrino counting measurement of 0.2 standard model generations corresponds to a Z/sup 0/ width measurement error of 35 MeV; close to the limit of anticipated experimental capability. In fact, it is highly desirable to achieve an even higher precision if possible, in order to distinguish potentially small effects due to exotic phenomena from beyond the Standard Model. This paper will address the issue of how to obtain the best measurement of the number of neutrino generations as a function of the size of the available sample of Z/sup 0/ decays. The results presented here were obtained by our study group in an attempt to understand the limitations of a realistic neutrino counting measurement with the SLD at the Stanford Linear Collider. However, many of our findings are general enough to be applicable to any e/sup +/e/sup /minus// detector designed to take data at the Z/sup 0/ resonance. 19 refs., 5 figs., 6 tabs.

  7. Long ion chamber systems for the SLC (Stanford Linear Collider)

    SciTech Connect

    Rolfe, J.; Gearhart, R.; Jacobsen, R.; Jenkins, T.; McComick, D.; Nelson, R.; Reagan, D.; Ross, M.

    1989-03-01

    A Panofsky Long Ion Chamber (PLIC) is essentially a gas-filled coaxial cable, and has been used to protect the Stanford Linear Accelerator from damage caused by its electron beam, and as a sensitive diagnostic tool. This old technology has been updated and has found renewed use in the SLC. PLIC systems have been installed as beam steering aids in most parts of the SLC and are a part of the system that protects the SLC from damage by errant beams in several places. 5 refs., 3 figs., 1 tab.

  8. Beam trajectory acquisition system for the arcs of the Stanford Linear Collider

    SciTech Connect

    Pellegrin, J.L.; Ross, M.C.; Scott, B.D.; Wilson, D.S.

    1987-02-01

    This report describes the beam position monitoring system of the collider arcs at the Stanford Linear Collider. This beam position monitoring system is different from others at SLAC in its large amount of hardware and its use of ungated, self-triggered electronics. All of the processing electronics are installed in the accelerator tunnel. (JDH)

  9. Construction and performance of a permanent earth anchor (tieback) system for the Stanford Linear Collider

    SciTech Connect

    Obergfell, M.N.

    1987-02-01

    The Stanford Linear Collider is the newest addition to the high-energy physics research complex at the Stanford Linear Accelerator Center. One of the many unique features of this project is the large, underground pit, where massive particle detectors will study the collision of subatomic particles. The large, open pit utilizes nearly 600 permanent earth anchors (tiebacks) for the support of the 56 ft (17 m) high walls, and is one of the largest applications of tiebacks for permanent support of a structure. This paper examines the use of tiebacks on this project with emphasis on their installation and performance.

  10. Basic optics of the SLC (Stanford Linear Collider) Final Focus System

    SciTech Connect

    Brown, K.L.

    1988-12-01

    In this report we discuss some general optics principles and scaling laws that have been useful in guiding the design and operation of the Final Focus System for the Stanford Linear Collider. Included are expressions for the minimum {Beta}{sub x}* and {Beta}{sub y}* that can be expected for the present SLC design at the interaction point as a function of beam emittance. 6 refs., 13 figs.

  11. Measurement of the Tau Lepton Lifetime Using the SLD Detector at the Stanford Linear Collider

    SciTech Connect

    Turk, J

    2004-01-05

    The lifetime of the tau lepton is measured to be (2.50 {+-} 0.35) x 10{sup -14}s. The measurement combines the results of two different techniques used on separate samples of tau events collected at the Stanford Linear Collider by the SLD detector during the 1992 physics run. The first technique measures the decay length from the known interaction position to the reconstructed decay vertex position. This requires that the taus have at least three charged decay products. The second technique infers the decay length by correlating the differences in signed impact parameters (for single-charged track decays) with the angles between the tracks.

  12. Interactive beam tuning simulator for the SLC (Stanford Linear Collider) final focus

    SciTech Connect

    Ford, W.T.; Kozanecki, W.; Lohse, T.; Servranckx, R.V.

    1989-03-01

    An interface to the DIMAD beam optics computer program enables the operator to perform in simulation the sequence of magnet adjustments that would be used online for tuning the Stanford Linear Collider Final Focus System. The program accepts any input beam matrix from a disk file and presents a menu of magnet adjustments and scan and display options. The results of a ray trace calculation are presented as profiles or envelope plots on the graphics screen. We give results from studies of the optimization of the beam under various input conditions. 11 refs., 4 figs.

  13. Optical tuning in the arcs and final focus sections of the Stanford Linear Collider

    SciTech Connect

    Bambade, P.S.

    1989-03-01

    In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustments of the beam phase-space a the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance. 24 refs., 25 figs., 2 tabs.

  14. Update on the high-current injector for the Stanford Linear collider

    SciTech Connect

    James, M.B.; Clendenin, J.E.; Ecklund, S.D.; Miller, R.H.; Sheppard, J.C.; Sinclair, C.K.; Sodja, J.

    1983-03-01

    The high current injector has become operational. There are two crucial areas where improvements must be made to meet collider specifications: while the injector can produce up to 10/sup 11/ e/sup -/ in a single S-band bucket, initially much of this charge was captured in a low energy tail and was this not suitable for transport through the accelerator and injection into the damping ring. Pulse to pulse position jitter has been observed, resulting in transverse wake field which increases beam emittance. The problems described above contribute to substantial current loss during transport from the injector (40 MeV) to the SLC damping ring (1.2 GeV). Experimental studies are continuing with the aim of understanding and improving beam characteristics including bunch length, pulse to pulse stability and emittance. The present status of these studies is reported.

  15. Rollfix---An adiabatic roll transition for the SLC (Stanford Linear Collider) Arcs

    SciTech Connect

    Bambade, P.; Brown, K.; Fieguth, T.; Hutton, A.; Ritson, D.; Sands, M.; Toge, N.

    1989-02-01

    The SLC Arcs were rolled at achromat boundaries to follow the terrain of the SLAC site. This makes the linear optics sensitive to systematic gradient errors, from which severe cross-plane coupling effects may arise. As a partial correction, a smoother roll transition was introduced which relieves much of this sensitivity. We present an evaluation of this scheme and report on the observed improvements. 18 refs., 10 figs.

  16. Linear collider: a preview

    SciTech Connect

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  17. SLC status and SLAC (Stanford Linear Accelerator Center) future plans

    SciTech Connect

    Richter, B.

    1989-08-01

    In this presentation, I shall discuss the linear collider program at the Stanford Linear Accelerator Center as it is now, and as we hope to see it evolve over the next few years. Of greatest interest to the high energy accelerator physics community gathered here is the development of the linear collider concept, and so I shall concentrate most of this paper on a discussion of the present status and future evolution of the SLC. I will also briefly discuss the research and development program that we are carrying out aimed at the realization of the next generation of high-energy linear colliders. SLAC had a major colliding-beam storage-ring program as well, including present rings and design studies on future high-luminosity projects, but time constraints preclude a discussion of them. 8 figs., 3 tabs.

  18. SLAC Linear Collider

    SciTech Connect

    Richter, B.

    1985-12-01

    A report is given on the goals and progress of the SLAC Linear Collider. The status of the machine and the detectors are discussed and an overview is given of the physics which can be done at this new facility. Some ideas on how (and why) large linear colliders of the future should be built are given.

  19. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    SciTech Connect

    Not Available

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

  20. Linear Collider Diagnostics

    SciTech Connect

    Ross, Marc

    2000-05-17

    Each major step toward higher energy particle accelerators relies on new technology. Linear colliders require beams of unprecedented brightness and stability. Instrumentation and control technology is the single most critical tool that enables linear colliders to extend the energy reach. In this paper the authors focus on the most challenging aspects of linear collider instrumentation systems. In the Next Linear Collider (NLC), high brightness multibunch e{sup +}/e{sup {minus}} beams, with I{sub {+-}} = 10{sup 12} particles/pulse and sigma{sub x,y} {approximately} 50 x 5 mu-m, originate in damping rings and are subsequently accelerated to several hundred GeV in 2 X-band 11,424 MHz linacs from which they emerge with typical sigma{sub x,y} {approximately} 7 x 1 mu-m. Following a high power collimation section the e{sup +}/e{sup {minus}} beams are focused to sigma{sub x,y} {approximately} 300 x 5 nm at the interaction point. In this paper they review the beam intensity, position and profile monitors (x,y,z), mechanical vibration sensing and stabilization systems, long baseline RF distribution systems and beam collimation hardware.

  1. LIONs at the Stanford Linear Accelerator Center

    SciTech Connect

    Constant, T.N.; Zdarko, R.W.; Simmons, R.H.; Bennett, B.M.

    1998-01-01

    The term LION is an acronym for Long Ionization Chamber. This is a distributed ion chamber which is used to monitor secondary ionization along the shield walls of a beam line resulting from incorrectly steered charged particle beams in lieu of the use of many discrete ion chambers. A cone of ionizing radiation emanating from a point source as a result of incorrect steering intercepts a portion of 1-5/8 inch Heliax cable (about 100 meters in length) filled with Argon gas at 20 psi and induces a pulsed current which is proportional to the ionizing charge. This signal is transmitted via the cable to an integrator circuit whose output is directed to an electronic comparators, which in turn is used to turn off the accelerated primary beam when preset limits are exceeded. This device is used in the Stanford Linear Accelerator Center (SLAC) Beam Containment System (BCS) to prevent potentially hazardous ionizing radiation resulting from incorrectly steered beams in areas that might be occupied by people. This paper describes the design parameters and experience in use in the Final Focus Test Beam (FFTB) area of the Stanford Linear Accelerator Center.

  2. Positrons for linear colliders

    SciTech Connect

    Ecklund, S.

    1987-11-01

    The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

  3. [New technology for linear colliders

    SciTech Connect

    McIntyre, P.M.

    1992-08-12

    This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization.

  4. Positron sources for Linear Colliders

    SciTech Connect

    Gai Wei; Liu Wanming

    2009-09-02

    Positron beams have many applications and there are many different concepts for positron sources. In this paper, only positron source techniques for linear colliders are covered. In order to achieve high luminosity, a linear collider positron source should have a high beam current, high beam energy, small emittance and, for some applications, a high degree of beam polarization. There are several different schemes presently being developed around the globe. Both the differences between these schemes and their common technical challenges are discussed.

  5. Performance of the SLAC Linear Collider klystrons

    SciTech Connect

    Allen, M.A.; Fowkes, W.R.; Koontz, R.F.; Schwarz, H.D.; Seeman, J.T.; Vlieks, A.E.

    1987-01-01

    There are now 200 new, high power 5045 klystrons installed on the two-mile Stanford Linear Accelerator. Peak power per klystron averages over 63 MW. Average energy contribution is above 240 MeV per station. Electron beam energy has been measured as high as 53 GeV. Energy instability due to klystron malfunction is less than 0.2%. The installed klystrons have logged over one million operating hours with close to 20,000 klystron hours cumulative operating time between failures. Data are being accumulated on klystron operation and failure modes with failure signatures starting to become apparent. To date, no wholesale failure modes have surfaced that would impair the SLAC Linear Collider (SLC) program.

  6. RF power generation for future linear colliders

    SciTech Connect

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper.

  7. Linear Colliders: Achieving High Luminosity

    NASA Astrophysics Data System (ADS)

    Dugan, Gerald

    2002-04-01

    Four styles of linear collider are under active consideration by the high energy physics community as candidates for the next machine at the energy frontier. The four concepts (CLIC, the C-band linear collider, NLC/JLC and TESLA) differ widely in technology but share similar goals for energy and luminosity. The luminosity goal is more than three orders of magntiude larger than what has been acheived at the SLC. Nevertheless, as a result of many years of world-wide accelerator R&D efforts, feasible designs now exist for machines capable of reaching this goal. This talk will review the methods proposed by each linear collider concept to attain its luminosity goal. The most challenging issues facing each concept will be outlined and compared, and the areas requiring further R&D efforts will be noted.

  8. The polarized electron source of the Stanford Linear Accelerator Center

    SciTech Connect

    Schultz, D.; Alley, R.; Clendenin, J.; Frisch, J.; Mulhollan, G.; Saez, P.; Tang, H.; Witte, K.

    1994-08-01

    The Stanford Linear Accelerator has been running with polarized electrons both in the collider (SLC) mode and in the fixed target mode. The accelerators polarized electron source is based on a thin, strained GaAs photocathode, which is held at a negative high voltage and illuminated by a Titanium Sapphire laser. The reliability of the source was better than 95% during the eight-month-long 1993 SLC run. A beam polarization of 63% was measured by the SLD experiment at the SLC interaction point in the 1993 data run. The fixed-target experiment E143 measured a beam polarization of 85% in its 1993--94 run. These polarization measurements, made at high energy, are in good agreement with measurements made at low energy on a calibrated Mott polarimeter. The higher beam polarization in the fixed target experiment is due to a thinner, more highly strained GaAs photocathode than had been used earlier, and to the experiment`s low beam current requirements. The SLC is now running with the high polarization photocathode. Details of the source, and experience with the high polarization strained GaAs photocathodes on the accelerator in the current SLC run, will be presented.

  9. Challenges in future linear colliders

    SciTech Connect

    Swapan Chattopadhyay; Kaoru Yokoya

    2002-09-02

    For decades, electron-positron colliders have been complementing proton-proton colliders. But the circular LEP, the largest e-e+ collider, represented an energy limit beyond which energy losses to synchrotron radiation necessitate moving to e-e+ linear colliders (LCs), thereby raising new challenges for accelerator builders. Japanese-American, German, and European collaborations have presented options for the Future Linear Collider (FLC). Key accelerator issues for any FLC option are the achievement of high enough energy and luminosity. Damping rings, taking advantage of the phenomenon of synchrotron radiation, have been developed as the means for decreasing beam size, which is crucial for ensuring a sufficiently high rate of particle-particle collisions. Related challenges are alignment and stability in an environment where even minute ground motion can disrupt performance, and the ability to monitor beam size. The technical challenges exist within a wider context of socioeconomic and political challenges, likely necessitating continued development of international collaboration among parties involved in accelerator-based physics.

  10. Experimental Approaches at Linear Colliders

    SciTech Connect

    Jaros, John A

    2002-02-13

    Precision measurements have played a vital role in our understanding of elementary particle physics. Experiments performed using e{sup +}e{sup -} collisions have contributed an essential part. Recently, the precision measurements at LEP and SLC have probed the standard model at the quantum level and severely constrained the mass of the Higgs boson [1]. Coupled with the limits on the Higgs mass from direct searches [2], this enables the mass to be constrained to be in the range 115-205 GeV. Developments in accelerator R and D have matured to the point where one could contemplate construction of a linear collider with initial energy in the 500 GeV range and a credible upgrade path to {approx} 1 TeV. Now is therefore the correct time to critically evaluate the case for such a facility. The Working Group E3, Experimental Approaches at Linear Colliders, was encouraged to make this evaluation. The group was charged with examining critically the physics case for a Linear Collider (LC) of energy of order 1 TeV as well as the cases for higher energy machines, assessing the performance requirements and exploring the viability of several special options. In addition it was asked to identify the critical areas where R and D is required (the complete text of the charge can be found in the Appendix). In order to address this, the group was organized into subgroups, each of which was given a specific task. Three main groups were assigned to the TeV-class Machines, Multi-TeV Machines and Detector Issues. The central activity of our working group was the exploration of TeV class machines, since they are being considered as the next major initiative in high energy physics. We have considered the physics potential of these machines, the special options that could be added to the collider after its initial running, and addressed a number of important questions. Several physics scenarios were suggested in order to benchmark the physics reach of the linear collider and persons were

  11. Crab Cavities for Linear Colliders

    SciTech Connect

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; Shulte, D.; Jones, Roger M.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  12. Fast feedback for linear colliders

    SciTech Connect

    Hendrickson, L.; Adolphsen, C.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Minty, M.; Sass, R.

    1995-05-01

    A fast feedback system provides beam stabilization for the SLC. As the SLC is in some sense a prototype for future linear colliders, this system may be a prototype for future feedbacks. The SLC provides a good base of experience for feedback requirements and capabilities as well as a testing ground for performance characteristics. The feedback system controls a wide variety of machine parameters throughout the SLC and associated experiments, including regulation of beam position, angle, energy, intensity and timing parameters. The design and applications of the system are described, in addition to results of recent performance studies.

  13. Organizational cultural survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Linear Accelerator Center (SLAC). The OS measured employees' opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  14. Linear collider research and development at SLAC, LBL and LLNL

    SciTech Connect

    Mattison, T.S.

    1988-10-01

    The study of electron-positron (e/sup +/e/sup /minus//) annihilation in storage ring colliders has been very fruitful. It is by now well understood that the optimized cost and size of e/sup +/e/sup /minus// storage rings scales as E(sub cm//sup 2/ due to the need to replace energy lost to synchrotron radiation in the ring bending magnets. Linear colliders, using the beams from linear accelerators, evade this scaling law. The study of e/sup +/e/sup /minus// collisions at TeV energy will require linear colliders. The luminosity requirements for a TeV linear collider are set by the physics. Advanced accelerator research and development at SLAC is focused toward a TeV Linear Collider (TLC) of 0.5--1 TeV in the center of mass, with a luminosity of 10/sup 33/--10/sup 34/. The goal is a design for two linacs of less than 3 km each, and requiring less than 100 MW of power each. With a 1 km final focus, the TLC could be fit on Stanford University land (although not entirely within the present SLAC site). The emphasis is on technologies feasible for a proposal to be framed in 1992. Linear collider development work is progressing on three fronts: delivering electrical energy to a beam, delivering a focused high quality beam, and system optimization. Sources of high peak microwave radio frequency (RF) power to drive the high gradient linacs are being developed in collaboration with Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL). Beam generation, beam dynamics and final focus work has been done at SLAC and in collaboration with KEK. Both the accelerator physics and the utilization of TeV linear colliders were topics at the 1988 Snowmass Summer Study. 14 refs., 4 figs., 1 tab.

  15. International Workshop on Linear Colliders 2010

    SciTech Connect

    2010-10-25

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  16. Proceedings of the 2005 International Linear Collider Workshop (LCWS05)

    SciTech Connect

    Hewett, JoAnne,; /SLAC

    2006-12-18

    at Stanford University from 18 March through 22 March, 2005. This workshop was hosted by the Stanford Linear Accelerator Center and sponsored by the World Wide Study for future e+e- linear colliders. It was the eighth in a series of International Workshops (the first was held in Saariselka, Finland in 1991) devoted to the physics and detectors associated with high energy e+e- linear colliders. 397 physicists from 24 countries participated in the workshop. These proceedings represent the presentations and discussions which took place during the workshop. The contributions are comprised of physics studies, detector specifications, and accelerator design for the ILC. These proceedings are organized in two Volumes and include contributions from both the plenary and parallel sessions.

  17. Depolarization due to beam-beam interaction in electron-positron linear colliders

    SciTech Connect

    Yokoya, K. ); Chen, P. )

    1989-05-05

    We investigate two major mechanisms which induce depolarization of electron beams during beam-beam interaction in linear colliders. These are the classical spin precession under the collective field of the oncoming beam, and the spin-flip effect from beamstrahlung. Analytic formulas are derived for estimating these depolarization effects. As examples, we estimate the depolarization in the Stanford Linear Collider (SLC) and a possible future TeV linear collider (TLC). The effects are found to be negligibly small for SLC and not very large for TLC.

  18. Depolarization due to beam-beam interaction in electron-positron linear colliders

    SciTech Connect

    Yokoya, Kaoru; Chen, Pisin

    1988-09-01

    We investigate two major mechanisms which induce depolarization of electron beams during beam-beam interaction in linear colliders. These are the classical spin precession under the collective field of the oncoming beam, and the spin-flip effect from beamstrahlung. Analytic formulas are derived for estimating these depolarization effects. As examples, we estimate the depolarization in the Stanford Linear Collider (SLC) and a possible future TeV linear collider (TLC). The effects are found to be negligibly small for SLC and not very large for TLC. 7 refs., 1 fig.

  19. International Workshop on Linear Colliders 2010

    ScienceCinema

    None

    2016-07-12

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  20. International Workshop on Linear Colliders 2010

    ScienceCinema

    None

    2016-07-12

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  1. Possible limits of plasma linear colliders

    NASA Astrophysics Data System (ADS)

    Zimmermann, F.

    2017-07-01

    Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.

  2. Final focus systems for linear colliders

    SciTech Connect

    Erickson, R.A.

    1987-11-01

    The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs. (LEW)

  3. Tiger Team Assessment of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    This report documents the Tiger Team Assessment of the buildings, facilities, and activities at the Stanford Linear Accelerator Center (SLAC) and the Stanford Synchrotron Radiation Laboratory (SSRL) near San Francisco, California. SLAC/SSRL is the twenty-eighth DOE site to be assessed by a Tiger Team. SLAC and SSRL are single-purpose laboratories. SLAC is dedicated to experimental and theoretical research in elementary particle physics and to the development of new techniques in high-energy accelerators and elementary particle detectors. SSRL is dedicated to research in atomic and solid-state physics, chemistry, biology, and medicine. The purpose of the SLAC/SSRL Tiger Team Assessment is to provide the Secretary of Energy with concise information on the following: current ES&H compliance status at the site and the vulnerabilities associated with that compliance status; root causes for noncompliance; adequacy of DOE and SLAC/SSRL ES&H management programs; response actions to address identified problem areas; and effectiveness of self-assessment.

  4. Tiger Team Assessment of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    This report documents the Tiger Team Assessment of the buildings, facilities, and activities at the Stanford Linear Accelerator Center (SLAC) and the Stanford Synchrotron Radiation Laboratory (SSRL) near San Francisco, California. SLAC/SSRL is the twenty-eighth DOE site to be assessed by a Tiger Team. SLAC and SSRL are single-purpose laboratories. SLAC is dedicated to experimental and theoretical research in elementary particle physics and to the development of new techniques in high-energy accelerators and elementary particle detectors. SSRL is dedicated to research in atomic and solid-state physics, chemistry, biology, and medicine. The purpose of the SLAC/SSRL Tiger Team Assessment is to provide the Secretary of Energy with concise information on the following: current ES H compliance status at the site and the vulnerabilities associated with that compliance status; root causes for noncompliance; adequacy of DOE and SLAC/SSRL ES H management programs; response actions to address identified problem areas; and effectiveness of self-assessment.

  5. Photon Linear Collider Gamma-Gamma Summary

    SciTech Connect

    Gronberg, J

    2012-02-27

    High energy photon - photon collisions can be achieved by adding high average power short-pulse lasers to the Linear Collider, enabling an expanded physics program for the facility. The technology required to realize a photon linear collider continues to mature. Compton back-scattering technology is being developed around the world for low energy light source applications and high average power lasers are being developed for Inertial Confinement Fusion.

  6. Linear Colliders: Achieving High Beam Power

    NASA Astrophysics Data System (ADS)

    Adolphsen, Chris

    2002-04-01

    For the next generation linear colliders, the luminosity will be approximately proportional to the average power of the colliding beams. Thus it is the goal of the accelerator systems of these machines to transfer wall plug power, which will be limited to a few hundred megawatts to be practical, to beam power in an efficient and low cost manner. Just as important, the beam acceleration must not degrade the small beam emittances that are necessary for high luminosity. In this paper, we examine the linac designs of the leading linear collider proposals (CLIC, JLC, NLC and TESLA) in these respects and review their R&D status.

  7. Beamstrahlung spectra in next generation linear colliders

    SciTech Connect

    Barklow, T.; Chen, P. ); Kozanecki, W. )

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  8. SLAC linear collider conceptual design report

    SciTech Connect

    Not Available

    1980-06-01

    The linear collider system is described in detail, including the transport system, the collider lattice, final focusing system, positron production, beam damping and compression, high current electron source, instrumentation and control, and the beam luminosity. The experimental facilities and the experimental uses are discussed along with the construction schedule and estimated costs. Appendices include a discussion of space charge effects in the linear accelerator, emittance growth in the collider, the final focus system, beam-beam instabilities and pinch effects, and detector backgrounds. (GHT)

  9. New technology for linear colliders

    SciTech Connect

    McIntyre, P.M.

    1991-08-01

    The purpose of this contract is to develop and evaluate new technology for future e{sup +}e{sup {minus}} linac colliders. TeV linac colliders will require major improvements in the performance of microwave power tubes: >100 mW/m peak power, {approximately}20 GHz frequency, and high frequency. For the past three years we have been developing gigatron, a new design concept for microwave power tubes. It incorporates three key innovations: a gated field-emitter cathode which produces a fully modulated electron beam directly into the vacuum; a ribbon beam geometry which eliminates space charge and phase dispersion, and a traveling wave coupler which provides optimum output coupling even over a wide ribbon beam. During the past year we have built prototypes of two cathode designs: a stripline edge-emitter array and a porous silicon dioxide cathode. A highlight of our results is the development and testing of the porous SiO{sub 2} cathode. It delivers exceptional performance as a modulated electron source in general and for gigatron in particular. Its high emitter density and low work function accommodate higher tube gain, simpler cathode coupling, and higher peak power than any other technology. The protection of the active emitting surface by {approximately}2 {mu}m of porous SiO{sub 2} should provide for rugged operation in a tube environment.

  10. Physics goals of the next linear collider

    SciTech Connect

    Kuhlman, S.; Marciano, W.J.; Gunion, J. F.; NLC ZDR Design Group; NLC Physics Working Group

    1996-05-01

    We present the prospects for the next generation of high-energy physics experiments with electron-positron colliding beams. This report summarizes the current status of the design and technological basis of a linear collider of center of mass energy 500 GeV-1.5 TeV, and the opportunities for high-energy physics experiments that this machine is expected to open. 132 refs., 54 figs., 14 tabs.

  11. The Next Linear Collider: NLC2001

    SciTech Connect

    D. Burke et al.

    2002-01-14

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider. A first Zeroth-Order Design Report (ZDR) [2] for a second-generation electron-positron linear collider, the Next Linear Collider (NLC), was published five years ago. The NLC design is based on a high-frequency room-temperature rf accelerator. Its goal is exploration of elementary particle physics at the TeV center-of-mass energy, while learning how to design and build colliders at still higher energies. Many advances in accelerator technologies and improvements in the design of the NLC have been made since 1996. This Report is a brief update of the ZDR.

  12. RF pulse compression for future linear colliders

    SciTech Connect

    Wilson, P.B.

    1995-05-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  13. Physics Case for the International Linear Collider

    SciTech Connect

    Fujii, Keisuke; Grojean, Christophe; Peskin, Michael E.; Barklow, Tim; Gao, Yuanning; Kanemura, Shinya; Kim, Hyungdo; List, Jenny; Nojiri, Mihoko; Perelstein, Maxim; Poeschl, Roman; Reuter, Juergen; Simon, Frank; Tanabe, Tomohiko; Yu, Jaehoon; Wells, James D.; Murayama, Hitoshi; Yamamoto, Hitoshi; /Tohoku U.

    2015-06-23

    We summarize the physics case for the International Linear Collider (ILC). We review the key motivations for the ILC presented in the literature, updating the projected measurement uncertainties for the ILC experiments in accord with the expected schedule of operation of the accelerator and the results of the most recent simulation studies.

  14. Beam dynamics issues for linear colliders

    SciTech Connect

    Ruth, R.D.

    1987-09-01

    In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set.

  15. Suppressing Electron Cloud in Future Linear Colliders

    SciTech Connect

    Pivi, M; Kirby, R.E.; Raubenheimer, T.O.; Le Pimpec, F.; /PSI, Villigen

    2005-05-27

    Any accelerator circulating positively charged beams can suffer from a build-up of an electron cloud (EC) in the beam pipe. The cloud develops through ionization of residual gases, synchrotron radiation and secondary electron emission and, when severe, can cause instability, emittance blow-up or loss of the circulating beam. The electron cloud is potentially a luminosity limiting effect for both the Large Hadron Collider (LHC) and the International Linear Collider (ILC). For the ILC positron damping ring, the development of the electron cloud must be suppressed. This paper discusses the state-of-the-art of the ongoing SLAC and international R&D program to study potential remedies.

  16. Prospects for next-generation e sup + e sup minus linear colliders

    SciTech Connect

    Ruth, R.D.

    1990-02-01

    The purpose of this paper is to review progress in the US towards a next generation linear collider. During 1988, there were three workshops held on linear colliders: Physics of Linear Colliders,'' in Capri, Italy, June 14--18, 1988; Snowmass 88 (Linear Collider subsection) June 27--July 15, 1988; and SLAC International Workshop on Next Generation Linear Colliders, November 28--December 9, 1988. In this paper, I focus on reviewing the issues and progress on a next generation linear collider. The energy range is dictated by physics with a mass reach well beyond LEP, although somewhat short of SSC. The luminosity is that required to obtain 10{sup 3}--10{sup 4} units of R{sub 0} per year. The length is consistent with a site on Stanford land with collision occurring on the SLAC site; the power was determined by economic considerations. Finally, the technology as limited by the desire to have a next generation linear collider by the next century. 37 refs., 3 figs., 6 tabs.

  17. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    None

    2016-07-12

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  18. Linear Collider Physics Resource Book Snowmass 2001

    SciTech Connect

    Ronan , M.T.

    2001-06-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and

  19. International linear collider reference design report

    SciTech Connect

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  20. Slepton Flavor Physics at Linear Colliders

    NASA Astrophysics Data System (ADS)

    Dine, Michael; Grossman, Yuval; Thomas, Scott

    If low energy supersymmetry is realized in nature it is possible that a first generation linear collider will only have access to some of the superpartners with electroweak quantum numbers. Among these, sleptons can provide sensitive probes for lepton flavor violation through potentially dramatic lepton violating signals. Theoretical proposals to understand the absence of low energy quark and lepton flavor changing neutral currents are surveyed and many are found to predict observable slepton flavor violating signals at linear colliders. The observation or absence of such sflavor violation will thus provide important indirect clues to very high energy physics. Previous analyses of slepton flavor oscillations are also extended to include the effects of finite width and mass differences.

  1. Progress report on the SLAC Linear Collider

    SciTech Connect

    Rees, J.

    1986-06-01

    The SLAC Linear Collider project (SLC) is reported as being near completion. The performance specifications are tabulated both for the initial form and for eventual goals. Various parts of the SLC are described and the status of their construction is reported, including the front end electron gun and booster, the linac, damping ring, positron source, SLC arcs, and conventional facilities. 5 refs., 12 figs. (LEW)

  2. Linear collider IR and final focus introduction

    SciTech Connect

    Irwin, J.; Burke, D.

    1991-09-01

    The Linear Collider subgroup of the Accelerator Physics working group concerned itself with all aspects of the Next Linear Collider (NLC) design from the end of the accelerating structure to and through the interaction region. Within this region are: (1) a collimation section, (2) muon protection (of the detector from the collimator), (3) final focus system, (4) interaction point physics, and (5) detector masking from synchrotron radiation and beam-beam pair production. These areas of study are indicated schematically in Fig. 1. The parameters for the Next Linear Collider are still in motion, but attention has settled on a handful of parameter sets. Energies under consideration vary from 0.5 to 1.5 TeV in the center of mass, and luminosities vary from 10{sup 33} to 10{sup 34} cm{sup {minus}2}s{sup {minus}1}. To be concrete we chose as a guide for our studies the parameter sets labeled F and G, Table 1 from Palmer. These cover large and small crossing angle cases and 0.4 m to 1.8 m of free length at the interaction point.

  3. X-Band klystron development at the Stanford Linear Accelerator Center

    SciTech Connect

    Sprehn, D.W.

    2000-03-24

    X-band klystrons capable of 75 MW and utilizing either solenoidal or Periodic Permanent Magnet (PPM) focusing are undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC). The klystron development is part of an effort to realize components necessary for the construction of the Next Linear Collider (NLC). SLAC has completed a solenoidal-focused X-band klystron development effort to study the design and operation of tubes with beam microperveances of 1.2. As of early 2000, nine 1.2{micro}K klystrons have been tested to 50 MW at 1.5{micro}s. The first 50 MW PPM klystron, constructed in 1996, was designed with a 0.6 {micro}K beam at 465 kV and uses a 5-cell traveling-wave output structure. Recent testing of this tube at wider pulsewidths has reached 50 MW at 55% efficiency, 2.4{micro}s and 60 Hz. A 75 MW PPM klystron prototype was constructed in 1998 and has reached the NLC design target of 75 MW at 1.5 {micro}s. A new 75 MW PPM klystron design, which is aimed at reducing the cost and increasing the reliability of multi-megawatt PPM klystrons, is under investigation. The tube is scheduled for testing during early 2001.

  4. An organizational survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Shurberg, D.A.; Haber, S.B.

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Accelerator Center (SLAC). The OS measured employees` opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  5. Organizational cultural survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Accelerator Center (SLAC). The OS measured employees' opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  6. An organizational survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Shurberg, D.A.; Haber, S.B.

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Accelerator Center (SLAC). The OS measured employees' opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  7. 2001 Report on the Next Linear Collider

    SciTech Connect

    Gronnberg, J; Breidenbach; Burke, D; Corlett, J; Dombeck, T; Markiewicz, T

    2001-08-28

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider.

  8. The Next Linear Collider Design: NLC 2001

    SciTech Connect

    Larsen, Alberta

    2001-08-21

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider.

  9. Electron Cloud Effect in the Linear Colliders

    SciTech Connect

    Pivi, M

    2004-09-13

    Beam induced multipacting, driven by the electric field of successive positively charged bunches, may arise from a resonant motion of electrons, generated by secondary emission, bouncing back and forth between opposite walls of the vacuum chamber. The electron-cloud effect (ECE) has been observed or is expected at many storage rings [1]. In the beam pipe of the Damping Ring (DR) of a linear collider, an electron cloud is produced initially by ionization of the residual gas and photoelectrons from the synchrotron radiation. The cloud is then sustained by secondary electron emission. This electron cloud can reach equilibrium after the passage of only a few bunches. The electron-cloud effect may be responsible for collective effects as fast coupled-bunch and single-bunch instability, emittance blow-up or incoherent tune shift when the bunch current exceeds a certain threshold, accompanied by a large number of electrons in the vacuum chamber. The ECE was identified as one of the most important R&D topics in the International Linear Collider Report [2]. Systematic studies on the possible electron-cloud effect have been initiated at SLAC for the GLC/NLC and TESLA linear colliders, with particular attention to the effect in the positron main damping ring (MDR) and the positron Low Emittance Transport which includes the bunch compressor system (BCS), the main linac, and the beam delivery system (BDS). We present recent computer simulation results for the main features of the electron cloud generation in both machine designs. Thus, single and coupled-bunch instability thresholds are estimated for the GLC/NLC design.

  10. Broader Impacts of the International Linear Collider

    SciTech Connect

    Bardeen, M.; Ruchti, R.

    2005-08-01

    Large-scale scientific endeavors such as the International Linear Collider Project can have a lasting impact on education and outreach to our society. The ILC will provide a discovery platform for frontier physical science and it will also provide a discovery platform for broader impacts and social science. The importance of Broader Impacts of Science in general and the ILC in particular are described. Additionally, a synopsis of education and outreach activities carried out as an integral part of the Snowmass ILC Workshop is provided.

  11. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  12. Relativistic klystron research for linear colliders

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab.

  13. SUSY Without Prejudice at Linear Colliders

    SciTech Connect

    Rizzo, Thomas G.

    2008-12-11

    We explore the physics of the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters are chosen so to satisfy all existing experimental and theoretical constraints assuming that the WIMP is the lightest neutralino. We scan this parameter space twice using both flat and log priors and compare the results which yield similar conclusions. Constraints from both LEP and the Tevatron play an important role in obtaining our final model samples. Implications for future TeV-scale e{sup +}e{sup -} linear colliders (LC) are discussed.

  14. From the SLAC linear collider to the next linear collider: A status report and road map

    SciTech Connect

    Richter, B.

    1992-02-01

    In this presentation, I will review what we have learned about linear colliders, the problems that have been uncovered, and the technology-development program aimed at realizing the next high energy machine. I will then close with a few comments on how to get on with the job of building it.

  15. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in

  16. Development work for a superconducting linear collider

    NASA Astrophysics Data System (ADS)

    Matheisen, Axel

    1995-04-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in

  17. Sfermion precision measurements at a linear collider

    SciTech Connect

    A. Freitas et al.

    2003-09-25

    At future e{sup +}e{sup -} linear colliders, the event rates and clean signals of scalar fermion production--in particular for the scalar leptons--allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected for the third generation sfermions opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan {beta} from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses.

  18. RF Technology for a Linear Collider

    NASA Astrophysics Data System (ADS)

    Adolphsen, Chris

    2004-05-01

    This year the ICFA-sponsored International Technology Recommendation Panel will down-select an rf technology to be used for the main linacs in a next generation linear collider. A choice will be made between the cold technology of the TESLA proposal, which employs superconducting, L-Band (1.3 GHz) accelerator cavities, and the warm technology of the NLC and GLC proposals, which employ room temperature, X-band (11.4 GHz) accelerator structures. The choice of a warm or cold approach has major implications not only for the rf systems, but for the challenges faced in generating and preserving the small beam emittances that are required. This paper will focus on the rf systems, in particular, a review will be given of the designs, the R programs and the risks associated with achieving the beam energy goals in each case.

  19. Linear collider approach to a B anti B factory

    SciTech Connect

    Wilson, P.B.

    1987-06-01

    In this paper we consider the basic design expression and principal design constraints for a linear collider suitable for a B anti-B factory: Energy approx. =10 GeV, luminosity 10/sup 33/-10/sup 34/ cm/sup -2/s/sup -1/, energy resolution approx. =10/sup -2/. The design of room temperature linear colliders for a B factory is discussed. In such colliders, the rf energy stored in the linac structure is thrown away after each linac pulse. Linear colliders using superconducting rf cavities are considered. Some brief conclusions are presented.

  20. (Stanford Linear Accelerator Center) annual environmental monitoring report, January--December 1989

    SciTech Connect

    Not Available

    1990-05-01

    This progress report discusses environmental monitoring activities at the Stanford Linear Accelerator Center for 1989. Topics include climate, site geology, site water usage, land use, demography, unusual events or releases, radioactive and nonradioactive releases, compliance summary, environmental nonradiological program information, environmental radiological program information, groundwater protection monitoring ad quality assurance. 5 figs., 7 tabs. (KJD)

  1. Luminosity Limitations of Linear Colliders Based on Plasma Acceleration

    SciTech Connect

    Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei

    2016-01-01

    Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. Furthermore, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.

  2. Governance of the International Linear Collider Project

    SciTech Connect

    Foster, B.; Barish, B.; Delahaye, J.P.; Dosselli, U.; Elsen, E.; Harrison, M.; Mnich, J.; Paterson, J.M.; Richard, F.; Stapnes, S.; Suzuki, A.; Wormser, G.; Yamada, S.; /KEK, Tsukuba

    2012-05-31

    Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describes the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency, clearly

  3. Comparison of two approaches to linear collider design

    SciTech Connect

    Schnell, W.

    1987-11-01

    This paper reviews linear collider parameters. It aims at analyzing two specific design approachs - the ones for CLIC at CERN and for a TeV linear collider at SLAC - which appear to lead into remarkably different directions although they start from the same premises and try to respect the same boundary conditions. 19 refs.

  4. Klystron switching power supplies for the Internation Linear Collider

    SciTech Connect

    Fraioli, Andrea; /Cassino U. /INFN, Pisa

    2009-12-01

    The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

  5. The first colliders: AdA, VEP-1 and Princeton-Stanford

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    The idea of exploring collisions in the center-of-mass system to fully exploit the energy of the accelerated particles had been given serious consideration by the Norwegian engineer and inventor Rolf Wideröe, who applied for a patent on the idea in 1943 (and got the patent in 1953 [1]) after considering the kinematic advantage of keeping the center of mass at rest to produce larger momentum transfers. Describing this advantage, G. K. O'Neill, one of the collider pioneers, wrote in 1956 [2]: "... as accelerators of higher and higher energy are built, their usefulness is limited by the fact that the energy available for creating new particles is measured in the center-of-mass system of the target nucleon and the bombarding particle. In the relativistic limit, this energy rises only as the square root of the accelerator energy. However, if two particles of equal energy traveling in opposite directions could be made to collide, the available energy would be twice the whole energy of one particle ... " Therefore, no kinetic energy is wasted by the motion of the center of mass of the system, and the available reaction energy ER = 2Ebeam (while a particle with the same energy Ebeam colliding with another particle of the mass m at rest produces only ER = (2Ebeamm)1/2 in the extreme relativistic case). One can also add that the colliders are "cleaner" machines with respect to the fixed-target ones since the colliding beams do not interact with the target materials. The other advantage is that it is much easier to organize collisions of beams composed of matter-antimatter particles, like in electron-positron and proton-antiproton colliders...

  6. The signatures of doubly charged leptons in future linear colliders

    NASA Astrophysics Data System (ADS)

    Guo, Yu-Chen; Yue, Chong-Xing; Liu, Zhi-Cheng

    2017-08-01

    We discuss the production of the doubly charged leptons in future linear electron positron colliders, such as the International Linear Collider and Compact Linear Collider. Such states are introduced in extended weak-isospin multiplets by composite models. We discuss the production cross section of {e}-γ \\to {L}--{W}+ and carry out analyses for hadronic, semi-leptonic and pure leptonic channels based on the full simulation performance of the silicon detector. The 3- and 5-sigma statistical significance exclusion curves are provided in the model parameter space. It is found that the hadronic channel could offer the most possible detectable signature.

  7. Unique radiation problems associated with the SLAC Linear Collider

    SciTech Connect

    Jenkins, T.M.; Nelson, W.R.

    1987-01-01

    The SLAC Linear Collider (SLC) is a variation of a new class of linear colliders whereby two linear accelerators are aimed at each other to collide intense bunches of electrons and positrons together. Conventional storage rings are becoming ever more costly as the energy of the stored beams increases such that the cost of two linear colliders per GeV is less than that of electron-positron storage rings at cm energies above about 100 GeV. The SLC being built at SLAC is designed to achieve a center-of-mass energy of 100 GeV by accelerating intense bunches of particles, both electrons and positrons, in the SLAC linac and transporting them along two different arcs to a point where they are focused to a small radius and made to collide head on. The SLC has two main goals. The first is to develop the physics and technology of linear colliders. The other is to achieve center-of-mass energies above 90 GeV in order to investigate the unification of the weak and electromagnetic interactions in the energy range above 90 GeV; (i.e., Z/sup 0/, etc.). This note discusses a few of the special problems that were encountered by the Radiation Physics group at SLAC during the design and construction of the SLAC Linear Collider. The nature of these problems is discussed along with the methods employed to solve them.

  8. Design considerations for a laser-plasma linear collider

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

    2009-01-22

    Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma-based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma-based collider is presented.

  9. Design considerations for a laser-plasma linear collider

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

    2008-08-01

    Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma based collider is presented.

  10. Beamstrahlung spectra in next generation linear colliders. Revision

    SciTech Connect

    Barklow, T.; Chen, P.; Kozanecki, W.

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  11. A Photon Collider Experiment based on SLC

    SciTech Connect

    Gronberg, J

    2003-11-01

    Technology for a photon collider experiment at a future TeV-scale linear collider has been under development for many years. The laser and optics technology has reached the point where a GeV-scale photon collider experiment is now feasible. We report on the photon-photon luminosities that would be achievable at a photon collider experiment based on a refurbished Stanford Linear Collider.

  12. Laser-plasma-based linear collider using hollow plasma channels

    DOE PAGES

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...

    2016-03-03

    A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  13. Alternate approaches to future electron-positron linear colliders

    SciTech Connect

    Loew, G.A.

    1998-07-01

    The purpose of this article is two-fold: to review the current international status of various design approaches to the next generation of e{sup +}e{sup {minus}} linear colliders, and on the occasion of his 80th birthday, to celebrate Richard B. Neal`s many contributions to the field of linear accelerators. As it turns out, combining these two tasks is a rather natural enterprise because of Neal`s long professional involvement and insight into many of the problems and options which the international e{sup +}e{sup {minus}} linear collider community is currently studying to achieve a practical design for a future machine.

  14. Polarized RF guns for linear colliders: An ICFA Workshop

    SciTech Connect

    D.A. Edwards

    2002-01-31

    The ICFA Workshop on Polarized RF Guns for Linear Colliders was held at Fermilab during April 18-20, 2001. It was attended by 37 scientists from 14 institutions. A list of participants is appended. An RF photoemission gun that delivers polarized electrons at low emittance would be an attractive electron source for a linear collider. Moreover, recently it has been demonstrated that an RF gun in conjunction with nearby injection system optics can deliver a beam with a high ratio of transverse emittances; a simplification of a linear collider's damping system could result. However, at present RF electron gun technology has not developed sufficiently to assure that such a source is feasible. The purpose of the workshop was to review the status of polarized RF gun development with linear collider application in mind, and outline a possible program for the future. A table lists the requirements for the electron injector for proposed linear colliders. The specifications are given for the beam before and after the electron damping ring.

  15. BEAM-BASED NON-LINEAR OPTICS CORRECTIONS IN COLLIDERS.

    SciTech Connect

    PILAT, R.; LUO, Y.; MALITSKY, N.; PTITSYN, V.

    2005-05-16

    A method has been developed to measure and correct operationally the non-linear effects of the final focusing magnets in colliders, that gives access to the effects of multi-pole errors by applying closed orbit bumps, and analyzing the resulting tune and orbit shifts. This technique has been tested and used during 4 years of RHIC (the Relativistic Heavy Ion Collider at BNL) operations. I will discuss here the theoretical basis of the method, the experimental set-up, the correction results, the present understanding of the machine model, the potential and limitations of the method itself as compared with other non-linear correction techniques.

  16. Power Saving Optimization for Linear Collider Interaction Region Parameters

    SciTech Connect

    Seryi, Andrei; /SLAC

    2009-10-30

    Optimization of Interaction Region parameters of a TeV energy scale linear collider has to take into account constraints defined by phenomena such as beam-beam focusing forces, beamstrahlung radiation, and hour-glass effect. With those constraints, achieving a desired luminosity of about 2E34 would require use of e{sup +}e{sup -} beams with about 10 MW average power. Application of the 'travelling focus' regime may allow the required beam power to be reduced by at least a factor of two, helping reduce the cost of the collider, while keeping the beamstrahlung energy loss reasonably low. The technique is illustrated for the 500 GeV CM parameters of the International Linear Collider. This technique may also in principle allow recycling the e{sup +}e{sup -} beams and/or recuperation of their energy.

  17. Where do we stand on the SLC (SLAC Linear Collider)

    SciTech Connect

    Kozanecki, W.

    1989-02-01

    This paper reviews the current performance of the SLAC Linear Collider, as well as the issues, problems and prospects facing the project. A few of the original accelerator physics results achieved in the last year are described in detail. 36 refs., 12 figs., 1 tab.

  18. Lepton flavor violating processes at the International Linear Collider

    SciTech Connect

    Ferreira, P. M.; Guedes, R. B.; Santos, R.

    2007-03-01

    We study the effects of dimension-six effective operators on the flavor violating production and decay of leptons at the International Linear Collider. Analytic expressions for the cross sections, decay widths, and asymmetries of all flavor changing processes will be presented, as well as an analysis of the feasibility of their observation at the ILC.

  19. SLAC linear collider: the machine, the physics, and the future

    SciTech Connect

    Richter, B.

    1981-11-01

    The SLAC linear collider, in which beams of electrons and positrons are accelerated simultaneously, is described. Specifications of the proposed system are given, with calculated preditions of performance. New areas of research made possible by energies in the TeV range are discussed. (GHT)

  20. Radio frequency pulse compression experiments at SLAC (Stanford Linear Accelerator Center)

    SciTech Connect

    Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Miller, R.H.; Nantista, C.; Spalek, G.; Wilson, P.B.

    1991-01-01

    Proposed future positron-electron linear colliders would be capable of investigating fundamental processes of interest in the 0.5--5 TeV beam-energy range. At the SLAC Linear Collider (SLC) gradient of about 20 MV/m this would imply prohibitive lengths of about 50--250 kilometers per linac. We can reduce the length by increasing the gradient but this implies high peak power, on the order of 400-- to 1000-MW at X-Band. One possible way to generate high peak power is to generate a relatively long pulse at a relatively low power and compress it into a short pulse with higher peak power. It is possible to compress before DC to RF conversion, as is done using magnetic switching for induction linacs, or after DC to RF conversion, as is done for the SLC. Using RF pulse compression it is possible to boost the 50-- to 100-MW output that has already been obtained from high-power X-Band klystrons the levels required by the linear colliders. In this note only radio frequency pulse compression (RFPC) is considered.

  1. Radiation Safety System of the B-Factory at the Stanford Linear Accelerator Center

    SciTech Connect

    Liu, James C.

    1998-10-12

    The radiation safety system (RSS) of the B-Factory accelerator facility at the Stanford Linear Accelerator Center (SLAC) is described. The RSS, which is designed to protect people from prompt radiation exposure due to beam operation, consists of the access control system (ACS) and the radiation containment system (RCS). The ACS prevents people from being exposed to the very high radiation levels inside a beamline shielding housing. The ACS consists of barriers, a standard entry module at every entrance, and beam stoppers. The RCS prevents people from being exposed to the radiation outside a shielding housing, due to either normal or abnormal operation. The RCS consists of power limiting devices, shielding, dump/collimator, and an active radiation monitor system. The inter-related system elements for the ACS and RCS, as well as the associated interlock network, are described. The policies and practices in setting up the RSS are also compared with the regulatory requirements.

  2. The generation and acceleration of low emittance flat beams for future linear colliders

    SciTech Connect

    Raubenheimer, Tor O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of γϵx = 3x10-6 m-rad and γϵy = 3x10-8 m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate ``fundamental`` limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  3. The generation and acceleration of low emittance flat beams for future linear colliders

    SciTech Connect

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate fundamental'' limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  4. Physics considerations for laser-plasma linear colliders

    SciTech Connect

    Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

    2010-06-11

    Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

  5. Plasma Lens Backgrounds at a Future Linear Collider

    SciTech Connect

    Weidemann, Achim W

    2002-04-29

    A ''plasma lens'' might be used to enhance the luminosity of future linear colliders. However, its utility for this purpose depends largely on the potential backgrounds that may be induced by the insertion of such a device in the interaction region of the detector.In this note we identify different sources of such backgrounds, calculate their event rates from the elementary interaction processes, and evaluate their effects on the major parts of a hypothetical Next Linear Collider (NLC) detector. For plasma lens parameters which give a factor of seven enhancement of the luminosity, and using the NLC design for beam parameters as a reference, we find that the background yields are fairly high, and require further study and improvements in detector technology to avoid their impact.

  6. Polarized positrons and electrons at the linear collider

    NASA Astrophysics Data System (ADS)

    Moortgat-Pick, G.; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A. A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J. E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Dreiner, H. K.; Eberl, H.; Ellis, J.; Flöttmann, K.; Fraas, H.; Franco-Sollova, F.; Franke, F.; Freitas, A.; Goodson, J.; Gray, J.; Han, A.; Heinemeyer, S.; Hesselbach, S.; Hirose, T.; Hohenwarter-Sodek, K.; Juste, A.; Kalinowski, J.; Kernreiter, T.; Kittel, O.; Kraml, S.; Langenfeld, U.; Majerotto, W.; Martinez, A.; Martyn, H.-U.; Mikhailichenko, A.; Milstene, C.; Menges, W.; Meyners, N.; Mönig, K.; Moffeit, K.; Moretti, S.; Nachtmann, O.; Nagel, F.; Nakanishi, T.; Nauenberg, U.; Nowak, H.; Omori, T.; Osland, P.; Pankov, A. A.; Paver, N.; Pitthan, R.; Pöschl, R.; Porod, W.; Proulx, J.; Richardson, P.; Riemann, S.; Rindani, S. D.; Rizzo, T. G.; Schälicke, A.; Schüler, P.; Schwanenberger, C.; Scott, D.; Sheppard, J.; Singh, R. K.; Sopczak, A.; Spiesberger, H.; Stahl, A.; Steiner, H.; Wagner, A.; Weber, A. M.; Weiglein, G.; Wilson, G. W.; Woods, M.; Zerwas, P.; Zhang, J.; Zomer, F.

    2008-05-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  7. Photoinjectors R&D for future light sources & linear colliders

    SciTech Connect

    Piot, P.; /Northern Illinois U. /Fermilab

    2006-08-01

    Linac-driven light sources and proposed linear colliders require high brightness electron beams. In addition to the small emittances and high peak currents, linear colliders also require spin-polarization and possibly the generation of asymmetric beam in the two transverse degrees of freedom. Other applications (e.g., high-average-power free-electron lasers) call for high duty cycle and/or (e.g., electron cooling) angular-momentum-dominated electron beams. We review ongoing R&D programs aiming at the production of electron beams satisfying these various requirements. We especially discuss R&D on photoemission electron sources (with focus on radiofrequency guns) along with the possible use of emittance-manipulation techniques.

  8. A final focus system for the Next Linear Collider

    SciTech Connect

    Zimmermann, F.; Brown, K.; Emma, P.; Helm, R.; Irwin, J.; Tenenbaum, P.; Wilson, P.

    1995-06-01

    The final focus of the Next Linear Collider (NLC) demagnifies electron and positron beams of 250--750 GeV energy down to a transverse size of about 2.5 {times} 350 nm{sup 2} at the interaction point (IP). The basic layout, momentum bandwidth, vibration tolerances, wakefield effects, and the tunability of the proposed final focus design are discussed. Also a perspective is given on the crab cavity and on effects of the solenoid field in the interaction region.

  9. Some Alignment Considerations for the Next Linear Collider

    SciTech Connect

    Ruland, R

    2004-06-08

    Next Linear Collider type accelerators require a new level of alignment quality. The relative alignment of these machines is to be maintained in an error envelope dimensioned in micrometers and for certain parts in nanometers. In the nanometer domain our terra firma cannot be considered monolithic but compares closer to jelly. Since conventional optical alignment methods cannot deal with the dynamics and cannot approach the level of accuracy, special alignment and monitoring techniques must be pursued.

  10. Simulations of Beam-Beam Interaction in Linear Colliders

    NASA Astrophysics Data System (ADS)

    Chen, Pisin

    1996-05-01

    The single-pass nature of linear colliders demands that the high energy beams be focused to a minuscure dimension at the collision point in order to maximize the luminosity. In turn the collective EM fields of one beam seen by the particles of the oncoming beam is extremely strong. Various nonlinear classical electrodynamic effects (e.g., the disruption) and quantum electrodynamic effects (e.g., beamstrahlung and pair production), or even quantum chromodynamic effects (e.g., minijet events), are thus generated which influence the luminosity and the beam quality, and create severe detector backgrounds problems. While certain aspects of these very important issues can be addressed by analytic means, computer Monte Carlo simulations are indespensible to handle the very nonlinear evolutions of the beams and their collective fields. In this talk we first review the basic physics involved in linear collider beam-beam interaction. Then we describe the computer codes, mainly ABEL and CAIN, that studies these beam-beam effects. This is followed by simulation results on the various collision modes in a future linear collider, including e^+e^-, e^-e^- and γγ collisions.

  11. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.

    SciTech Connect

    ABE,T.; DAWSON,S.; HEINEMEYER,S.; MARCIANO,W.; PAIGE,F.; TURCOT,A.S.; ET AL

    2001-05-03

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.

  12. Linear Collider Physics Resource Book for Snowmass 2001

    SciTech Connect

    Peskin, Michael E

    2001-06-05

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.

  13. Papers from the Ninth International Workshop on Linear Colliders, LC02

    SciTech Connect

    Larsen, A

    2002-10-31

    With great excitement in the international High Energy Physics Community for the physics to be explored at a TeV-Scale linear collider, the Ninth International Workshop on Linear Colliders (LC02) provided an ideal venue to discuss linear collider design concepts.

  14. International Linear Collider Technical Review Committee: Second Report, 2003

    SciTech Connect

    Loew, Gregory

    2003-02-21

    As this report is being published, the international high energy physics (HEP) community finds itself confronting a set of fascinating discoveries and new questions regarding the nature of matter and its fundamental particles and forces. The observation of neutrino oscillations that indicates that neutrinos have mass, measurements of the accelerating expansion of the universe that may be due to dark energy, and evidence for a period of rapid inflation at the beginning of the Big Bang are stimulating the entire field. Looming on the horizon are the potential discoveries of a Higgs particle that may reveal the origin of mass and of a whole family of supersymmetric particles that may be part of the cosmic dark matter. For the HEP community to elucidate these mysteries, new accelerators are indispensable. At this time, after careful deliberations, all three regional organizations of the HEP community (ACFA in Asia, HEPAP in North America, and ECFA in Europe) have reached the common conclusion that the next accelerator should be an electron-positron linear collider with an initial center-of-mass energy of 500 Giga-electronvolts (GeV), later upgradable to higher energies, and that it should be built and operated in parallel with the Large Hadron Collider under construction at CERN. Hence, this second report of the International Linear Collider Technical Review Committee (ILC-TRC) comes at a very timely moment. The report was requested by the International Committee on Future Accelerators (ICFA) in February 2001 to assess the current technical status of electron-positron linear collider designs in the various regions. Note that the ILC-TRC was not asked to concern itself with either cost studies or the ultimate selection process of a machine. This Executive Summary gives a short outline of the genesis of the report, the charge given to the committee, and its organization. It then presents a brief description of four electron-positron linear collider designs at hand. The

  15. Physics and technology of the next linear collider

    SciTech Connect

    1996-06-01

    The authors present the prospects for the next generation of high-energy physics experiments with electron-positron colliding beams. This report summarizes the current status of the design and technological basis of a linear collider of center-of-mass energy 0.5--1.5 TeV, and the opportunities for high-energy physics experiments that this machine is expected to open. The physics goals discussed here are: Standard Model processes and simulation; top quark physics; Higgs boson searches and properties; supersymmetry; anomalous gauge boson couplings; strong WW scattering; new gauge bosons and exotic particles; e{sup {minus}}e{sup {minus}}, e{sup {minus}}{gamma}, and {gamma}{gamma} interactions; and precision tests of QCD.

  16. High pulse power rf sources for linear colliders

    SciTech Connect

    Wilson, P.B.

    1983-09-01

    RF sources with high peak power output and relatively short pulse lengths will be required for future high gradient e/sup +/e/sup -/ linear colliders. The required peak power and pulse length depend on the operating frequency, energy gradient and geometry of the collider linac structure. The frequency and gradient are in turn constrained by various parameters which depend on the beam-beam collision dynamics, and on the total ac wall-plug power that has been committed to the linac rf system. Various rf sources which might meet these requirements are reviewed. Existing source types (e.g., klystrons, gyrotrons) and sources which show future promise based on experimental prototypes are first considered. Finally, several proposals for high peak power rf sources based on unconventional concepts are discussed. These are an FEL source (two beam accelerator), rf energy storage cavities with switching, and a photocathode device which produces an rf current by direct emission modulation of the cathode.

  17. A history of thyratron lifetimes at the Stanford Linear Accelerator Center

    SciTech Connect

    Ficklin, D.B. Jr.

    1994-12-01

    The Stanford Linear Accelerator Center (SLAC) has been in almost continuous operation since the middle 1960s, providing a remarkable opportunity to amass thyratron data. This paper reviews the history of this thyratron usage, focusing primarily on data collected during the last ten years of accelerator operation. There have been two distinct operating conditions during the history of operation at SLAC. Prior to 1985, the fundamental thyratron operating points were 46 kV anode voltage (Epy), 4.2 kA peak current, 3.8 {mu}s equivalent square pulse (esp), with a maximum repetition rate of 360 pulses per second (pps). The accelerator was upgraded during 1985, and the thyratron operating points are now 46 kV Epy, 6.3 kA, 5.4 {mu}s esp, with a maximum repetition rate of 120 pps. The SLAC high-energy physics research program requires that each of the available modulator klystron units provide a stable microwave energy source. Within these constraints, this paper explores historical thyratron lifetimes at SLAC, reviewing the available data to determine how long these thyratrons can be expected to operate before failure currently or recently used in the 243 accelerator modulators.

  18. The development of seismic guidelines for the Stanford Linear Accelerator Center

    SciTech Connect

    Huggins, R.

    1996-08-01

    This paper describes the development of Seismic Guidelines for the Stanford Linear Accelerator Center (SLAC). Although structures have always been built conservatively, SLAC management decided to review and update their seismic guidelines. SLAC is about mid-way between the epicenters of the 8.3 Richter magnitude 1906 San Francisco and the 7.2 Loma Prieta Earthquakes. The west end of the two mile long electron/positron particle accelerator lies a half mile from the large San Andreas Fault. Suggestions for seismic planning processes were solicited from local computer manufacturing firms, universities, and federal laboratories. A Committee of the various stakeholders in SLAC`s seismic planning retained an internationally known Seismic Planning Consultant and reviewed relevant standards and drafted Guidelines. A panel of seismic experts was convened to help define the hazard, site response spectra, probabilistic analysis of shaking, and near field effects. The Facility`s structures were assigned to seismic classes of importance, and an initial assessment of a sample of a dozen buildings conducted. This assessment resulted in emergency repairs to one structure, and provided a {open_quotes}reality basis{close_quotes} for establishing the final Guidelines and Administrative Procedures, and a program to evaluate remaining buildings, shielding walls, tunnels, and other special structures.

  19. RF properties of periodic accelerating structures for linear colliders

    SciTech Connect

    Wang, J.W.

    1989-07-01

    With the advent of the SLAC electron-positron linear collider (SLC) in the 100 GeV center-of-mass energy range, research and development work on even higher energy machines of this type has started in several laboratories in the United States, Europe, the Soviet Union and Japan. These linear colliders appear to provide the only promising approach to studying e/sup /plus//e/sup /minus// physics at center-of-mass energies approaching 1 TeV. This thesis concerns itself with the study of radio frequency properties of periodic accelerating structures for linear colliders and their interaction with bunched beams. The topics that have been investigated are: experimental measurements of the energy loss of single bunches to longitudinal modes in two types of structures, using an equivalent signal on a coaxial wire to simulate the beam; a method of canceling the energy spread created within a single bunch by longitudinal wakefields, through appropriate shaping of the longitudinal charge distribution of the bunch; derivation of the complete transient beam-loading equation for a train of bunches passing through a constant-gradient accelerator section, with application to the calculation and minimization of multi-bunch energy spread; detailed study of field emission and radio frequency breakdown in disk-loaded structures at S-, C- and X-band frequencies under extremely high-gradient conditions, with special attention to thermal effects, radiation, sparking, emission of gases, surface damage through explosive emission and its possible control through RF-gas processing. 53 refs., 49 figs., 9 tabs.

  20. The Optimized Bunch Compressor for the International Linear Collider

    SciTech Connect

    Seletskiy, S.; Tenenbaum, P.; /SLAC

    2007-07-06

    The International Linear Collider (ILC) utilizes a two stage Bunch Compressor (BC) that compresses the RMS bunch length from 9 mm to 200 to 300 micrometers before sending the electron beam to the Main Linac. This paper reports on the new design of the optimized BC wiggler. It was reduced in length by more than 30%. The introduction of nonzero dispersion slope in the BC wigglers enabled them to generate the required compression while having a small SR emittance growth, a tunability range of over a factor of 2 in each wiggler, and less than 3% RMS energy spread throughout the entire system.

  1. Physics at the [Formula: see text] linear collider.

    PubMed

    Moortgat-Pick, G; Baer, H; Battaglia, M; Belanger, G; Fujii, K; Kalinowski, J; Heinemeyer, S; Kiyo, Y; Olive, K; Simon, F; Uwer, P; Wackeroth, D; Zerwas, P M; Arbey, A; Asano, M; Bagger, J; Bechtle, P; Bharucha, A; Brau, J; Brümmer, F; Choi, S Y; Denner, A; Desch, K; Dittmaier, S; Ellwanger, U; Englert, C; Freitas, A; Ginzburg, I; Godfrey, S; Greiner, N; Grojean, C; Grünewald, M; Heisig, J; Höcker, A; Kanemura, S; Kawagoe, K; Kogler, R; Krawczyk, M; Kronfeld, A S; Kroseberg, J; Liebler, S; List, J; Mahmoudi, F; Mambrini, Y; Matsumoto, S; Mnich, J; Mönig, K; Mühlleitner, M M; Pöschl, R; Porod, W; Porto, S; Rolbiecki, K; Schmitt, M; Serpico, P; Stanitzki, M; Stål, O; Stefaniak, T; Stöckinger, D; Weiglein, G; Wilson, G W; Zeune, L; Moortgat, F; Xella, S; Bagger, J; Brau, J; Ellis, J; Kawagoe, K; Komamiya, S; Kronfeld, A S; Mnich, J; Peskin, M; Schlatter, D; Wagner, A; Yamamoto, H

    A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  2. Physics at the e⁺e⁻ linear collider

    DOE PAGES

    Moortgat-Picka, G.; Kronfeld, A. S.

    2015-08-14

    A comprehensive review of physics at an e⁺e⁻ linear collider in the energy range of √s = 92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  3. Beam-Based Feedback System for the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Ivanov, Valentin

    The algorithms and computer codes for linac Feedback system were developed at SLAC during 1991-2004. The efficiency of that system have been demonstrated for the SLC, CLIC, TESLA and NLC projects. International Linear Collider (ILC) has its own features. Ground motion (GM) oscillations play a dominant role here. It forced to implement a new version of the Linac Feedback Simulation Code based on the previous developments. A set of benchmark tests and realistic simulations for the whole ILC structure have been performed. The effects of different GM models, BPM resolution, time intervals, initial misalignments, a dispersion-free steering (DFS), and a quad jitter have been studied.

  4. Staging optics considerations for a plasma wakefield acceleration linear collider

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.; Allen, J. M.; Delahaye, J. P.; Hogan, M. J.; Joshi, C.; Muggli, P.; Raubenheimer, T. O.; Yakimenko, V.

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  5. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    NASA Astrophysics Data System (ADS)

    Jeans, D.; Brient, J.-C.; Reinhard, M.

    2012-06-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  6. Linear accelerators for TeV colliders. Revision

    SciTech Connect

    Wilson, P.B.

    1985-10-01

    The basic scaling relations for important linear collider design parameters are introduced. Some of the basic concepts concerning the design of accelerating structures are presented, and breakdown limitations are discussed. Rf power sources are considered. Some of the key concepts of wakefield accelerators are discussed, and some examples of wake fields for typical linac structures are presented. Some general concepts concerning emittance, and the limitations on the emittance that can be obtained from linac guns and damping rings are discussed. 49 refs., 15 figs. (LEW)

  7. Coherent pair creation as a positron source for linear colliders

    SciTech Connect

    Chen, P. ); Palmer, R.B. Brookhaven National Lab., Upton, NY )

    1992-11-01

    We propose a positron source for future linear colliders which uses the mechanism of coherent pair creation process from the collision of a high energy electron beam and a monochromatic photon beam. We show that there is a sharp spike in the pair-produced positron energy spectrum at an energy much lower than the primary beam energy. The transverse emittance is damped'', yielding final positrons with lower normalized emittance than the initial electrons. Numerical examples invoking conventional lasers and Free Electron Lasers (FEL) for the photon beams are considered.

  8. Coherent pair creation as a positron source for linear colliders

    SciTech Connect

    Chen, P.; Palmer, R.B. |

    1992-11-01

    We propose a positron source for future linear colliders which uses the mechanism of coherent pair creation process from the collision of a high energy electron beam and a monochromatic photon beam. We show that there is a sharp spike in the pair-produced positron energy spectrum at an energy much lower than the primary beam energy. The transverse emittance is ``damped``, yielding final positrons with lower normalized emittance than the initial electrons. Numerical examples invoking conventional lasers and Free Electron Lasers (FEL) for the photon beams are considered.

  9. Approaches to Beam Stabilization in X-Band Linear Colliders

    SciTech Connect

    Frisch, Josef; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Raubenheimer, Tor; Seryi, Andrei; Burrow, Philip; Molloy, Stephen; White, Glen; /Queen Mary U. of London

    2006-09-05

    In order to stabilize the beams at the interaction point, the X-band linear collider proposes to use a combination of techniques: inter-train and intra-train beam-beam feedback, passive vibration isolation, and active vibration stabilization based on either accelerometers or laser interferometers. These systems operate in a technologically redundant fashion: simulations indicate that if one technique proves unusable in the final machine, the others will still support adequate luminosity. Experiments underway for all of these technologies have already demonstrated adequate performance.

  10. An adaptive noise cancelling system used for beam control at the Stanford Linear Accelerator Center

    SciTech Connect

    Himel, T.; Allison, S.; Grossberg, P.; Hendrickson, L.; Sass, R.; Shoaee, H.

    1993-06-01

    The SLAC Linear Collider now has a total of twenty-four beam-steering feedback loops used to keep the electron and positron beams on their desired trajectories. Seven of these loops measure and control the same beam as it proceeds down the linac through the arcs to the final focus. Ideally by each loop should correct only for disturbances that occur between it and the immediate upstream loop. In fact, in the original system each loop corrected for all upstream disturbances. This resulted in undesirable over-correction and ringing. We added MIMO (Multiple Input Multiple Output) adaptive noise cancellers to separate the signal we wish to correct from disturbances further upstream. This adaptive control improved performance in the 1992 run.

  11. SLAC electron-positron colliders: present and future

    SciTech Connect

    Richter, B.

    1986-09-01

    Stanford University's colliding beam program is outlined, including the SPEAR and PEP colliders and the SLAC linear collider. The accelerator developments to be pursued on these facilities are discussed, as well as advanced accelerator research and development. The items covered in the advanced accelerator research include beamstrahlung, stability requirements, breakdown limits, and power sources. (LEW)

  12. Low-level RF signal processing for the Next Linear Collider Test Accelerator

    SciTech Connect

    Holmes, S.; Ziomek, C.; Adolphsen, C.

    1997-05-12

    In the X-band accelerator system for the Next Linear Collider Test Accelerator (NLCTA), the Low Level RF (LLRF) drive system must be very phase stable, but concurrently, be very phase agile. Phase agility is needed to make the Stanford Linear Doubler (SLED) power multiplier systems Energy work and to shape the RF waveforms to compensate beam loading in the accelerator sections. Similarly, precision fast phase and amplitude monitors are required to view, track, and feed back on RF signals at various locations throughout the system. The LLRF is composed of several subsystems: the RF Reference System generates and distributes a reference 11.424 GHz signal to all of the RF stations, the Signal Processing Chassis creates the RF waveforms with the appropriate phase modulation, and the Phase Detector Assembly measures the amplitude and phase of monitor3ed RF signals. The LLRF is run via VXI instrumentation. These instruments are controlled using HP VEE graphical programming software. Programs have been developed to shape the RF waveform, calibrate the phase modulators and demodulators, and display the measured waveforms. This paper describes these and other components of the LLRF system.

  13. Fourth standard model family neutrino at future linear colliders

    SciTech Connect

    Ciftci, A.K.; Ciftci, R.; Sultansoy, S.

    2005-09-01

    It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac ({nu}{sub 4}) and Majorana (N{sub 1}) neutrinos at future linear colliders with {radical}(s)=500 GeV, 1 TeV, and 3 TeV are considered. The cross section for the process e{sup +}e{sup -}{yields}{nu}{sub 4}{nu}{sub 4}(N{sub 1}N{sub 1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels ({nu}{sub 4}(N{sub 1}){yields}{mu}{sup {+-}}W{sup {+-}}) provide cleanest signature at e{sup +}e{sup -} colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at {radical}(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures.

  14. Physics with e{sup +}e{sup -} Linear Colliders

    SciTech Connect

    Barklow, Timothy L

    2003-05-05

    We describe the physics potential of e{sup +}e{sup -} linear colliders in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e{sup +}e{sup -} linear colliders and the high-precision with which the properties of particles and their interactions can be analyzed, define an exciting physics programme complementary to hadron machines.

  15. Isolating Non-Linear Signatures of Two Colliding Black Holes

    NASA Astrophysics Data System (ADS)

    Garrido, Rita

    2012-03-01

    The early and late stages of the binary-black-hole collision can be approximated by perturbations to a background, solutions to linearization of the Einstein's equations. However, once the two black holes are within several radii of each other, and ultimately collide, the solution is intrinsically non-linear. The main objective is to intuitively understand the non-linear portion of the solution to the Einstein equation by performing simulations of such mergers. I will identify the non-linear regime through a process of elimination. The early stages of the coalescence are well known by post-Newtonian theory. The end state is approximated very well by perturbation theory, the waveforms decay as a damped sinusoidal with a frequency and decay time uniquely determined by the mass and spin of the final black hole in theory. I will isolate the non-linear portion of the waveform by fitting the early stages to the post-Newtonian solution and the late stages to the perturbative solution. What remains is the non-linear region. Once isolated, we will search through the physics parameter space of the binary black holes for bulk features. These features can then be used to fine-tune the search algorithms hunting for these collisions with LIGO.

  16. International Linear Collider Technical Review Committee Report, 1995

    SciTech Connect

    1995-12-01

    This 1995 report of the International Linear Collider Technical Review Committee is the first attempt to gather in one document the current status of all major e{sup +}e{sup {minus}} linear collider projects in the world. The report is the result of a collaborative effort of scientists from many laboratories working together over a period of about one year. A short description of the organization, origins and history of the report is given below. To get an idea of the organization, the reader should first refer to the Table of Contents. Chapter 1 is an introduction and general overview of the respective 500 GeV c.m. energy machines. In contrast, Chapter 2, cutting across individual machine boundaries, gives a comparative description and discussion of all the major machine sub-systems as well as particle physics experimentation, showing where these subjects stand today and what additional work needs to be done in the next few years to reach the point where complete design reports can be prepared. Chapter 3 describes the various paths to energy upgrades, and other experimental options ({gamma}{gamma}, e{sup {minus}}e{sup {minus}}, etc.). Chapter 4 gives a short status report of the machine experiments and test facilities being built in the world. Chapter 5 outlines current and other possible areas of collaboration and finally., Chapter 6 summarizes our principal conclusions.

  17. Linear polarization of gluons and photons in unpolarized collider experiments

    SciTech Connect

    Pisano, Cristian; Boer, Daniël; Brodsky, Stanley J.; Buffing, Maarten G. A.; Mulders, Piet J.

    2013-10-01

    We study azimuthal asymmetries in heavy quark pair production in unpolarized electron-proton and proton-proton collisions, where the asymmetries originate from the linear polarization of gluons inside unpolarized hadrons. We provide cross section expressions and study the maximal asymmetries allowed by positivity, for both charm and bottom quark pair production. The upper bounds on the asymmetries are shown to be very large depending on the transverse momentum of the heavy quarks, which is promising especially for their measurements at a possible future Electron-Ion Collider or a Large Hadron electron Collider. We also study the analogous processes and asymmetries in muon pair production as a means to probe linearly polarized photons inside unpolarized protons. For increasing invariant mass of the muon pair the asymmetries become very similar to the heavy quark pair ones. Finally, we discuss the process dependence of the results that arises due to differences in color flow and address the problem with factorization in case of proton-proton collisions.

  18. The International Linear Collider Technical Design Report - Volume 4: Detectors

    SciTech Connect

    Behnke, Ties

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  19. The International Linear Collider Technical Design Report - Volume 2: Physics

    SciTech Connect

    Baer, Howard; Barklow, Tim; Fujii, Keisuke; Gao, Yuanning; Hoang, Andre; Kanemura, Shinya; List, Jenny; Logan, Heather E.; Nomerotski, Andrei; Perelstein, Maxim; Peskin, Michael E.; Pöschl, Roman; Reuter, Jürgen; Riemann, Sabine; Savoy-Navarro, Aurore; Tait, Tim P.; Yu, Jaehoon

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  20. Ingot Nb based SRF technology for the International Linear Collider

    SciTech Connect

    Yamamoto, Akira; Yamanaka, Masashi; Myneni, Ganapati

    2015-12-04

    The International Linear Collider (ILC) is anticipated to be built as the next energy-frontier electron-positron colliding accelerator with a global effort in particle physics. Niobium based Superconducting Radio-Frequency (SRF) technology is required to provide beam-accelerating structure with elliptical cavity strings to linearly accelerate the electron and positron beams up to 250 GeV and to realize a center-of-mass energy of 500 GeV in collisions. The accelerator design and R&D efforts progressed, and the ILC Technical Design Report (ILC-TDR) was published in 2013. Niobium will take a critical role to generate electric field gradient with a frequency of 1.3 GHz, for accelerating the beam with the best efficiency, in energy balance, using RF superconductivity. This paper discusses a technical approach to provide Nb material (ingot) and thin disks for producing the elliptical cavity structure, with direct slicing from Nb ingot having sufficiently optimized purity and residual resistance ration (RRR) necessary for the ILC SRF cavities.

  1. Next Linear Collider Test Accelerator conceptual design report

    SciTech Connect

    Not Available

    1993-08-01

    This document presents the scientific justification and the conceptual design for the {open_quotes}Next Linear Collider Test Accelerator{close_quotes} (NLCTA) at SLAC. The goals of the NLCTA are to integrate the new technologies of X-band accelerator structures and rf systems being developed for the Next Linear Collider, to measure the growth of the {open_quotes}dark current{close_quotes} generated by rf field emission in the accelerator, to demonstrate multi-bunch beam-loading energy compensation and suppression of higher-order deflecting modes, and to measure any transverse components of the accelerating field. The NLCTA will be a 42-meter-long beam line consisting, consecutively, of a thermionic-cathode gun, an X-band buncher, a magnetic chicane, six 1.8-meter-long sections of 11.4-GHz accelerator structure, and a magnetic spectrometer. Initially, the unloaded accelerating gradient will be 50 MV/m. A higher-gradient upgrade option eventually would increase the unloaded gradient to 100 MV/m.

  2. Calculation of detector backgrounds at TeV linear colliders

    SciTech Connect

    Himel, T.

    1988-11-01

    It is necessary to carefully design masks and beam lines to prevent the high energy physics detector from being inundated with background particles from a high energy linear collider. Presented here are preliminary calculations on two of the three expected backgrounds: photons from synchrotron radiation produced in the final focus quadrupoles, and electrons which lose energy due to bremsstrahlung and are then bent into a mask or quadrupole by the field of the opposite beam. The former can be controlled with proper masking. The latter may pose a problem, so further calculations are needed. Work was also done on the third expected source of background: electrons in the tail of the beam which hit masks where showers are made whose products enter the detector. This work was very preliminary and is not included in this write-up. All the calculations here are based on the 1 TeV center-of-mass linear collider design of R. Palmer and the final focus design of K. Oide which can be found in these proceedings. Extrapolations to other accelerator designs should be straightforward.

  3. Top Quark Anomalous Couplings at the International Linear Collider

    SciTech Connect

    Devetak, Erik; Nomerotski, Andrei; Peskin, Michael; /SLAC

    2011-08-15

    We present a study of the experimental determination of the forward-backward asymmetry in the process e{sup +}e{sup -} {yields} t{bar t} and in the subsequent t {yields} Wb decay, studied in the context of the International Linear Collider. This process probes the elementary couplings of the top quark to the photon, the Z and the W bosons at a level of precision that is difficult to achieve at hadron colliders. Measurement of the forward-backward asymmetry requires excellent b quark identification and determination of the quark charge. The study reported here is performed in the most challenging all-hadronic channel e{sup +}e{sup -} {yields} b{bar b}q{bar q}q{bar q}. It includes realistic details of the experimental environment, a full Monte Carlo simulation of the detector, based on the Silicon Detector concept, and realistic event reconstruction. The forward-backward asymmetries are determined to a precision of approximately 1% for each of two choices of beam polarization. We analyze the implications for the determination of the t{bar t}Z and Wt{bar b} couplings.

  4. Higgs physics at the CLIC electron-positron linear collider

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abusleme, A.; Afanaciev, K.; Alipour Tehrani, N.; Balázs, C.; Benhammou, Y.; Benoit, M.; Bilki, B.; Blaising, J.-J.; Boland, M. J.; Boronat, M.; Borysov, O.; Božović-Jelisavčić, I.; Buckland, M.; Bugiel, S.; Burrows, P. N.; Charles, T. K.; Daniluk, W.; Dannheim, D.; Dasgupta, R.; Demarteau, M.; Díaz Gutierrez, M. A.; Eigen, G.; Elsener, K.; Felzmann, U.; Firlej, M.; Firu, E.; Fiutowski, T.; Fuster, J.; Gabriel, M.; Gaede, F.; García, I.; Ghenescu, V.; Goldstein, J.; Green, S.; Grefe, C.; Hauschild, M.; Hawkes, C.; Hynds, D.; Idzik, M.; Kačarević, G.; Kalinowski, J.; Kananov, S.; Klempt, W.; Kopec, M.; Krawczyk, M.; Krupa, B.; Kucharczyk, M.; Kulis, S.; Laštovička, T.; Lesiak, T.; Levy, A.; Levy, I.; Linssen, L.; Lukić, S.; Maier, A. A.; Makarenko, V.; Marshall, J. S.; Martin, V. J.; Mei, K.; Milutinović-Dumbelović, G.; Moroń, J.; Moszczyński, A.; Moya, D.; Münker, R. M.; Münnich, A.; Neagu, A. T.; Nikiforou, N.; Nikolopoulos, K.; Nürnberg, A.; Pandurović, M.; Pawlik, B.; Perez Codina, E.; Peric, I.; Petric, M.; Pitters, F.; Poss, S. G.; Preda, T.; Protopopescu, D.; Rassool, R.; Redford, S.; Repond, J.; Robson, A.; Roloff, P.; Ros, E.; Rosenblat, O.; Ruiz-Jimeno, A.; Sailer, A.; Schlatter, D.; Schulte, D.; Shumeiko, N.; Sicking, E.; Simon, F.; Simoniello, R.; Sopicki, P.; Stapnes, S.; Ström, R.; Strube, J.; Świentek, K. P.; Szalay, M.; Tesař, M.; Thomson, M. A.; Trenado, J.; Uggerhøj, U. I.; van der Kolk, N.; van der Kraaij, E.; Vicente Barreto Pinto, M.; Vila, I.; Vogel Gonzalez, M.; Vos, M.; Vossebeld, J.; Watson, M.; Watson, N.; Weber, M. A.; Weerts, H.; Wells, J. D.; Weuste, L.; Winter, A.; Wojtoń, T.; Xia, L.; Xu, B.; Żarnecki, A. F.; Zawiejski, L.; Zgura, I.-S.

    2017-07-01

    The Compact Linear Collider (CLIC) is an option for a future {e+}{e-} collider operating at centre-of-mass energies up to 3 {TeV} , providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: √{s} = 350 {GeV} , 1.4 and 3 {TeV} . The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e+e- → ZH) and {W} {W} -fusion (e+e- → H ν_{!e} {\\bar{{ν }}_{!e} ), resulting in precise measurements of the production cross sections, the Higgs total decay width Γ_{{H}}, and model-independent determinations of the Higgs couplings. Operation at √{s} > 1 {TeV} provides high-statistics samples of Higgs bosons produced through {W} {W} -fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes {e+}{e-} → t {\\bar{t}} {H} and {e+}{e-} → {H} {H} {{ν}}_{!e} {\\bar{{ν }}}_{!e} allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

  5. A database driven fast feedback system for the Stanford linear collider

    NASA Astrophysics Data System (ADS)

    Rouse, F.; Castillo, S.; Allison, S.; Gromme, T.; Hendrickson, L.; Himel, T.; Krauter, K.; Sass, R.; Shoaee, H.

    1992-06-01

    A new feedback system has been developed that stabilizes the SLC beams at many locations. The feedback loops are designed to sample and correct at the repetition rate of the accelerator. Each loop can be distributed across several INTEL 80386 microprocessors that control the SLC hardware. A new communications system, KISNET, has been developed to pass data between the microprocessors at this rate. The software is written using the state space formalism of digital control theory and is database driven. This allows a new feedback loop to be implemented by setting up the on-line database and perhaps installing a communications link. Eighteen such loops have now been implemented and this has measurably improved the performance of the accelerator.

  6. Bunch lengthening calculations for the SLC (Stanford Linear Collider) damping rings

    SciTech Connect

    Bane, K.L.F.; Ruth, R.D.

    1989-03-01

    The problem of bunch lengthening in electron storage rings has been treated by many people, and there have been many experiments. In the typical experiment, the theory is used to determine the impedance of the ring. What has been lacking thus far, however, is a calculation of bunch lengthening that uses a carefully calculated ring impedance (or wakefield). In this paper we begin by finding the potential well distortion due to some very simple impedance models, in order to illustrate different types of bunch lengthening behavior. We then give a prescription for extending potential well calculations into the turbulent regime once the threshold is known. Then finally, using the wakefield calculated for the SLC damping rings, combined with the measured value of the threshold, we calculate bunch lengthening for the damping rings, and compare the results with the measurements. 9 refs., 6 figs.

  7. A CDU-based data acquisition system for the energy spectrometer at the Stanford Linear Collider

    SciTech Connect

    Briggs, D.D.; Tinsman, J.E.; Rouse, F.; von Zanthier, C.

    1988-10-01

    We describe a system using the Calorimetry Data Unit (a 32-channel multisample analog integrated circuit) to read out the charge ejected by secondary emission of a synchrotron beam from wires lying in its path. The wires comprise the Wire-Imaging Synchrotron Radiation Detector (WISRD) in the SLC Extraction-Line Spectrometer. The primary module in the system is a board containing 24 channels of charge sensitive amplification, shaping, sampling, multiplexing and digitization. This board also provides a fast analog measure of the charge distribution across the wires. We discuss the design and performance of this system. 4 refs., 5 figs.

  8. Report on the international workshop on next generation linear colliders

    SciTech Connect

    Ruth, R.D.

    1989-05-01

    Many laboratories around the world have begun vigorous research programs on a next generation linear collider (NLC). However, it has been recognized that the research towards NLC is beyond the capabilities of any one laboratory presently. This workshop was organized to begin a series of workshops that address this problem. Specifically, the main goals of the workshop were to discuss research programs of the various laboratories around the world, to identify common areas of interest in the various NLC designs, and finally to advance these programs by collaboration. The particular topics discussed briefly in this paper are: parameters, rf power, structures, final focus, beam dynamics, damping rings, and instrumentation. 2 refs., 3 figs., 6 tabs.

  9. Bunch compression for the TLC (TeV Linear Collider)

    SciTech Connect

    Kheifets, S.A.; Ruth, R.D.; Fieguth, T.H.

    1989-08-01

    The length of the bunch for the TeV Linear Collider (TLC) must be decreased, while simultaneously preserving its small transverse emittance. To achieve a short bunch length (/approximately/ 70 /mu/m) needed for the TLC, it is necessary to use two-step compression of a 5 mm bunch which is extracted from the damping ring. The corresponding increase of momentum spread requires that chromatic aberrations of the transport line must be corrected at least up to second order. This goal is achieved by building the compressor out of second-order achromats, which also eliminates geometric aberrations. The utilization of flat beams restricts the design to an uncoupled, mid-plane symmetric transport line. The first compression is performed by a conventional compressor. For the second, it is possible to use a 180/degree/ bend. The emittance growth due to the synchrotron radiation is kept to several percent. 10 refs., 3 tabs.

  10. Beam Instrumentation Challenges at the International Linear Collider

    SciTech Connect

    Tenenbaum, Peter; /SLAC

    2006-05-16

    The International Linear Collider (ILC) is a proposed facility for the study of high energy physics through electron-positron collisions at center-of-mass energies up to 500 GeV and luminosities up to 2 x 10{sup 34} cm{sup -2} sec{sup -1}. Meeting the ILC's goals will require an extremely sophisticated suite of beam instruments for the preservation of beam emittance, the diagnosis of optical errors and mismatches, the determination of beam properties required for particle physics purposes, and machine protection. The instrumentation foreseen for the ILC is qualitatively similar to equipment in use at other accelerator facilities in the world, but in many cases the precision, accuracy, stability, or dynamic range required by the ILC exceed what is typically available in today's accelerators. In this paper we survey the beam instrumentation requirements of the ILC and describe the system components which are expected to meet those requirements.

  11. Dark Current Simulation for Linear Collider Accelerator Structures

    SciTech Connect

    Ng, C.K.; Li, Z.; Zhan, X.; Srinivas, V.; Wang, J.; Ko, K.; /SLAC

    2011-08-25

    The dynamics of field-emitted electrons in the traveling wave fields of a constant gradient (tapered) disk-loaded waveguide is followed numerically. Previous simulations have been limited to constant impedance (uniform) structures for sake of simplicity since only the fields in a unit cell is needed. Using a finite element field solver on a parallel computer, the fields in the tapered structure can now be readily generated. We will obtain the characteristics of the dark current emitted from both structure types and compare the two results with and without the effect of secondary electrons. The NLC and JLC detuned structures are considered to study if dark current may pose a problem for high gradient acceleration in the next generation of Linear Colliders.

  12. Reliability and Maintainability Issues for the Next Linear Collider

    SciTech Connect

    Wilson, Zane J.; Gold, Saul L.; Koontz, Ron F.; Lavine, Ted L.; /SLAC

    2011-08-26

    Large accelerators for high energy physics research traditionally have been designed using informal best design, engineering, and management practices to achieve acceptable levels of operational availability. However, the Next Linear Collider(NLC) project presents a particular challenge for operational availability due to the unprecedented size and complexity of the accelerator systems required to achieve the physics goals of high center-of-mass energy and high luminosity. Formal reliability and maintainability analysis, design, and implementation will be required to achieve acceptable operational availability for the high energy physics research program. This paper introduces some of the basic concepts of reliability analysis and applies them to the 2.6-cm microwave power system of the two 10-km-long, 250-GeV linacs that are currently proposed for the NLC design.

  13. High-yield positron systems for linear colliders

    SciTech Connect

    Clendenin, J.E.

    1989-04-01

    Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for every electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.

  14. Limitation of linear colliders from transverse rf deflections

    SciTech Connect

    Seeman, J.T.

    1987-01-01

    Offaxis beam trajectories in a linear collider produce transverse wakefield and chromatic effects which cause emittance enlargement. One cause for non-centered trajectories in the accelerating structures is radial rf fields which produce transverse deflections. Static deflections can be compensated by static dipole magnetic fields. However, fluctuations of the rf fields cause variations in the deflections which must be managed or limited. Given the level of fluctuation of the phase and amplitude of an rf system, a limit on the allowable rf deflection can be calculated. Parameters, such as the beam emittance, lattice design, rf wavelength and the initial and final beam energies, influence the tolerances. Two tolerances are calculated: (1) one assumes that the wakefields are completely controlled, and that chromatic effects are the only enlarging mechanism (optimistic), and (2) the other assumes the limit is due to transverse wakefields without the aid of Landau damping (pessimistic).

  15. Fermionic effective operators and Higgs production at a linear collider

    SciTech Connect

    Kile, Jennifer; Ramsey-Musolf, Michael J.

    2007-09-01

    We study the possible contributions of dimension six operators containing fermion fields to Higgs production at a 500 GeV or 1 TeV e{sup +}e{sup -} linear collider. We show that--depending on the production mechanism--the effects of such operators can be kinematically enhanced relative to standard model (SM) contributions. We determine constraints on the operator coefficients implied by existing precision electroweak measurements and the scale of neutrino mass. We find that even in the presence of such constraints, substantial deviations from SM Higgs production cross sections are possible. We compare the effects of fermionic operators with those associated with purely bosonic operators that have been previously discussed in the literature.

  16. A bunch compressor for the Next Linear Collider

    SciTech Connect

    Emma, P.; Raubenheimer, T.; Zimmermann, F.

    1995-06-01

    A bunch compressor design for the Next Linear Collider (NLC) is described. The compressor reduces the bunch length by a factor of 40 in two stages. The first stage at 2 GeV consists of an rf section and a wiggler. The second stage at 10 GeV is formed by an arc, an rf section, and a chicane. The final bunch phase is insensitive to initial phase errors and to beam loading in the intermediate S-band pre-linac. Residual longitudinal aberrations of the system are partially compensated. The bunch compressor encompasses a solenoid spin-rotator system at 2 GeV that allows complete control over the spin orientation.

  17. Note on the SC Linear Collider TESLA Cavity Design

    NASA Astrophysics Data System (ADS)

    Sekutowicz, J.; Proch, D.; Tang, C.

    1997-05-01

    The experience we have gained over the last few years from experiments with superconducting cavities for the TESLA test facility justifies a revision of the design decided almost five years ago. The proposed new design takes advantage of the high quality factor Q0 > 10^10 and the low electron emission as demonstrated by some tested cavities. The main aim of the new design is to simplify the production and preparation of sc cavities and thus to reduce the cost of the linear collider. The new cavity shape has an enlarged iris diameter with the following advantages: significant lower loss factors, simplified and less expensive scheme for the HOM damping, suitability of hydroforming and higher stability of the field profile.

  18. Parallel computation of transverse wakes in linear colliders

    SciTech Connect

    Zhan, Xiaowei; Ko, Kwok

    1996-11-01

    SLAC has proposed the detuned structure (DS) as one possible design to control the emittance growth of long bunch trains due to transverse wakefields in the Next Linear Collider (NLC). The DS consists of 206 cells with tapering from cell to cell of the order of few microns to provide Gaussian detuning of the dipole modes. The decoherence of these modes leads to two orders of magnitude reduction in wakefield experienced by the trailing bunch. To model such a large heterogeneous structure realistically is impractical with finite-difference codes using structured grids. The authors have calculated the wakefield in the DS on a parallel computer with a finite-element code using an unstructured grid. The parallel implementation issues are presented along with simulation results that include contributions from higher dipole bands and wall dissipation.

  19. A conventional positron source for international linear collider

    NASA Astrophysics Data System (ADS)

    Omori, Tsunehiko; Takahashi, Tohru; Riemann, Sabine; Gai, Wei; Gao, Jie; Kawada, Shin-ichi; Liu, Wanming; Okuda, Natsuki; Pei, Guoxi; Urakawa, Junji; Ushakov, Andriy

    2012-04-01

    A possible solution to realize a conventional positron source driven by a several-GeV electron beam for the International Linear Collider is proposed. A 300 Hz electron linac is employed to create positrons with stretching pulse length in order to cure target thermal load. ILC requires about 2600 bunches in a train which pulse length is 1 ms. Each pulse of the 300 Hz linac creates about 130 bunches, then 2600 bunches are created in 63 ms. Optimized parameters such as drive beam energy, beam size, and target thickness, are discussed assuming a L-band capture system to maximize the capture efficiency and to mitigate the target thermal load. A slow rotating tungsten disk is employed as positron generation target.

  20. Super Strong Permanent Magnet Quadrupole for a Linear Collider

    SciTech Connect

    Mihara, Takanori

    2004-02-19

    The field strength generated by permanent magnets has been further extended by the introduction of saturated iron. A permanent magnet quadrupole (PMQ) lens with such saturated iron is one of the candidates for the final focus lens for an e{sup +}e{sup -} Linear Collider accelerator, because of its compactness and low power consumption. The first prototype of the PMQ has been fabricated and demonstrated to have an integrated strength of 28.5T with an overall length of 10 cm and a 7mm bore radius. Two drawbacks should be considered: its negative temperature coefficient of field strength and its fixed strength. A thermal compensation material is being tested to cure the first problem. The other problem may be solved by rotating sectioned magnet bricks, but that may lead to movement of the magnetic center and introduction of multipoles beyond some strict requirements.

  1. Relative Humidity in Limited Streamer Tubes for Stanford Linear Accelerator Center's BaBar Detector

    SciTech Connect

    Lang, M.I.; Convery, M.; Menges, W.; /Queen Mary, U. of London

    2005-12-15

    The BABAR Detector at the Stanford Linear Accelerator Center studies the decay of B mesons created in e{sup +}e{sup -} collisions. The outermost layer of the detector, used to detect muons and neutral hadrons created during this process, is being upgraded from Resistive Plate Chambers (RPCs) to Limited Streamer Tubes (LSTs). The standard-size LST tube consists of eight cells, where a silver-plated wire runs down the center of each. A large potential difference is placed between the wires and ground. Gas flows through a series of modules connected with tubing, typically four. LSTs must be carefully tested before installation, as it will be extremely difficult to repair any damage once installed in the detector. In the testing process, the count rate in most modules showed was stable and consistent with cosmic ray rate over an approximately 500 V operating range between 5400 to 5900 V. The count in some modules, however, was shown to unexpectedly spike near the operation point. In general, the modules through which the gas first flows did not show this problem, but those further along the gas chain were much more likely to do so. The suggestion was that this spike was due to higher humidity in the modules furthest from the fresh, dry inflowing gas, and that the water molecules in more humid modules were adversely affecting the modules' performance. This project studied the effect of humidity in the modules, using a small capacitive humidity sensor (Honeywell). The sensor provided a humidity-dependent output voltage, as well as a temperature measurement from a thermistor. A full-size hygrometer (Panametrics) was used for testing and calibrating the Honeywell sensors. First the relative humidity of the air was measured. For the full calibration, a special gas-mixing setup was used, where relative humidity of the LST gas mixture could be varied from almost dry to almost fully saturated. With the sensor calibrated, a set of sensors was used to measure humidity vs. time

  2. International Linear Collider-A Technical Progress Report

    SciTech Connect

    Elsen, Eckhard; Harrison, Mike; Hesla, Leah; Ross, Marc; Royole-Degieux, Perrine; Takahashi, Rika; Walker, Nicholas; Warmbein, Barbara; Yamamoto, Akira; Yokoya, Kaoru; Zhang, Min; /Beijing, Inst. High Energy Phys.

    2011-11-04

    The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

  3. Strategies for using GAPDs as tracker detectors in future linear colliders

    NASA Astrophysics Data System (ADS)

    Vilella, Eva; Alonso, Oscar; Vilà, Anna; Diéguez, Angel

    2016-04-01

    This work presents the development of a Geiger-mode Avalanche PhotoDiode pixel detector in standard CMOS technologies aimed at the vertex and tracker regions of future linear colliders, i.e. the International Linear Collider and the Compact LInear Collider. In spite of all the advantages that characterize this technology, GAPD detectors suffer from noise pulses that cannot be distinguished from real events and low fill-factors that reduce the detection efficiency. To comply with the specifications imposed by the next generation of particle colliders, solutions to minimize the intrinsic noise pulses and increase the fill-factor have been thoroughly investigated.

  4. High Power Klystrons: Theory and Practice at the Stanford Linear Accelerator CenterPart I

    SciTech Connect

    Caryotakis, G.

    2004-12-15

    This is Part I of a two-part report on design and manufacturing methods used at SLAC to produce accelerator klystrons. Chapter 1 begins with the history and applications for klystrons, in both of which Stanford University was extensively involved. The remaining chapters review the theory of klystron operation, derive the principal formulae used in their design, and discuss the assumptions that they involve. These formulae are subsequently used in small-signal calculations of the frequency response of a particular klystron, whose performance is also simulated by two different computer codes. The results of calculations and simulations are compared to the actual performance of the klystron.

  5. High Reliability Prototype Quadrupole for the Next Linear Collider

    NASA Astrophysics Data System (ADS)

    Spencer, C. M.

    2001-01-01

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85/ overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20/ and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20/ adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  6. High Reliability Prototype Quadrupole for the Next Linear Collider

    SciTech Connect

    Spencer, Cherrill M

    2001-01-04

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85% overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20% and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  7. Adjustable permanent quadrupoles for the next linear collider

    SciTech Connect

    James T. Volk et al.

    2001-06-22

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to {minus}20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnets have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype.

  8. Acclerator R&D for a Linear Collider

    SciTech Connect

    Rubin, D.L.; Dugan, G.; Gibbons, L.; Palmer, M.; Patterson, R.; Sagan, D.; Smith, J.C.; Tenenbaum, P.; Woodley, M.; Fields, J.; Urban, J.

    2008-11-26

    The goal of this project was to perform simulations of beam transport in linear colliders, with an emphasis on emittance dilution, spin polarization transport, and development and testing of beam based tuning algorithms. Our simulations are based on an existing object-oriented particle-tracking library, Bmad. To facilitate the efficient development of simulations, an accelerator design and analysis program based on Bmad has been developed called Tao (Tool for Accelerator Optics). The three beam-based alignment algorithms, Dispersion Free Steering, Ballistic Alignment (BA), and the Kubo Method have been implemented in Tao. We have studied the effects of magnet misalignments, BPM resolution, beam jitter, stray fields, BPM and steering magnet failure and the effects of various cavity shape wakefields. A parametric study has been conducted in the presence of the above types of errors for all three alignment algorithms. We find that BPM resolution has only modest impact on the effectiveness of beam based alignment. The DFS correction algorithm was found to be very robust in situations where there were BPM and/or steering magnet failures. The wakefields in the main linac are very weak and cause negligible emittance growth. Spin tracking was extended to study all accelerator components between the damping ring and the interaction point, including RF cavities and the helical undulator. We find that there is no significant depolarization in the RTML, main linac or beam delivery system and that the polarization is relatively insensitive to misalignment. We have developed an effective spin rotator. During the final year of the grant we exploited the computing power of our new linux cluster, along with the modeling codes that we had developed, to investigate damping ring physics and design, specifically as it relates to the CESR Test Accelerator project.

  9. Free Electron Laser for Gamma-Gamma Collider at a Low-Energy Option of International Linear Collider

    SciTech Connect

    Saldin, Evgeny; Schneidmiller, Evgeny; Yurkov, Mikhail; Seryi, Andrei; /SLAC

    2009-10-30

    Different scenarios of a start-up with International Linear Collider (ILC) are under discussion at the moment in the framework of the Global Design Effort (GDE). One of them assumes construction of the ILC in stages from some minimum CM energy up to final target of 500 GeV CM energy. Gamma-gamma collider with CM energy of 180GeV is considered as a candidate for the first stage of the facility. In this report we present conceptual design of a free electron laser as a source of primary photons for the first stage of ILC.

  10. Final Environmental Assessment for the construction and operation of an office building at the Stanford Linear Accelerator Center. Part 2

    SciTech Connect

    1995-08-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1107, analyzing the environmental effects relating to the construction and operation of an office building at the Stanford Linear Accelerator Center (SLAC). SLAC is a national facility operated by Stanford University, California, under contract with DOE. The center is dedicated to research in elementary particle physics and in those fields that make use of its synchrotron facilities. The objective for the construction and operation of an office building is to provide adequate office space for existing SLAC Waste Management (WM) personnel, so as to centralize WM personnel and to make WM operations more efficient and effective. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  11. Science and Technology of the TESLA Electron-Positron Linear Collider

    NASA Astrophysics Data System (ADS)

    Wagner, Albrecht

    2002-07-01

    Recent analyses of the long term future of particles physics in Asia, Europe, and the U.S.A. have led to the consensus that the next major facility to be built to unravel the secrets of the micro-cosmos is an electron-positron linear collider in the energy range of 500 to 1000 GeV. This collider should be constructed in an as timely fashion as possible to overlap with the Large Hadron Collider, under construction at CERN. Here, the scientific potential and the technological aspects of the TESLA projects, a superconducting collider with an integrated X-ray laser laboratory, are summarised.

  12. High Energy Photon-Photon Collisions at a Linear Collider

    SciTech Connect

    Brodsky, S

    2004-04-19

    High intensity back-scattered laser beams will allow the efficient conversion of a substantial fraction of the incident lepton energy into high energy photons, thus significantly extending the physics capabilities of an e{sup -}e{sup +} linear collider. The annihilation of two photons produces C = + final states in virtually all angular momentum states. An important physics measurement is the measurement of the Higgs coupling to two photons. The annihilation of polarized photons into the Higgs boson determines its fundamental H{sup 0} {yields} {gamma}{gamma} coupling as well as determining its parity. Other novel two-photon processes include the two-photon production of charged pairs {tau}{sup +}{tau}{sup -}, W{sup +}W{sup -}, t{bar t} and supersymmetric squark and slepton pairs. The one-loop box diagram leads to the production of pairs of neutral particles such as {gamma}{gamma} {yields} Z{sup 0}Z{sup 0}, {gamma}Z{sup 0}, and {gamma}{gamma}. At the next order one can study Higgstrahlung processes, such as {gamma}{gamma} {yields} W{sup +}W{sup -}H. Since each photon can be resolved into a W{sup +}W{sup -} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying possibly anomalous WW collisions and annihilation. In the case of QCD, each photon can materialize as a quark anti-quark pair which interact via multiple gluon exchange. The diffractive channels in photon-photon collisions allow a novel look at the QCD pomeron and odderon. The C = - odderon exchange contribution can be identified by looking at the heavy quark asymmetry. In the case of e{gamma} {yields} e{prime} collisions, one can measure the photon structure functions and its various components. Exclusive hadron production processes in photon-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes which are also important for the analysis of exclusive semi-leptonic and two

  13. [New technology for linear colliders]. Annual progress report and renewal proposal

    SciTech Connect

    McIntyre, P.M.

    1992-08-12

    This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization.

  14. The Design of the Positron Source for the International Linear Collider

    SciTech Connect

    Clarke, J.A.; Malyshev, O.B.; Scott, D.J.; Bailey, I.R.; Dainton, J.B.; Hock, K.M.; Jenner, L.J.; Malysheva, L.I.; Zang, L.; Baynham, E.; Bradshaw, T.W.; Brummitt, A.J.; Carr, F.S.; Lintern, A.J.; Rochford, J.; Bharadwaj, V.; Sheppard, J.; Bungau, A.; Collomb, N.A.; Dollan, R.; Gai, W.; /Argonne /LLNL, Livermore /Unlisted /Durham U. /DESY /Humboldt U., Berlin /Cornell U., Phys. Dept. /Bristol U.

    2011-11-04

    The high luminosity requirements and the option of a polarized positron beam present a great challenge for the positron source of a future linear collider. This paper provides a comprehensive overview of the latest proposed design for the baseline positron source of the International Linear Collider (ILC). We report on recent progress and results concerning the main components of the source: including the undulator, capture optics, and target.

  15. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    SciTech Connect

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

    2006-09-28

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  16. Of Linear Colliders, the GDE Workshop at Bangalore, Mughals, Camels, Elephants and Sundials

    SciTech Connect

    Loew, Greg

    2006-04-17

    In this colloquium, the speaker will give a summary of the recent International Linear Collider (ILC) Global Design Effort (GDE) Workshop at Bangalore and how the High Energy Physics community converged to this meeting after many years of electron-positron linear collider design and experimental work. Given that this workshop for the first time took place in India, the speaker will also show a few pictures and talk briefly about what he learned in that fascinating country.

  17. Extra neutral gauge bosons at a 5 TeV e+e- linear collider

    SciTech Connect

    Ohgaki, T.

    1999-05-01

    For a 5 TeV e{sup +}e{sup -} linear collider in the deep quantum regime, the energy loss due to beam-strahlung during the collision of the e{sup +}e{sup -} beams is expected to substantially influence the effect center-of-mass energy distribution of the colliding particles. In this paper, the author has estimated the feasibility of the measurement of the extra neutral gauge bosons Z' on the Z' pole at a 5 TeV e{sup +}e{sup -} linear collider including the effects of the beam-beam interaction.

  18. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema

    None

    2016-07-12

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  19. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    SciTech Connect

    2010-02-17

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  20. Systematic Ground Motion and Macro-Alignment for Linear Colliders

    SciTech Connect

    Pitthan, Rainer

    2002-01-07

    Future colliders with their {micro}m-range operational tolerances still need to be classically aligned to the 50 - 100 {micro}m range, and kept there, over the km range. This requirement will not be a show-stopper, but not be trivial either. 50 {micro}m ground movements over a betatron wavelength is a the range where systematic long term motions can prevent efficient operation.

  1. PROGRESS WITH THE JLC/NLC X-BAND LINEAR COLLIDER DESIGN

    SciTech Connect

    Raubenheimer, Tor O

    2000-11-06

    An electron/positron linear collider with a center-of-mass energy between 0.5 and 1 TeV would be an important complement to the physics program of the LHC in the next decade. The Next Linear Collider (NLC) is being designed by a US collaboration (FNAL, LBNL, LLNL, and SLAC) which is working closely with the Japanese collaboration that is designing the Japanese Linear Collider (JLC). This paper will discuss the technical difficulties encountered as well as the changes that have been made to the NLC design over the last year. These changes include improvements to the X-band rf system as well as modifications to the beam delivery system. The net effect has been to reduce the length of the collider from about 32 km to 25 km and to reduce the number of klystrons and modulators by a factor of two. Together these lead to significant cost savings.

  2. A Laser-Driven Linear Collider: Sample Machine Parameters and Configuration

    SciTech Connect

    Colby, E.R.; England, R.J.; Noble, R.J.; /SLAC

    2011-05-20

    We present a design concept for an e{sup +}e{sup -} linear collider based on laser-driven dielectric accelerator structures, and discuss technical issues that must be addressed to realize such a concept. With a pulse structure that is quasi-CW, dielectric laser accelerators potentially offer reduced beamstrahlung and pair production, reduced event pileup, and much cleaner environment for high energy physics and. For multi-TeV colliders, these advantages become significant.

  3. Production of high intensity electron bunches for the SLAC Linear Collider

    SciTech Connect

    James, M.B.

    1987-08-01

    This thesis describes the design and performance of a high intensity electron injecfor for the SLAC Linear Collider. Motivation for the collider and the specifications for the injector are discussed. An analytic theory of the bunching and capture of electrons by rf fields is discussed in the limit of low space charge and small signal. The design and performance of SLAC's main injector are described to illustrate a successful application of this theory. The bunching and capture of electrons by rf fields are then discussed in the limit of high space charge and large signal, and a description of the design of the collider injector follows. In the limit of high space charge forces and large rf signals, the beam dynamics are considerably more complex and numerical simulations are required to predict particle motion. A computer code which models the longitudinal dynamics of electrons in the presence of space charge and rf fields is described. The results of the simulations, the resulting collider injector design and the various components which make up the collider injector are described. These include the gun, subharmonic bunchers, traveling-wave buncher and velocity-of-light accelerator section. Finally, the performance of the injector is described including the beam intensity, bunch length, transverse emittance and energy spectrum. While the final operating conditions differ somewaht from the design, the performance of the collider injector is in good agreement with the numerical simulations and meets all of the collider specifications. 28 refs.

  4. Development of a Non-Magnetic Inertial Sensor for Vibration Stabilization in a Linear Collider

    SciTech Connect

    Frisch, Josef; Decker, Valentin; Doyle, Eric; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Seryi, Andrei; Chang, Allison; Partridge, Richard; /Brown U.

    2006-09-01

    One of the options for controlling vibration of the final focus magnets in a linear collider is to use active feedback based on accelerometers. While commercial geophysics sensors have noise performance that substantially exceeds the requirements for a linear collider, they are physically large, and cannot operate in the strong magnetic field of the detector. Conventional nonmagnetic sensors have excessive noise for this application. We report on the development of a non-magnetic inertial sensor, and on a novel commercial sensor both of which have demonstrated the required noise levels for this application.

  5. On the Preference of Cold RF Technology for the International Linear Collider

    SciTech Connect

    Gamp, Alexander

    2006-01-03

    On August 20th 2004 the International Technology Recommendation Panel (ITRP) released its recommendation that the Linear Collider be based on Superconducting RF Technology. Following a request of the organizers of this conference we will summarise in this article the arguments worked out and presented by the ITRP, which led to this recommendation. The main features of both RF-technologies, the favoured L-band RF system of the superconducting version of the Linear Collider and the X-band-technology anticipated for the normal-conducting alternative will be briefly described.

  6. Time Evolution of Ground Motion-Dependent Depolarisation at Linear Colliders

    NASA Astrophysics Data System (ADS)

    Bailey, I.; Bartels, C.; Beckmann, M.; Hartin, A.; Helebrant, C.; Käfer, D.; List, J.; Moortgat-Pick, G.

    2011-01-01

    Future linear colliders plan to collide polarised beams and the planned physics reach requires knowledge of the state of polarisation as precisely as possible. The polarised beams can undergo depolarisation due to various mechanisms. In order to quantify the uncertainty due to depolarisation, spin tracking simulations in the International Linear Collider (ILC) Beam Delivery System (BDS) and at the Interaction Point (IP) have been performed. Spin tracking in the BDS was achieved using the BMAD subroutine library, and the CAIN program was used to do spin tracking through the beam-beam collision. Assuming initially aligned beamline elements in the BDS, a ground motion model was applied to obtain realistic random misalignments over various time scales. Depolarisation at the level of 0.1 % occurs within a day of ground motion at a noisy site. Depolarisation at the IP also exceeds 0.1 % for the nominal parameter sets for both the ILC and for the Compact Linear Collider (CLIC). Theoretical work is underway to include radiative corrections in the depolarisation processes and simulation of the depolarisation through the entire collider is envisaged.

  7. Estimates of Hadronic Backgrounds in Future e+e- LinearColliders

    SciTech Connect

    Ohgaki, Tomomi

    1998-05-01

    We have estimated hadronic backgrounds for an e+e- linear collider at a center- of-mass energy of 5 TeV. In order to achieve a required luminosity in TeV e+ e- colliders, the high beamstrahlung parameter {Upsilon}, such as several thousands, is caused. In the high {Upsilon} regime, the {gamma}{gamma} luminosities due to the collision of beamstrahlung photons are calculated by using the CAIN code. According to the {gamma}{gamma} luminosity distribution, we have estimated the hadronic backgrounds of {gamma}{gamma} {yields} minijets based on the parton distributions of the Drees and Grassie model by the PYTHIA 5.7 code. The Japan Linear Collider (J LC-1) detector simulator is applied for selection performances in the detector.

  8. Proceedings of the international workshop on next-generation linear colliders

    SciTech Connect

    Riordan, M.

    1988-12-01

    This report contains papers on the next-generation of linear colliders. The particular areas of discussion are: parameters; beam dynamics and wakefields; damping rings and sources; rf power sources; accelerator structures; instrumentation; final focus; and review of beam-beam interaction.

  9. Baseline Configuration of the Cryogenic System for the International Linear Collider

    SciTech Connect

    Casas-Cubillos, J.; Claudet, S.; Parma, V.; Riddone, G.; Serio, L.; Tavian, L.; Vullierme, B.; van Weelderen, R.; Chorowski, M.; Ganni, R.; Rode, C.; Klebaner, A.; Peterson, T.; Theilacker, J.; Rousset, B.; Weisend, J.; /SLAC

    2007-06-18

    The paper discusses the main constraints and boundary conditions and describes the baseline configuration of the International Linear Collider (ILC) cryogenic system. The cryogenic layout, architecture and the cooling principle are presented. The paper addresses a plan for study and development required to demonstrate and improve the performance, to reduce cost and to attain the desired reliability.

  10. Review of studies on conventional linear colliders in the S- and X-Band regime

    SciTech Connect

    Loew, G.A.

    1992-07-01

    This paper gives a status report on the conventional approaches to linear colliders at DESY, KEK, SLAC and INP-Protvino in the S- and X-Band regime. Critical topics are reviewed and a discussion of global issues such as future R&D requirements is included.

  11. Review of studies on conventional linear colliders in the S- and X-Band regime

    SciTech Connect

    Loew, G.A.

    1992-07-01

    This paper gives a status report on the conventional approaches to linear colliders at DESY, KEK, SLAC and INP-Protvino in the S- and X-Band regime. Critical topics are reviewed and a discussion of global issues such as future R D requirements is included.

  12. Turbulence Induced Vibration: Theory and Application to the Next Linear Collider(LCC-0094)

    SciTech Connect

    Adiga, S.

    2003-10-07

    A semianalytical approach is used to estimate turbulence-induced vibration. The results are compared with the measured vibrations for three different cases, a 16-inch pipe at the NLCTA, a 10-inch pipe at the SLD and the coolant pipes around the copper structure model of the linear collider. The variation of vibrations with respect to velocity of flow is studied as well.

  13. Linear Collider Physics Resource Book for Snowmass 2001 - Part 3: Studies of Exotic and Standard Model Physics

    SciTech Connect

    Abe, T.; et al.

    2001-06-13

    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.

  14. STANFORD - NASA

    NASA Website

    STANFORD UNIVERSITY ... Arg~::ro:~~r.J~P l4~~r(~~~i~h~o~~~~r x~~~rt) ... Pearce Mitchell Place Pine Hill Court Pine Hill Road Princeton Street

  15. Physics at TeV e sup + e sup minus linear colliders

    SciTech Connect

    Chanowitz, M.S.

    1992-01-01

    A survey is presented of the physics opportunities at TeV e{sup +}e{sup {minus}} linear colliders. Examples are given of physics that might emerge in e{sup +}e{sup {minus}} collisions and in {gamma}{gamma} collisions using the back-scattered laser technique, including {gamma}{gamma} {yields} ZZ scattering as a probe of ultraheavy quanta. The second portion of the talk focuses on physics that must emerge at or below the TeV scale--the mechanism of electroweak symmetry breaking. In particular a very rough estimate is presented of the most challenging possible signal of symmetry breaking, strong WW scattering, as a function of collider energy. A subtheme, made explicit in the concluding section, is the continuing complementarity of e{sup +}e{sup {minus}} and pp colliders in the domain of TeV physics.

  16. Physics at TeV e{sup +}e{sup {minus}} linear colliders

    SciTech Connect

    Chanowitz, M.S.

    1992-01-01

    A survey is presented of the physics opportunities at TeV e{sup +}e{sup {minus}} linear colliders. Examples are given of physics that might emerge in e{sup +}e{sup {minus}} collisions and in {gamma}{gamma} collisions using the back-scattered laser technique, including {gamma}{gamma} {yields} ZZ scattering as a probe of ultraheavy quanta. The second portion of the talk focuses on physics that must emerge at or below the TeV scale--the mechanism of electroweak symmetry breaking. In particular a very rough estimate is presented of the most challenging possible signal of symmetry breaking, strong WW scattering, as a function of collider energy. A subtheme, made explicit in the concluding section, is the continuing complementarity of e{sup +}e{sup {minus}} and pp colliders in the domain of TeV physics.

  17. Physics with linear colliders in the TeV CM energy region

    SciTech Connect

    Bulos, F.; Cook, V.; Hinchliffe, I.; Lane, K.; Pellet, D.; Perl, M.; Seiden, A.; Wiedemann, H.

    1982-07-01

    From a technical point of view a linear collider of high energy and luminosity cannot be operated economically at the present date. A series of R and D efforts in different areas are required to produce the necessary technology for an economically feasible linear collider. No fundamental limits, however, have been found as yet that would prevent us from reaching the goals outlined in this report. Most of the critical component will be tested in a real like situation once the SLC comes into operation. Beyond that much R and D is required in rf-power sources to reduce the power consumption and in high gradient accelerating structures to minimize the required real estate and linear construction costs.

  18. 1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders

    SciTech Connect

    1996-03-01

    This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the art of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.

  19. Energy matching of 1. 2 GeV positron beam to the SLC (Stanford Linear Collider) damping ring

    SciTech Connect

    Clendenin, J.E.; Helm, R.H.; Jobe, R.K.; Kulikov, A.; Sheppard, J.C.

    1989-08-01

    Positrons collected at the SLC positron source are transported over a 2-km path at 220 MeV to be reinjected into the linac for acceleration to 1.2 GeV, the energy of the emittance damping ring. Since the positron bunch length is a significant fraction of a cycle of the linac-accelerating RF, the energy spread at 1.2 GeV is considerably larger than the acceptance of the linac-to-ring (LTR) transport system. Making use of the large pathlength difference at the beginning of the LTR due to this energy spread, a standard SLAC 3-m accelerating section has been installed in the LTR to match the longitudinal phase space of the positron beam to the acceptance of the damping ring. The design of the matching system is described, and a comparison of operating results within simulations is presented. 5 refs., 4 figs., 1 tab.

  20. Alignment and vibration issues in TeV linear collider design

    SciTech Connect

    Fischer, G.E.

    1989-07-01

    The next generation of linear colliders will require alignment accuracies and stabilities of component placement at least one, perhaps two, orders of magnitude better than can be achieved by the conventional methods and procedures in practice today. The magnitudes of these component-placement tolerances for current designs of various linear collider subsystems are tabulated. In the micron range, long-term ground motion is sufficiently rapid that on-line reference and mechanical correction systems are called for. Some recent experiences with the upgraded SLAC laser alignment systems and examples of some conceivable solutions for the future are described. The so called ''girder'' problem is discussed in the light of ambient and vibratory disturbances. The importance of the quality of the underlying geology is stressed. The necessity and limitations of public-beam-derived placement information are mentioned. 40 refs., 4 figs., 1 tab.

  1. The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider

    SciTech Connect

    Moortgat-Pick, G.; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv U. /Bangalore, Indian Inst. Sci. /Gomel State Tech. U. /SLAC /DESY /Vienna U. /Daresbury /Liverpool U. /Freiburg U. /Vienna, OAW /Wurzburg U. /Fermilab /Uppsala U. /Waseda U., RISE /Warsaw U. /Bonn U. /Aachen, Tech. Hochsch. /Cornell U., Phys. Dept.

    2005-07-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  2. Revealing Fundamental Interactions: the Role of Polarized Positrons and Electrons at the Linear Collider

    SciTech Connect

    Moortgat-Pick, G.; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv U. /Bangalore, Indian Inst. Sci. /Gomel State Tech. U. /SLAC /DESY /Vienna U. /Daresbury /Liverpool U. /Freiburg U. /Vienna, OAW /Wurzburg U. /Fermilab /Uppsala U. /Waseda U., RISE /Warsaw U. /Bonn U. /Aachen, Tech. Hochsch. /Cornell U., Phys. Dept.

    2005-07-06

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  3. Alighment and Vibration Issues in TeV Linear Collider Design

    SciTech Connect

    Fischer, G.E.; /SLAC

    2005-08-12

    The next generation of linear colliders will require alignment accuracies and stabilities of component placement at least one, perhaps two, orders of magnitude better than can be achieved by the conventional methods and procedures in practice today. The magnitudes of these component-placement tolerances for current designs of various linear collider subsystems are tabulated. In the micron range, long-term ground motion is sufficiently rapid that on-line reference and mechanical correction systems are called for. Some recent experiences with the upgraded SLAC laser alignment systems and examples of some conceivable solutions for the future are described. The so called ''girder'' problem is discussed in the light of ambient and vibratory disturbances. The importance of the quality of the underlying geology is stressed. The necessity and limitations of particle-beam-derived placement information are mentioned.

  4. ATF2 for Final Focus Test Beam for Future Linear Colliders

    NASA Astrophysics Data System (ADS)

    Kuroda, S.; ATF2 Collaboration

    2016-04-01

    In future linear colliders, extremely small beam size is required at collision point for high luminosity. For example, it is of order of nanometer in ILC(International Linear Collider). ATF2 is a project at ATF(Accelerator Test Facility) in KEK which demonstrates performance of final focus system experimentally. ATF2 beam line is a prototype of ILC final focus system where the local chromaticity correction scheme is adopted. The optics is basically the same and the natural chromaticity, too. Thus the tolerance of magnet alignment and field error is similar for both of the beam lines. We report here observation of small beam size of about 45nm there. We also report plan for smaller beam size with higher beam intensity.

  5. Final Report for the UNIVERSITY-BASED DETECTOR RESEARCH AND DEVELOPMENT FOR THE INTERNATIONAL LINEAR COLLIDER

    SciTech Connect

    Brau, James E

    2013-04-22

    The U.S Linear Collider Detector R&D program, supported by the DOE and NSF umbrella grants to the University of Oregon, made significant advances on many critical aspects of the ILC detector program. Progress advanced on vertex detector sensor development, silicon and TPC tracking, calorimetry on candidate technologies, and muon detection, as well as on beamline measurements of luminosity, energy, and polarization.

  6. Overview and Actual Understanding of the Electron Cloud Effect and Instabilities in the Future Linear Colliders

    SciTech Connect

    Pivi, M.

    2004-12-03

    The electron cloud is potentially an important effect in linear colliders. Many of the effects have been evaluated. Actions to suppress the electron cloud are required for the GLC/NLC positron main damping ring (MDR or DR) and the low emittance transport lines as well as for the TESLA damping ring. There is an ongoing R&D program studying a number of possible remedies to reduce the secondary electron yield below that required.

  7. Evolution of the design of a silicon tracker for the Linear Collider

    SciTech Connect

    Cooper, W.E.

    2005-10-01

    A design for the silicon tracker for SiD was proposed at the Victoria Linear Collider Workshop [1]. This paper describes development of that design by the SiD group into a baseline model for simulation studies. The design has been modified to take into account detector fabrication and servicing requirements, features specific to the vertex chamber, and detector elements in the region surrounding the silicon tracker.

  8. A modified post damping ring bunch compressor beamline for the TESLA linear collider

    SciTech Connect

    Philippe R.-G. Piot; Winfried Decking

    2004-03-23

    We propose a modified bunch compressor beamline, downstream of the damping ring, for the TESLA linear collider. This modified beamline uses a third harmonic radio-frequency section based on the 3.9 GHz superconducting cavity under development at Fermilab. In our design the beam deceleration is about {approx}50 MeV instead of {approx}450 MeV in the original design proposed.

  9. Design of the beam delivery system for the international linear collider.

    SciTech Connect

    Seryi, A.; Amann, J.; Arnold, R.; Asiri, F.; Bane, K.; Carwardine, J.; Saunders, C.; Accelerator Systems Division; SLAC; FNAL

    2008-01-01

    The beam delivery system for the linear collider focuses beams to nanometer sizes at its interaction point, collimates the beam halo to provide acceptable background in the detector and has a provision for state-of-the art beam instrumentation in order to reach the ILCs physics goals. This paper describes the design details and status of the baseline configuration considered for the reference design and also lists alternatives.

  10. Proceedings of the workshop on new kinds of positron sources for linear colliders

    SciTech Connect

    Clendenin, J.; Nixon, R.

    1997-06-01

    It has been very clear from the beginning of studies for future linear colliders that the conventional positron source approach, as exemplified by the SLC source, is pushing uncomfortably close to the material limits of the conversion target. Nonetheless, since this type of positron source is better understood and relatively inexpensive to build, it has been incorporated into the initial design studies for the JLC/NLC. New ideas for positron sources for linear colliders have been regularly reported in the literature and at accelerator conferences for at least a decade, and indeed the recirculation scheme associated with the VLEPP design is nearly two decades old. Nearly all the new types of positron sources discussed in this workshop come under the heading of crystals (or channeling), undulators, and Compton. Storage ring and nuclear reactor sources were not discussed. The positron source designs that were discussed have varying degrees of maturity, but except for the case of crystal sources, where proof of principle experiments have been undertaken, experimental results are missing. It is hoped that these presentations, and especially the recommendations of the working groups, will prove useful to the various linear collider groups in deciding if and when new experimental programs for positron sources should be undertaken.

  11. Simulator For The Linear Collider (SLIC): A Tool For ILC Detector Simulations

    NASA Astrophysics Data System (ADS)

    Graf, Norman; McCormick, Jeremy

    2006-10-01

    The Simulator for the Linear Collider (SLIC) is a detector simulation program based on the GEANT4 toolkit. It is intended to enable end users to easily model detector concepts by providing the ability to fully describe detectors using plain text files read in by a common executable at runtime. The detector geometry, typically the most complex part of a detector simulation, is described at runtime using the Linear Collider Detector Description (LCDD). This system allows end users to create complex detector geometries in a standard XML format rather than procedural code such as C++. The LCDD system is based on the Geometry Description Markup Language (GDML) from the LHC Applications Group (LCG). The geometry system facilitates the study of different full detector design and their variations. SLIC uses the StdHep format to read input created by event generators and outputs events in the Linear Collider IO (LCIO) format. The SLIC package provides a binding to GEANT4 and many additional commands and features for the end user.

  12. International X-Band Linear Collider Accelerator Structure R&D

    SciTech Connect

    Wang, J.W.; /SLAC

    2009-03-04

    For more than fifteen years before the International Technology Recommendation Panel (ITRP) decision in August, 2004, there were intensive R&D activities and broad international collaboration among the groups at SLAC, KEK, FNAL, LLNL and other labs for the room temperature X-Band accelerator structures. The goal was to provide an optimized design of the main linac structure for the NLC (Next Linear Collider) or GLC (Global Linear Collider). There have been two major challenges in developing X-band accelerator structures for the linear colliders. The first is to demonstrate stable, long-term operation at the high gradient (65 MV/m) that is required to optimize the machine cost. The second is to strongly suppress the beam induced long-range wakefields, which is required to achieve high luminosity. More than thirty X-band accelerator structures with various RF parameters, cavity shapes and coupler types have been fabricated and tested since 1989. A summary of the main achievements and experiences are presented in this talk including the structure design, manufacturing techniques, high power performance, and other structure related issues. Also, the new progress in collaborating with the CLIC, high gradient structures and X-Band structure applications for RF deflectors and others are briefly introduced.

  13. Simulator for the Linear Collider (SLIC): a Tool for ILC Detector Simulations

    SciTech Connect

    Graf, N.; McCormick, J.; /SLAC

    2007-02-13

    The Simulator for the Linear Collider (SLIC) is a detector simulation program based on the GEANT4 toolkit. It is intended to enable end users to easily model detector concepts by providing the ability to fully describe detectors using plain text files read in by a common executable at runtime. The detector geometry, typically the most complex part of a detector simulation, is described at runtime using the Linear Collider Detector Description (LCDD). This system allows end users to create complex detector geometries in a standard XML format rather than procedural code such as C++. The LCDD system is based on the Geometry Description Markup Language (GDML) from the LHC Applications Group (LCG). The geometry system facilitates the study of different full detector design and their variations. SLIC uses the StdHep format to read input created by event generators and outputs events in the Linear Collider IO (LCIO) format. The SLIC package provides a binding to GEANT4 and many additional commands and features for the end user.

  14. Design and system integration of the superconducting wiggler magnets for the Compact Linear Collider damping rings

    NASA Astrophysics Data System (ADS)

    Schoerling, Daniel; Antoniou, Fanouria; Bernhard, Axel; Bragin, Alexey; Karppinen, Mikko; Maccaferri, Remo; Mezentsev, Nikolay; Papaphilippou, Yannis; Peiffer, Peter; Rossmanith, Robert; Rumolo, Giovanni; Russenschuck, Stephan; Vobly, Pavel; Zolotarev, Konstantin

    2012-04-01

    To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC), the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 and 4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultralow emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.

  15. Zeroth-order design report for the next linear collider. Volume 1

    SciTech Connect

    Raubenheimer, T.O.

    1996-05-01

    This Zeroth Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The design presented here is not fully engineered in any sense, but to be assured that the NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume one covers the following: the introduction; electron source; positron source; NLC damping rings; bunch compressors and prelinac; low-frequency linacs and compressors; main linacs; design and dynamics; and RF systems for main linacs.

  16. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    NASA Astrophysics Data System (ADS)

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Houck, T. L.; Westenskow, G. A.; Vanecek, D. L.; Yu, S. S.

    1999-05-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  17. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect

    Lidia, S.M.; Anderson, D.E.; Eylon, S.; Henestroza, E.; Vanecek, D.L.; Yu, S.S.; Westenskow, G.A.

    1999-05-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1{percent} energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented. {copyright} {ital 1999 American Institute of Physics.}

  18. Relativistic-klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect

    Anderson, D E; Eylon, S; Henestroza, E; Houck, T L; Lidia, M; Vanecek, D L; Westenskow, G A; Yu, S S

    1998-10-05

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2&A, l-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-n-n. The prototype accelerator will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  19. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S.; Houck, T. L.; Westenskow, G. A.

    1999-05-07

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  20. Zeroth-order design report for the next linear collider. Volume 2

    SciTech Connect

    Raubenheimer, T.O.

    1996-05-01

    This Zeroth-Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The ``design`` presented here is not fully engineered in any sense, but to be assured that the NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume II covers the following: collimation systems; IP switch and big bend; final focus; the interaction region; multiple bunch issues; control systems; instrumentation; machine protection systems; NLC reliability considerations; NLC conventional facilities. Also included are four appendices on the following topics: An RF power source upgrade to the NLC; a second interaction region for gamma-gamma, gamma-electron; ground motion: theory and measurement; and beam-based feedback: theory and implementation.

  1. Expanded studies of linear collider final focus systems at the Final Focus Test Beam

    SciTech Connect

    Tenenbaum, Peter Gregory

    1995-12-01

    In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research.

  2. Highlights of the SLD Physics Program at the SLAC Linear Collider

    SciTech Connect

    Willocq, Stephane

    2001-09-07

    Starting in 1989, and continuing through the 1990s, high-energy physics witnessed a flowering of precision measurements in general and tests of the standard model in particular, led by e{sup +}e{sup -} collider experiments operating at the Z{sup 0} resonance. Key contributions to this work came from the SLD collaboration at the SLAC Linear Collider. By exploiting the unique capabilities of this pioneering accelerator and the SLD detector, including a polarized electron beam, exceptionally small beam dimensions, and a CCD pixel vertex detector, SLD produced a broad array of electroweak, heavy-flavor, and QCD measurements. Many of these results are one of a kind or represent the world's standard in precision. This article reviews the highlights of the SLD physics program, with an eye toward associated advances in experimental technique, and the contribution of these measurements to our dramatically improved present understanding of the standard model and its possible extensions.

  3. Experimental validation of a novel compact focusing scheme for future energy-frontier linear lepton colliders.

    PubMed

    White, G R; Ainsworth, R; Akagi, T; Alabau-Gonzalvo, J; Angal-Kalinin, D; Araki, S; Aryshev, A; Bai, S; Bambade, P; Bett, D R; Blair, G; Blanch, C; Blanco, O; Blaskovic-Kraljevic, N; Bolzon, B; Boogert, S; Burrows, P N; Christian, G; Corner, L; Davis, M R; Faus-Golfe, A; Fukuda, M; Gao, J; García-Morales, H; Geffroy, N; Hayano, H; Heo, A Y; Hildreth, M; Honda, Y; Huang, J Y; Hwang, W H; Iwashita, Y; Jang, S; Jeremie, A; Kamiya, Y; Karataev, P; Kim, E S; Kim, H S; Kim, S H; Kim, Y I; Komamiya, S; Kubo, K; Kume, T; Kuroda, S; Lam, B; Lekomtsev, K; Liu, S; Lyapin, A; Marin, E; Masuzawa, M; McCormick, D; Naito, T; Nelson, J; Nevay, L J; Okugi, T; Omori, T; Oroku, M; Park, H; Park, Y J; Perry, C; Pfingstner, J; Phinney, N; Rawankar, A; Renier, Y; Resta-López, J; Ross, M; Sanuki, T; Schulte, D; Seryi, A; Shevelev, M; Shimizu, H; Snuverink, J; Spencer, C; Suehara, T; Sugahara, R; Takahashi, T; Tanaka, R; Tauchi, T; Terunuma, N; Tomás, R; Urakawa, J; Wang, D; Warden, M; Wendt, M; Wolski, A; Woodley, M; Yamaguchi, Y; Yamanaka, T; Yan, J; Yokoya, K; Zimmermann, F

    2014-01-24

    A novel scheme for the focusing of high-energy leptons in future linear colliders was proposed in 2001 [P. Raimondi and A. Seryi, Phys. Rev. Lett. 86, 3779 (2001)]. This scheme has many advantageous properties over previously studied focusing schemes, including being significantly shorter for a given energy and having a significantly better energy bandwidth. Experimental results from the ATF2 accelerator at KEK are presented that validate the operating principle of such a scheme by demonstrating the demagnification of a 1.3 GeV electron beam down to below 65 nm in height using an energy-scaled version of the compact focusing optics designed for the ILC collider.

  4. Photon Collider Physics with Real Photon Beams

    SciTech Connect

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  5. Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider

    SciTech Connect

    Araki, S.; Hayano, H.; Higashi, Y.; Honda, Y.; Kanazawa, K.; Kubo, K.; Kume, T.; Kuriki, M.; Kuroda, S.; Masuzawa, M.; Naito, T.; Okugi, T.; Sugahara, R.; Takahashi, T.; Tauchi, T.; Terunuma, N.; Toge, N.; Urakawa, J.; Vogel, V.; Yamaoka, H.; Yokoya, K.; /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Novosibirsk, IYF /Daresbury /CERN /Hiroshima U. /Orsay, LAL /LLNL, Livermore /North Carolina A-T State U. /Oxford U. /Pohang Accelerator Lab. /Queen Mary, U. of London /Royal Holloway, U. of London /DESY /SLAC /University Coll. London /Oregon U. /Tokyo U.

    2005-05-27

    To reach design luminosity, the International Linear Collider (ILC) must be able to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittances are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 37 nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.

  6. Digital low level rf control system with four different intermediate frequencies for the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Wibowo, Sigit Basuki; Matsumoto, Toshihiro; Michizono, Shinichiro; Miura, Takako; Qiu, Feng; Liu, Na

    2017-09-01

    A field programmable gate array-based digital low level rf (LLRF) control system will be used in the International Linear Collider (ILC) in order to satisfy the rf stability requirements. The digital LLRF control system with four different intermediate frequencies has been developed to decrease the required number of analog-to-digital converters in this system. The proof of concept of this technique was demonstrated at the Superconducting RF Test Facility in the High Energy Accelerator Research Organization, Japan. The amplitude and phase stability has fulfilled the ILC requirements.

  7. Luminosity for e-e- linear collider designs at 1.7 TeV

    SciTech Connect

    Thompson, Kathleen A

    2002-09-13

    The total luminosity for e{sup -}e{sup -} mode compared to that for e{sup +}e{sup -} mode is severely reduced in a very high energy linear collider, because the mutual disruption of the beams blows up the beams instead of pinching them down. However, since an e{sup -}e{sup -} machine has less beamstrahlung than an e{sup -}e{sup -} machine with the same parameters, the luminosity near the peak energy is not degraded as much as the total luminosity. We quantify these effects for two representative designs at 1.7 TeV center of mass.

  8. Double Higgs production in the Two Higgs Doublet Model at the linear collider

    SciTech Connect

    Arhrib, Abdesslam; Benbrik, Rachid; Chiang, C.-W.

    2008-04-21

    We study double Higgs-strahlung production at the future Linear Collider in the framework of the Two Higgs Doublet Models through the following channels: e{sup +}e{sup -}{yields}{phi}{sub i}{phi}{sub j}Z, {phi}{sub i} = h deg., H deg., A deg. All these processes are sensitive to triple Higgs couplings. Hence observations of them provide information on the triple Higgs couplings that help reconstructing the scalar potential. We discuss also the double Higgs-strahlung e{sup +}e{sup -}{yields}h deg. h deg. Z in the decoupling limit where h deg. mimics the SM Higgs boson.

  9. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  10. Study of radio frequency breakdown in pressurized L-band waveguide for the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Wang, Faya; Adolphsen, Chris; Nantista, Christopher

    2013-09-01

    An L-band (1.3 GHz) radio frequency (rf) waveguide system was assembled at SLAC to test components of a high power distribution scheme proposed for the International Linear Collider (ILC). All parts were made of aluminum and pressurized with dry nitrogen. The rf breakdown rate measured in this resonantly powered system is presented as a function of field level at different gas pressures and rf pulse widths (typically, only breakdown thresholds are reported.). The data are compared to predictions of a simple model which relates the breakdown phenomenon to the rate at which the free electron density builds in the gas.

  11. Polarized Positrons at a Future Linear Collider and the Final Focus Test Beam

    SciTech Connect

    Weidemann, A

    2004-07-28

    Having both the positron and electron beams polarized in a future linear e{sup +}e{sup -} collider is a decisive improvement for many physics studies at such a machine. The motivation for polarized positrons, and a demonstration experiment for the undulator-based production of polarized positrons are reviewed. This experiment (E-166) uses the 50 GeV Final Focus Test electron beam at SLAC with a 1 m-long helical undulator to make {approx} 10MeV polarized photons. These photons are then converted in a thin ({approx} 0.5 radiation length) target into positrons (and electrons) with about 50% polarization.

  12. Survey of top quark polarization at a polarized linear e{sup +}e{sup -} collider

    SciTech Connect

    Groote, S.; Koerner, J. G.; Melic, B.; Prelovsek, S.

    2011-03-01

    We discuss in detail top quark polarization in above-threshold (tt) production at a polarized linear e{sup +}e{sup -} collider. We pay particular attention to the minimization and maximization of the polarization of the top quark by tuning the longitudinal polarization of the e{sup +} and e{sup -} beams. The polarization of the top quark is calculated in full next-to-leading order QCD. We also discuss the beam polarization dependence of the longitudinal spin-spin correlations of the top and antitop quark spins.

  13. Exploring new physics through contact interactions in lepton pair production at a linear collider

    SciTech Connect

    Perelstein, Maxim; Pasztor, Gabriella

    2001-12-04

    If a contact interaction type correction to a Standard Model process is observed, studying its detailed properties can provide information on the fundamental physics responsible for it. Assuming that such a correction has been observed in lepton pair production at a 500 GeV-1 TeV linear collider, we consider a few possible models that could explain it, such as theories with large and TeV-scale extra dimensions and models with lepton compositeness. We show that using the measured cross-sections and angular distributions, these models can be distinguished with a high degree of confidence.

  14. High-Power Multimode X-Band RF Pulse Compression System for Future Linear Colliders

    SciTech Connect

    Tantawi, S.G.; Nantista, C.D.; Dolgashev, V.A.; Pearson, C.; Nelson, J.; Jobe, K.; Chan, J.; Fant, K.; Frisch, J.; Atkinson, D.; /LLNL, Livermore

    2005-08-10

    We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  15. The International Linear Collider Technical Design Report - Volume 1: Executive Summary

    SciTech Connect

    Behnke, Ties; Brau, James E.; Foster, Brian; Fuster, Juan; Harrison, Mike; Paterson, James McEwan; Peskin, Michael; Stanitzki, Marcel; Walker, Nicholas; Yamamoto, Hitoshi

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  16. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \\& in the Technical Design Phase

    SciTech Connect

    Adolphsen, Chris

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  17. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    SciTech Connect

    Adolphsen, Chris

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  18. Effects and tolerances of injection jitter in the SLC and future linear colliders

    SciTech Connect

    Limberg, T.; Seeman, J.T.; Spence, W.L.

    1990-05-01

    The bunch injected into the main linac of a linear collider may have offsets in transverse angle and position, may have a phase error (longitudinal position offset) and, furthermore, may be optically mismatched. Each of these injection errors reduces the luminosity and must be held within tolerances. The effect of optical mismatches on the emittance at the end of the linac is calculated analytically. The tightest tolerances on magnetic elements stemming from these effects are listed. The phase tolerance is determined by the energy acceptance of the final focus system. It imposes tolerances to the integrated field strength of the damping ring and RTL bending magnets and the bunch compressor rf-phase. In this paper, measurements of injection jitter and the effect of betatron oscillations caused by changes of the angle or position of the incoming beam are described. These measurements were taken with BNS damping which relaxes certain tolerances by an order of magnitude. The injection jitter tolerances for a linac of the next generation are given. As an example, parameters for the Next Linear Collider (NLC) being designed at SLAC are used.

  19. DCal: A custom integrated circuit for calorimetry at the International Linear Collider

    SciTech Connect

    Hoff, James R.; Mekkaoui, Abderrazek; Yarema, Ray; Drake, Gary; Repond, Jose; /Argonne

    2005-10-01

    A research and development collaboration has been started with the goal of producing a prototype hadron calorimeter section for the purpose of proving the Particle Flow Algorithm concept for the International Linear Collider. Given the unique requirements of a Particle Flow Algorithm calorimeter, custom readout electronics must be developed to service these detectors. This paper introduces the DCal or Digital Calorimetry Chip, a custom integrated circuit developed in a 0.25um CMOS process specifically for this International Linear Collider project. The DCal is capable of handling 64 channels, producing a 1-bit Digital-to-Analog conversion of the input (i.e. hit/no hit). It maintains a 24-bit timestamp and is capable of operating either in an externally triggered mode or in a self-triggered mode. Moreover, it is capable of operating either with or without a pipeline delay. Finally, in order to permit the testing of different calorimeter technologies, its analog front end is capable of servicing Particle Flow Algorithm calorimeters made from either Resistive Plate Chambers or Gaseous Electron Multipliers.

  20. Transverse Wakefields and Means to Suppress Wakefields in High Gradient Linear Colliders

    NASA Astrophysics Data System (ADS)

    Jones, Roger M.

    2015-10-01

    The symposium held at Tsinghua University, in honor of Dr. Juwen Wang, is a testament to his engagement with diverse areas of linear accelerators. My work has overlapped with his during the period of the Next Linear Collider/Japanese linear Collider (NLC/JLC) programe in particular. Here I report on the beam-exited long-range wakefield in these linacs, and also on subsequent developments in the context of the Compact Linear Collider programme (CLIC). This self-excited wakefield, if l unchecked, can at the very least cause a marked dilution in the beam emittance, and in the worst case can cause a catastrophic beam break up (BBU) instability rendering the particle beam unusable. To ameliorate this affect, there are two main strategies: one can either aim at heavily damping the wakefield (in practise requiring a Q value as low as ~10) or one can detune each of the accelerator's cells to ensure that each mode is excited at slightly different frequency, in a precise manner. The former approach entails placing damping waveguides and damping materials in relatively close proximity to the beam, and this is the approach adopted by the CLIC collaboration. For the NLC/JLC we collectively followed the latter approach, in which the dipole mode of each cell is detuned with an erf function profile along each accelerator structure. Eventually the modes, which form the wakefield, recohere and, to ensure the wakefield remains below a specified level a portion is coupled out through slots cut into each cell to an attached waveguide-like manifold. Typically medium Q values are aimed at, between 500 and 1000. This scheme entails suppressing the modes which comprise the wakefield-using damped and detuned structures (DDS). Sampling an attenuated portion of this manifold radiation also provides both a beam and structure diagnostic. A similar DDS design, but with more stringent wakefield suppression requirements, has been followed as an alternative to the CLIC damping scheme. Wakefield

  1. RF system for a 30 GHz, 5 TeV linear collider based on conventional technology

    SciTech Connect

    Wilson, P.B.; Raubenheimer, T.; Ruth, R.D.

    1997-07-01

    In order that it may be built within a reasonable length and with reasonable ac power consumption, a 5 TeV linear collider must employ an accelerating gradient and rf frequency which are both higher than for present 1 TeV collider designs. The required rf power per meter, which will also be higher than for 1 TeV designs, can be provided either by relatively conventional rf technology or by a two-beam scheme such as that proposed for CLIC. In this paper the first alternative, a 30 GHz rf system employing microwave tube power sources together with rf pulse compression, is described which produces an accelerating gradient on the order of 200 MV per meter. Limitations on the peak power that can be obtained from conventional klystrons as a function of frequency are discussed; it is found that such klystrons are only marginally adequate as a power source at 30 GHz. Several alternative rf sources, such as multiple-beam klystrons, sheet-beam klystrons, gyroklystrons and annular-beam ubitrons are described which are capable of providing the required power, after pulse compression, of about 600 MW per meter.

  2. Detection of heavy charged Higgs bosonsin e+ e- -> t b H- production at future Linear Colliders

    NASA Astrophysics Data System (ADS)

    Moretti, S.

    2004-05-01

    Heavy charged Higgs bosons (H^±) of a Type II 2-Higgs doublet model (2HDM) can be detected at future electron-positron Linear Colliders (LCs) even when their mass is larger than half the collider energy. The single Higgs mode e^ + e^-to tbar b H^- + {c.c.} to 4b + {j}{j} + ell + pT^{miss} (where j represents a jet and with ell = e,μ) contributes to extend the discovery reach of H^± states into the mass region M_{H^±}gtrsim sqrt s/2, where the well studied pair production channel e^ + e^-to H^-H^ + is no longer available. With a technique that allows one to reconstruct the neutrino four-momentum in the decay tto b W^ + to b ell^ + ν, one can suppress the initially overwhelming main irreducible background due to e^ + e^-to tbar t bbar b (via a gluon splitting into bbar b pairs) to a negligible level. However, for currently foreseen luminosities, one can establish a statistically significant H^± signal only over a rather limited mass region, of 20 GeV or so, beyond M_{H^±}≈ sqrt s/2, for very large or very small values of tanβ and provided high b-tagging efficiency can be achieved.

  3. State of the art in electromagnetic modeling for the Compact Linear Collider

    SciTech Connect

    Candel, Arno; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Schussman, Greg; Ko, Kwok; /SLAC

    2009-07-10

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefield damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.

  4. The Next Linear Collider Test Accelerator's RF Pulse Compression and Transmission Systems

    SciTech Connect

    Tantawi, Sami

    1999-02-24

    The overmoded rf transmission and pulsed power compression system for SLAC's Next Linear Collider (NLC) program requires a high degree of transmission efficiency and mode purity to be economically feasible. To this end, a number of new, high power components and systems have been developed at X-band, which transmit rf power in the low loss, circular TE01 mode with negligible mode conversion. In addition, a highly efficient SLED-II* pulse compressor has been developed and successfully tested at high power. The system produced a 200 MW, 250 ns wide pulse with a near-perfect flat-top. In this paper we describe the design and test results of the high power pulse compression system using SLED-II.

  5. Physics goals for the planned next linear collider engineering test facility

    SciTech Connect

    Courtlandt L Bohn et al.

    2001-06-26

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  6. Physics goals for the planned next linear collider engineering test facility.

    SciTech Connect

    Bohn, C.; Michelotti, L.; Ostiguy, J.-F.; Syphers, M.; Bluem, H.; Todd, A.; Gai, W.; Power, J.; Simpson, J.; Raubenheimer, T.

    2001-07-17

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  7. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    SciTech Connect

    Raubenheimer, Tor O

    2001-10-02

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  8. Analysis and Control of Wakefields in X-Band Crab Cavities for Compact Linear Collider

    SciTech Connect

    Ambattu, P.K.; Burt, G.; Khan, V.F.; Jones, R.M.; Dexter, A.; Dolgashev, V.; /SLAC

    2012-04-25

    The Compact Linear Collider requires a crab cavity on each beamline prior to the interaction point to rotate the bunches before collision. The cavities are X-band travelling wave type and are located close to the final doublet of the beam delivery system. This makes the beam very sensitive to transverse momentum imparted by wakefields; hence the wakefields must be tightly controlled. Of special concerns are the orthogonal polarization of the operating mode and the fundamental monopole mode of the crab cavity. The former mode is at the same frequency as the operating mode of a cylindrically symmetric cavity and the latter one is at a lower frequency and hence is difficult to damp using a single means. In this paper major problematic modes of the crab cavity are investigated and damping requirements for them are calculated. Possibility of meeting the required wakefield control using waveguide damping and choke damping is thoroughly investigated. As a comparison, damped-detuning is also investigated.

  9. Budgeting and control of the mechanical noise in the International Linear Collider final focus system

    NASA Astrophysics Data System (ADS)

    Tshilumba, D.; Oriunno, M.; Markiewicz, T.; Collette, C.

    2014-06-01

    In this paper, we present a simplified vibration model of the silicon detector (SiD), where the final doublet (QD0) is captured inside the detector and the penultimate magnet (QF1) is inside the machine tunnel. Ground motion spectra measured at the detector hall at SLAC have been used together with a spectrum of the technical noise on the detector. The model predicts that the maximum level of rms (root mean square) vibration seen by QD0 is well below the capture range of the interaction point (IP) feedback system available in the ILC. With the addition of an active stabilization system on QD0, it is also possible to get closer to the stability requirements of the compact linear collider (CLIC). These results can have important implications for CLIC.

  10. A Superstrong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider

    SciTech Connect

    Mihara, T.

    2004-12-06

    A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. The final focus quadrupole of a linear collider needs a variable focal length. This can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied. A ''double ring structure'' can ease these effects. A second prototype PMQ, containing thermal compensation materials and with a double ring structure, has been fabricated. Worm gear is selected as the mechanical rotating scheme because the double ring structure needs a large torque to rotate magnets. The structure of the second prototype PMQ is shown.

  11. C-Band Linac RF-System for e+e- Linear Collider

    SciTech Connect

    Bane, Karl LF

    2003-06-13

    A C-band (5712 MHz) rf system for a 500 GeV to 1 TeV e{sup +}e{sup -} linear collider is proposed. An accelerating gradient of 30 MV/m (including beam loading) is generated by 50 MW C-band klystrons in combination with an rf-compression system. The klystron and its power supply can be fabricated by conventional technology. The straightness tolerance for the accelerating structures is 30 {micro}m, which is also achievable with conventional fabrication processes. No critical new technology is required in a C-band system. Therefore a reliable system can be constructed at low cost with the minimum of R/D studies.

  12. Compensation of Detector Solenoid Effects on the Beam Size in Linear Collider

    SciTech Connect

    Nosochkov, Y.

    2004-08-05

    In this paper, the authors discuss the optics effects of the realistic detector solenoid field on beam size at the Interaction Point (IP) of a future Linear Collider and their compensation. It is shown that most of the adverse effects on the IP beam size arise only from the part of the solenoid field which overlaps and extends beyond the final focusing quadrupoles. It is demonstrated that the most efficient and local compensation can be achieved using weak antisolenoids near the IP, while a correction scheme which employs only skew quadrupoles is less efficient, and compensation with strong antisolenoids is not appropriate. One of the advantages of the proposed antisolenoid scheme is that this compensation works well over a large range of the beam energy

  13. Direct Measurement of Geometric and Resistive Wakefields in Tapered Collimators for the International Linear Collider

    SciTech Connect

    Watson, N.K.; Adeya, D.; Stockton, M.C.; U., Birmingham; Kolomensky, Y.; Slater, M.; Angal-Kalinin, D.; Beard, C.D.; Densham, C.J.; Ellwood, G.E.; J-L.Fernandez-Hernando, J.Greenhalgh, F.Jackson, J.O'Dell; Zimmermann, F.; Zagorodnov, I.; Burton, D.A.; Shales, N.; Smith, J.D.A.; Sopczak, A.; Tucker, R.; Barlow, R.J.; Bungau, A.; Jones, R.M.; /Darmstadt, Tech. Hochsch. /SLAC

    2006-08-18

    Precise collimation of the beam halo is required in the International Linear Collider (ILC) to prevent beam losses near the interaction region that could cause unacceptable backgrounds for the physics detector. The necessarily small apertures of the collimators lead to transverse wakefields that may result in beam deflections and increased emittance. A set of collimator wakefield measurements has previously been performed in the ASSET region of the SLAC Linac. We report on the next phase of this program, which is carried out at the recently commissioned End Station A (ESA) test facility at SLAC. Measurements of resistive and geometric wakefields using tapered collimators are compared with model predictions from MAFIA and GdfidL and with analytic calculations.

  14. Advances in Normal Conducting Accelerator Technology from the X-Band Linear Collider Program

    SciTech Connect

    Adolphsen, C; /SLAC

    2005-06-22

    In the mid-1990's, groups at SLAC and KEK began dedicated development of X-band (11.4 GHz) rf technology for a next generation, TeV-scale linear collider. The choice of a relatively high frequency, four times that of the SLAC 50 GeV Linac, was motivated by the cost benefits of having lower rf energy per pulse (hence fewer rf sources) and reasonable efficiencies at high gradients (hence shorter linacs). To realize such savings, however, requires operation at gradients and peak powers much higher than that hitherto achieved. During the past twelve years, these challenges were met through innovations on several fronts. This paper reviews these achievements, which include developments in the generation and transport of high power rf, and new insights into high gradient limitations.

  15. Radiation calculations and shielding considerations for the design of the Next Linear Collider

    SciTech Connect

    Nelson, W.R.; Rokni, S.H.; Vylet, V.

    1996-11-01

    The authors describe some of the work that they have done as a contribution to the Next Linear Collider (NLC) Zeroth-Order Design Report (ZDR), with specific emphasis placed on radiation-protection issues. However, because of the very nature of this machine--namely, extremely-small beam spots of high intensity--a new approach in accelerator radiation-protection philosophy appears to be warranted. Accordingly, the presentation will first take a look at recent design studies directed at protecting the machine itself, since this has resulted in a much better understanding of the very short exposure times involved whenever beam is lost and radiation sources are created. At the end of the paper, the authors suggest a Beam Containment System (BCS) that would provide an independent, redundant guarantee that exposure times are, indeed, kept very short. This, in turn, has guided them in the determination of the transverse shield thickness for the machine.

  16. Investigation into electron cloud effects in the International Linear Collider positron damping ring

    SciTech Connect

    Crittenden, J. A.; Conway, J.; Dugan, G. F.; Palmer, M. A.; Rubin, D. L.; Shanks, J.; Sonnad, K. G.; Boon, L.; Harkay, K.; Ishibashi, T.; Furman, M. A.; Guiducci, S.; Pivi, M. T. F.; Wang, L.

    2014-03-01

    We report modeling results for electron cloud buildup and instability in the International Linear Collider positron damping ring. Updated optics, wiggler magnets, and vacuum chamber designs have recently been developed for the 5 GeV, 3.2-km racetrack layout. An analysis of the synchrotron radiation profile around the ring has been performed, including the effects of diffuse and specular photon scattering on the interior surfaces of the vacuum chamber. The results provide input to the cloud buildup simulations for the various magnetic field regions of the ring. The modeled cloud densities thus obtained are used in the instability threshold calculations. We conclude that the mitigation techniques employed in this model will suffice to allow operation of the damping ring at the design operational specifications

  17. 50-MW X-band klystron sources for the next generation of linear colliders

    SciTech Connect

    Caryotakis, G.; Eppley, K.; Fant, K.; Fowkes, R.; Phillips, R.; Tantawi, S.; Vlieks, A.; Wright, E.

    1994-06-01

    The first in a new series of high-power pulsed klystrons has been tested with the following results: Frequency = 11.4 GHz, beam voltage = 415 kV, power output = 51 MW, pulse length = 1.5 {mu}s, and efficiency = 37%. Several tubes of this type will be used in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The rf performance of the klystron, which employs a standing-wave extended-interaction output circuit, is closely approximated by simulations performed with the SLAC CONDOR code. The same code predicts considerably higher efficiency, using a traveling-wave output circuit. A klystron with such a circuit will be constructed in the future. Another klystron is also planned in which beam confinement is accomplished by a periodic permanent magnet (PPM) stack, for which simulations also predict good performance.

  18. Monte-Carlo-based studies of a polarized positron source for International Linear Collider (ILC)

    NASA Astrophysics Data System (ADS)

    Dollan, Ralph; Laihem, Karim; Schälicke, Andreas

    2006-04-01

    The full exploitation of the physics potential of an International Linear Collider (ILC) requires the development of a polarized positron beam. New concepts of polarized positron sources are based on the development of circularly polarized photon sources. The polarized photons create electron-positron pairs in a thin target and transfer their polarization state to the outgoing leptons. To achieve a high level of positron polarization the understanding of the production mechanisms in the target is crucial. Therefore, a general framework for the simulation of polarized processes with GEANT4 is under development. In this contribution the current status of the project and its application to a study of the positron production process for the ILC is presented.

  19. Choke-mode damped structure design for the Compact Linear Collider main linac

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Shi, Jiaru; Chen, Huaibi; Grudiev, Alexej; Wuensch, Walter; Tang, Chuanxiang; Huang, Wenhui

    2012-12-01

    Choke-mode damped structures are being studied as an alternative design to waveguide damped structures for the main linac of the Compact Linear Collider (CLIC). Choke-mode structures have the potential for lower pulsed temperature rise and simpler and less expensive fabrication. An equivalent circuit model based on transmission line theory for higher-order-mode damping is presented. Using this model, a new choke geometry is proposed and the wakefield performance is verified using Gdfidl. This structure has a comparable wakefield damping effect to the baseline design which uses waveguide damping. A prototype structure with the same iris dimensions and accelerating gradient as the nominal CLIC design, but with the new choke geometry, has been designed for high-power tests.

  20. Fine Grained Silicon-Tungsten Calorimetry for a Linear Collider Detector

    SciTech Connect

    Strom, D.; Frey, R.; Breidenbach, M.; Freytag, D.; Graf, N.; Haller, G.; Milgrome, O.; Radeka, V.; /Brookhaven

    2006-02-08

    A fine grained silicon-tungsten calorimeter is ideal for use as the electromagnetic calorimeter in a linear collider detector optimized for particle-flow reconstruction. We are designing a calorimeter that is based on readout chips which are bump bonded to the silicon wafers that serve as the active medium in the calorimeter. By using integrated electronics we plan to demonstrate that fine granularity can be achieved at a reasonable price. Our design minimizes the gap between tungsten layers leading to a small Moliere radius, an important figure of merit for particle-flow detectors. Tests of the silicon detectors to be used in a test beam prototype as well as timing measurements based on similar silicon detectors are discussed.

  1. Kaluza-Klein/Z's Differentiation at the LHC and Linear Collider

    SciTech Connect

    Rizzo, Thomas G.

    2003-05-06

    We explore the capabilities of the LHC and the Linear Collider (LC) to distinguish the production of Kaluza-Klein (KK) excitations from an ordinary Z{prime} within the context of theories with TeV scale extra dimensions. At the LHC, these states are directly produced in the Drell-Yan channel while at the LC the effects of their exchanges are indirectly felt as new contact interactions in processes such as e{sup +}e{sup -} {yields} f{bar f}. While we demonstrate that the LC is somewhat more capable at KK/Z{prime} differentiation than is the LHC, the simplest LC analysis relies upon the LHC data for the resonance mass as an important necessary input.

  2. The Higgs sector of the minimal B- L model at future Linear Colliders

    NASA Astrophysics Data System (ADS)

    Basso, Lorenzo; Moretti, Stefano; Pruna, Giovanni Marco

    2011-08-01

    We investigate the phenomenology of the Higgs sector of the minimal B- L extension of the Standard Model at a future e + e - Linear Collider. We consider the discovery potential of both a sub-TeV and a multi-TeV machine. We show that, within such a theoretical scenario, several novel production and decay channels involving the two physical Higgs states, precluded at the LHC, could experimentally be accessed at such machines. Amongst these, several Higgs signatures have very distinctive features with respect to those of other models with enlarged Higgs sector, as they involve interactions of Higgs bosons between themselves, with Z' bosons as well as with heavy neutrinos. In particular, we present the scope of the Z' strahlung process for single and double Higgs production, the only suitable mechanism enabling one to access an almost decoupled heavy scalar state (therefore outside the LHC range).

  3. Ion Effects in the Electron Damping Ring of the International Linear Collider

    SciTech Connect

    Wang, L.; Raubenheimer, T.; Wolski, A.; /Liverpool U.

    2006-07-17

    Ion-induced beam instabilities and tune shifts are critical issues for the electron damping ring of the International Linear Collider (ILC). To avoid conventional ion trapping, a long gap is introduced in the electron beam by omitting a number of successive bunches out of a long train. However, the beam can still suffer from the fast ion instability, driven by ions that last only for a single passage of the electron bunches. Our study shows that the ion effects can be significantly mitigated by using multiple gaps, so that the stored beam consists of a number of relatively short bunch trains. The ion effects in the ILC damping rings are investigated using both analytical and numerical methods.

  4. Design and optimization of Compact Linear Collider main linac accelerating structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Grudiev, Alexej

    2016-11-01

    The Compact Linear Collider (CLIC) main linac uses waveguide damped structure as its baseline design. The current baseline structure design written in the CLIC Conceptual Design Report is named "CLIC-G." Recent activities on the CLIC-G design including high power tests on structure prototypes and the study of machining cost assessment had raised the need of reoptimizing the structure design to minimize the machining cost and the pulse surface temperature rise. This work presents optimization of the structure geometry, high-order-mode (HOM) damping loads and the design of a HOM-free power splitter for the input coupler. Compared to the current baseline design CLIC-G, the new structure design reduced the pulse surface temperature rise, input power and manufacturing cost and achieves better suppression to the long range transverse wakefield. Cell disks and damping loads for the new structure design are also more compact than those of the CLIC-G design.

  5. 600 kV modulator design for the SLAC Next Linear Collider Test Accelerator

    SciTech Connect

    Harris, K.; de Lamare, J.; Nesterov, V.; Cassel, R.

    1992-07-01

    Preliminary design for the SLAC Next Linear Collider Test Accelerator (NLCTA) requires a pulse power source to produce a 600 kV, 600 A, 1.4 {mu}s, 0.1% flat top pulse with rise and fall times of approximately 100 ns to power an X-Band klystron with a microperveance of 1.25 at {approx} 100 MW peak RF power. The design goals for the modulator, including those previously listed, are peak modulator pulse power of 340 MW operating at 120 Hz. A three-stage darlington pulse-forming network, which produces a >100 kV, 1.4 {mu}s pulse, is coupled to the klystron load through a 6:1 pulse transformer. Careful consideration of the transformer leakage inductance, klystron capacitance, system layout, and component choice is necessary to produce the very fast rise and fall times at 600 kV operating continuously at 120 Hz.

  6. Exploring the top-Higgs FCNC couplings at polarized linear colliders with top spin observables

    NASA Astrophysics Data System (ADS)

    Melić, Blaženka; Patra, Monalisa

    2017-01-01

    We study the nature of flavor changing neutral couplings of the top quark with the Higgs boson and the up/charm quark in the toverline{t} production at linear colliders. There are previous bounds on such tqH couplings at both, linear and hadronic colliders, with the assumption that the top couples equally to the left and the right handed fermions. In this paper we examine chirality of the tqH coupling and construct different observables which will be sensitive to it. The kinematics of the emitted q from t → qH in toverline{t} production is discussed and it was found that the polar angle distribution of q is sensitive to the chiral nature of tqH couplings. The observables in the context of top-antitop spin correlations, which are sensitive to new physics in the top decay are considered using different spin-quantization bases. It was found that in particular the off-diagonal basis can be useful to distinguish among the chiral tqH couplings. The sensitivity of the unpolarized ILC in probing the couplings at the 3 σ level at √{s}=500 GeV and ℒ = 500 fb-1 is also studied, resulting in predicted BR( t → qH) < 1 .19 × 10-3. This limit is further improved to BR( t → qH) < 8 .84 × 10-4 with the inclusion of initial beam polarization of left handed electrons and right handed positrons.

  7. Stripline design for the extraction kicker of Compact Linear Collider damping rings

    NASA Astrophysics Data System (ADS)

    Belver-Aguilar, C.; Faus-Golfe, A.; Toral, F.; Barnes, M. J.

    2014-07-01

    In the framework of the design study of future linear colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal center-of-mass energy of 3 TeV. To achieve the luminosity requirements, predamping rings (PDRs) and damping rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several kicker systems are needed to inject and extract the beam from the PDRs and DRs. In order to achieve both low beam coupling impedance and reasonable broadband impedance matching to the electrical circuit, striplines have been chosen for the kicker elements. In this paper, we present the complete design of the striplines for the DR extraction kicker, since it is the most challenging from the field homogeneity point of view. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most common shapes introduce separately. Furthermore, a detailed study of the different operating modes of a stripline kicker allowed the beam coupling impedance to be reduced at low frequencies: this cannot be achieved by tapering the electrodes. The optimum design of the striplines and their components has been based on studies of impedance matching, field homogeneity, power transmission, beam coupling impedance, and manufacturing tolerances. Finally, new ideas for further improvement of the performance of future striplines are reported.

  8. Interim report on the Global Design Effort Global International Linear Collider (ILC) R&D

    SciTech Connect

    Harrison, M.

    2011-04-30

    The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

  9. Using octupoles for background control in linear colliders -- An exploratory conceptual study

    SciTech Connect

    Pitthan, R.

    2000-03-09

    If one adds a suited Octupole (or an even higher multipole) lattice to linear collider Quadrupole FODO lattices, the amplifying properties of the combined lattice drive particles in the tails, but not those in the core, into resonant losses. This approach is quite different in concept and beam dynamics impact from past proposed use of non-linear elements for collimation. This non-traditional scheme for background control has the added advantage that most, or maybe all, of the Halo collimation can be done using the lever arm of the real estate of the main accelerators, thus reducing the costly length of a separate dedicated collimation section and also unifying machine protection and background control. Simulations of particle distributions are presented. This approach requires cooperation by the designers of the accelerators, the beam delivery system, and the Detector, because a careful balance between sometimes conflicting requirements has to be found. As a second component of this approach the use of Octupoles right before the final focusing Quadrupoles is proposed in order to enlarge the effective beam stay clear by a factor of 2--3, thus reducing the requirements for collimation. This concept would reduce the requirement for collimation but simulation have not been carried out here in detail. To further explore and implement this concept will require a considerable effort in manpower, possibly comparable to, although less in scope, than the effort to develop the NLC RF or the CLIC RF schemes.

  10. The Case for a 500 GeV e{sup +}e{sub {minus}} Linear Collider

    SciTech Connect

    Peskin, Michael E

    2000-07-12

    Several proposals are being developed around the world for an e{sup +}e{sub {minus}} linear collider with an initial center of mass energy of 500 GeV. In this paper, the authors discuss why a project of this type deserves priority as the next major initiative in high energy physics.

  11. Modification and Measurement of the Adjustable Permanent Magnet Quadrupole for the Final Focus in a Linear Collider

    SciTech Connect

    Kuroda, S.; Okugi, T.; Tauchi, T.; Fujisawa, H.; Ichikawa, M.; Iwashita, Y.; Tajima, Y.; Kumada, M.; Spencer, Cherrill M.; /SLAC

    2008-01-18

    An adjustable permanent magnet quadrupole has been developed for the final focus (FF) in a linear collider. Recent activities include a newly fabricated inner ring to demonstrate the strongest field gradient at a smaller bore diameter of 15mm and a magnetic field measurement system with a new rotating coil. The prospects of the R&D will be discussed.

  12. A vertically integrated pixel readout device for the Vertex Detector at the International Linear Collider

    SciTech Connect

    Deptuch, Grzegorz; Christian, David; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2008-12-01

    3D-Integrated Circuit technology enables higher densities of electronic circuitry per unit area without the use of nanoscale processes. It is advantageous for mixed mode design with precise analog circuitry because processes with conservative feature sizes typically present lower process dispersions and tolerate higher power supply voltages, resulting in larger separation of a signal from the noise floor. Heterogeneous wafers (different foundries or different process families) may be combined with some 3D integration methods, leading to the optimization of each tier in the 3D stack. Tracking and vertexing in future High-Energy Physics (HEP) experiments involves construction of detectors composed of up to a few billions of channels. Readout electronics must record the position and time of each measurement with the highest achievable precision. This paper reviews a prototype of the first 3D readout chip for HEP, designed for a vertex detector at the International Linear Collider. The prototype features 20 x 20 {micro}m{sup 2} pixels, laid out in an array of 64 x 64 elements and was fabricated in a 3-tier 0.18 {micro}m Fully Depleted SOI CMOS process at MIT-Lincoln Laboratory. The tests showed correct functional operation of the structure. The chip performs a zero-suppressed readout. Successive submissions are planned in a commercial 3D bulk 0.13 {micro}m CMOS process to overcome some of the disadvantages of an FDSOI process.

  13. Damped accelerator structures for future linear e/sup/plus minus// colliders

    SciTech Connect

    Deruyter, H.; Hoag, H.A.; Lisin, A.V.; Loew, G.A.; Palmer, R.B.; Paterson, J.M.; Rago, C.E.; Wang, J.W.

    1989-03-01

    This paper describes preliminary work on accelerator structures for future TeV linear colliders which use trains of e/sup +-/ bunches to reach the required luminosity. These bunch trains, if not perfectly aligned with respect to the accelerator axis, induce transverse wake field modes into the structure. Unless they are sufficiently damped, these modes cause cummulative beam deflections and emittance growth. The envisaged structures, originally proposed by R. B. Palmer, are disk-loaded waveguides in which the disks are slotted radially into quadrants. Wake field energy is coupled via the slots and double-ridged waveguides into a lossy region which is external to the accelerator structure. The requirement is that the Q of the HEM/sub 11/ mode be reduced to a value of less than 30. The work done so far includes MAFIA code computations and low power rf measurements to study the fields. A four-cavity 2..pi../3 mode standing-wave structure has been built to find whether the slots lower the electric breakdown thresholds below those reached with conventional disk-loaded structures. We set out to assess the microwave properties of the structure and the problems which might be encountered in fabricating it. 4 refs., 7 figs.

  14. Radiation and Thermal Analysis of Superconducting Quadrupoles in the Interaction Region of Linear Collider

    SciTech Connect

    Drozhdin, A.I.; Kashikhin, V.V.; Kashikhin, V.S.; Lopes, M.L.; Mokhov, N.V.; Zlobin, A.V.; Seryi, Andrei; /SLAC

    2011-10-14

    Radiation heat deposition in the superconducting magnets of the Interaction Region (IR) of a linear collider can be a serious issue that limits the magnet operating margins and shortens the material lifetime. Radiation and thermal analyses of the IR quadrupoles in the incoming and extraction beam lines of the ILC are performed in order to determine the magnet limits. This paper presents an analysis of the radial, azimuthal and longitudinal distributions of heat deposition in the incoming and disrupted beam doublets. Operation margins of the magnets based on NbTi superconductor are calculated and compared. The radiation and thermal analysis of the ILC IR quadrupoles based on Rutherford type cables was performed. It was found that the peak radiation heat deposition takes place in the second extraction quadrupole QFEX2. The maximum power density in the coil is {approx}17mW/g. This is rather high, comparing to the proton machines (LHC). However, the fast radial decay of the heat deposition together with the high thermal conductivity of the Rutherford type cable limits the coil temperatures to a moderate level. It was determined that both 2-layer and 4-layer QFEX2 magnet designs have thermal margins of a factor of {approx}4 at the nominal gradient of 31.3 T/m. Because of the large margins, these magnets can easily accommodate possible changes in the IR optics and heat deposition levels.

  15. Current Status of the Next Linear Collider X-Band Klystron Development Program

    SciTech Connect

    Caryotakis, G.; Haase, A.A.; Jongewaard, E.N.; Pearson, C.; Sprehn, D.W.; /SLAC

    2005-05-09

    Klystrons capable of driving accelerator sections in the Next Linear Collider (NLC) have been developed at SLAC during the last decade. In addition to fourteen 50 MW solenoid-focused devices and a 50 MW Periodic Permanent Magnet focused (PPM) klystron, a 500 kV 75 MW PPM klystron was tested in 1999 to 80 MW with 3 {micro}s pulses, but very low duty. Subsequent 75 MW prototypes aimed for low-cost manufacture by employing reusable focusing structures external to the vacuum, similar to a solenoid electromagnet. During the PPM klystron development, several partners (CPI, EEV and Toshiba) have participated by constructing partial or complete PPM klystrons. After early failures during testing of the first two devices, SLAC has recently tested this design (XP3-3) to the full NLC specifications of 75 MW, 1.6 {micro}s pulse length, and 120 Hz. This 14.4 kW average power operation came with an efficiency of 50%. The XP3-3 average and peak output power, together with the focusing method, arguably makes it the most advanced high power klystron ever built anywhere in the world. Design considerations and test results for these latest prototypes will be presented.

  16. High-gradient breakdown studies of an X -band Compact Linear Collider prototype structure

    NASA Astrophysics Data System (ADS)

    Wu, Xiaowei; Shi, Jiaru; Chen, Huaibi; Shao, Jiahang; Abe, Tetsuo; Higo, Toshiyasu; Matsumoto, Shuji; Wuensch, Walter

    2017-05-01

    A Compact Linear Collider prototype traveling-wave accelerator structure fabricated at Tsinghua University was recently high-gradient tested at the High Energy Accelerator Research Organization (KEK). This X -band structure showed good high-gradient performance of up to 100 MV /m and obtained a breakdown rate of 1.27 ×10-8 per pulse per meter at a pulse length of 250 ns. This performance was similar to that of previous structures tested at KEK and the test facility at the European Organization for Nuclear Research (CERN), thereby validating the assembly and bonding of the fabricated structure. Phenomena related to vacuum breakdown were investigated and are discussed in the present study. Evaluation of the breakdown timing revealed a special type of breakdown occurring in the immediately succeeding pulse after a usual breakdown. These breakdowns tended to occur at the beginning of the rf pulse, whereas usual breakdowns were uniformly distributed in the rf pulse. The high-gradient test was conducted under the international collaboration research program among Tsinghua University, CERN, and KEK.

  17. Probing triple Higgs couplings of the two Higgs doublet model at a linear collider

    SciTech Connect

    Arhrib, Abdesslam; Benbrik, Rachid; Chiang, C.-W.

    2008-06-01

    We study double Higgs production at the future linear collider in the framework of the two Higgs doublet models through the following channels: e{sup +}e{sup -}{yields}{phi}{sub i}{phi}{sub j}Z, {phi}{sub i}=h{sup 0}, H{sup 0}, A{sup 0}, H{sup {+-}}. All these processes are sensitive to triple Higgs couplings. Hence observations of them provide information on the triple Higgs couplings that help reconstructing the scalar potential. We also discuss the double Higgs-Strahlung e{sup +}e{sup -}{yields}h{sup 0}h{sup 0}Z in the decoupling limit where h{sup 0} mimics the standard model Higgs boson. The processes e{sup +}e{sup -}{yields}h{sup 0}h{sup 0}Z and e{sup +}e{sup -}{yields}h{sup 0}H{sup 0}Z are also discussed in the fermiophobic limit where distinctive signatures such as 4{gamma}+X, 2{gamma}+X, and 6{gamma}+X are expected in the Type-I two Higgs doublet model.

  18. Computer Modeling of Beamline Components for e+e- Storage Rings and Linear Colliders

    NASA Astrophysics Data System (ADS)

    Srinivas, Vinay

    1998-04-01

    Present and future particle accelerators are increasingly relying on computer modeling for the electrical design and analysis of their beamline components which have to meet higher performance standards and tighter engineering specifications as the accelerator design strives for higher energies. At SLAC, the Numerical Modeling Group (NMG) has been heavily involved in the PEP-II project, an upgrade to the PEP storage ring and now near completion, and also the NLC project which is planned to be a TeV scale linear collider. This talk will review the electromagnetic modeling efforts by the NMG to address some of the design challenges that have arisen in the two projects. For PEP-II, we will discuss the design issues for the RF cavity, beam position monitor, the interaction region and other beamline components, and will show the modeling results from the 3D code MAFIA. In the NLC case, we will describe the development of new modeling tools to provide the high accuracy required for designing and optimizing the Damped Detuned Structure which delivers higher shunt impedance, while at the same time suppresses long range transverse wakefields.

  19. Design of rf-extraction structures for the Two-Beam Next Linear Collider*

    NASA Astrophysics Data System (ADS)

    Kim, J.-S.; Henestroza, E.; Eylon, S.; Houck, T.; Westenskow, G.; Yu, S.

    1996-11-01

    Design issues of rf-extraction structures that can be used as the rf power source of a future TeV center of mass energy electron-positron linear collider based on the relativistic-klystron two-beam accelerator (RK-TBA) concept are as follows. Each structure produces 360 MW of rf power at 11.4 GHz, (2) has acceptable maximum surface electric fields, and (3) shows good beam transport over 100 structures. Based on 2D and 3D computer code simulations, three-cell detuned traveling wave structures (TWS) and three-cell, choked-mode, detuned TWS are found to satisfy all the criterion specified above. We will present the geometry and the properties of the output structures, beam dynamics over many rf structures, along with preliminary cold test results of a model assembly. ( * Work at FAR is supported by DOE SBIR grants DE-FG03-95ER81974 and DE-FG03-96ER82179, at LLNL by DOE contract W-7405-ENG-48, and LBNL by DOE contract AC03-76SF00098. )

  20. Attaining high luminosity in linear e sup + e sup minus colliders

    SciTech Connect

    Palmer, R.B.

    1990-11-01

    The attainment of high luminosity in linear colliders is a complex problem because of the interdependence of the critical parameters. For instance, changing the number of particles per bunch affects the damping ring design and thus the emittance; it affects the wakefields in the linac and thus the momentum spread; the momentum spread affects the final focus design and thus the final {beta}*; but the emittance change also affects the final focus design; and all these come together to determine the luminosity, disruption and beamstrahlung at the intersection. Changing the bunch length, or almost any other parameter, has a similar chain reaction. Dealing with this problem by simple scaling laws is very difficult because one does not know which parameter is going to be critical, and thus which should be held constant. One can only maximize the luminosity by a process of search and iteration. The process can be facilitated with the aid of a computer program. Examples can then be optimized for maximum luminosity, and compared to the optimized solutions with different approaches. This paper discusses these approaches.

  1. Experimental program to build a multimegawatt lasertron for super linear colliders

    SciTech Connect

    Garwin, E.L.; Herrmannsfeldt, W.B.; Sinclair, C.; Weaver, J.N.; Welch, J.J.; Wilson, P.B.

    1985-04-01

    A lasertron (a microwave ''triode'' with an RF output cavity and an RF modulated laser to illuminate a photocathode) is a possible high power RF amplifier for TeV linear colliders. As the first step toward building a 35 MW, S-band lasertron for a proof of principle demonstration, a 400 kV dc diode is being designed with a GaAs photocathode, a drift-tube and a collector. After some cathode life tests are made in the diode, an RF output cavity will replace the drift tube and a mode-locked, frequency-doubled, Nd:YAG laser, modulated to produce a 1 us-long comb of 60 ps pulses at a 2856 MHz rate, will be used to illuminate the photocathode to make an RF power source out of the device. This paper discusses the plans for the project and includes some results of numerical simulation studies of the lasertron as well as some of the ultra-high vacuum and mechanical design requirements for incorporating a photocathode.

  2. Beam dynamics design of the Compact Linear Collider Drive Beam injector

    NASA Astrophysics Data System (ADS)

    Hajari, Sh. Sanaye; Shaker, H.; Doebert, S.

    2015-11-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The longitudinal and transverse beam dynamics of the Drive Beam injector has been studied in detail and optimized. The injector consists of a thermionic gun followed by a bunching system, some accelerating structures, and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher, and a traveling wave buncher all embedded in a solenoidal magnetic field. The main characteristic of the Drive Beam injector is the phase coding process done by the sub-harmonic bunching system operating at half the acceleration frequency. This process is essential for the frequency multiplication of the Drive Beam. During the phase coding process the unwanted satellite bunches are produced that adversely affects the machine power efficiency. The main challenge is to reduce the population of particles in the satellite bunches in the presence of strong space-charge forces due to the high beam current. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimizing the injector performance compared to the existing model studied for the Conceptual Design Report (CDR). The emphasis of the optimization was on decreasing the satellite population, the beam loss in the magnetic chicane and limiting the beam emittance growth in transverse plane.

  3. On-line dispersion estimation and correction scheme for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Pfingstner, J.; Adli, E.; Schulte, D.

    2017-01-01

    The Compact Linear Collider (CLIC) has stringent component alignment tolerances in order to preserve the ultralow emittance of the utilized particle beams. Beam-based alignment techniques have been designed to relax these tolerances to realizable values. In this paper, a scheme is presented that is capable of mitigating besides the effects of static misalignments also dynamic misalignments caused by ground motion. It is based on the well-known dispersion-free steering (DFS) algorithm, with the peculiarity that it can perform its correction during the usual operation (on-line). This is enabled by performing the necessary dispersion measurements by introducing only negligibly small beam energy changes (per mille level). It has been found that this on-line correction becomes sensitive to the imperfections of transverse wakefields and structure tilts. These sensitivities have been studied via analytical models and in simulations and appropriate countermeasures to improve the robustness of the method have been proposed. The correction performance and robustness properties of the improved algorithm have been studied in detail with respect to all relevant static and dynamic imperfections in a realistic scenario. The presented scheme is not only a potentially important operational tool for CLIC, but the findings with respect to robustness properties for different imperfections are of general interest for the application of the dispersion-free steering algorithm.

  4. Cryogenic system configuration for the International Linear Collider (ILC) at mountainous site

    NASA Astrophysics Data System (ADS)

    Nakai, H.; Okamura, T.; Delikaris, D.; Peterson, T.; Yamamoto, A.

    2017-02-01

    The International Linear Collider (ILC) plans to make use of ten cryoplants for its main linacs, each providing 19 kW at 4.5 K equivalent and among of it 3.6 kW at 2 K. Each cryoplant will consist of various cryogenic components such as a 4.5 K refrigerator cold box, a 2 K refrigerator cold box, and helium compressors and so on. In the technical design report (TDR) of the ILC, due to the mountainous topology, almost all cryogenic components would be installed in underground cryogenic caverns next to the main linac tunnels and only cooling towers on surface area. However, we would like to find a more effective and sophisticated configuration of the cryoplant components (cryogenic configuration). Under several constraints of technical, geographical, and environmental points of view, the cryogenic configuration should be considered carefully to satisfy such various conditions. After discussions on this topic conducted at various workshops and conferences, an updated cryogenic configuration is suggested. The proposed updated configuration may affect the total construction cost of the ILC and the entire structure of the ILC conventional facilities. The updated cryogenic configuration is presented and the on-going discussions with the conventional facilities and siting (CFS) colleagues for further improvement of the cryogenic configuration is introduced.

  5. An Automated Magnet Positioning System For Use in the Next Linear Collider

    SciTech Connect

    Viola, Robert J

    2006-02-21

    The Next Linear Collider (NLC) is conceived as the world's most powerful electron-positron particle accelerator. Throughout the NLC, the beam itself will be used to measure errors in the positions of the lattice elements. This beam-based alignment strategy is an essential element of the NLC's design and precision adjustment systems have been identified as a critical enabling technology. Square One proposes a new type of precision manipulator that could be adapted for applications throughout the accelerator. As envisioned, this Tri-Sphere Adjustment System will possess up to six, non-redundant degrees of freedom, be capable of sub-micron resolutions and have ultimate load capacities in excess of 10,000 kg. The system will accommodate thermal expansions and contractions of the objects being supported and can be either motorized or manually actuated. Phase I development tasks will include detailed manipulator design, solution of the associated kinematic equations of motion and evaluation of actuators, gear reducers and transmission systems. The Phase I effort will culminate in the fabrication and full evaluation of a system prototype. A successfully developed Tri-Sphere manipulator could also be used to actively position critical fusion optics, adjust communication dishes or perform parts handling tasks in harsh manufacturing environments.

  6. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  7. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    DOE PAGES

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; ...

    2015-11-19

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the referencemore » cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Lastly, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.« less

  8. Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)

    ScienceCinema

    None

    2016-07-12

    How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

  9. Nanosecond-Timescale Intra-Bunch-Train Feedback for the Linear Collider: Results of the FONT2 Run

    SciTech Connect

    Barlow, R.; Dufau, M.; Kalinin, A.; Myatt, G.; Perry, C.; Burrows, P.N.; Hartin, T.; Hussain, S.M.; Molloy, S.; White, G.R.; Adolphsen, C.; Frisch, J.C.; Hendrickson, L.; Jobe, R.K.; Markiewicz, T.; McCormick, D.J.; Nelson, J.; Ross, M.C.; Smith, S.; Smith, T.J.; /SLAC

    2005-05-11

    We report on experimental results from the December 2003/January 2004 data run of the Feedback On Nanosecond Timescales (FONT) experiment at the Next Linear Collider Test Accelerator at SLAC. We built a second-generation prototype intra-train beam-based feedback system incorporating beam position monitors, fast analogue signal processors, a feedback circuit, fast-risetime amplifiers and stripline kickers. We applied a novel real-time charge-normalization scheme to account for beam current variations along the train. We used the system to correct the position of the 170-nanosecond-long bunchtrain at NLCTA. We achieved a latency of 53 nanoseconds, representing a significant improvement on FONT1 (2002), and providing a demonstration of intra-train feedback for the Linear Collider.

  10. SiD Linear Collider Detector R&D, DOE Final Report

    SciTech Connect

    Brau, James E.; Demarteau, Marcel

    2015-05-15

    The Department of Energy’s Office of High Energy Physics supported the SiD university detector R&D projects in FY10, FY11, and FY12 with no-cost extensions through February, 2015. The R&D projects were designed to advance the SiD capabilities to address the fundamental questions of particle physics at the International Linear Collider (ILC): • What is the mechanism responsible for electroweak symmetry breaking and the generation of mass? • How do the forces unify? • Does the structure of space-time at small distances show evidence for extra dimensions? • What are the connections between the fundamental particles and forces and cosmology? Silicon detectors are used extensively in SiD and are well-matched to the challenges presented by ILC physics and the ILC machine environment. They are fast, robust against machine-induced background, and capable of very fine segmentation. SiD is based on silicon tracking and silicon-tungsten sampling calorimetry, complemented by powerful pixel vertex detection, and outer hadronic calorimetry and muon detection. Radiation hard forward detectors which can be read out pulse by pulse are required. Advanced calorimetry based on a particle flow algorithm (PFA) provides excellent jet energy resolution. The 5 Tesla solenoid is outside the calorimeter to improve energy resolution. PFA calorimetry requires fine granularity for both electromagnetic and hadronic calorimeters, leading naturally to finely segmented silicon-tungsten electromagnetic calorimetry. Since silicon-tungsten calorimetry is expensive, the detector architecture is compact. Precise tracking is achieved with the large magnetic field and high precision silicon microstrips. An ancillary benefit of the large magnetic field is better control of the e⁺e⁻ pair backgrounds, permitting a smaller radius beampipe and improved impact parameter resolution. Finally, SiD is designed with a cost constraint in mind. Significant advances and new capabilities have been made and

  11. Studies of strong electroweak symmetry breaking at future e{sup +}e{sup {minus}} linear colliders

    SciTech Connect

    Barklow, T.L.

    1994-08-01

    Methods of studying strong electroweak symmetry breaking at future e{sup +}e{sup {minus}} linear colliders are reviewed. Specifically, we review precision measurements of triple gauge boson vertex parameters and the rescattering of longitudinal W bosons in the process e{sup +}e{sup {minus}} {yields} W{sup +}W{sup {minus}}. Quantitative estimates of the sensitivity of each technique to strong electroweak symmetry breaking are included.

  12. The Silicon Detector (SiD) And Linear Collider Detector R&D in Asia And North America

    SciTech Connect

    Brau, J.E.; Breidenbach, M.; Fujii, Y.; /KEK, Tsukuba

    2005-08-11

    In Asia and North America research and development on a linear collider detector has followed complementary paths to that in Europe. Among the developments in the US has been the conception of a detector built around silicon tracking, which relies heavily on a pixel (CCD) vertex detector, and employs a silicon tungsten calorimeter. Since this detector is quite different from the TESLA detector, we describe it here, along with some of the sub-system specific R&D in these regions.

  13. Low emittance design of the electron gun and the focusing channel of the Compact Linear Collider drive beam

    NASA Astrophysics Data System (ADS)

    Dayyani Kelisani, M.; Doebert, S.; Aslaninejad, M.

    2017-04-01

    For the Compact Linear Collider project at CERN, the power for the main linacs is extracted from a drive beam generated from a high current electron source. The design of the electron source and its subsequent focusing channel has a great impact on the beam dynamic considerations of the drive beam. We report the design of a thermionic electron source and the subsequent focusing channels with the goal of production of a high quality beam with a very small emittance.

  14. Laboratory Frame Analysis of e+e-→μ+μ- Scattering in the Noncommutative Standard Model at Linear Collider

    NASA Astrophysics Data System (ADS)

    Das, Prasanta Kumar; Prakash, Abhishodh

    2012-09-01

    We study the muon pair production e+e-→μ+μ- in the framework of the nonminimal noncommutative standard model (NCSM) to the second-order of the noncommutative (NC) parameter Θμν at linear collider. The {O}(Θ 2) momentum-dependent NC interaction significantly modifies the cross-section and angular distributions which are different from the standard model. After including the effects of earth's rotation we analyze the time-averaged and time-dependent observables in detail. The time-averaged azimuthal distribution of the cross-section shows significant departure from the standard model which can be tested at the upcoming linear collider. We find strong dependence of total cross-section (time-averaged) and their distributions on the orientation and the magnitude of the NC electric vector (ΘE). Assuming that the future linear collider data will differ from the standard model result by 5%, we obtain Λ≥615 GeV and Λ≥946 GeV corresponding to the machine energy Ecom = 1000 GeV and 1500 GeV.

  15. Future e/sup +/e/sup -/ linear colliders and beam-beam effects

    SciTech Connect

    Wilson, P.B.

    1986-05-01

    Numerous concepts, ranging from conventional to highly exotic, hae been proposed for the acceleration of electrons and positrons to very high energies. For any such concept to be viable, it must be possible to produce from it a set of consistent parameters for one of these ''benchmark'' machines. Attention is directed to the choice of parameters for a collider in the 300 GeV energy range, operating at a gradient on the order of 200 MV/m, using X-band power sources to drive a conventional disk-loaded accelerating structure. These rf power sources, while not completely conventional represent a reasonable extrapolation from present technology. The choice of linac parameters is strongly coupled to various beam-beam effects which take place when the electron and positron bunches collide. We summarize these beam-beam effects, and then return to the rf design of a 650 GeV center-of-mass collider. 14 refs.

  16. The Next Linear Collider Test Accelerator's RF Pulse Compression And Transmission

    SciTech Connect

    Tantawi, S.G.; Adelphson, C.; Holmes, S.; Lavine, Theodore L.; Loewen, R.J.; Nantista, C.; Pearson, C.; Pope, R.; Rifkin, J.; Ruth, R.D.; Vlieks, A.E.; /SLAC

    2011-09-14

    The overmoded rf transmission and pulsed power compression system for SLAC's Next Linear Collider (NLC) program requires a high degree of transmission efficiency and mode purity to be economically feasible. To this end, a number of new, high power components and systems have been developed at X-band, which transmit rf power in the low loss, circular TE01 mode with negligible mode conversion. In addition, a highly efficient SLED-II* pulse compressor has been developed and successfully tested at high power. The system produced a 200 MW, 250 ns wide pulse with a near-perfect flat-top. In this paper we describe the design and test results of the high power pulse compression system using SLED-II. The NLC rf systems use low loss highly over-moded circular waveguides operating in the TE01 mode. The efficiency of the systems is sensitive to the mode purity of the mode excited inside these guides. We used the so called flower petal mode transducer [2] to excite the TE01 mode. This type of mode transducer is efficient, compact and capable of handling high levels of power. To make more efficient systems, we modified this device by adding several mode selective chokes to act as mode purifiers. To manipulate the rf signals we used these modified mode converters to convert back and forth between over-moded circular waveguides and single-moded WR90 rectangular waveguides. Then, we used the relatively simple rectangular waveguide components to do the actual manipulation of rf signals. For example, two mode transducers and a mitered rectangular waveguide bend comprise a 90 degree bend. Also, a magic tee and four mode transducers would comprise a four-port-hybrid, etc. We will discuss the efficiency of an rf transport system based on the above methodology. We also used this methodology in building the SLEDII pulse compression system. At SLAC we built 4 of these pulse systems. In this paper we describe the SLEDII system and compare the performance of these 4 systems at SLAC. We

  17. Measuring the Higgs-vector boson couplings at linear e+e- collider

    NASA Astrophysics Data System (ADS)

    Dutta, Sukanta; Hagiwara, Kaoru; Matsumoto, Yu

    2008-12-01

    We estimate the accuracy with which the coefficient of the CP even dimension-six operators involving Higgs and two vector bosons (HVV) can be measured at linear e+e- colliders. Using the optimal observables method for the kinematic distributions, our analysis is based on the five different processes. First is the WW fusion process in the t-channel (e+e-→ν¯eνeH), where we use the rapidity y and the transverse momentum pT of the Higgs boson as observables. Second is the ZH pair production process in the s channel, where we use the scattering angle of the Z and the Z decay angular distributions, reproducing the results of the previous studies. Third is the t-channel ZZ, fusion processes (e+e-→e+e-H), where we use the energy and angular distributions of the tagged e+ and e-. In the fourth, we consider the rapidity distribution of the untagged e+e-H events, which can be approximated well as the γγ fusion of the bremsstrahlung photons from e+ and e- beams. As the last process, we consider the single-tagged e+e-H events, which probe the γe±→He± process. All the results are presented in such a way that statistical errors of the constraints on the effective couplings and their correlations are read off when all of them are allowed to vary simultaneously, for each of the above processes, for mH=120GeV, at s=250GeV, 350 GeV, 500 GeV, and 1 TeV, with and without e- beam polarization of 80%. We find, for instance, that the HZZ and HWW couplings can be measured with 0.6% and 0.9% accuracy, respectively, for the integrated luminosity of L=100fb-1 at s=250GeV, 350 GeV, and L=500fb-1 at s=500GeV, 1 TeV, for the luminosity uncertainty of 1% at each energy. We find that the luminosity uncertainty affects only one combination of the nonstandard couplings, which are proportional to the standard HWW and HZZ couplings, while it does not affect the errors of the other independent combinations of the couplings. As a consequence, we observe that a few combinations of the eight

  18. Diffusion bonding and brazing of high purity copper for linear collider accelerator structures

    NASA Astrophysics Data System (ADS)

    Elmer, J. W.; Klingmann, J.; van Bibber, K.

    2001-05-01

    Diffusion bonding and brazing of high purity copper were investigated to develop procedures for joining precision machined copper components for the Next Linear Collider (NLC). Diffusion bonds were made over a range of temperatures from 400 °C to 1000 °C, under two different loading conditions [3.45 kPa (0.5 psi) and 3.45 MPa (500 psi)], and on two different diamond machined surface finishes. Brazes were made using pure silver, pure gold, and gold-nickel alloys, and different heating rates produced by both radiation and induction heating. Braze materials were applied by both physical vapor deposition (PVD) and conventional braze alloy shims. Results of the diffusion bonding experiments showed that bond strengths very near that of the copper base metal could be made at bonding temperatures of 700 °C or higher at 3.45 MPa bonding pressure. At lower temperatures, only partial strength diffusion bonds could be made. At low bonding pressures (3.45 kPa), full strength bonds were made at temperatures of 800 °C and higher, while no bonding (zero strength) was observed at temperatures of 700 °C and lower. Observations of the fracture surfaces of the diffusion bonded samples showed the effects of surface finish on the bonding mechanism. These observations clearly indicate that bonding began by point asperity contact, and flatter surfaces resulted in a higher percentage of bonded area under similar bonding conditions. Results of the brazing experiments indicated that pure silver worked very well for brazing under both conventional and high heating rate scenarios. Similarly, pure silver brazed well for both the PVD layers and the braze alloy shims. The gold and gold-containing brazes had problems, mainly due to the high diffusivity of gold in copper. These problems led to the necessity of overdriving the temperature to ensure melting, the presence of porosity in the joint, and very wide braze joints. Based on the overall findings of this study, a two-step joining method

  19. Bird`s IP view of limits of conventional e{sup +}e{sup {minus}} linear collider technology

    SciTech Connect

    Irwin, J.

    1994-11-01

    Scaling laws appropriate to future e{sup +}e{sup {minus}} linear colliders in the high upsilon regime are examined assuming that the luminosity must increase as the square of the energy. Limits on achievable energy for these colliders are identified under the assumption that no exotica such as energy recovery, superdisruption, or four-beam charge compensation are employed, and all technology is foreseeable and has an apparent cost within the bounds of a large international collaboration. Following these guidelines, an upper energy limit appears around 15 TeV in the center of mass as the normalized emittance required to produce ever smaller vertical spot sizes become unattainable with conventional damping ring technology.

  20. Static beam-based alignment for the Ring-To-Main-Linac of the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Han, Y.; Latina, A.; Ma, L.; Schulte, D.

    2017-06-01

    The Compact Linear Collider (CLIC) is a future multi-TeV collider for the post-Large Hadron Collider era. It features high-gradient acceleration and ultra-low emittance to achieve its ambitious goals of high collision energy and peak luminosity. Beam-based alignment (BBA) techniques are mandatory for CLIC to preserve the ultra-low emittances from the damping rings to the interaction point. In this paper, a detailed study of BBA techniques has been carried out for the entire 27 km long ``Ring-To-Main-Linac'' (RTML) section of the CLIC, to correct realistic static errors such as element position offsets, angle, magnetic strength and dynamic magnetic centre shifts. The correction strategy is proved to be very effective and leads to a relaxation of the pre-alignment tolerances for the component installation in the tunnel. This is the first time such a large scale and complex lattice has been corrected to match the design budgets. The techniques proposed could be applied to similarly sized facilities, such as the International Linear Collider, where a similar RTML section is used, or free-electron lasers, which, being equipped with linacs and bunch compressors, present challenges similar to those of the CLIC RTML. Moreover, a new technique is investigated for the emittance tuning procedure: the direct measurement of the interactions between the beams and a set of a few consecutive laser wires. The speed of this technique can be faster comparing to the traditional techniques based on emittance reconstructed from beam size measurements at several positions.

  1. Melmon resigns Stanford chairmanship.

    PubMed

    Norman, Colin

    1984-06-22

    The chairman of Stanford Medical School's department of medicine, Kenneth Melmon, has resigned his administrative position after receiving a letter of censure from Stanford president Donald Kennedy. A university ethics committee had found Melmon guilty of negligent scholarship after it was discovered that a textbook chapter authored by him contained unattributed material from a book he had earlier helped edit. Melmon maintained that permission to use the material and its proper attribution had been handled by his editor, but this later proved not to be the case. Stanford plans no further action in the matter, and Melmon will retain his professorship.

  2. Comment on ``Beamstrahlung considerations in laser-plasma-accelerator-based linear colliders''

    NASA Astrophysics Data System (ADS)

    Lebedev, Valeri; Nagaitsev, Sergei

    2013-10-01

    Schroeder, Esarey, Geddes, Benedetti, and Leemans [Phys. Rev. ST Accel. Beams 13, 101301 (2010)PRABFM1098-440210.1103/PhysRevSTAB.13.101301 and Phys. Rev. ST Accel. Beams 15, 051301 (2012)PRABFM1098-440210.1103/PhysRevSTAB.15.051301] have proposed a set of parameters for a TeV-scale collider based on plasma wakefield accelerator principles. In particular, it is sugested that the luminosities greater than 1034cm-2s-1 are attainable for an electron-positron collider. In this Comment we dispute this set of parameters on the basis of first principles. The interactions of accelerating beam with plasma impose fundamental limitations on beam properties and, thus, on attainable luminosity values.

  3. Stanford Geothermal Program

    SciTech Connect

    R. Horn

    1999-06-30

    Reliable measurement of steam-water relative permeability functions is of great importance for geothermal reservoir performance simulation. Despite their importance, these functions are poorly known due to the lack of fundamental understanding of steam-water flows, and the difficulty of making direct measurements. The Stanford Geothermal Program has used an X-ray CT (Computer Tomography) scanner to obtain accurate saturation profiles by direct measurement. During the last five years, the authors have carried out experiments with nitrogen-water flow and with steam-water flow, and examined the effects of heat transfer and phase change by comparing these sets of results. In porous rocks, it was found that the steam-water relative permeabilities follow Corey type relationships similar to those in nitrogen-water flow, but that the irreducible gas phase saturation is smaller for steam than for nitrogen. The irreducible saturations represent substantial fractions of the recoverable energy in place yet are hard to determine in the field. Understanding the typical magnitude of irreducible saturations will lead to a much clearer forecast of geothermal field performance. In fracture flow, indirect measurements suggested that the relative permeabilities follow a linear (or ''X-curve'') behavior - but there is still considerable uncertainty in the knowledge of this behavior.

  4. Comparison of Alignment Tolerances in the Linear Collider Damping with Those in Operating Rings(LCC-0112)

    SciTech Connect

    Raubenheimer, T

    2004-01-05

    The next generation linear colliders require damping rings to generate beam with very small transverse emittances to attain the desired luminosity. The required emittances are smaller than that of most operating synchrotron radiation sources. In this paper, the alignment tolerances needed to attain these small emittances are compared with those of the operating synchrotron radiation facilities and a prototype damping ring, the ATF at KEK. The concept of this study originated at the Nanobeams Workshop during a discussion in the Storage Rings Working Group although the results were not discussed at that meeting.

  5. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  6. Single production of excited spin-3/2 neutrinos at linear colliders

    SciTech Connect

    Cakir, O.; Ozansoy, A.

    2009-03-01

    We study the potential of future high energy e{sup +}e{sup -} colliders to probe excited neutrino signals in different channels coming from the single production process via gauge interactions. We calculate the production cross section, decay widths, and branching ratios of excited spin-3/2 neutrinos according to their effective currents and we compare them with those of the spin-1/2 ones. The signals and corresponding backgrounds are examined in detail to get accessible limits on the masses and couplings of excited spin-3/2 neutrinos.

  7. Quadrupole Alignment and Trajectory Correction for Future Linear Colliders: SLC Tests of a Dispersion-Free Steering Algorithm

    SciTech Connect

    Assmann, R

    2004-06-08

    The feasibility of future linear colliders depends on achieving very tight alignment and steering tolerances. All proposals (NLC, JLC, CLIC, TESLA and S-BAND) currently require a total emittance growth in the main linac of less than 30-100% [1]. This should be compared with a 100% emittance growth in the much smaller SLC linac [2]. Major advances in alignment and beam steering techniques beyond those used in the SLC are necessary for the next generation of linear colliders. In this paper, we present an experimental study of quadrupole alignment with a dispersion-free steering algorithm. A closely related method (wakefield-free steering) takes into account wakefield effects [3]. However, this method can not be studied at the SLC. The requirements for future linear colliders lead to new and unconventional ideas about alignment and beam steering. For example, no dipole correctors are foreseen for the standard trajectory correction in the NLC [4]; beam steering will be done by moving the quadrupole positions with magnet movers. This illustrates the close symbiosis between alignment, beam steering and beam dynamics that will emerge. It is no longer possible to consider the accelerator alignment as static with only a few surveys and realignments per year. The alignment in future linear colliders will be a dynamic process in which the whole linac, with thousands of beam-line elements, is aligned in a few hours or minutes, while the required accuracy of about 5 pm for the NLC quadrupole alignment [4] is a factor of 20 higher than in existing accelerators. The major task in alignment and steering is the accurate determination of the optimum beam-line position. Ideally one would like all elements to be aligned along a straight line. However, this is not practical. Instead a ''smooth curve'' is acceptable as long as its wavelength is much longer than the betatron wavelength of the accelerated beam. Conventional alignment methods are limited in accuracy by errors in the survey

  8. A nonlinear particle dynamics map of wakefield acceleration in a linear collider

    SciTech Connect

    Tajima, T.; Cheshkov, S.; Horton, W.; Yokoya, K.

    1998-08-01

    The performance of a wakefield accelerator in a high energy collider application is analyzed. In order to carry out this task, it is necessary to construct a strawman design system (no matter how preliminary) and build a code of the systems approach. A nonlinear dynamics map built on a simple theoretical model of the wakefield generated by the laser pulse (or whatever other method) is obtained and they employ this as a base for building a system with multi-stages (and components) as a high energy collider. The crucial figures of merit for such a system other than the final energy include the emittance (that determines the luminosity). The more complex the system is, the more opportunities the system has to degrade the emittance (or entropy of the beam). Thus the map gu ides one to identify where the crucial elements lie that affect the emittance. They find that a strong focusing force of the wakefield coupled with a possible jitter of the axis (or laser aiming) of each stage and a spread in the betatron frequencies arising from different phase space positions for individual particles leads to a phase space mixing. This sensitively controls the emittance degradation. They show that in the case of a uniform plasma the effect of emittance growth is large and may cause serious problems. They discuss possibilities to avoid it and control the situation.

  9. A method for the precision mass measurement of the stop quark at the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Freitas, Ayres; Milsténe, Caroline; Schmitt, Michael; Sopczak, Andre

    2008-09-01

    Many supersymmetric models predict new particles within the reach of the next generation of colliders. For an understanding of the model structure and the mechanism(s) of symmetry breaking, it is important to know the masses of the new particles precisely. In this article the measurement of the mass of the scalar partner of the top quark (stop) at an e+e- collider is studied. A relatively light stop is motivated by attempts to explain electroweak baryogenesis and can play an important role in dark matter relic density. A method is presented which makes use of cross-section measurements near the pair-production threshold as well as at higher center-of-mass energies. It is shown that this method not only increases the statistical precision, but also greatly reduces the systematic uncertainties, which can be important. Numerical results are presented, based on a realistic event simulation, for two signal selection strategies: using conventional selection cuts, and using an Iterative Discriminant Analysis (IDA). Our studies indicate that a precision of Δmtilde t1 = 0.42 GeV can be achieved, representing a major improvement over previous studies. While the analysis of stops is particularly challenging due to the possibility of stop hadronization, the general procedure could be applied to the mass measurement of other particles as well. We also comment on the potential of the IDA to discover a stop quark in this scenario, and we revisit the accuracy of the theoretical predictions for the neutralino relic density.

  10. International Linear Collider Reference Design Report Volume 2: Physics at the ILC

    SciTech Connect

    Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; /SLAC /Tokyo U. /Victoria U. /Beijing, Inst. High Energy Phys. /Tel Aviv U. /Birmingham U. /Annecy, LAPP /Minsk, High Energy Phys. Ctr. /DESY /Royal Holloway, U. of London /CERN /Pusan Natl. U. /KEK, Tsukuba /Orsay, LAL /Notre Dame U. /Frascati /Cornell U., Phys. Dept. /Oxford U. /Hefei, CUST /Bangalore, Indian Inst. Sci. /Fermilab

    2011-11-14

    The triumph of 20th century particle physics was the development of the Standard Model and the confirmation of many of its aspects. Experiments determined the particle constituents of ordinary matter, and identified four forces that hold matter together and transform it from one form to another. Particle interactions were found to obey precise laws of relativity and quantum theory. Remarkable features of quantum physics were observed, including the real effects of 'virtual' particles on the visible world. Building on this success, particle physicists are now able to address questions that are even more fundamental, and explore some of the deepest mysteries in science. The scope of these questions is illustrated by this summary from the report Quantum Universe: (1) Are there undiscovered principles of nature; (2) How can we solve the mystery of dark energy; (3) Are there extra dimensions of space; (4) Do all the forces become one; (5) Why are there so many particles; (6) What is dark matter? How can we make it in the laboratory; (7) What are neutrinos telling us; (8) How did the universe begin; and (9) What happened to the antimatter? A worldwide program of particle physics investigations, using multiple approaches, is already underway to explore this compelling scientific landscape. As emphasized in many scientific studies, the International Linear Collider is expected to play a central role in what is likely to be an era of revolutionary advances. Discoveries from the ILC could have breakthrough impact on many of these fundamental questions. Many of the scientific opportunities for the ILC involve the Higgs particle and related new phenomena at Terascale energies. The Standard Model boldly hypothesizes a new form of Terascale energy, called the Higgs field, that permeates the entire universe. Elementary particles acquire mass by interacting with this field. The Higgs field also breaks a fundamental electroweak force into two forces, the electromagnetic and weak

  11. A Method for the Precision Mass Measurement of the Stop Quark at the International Linear Collider

    SciTech Connect

    Freitas, Ayres; Milstene, Caroline; Schmitt, Michael; Sopczak, Andre; /Lancaster U.

    2007-12-01

    Many supersymmetric models predict new particles within the reach of the next generation of colliders. For an understanding of the model structure and the mechanism(s) of symmetry breaking, it is important to know the masses of the new particles precisely. In this article the measurement of the mass of the scalar partner of the top quark (stop) at an e{sup +}e{sup -} collider is studied. A relatively light stop is motivated by attempts to explain electroweak baryogenesis and can play an important role in dark matter relic density. A method is presented which makes use of cross-section measurements near the pair-production threshold as well as at higher center-of-mass energies. It is shown that this method not only increases the statistical precision, but also greatly reduces the systematic uncertainties, which can be important. numerical results are presented, based on a realistic event simulation, for two signal selection strategies: using conventional selection cuts, and using an Iterative Discriminant Analysis (IDA). The studies indicate that a precision of {Delta}m{sub {bar t}{sub 1}} = 0.42 GeV can be achieved, representing a major improvement over previous studies. While the analysis of stops is particularly challenging due to the possibility of stop hadronization, the general procedure could be applied to the mass measurement of other particles as well. They also comment on the potential of the IDA to discover a stop quark in this scenario, and they revisit the accuracy of the theoretical predictions for the neutralino relic density.

  12. A Method for the Precision Mass Measurement of the Stop Quark at the International Linear Collider

    SciTech Connect

    Freitas, Ayres; Milstene, Caroline; Schmitt, Michael; Sopczak, Andre; /Lancaster U.

    2008-06-01

    Many supersymmetric models predict new particles within the reach of the next generation of colliders. For an understanding of the model structure and the mechanism(s) of symmetry breaking, it is important to know the masses of the new particles precisely. In this article the measurement of the mass of the scalar partner of the top quark (stop) at an e+e- collider is studied. A relatively light stop is motivated by attempts to explain electroweak baryogenesis and can play an important role in dark matter relic density. A method is presented which makes use of cross-section measurements near the pair-production threshold as well as at higher center-of-mass energies. It is shown that this method not only increases the statistical precision, but also greatly reduces the systematic uncertainties, which can be important. Numerical results are presented, based on a realistic event simulation, for two signal selection strategies: using conventional selection cuts, and using an Iterative Discriminant Analysis (IDA). Our studies indicate that a precision of {Delta}m{tilde t}{sub 1} = 0.42 GeV can be achieved, representing a major improvement over previous studies. While the analysis of stops is particularly challenging due to the possibility of stop hadronization, the general procedure could be applied to the mass measurement of other particles as well. We also comment on the potential of the IDA to discover a stop quark in this scenario, and we revisit the accuracy of the theoretical predictions for the neutralino relic density

  13. Some issues involved in designing a 1 TeV (c. m. ) e/sup + -/ linear collider using conventional technology

    SciTech Connect

    Loew, G.A.

    1986-02-01

    Some of the crucial issues are discussed which are raised when one wants to use conventional technology to design a 1 TeV electron-positron linear collider with a luminosity of 2 x 10/sup 32/ cm/sup -2/sec/sup -1/. By conventional technology is meant that the process of acceleration is achieved as is usual in common electron linacs - namely that the electron and positron bunches receive their energy from rf fields stored in copper structures at room temperature. The beam-related problems and linac-related problems are treated separately. What happen as one goes to gradients and frequencies higher that those of the SLC are considered, in an attempt to decrease overall length and power consumption. The rf and other problems that one confronts as one goes to higher energies are illustrated. 19 refs., 12 figs., 2 tabs. (LEW)

  14. Recent Electron-Cloud Simulation Results for the Main Damping Rings of the NLC and the TESLA Linear Colliders

    SciTech Connect

    Pivi, Mauro T F

    2003-05-19

    In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler.

  15. Recent electron-cloud simulation results for the main damping rings of the NLC and TESLA linear colliders

    SciTech Connect

    Pivi, M.; Raubenheimer, T.O.; Furman, M.A.

    2003-05-01

    In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler.

  16. Novel Method of Compensation of the Effects of Detector Solenoid on the Vertical Beam Orbit in a Linear Collider

    SciTech Connect

    Parker, B

    2005-02-25

    This paper presents a method for compensating the vertical orbit change through the Interaction Region (IR) that arises when the beam enters the Linear Collider detector solenoid at a crossing angle. Such compensation is required because any deviation of the vertical orbit causes degradation of the beam size due to synchrotron radiation, and also because the nonzero total vertical angle causes rotation of the polarization vector of the bunch. Compensation may be necessary to preserve the luminosity or to guarantee knowledge of the polarization at the Interaction Point (IP). The most effective compensation is done locally with a special dipole coil arrangement incorporated into the detector (Detector Integrated Dipole). The compensation is effective for both e{sup +}e{sup -} and e{sup -}e{sup -} beams, and the technique is compatible with beam size compensation either by the standard method, using skew quadrupoles, or by a more effective method using weak antisolenoids.

  17. Development of High Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Linear Colliders

    SciTech Connect

    Tantawi, Sami

    2000-11-06

    We describe development of semiconductor X-band high-power RF switches. The target applications are high-power RF pulse compression systems for future linear colliders. We describe the design methodology of the architecture of the whole switch systems. We present the scaling law that governs the relation between power handling capability and number of elements. We designed and built several active waveguide windows for the active element. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of a few megawatts at X-band.

  18. The E166 experiment: Development of an undulator-based polarized positron source for the international linear collider

    NASA Astrophysics Data System (ADS)

    Kovermann, J.; Stahl, A.; Mikhailichenko, A. A.; Scott, D.; Moortgat-Pick, G. A.; Gharibyan, V.; Pahl, P.; Põschl, R.; Schüler, K. P.; Laihem, K.; Riemann, S.; Schälicke, A.; Dollan, R.; Kolanoski, H.; Lohse, T.; Schweizer, T.; McDonald, K. T.; Batygin, Y.; Bharadwaj, V.; Bower, G.; Decker, F.-J.; Hast, C.; Iverson, R.; Sheppard, J. C.; Szalata, Z.; Walz, D.; Weidemann, A.; Alexander, G.; Reinherz-Aronis, E.; Berridge, S.; Bugg, W.; Efrimenko, Y.

    2007-12-01

    A longitudinal polarized positron beam is foreseen for the international linear collider (ILC). A proof-of-principle experiment has been performed in the final focus test beam at SLAC to demonstrate the production of polarized positrons for implementation at the ILC. The E166 experiment uses a 1 m long helical undulator in a 46.6 GeV electron beam to produce a few MeV photons with a high degree of circular polarization. These photons are then converted in a thin target to generate longitudinally polarized e^+ and e^-. The positron polarization is measured using a Compton transmission polarimeter. The data analysis has shown asymmetries in the expected vicinity of 3.4% and ˜1% for photons and positrons respectively and the expected positron longitudinal polarization is covering a range from 50% to 90%.

  19. Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    DOE PAGES

    Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...

    2016-01-20

    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less

  20. Stanford's Online Strategy

    ERIC Educational Resources Information Center

    Waters, John K.

    2013-01-01

    Stanford University (CA) is MOOC Central. While the school may not have launched the first massive open online course (MOOC), its efforts have propelled the concept to the forefront of higher education in a matter of months. Starting with Sebastian Thrun's Introduction to Artificial Intelligence course, which enrolled 160,000 students, Stanford…

  1. The Stanford Flood.

    ERIC Educational Resources Information Center

    Leighton, Philip D.

    1979-01-01

    Describes, from the flood to the start of freeze-drying operations, the preservation efforts of Stanford University regarding books damaged by water in the Green Library in November 1978. Planning, action, and mopping-up activities are chronicled, and 20 suggestions are offered as guidance in future similar situations. (JD)

  2. The Stanford Flood.

    ERIC Educational Resources Information Center

    Leighton, Philip D.

    1979-01-01

    Describes, from the flood to the start of freeze-drying operations, the preservation efforts of Stanford University regarding books damaged by water in the Green Library in November 1978. Planning, action, and mopping-up activities are chronicled, and 20 suggestions are offered as guidance in future similar situations. (JD)

  3. Stanford's Online Strategy

    ERIC Educational Resources Information Center

    Waters, John K.

    2013-01-01

    Stanford University (CA) is MOOC Central. While the school may not have launched the first massive open online course (MOOC), its efforts have propelled the concept to the forefront of higher education in a matter of months. Starting with Sebastian Thrun's Introduction to Artificial Intelligence course, which enrolled 160,000 students, Stanford…

  4. Report of Snowmass 2001 working group E2: Electron - positron colliders from the phi to the Z

    SciTech Connect

    Zhen-guo Zhao et al.

    2002-12-23

    We report on the status and plans of experiments now running or proposed for electron-positron colliders at energies between the {phi} and the Z. The e{sup +}e{sup -}B and charm factories we considered were PEP-II/BABAR, KEKB/Belle, superKEK, SuperBABAR, and CESR-c/CLEO-c. We reviewed the programs at the {phi} factory at Frascati and the proposed PEP-N facility at Stanford Linear Accelerator Center. We studied the prospects for B physics with a dedicated linear collider Z factory, associated with the TESLA high energy linear collider. In all cases, we compared the physics reach of these facilities with that of alternative experiments at hadron colliders or fixed target facilities.

  5. Design, Simulation and Testing of a Precision Alignment Frame for the Next Linear Collider

    SciTech Connect

    Fitsos, P

    2004-06-18

    An alignment frame is developed to support 3 Beam Position Monitors (BPM's) for detecting and ultimately aligning the electron beam from a linear accelerator. This report discusses the design details, preliminary modal analysis of the alignment frame as well as the addition of a metrology frame in the final phase of development.

  6. Polarized e/sup -/e/sup +/ physics in linear colliders

    SciTech Connect

    Prescott, C.Y.

    1980-11-01

    Electroweak interactions at high energies are expected to be dominated by spin-dependent forces. Recent advances in the production of polarized electron beams in linear machines provide the opportunity for studying these spin-dependent effects. Polarized e/sup -/e/sup +/ annihilation at the Z/sup 0/ pole can provide precise measurements of neutral current parameters and the best experimental challenge to the standard model of electroweak interactions.

  7. Synchrotron radiation and absence of linear polarization in the colliding wind binary WR 146

    NASA Astrophysics Data System (ADS)

    Hales, C. A.; Benaglia, P.; del Palacio, S.; Romero, G. E.; Koribalski, B. S.

    2017-02-01

    Context. Several massive early-type binaries exhibit non-thermal emission which has been attributed to synchrotron radiation from particles accelerated by diffusive shock acceleration (DSA) in the wind-collision region (WCR). If the magnetic field in the strong shocks is ordered, its component parallel to the shock front should be enhanced, and the resultant synchrotron radiation would be polarized. However, such polarization has never been measured. Aims: We aim to determine the percentage of linearly polarized emission from the well-known non-thermal radio emitter WR 146, a WC6+O8 system. Methods: We performed spatially-unresolved radio continuum observations of WR 146 at 5 cm and 20 cm with the Karl G. Jansky Very Large Array. We constructed a numerical model to investigate a scenario where particles are accelerated by turbulent magnetic reconnection (MR), and we performed a quantitative analysis of possible depolarization effects. Results: No linearly polarized radio emission was detected. The data constrain the fractional linear polarization to less than 0.6% between 1 to 8 GHz. This is compatible with a high level of turbulence and a dominant random component in the magnetic field. In this case the relativistic particles could be produced by turbulent magnetic reconnection. In order for this scenario to satisfy the required non-thermal energy budget, the strength of the magnetic field in the WCR must be as high as 150 mG. However, if the magnetic field is ordered and DSA is ongoing, then a combination of internal and external Faraday rotation could equally account for the depolarization of the emission. Conclusions: The absence of polarization could be caused by a highly turbulent magnetic field, other depolarization mechanisms such as Faraday rotation in the stellar wind, or a combination of these processes. It is not clear whether it is possible to develop the high level of turbulence and strong magnetic fields required for efficient MR in a long

  8. The E166 experiment: Development of an Undulator-Based Polarized Positron Source for the International Linear Collider

    SciTech Connect

    Kovermann, J.; Stahl, A.; Mikhailichenko, A.A.; Scott, D.; Moortgat-Pick, G.A.; Gharibyan, V.; Pahl, P.; Poschl, R.; Schuler, K.P.; Laihem, K.; Riemann, S.; Schalicke, A.; Dollan, R.; Kolanoski, H.; Lohse, T.; Schweizer, T.; McDonald, K.T.; Batygin, Y.; Bharadwaj, V.; Bower, G.; Decker, F.J.; /SLAC /Tel Aviv U. /Tennessee U.

    2011-11-14

    A longitudinal polarized positron beam is foreseen for the international linear collider (ILC). A proof-of-principle experiment has been performed in the final focus test beam at SLAC to demonstrate the production of polarized positrons for implementation at the ILC. The E166 experiment uses a 1 m long helical undulator in a 46.6 GeV electron beam to produce a few MeV photons with a high degree of circular polarization. These photons are then converted in a thin target to generate longitudinally polarized e{sup +} and e{sup -}. The positron polarization is measured using a Compton transmission polarimeter. The data analysis has shown asymmetries in the expected vicinity of 3.4% and {approx}1% for photons and positrons respectively and the expected positron longitudinal polarization is covering a range from 50% to 90%. The full exploitation of the physics potential of an international linear collider (ILC) will require the development of polarized positron beams. Having both e{sup +} and e{sup -} beams polarized will provide new insight into structures of couplings and thus give access to physics beyond the standard model [1]. The concept for a polarized positron source is based on circularly polarized photon sources. These photons are then converted to longitudinally polarized e{sup +} and e{sup -} pairs. While in an experiment at KEK [1a], Compton backscattering is used [2], the E166 experiment uses a helical undulator to produce polarized photons. An undulator-based positron source for the ILC has been proposed in [3,4]. The proposed scheme for an ILC positron source is illustrated in figure 1. In this scheme, a 150 GeV electron beam passes through a 120 m long helical undulator to produce an intense photon beam with a high degree of circular polarization. These photons are converted in a thin target to e{sup +} e{sup -} pairs. The polarized positrons are then collected, pre-accelerated to the damping ring and injected to the main linac. The E166 experiment is

  9. Demonstration of a high-field short-period superconducting helical undulator suitable for future TeV-scale linear collider positron sources.

    PubMed

    Scott, D J; Clarke, J A; Baynham, D E; Bayliss, V; Bradshaw, T; Burton, G; Brummitt, A; Carr, S; Lintern, A; Rochford, J; Taylor, O; Ivanyushenkov, Y

    2011-10-21

    The first demonstration of a full-scale working undulator module suitable for future TeV-scale positron-electron linear collider positron sources is presented. Generating sufficient positrons is an important challenge for these colliders, and using polarized e(+) would enhance the machine's capabilities. In an undulator-based source polarized positrons are generated in a metallic target via pair production initiated by circularly polarized photons produced in a helical undulator. We show how the undulator design is developed by considering impedance effects on the electron beam, modeling and constructing short prototypes before the successful fabrication, and testing of a final module. © 2011 American Physical Society

  10. Search for heavy neutral CP-even Higgs within lepton-specific 2HDM at a future linear collider

    NASA Astrophysics Data System (ADS)

    Hashemi, Majid; Haghighat, Gholamhossein

    2017-09-01

    In this paper, the production process $e^- e^+ \\rightarrow A H$ is analyzed in the context of the type IV 2HDM and the question of observability of a neutral CP-even Higgs boson $H$ at a linear collider operating at $\\sqrt{s}=1$ TeV is addressed. The CP-odd Higgs is assumed to experience a gauge-Higgs decay as $A\\rightarrow ZH$ with hadronic decay of $Z$ boson as the signature of signal events. The production chain is thus $e^+e^- \\rightarrow AH \\rightarrow ZHH \\rightarrow jj\\ell\\ell\\ell\\ell$ where $\\ell$ is a $\\tau$ or $\\mu$. Four benchmark points with different mass hypotheses are assumed for the analysis. The Higgs mass $m_H$ is assumed to vary within the range 150-300 GeV in increments of 50 GeV. The anti-$k_t$ algorithm is used to perform the jet reconstruction. Results indicate that the neutral CP-even Higgs $H$ is observable through this production mechanism using the di-muon invariant mass distribution with possibility of mass measurement. The corresponding signal significances exceed $5\\sigma$ at integrated luminosity of 3000 $fb^{-1}$.

  11. The development of an annular-beam, high power free-electron maser for future linear colliders

    SciTech Connect

    Fazio, M.V.; Carlsten, B.E.; Earley, L.M.; Fortgang, C.M.; Haddock, P.C.; Haynes, W.B.

    1996-09-01

    Work is under way to develop a 17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. We plan to use a 500 keV, 5 kV, 6 cm diameter annular electron beam to excite a TM{sub 02} mode Raman FEM amplifier in a corrugated cylindrical waveguide. The annular beam will run close to the interaction device walls to reduce the power density in the fields, and to greatly reduce the kinetic energy loss caused by beam potential depression associated with the space charge which is a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. A key advantage of the annular beam is that the reduced plasma wave number can be tuned to achieve phase stability for an arbitrary correlation on interaction strength with beam velocity. It should be noted that this technique for improving phase stability of an EM in not possible with a solid beam klystron. The annular beam FEM provides the opportunity to extend the output power of sources in the 17 GHz regime by well over an order of magnitude with enhanced phase stability. The design and experimental status are discussed.

  12. Searching for the heavy charged custodial fiveplet Higgs boson in the Georgi-Machacek model at the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Zhang, YuFei; Sun, Hao; Luo, Xuan; Zhang, WeiNing

    2017-06-01

    The Georgi-Machacek (GM) model is one of many beyond Standard Model scenarios with an extended scalar sector that can group under the custodial SU (2 )C symmetry into a fiveplet, a triplet, and two singlets. The heavy charged custodial fiveplet Higgs H5± are typical particles in the GM model that couple to the electroweak gauge bosons, therefore providing a good testing ground for the detection of the H±W∓Z vertex. The neutral custodial fiveplet Higgs H50 in the GM model has the same mass with the H5± and couples to both of the electroweak gauge bosons, W+W- and ZZ. Here, we study the discovery prospects of the exotic scalar bosons H5± and H50 at the International Linear Collider(ILC) via the vector boson associated production processes, and discuss two different decay modes for both the charged and neutral scalars. The discovery potential is discussed. Testing the mass degeneracy of charged and neutral scalar bosons in the GM model is also considered.

  13. A precise measurement of the left-right asymmetry of Z Boson production at the SLAC linear collider

    SciTech Connect

    1994-09-01

    We present a precise measurement of the left-right cross section asymmetry of Z boson production (A{sub LR}) observed in 1993 data at the SLAC linear collider. The A{sub LR} experiment provides a direct measure of the effective weak mixing angle through the initial state couplings of the electron to the Z. During the 1993 run of the SLC, the SLD detector recorded 49,392 Z events produced by the collision of longitudinally polarized electrons on unpolarized positrons at a center-of-mass energy of 91.26 GeV. A Compton polarimeter measured the luminosity-weighted electron polarization to be (63.4{+-}1.3)%. ALR was measured to be 0.1617{+-}0.0071(stat.){+-}0.0033(syst.), which determines the effective weak mixing angle to be sin {sup 2}{theta}{sub W}{sup eff} = 0.2292{+-}0.0009(stat.){+-}0.0004(syst.). This measurement of A{sub LR} is incompatible at the level of two standard deviations with the value predicted by a fit of several other electroweak measurements to the Standard Model.

  14. Implications of the 750 GeV γγ Resonance as a Case Study for the International Linear Collider

    SciTech Connect

    Fujii, Keisuke; Grojean, Christophe; Peskin, Michael E.; Barklow, Tim; Gao, Yuanning; Kanemura, Shinya; Kim, Hyungdo; List, Jenny; Nojiri, Mihoko; Perelstein, Maxim; Poschl, Roman; Reuter, Jurgen; Simon, Frank; Tanabe, Tomohiko; Yu, Jaehoon; Wells, James D.; Falkowski, Adam; Matsumoto, Shigeki; Moroi, Takeo; Richard, Francois; Tian, Junping; Vos, Marcel; Yokoya, Hiroshi; Murayama, Hitoshi; Yamamoto, Hitoshi

    2016-07-14

    If the γγ resonance at 750 GeV suggested by 2015 LHC data turns out to be a real effect, what are the implications for the physics case and upgrade path of the International Linear Collider? Whether or not the resonance is confirmed, this question provides an interesting case study testing the robustness of the ILC physics case. In this note, we address this question with two points: (1) Almost all models proposed for the new 750 GeV particle require additional new particles with electroweak couplings. The key elements of the 500 GeV ILC physics program - precision measurements of the Higgs boson, the top quark, and 4-fermion interactions - will powerfully discriminate among these models. This information will be important in conjunction with new LHC data, or alone, if the new particles accompanying the 750 GeV resonance are beyond the mass reach of the LHC. (2) Over a longer term, the energy upgrade of the ILC to 1 TeV already discussed in the ILC TDR will enable experiments in γγ and e+e- collisions to directly produce and study the 750 GeV particle from these unique initial states.

  15. Probing the Z' sector of the minimal B-L model at future Linear Colliders in the e+e- → μ+μ- process

    NASA Astrophysics Data System (ADS)

    Basso, L.; Belyaev, A.; Moretti, S.; Pruna, G. M.

    2009-10-01

    We study the capabilities of future electron-positron Linear Colliders, with centre-of-mass energy at the TeV scale, in accessing the parameter space of a Z' boson within the minimal B-L model. In such a model, wherein the Standard Model gauge group is augmented by a broken U(1)B-L symmetry - with B(L) being the baryon(lepton) number — the emerging Z' mass is expected to be in the above energy range. We carry out a detailed comparison between the discovery regions mapped over a two-dimensional configuration space (Z' mass and coupling) at the Large Hadron Collider and possible future Linear Colliders for the case of di-muon production. As known in the literature for other Z' models, we confirm that leptonic machines, as compared to the CERN hadronic accelerator, display an additional potential in discovering a B-L Z' boson as well as in allowing one to study its properties at a level of precision well beyond that of any of the existing colliders.

  16. Design study of beam dynamics issues for a one TeV next linear collider based upon the relativistic klystron two-beam accelerator

    SciTech Connect

    Li, H.; Houck, T.; Goffeney, N.; Henestroza, E.; Sessler, A.; Westenskow, G.; Yu, S.

    1995-06-01

    A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. We present, in this paper, the beam dynamics part of this study. We have achieved in our design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA. {copyright} 1995 {ital American Institute of Physics}.

  17. Relativistic-klystron two-beam-accelerator as a power source for a 1 TeV next linear collider: A systems study

    SciTech Connect

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-10-01

    A physics, engineering, and costing study has been conducted to explore the feasibility of a relativistic-klystron two-beam-accelerator system as a power source candidate for a 1 TeV linear collider. We present a point design example which has acceptable transverse and longitudinal beam stability properties. Preliminary ``bottom-up`` cost estimate yields the full power source system at less than 1 billion dollars. The overall efficiency for rf production is estimated to be 36%.

  18. Design study of beam dynamics issues for 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    SciTech Connect

    Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.; Houck, T.; Westenskow, G.

    1994-11-01

    A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. The author present, in this paper, the beam dynamics part of this study. They have achieved in their design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA.

  19. The development of colliders

    SciTech Connect

    Sessler, A.M.

    1993-02-01

    Don Kerst, Gersh Budker, and Bruno Touschek were the individuals, and the motivating force, which brought about the development of colliders, while the laboratories at which it happened were Stanford, MURA, the Cambridge Electron Accelerator, Orsay, Frascati, CERN, and Novosibirsk. These laboratories supported, during many years, this rather speculative activity. Of course, many hundreds of physicists contributed to the development of colliders but the men who started it, set it in the right direction, and forcefully made it happen, were Don, Gersh, and Bruno. Don was instrumental in the development of proton-proton colliders, while Bruno and Gersh spearheaded the development of electron-positron colliders. In this brief review of the history, I will sketch the development of the concepts, the experiments, and the technological developments which made possible the development of colliders. It may look as if the emphasis is on theoretical concepts, but that is really not the case, for in this field -- the physics of beams -- the theory and experiment go hand in hand; theoretical understanding and advances are almost always motivated by the need to explain experimental results or the desire to construct better experimental devices.

  20. Hosing Instability of the Drive Electron Beam in the E157 Plasma-Wakefield Acceleration Experiment at the Stanford Linear Accelerator

    SciTech Connect

    Blue, Brent Edward; /SLAC /UCLA

    2005-10-10

    In the plasma-wakefield experiment at SLAC, known as E157, an ultra-relativistic electron beam is used to both excite and witness a plasma wave for advanced accelerator applications. If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose instability. The linear theory of electron-hose instability in a uniform ion column predicts that for the parameters of the E157 experiment (beam charge, bunch length, and plasma density) a growth of the centroid offset should occur. Analysis of the E157 data has provided four critical results. The first was that the incoming beam did have a tilt. The tilt was much smaller than the radius and was measured to be 5.3 {micro}m/{delta}{sub z} at the entrance of the plasma (IP1.) The second was the beam centroid oscillates in the ion channel at half the frequency of the beam radius (betatron beam oscillations), and these oscillations can be predicted by the envelope equation. Third, up to the maximum operating plasma density of E157 ({approx}2 x 10{sup 14} cm{sup -3}), no growth of the centroid offset was measured. Finally, time-resolved data of the beam shows that up to this density, no significant growth of the tail of the beam (up to 8ps from the centroid) occurred even though the beam had an initial tilt.

  1. Luminosity, Energy and Polarization Studies for the Linear Collider: Comparing e+e- and e-e- for NLC and TESLA

    SciTech Connect

    Woods, M

    2004-02-25

    We present results from luminosity, energy and polarization studies at a future Linear Collider. We compare e{sup +}e{sup -} and e{sup -}e{sup -} modes of operation and consider both NLC and TESLA beam parameter specifications at a center-of-mass energy of 500 GeV. Realistic colliding beam distributions are used, which include dynamic effects of the beam transport from the Damping Rings to the Interaction Point. Beam-beam deflections scans and their impact for beam-based feedbacks are considered. A transverse kink instability is studied, including its impact on determining the luminosity-weighted center-of-mass energy. Polarimetry in the extraction line from the IP is presented, including results on beam distributions at the Compton IP and at the Compton detector.

  2. Discriminating between Z'-boson effects and effects of anomalous gauge couplings in the double production of W ± bosons at a linear collider

    NASA Astrophysics Data System (ADS)

    Andreev, Vasili V.; Pankov, A. A.

    2013-06-01

    The potential of the International Linear electron-positron Collider (ILC) for seeking, in the annihilation production of W ±-boson pairs, signals induced by new neutral gauge bosons predicted by models belonging to various classes and featuring an extended gauge sector is studied. Limits that will be obtained at ILC for the parameters and masses of Z' bosons are compared with present-day and future data from the Large Hadron Collider (LHC). The possibility of discriminating between the effects of Z-Z' mixing and signals induced by anomalous gauge couplings (AGC) is demonstrated within theoretically motivated trilinear gauge models involving several free anomalous parameters. It is found that the sensitivity of ILC to the effects of Z-Z' mixing in the process e + e - → W + W - and its ability to discriminate between these two new-physics scenarios, Z' and AGC, become substantially higher upon employing polarized initial ( e + e -) and final ( W ±) states.

  3. Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider

    SciTech Connect

    Yu, S.; Goffeney, N.; Henestroza, E.

    1995-02-22

    A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported.

  4. Pair Production of the Doubly Charged Leptons Associated with a Gauge Boson γ or Z in e+e- and γγ Collisions at Future Linear Colliders

    NASA Astrophysics Data System (ADS)

    Zeng, Qing-Guo; Ji, Li; Yang, Shuo

    2015-03-01

    In this paper, we investigate the production of a pair of doubly charged leptons associated with a gauge boson V(γ or Z) at future linear colliders via e+e- and γγ collisions. The numerical results show that the possible signals of the doubly charged leptons may be detected via the processes e+e- → VX++X-- and γγ → VX++X-- at future ILC or CLIC experiments. Supported in part by the National Natural Science Foundation of China under Grants Nos. 11275088, 11205023, 11375248 and the Program for Liaoning Excellent Talents in University under Grant No. LJQ2014135

  5. Phase detector and phase feedback for a single bunch in a two-bunch damping ring for the SLAC Linear Collider

    SciTech Connect

    Schwarz, H.D.; Judkins, J.G.

    1987-03-01

    The synchronous phase of a bunch of positrons or electrons being damped in a SLAC Linear Collider (SLC) damping ring is dependent on beam intensity. Injection for alternate bunches into the SLC linac from the damping rings should occur at a constant phase. A phase detector was developed allowing the measurement of phase of a single-stored bunch in the presence of a second bunch in reference to the phase of the linac. The single-bunch phase is derived from beam position monitor signals using a switching scheme to separate the two bunches circulating in each damping ring. The hardware is described including feedback loops to stabilize the extraction phase.

  6. Solid State Technology Meets Collider Challenge

    SciTech Connect

    Hazi, A

    2005-09-20

    Probing the frontiers of particle physics and delving into the mysteries of the universe and its beginnings require machines that can accelerate beams of fundamental particles to very high energies and then collide those beams together, producing a multitude of exotic subatomic particles. The proposed Next Linear Collider (NLC), being developed by Stanford Linear Accelerator Center (SLAC), Lawrence Livermore and Lawrence Berkeley national laboratories, and Fermi National Accelerator Laboratory (Fermilab), is such a machine. The NLC is expected to produce a variety of subatomic particles by smashing together electrons and their antimatter counterparts (positrons) at nearly the speed of light with energies in the teraelectronvolt (TeV) range. Plans are that the NLC will initially operate at 0.5 TeV and ultimately be scaled up to 1.5 TeV. (See S&TR, April 2000, pp. 12-16.) Work at the facility will complement the research to be conducted at another high-energy particle accelerator, the 14-TeV Large Hadron Collider at the European Laboratory for Particle Physics (commonly known by the acronym CERN from its former name) in Geneva, which is scheduled for completion in 2007. Achieving beam energy levels in the TeV range requires modulator systems that can convert ac line power--the same type of power one gets from the wall plug--into dc pulses. Ultimately, these pulses are transformed into radiofrequency (rf) pulses that ''kick'' the particles up to the required energy levels. Livermore scientists and engineers have designed a solid-state modulator to replace oldstyle modulators based on vacuum-tube technology. These new modulators promise to be far more efficient, reliable, and serviceable than the previous components. Livermore's Laboratory Directed Research and Development Program supported the basic research and development on the solid-state modulator technology, and SLAC supported the systems integration.

  7. Environmental assessment for the proposed B-Factory (Asymmetric Electron Positron Collider)

    SciTech Connect

    Not Available

    1993-11-01

    This document presents the potential environmental consequences associated with the construction and operation of an Asymmetric Electron Positron Collider, also known as a B-Factory. DOE proposes to modify either the existing Positron-Electron Project at the Stanford Linear Accelerator Center (SLAC) or the Cornell Electron Storage Ring (CESR) at Cornell University. PEP and CESR provide the most technically promising and practical options for a B-Factory. A B-Factory can be constructed by modifying the existing facilities and with minor or no conventional construction. Details involved with the upgrade along with two alternatives to the proposed action are described.

  8. A New Chicane Experiment in PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

    SciTech Connect

    Pivi, M. T.; Pivi, M.T.F.; Ng, J.S.T.; Arnett, D.; Cooper, F.; Kharakh, D.; King, F.K.; Kirby, R.E.; Kuekan, B.; Lipari, J.J.; Munro, M.; Olszewski, J.; Raubenheimer, T.O.; Seeman, J.; Spencer, C.M.; Wang, L.; Wittmer, W.; Celata, C.M.; Furman, M.A.; Smith, B.

    2008-06-11

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings, and it is expected to be a limiting factor in the performance of future colliders [1-3]. The effect is expected to be particularly severe in magnetic field regions. To test possible mitigation methods in magnetic fields, we have installed a new 4-dipole chicane experiment in the PEP-II Low Energy Ring (LER) at SLAC with both bare and TiN-coated aluminum chambers. In particular, we have observed a large variation of the electron flux at the chamber wall as a function of the chicane dipole field. We infer this is a new high order resonance effect where the energy gained by the electrons in the positron beam depends on the phase of the electron cyclotron motion with respect to the bunch crossing, leading to a modulation of the secondary electron production. Presumably the cloud density is modulated as well and this resonance effect could be used to reduce its magnitude in future colliders. We present the experimental results obtained during January 2008 until the April final shut-down of the PEP-II machine.

  9. A New Chicane Experiment In PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

    SciTech Connect

    Pivi, M.T.F.; Ng, J.S.T.; Arnett, D.; Cooper, F.; Kharakh, D.; King, F.K.; Kirby, R.E.; Kuekan, B.; Lipari, J.J.; Munro, M.; Olszewski, J.; Raubenheimer, T.O.; Seeman, J.; Smith, B.; Spencer, C.M.; Wang, L.; Wittmer, W.; Celata, C.M.; Furman, M.A.; /SLAC /LBL, Berkeley

    2008-07-03

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings, and it is expected to be a limiting factor in the performance of future colliders [1-3]. The effect is expected to be particularly severe in magnetic field regions. To test possible mitigation methods in magnetic fields, we have installed a new 4-dipole chicane experiment in the PEP-II Low Energy Ring (LER) at SLAC with both bare and TiN-coated aluminum chambers. In particular, we have observed a large variation of the electron flux at the chamber wall as a function of the chicane dipole field. We infer this is a new high order resonance effect where the energy gained by the electrons in the positron beam depends on the phase of the electron cyclotron motion with respect to the bunch crossing, leading to a modulation of the secondary electron production. Presumably the cloud density is modulated as well and this resonance effect could be used to reduce its magnitude in future colliders. We present the experimental results obtained during January 2008 until the April final shut-down of the PEP-II machine.

  10. 14. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford University Archives, PC 6. SEWING ROOM ('BIRD ROOM').LEFT TO RIGHT, ANNA MARIA LATHROP (MRS. STANFORD'S SISTER), MRS. JANE ANN (DYER) LATHROP (MRS. STANFORD'S MOTHER), ELIZABETH PHILLIPS (MRS. JOSIAH) STANFORD (GOV. STANFORD'S MOTHER), JANE LATHROP (MRS. LELAND) STANFORD AND HER SON, LELAND, JR. - Leland Stanford House, 800 N Street, Sacramento, Sacramento County, CA

  11. Exotic colliders

    SciTech Connect

    Chattopadhyay, S.

    1994-11-01

    The motivation, feasibility and potential for two unconventional collider concepts - the Gamma-Gamma Collider and the Muon Collider - are described. The importance of the development of associated technologies such as high average power, high repetition rate lasers and ultrafast phase-space techniques are outlined.

  12. The Stanford School Scheduling System.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. Dept. of Industrial Engineering.

    This booklet gives a general overview of the computerized Stanford School Scheduling System (SSSS) which is designed to make scheduling less difficult for individualized programs in secondary education. Topics covered include new flexible scheduling and variable course structure designs in secondary education, the school scheduling problem,…

  13. Discriminating between Z Prime -boson effects and effects of anomalous gauge couplings in the double production of W{sup {+-}} bosons at a linear collider

    SciTech Connect

    Andreev, Vasili V.; Pankov, A. A.

    2013-06-15

    The potential of the International Linear electron-positron Collider (ILC) for seeking, in the annihilation production of W{sup {+-}}-boson pairs, signals induced by new neutral gauge bosons predicted by models belonging to various classes and featuring an extended gauge sector is studied. Limits that will be obtained at ILC for the parameters and masses of Z Prime bosons are compared with present-day and future data from the Large Hadron Collider (LHC). The possibility of discriminating between the effects of Z-Z Prime mixing and signals induced by anomalous gauge couplings (AGC) is demonstrated within theoretically motivated trilinear gauge models involving several free anomalous parameters. It is found that the sensitivity of ILC to the effects of Z-Z Prime mixing in the process e{sup +}e{sup -} {yields} W{sup +}W{sup -} and its ability to discriminate between these two new-physics scenarios, Z Prime and AGC, become substantially higher upon employing polarized initial (e{sup +}e{sup -}) and final (W{sup {+-}}) states.

  14. Searches for new neutral gauge Z' bosons at the e{sup +}e{sup -} International Linear Collider and their identification

    SciTech Connect

    Babich, A. A. Pankov, A. A. Tsytrinov, A. V. Karpenko, N. V.

    2010-05-15

    The potential of the electron-positron International Linear Collider for searches for and the separation of signals induced by new neutral gauge bosons predicted by various classes of models featuring an extended gauge sector is investigated. The analysis presented in this article was performed for processes of annihilation fermion-pair production and was based on the use of differential polarization observables, which ensure a higher sensitivity (in relation to integrated observables) of the processes being considered to Z'-boson parameters. Thresholds for discovering and identifying new neutral gauge bosons associated with models belonging to the E{sub 6} and LR, as well as the ALR and SSM, classes are determined. In particular, it is shown that polarization experiments at a 0.5-TeV electron-positron collider of integrated luminosity 100 fb{sup -1} would make it possible to identify unambiguously the entire set of Z'-boson models (Z'{sub SSM}, Z'{sub {phi}}, Z'{sub {eta}}, Z'{sub {chi}}, Z'{sub LRS}, and Z'{sub ALR}) for M{sub Z'} < 6{radical}s and to improve considerably the respective estimates expected from experiments with unpolarized particles.

  15. LEPTON ACCELERATORS AND COLLIDERS: Linear optics calibration and nonlinear optimization during the commissioning of the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Tian, Shun-Qiang; Zhang, Wen-Zhi; Li, Hao-Hu; Zhang, Man-Zhou; Hou, Jie; Zhou, Xue-Mei; Liu, Gui-Min

    2009-06-01

    Phase I commissioning of the SSRF storage ring on 3.0 GeV beam energy was started at the end of December 2007. A lot of encouraging results have been obtained so far. In this paper, calibrations of the linear optics during the commissioning are discussed, and some measured results about the nonlinearity given. Calibration procedure emphasizes correcting quadrupole magnetic coefficients with the Linear Optics from Closed Orbit (LOCO) technique. After fitting the closed orbit response matrix, the linear optics of the four test modes is substantially corrected, and the measured physical parameters agree well with the designed ones.

  16. Electromagnetic characterization of nonevaporable getter properties between 220-330 and 500-750 GHz for the Compact Linear Collider damping rings

    NASA Astrophysics Data System (ADS)

    Koukovini-Platia, E.; Rumolo, G.; Zannini, C.

    2017-01-01

    Due to its effective pumping ability, nonevaporable getter (NEG) coating is considered for the vacuum chambers of the Compact Linear Collider (CLIC) electron damping rings (EDR). The aim is to suppress fast beam ion instabilities. The electromagnetic (EM) characterization of the NEG properties up to ultra-high frequencies is required for the correct impedance modeling of the damping ring (DR) components. The properties are determined using rectangular waveguides which are coated with NEG. The method is based on a combination of complex transmission coefficient S21 measurements with a vector network analyzer (VNA) and 3D simulations using CST Microwave Studio® (CST MWS). The frequency ranges discussed in this paper are 220-330 and 500-750 GHz.

  17. Study of V{sub L}V{sub L}{yields}tt at the International Linear Collider including O({alpha}{sub s}) QCD corrections

    SciTech Connect

    Godfrey, Stephen; Zhu Shouhua

    2005-10-01

    In the event that the Higgs mass is large or that the electroweak interactions are strongly interacting at high energy, top-quark couplings to longitudinal components of the weak gauge bosons could offer important clues to the underlying dynamics. It has been suggested that precision measurements of W{sub L}W{sub L}{yields}tt and Z{sub L}Z{sub L}{yields}tt might provide hints of new physics. In this paper we present results for O({alpha}{sub s}) QCD corrections to V{sub L}V{sub L}{yields}tt scattering at the International Linear Collider (ILC). We find that corrections to cross sections can be as large as 30% and must be accounted for in any precision measurement of VV{yields}tt.

  18. 3D integration of Geiger-mode avalanche photodiodes aimed to very high fill-factor pixels for future linear colliders

    NASA Astrophysics Data System (ADS)

    Vilella, E.; Alonso, O.; Diéguez, A.

    2013-12-01

    This paper presents an analysis of the maximum achievable fill-factor by a pixel detector of Geiger-mode avalanche photodiodes with the Chartered 130 nm/Tezzaron 3D process. The analysis shows that fill-factors between 66% and 96% can be obtained with different array architectures and a time-gated readout circuit of minimum area. The maximum fill-factor is achieved when the two-layer vertical stack is used to overlap the non-sensitive areas of one layer with the sensitive areas of the other one. Moreover, different sensor areas are used to further increase the fill-factor. A chip containing a pixel detector of the Geiger-mode avalanche photodiodes and aimed to future linear colliders has been designed with the Chartered 130 nm/Tezzaron 3D process to increase the fill-factor.

  19. A systems study of an RF power source for a 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    SciTech Connect

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-11-01

    A systems study, including physics, engineering and costing, has been conducted to assess the feasibility of a relativistic-klystron two-beam-accelerator (RK-TBA) system as a RF power source candidate for a 1 TeV linear collider. Several key issues associated with a realizable RK-TBA system have been addressed, and corresponding schemes have been developed and examined quantitatively. A point design example has been constructed to present a concrete conceptual design which has acceptable transverse and longitudinal beam stability properties. The overall efficiency of RF production for such a power source is estimated to be 36%, and the cost of the full system is estimated to be less than 1 billion dollars.

  20. A systems study of an RF power source for a 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    SciTech Connect

    Yu, S.; Deadrick, F.; Goffeney, N.; Henestroza, E.; Houck, T.; Li, H.; Peters, C.; Reginato, L.; Sessler, A.; Vanecek, D.; Westenskow, G.

    1995-07-05

    A systems study, including physics, engineering, and costing, has been conducted to assess the feasibility of a relativistic-klystron two-beam-accelerator (RK-TBA) system as a RF power source candidate for a 1 TeV linear collider. Several key issues associated with a realizable RK-TBA system have been addressed, and corresponding schemes have been developed and examined quantitatively. A point design example has been constructed to present a concrete conceptual design which has acceptable transverse and longitudinal beam stability properties. The overall efficiency of RF production for such a power source is estimated to be 36%, and the cost of the full system is estimated to be less than 1 billion dollars. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  1. Muon colliders

    SciTech Connect

    Palmer, R.B. |; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  2. Muon colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A. J.; Chen, P.; Cheng, W.-H.; Cho, Y.; Courant, E.; Fernow, R. C.; Gallardo, J. C.; Garren, A.; Green, M.; Kahn, S.; Kirk, H.; Lee, Y. Y.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; Noble, R.; Norem, J.; Popovic, M.; Schachinger, L.; Silvestrov, G.; Summers, D.; Stumer, I.; Syphers, M.; Torun, Y.; Trbojevic, D.; Turner, W.; Van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Winn, D.; Wurtele, J.

    1996-05-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity μ+μ- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  3. Photon collider at TESLA

    NASA Astrophysics Data System (ADS)

    Telnov, Valery

    2001-10-01

    High energy photon colliders ( γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e +e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3) Le +e -. Typical cross-sections of interesting processes in γγ collisions are higher than those in e +e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e +e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is "an optical storage ring (optical trap)" with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems.

  4. Temporal characterization of the Stanford Mid-IR FEL by frequency-resolved optical gating

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-02-01

    We measure the time-dependent intensity and phase of laser pulses from the Stanford Mid-IR FEL. We present the first measurements of near-transform-limited, linearly chirped, and sideband modulated FEL pulses.

  5. A high-granularity plastic scintillator tile hadronic calorimeter with APD readout for a linear collider detector

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Cvach, J.; Danilov, M.; Devitsin, E.; Dodonov, V.; Eigen, G.; Garutti, E.; Gilitzky, Yu.; Groll, M.; Heuer, R.-D.; Janata, M.; Kacl, I.; Korbel, V.; Kozlov, V.; Meyer, H.; Morgunov, V.; Němeček, S.; Pöschl, R.; Polák, I.; Raspereza, A.; Reiche, S.; Rusinov, V.; Sefkow, F.; Smirnov, P.; Terkulov, A.; Valkár, Š.; Weichert, J.; Zálešák, J.

    2006-08-01

    We report upon the performance of an analog hadron calorimeter prototype, where plastic scintillator tiles are read out with wavelength-shifting fibers coupled to avalanche photodiodes. This prototype configuration has been tested using a positron beam at DESY with energies between 1 and 6 GeV. We present different detector calibration methods, show measurements for noise, linearity, and energy resolution and discuss gain monitoring with an LED system. The results are in good agreement with our simulation studies and previous measurements using silicon photomultiplier readout.

  6. The Stanford Picosecond FEL Center

    SciTech Connect

    Schwettman, H.A.; Smith, T.I.; Swent, R.L.

    1995-12-31

    In the past two years, FELs have decisively passed the threshold of scientific productivity. There are now six FEL facilities in the United States and Europe, each delivering more than 2000 hours of FEL beam time per year. at the present time approximately 100 papers are published each in referred journals describing optics experiments performed with FELs. Despite the recent success there are important challenges the FEL facilities must address. At Stanford these challenges include: (1) Providing sufficient experimental time at reasonable cost: At Stanford we provide 2000 hours of experimental time per year at a cost of approximately $500 per hour: We are now studying options for markedly increasing experimental time and decreasing cost per hour. (2) Competing effectively with conventional lasers in the mid-IR: Despite the NRC report we do not intend to concede the mid-IR to conventional lasers. FELs are capable of providing optical beams of exceptional quality and stability, and they can also be remarkable flexible devices. Improvements in our superconducting linac driver and our optical beam conditioning systems will dramatically enhance our FEL experimental capabilities. (3) making the transition from first generation to second generation experiments: Important pump-probe and photon echo experiments have been performed at Stanford and others are feasible using present capabilities. None-the-less we are now investing substantial experimental time to improving signal-to-noise and developing other optical cababilities. (4) Extending operation to the far-infrared where the FEL is unique inits capabilities: {open_quotes}FIREFLY{close_quotes} will extend our FEL capabilities to 100 microns. We are now seeking funds for optical instrumentation. (5) Creating and maintaining a good environment for graduate students.

  7. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  8. Effective field theory analysis of new physics in e + e -→ W + W - at a linear collider

    NASA Astrophysics Data System (ADS)

    Buchalla, G.; Catà, O.; Rahn, R.; Schlaffer, M.

    2013-10-01

    We analyze new-physics contributions to e + e -→ W + W - at the TeV energy scale, employing an effective field theory framework. A complete basis of next-to-leading-order operators in the standard-model effective Lagrangian is used, both for the nonlinear and the linear realization of the electroweak sector. The elimination of redundant operators via equations-of-motion constraints is discussed in detail. Polarized cross sections for e + e -→ W + W - (on-shell) are computed and the corrections to the standard-model results are given in an expansion for large . The dominant relative corrections grow with s and can be fully expressed in terms of modified gauge-fermion couplings. These corrections are interpreted in the context of the Goldstone-boson equivalence theorem. Explicit new-physics models are considered to illustrate the generation and the potential size of the coefficients in the effective Lagrangian. Brief comments are made on the production of W + W - pairs at the LHC.

  9. Linear Collider Test Facility: Twiss Parameter Analysis at the IP/Post-IP Location of the ATF2 Beam Line

    SciTech Connect

    Bolzon, Benoit; Jeremie, Andrea; Bai, Sha; Bambade, Philip; White, Glen; /SLAC

    2012-07-02

    At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and coupling corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.

  10. Beam Rounders for Circular Colliders

    SciTech Connect

    A. Burov; S. Nagaitsev; Ya. Derbenev

    2001-07-01

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  11. Beam rounders for circular colliders

    SciTech Connect

    A. Burov and S. Nagaitsev

    2002-12-10

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  12. Functional Requirements on the Design of the Detectors and the Interaction Region of an e e- Linear Collider with a Push-Pull Arrangement of Detectors

    SciTech Connect

    Parker, B.; Mikhailichenko, A.; Buesser, K.; Hauptman, J.; Tauchi, T.; Burrows, P.; Markiewicz, T.; Oriunno, M.; Seryi, A.; Markiewicz, T.; /SLAC

    2009-06-02

    The Interaction Region of the International Linear Collider is based on two experimental detectors working in a push-pull mode. A time efficient implementation of this model sets specific requirements and challenges for many detector and machine systems, in particular the IR magnets, the cryogenics and the alignment system, the beamline shielding, the detector design and the overall integration. This paper attempts to separate the functional requirements of a push pull interaction region and machine detector interface from any particular conceptual or technical solution that might have been proposed to date by either the ILC Beam Delivery Group or any of the three detector concepts. As such, we hope that it provides a set of ground rules for interpreting and evaluating the MDI parts of the proposed detector concept's Letters of Intent, due March 2009. The authors of the present paper are the leaders of the IR Integration Working Group within Global Design Effort Beam Delivery System and the representatives from each detector concept submitting the Letters Of Intent.

  13. Study of the performance of a compact sandwich calorimeter for the instrumentation of the very forward region of a future linear collider detector

    NASA Astrophysics Data System (ADS)

    Ghenescu, V.; Benhammou, Y.

    2017-02-01

    The FCAL collaboration is preparing large scale prototypes of special calorimeters to be used in the very forward region at a future linear electron positron collider for a precise and fast luminosity measurement and beam-tuning. These calorimeters are designed as sensor-tungsten calorimeters with very thin sensor planes to keep the Moliere radius small and dedicated FE electronics to match the timing and dynamic range requirements. A partially instrumented prototype was investigated in the CERN PS T9 beam in 2014 and at the DESY-II Synchrotron in 2015. It was operated in a mixed particle beam (electrons, muons and hadrons) of 5 GeV from PS facilities and with secondary electrons of 5 GeV energy from DESY-II. The results demonstrated a very good performance of the full readout chain. The high statistics data were used to study the response to different particles, perform sensor alignment and measure the longitudinal shower development in the sandwich. In addition, Geant4 MC simulations were done, and compared to the data.

  14. Prompt J /ψ production in association with a c c ¯ pair within the framework of nonrelativistic QCD via photon-photon collisions at the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Sun, Zhan; Wu, Xing-Gang; Zhang, Hong-Fei

    2015-10-01

    We present a systematical study on the prompt J /ψ production in association with a c c ¯ pair via the process, γ γ →H (c c ¯)+c +c ¯, within the framework of nonrelativistic QCD at the future high-energy e+e- collider—International Linear Collider (ILC), including both direct and feed-down contributions. For direct J /ψ production, the states with color-octet channels, especially the P3 J[8] and S1 0[8] ones, provide a dominant contribution to the production cross section, which are about 52 times over that of the color-singlet one. This is clearly shown by the transverse momentum (pt) and rapidity distributions. The feed-down contribution from ψ' and χc J (J =0 , 1, 2) is sizable, which is about 20% to the total prompt cross section. Besides the yields, we also calculate the J /ψ polarization parameter λ . In the small pt region, the polarization of the prompt J /ψ is longitudinal due to large contributions through the P3 J[8] channel, and becomes transverse in the high pt region due to the S3 1[8] channel. Thus the J /ψ production via photon-photon collisions at the ILC shall provide a useful platform for testing the color-octet mechanism.

  15. 15. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford University Archives, PC 6. BASEMENT BILLIARD ROOM, LOOKING SOUTH. LEFT TO RIGHT, LELAND STANFORD, JR., MRS. LELAND STANFORD AND ANNA MARIA LATHROP (MRS. STANFORD'S SISTER) - Leland Stanford House, 800 N Street, Sacramento, Sacramento County, CA

  16. Achievement Components of Stanford-Binet Performance.

    ERIC Educational Resources Information Center

    Washington, Ernest D.; And Others

    A curriculum was devised by working backward from Stanford-Binet items to specification of a universe of content for which the Stanford-Binet could serve as a content-valid achievement test. It was reasoned that this curriculum should home. This curriculum was tested on 20 4-year-old disadvantaged children in Champaign-Urbana, Illinois. The…

  17. SLAC Linear Collider waveguide valve

    SciTech Connect

    Dean, N.R.; Fowkes, W.R.; Hoyt, M.W.; Schwarz, H.D.; Tillmann, E.F.

    1987-03-01

    A waveguide valve with a peak rf power handling capability of 70 MW and a reliable vacuum seal was needed for changing the new SLC klystrons. The original SLAC indium seal valve experienced rf breakdown above 35 MW and did not make a reliable vacuum seal. A new design was developed which incorporates the old valve housing but employs a new concept. The indium-knife edge seal has been replaced by an O-ring seal mechanism, which is transported to an rf-free environment during high power operation. The O-ring ''garage door'' seal rf currents are reduced to a manageable level through the use of an rf choke plunger which has a rejection capability in excess of 20 dB. The isolation between the high power rf and the O-ring chamber exceeds 100 dB.

  18. Future colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1996-10-01

    The high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, pp), of lepton (e{sup +}e{sup {minus}}, {mu}{sup +} {mu}{sup {minus}}) and photon-photon colliders are considered. Technical arguments for increased energy in each type of machine are presented. Their relative size, and the implications of size on cost are discussed.

  19. The Stanford equivalence principle program

    NASA Technical Reports Server (NTRS)

    Worden, Paul W., Jr.; Everitt, C. W. Francis; Bye, M.

    1989-01-01

    The Stanford Equivalence Principle Program (Worden, Jr. 1983) is intended to test the uniqueness of free fall to the ultimate possible accuracy. The program is being conducted in two phases: first, a ground-based version of the experiment, which should have a sensitivity to differences in rate of fall of one part in 10(exp 12); followed by an orbital experiment with a sensitivity of one part in 10(exp 17) or better. The ground-based experiment, although a sensitive equivalence principle test in its own right, is being used for technology development for the orbital experiment. A secondary goal of the experiment is a search for exotic forces. The instrument is very well suited for this search, which would be conducted mostly with the ground-based apparatus. The short range predicted for these forces means that forces originating in the Earth would not be detectable in orbit. But detection of Yukawa-type exotic forces from a nearby large satellite (such as Space Station) is feasible, and gives a very sensitive and controllable test for little more effort than the orbiting equivalence principle test itself.

  20. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    SciTech Connect

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB{sub 66} crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing.

  1. SLAC-Linac-Collider (SLC) Project

    SciTech Connect

    Wiedemann, H.

    1981-02-01

    The proposed SLAC Linear Collider Project (SLC) and its features are described in this paper. In times of ever increasing costs for energy the electron storage ring principle is about to reach its practical limit. A new class of colliding beam beam facilities, the Linear Colliders, are getting more and more attractive and affordable at very high center-of-mass energies. The SLC is designed to be a poineer of this new class of colliding beam facilities and at the same time will serve as a valuable tool to explore the high energy physics at the level of 100 GeV in the center-of-mass system.

  2. Accelerator aspects of photon colliders at TESLA

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas J.

    2001-10-01

    The TESLA linear collider is being primarily designed as a 500- 800 GeV centre of mass e +e - linear collider. However, a second interaction region is being incorporated into the design with a crossing angle of 32 mrad, which is suitable for use as a γγ collider. In this paper we will review those aspects of the current machine design which are critical to the operation of TESLA as a photon collider, paying particular attention to the preservation of small horizontal emittances, and—in the absence of beamstrahlung—limits on reduced horizontal beam cross-section at the interaction point.

  3. Strong WW scattering physics: A comparative study for the LHC, NLC and a Muon Collider

    SciTech Connect

    Han, Tao

    1997-04-01

    We discuss the model independent parameterization for a strongly interacting electroweak sector. Phenomenological studies are made to probe such a sector for future colliders such as the LHC, e{sup +}e{sup -} Linear collider and a muon collider.

  4. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    SciTech Connect

    Siemann, R.H.

    1997-01-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e{sup +}3{sup {minus}} linear colliders.

  5. 77 FR 59968 - Notice of Intent To Repatriate Cultural Items: Stanford University Archaeology Center, Stanford, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... National Park Service Notice of Intent To Repatriate Cultural Items: Stanford University Archaeology Center... Archaeology Center, in consultation with the appropriate Indian tribes, has determined that the cultural items... affiliated with the cultural items may contact the Stanford University Archaeology Center. DATES...

  6. Kaluza-Klein Physics at Muon Colliders

    SciTech Connect

    Rizzo, Thomas G.

    1999-11-04

    We discuss the physics of Kaluza-Klein excitations of the Standard Model gauge bosons that can be explored by a high energy muon collider in the era after the LHC and TeV Linear Collider. We demonstrate that the muon collider is a necessary ingredient in the unraveling the properties of such states and, perhaps, proving their existence. The possibility of observing the resonances associated with the excited KK graviton states of the Randall-Sundrum model is also discussed.

  7. The early history of Stanford Immunology.

    PubMed

    Jones, Patricia P; Herzenberg, Leonore A

    2014-05-01

    From its 1960 beginnings in a pair of windowless Genetics Department laboratories under the Stanford Medical School Dean's Office to its current broad-based program, which joins faculty members from departments across the Medical School, the Stanford Immunology Program has played a central role in shaping both basic and clinical immunology thinking. In this article, we tell the story of the beginnings of this odyssey in a reminiscence-based format that brings the flavor of the time in the words of people who lived and built the history.

  8. The Stanford how things work project

    NASA Technical Reports Server (NTRS)

    Fikes, Richard; Gruber, Tom; Iwasaki, Yumi

    1994-01-01

    We provide an overview of the Stanford How Things Work (HTW) project, an ongoing integrated collection of research activities in the Knowledge Systems Laboratory at Stanford University. The project is developing technology for representing knowledge about engineered devices in a form that enables the knowledge to be used in multiple systems for multiple reasoning tasks and reasoning methods that enable the represented knowledge to be effectively applied to the performance of the core engineering task of simulating and analyzing device behavior. The central new capabilities currently being developed in the project are automated assistance with model formulation and with verification that a design for an electro-mechanical device satisfies its functional specification.

  9. Computer-Assisted Instruction at Stanford.

    ERIC Educational Resources Information Center

    Suppes, Patrick

    Programs for computer-assisted instruction (CAI) which were developed at Stanford University from 1963-70 are described, and prospects for CAI in the 1970's are considered briefly. The programs include ones in arithmetic, logic, and reading for elementary grades and in basic Russian and remedial algebra for college students. Of these, the logic…

  10. Low power signal processing research at Stanford

    NASA Technical Reports Server (NTRS)

    Burr, J.; Williamson, P. R.; Peterson, A.

    1991-01-01

    This paper gives an overview of the research being conducted at Stanford University's Space, Telecommunications, and Radioscience Laboratory in the area of low energy computation. It discusses the work we are doing in large scale digital VLSI neural networks, interleaved processor and pipelined memory architectures, energy estimation and optimization, multichip module packaging, and low voltage digital logic.

  11. A Close Look at Stanford v. Kentucky.

    ERIC Educational Resources Information Center

    Update on Law-Related Education, 2000

    2000-01-01

    Discusses whether the imposition of capital punishment on an individual for a crime committed as a juvenile constitutes cruel and unusual punishment under the Eighth Amendment of the U.S. Constitution. Explores the crimes of Kevin Stanford and David Allen who were 16 and 17 respectively when they each committed murder. (CMK)

  12. A Close Look at Stanford v. Kentucky.

    ERIC Educational Resources Information Center

    Update on Law-Related Education, 2000

    2000-01-01

    Discusses whether the imposition of capital punishment on an individual for a crime committed as a juvenile constitutes cruel and unusual punishment under the Eighth Amendment of the U.S. Constitution. Explores the crimes of Kevin Stanford and David Allen who were 16 and 17 respectively when they each committed murder. (CMK)

  13. Online High School at Stanford University

    ERIC Educational Resources Information Center

    Ravaglia, Raymond

    2007-01-01

    The Education Program for Gifted Youth (EPGY) Online High School (OHS) is a three-year, diploma granting, online independent high school for gifted students. The mission statement reads as follows: "Through advanced technology, rigorous courses, and the resources of Stanford University, the Online High School affords gifted students everywhere an…

  14. The Stanford Library Flood Restoration Project.

    ERIC Educational Resources Information Center

    Buchanan, Sally

    1979-01-01

    Describes the restoration project for approximately 50,000 volumes damaged in a flood at the Stanford University Libraries: the freezing and vacuum drying of damaged books, their subsequent repair by a special project staff, and various tests conducted in the vacuum chamber on how best to dry the books. (Author)

  15. 11. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of 1872 photograph by Eadweard Muybridge in Stanford University Archives, PC 6. NORTHWEST DOUBLE PARLOR, LOOKING NORTH - Leland Stanford House, 800 N Street, Sacramento, Sacramento County, CA

  16. The Polarized Electron Source for the International Collider (ILC) Project

    SciTech Connect

    Brachmann, A.; Clendenin, J.E.; Garwin, E.L.; Ioakeimidi, K.; Kirby, R.e.; Maruyama, T.; Prescott, C.Y.; Sheppard, J.; Turner, J.; Zhou, F.; /SLAC

    2006-12-01

    ILC project will be the next large high energy physics tool that will use polarized electrons (and positrons). For this machine spin physics will play an important role. The polarized electron source design is based on electron injectors built for the Stanford Linear Collider (polarized) and Tesla Test Facility (un-polarized). The ILC polarized electron source will provide a 5GeV spin polarized electron beam for injection into the ILC damping ring. Although most ILC machine parameters have been achieved by the SLC or TTF source, features of both must be integrated into one design. The bunch train structure presents unique challenges to the source laser drive system. A suitable laser system has not yet been demonstrated and is part of the ongoing R&D program for ILC at SLAC. Furthermore, ILC injector R&D incorporates photocathode development, increasing available polarization, and improving operational properties in gun vacuum systems. Another important area of research and development is advancing the design of DC and RF electron gun technology for polarized sources. This presentation presents the current status of the design and outlines aspects of the relevant R&D program carried out within the ILC community.

  17. Phase and amplitude control system for Stanford Linear Accelerator

    SciTech Connect

    Yoo, S.J.

    1983-09-26

    The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system.

  18. Collider Signal I :. Resonance

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.

    2010-08-01

    These TASI lectures were part of the summer school in 2008 and cover the collider signal associated with resonances in models of physics beyond the Standard Model. I begin with a review of the Z boson, one of the best-studied resonances in particle physics, and review how the Breit-Wigner form of the propagator emerges in perturbation theory and discuss the narrow width approximation. I review how the LEP and SLAC experiments could use the kinematics of Z events to learn about fermion couplings to the Z. I then make a brief survey of models of physics beyond the Standard Model which predict resonances, and discuss some of the LHC observables which we can use to discover and identify the nature of the BSM physics. I finish up with a discussion of the linear moose that one can use for an effective theory description of a massive color octet vector particle.

  19. Conventional power sources for colliders

    SciTech Connect

    Allen, M.A.

    1987-07-01

    At SLAC we are developing high peak-power klystrons to explore the limits of use of conventional power sources in future linear colliders. In an experimental tube we have achieved 150 MW at 1 ..mu..sec pulse width at 2856 MHz. In production tubes for SLAC Linear Collider (SLC) we routinely achieve 67 MW at 3.5 ..mu..sec pulse width and 180 pps. Over 200 of the klystrons are in routine operation in SLC. An experimental klystron at 8.568 GHz is presently under construction with a design objective of 30 MW at 1 ..mu..sec. A program is starting on the relativistic klystron whose performance will be analyzed in the exploration of the limits of klystrons at very short pulse widths.

  20. Collective accelerator for electron colliders

    SciTech Connect

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  1. Who Sank The Khaki Submarine At Stanford? A Study of Decision-Making At Stanford University.

    ERIC Educational Resources Information Center

    Kemerer, Frank R.; And Others

    From the late 1960s to the spring of 1970 there was an acceleration of anti-war protest and political movements. At Stanford University this period was characterized by controversy, deep divisions within the university community, disruption of classes, student strikes, and the presence of uniformed police on campus. In this environment of…

  2. 77 FR 59661 - Notice of Inventory Completion: Stanford University Archaeology Center, Stanford, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Center has completed an inventory of human remains and associated funerary objects in consultation with... human remains and a present-day Indian tribe. Representatives of any Indian tribe that believes itself to be culturally affiliated with the human remains may contact the Stanford University Archaeology...

  3. 75 FR 27708 - Stanford University Habitat Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... INTERIOR Fish and Wildlife Service RIN 0648-XV36 Stanford University Habitat Conservation Plan AGENCIES... University Habitat Conservation Plan (Plan), the Draft Environmental Impact Statement (DEIS) for...

  4. Radiation Damage Induced by GeV Electrons in W-Re Targets for Next Generation Linear Colliders(LCC-0093)

    SciTech Connect

    Caturla, M.-J.

    2003-10-07

    We have studied the structural damage of W-Re targets produced by electrons with energies of several GeV and under different conditions of total number of electrons, beam shape and target depth. We report the differences in damage levels for different designs considered in the construction of the next generation of linear accelerators, and discuss the possible effects in the lifetime of these targets. Due to the complexity of the problem, which requires following the trajectory of GeV electrons down to eV energies, this work utilized different simulation tools, from Monte Carlo codes of hadronic and electromagnetic interactions such as FLUKA, to molecular dynamics simulations of defect production. Our work shows that the final defect production depends not only on the total number of electrons and energy, but also on the geometry of the target. Combining different values of energies and target geometry could be a way of reducing the maximum damage in these systems.

  5. Information Retrieval (SPIRES) and Library Automation (BALLOTS) at Stanford University.

    ERIC Educational Resources Information Center

    Ferguson, Douglas, Ed.

    At Stanford University, two major projects have been involved jointly in library automation and information retrieval since 1968: BALLOTS (Bibliographic Automation of Large Library Operations) and SPIRES (Stanford Physics Information Retrieval System). In early 1969, two prototype applications were activated using the jointly developed systems…

  6. How Stanford and Yamaha Cut an Unusual Technological Deal.

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    1998-01-01

    Stanford University (California) and the Yamaha Corporation have agreed to pool over 400 patents and patent applications, most involving sound synthesis, and to license them as a package along with rights to the trademark, and share the royalties. The deal builds on a 23-year relationship between Stanford and Yamaha, one which is both fruitful and…

  7. The development of colliders

    SciTech Connect

    Sessler, A.M.

    1997-03-01

    During the period of the 50`s and the 60`s colliders were developed. Prior to that time there were no colliders, and by 1965 a number of small devices had worked, good understanding had been achieved, and one could speculate, as Gersh Budker did, that in a few years 20% of high energy physics would come from colliders. His estimate was an under-estimate, for now essentially all of high energy physics comes from colliders. The author presents a brief review of that history: sketching the development of the concepts, the experiments, and the technological advances which made it all possible.

  8. Muon collider design

    NASA Astrophysics Data System (ADS)

    Palmer, R.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A.; Caspi, S.; P., Chen; W-H., Cheng; Y., Cho; Cline, D.; Courant, E.; Fernow, R.; Gallardo, J.; Garren, A.; Gordon, H.; Green, M.; Gupta, R.; Hershcovitch, A.; Johnstone, C.; Kahn, S.; Kirk, H.; Kycia, T.; Y., Lee; Lissauer, D.; Luccio, A.; McInturff, A.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; K-Y., Ng; Noble, R.; Norem, J.; Norum, B.; Oide, K.; Parsa, Z.; Polychronakos, V.; Popovic, M.; Rehak, P.; Roser, T.; Rossmanith, R.; Scanlan, R.; Schachinger, L.; Silvestrov, G.; Stumer, I.; Summers, D.; Syphers, M.; Takahashi, H.; Torun, Y.; Trbojevic, D.; Turner, W.; van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Willis, W.; Winn, D.; Wurtele, J.; Zhao, Y.

    1996-11-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity \\mu^+ \\mu^- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are discussed.

  9. The Birth of Lepton Colliders in Italy and the United States

    NASA Astrophysics Data System (ADS)

    Paris, Elizabeth

    2003-04-01

    In 1960 the highest center-of-mass energies in particle physics were being achieved via proton synchrotrons utilizing stationary targets. However, efforts were already underway to challenge this hegemony. In addition to Soviet work in Novosibirsk, groups at Stanford University in California and at the Frascati National Laboratories near Rome each had begun original investigation towards one particular type of challenger: colliding beam storage rings. For the group in California, the accomplishment involved creating the potential for feasible experiments. The energetic advantages of the colliding beam configuration had long been accepted - together with its impossibility for realization. The builders of the Princeton-Stanford machine feel that creating usable beams and a reasonable reaction rate is what stood between this concept and its glorious future. For the European builders of AdA, however, the beauty emerges from recognizing the enormous potential inherent in electron-positron annihilations. At least as important for the rise of electron-positron colliders, though, is the role of both of these projects as cultural firsts -- as places where particular sets of physicists got their feet wet associating with beams and beam problems and with the many individuals who were addressing beam problems. The Princeton-Stanford Collider provided experience which its builders would use to move on, functioning as both a technological and political platform for creating what would eventually become SPEAR. For the Roman group, the pursuit of AdA encouraged investigation which applied equally well to their next machine, Adone.

  10. Evaluation of MG-101 course Machine guarding'' taught in Stanford, California, November 10--12, 1992

    SciTech Connect

    Wright, T.S.

    1993-03-01

    This report summarizes trainee evaluations for the Safety Training Section course, Machine Guarding,'' (MG-101) which was conducted November 10--12, 1992 at Stanford Linear Accelerator, in Stanford, California. This report summarizes the quantitative course evaluations that trainees provided upon completion of the course, including presents examination results, and recommendations for course improvement. Numeric course ratings were generally positive and show that the course material and instruction were very effective. Written comments supported the positive numeric ratings. The course content and knowledge gained by the trainees exceeded most of the students' expectations of the course. This course is now in the format that has been requested by past attendees. It appears to be meeting their needs. Results from the final examination showed that students gained appropriate knowledge from the course.

  11. Optical pulse evolution in the Stanford free-electron laser and in a tapered wiggler

    NASA Technical Reports Server (NTRS)

    Colson, W. B.

    1982-01-01

    The Stanford free electron laser (FEL) oscillator is driven by a series of electron pulses from a high-quality superconducting linear accelerator (LINAC). The electrons pass through a transverse and nearly periodic magnetic field, a 'wiggler', to oscillate and amplify a superimposed optical pulse. The rebounding optical pulse must be closely synchronized with the succession of electron pulses from the accelerator, and can take on a range of structures depending on the precise degree of synchronism. Small adjustments in desynchronism can make the optical pulse either much shorter or longer than the electron pulse, and can cause significant subpulse structure. The oscillator start-up from low level incoherent fields is discussed. The effects of desynchronism on coherent pulse propagation are presented and compared with recent Stanford experiments. The same pulse propagation effects are studied for a magnet design with a tapered wavelength in which electrons are trapped in the ponderomotive potential.

  12. Development of a 10 MW, 91 GHz Gyroklystron for W-Band Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Nielson, Jeff; Ives, Lawrence; Lawson, Wes; Arjona, Melany

    1999-11-01

    An international effort is underway to design advanced linear electron-positron colliders with mass energies beyond 1 TeV. High power RF sources are required to drive accelerators operating at frequencies as high as W-Band. Calabazas Creek Research, Inc. is funded by the U.S. Department of Energy to design a 10 MW, second harmonic, gyroklystron at 91 GHz. The program is coordinated with W-Band accelerator research at the Stanford Linear Accelerator Center. The goal is to achieve an electronic efficiency of 45presentation will describe the proposed electron gun, three cavity RF circuit, magnetic circuit, and input and output couplers. Current simulation results will be presented and design tradeoffs will be discussed.

  13. The future of the Large Hadron Collider and CERN.

    PubMed

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  14. High Resolution BPM for Linear Colliders

    NASA Astrophysics Data System (ADS)

    Simon, C.; Chel, S.; Luong, M.; Napoly, O.; Novo, J.; Roudier, D.; Baboi, N.; Noelle, D.; Mildner, N.; Zapfe, K.; Rouvière, N.

    2006-11-01

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Test Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 μm and the damping time down to 10 ns.

  15. Injector for a laser linear collider

    NASA Astrophysics Data System (ADS)

    Mikhailichenko, A. A.

    1999-07-01

    The injector for 2×1 km long laser driven linac considered. Basically injector is a race track with long straight sections. These sections squeezed together for a compact size (a Kayak-Paddle like ring). In straight section the short period wigglers and RF cavities installed in series one by one for keeping the energy along the straight section practically constant. This injector is able to provide the invariant emittances of the order 5 10-8 cm rad and 2 10-9 cm rad for horizontal and vertical directions correspondingly. Bunch population required below 107 reduces the IBS effects.

  16. The International Linear Collider Progress Report 2015

    SciTech Connect

    Yamamoto, Akira

    2015-07-15

    The ILC technical design is now being adapted to the preferred candidate site. Changes in layout are being managed by a rigorous change-control procedure. Series production of cavities for the European XFEL has shown that cavities can be mass-produced in industry with a performance well above XFEL requirements and close to that needed for the ILC. A number of technical developments are under way with a view to further reducing the ILC cost. This work must continue through the preparatory stage for ILC construction once resources become available. A summary of the design updates and of the further preparatory work needed is summarized in tabular form in the Appendix.

  17. High Resolution BPM for Linear Colliders

    SciTech Connect

    Simon, C.; Chel, S.; Luong, M.; Napoly, O.; Novo, J.; Roudier, D.; Rouviere, N.

    2006-11-20

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Test Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 {mu}m and the damping time down to 10 ns.

  18. Event Generators for Linear Collider Physics

    SciTech Connect

    Peskin, Michael E

    1999-10-29

    I review the array of event generators which have been written to provide simulations of high-energy e{sup +}e{sup -} reactions. In this report, I have tried to summarize the array of programs that are now available to perform event generation for LC physics. These range from the general-purpose generators PYTHIA and HERWIG, to specific tools for super-symmetry and multi-fermion simulations, to tools for automatic generation of events for arbitrary physics processes. For the future, we expect to see trends toward object-oriented and modular programs, toward detailed high-accuracy computation of standard background processes, and toward further automation of complex calculations. We are well on the way to the level of accuracy and generality that will be needed for the LC physics program.

  19. Towards future circular colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  20. High Energy Photon Beam Generation For QCD Explorer Based γP Colliders

    NASA Astrophysics Data System (ADS)

    Ciftci, A. K.; Aksakal, H.; Nergiz, Z.

    2007-04-01

    Combination of two linear accelerator projects, namely CLIC (Compact Linear Collider) and ILC (International Linear Collider) with LHC(Large Hadron Collider) offer an opportunity to build γp collider. High energy photons are produced by the Compton backscattering of the laser photons off high energy electrons at the conversion region. Then, Compton backscattered photons are collided with protons at the interaction region. In this study, conversion properties and optimum laser and electron beam parameters for CLIC and ILC are determined using CAIN simulation program.

  1. The Many Features of Stanford's Housing Maintenance Software.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    1999-01-01

    Explains how Stanford University custom designed its own building maintenance and administration software package: the Housing Operations Maintenance Enterprise Resource (HOMER). Describes how HOMER relieved facility maintenance staff from some archaic systems, and its development and functionality. (GR)

  2. The Stanford Preschool Internal-External Scale: Extension to Kindergarteners

    ERIC Educational Resources Information Center

    Chartier, George M.; And Others

    1976-01-01

    The Stanford Preschool Internal-External Scale (SPIES) was administered to middle class kindergarten children to investigate whether the characteristics of the test would remain stable as it did for the normative sample. (Author/DEP)

  3. Computer-Based Administrative Support Systems: The Stanford Experience.

    ERIC Educational Resources Information Center

    Massy, William F.

    1983-01-01

    Computer-based administrative support tools are having a profound effect on the management of colleges and universities. Several such systems at Stanford University are discussed, including modeling, database management systems, networking, and electronic mail. (JN)

  4. Stanford Aerospace Research Laboratory research overview

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.

    1993-01-01

    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator.

  5. Stanford Aerospace Research Laboratory research overview

    NASA Astrophysics Data System (ADS)

    Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.

    1993-02-01

    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator.

  6. Comparing Tsallis and Boltzmann temperatures from relativistic heavy ion collider and large hadron collider heavy-ion data

    NASA Astrophysics Data System (ADS)

    Gao, Y.-Q.; Liu, F.-H.

    2016-03-01

    The transverse momentum spectra of charged particles produced in Au + Au collisions at the relativistic heavy ion collider and in Pb + Pb collisions at the large hadron collider with different centrality intervals are described by the multisource thermal model which is based on different statistic distributions for a singular source. Each source in the present work is described by the Tsallis distribution and the Boltzmann distribution, respectively. Then, the interacting system is described by the (two-component) Tsallis distribution and the (two-component) Boltzmann distribution, respectively. The results calculated by the two distributions are in agreement with the experimental data of the Solenoidal Tracker At Relativistic heavy ion collider, Pioneering High Energy Nuclear Interaction eXperiment, and A Large Ion Collider Experiment Collaborations. The effective temperature parameters extracted from the two distributions on the descriptions of heavy-ion data at the relativistic heavy ion collider and large hadron collider are obtained to show a linear correlation.

  7. Photon collider beam simulation with CAIN

    NASA Astrophysics Data System (ADS)

    Zarnecki, Aleksander Filip

    2007-11-01

    The CAIN simulation program was used to study the outgoing beam profile for the photon collider at ILC. The main aim of the analysis was to verify the feasibility of the photon linear collider running with 20 mrad electron beam crossing angle. The main problem is the distorted electron beam, which has to be removed from the interaction region. It is shown that with a new design of the final dipole, it should be possible to avoid large energy losses at the face of the magnet.

  8. SUSY CP phases and asymmetries at colliders

    NASA Astrophysics Data System (ADS)

    Kittel, Olaf

    2009-06-01

    In the Minimal Supersymmetric Standard Model, physical phases of complex parameters lead to CP violation. We show how triple products of particle momenta or spins can be used to construct asymmetries, that allow us to probe these CP phases. To give specific examples, we discuss the production of neutralinos at the International Linear Collider (ILC). For the Large Hadron Collider (LHC), we discuss CP asymmetries in squark decays, and in the tri-lepton signal. We find that the CP asymmetries can be as large as 60%.

  9. Environmental radiation effects from muon and tau colliders and their impact on facility licensing.

    PubMed

    Bevelacqua, J J

    2012-11-01

    Although contemporary accelerators only affect their local radiation environment, muon and tau colliders produce radiation profiles that extend far beyond their site boundaries. These radiation profiles affect the licensing and siting of these planned accelerators. The analysis presented herein suggests that a linear collider concept with the lepton beams collided in air offers a means to limit the environmental radiation effects from these accelerators.

  10. Status and future directions for advanced accelerator research-conventional and non-conventional collider concepts

    SciTech Connect

    Siemann, R.H.

    1997-03-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e{sup +}e{sup {minus}} linear colliders. {copyright} {ital 1997 American Institute of Physics.}

  11. History of narcolepsy at Stanford University.

    PubMed

    Mignot, Emmanuel J M

    2014-05-01

    Although narcolepsy was first described in the late nineteenth century in Germany and France, much of the research on this disorder has been conducted at Stanford University, starting with Drs. William C. Dement and Christian Guilleminault in the 1970s. The prevalence of narcolepsy was established, and a canine model discovered. Following the finding in Japan that almost all patients with narcolepsy carry a specific HLA subtype, HLA-DR2, Hugh Mac Devitt, F. Carl Grumet, and Larry Steinman initiated immunological studies, but results were generally negative. Using the narcoleptic canines, Dr. Nishino and I established that stimulants increased wakefulness by stimulating dopaminergic transmission while antidepressants suppress cataplexy via adrenergic reuptake inhibition. A linkage study was initiated with Dr. Grumet in 1988, and after 10 years of work, the canine narcolepsy gene was cloned by in 1999 and identified as the hypocretin (orexin) receptor 2. In 1992, studying African Americans, we also found that DQ0602 rather than DR2 was a better marker for narcolepsy across all ethnic groups. In 2000, Dr. Nishino and I, in collaboration with Dr. Lammers in the Netherlands, found that hypocretin 1 levels in the cerebrospinal fluid (CSF) were undetectable in most cases, establishing hypocretin deficiency as the cause of narcolepsy. Pursuing this research, our and Dr. Siegel's group, examining postmortem brains, found that the decreased CSF hypocretin 1 was secondary to the loss the 70,000 neurons producing hypocretin in the hypothalamus. This finding revived the autoimmune hypothesis but attempts at demonstrating immune targeting of hypocretin cells failed until 2013. At this date, Dr. Elisabeth Mellins and I discovered that narcolepsy is characterized by the presence of autoreactive CD4(+) T cells to hypocretin fragments when presented by DQ0602. Following reports that narcolepsy cases were triggered by vaccinations and infections against influenza A 2009 pH1N1, a new

  12. A Heuristic Ceiling Point Algorithm for General Integer Linear Programming

    DTIC Science & Technology

    1988-11-01

    narrowly satisfies the il h constraint: taking a unit step from x toward the ilh constraining hyperplane in a direction parallel to some coordinate...Business, Stanford Univesity , Stanford, Calif., December 1964. Hillier, F., "Efficient Heuristic Procedures for Integer Linear Programming with an Inte- rior

  13. The Muon Collider

    SciTech Connect

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  14. The Muon Collider

    SciTech Connect

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  15. Black Holes Collide

    NASA Image and Video Library

    2017-09-28

    When two black holes collide, they release massive amounts of energy in the form of gravitational waves that last a fraction of a second and can be "heard" throughout the universe - if you have the right instruments. Today we learned that the #LIGO project heard the telltale chirp of black holes colliding, fulfilling Einstein's General Theory of Relativity. NASA's LISA mission will look for direct evidence of gravitational waves. go.nasa.gov/23ZbqoE This video illustrates what that collision might look like.

  16. Hadron collider physics

    SciTech Connect

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  17. High energy colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p{anti p}), lepton (e{sup +}e{sup {minus}}, {mu}{sup +}{mu}{sup {minus}}) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed.

  18. High luminosity particle colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p{anti p}), lepton (e{sup +}e{sup {minus}}, {mu}{sup +}{mu}{sup {minus}}) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed.

  19. Accelarators, Colliders and Their Application

    NASA Astrophysics Data System (ADS)

    Wilson, E.

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '1 Accelarators, Colliders and Their Application' with the content:

  20. Introductory Lectures on Collider Physics

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.; Wang, Lian-Tao

    2013-12-01

    These are elementary lectures about collider physics. They are aimed at graduate students who have some background in computing Feynman diagrams and the Standard Model, but assume no particular sophistication with the physics of high energy colliders.

  1. Computer-Assisted Instruction: Stanford's 1965-66 Arithmetic Program.

    ERIC Educational Resources Information Center

    Suppes, Patrick; And Others

    A review of the possibilities and challenges of computer-assisted instruction (CAI), and a brief history of CAI projects at Stanford serve to give the reader the context of the particular program described and analyzed in this book. The 1965-66 arithmetic drill-and-practice program is described, summarizing the curriculum and project operation. An…

  2. Coverage of the Stanford Prison Experiment in Introductory Psychology Textbooks

    ERIC Educational Resources Information Center

    Griggs, Richard A.

    2014-01-01

    Zimbardo's 1971 Stanford Prison Experiment (SPE), one of the most famous studies in psychology, is discussed in most introductory textbooks. The present study is concerned with the nature of this coverage, given that there have been myriad criticisms, especially recently, of the SPE. These criticisms concern both Zimbardo's situationist…

  3. Coverage of the Stanford Prison Experiment in Introductory Psychology Courses

    ERIC Educational Resources Information Center

    Bartels, Jared M.; Milovich, Marilyn M.; Moussier, Sabrina

    2016-01-01

    The present study examined the coverage of Stanford prison experiment (SPE), including criticisms of the study, in introductory psychology courses through an online survey of introductory psychology instructors (N = 117). Results largely paralleled those of the recently published textbook analyses with ethical issues garnering the most coverage,…

  4. Survey of Library Material Expenditures at Stanford University Libraries.

    ERIC Educational Resources Information Center

    Lynden, Fred C.

    To assist the budgeting process at the Stanford University Libraries a study was undertaken to determine the extent to which the cost of obtaining scholarly publications was increasing and the degree to which the volume of scholarly publications grows annually, affecting the number of documents which the library must purchase to ensure adequate…

  5. Coverage of the Stanford Prison Experiment in Introductory Psychology Courses

    ERIC Educational Resources Information Center

    Bartels, Jared M.; Milovich, Marilyn M.; Moussier, Sabrina

    2016-01-01

    The present study examined the coverage of Stanford prison experiment (SPE), including criticisms of the study, in introductory psychology courses through an online survey of introductory psychology instructors (N = 117). Results largely paralleled those of the recently published textbook analyses with ethical issues garnering the most coverage,…

  6. Stanford and Berlin: The Spheres of Politics and Intellect

    ERIC Educational Resources Information Center

    Shils, Edward

    1972-01-01

    Comparison of the cases of H. Bruce Franklin, a professor relieved of his duties at Stanford University because of his political actions, and Ernest Mandell, a professor at the Free University of Berlin who was denied appointment on the grounds of his political activities. (HS)

  7. Research Training in Medical Informatics: The Stanford Experience.

    ERIC Educational Resources Information Center

    Shortliffe, Edward H.; Fagan, Lawrence M.

    1989-01-01

    Stanford University created an interdisciplinary program to train researchers and academic leaders in the field of medical information sciences. The program is described, identifying experiences of interest to people developing such a program. The program's background and history, students, curriculum and philosophy, and lessons learned are…

  8. SPIRES (STANFORD PHYSICS INFORMATION RETRIEVAL SYSTEM). ANNUAL REPORT.

    ERIC Educational Resources Information Center

    PARKER, EDWIN B.

    SPIRES WAS PLANNED AS A FIVE-YEAR EFFORT TO DEVELOP AND STUDY AN EXPERIMENTAL SYSTEM FOR PROVIDING FOR THE SCIENTIFIC INFORMATION NEEDS OF PHYSICISTS AT STANFORD. THERE ARE TWO COMPONENTS TO THE SPIRES PROJECT. ONE IS TO STUDY THE INFORMATION NEEDS AND INFORMATION-SEEKING BEHAVIOR OF A USER POPULATION OF ABOUT 100 HIGH- ENERGY PHYSICISTS. DETAILS…

  9. The Stanford University Medical Center and the Federal Government.

    ERIC Educational Resources Information Center

    Rosenzweig, Robert M.; And Others

    The Stanford University Medical Center consists of three main units: a medical school, a set of outpatient clinics, and a hospital. Financing of the center's functions cannot be carried out without federal support, and a network of relationships with government agencies has emerged. The impact of these relationships was discussed with key…

  10. Computer-Assisted Instruction: Stanford's 1965-66 Arithmetic Program.

    ERIC Educational Resources Information Center

    Suppes, Patrick; And Others

    A review of the possibilities and challenges of computer-assisted instruction (CAI), and a brief history of CAI projects at Stanford serve to give the reader the context of the particular program described and analyzed in this book. The 1965-66 arithmetic drill-and-practice program is described, summarizing the curriculum and project operation. An…

  11. Bouncing and Colliding Branes

    SciTech Connect

    Lehners, Jean-Luc

    2007-11-20

    In a braneworld description of our universe, we must allow for the possibility of having dynamical branes around the time of the big bang. Some properties of such domain walls in motion are discussed here, for example the ability of negative-tension domain walls to bounce off spacetime singularities and the consequences for cosmological perturbations. In this context, we will also review a colliding branes solution of heterotic M-theory that has been proposed as a model for early universe cosmology.

  12. Accelerators, Colliders, and Snakes

    NASA Astrophysics Data System (ADS)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  13. Colliding crystalline beams

    SciTech Connect

    Wei, J.; Sessler, A.M.

    1998-08-01

    The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. The authors study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. They initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then overlapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, they find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong cooling, although theoretically achievable, is a challenge in practice.

  14. Heavy Meson Production at a Low-Energy Photon Collider

    SciTech Connect

    Asztalos, S

    2004-04-15

    A low-energy {gamma}{gamma} collider has been discussed in the context of a testbed for a {gamma}{gamma} interaction region at the Next Linear Collider(NLC). We consider the production of heavy mesons at such a testbed using Compton-backscattered photons and demonstrate that their production rivals or exceeds those by BELLE, BABAR or LEP where they are produced indirectly via virtual {gamma}{gamma} luminosities.

  15. Future Accelerators, Muon Colliders, and Neutrino Factories

    SciTech Connect

    Richard A Carrigan, Jr.

    2001-12-19

    Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

  16. 75 FR 41157 - Stanford University Habitat Conservation Plan; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... 0648-XX52 Stanford University Habitat Conservation Plan; Extension of Comment Period AGENCIES: National... for our joint request for comments on the Stanford University Habitat Conservation Plan (Plan), the... INFORMATION: We are extending the comment period for our jointly issued Stanford University Habitat...

  17. SPIRES (Stanford Public Information Retrieval System) 1970-71 Annual Report.

    ERIC Educational Resources Information Center

    Parker, Edwin B.

    SPIRES (Stanford Public Information REtrieval System) is a computer information storage and retrieval system being developed at Stanford University with funding from the National Science Foundation. SPIRES has two major goals: to provide a user-oriented, interactive, on-line retrieval system for a variety of researchers at Stanford; and to support…

  18. 1998 NASA-ASEE-Stanford Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report presents the essential features and highlights of the 1998 Summer Faculty Fellowship Program at Ames Research Center and Dryden Flight Research Center in a comprehensive and concise form. Summary reports describing the fellows' technical accomplishments are enclosed in the attached technical report. The proposal for the 1999 NASA-ASEE-Stanford Summer Faculty Fellowship Program is being submitted under separate cover. Of the 31 participating fellows, 27 were at Ames and 4 were at Dryden. The Program's central feature is the active participation by each fellow in one of the key technical activities currently under way at either the NASA Ames Research Center or the NASA Dryden Flight Research Center. The research topic is carefully chosen in advance to satisfy the criteria of: (1) importance to NASA, (2) high technical level, and (3) a good match to the interests, ability, and experience of the fellow, with the implied possibility of NASA-supported follow-on work at the fellow's home institution. Other features of the Summer Faculty Fellowship Program include participation by the fellows in workshops and seminars at Stanford, the Ames Research Center, and other off-site locations. These enrichment programs take place either directly or remotely, via the Stanford Center for Professional Development, and also involve specific interactions between fellows and Stanford faculty on technical and other academic subjects. A few, brief remarks are in order to summarize the fellows' opinions of the summer program. It is noteworthy that 90% of the fellows gave the NASA-Ames/Dryden- Stanford program an "excellent" rating and the remaining 10%, "good." Also, 100% would recommend the program to their colleagues as an effective means of furthering their professional development as teachers and researchers. Last, but not least, 87% of the fellows stated that a continuing research relationship with their NASA colleagues' organization probably would be maintained. Therefore

  19. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  20. Muon colliders and neutrino factories

    SciTech Connect

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  1. Physics at a photon collider

    SciTech Connect

    Stefan Soldner-Rembold

    2002-09-30

    A Photon Collider will provide unique opportunities to study the SM Higgs boson and to determine its properties. MSSM Higgs bosons can be discovered at the Photon Collider for scenarios where they might escape detection at the LHC. As an example for the many other physics topics which can be studied at a Photon Collider, recent results on Non-Commutative Field Theories are also discussed.

  2. [Stanford type a acute aortic dissection with pectus excavatum].

    PubMed

    Kuwata, Toshiyuki; Fukuda, Hirotsugu; Yoshitatsu, Masao; Yamada, Yasuyuki; Shibasaki, Ikuko; Inoue, Yuho; Hori, Takayuki; Ogawa, Hironaga; Tsuchiya, Go; Shimizu, Riha; Takei, Yusuke

    2012-11-01

    Pectus excavatum is generally an isolated abnormality of the chest wall. However, some patients have a concomitant pectus deformity and cardiac & aortic disease. Decisions must be made regarding the operative approach and whether the pectus excavatum should be corrected during the same session. We report 2 patients with acute Stanford type A aortic dissection and pectus excavatum who underwent emergency operation. In case 1, median sternotomy is an unsuitable approach for open heart surgery, since the heart and great vessels are displace into the left hemithorax. But combined sternotomy and left anterior thoracotomy provided excellent surgical exposure. In case 2, we proceeded with a leftsided costotomy of four ribs and place a normal chest retractor providing as excellent exposure as combined sternotomy and left anterior thoracotomy. A left-sided costotomy of four ribs can be performed safely, eliminating the risks of median sternotomy in acute stanford type A aortic dissection with pectus excavatum.

  3. Biomedical informatics training at Stanford in the 21st century.

    PubMed

    Altman, Russ B; Klein, Teri E

    2007-02-01

    The Stanford Biomedical Informatics training program began with a focus on clinical informatics, and has now evolved into a general program of biomedical informatics training, including clinical informatics, bioinformatics and imaging informatics. The program offers PhD, MS, distance MS, certificate programs, and is now affiliated with an undergraduate major in biomedical computation. Current dynamics include (1) increased activity in informatics within other training programs in biology and the information sciences (2) increased desire among informatics students to gain laboratory experience, (3) increased demand for computational collaboration among biomedical researchers, and (4) interaction with the newly formed Department of Bioengineering at Stanford University. The core focus on research training-the development and application of novel informatics methods for biomedical research-keeps the program centered in the midst of this period of growth and diversification.

  4. Modeling and control of the Stanford/JPL hand

    SciTech Connect

    Loucks, C.S.; Johnson, V.J.; Boissiere, P.T.; Starr, G.P.; Steele, J.P.H.

    1987-01-01

    Improved dexterity is an area of current research in robotics. Research in this area is being pursued with the aid of a Stanford/JPL hand from Salisbury Robotics. This paper presents some of the issues raised in studying the characteristics and control of a single finger of the dexterous hand. The issues presented are dynamic modeling, friction based hysteresis, and identification of the finger system. The present method for sensing and control is also discussed.

  5. ALPs effective field theory and collider signatures

    NASA Astrophysics Data System (ADS)

    Brivio, I.; Gavela, M. B.; Merlo, L.; Mimasu, K.; No, J. M.; del Rey, R.; Sanz, V.

    2017-08-01

    We study the leading effective interactions between the Standard Model fields and a generic singlet CP-odd (pseudo-) Goldstone boson. Two possible frameworks for electroweak symmetry breaking are considered: linear and non-linear. For the latter case, the basis of leading effective operators is determined and compared with that for the linear expansion. Associated phenomenological signals at colliders are explored for both scenarios, deriving new bounds and analyzing future prospects, including LHC and High Luminosity LHC sensitivities. Mono- Z, mono- W, W-photon plus missing energy and on-shell top final states are most promising signals expected in both frameworks. In addition, non-standard Higgs decays and mono-Higgs signatures are especially prominent and expected to be dominant in non-linear realisations.

  6. Implementation of GenePattern within the Stanford Microarray Database.

    PubMed

    Hubble, Jeremy; Demeter, Janos; Jin, Heng; Mao, Maria; Nitzberg, Michael; Reddy, T B K; Wymore, Farrell; Zachariah, Zachariah K; Sherlock, Gavin; Ball, Catherine A

    2009-01-01

    Hundreds of researchers across the world use the Stanford Microarray Database (SMD; http://smd.stanford.edu/) to store, annotate, view, analyze and share microarray data. In addition to providing registered users at Stanford access to their own data, SMD also provides access to public data, and tools with which to analyze those data, to any public user anywhere in the world. Previously, the addition of new microarray data analysis tools to SMD has been limited by available engineering resources, and in addition, the existing suite of tools did not provide a simple way to design, execute and share analysis pipelines, or to document such pipelines for the purposes of publication. To address this, we have incorporated the GenePattern software package directly into SMD, providing access to many new analysis tools, as well as a plug-in architecture that allows users to directly integrate and share additional tools through SMD. In this article, we describe our implementation of the GenePattern microarray analysis software package into the SMD code base. This extension is available with the SMD source code that is fully and freely available to others under an Open Source license, enabling other groups to create a local installation of SMD with an enriched data analysis capability.

  7. Majorana Higgses at colliders

    NASA Astrophysics Data System (ADS)

    Nemevšek, Miha; Nesti, Fabrizio; Vasquez, Juan Carlos

    2017-04-01

    Collider signals of heavy Majorana neutrino mass origin are studied in the minimal Left-Right symmetric model, where their mass is generated spontaneously together with the breaking of lepton number. The right-handed triplet Higgs boson Δ, responsible for such breaking, can be copiously produced at the LHC through the Higgs portal in the gluon fusion and less so in gauge mediated channels. At Δ masses below the opening of the V V decay channel, the two observable modes are pair-production of heavy neutrinos via the triplet gluon fusion gg → Δ → NN and pair production of triplets from the Higgs h → ΔΔ → 4 N decay. The latter features tri- and quad same-sign lepton final states that break lepton number by four units and have no significant background. In both cases up to four displaced vertices may be present and their displacement may serve as a discriminating variable. The backgrounds at the LHC, including the jet fake rate, are estimated and the resulting sensitivity to the Left-Right breaking scale extends well beyond 10 TeV. In addition, sub-dominant radiative modes are surveyed: the γγ, Zγ and lepton flavour violating ones. Finally, prospects for Δ signals at future e + e - colliders are presented.

  8. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    SciTech Connect

    Cantwell, K.; St. Pierre, M.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  9. ALPs at colliders

    NASA Astrophysics Data System (ADS)

    Mimasu, Ken; Sanz, Verónica

    2015-06-01

    New pseudo-scalars, often called axion-like particles (ALPs), abound in model-building and are often associated with the breaking of a new symmetry. Traditional searches and indirect bounds are limited to light axions, typically in or below the KeV range for ALPs coupled to photons. We present collider bounds on ALPs from mono-γ, tri-γ and mono-jet searches in a model independent fashion, as well as the prospects for the LHC and future machines. We find that they are complementary to existing searches, as they are sensitive to heavier ALPs and have the capability to cover an otherwise inaccessible region of parameter space. We also show that, assuming certain model dependent correlations between the ALP coupling to photons and gluons as well as considering the validity of the effective description of ALP interactions, mono-jet searches are in fact more suitable and effective in indirectly constraining ALP scenarios.

  10. Soviet Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  11. Primal-Dual Methods for Linear Programming

    DTIC Science & Technology

    1991-05-01

    Dulce B. Poncele6n and Michael A. Saunders TECHNICAL REPORT SOL 91-3 May 1991 Department of Operations-Research Stanford University 91-03882Stanford, CA...for Linear Programming by Philip E. Gill, Walter Murray, Dulce B. Poncele6n and Michael A. Saunders TECHNICAL REPORT SOL 91-3 May 1991 U ’ .mve dj 1...DUAL METHODS FOR LINEAR PROGRAMMING* Philip E. GILLt Walter MURRAY$ Dulce B. PONCELE6N§ and Michael A. SAUNDERS t Technical Report SOL 91-31 May 1991

  12. The prototype design of the Stanford Relativity Gyro Experiment

    NASA Technical Reports Server (NTRS)

    Parkinson, Bradford W.; Everitt, C. W. Francis; Turneaure, John P.; Parmley, Richard T.

    1987-01-01

    The Stanford Relativity Gyroscope Experiment constitutes a fundamental test of Einstein's General Theory of Relativity, probing such heretofore untested aspects of the theory as those that relate to spin by means of drag-free satellite-borne gyroscopes. General Relativity's prediction of two orthogonal precessions (motional and geodetic) for a perfect Newtonian gyroscope in polar orbit has not yet been experimentally assessed, and will mark a significant advancement in experimental gravitation. The technology employed in the experiment has been under development for 25 years at NASA's Marshall Space Flight Center. Four fused quartz gyroscopes will be used.

  13. The prototype design of the Stanford Relativity Gyro Experiment

    NASA Technical Reports Server (NTRS)

    Parkinson, Bradford W.; Everitt, C. W. Francis; Turneaure, John P.; Parmley, Richard T.

    1987-01-01

    The Stanford Relativity Gyroscope Experiment constitutes a fundamental test of Einstein's General Theory of Relativity, probing such heretofore untested aspects of the theory as those that relate to spin by means of drag-free satellite-borne gyroscopes. General Relativity's prediction of two orthogonal precessions (motional and geodetic) for a perfect Newtonian gyroscope in polar orbit has not yet been experimentally assessed, and will mark a significant advancement in experimental gravitation. The technology employed in the experiment has been under development for 25 years at NASA's Marshall Space Flight Center. Four fused quartz gyroscopes will be used.

  14. Precise attitude control of the Stanford relativity satellite.

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Debra, D. B.

    1973-01-01

    A satellite being designed by the Stanford University to measure (with extremely high precision) the effect of General Relativity is described. Specifically, the satellite will measure two relativistic precessions predicted by the theory: the geodetic effect (6.9 arcsec/yr), due solely to motion about the earth, and the motional effect (0.05 arcsec/yr), due to rotation of the earth. The gyro design requirements, including the requirement for precise attitude control and a dynamic model for attitude control synthesis, are discussed. Closed loop simulation of the satellite's natural dynamics on an analog computer is described.

  15. Crystal Ball: On the Future High Energy Colliders

    SciTech Connect

    Shiltsev, Vladimir

    2015-09-20

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of accelerator-based particle physics.

  16. Topics in Collider Physics

    SciTech Connect

    Petriello, Frank J

    2003-08-27

    It is an exciting time for high energy physics. Several experiments are currently exploring uncharted terrain; the next generation of colliders will begin operation in the coming decade. These experiments will together help us understand some of the most puzzling issues in particle physics: the mechanism of electroweak symmetry breaking and the generation of flavor physics. It is clear that the primary goal of theoretical particle physics in the near future is to support and guide this experimental program. These tasks can be accomplished in two ways: by developing experimental signatures for new models which address outstanding problems, and by improving Standard Model predictions for precision observables. We present here several results which advance both of these goals. We begin with a study of non-commutative field theories. It has been suggested that TeV-scale non-commutativity could explain the origin of CP violation in the SM. We identify several distinct signatures of non-commutativity in high energy processes. We also demonstrate the one-loop quantum consistency of a simple spontaneously broken non-commutative U(1) theory; this result is an important preface to any attempt to embed the SM within a non-commutative framework. We then investigate the phenomenology of extra-dimensional theories, which have been suggested recently as solutions to the hierarchy problem of particle physics. We first examine the implications of allowing SM fields to propagate in the full five-dimensional spacetime of the Randall-Sundrum model, which solves the hierarchy problem via an exponential ''warping'' of the Planck scale induced by a five-dimensional anti de-Sitter geometry. In an alternative extra-dimensional theory, in which all SM fields are permitted to propagate in flat extra dimensions, we show that properties of the Higgs boson are significantly modified. Finally, we discuss the next-to-next-to leading order QCD corrections to the dilepton rapidity distribution in

  17. Physics at future hadron colliders

    SciTech Connect

    U. Baur et al.

    2002-12-23

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  18. Hadron collider physics at UCR

    SciTech Connect

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  19. Muon collider interaction region design

    DOE PAGES

    Alexahin, Y. I.; Gianfelice-Wendt, E.; Kashikhin, V. V.; ...

    2011-06-02

    Design of a muon collider interaction region (IR) presents a number of challenges arising from low β* < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV center-of-mass muon collider IR is presented. It can too provide an average luminosity of 1034 cm-2s-1 with an adequate protection of magnet and detector components.

  20. QCD at collider energies

    NASA Astrophysics Data System (ADS)

    Nicolaidis, A.; Bordes, G.

    1986-05-01

    We examine available experimental distributions of transverse energy and transverse momentum, obtained at the CERN pp¯ collider, in the context of quantum chromodynamics. We consider the following. (i) The hadronic transverse energy released during W+/- production. This hadronic transverse energy is made out of two components: a soft component which we parametrize using minimum-bias events and a semihard component which we calculate from QCD. (ii) The transverse momentum of the produced W+/-. If the transverse momentum (or the transverse energy) results from a single gluon jet we use the formalism of Dokshitzer, Dyakonov, and Troyan, while if it results from multiple-gluon emission we use the formalism of Parisi and Petronzio. (iii) The relative transverse momentum of jets. While for W+/- production quarks play an essential role, jet production at moderate pT and present energies is dominated by gluon-gluon scattering and therefore we can study the Sudakov form factor of the gluon. We suggest also how through a Hankel transform of experimental data we can have direct access to the Sudakov form factors of quarks and gluons.

  1. When Black Holes Collide

    NASA Technical Reports Server (NTRS)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  2. When Black Holes Collide

    NASA Technical Reports Server (NTRS)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  3. Alternative positron-target design for electron-positron colliders

    SciTech Connect

    Donahue, R.J. ); Nelson, W.R. )

    1991-04-01

    Current electron-positron linear colliders are limited in luminosity by the number of positrons which can be generated from targets presently used. This paper examines the possibility of using an alternate wire-target geometry for the production of positrons via an electron-induced electromagnetic cascade shower. 39 refs., 38 figs., 5 tabs.

  4. The chromatic correction in RHIC (Relativistic Heavy Ion Collider)

    SciTech Connect

    Lee, S.Y.; Dell, G.F.; Hahn, H.; Parzen, G.

    1987-01-01

    The scheme for the correction of chromatic effects in the Relativistic Heavy Ion Collider at BNL is discussed. This scheme uses six families of sextupoles excited by four independent power supplies, and provides adequate control of linear and quadratic terms in the tune vs momentum dependence and reduces the variation of the betatron amplitude, vs momentum.

  5. The Stanford Cluster Search: Scope, Method, and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Willick, Jeffrey A.; Thompson, Keith L.; Mathiesen, Benjamin F.; Perlmutter, Saul; Knop, Robert A.; Hill, Gary J.

    2001-06-01

    We describe the scientific motivation behind, and the methodology of, the Stanford Cluster Search (StaCS), a program to compile a catalog of optically selected galaxy clusters at intermediate and high (0.3<~z<~1) redshifts. The clusters are identified using a matched filter algorithm applied to deep CCD images covering ~60 deg2 of sky. These images are obtained from several data archives, principally that of the Berkeley Supernova Cosmology Project of Perlmutter et al. Potential clusters are confirmed with spectroscopic observations at the 9.2 m Hobby-Eberly Telescope. Follow-up observations at optical, submillimeter, and X-ray wavelengths are planned in order to estimate cluster masses. Our long-term scientific goal is to measure the cluster number density as a function of mass and redshift, n(M, z), which is sensitive to the cosmological density parameter Ωm and the amplitude of density fluctuations σ8. The combined data set will contain clusters ranging over an order of magnitude in mass and allow constraints on these parameters accurate to ~10%. We present our first spectroscopically confirmed cluster candidates and describe how to access them electronically. The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximillians-Universität München, and Georg-August-Universität Göttingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly.

  6. Design, development and evaluation of Stanford/Ames EVA prehensors

    NASA Technical Reports Server (NTRS)

    Leifer, Larry J.; Aldrich, J.; Leblanc, M.; Sabelman, E.; Schwandt, D.

    1988-01-01

    Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.

  7. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    NASA Astrophysics Data System (ADS)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  8. Physicists dream of supersized collider

    NASA Astrophysics Data System (ADS)

    Hao, Cindy

    2015-12-01

    Particle physicists in China are hopeful that the Chinese government will allocate 1 billion yuan (about £104m) to design what would be the world's largest particle accelerator - the Circular Electron Positron Collider (CEPC).

  9. CERN Collider, France-Switzerland

    NASA Image and Video Library

    2013-08-23

    This image, acquired by NASA Terra spacecraft, is of the CERN Large Hadron Collider, the world largest and highest-energy particle accelerator laying beneath the French-Swiss border northwest of Geneva yellow circle.

  10. Stable massive particles at colliders

    SciTech Connect

    Fairbairn, M.; Kraan, A.C.; Milstead, D.A.; Sjostrand, T.; Skands, P.; Sloan, T.; /Lancaster U.

    2006-11-01

    We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.

  11. Muon muon collider: Feasibility study

    SciTech Connect

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  12. When Rubble Piles Collide...

    NASA Astrophysics Data System (ADS)

    Leinhardt, Z. M.; Richardson, D. C.; Quinn, T.

    1999-01-01

    There is increasing evidence that many or most km-sized bodies in the Solar System may be rubble piles, that is, gravitationally bound aggregates of material susceptible to disruption or distortion by planetary tides (Richardson, Bottke, & Love 1998, Icarus 134, 47). If this is true, then collisions may occur in free space between rubble piles. Here we present preliminary results from a project to map the parameter space of rubble-pile collisions. The results will assist in parameterization of collision outcomes for simulations of Solar System formation and may give insight into scaling laws for catastrophic disruption. We use a direct numerical method (Richardson, Quinn, Stadel, & Lake 1998, submitted) to evolve the particle positions and velocities under the constraints of gravity and physical collisions. We test the dependence of the collision outcomes on the impact speed and impact parameter, as well as the spin and size of the colliding bodies. We use both spheroidal and ellipsoidal shapes, the former as a control and the latter as a more representative model of real bodies. Speeds are kept low so that the maximum strain on the component material does not exceed the crushing strength. This is appropriate for dynamically cool systems, such as in the primordial disk during the early stage of planet formation or possibly in the present-day classical Kuiper Belt. We compare our results to analytic estimates and to stellar system collision models. Other parameters, such as the coefficient of restitution (dissipation), bulk density, and particle resolution will be investigated systematically in future work.

  13. Using Spin Observables and Polarizations to Probe Top-Higgs FCNC Couplings at Colliders

    NASA Astrophysics Data System (ADS)

    Melić, Blaženka; Patra, Monalisa

    2017-07-01

    We present how the polarized linear colliders can be used, complementary to the LHC, to fully determine the top-Higgs flavor changing neutral current (FCNC) couplings by using produced asymmetries and top spin polarizations and correlations.

  14. High Energy Colliders as Tools to Understand the Early Universe

    SciTech Connect

    Tait, Tim

    2008-08-16

    Cosmological observations have reached a new era of precision, and reveal many interesting and puzzling features of the Universe. I will briefly review two of the most exciting mysteries: the nature of the dark components of the Universe, and the origin of the asymmetry between matter and anti-matter. I will argue that our best hope of unraveling these questions will need to combine information from the heavens with measurements in the lab at high energy particle accelerators. The end of run II of the Tevatron, the up-coming Large Hadron Collider and proposed International Linear Collider all have great potential to help us answer these questions in the near future.

  15. Single and multiple intrabeam scattering in hadron colliders

    SciTech Connect

    Lebedev, V.; /Fermilab

    2005-01-01

    Single and multiple intra-beam scattering are usually considered separately. Such separation works well for electron-positron colliders but usually yields only coarse description in the case of hadron colliders. Boltzmann type integro-differential equation is used to describe evolution of longitudinal distribution due to IBS. The finite size of the longitudinal potential well, its non-linearity and x-y coupling are taken into account. The model predictions for longitudinal and transverse distributions are compared to the experimental measurements.

  16. [Late reoperations after repaired Stanford type A aortic dissection].

    PubMed

    Huang, F H; Li, L P; Su, C H; Qin, W; Xu, M; Wang, L M; Jiang, Y S; Qiu, Z B; Xiao, L Q; Zhang, C; Shi, H W; Chen, X

    2017-04-01

    Objective: To summarize the experience of reoperations on patients who had late complications related to previous aortic surgery for Stanford type A dissection. Methods: From August 2008 to October 2016, 14 patients (10 male and 4 female patients) who underwent previous cardiac surgery for Stanford type A aortic dissection accepted reoperations on the late complications at Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University. The range of age was from 41 to 76 years, the mean age was (57±12) years. In these patients, first time operations were ascending aorta replacement procedure in 3 patients, ascending aorta combined with partial aortic arch replacement in 4 patients, aortic root replacement (Bentall) associated with Marfan syndrome in 3 patients, aortic valve combined with ascending aorta replacement (Wheat) in 1 patient, ascending aorta combined with Sun's procedure in 1 patient, Wheat combined with Sun's procedure in 1 patient, Bentall combined with Sun's procedure in 1 patient. The interval between two operations averaged 0.3 to 10.0 years with a mean of (4.8±3.1) years. The reasons for reoperations included part anastomotic split, aortic valve insufficiency, false aneurysm formation, enlargement of remant aortal and false cavity. The selection of reoperation included anastomotic repair, aortic valve replacement, total arch replacement and Sun's procedure. Results: Of the 14 patients, the cardiopulmonary bypass times were 107 to 409 minutes with a mean of (204±51) minutes, cross clamp times were 60 to 212 minutes with a mean of (108±35) minutes, selective cerebral perfusion times were 16 to 38 minutes with a mean of (21±11) minutes. All patients survived from the operation, one patient died from severe pulmonary infection 50 days after operation. Three patients had postoperative complications, including acute renal failure of 2 patients and pulmonary infection of 1 patient, and these patients were

  17. An Early Retirement Program for the Stanford Faculty: Report and Recommendations.

    ERIC Educational Resources Information Center

    Hopkins, David S. P.

    This background paper summarizes the design of a faculty early retirement plan at Stanford University. Summary and recommendations indicate: (1) Budgetary stringencies at Stanford require that the faculty size remain essentially fixed. In view of this situation, a properly designed early retirement program should be adopted as a means of…

  18. Identification of Gifted Children: A Comparison of the Stanford Binet 4th Edition and Form LM.

    ERIC Educational Resources Information Center

    Kluever, Raymond C.; Green, Kathy E.

    This study compared the performance of 51 gifted Caucasian children on the Stanford Binet LM and the Stanford Binet Fourth Edition (SB4) to determine whether significantly different scores would be obtained. The 33 male and 18 female subjects were from middle and upper-middle class families in a western urban area. Their developmental histories,…

  19. Stanford University: The Building Energy Retrofit Programs. Green Revolving Funds in Action: Case Study Series

    ERIC Educational Resources Information Center

    Flynn, Emily

    2011-01-01

    Stanford University's Energy Retrofit Program was created in 1993 to target resource reduction and conservation focused projects on campus. Fahmida Ahmed, Associate Director of the Department of Sustainability and Energy Management, says that Stanford has been investing in sustainability and energy-efficiency since the late 1970s, longer than many…

  20. Stanford's 1990 Graduates Didn't Wait Long To Give Back in a Big Way.

    ERIC Educational Resources Information Center

    Carr, Sarah

    2000-01-01

    Reports that the class of 1990 of Stanford University (California) has pledged a record total for a class 10 years out of college. Suggests that Stanford's close relationship to Silicon Valley is responsible but that the volatility of the stock market illustrates the risks involved in fund raising from young Internet entrepreneurs. The $7.5…