Comparison of Nitinol Stapes Pistons with Conventional Stapes Pistons: A Cadaver Study
2011-01-01
Comparison of Nitinol Stapes Pistons with Conventional Stapes Pistons: A Cadaver Study Samuel A. Spear1 and James V. Crawford2 1 48th Medical Group, ENT...cited. Objective. To visually compare the Nitinol “smart” stapes prosthesis to conventional manual crimping stapes pistons in temporal bone cadaver...answer questions about each stapes piston. The answers to the survey were then recorded for analysis. Results. 8 of 9 Nitinol pistons were described as
Lasers in stapes surgery: a review.
Young, E; Mitchell-Innes, A; Jindal, M
2015-07-01
Lasers in stapes surgery are used to divide the anterior and posterior crus of the stapes, divide the stapedius tendon and perforate the footplate. The ideal laser should not penetrate deeply into the perilymph (thereby increasing its temperature). It should be conducted through optical fibres, allowing easy manipulation, and should have good water absorption, equating to high bone ablation efficiency. This review discusses the various different lasers used in stapes surgery with regard to their properties and suitability for this type of surgery. In particular, the laser parameters used are discussed to facilitate their clinical use.
Decraemer, W. F.; Khanna, S. M.; Olson, E. S.
2008-01-01
Recent measurements of three-dimensional stapes motion in gerbil indicated that the piston component of stapes motion was the primary contributor to intracochlear pressure. In order to make a detailed correlation between stapes piston motion and intracochlear pressure behind the stapes, simultaneous pressure and motion measurements were undertaken. We found that the scala vestibuli pressure followed the piston component of the stapes velocity with high fidelity, reinforcing our previous finding that the piston motion of the stapes was the main stimulus to the cochlea. The present data allowed us to calculate cochlear input impedance and power flow into the cochlea. Both the amplitude and phase of the impedance were quite flat with frequency from 3 kHz to at least 30 kHz, with a phase that was primarily resistive. With constant stimulus pressure in the ear canal the intracochlear pressure at the stapes has been previously shown to be approximately flat with frequency through a wide range, and coupling that result with the present findings indicates that the power that flows into the cochlea is quite flat from about 3 to 30 kHz. The observed wide-band intracochlear pressure and power flow are consistent with the wide-band audiogram of the gerbil. PMID:18459001
Shin, Dong Ho; Kim, Dong Wook; Lim, Hyung Gyu; Jung, Eui Sung; Seong, Ki Woong; Lee, Jyung Hyun; Kim, Myoung Nam; Cho, Jin Ho
2014-01-01
Round window placement of a 3-coil transducer offers a new approach for coupling an implantable hearing aid to the inner ear. The transducer exhibits high performance at low-frequencies. One remarkable feature of the 3-coil transducer is that it minimizes leakage flux. Thus, the transducer, which consists of two permanent magnets and three coils, can enhance vibrational displacement. In human temporal bones, stapes vibration was observed by laser Doppler vibrometer in response to round window stimulation using the 3-coil transducer. Coupling between the 3-coil transducer and the round window was connected by a wire-rod. The stimulation created stapes velocity when the round window stimulated. Performance evaluation was conducted by measuring stapes velocity. To verify the performance of the 3-coil transducer, stapes velocity for round window and tympanic membrane stimulation were compared, respectively. Stapes velocity by round window stimulation using the 3-coil transducer was approximately 14 dB higher than that achieved by tympanic membrane stimulation. The study shows that 3-coil transducer is suitable for implantable hearing aids.
Time Average Holography Study of Human Tympanic Membrane with Altered Middle Ear Ossicular Chain
NASA Astrophysics Data System (ADS)
Cheng, Jeffrey T.; Ravicz, Michael E.; Rosowski, John J.; Hulli, Nesim; Hernandez-Montes, Maria S.; Furlong, Cosme
2009-02-01
Computer-assisted time average holographic interferometry was used to study the vibration of the human tympanic membrane (TM) in cadaveric temporal bones before and after alterations of the ossicular chain. Simultaneous laser Doppler vibrometer measurements of stapes velocity were performed to estimate the conductive hearing loss caused by ossicular alterations. The quantified TM motion described from holographic images was correlated with stapes velocity to define relations between TM motion and stapes velocity in various ossicular disorders. The results suggest that motions of the TM are relatively uncoupled from stapes motion at frequencies above 1000 Hz.
Kwok, P; Fisch, U; Strutz, J; Jacob, P
2001-09-01
The goal of this study was to compare stapes prostheses of different materials with respect to their surface structures and to discuss their suitability for their use in stapes surgery. The surface condition of a stapes prosthesis plays an important role in relation to the type of membrane that forms between the stapes piston and the bony edge of the stapedotomy opening. The quality of this membrane in thickness and mobility is one of the determinants for postoperative hearing improvement. The surface conditions of gold, Teflon/steel, Teflon/platinum, and titanium stapes prostheses were examined with a scanning electron microscope. The loop, shaft, and end of each prosthesis were studied. The gold piston was the smoothest of the four pistons examined. When it was cut with a scalpel, a very smooth surface was achieved at the end area. The Teflon piston had the roughest surface. However, when it was cut, a smooth surface with a parallel arrangement of fibers resulted. Its steel loop was the smoothest, followed by gold and platinum. The titanium shaft had a scaly surface, which remained when the end of the shaft was shortened. Because a certain roughness of the piston surface is necessary for the development of a stable membrane between the piston and the edge of the stapedotomy opening, the titanium prosthesis is considered to be the most suitable for stapes surgery of the three pistons examined.
Kaburlasos, V G; Petridis, V; Brett, P N; Baker, D A
1999-12-01
Stapedotomy is a surgical procedure aimed at the treatment of hearing impairment due to otosclerosis. The treatment consists of drilling a hole through the stapes bone in the inner ear in order to insert a prosthesis. Safety precautions require knowledge of the nonmeasurable stapes thickness. The technical goal herein has been the design of high-level controls for an intelligent mechatronics drilling tool in order to enable the estimation of stapes thickness from measurable drilling data. The goal has been met by learning a map between drilling features, hence no model of the physical system has been necessary. Learning has been achieved as explained in this paper by a scheme, namely the d-sigma Fuzzy Lattice Neurocomputing (d sigma-FLN) scheme for classification, within the framework of fuzzy lattices. The successful application of the d sigma-FLN scheme is demonstrated in estimating the thickness of a stapes bone "on-line" using drilling data obtained experimentally in the laboratory.
Development of the stapes and associated structures in human embryos
Rodríguez-Vázquez, JF
2005-01-01
The objective of this study was to clarify the development of the stapes in humans and its relationship with the cartilage of the second branchial arch. The study was carried out in 25 human embryos between 6 and 28 mm crown–rump length. The stapes develops at the cranial end of the second branchial arch through an independent anlage of the cartilage of this arch. Between the stapedial anlage and the cranial end of the Reichert's cartilage there is a formation called the interhyale, the internal segment of which gives rise to the tendon of the stapedial muscle. The stapedial anlage is a unique formation with two distinct parts: the superior part that will comprise the base and the inferior part that will be crossed by the stapedial artery during embryonic development and will constitute the limbs and the head of the stapes. According to the results, the otic capsule is not involved in formation of the base of the stapes. PMID:16050903
Laser stepedotomy for otosclerosis.
Perkins, R C
1980-02-01
The argon laser microscope recently developed by the author is used to vaporize the stapes tendon, the posterior crus and a rosette of holes in the stapes footplate in the surgical treatment of otosclerosis. An autogenous vein--stainless steel piston assembly is used to reconstruct the stapes portion of the ossicular chain. The surgical technique and results in a preliminary series of 11 patients are reported. Rationale and advantages over conventional stapedectomy are discussed.
Computed tomographic imaging of stapes implants.
Warren, Frank M; Riggs, Sterling; Wiggins, Richard H
2008-08-01
Computed tomographic (CT) imaging of stapes prostheses is inaccurate. Clinical situations arise in which it would be helpful to determine the depth of penetration of a stapes prosthesis into the vestibule. The accuracy of CT imaging for this purpose has not been defined. This study was aimed to determine the accuracy of CT imaging to predict the depth of intrusion of stapes prostheses into the vestibule. The measurement of stapes prostheses by CT scan was compared with physical measurements in 8 cadaveric temporal bones. The depth of intrusion into the vestibule of the piston was underestimated in specimens with the fluoroplastic piston by a mean of 0.5 mm when compared with the measurements obtained in the temporal bones. The depth of penetration of the stainless steel implant was overestimated by 0.5 mm when compared with that in the temporal bone. The type of implant must be taken into consideration when estimating the depth of penetration into the vestibule using CT scanning because the imaging characteristics of the implanted materials differ. The position of fluoroplastic pistons cannot be accurately measured in the vestibule. Metallic implants are well visualized, and measurements exceeding 2.2 mm increase the suspicion of otolithic impingement. Special reconstructions along the length of the piston may be more accurate in estimating the position of stapes implants.
Potocka-Bakłażec, Małgorzata; Sakowicz-Burkiewicz, Monika; Kuczkowski, Jerzy; Pawełczyk, Tadeusz; Stankiewicz, Czesław; Sierszeń, Wojciech; Jankowski, Zbigniew; Buczny, Jacek
2015-08-01
Persistent measles virus infections play a crucial role in the pathomechanism of otosclerosis. The study was undertaken to investigate the role of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and osteoprotegerin (OPG) in otosclerotic bone remodeling and to assess the relation of TNF-α, OPG and IL-1β expression levels in otosclerotic stape footplates to the occurrence of measles virus infection. 61 patients with otosclerosis were treated surgically. Thirty-one stapes obtained from cadavers of people, who had died from a sudden cause were used as a control group. The presence of measles virus RNA and the expression levels of TNF-α, IL-1β and OPG in otosclerotic foci were assessed using one-step RT-PCR. The presence of measles virus RNA was noted in 80.3 % of otosclerotic stapes (49 out of 61) and 9.7 % of normal tissues (3 out of 31). Transcript of TNF-α, IL-1β and OPG was detected in 40, 46 and 18 virus-positive stapes, respectively. The transcript level of TNF-α and IL-1β was significantly higher in otosclerotic tissues comparing to normal tissue. The OPG expression level was significantly lower in otosclerotic tissues comparing to controls. The presence of measles virus RNA in the stapes may indicate its role in the pathogenesis of otosclerosis. The presence of TNF-α and IL-1β mRNA in the virus-positive stapes could be the result of viral antigen stimulation and may be a marker of inflammation the otosclerotic focus. The lack of OPG mRNA and the presence of TNF-α and IL-1β mRNA in the majority of otosclerotic tissues reflect the bone remodeling process occurring in the stapes.
Acar, Gül Ozbilen; Kivekäs, Ilkka; Hanna, Bassem M; Huang, Lin; Gopen, Quinton; Poe, Dennis S
2014-04-01
To compare the outcomes of 3 surgical techniques for primary stapes fixation: stapedotomy minus prosthesis (STAMP), circumferential stapes mobilization (CSM), and small fenestra stapedotomy (SFS). Retrospective review of 277 primary cases operated for stapes fixation from 1997 to 2007. Tertiary academic center. Consecutive adult and pediatric cases operated for conductive hearing loss because of stapes fixation. STAMP was performed for otosclerosis limited to the anterior footplate, CSM was conducted for congenital stapes fixation, SFS was performed for more extensive otosclerosis or anatomic contraindications to STAMP/CSM. Pure-tone audiometry was performed preoperatively and postoperatively (3-6 wk) and the most recent long-term results (≥ 12 mo). Ninety-nine ears in 90 patients had audiologic follow-up data over 12 months. Sixty-seven ears (68%) underwent SFS, 16 (16%) STAMP, and 16 (16%) CSM. There was significant improvement in average air conduction (AC) thresholds and air-bone gap (ABG) for all techniques. Mean ABG for SFS closed from 29 to 7.1 dB (SD, 6.0), for STAMP from 29 to 3.8 dB (SD, 5.8 dB), and for CSM from 34 to 20 dB (SD, 8.2 dB). AC results were better in the STAMP than in the SFS group, especially in high frequencies. Bone conduction improvements were seen in all groups, highest in STAMP (4.3 dB) and CSM (3.8 dB) groups, but the differences between groups were not statistically significant. Satisfactory hearing results were achieved with all the techniques, and STAMP showed better hearing outcomes, especially in high frequencies. CSM is a good option for children and patients in whom it is desirable to avoid a footplate fenestration or prosthesis. CSM and STAMP had significantly higher rates of revision for refixation than SFS.
The quartile benefit plot: a middle ear surgery benefit assessment scheme.
Schmerber, Sébastien; Karkas, Alexandre; Righini, Christian A; Chahine, Karim A
2008-05-01
The purpose of this study is to present a new method for the assessment of hearing improvement following stapes surgery, taking into account additional, previously omitted evaluation criteria. Retrospective. A quartile plot, based on the currently used Glasgow benefit plot, is structured to include two additional criteria of hearing assessment, namely the absence of postoperative sensorineural hearing loss and the closure of the air-bone gap to <10 dB. Pre- and postoperative hearing results of 132 patients diagnosed with bilateral otosclerosis and treated with bilateral stapes surgery were plotted on both the classical Glasgow benefit plot and the new quartile benefit plot. The difference in success assessment due to stricter assessment criteria is demonstrated. Functional success rate following bilateral stapes surgery as plotted on the traditional Glasgow benefit plot was 51.5%. Success rate for bilateral stapes surgery assessed on the new quartile plot with the addition of the two new criteria was 38.64%. The difference in success rates was found to be statistically significant. The basis of benefit assessment in stapes surgery solely on the mean deficit in air conduction results in overestimation of success rate. This study demonstrates that results that appear satisfactory when judged by the Glasgow benefit plot are of modest success when assessed by the new quartile plot. The quartile benefit plot presented in this paper provides a strict measure of presentation and evaluation of stapes surgery results.
Requirement for Jagged1-Notch2 signaling in patterning the bones of the mouse and human middle ear.
Teng, Camilla S; Yen, Hai-Yun; Barske, Lindsey; Smith, Bea; Llamas, Juan; Segil, Neil; Go, John; Sanchez-Lara, Pedro A; Maxson, Robert E; Crump, J Gage
2017-05-31
Whereas Jagged1-Notch2 signaling is known to pattern the sensorineural components of the inner ear, its role in middle ear development has been less clear. We previously reported a role for Jagged-Notch signaling in shaping skeletal elements derived from the first two pharyngeal arches of zebrafish. Here we show a conserved requirement for Jagged1-Notch2 signaling in patterning the stapes and incus middle ear bones derived from the equivalent pharyngeal arches of mammals. Mice lacking Jagged1 or Notch2 in neural crest-derived cells (NCCs) of the pharyngeal arches display a malformed stapes. Heterozygous Jagged1 knockout mice, a model for Alagille Syndrome (AGS), also display stapes and incus defects. We find that Jagged1-Notch2 signaling functions early to pattern the stapes cartilage template, with stapes malformations correlating with hearing loss across all frequencies. We observe similar stapes defects and hearing loss in one patient with heterozygous JAGGED1 loss, and a diversity of conductive and sensorineural hearing loss in nearly half of AGS patients, many of which carry JAGGED1 mutations. Our findings reveal deep conservation of Jagged1-Notch2 signaling in patterning the pharyngeal arches from fish to mouse to man, despite the very different functions of their skeletal derivatives in jaw support and sound transduction.
Coordes, Annekatrin; Jahreiss, Linda; Schönfeld, Uwe; Lenarz, Minoo
2017-02-01
After stapes surgery, patients with mixed or moderate hearing loss have limited possibilities for hearing improvement. We are reporting on a patient who underwent stapedotomy bilaterally 20 years ago and had sensorineural and mixed hearing loss. Recurrent otitis externa prevented the use of hearing aids. This patient was treated bilaterally with the Vibrant Soundbridge (Med-El, Innsbruck, Austria) successively. The Schuknecht piston stapes prostheses remained in situ. The Floating Mass Transducer (FMT; Med-El) was coupled to the round window (RW) and provided good acoustic reinforcement bilaterally. In conclusion, for patients with otosclerosis and stapes surgery, the FMT-RW coupling (Bess AG, Berlin, DE) is a safe procedure with good acoustic amplification. Laryngoscope, 2016 127:500-503, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Dobrev, Ivo; Sim, Jae Hoon; Aqtashi, Baktash; Huber, Alexander M; Linder, Thomas; Röösli, Christof
2018-01-01
Intra-operative quantification of the ossicle mobility could provide valuable feedback for the current status of the patient's conductive hearing. However, current methods for evaluation of middle ear mobility are mostly limited to the surgeon's subjective impression through manual palpation of the ossicles. This study investigates how middle ear transfer function is affected by stapes quasi-static stiffness of the ossicular chain. The stiffness of the middle ear is induced by a) using a novel fiber-optic 3-axis force sensor to quantify the quasi-static stiffness of the middle ear, and b) by artificial reduction of stapes mobility due to drying of the middle ear. Middle ear transfer function, defined as the ratio of the stapes footplate velocity versus the ear canal sound pressure, was measured with a single point LDV in two conditions. First, a controlled palpation force was applied at the stapes head in two in-plane (superior-inferior or posterior-anterior) directions, and at the incus lenticular process near the incudostapedial joint in the piston (lateral-medial) direction with a novel 3-axis PalpEar force sensor (Sensoptic, Losone, Switzerland), while the corresponding quasi-static displacement of the contact point was measured via a 3-axis micrometer stage. The palpation force was applied sequentially, step-wise in the range of 0.1-20 gF (1-200 mN). Second, measurements were repeated with various stages of stapes fixation, simulated by pre-load on the stapes head or drying of the temporal bone, and with severe ossicle immobilization, simulated by gluing of the stapes footplate. Simulated stapes fixation (forced drying of 5-15 min) severely decreases (20-30 dB) the low frequency (<1 kHz) response of the middle ear, while increasing (5-10 dB) the high frequency (>4 kHz) response. Stapes immobilization (gluing of the footplate) severely reduces (20-40 dB) the low and mid frequency response (<4 kHz) but has lesser effect (<10 dB) at higher frequencies. Even moderate levels of palpation force (<3gF, <30 mN), regardless of direction, have negative effect (10-20 dB) on the low frequency (<2 kHz) response, but with less significant (5-10 dB) effect at higher frequencies. Force-displacement measurements around the incudostapedial joint showed quasi-static stiffness in the range of 200-500 N/m for normal middle ears, and 1000-2500 N/m (5-8-fold increase) after artificially (through forced drying) reducing the middle ear transfer function with 10-25 dB at 1 kHz. Effects of the palpation force level and direction, as well as stapes fixation and immobilization have been analyzed based on the measurement of the stapes footplate motion, and controlled application of 3D force and displacement. Copyright © 2017 Elsevier B.V. All rights reserved.
Safety of magnetic resonance imaging of stapes prostheses.
Syms, Mark James
2005-03-01
Assess the safety of performing magnetic resonance imaging (MRI) on patients with stapes prostheses. Survey and animal model. A survey regarding implant usage, MRI procedures, and adverse outcomes after MRI in patients previously undergoing stapes procedures. Guinea pigs implanted with ferromagnetic 17 to 4 stainless steel, 316L nonferromagnetic stainless steel, titanium, and fluoroplastic stapes prostheses underwent a MRI in a 4.7 Tesla MR system. : Three adverse outcomes were reported on the clinical survey. One adverse event occurred during an MRI performed on a recalled ferromagnetic prosthesis. The other two adverse events were probably not secondary to MRI exposure. No damage or inflammation was observed in the region of the oval window or vestibule of implanted guinea pigs exposed to a 4.7 Tesla MR system. The combination of prior studies, the clinical survey, and the absence of histopathologic evidence of damage in the guinea pigs is compelling evidence that MRI for patients with stapes prostheses is safe. Implanting physicians should feel comfortable clearing a patient for a MRI in a 1.5 Tesla or 3.0 Tesla MRI. It is imperative for the physician to qualify the field strength when clearing a patient to undergo a MRI.
Biocompatible membrane of PDMS for the new chamber prosthesis stapes.
Banasik, Katarzyna; Kwacz, Monika
2016-06-30
Stapes protheses are designed for patients with otosclerosis resulting immobilization or significant reduction of the stapes mobility. All currently used prostheses are called - piston prosthesis. However, its use to stimulate the cochlea is still imperfect. New chamber stapes prosthesis allows the perilymph excitation more effective than the piston prothesis. Moreover, the chamber prosthesis eliminates the common causes of piston-stapedotomy failures. The most important element of the new prosthesis is a flexible membrane. The membrane stiffness should be close to the stiffness of normal annular ligament. This work presents the process of selection of the membrane's thickness and its manufacturing technology. Method A 3D model of the chamber stapes prosthesis was build using Autodesk Inventor 2015. The model was imported to Abacus 6.13 computing environment. During numerical simulations, displacements corresponding to applied loads were calculated and the membrane thickness was adjusted so that its stiffness was the same as the ligament stiffness (~ 120 N/m). The compliance ratios calculated from the load-displacement curves for the membrane and the annular ligament were verified using linear regression analysis. After determining the thickness, the manufacturing technology of the membrane was developed. Results The best similarity between the membrane's and annular ligament's stiffness was achieved for PDMS membrane with the 0,15- mm thickness (similarity ratio R2=0,997752). In this work, the technological parameters of spin-coating process for membrane manufacture are also presented. Summary The proper functioning of the chamber stapes prosthesis requires the PDMS membrane with a thickness of 0,15 mm. The 0,15-mm membrane has the tiffness close to the stiffness of the normal annular ligament. Therefore, the chamber stapes prosthesis provides the perilymph stimulation at the level comparable to the healthy ear. New prosthesis is currently under pre-clinical investigation to optimize the shape of the inner chamber's surface.
Chen, Shou-I; Lee, Ming-Hsiao; Yao, Chih-Min; Chen, Peir-Rong; Chou, Yuan-Fang; Liu, Tien-Chen; Song, Yu-Lin; Lee, Chia-Fone
2013-03-01
We have developed a new finite element (FE) model of human right ear, including the accurate geometry of middle ear ossicles, external ear canal, tympanic cavity, and mastoid cavity. The FE model would be suitable to study the dynamic behaviors of pathological middle ear conditions, including changes of stapedial ligament stiffness, tensor tympani ligament (TTL), and tympanic membrane (TM) stiffness and thickness. Increasing stiffness of stapedial ligament has substantial effect on stapes footplate movement, especially at low frequencies, but less effect on umbo movement. Softer TTL will result in increasing umbo and stapes footplate displacement, especially at low frequencies (f<1000Hz). When the TTL was detached, the vibration amplitude of umbo increased by 6dB at 600Hz and two peaks (300 and 600Hz) were found in the vibration amplitude of stapes footplate. Increasing the stiffness of tensor tympani resulted in a slightly decreased umbo amplitude at very low frequencies (f<500Hz) and significantly decreased displacement up to 12dB at middle frequencies (1000Hz
Teflon Implants Versus Titanium Implants in Stapes Surgery.
Bansal, Mohan
2016-03-01
Otosclerosis is the most common cause of bilateral gradually progressive conductive hearing loss with normal tympanic membrane and Eustachian tube. Otosclerosis surgical treatment is one of the most gratifying operations in Otorhinolaryngology. It is not only the surgical techniques but also the prosthesis which are evolving in the attempt of providing best hearing results. Teflon piston is the most commonly employed prosthesis in stapes surgery. Titanium pistons are relatively the new development in the evolution of stapes prosthesis. The aim of this review article is to know and compare the surgical technicalities and postoperative outcomes including hearing improvement after the use of Teflon and titanium stapes piston. The adverse reactions occurred during follow-up were taken into consideration. The data in this article are supported by a Medline search. The use of both the prosthesis gave good results in cases of otosclerosis. The placement of titanium soft clip design was found easier than the earlier àWengen design of clip piston.
MPR-CT Imaging for Stapes Prosthesis: Accuracy and Clinical Significance.
Fang, Yanqing; Wang, Bing; Galvin, John J; Tao, Duoduo; Deng, Rui; Ou, Xiong; Liu, Yangwenyi; Dai, Peidong; Sha, Yan; Zhang, Tianyu; Chen, Bing
2016-04-01
The aims of this article are: 1) to re-evaluate the accuracy of multiple planar reconstruction computed tomography (MPR-CT) imaging on stapes-prosthesis parameters, and 2) to clarify possible relationships between prosthesis intravestibular depth and postoperative hearing outcomes. Seventy patients (46 women and 24 men; 32 right and 38 left sides) with the mean age of 40 years (range, 19-62 yr) with clinical otosclerosis. All patients underwent stapedotomy and were implanted with the same type of titanium piston prosthesis by the same surgeon. Postoperative MPR-CTs were obtained at patients' follow-up visits. The length and intravestibular depth of the stapes prosthesis (including absolute and relative depth) were calculated from the MPR-CT imaging. Relationships between the intravestibular depth of the prosthesis and hearing outcomes (pre- and postoperative audiograms) were analyzed using Spearman correlation analyses. The length of the prosthesis was overestimated by 1.8% (0.1 mm) by the MPR-CT imaging. Axial and coronal measurements were significantly correlated (p < 0.05). There was great intersubject variability in hearing outcomes differed insignificantly, regardless of intravestibular depth within the security range. No relationships were found between the intravestibular depth of the stapes prosthesis, as measured with MPR-CT, and postoperative hearing results. MPR-CT can provide an accurate estimation of stapes prosthesis parameters. However, the prosthesis intravestibular depth did not seem to affect postoperative hearing outcomes.
Changes to Hearing Levels Over the First Year After Stapes Surgery: An Analysis of 139 Patients.
Nash, Robert; Patel, Bhavesh; Lavy, Jeremy
2018-06-15
Stapes surgery is performed for hearing restoration in patients with otosclerosis. Results from stapes surgery are good, although a small proportion will have a persistent conductive hearing loss and will consider revision surgery. The timing of such surgery depends on expected changes to hearing thresholds during the postoperative period. We performed a retrospective case series analysis of a database of outcomes from stapes surgery performed between July 26, 2013 and March 11, 2016 at one center. Hearing outcomes over the year subsequent to surgery were recorded. There was a significant improvement in hearing outcomes between the postoperative visit at 6 weeks (mean air-bone gap 6.0 dB) and the hearing outcome at 6 months (mean air-bone gap 3.3 dB) (p < 0.01). This improvement was maintained at 12 months (mean air-bone gap 3.1 dB), although there were individual patients whose hearing outcome improved or deteriorated during this period. Improvements in air conduction thresholds mirrored improvements in air-bone gap measurements. Patients with an initial suboptimal or poor result after stapes surgery may observed improvement in their hearing thresholds in the year after surgery. These patients may have large preoperative air-bone gaps, and have a trend to have obliterated footplates. Revision surgery should not be considered until at least 6 months after primary surgery.
[Preparation and clinical application of Teflon-wire piston and stapes height measurer].
Xie, Nan-ping
2003-08-01
With Teflon, and a tiny stainless steel needle of a number 7 injector and an acupuncture needle,Teflon-piston and a measurer of the stapes height were prepared respectively of stapedectomy for treatment of otosclerosis. Good clinical results were achieved with these simple and useful devices.
Koopmann, Mario; Weiss, Daniel; Savvas, Eleftherios; Rudack, Claudia; Stenner, Markus
2015-09-01
The aim of this study was to compare audiometric results before and after stapes surgery and identify potential prognostic factors to appropriately select patients with otosclerosis who will most likely benefit from surgery. We enrolled 126 patients with otosclerosis (162 consecutive ears) in our study who underwent stapes surgery between 2007 and 2012 at our institution. Preoperative and postoperative data including pure-tone audiometry, speech audiometry, stapedial reflex audiometry and surgical data were analyzed. The average preoperative air-bone gap (ABG) was 28.9 ± 8.6 dB. Male patients and patients older than 45 years of age had greater preoperative ABGs in comparison to females and younger patients. Postoperative ABGs were 11.2 ± 7.4 dB. The average ABG gain was 17.7 ± 11.1 dB. Preoperative audiometric data, age, gender and type of surgery did not influence the postoperative results. Stapes surgery offers predictable results independent from disease progression or patient-related factors. While absolute values of hearing improvement are instrumental in reflecting audiometric results of a cohort, relative values better reflect individual's audiometric data resembling the patient's benefit.
Tóth, Miklós; Sirirattanapan, Jarinratn; Mann, Wolf
2013-08-01
The purpose of this study is to offer new data about facial nerve malformations in the tympanic cavity. Prospective anatomic study of newborns to demonstrate the submacroscopic anatomy of the intratympanic facial nerve and its surrounding structures by malformations. Step-by-step microdissection of 12 newborn temporal bones and histologic evaluation of 4 middle ears showing multiple malformations. Four of 12 temporal bones presented malformation in the middle ear. All 4 temporal bones showed developmental failures of the stapes, and 3 of them had malposition of the tympanic portion of the facial nerve. In 3 cases, there was an oval window atresia, and in 1 case, the rim of the oval window was not ossified and was positioned medial to the stapes. Malformation or displacement of the stapes can be an indirect sign for facial nerve malformation. The most common site for facial nerve malformation is the tympanic portion. The tympanic segment of the nerve is devoid of bony covering in association with these anomalies of the stapes.
Teflon-wire piston or stainless-steel bucket stapes prosthesis: does it make a difference?
Farrior, J B; Temple, A E
1999-04-01
The goal of this study was to determine whether postoperative (implantation of a stapes prosthesis) hearing gain and the amount of air-bone gap overclosure are more improved with the Teflon-wire piston or with the stainless-steel bucket prosthesis. We retrospectively reviewed the outcomes of 82 surgeries that had been performed by the primary author; 41 of these patients had received a Fisch Teflon-wire piston, and 41 had received a Bailey-modified Robinson stainless-steel bucket prosthesis. The mean hearing gain for the patients who received the Teflon-wire piston was 23.3 dB after primary stapes surgery and 20.5 dB after revision surgery. Patients who received the stainless-steel bucket prosthesis experienced a mean hearing gain of 20.7 and 20.3 dB, respectively. Following primary stapes surgery, the air-bone gap overclosure was 4.4 dB with the Teflon-wire piston and 5.2 dB with the stainless-steel bucket prosthesis. There was no statistically significant difference in either hearing gain or air-bone gap overclosure between the two prostheses.
Kwok, Pingling; Fisch, Ugo; Strutz, Jürgen; May, John
2002-05-01
The goal of this study was to compare the attachment of stapes prostheses with differently shaped loops to the long process of the incus. In stapes surgery, the attachment of the prosthesis to the long process of the incus plays an important role concerning the gain in hearing and the development of late complications such as incus erosion and necrosis. Band-shaped and spiral loops have been developed to achieve a broad, firm attachment to the long process of the incus. During stapes surgery, the view at the prosthesis is restricted, making it impossible to evaluate the effects of the differently shaped loops. Gold, steel/Teflon, platinum/Teflon, and two different titanium stapes prostheses were inserted in 30 specially prepared temporal bones by three experienced surgeons using the Fisch technique with the McGee and straight alligator forceps for the crimping of the loops. Photographs were taken with 0- and 70-degree rod lens telescopes at defined views. In all prostheses, a sufficiently firm attachment to the long process of the incus was achieved. The attachment of band-shaped loops proved to be better with the straight alligator forceps. The band-shaped loops showed a better contact with the incus than did the wire loops. However, the broad spiral-shaped loops led to a loss of the perpendicular axis of the piston to the long incus process. The geometry of the loop affects the final length of the piston in the vestibule and its angle to the long process of the incus.
Comparison of titanium and Robinson stainless steel stapes piston prostheses.
Lippy, William H; Burkey, John M; Schuring, Arnold G; Berenholz, Leonard P
2005-09-01
Although stainless steel stapes prostheses have generally been considered magnetic resonance imaging safe, there is concern that this may change with the development of more powerful imaging systems. The objective of the study was to determine whether a titanium piston stapes prosthesis would be audiometrically and surgically equivalent to a Robinson stainless steel piston for stapedectomy. Retrospective chart review. Private otology practice. In all, 50 patients underwent stapedectomy with a Gyrus titanium piston prosthesis. These patients were matched on the basis of age and preoperative bone-conduction scores with patients who underwent stapedectomy with a Robinson stainless steel piston prosthesis. Audiometric results are analyzed, and surgical complications noted. There was no significant difference between groups in hearing improvement or postoperative air-bone gap. The mean four-frequency hearing improvement was 27.7 dB for the stainless steel group and 27.8 dB for the titanium group. The mean postoperative air-bone gap was 2.65 dB for the stainless steel group and 2.60 for the titanium group. Neither group had a surgical complication. The titanium stapes prosthesis is a good alternative to a stainless steel prosthesis.
Songer, Jocelyn E.; Rosowski, John J.
2009-01-01
The recent discovery of superior semicircular canal (SC) dehiscence syndrome as a clinical entity affecting both the auditory and vestibular systems has led to the investigation of the impact of a SC opening on the mechanics of hearing. It is hypothesized that the hole in the SC acts as a “third window” in the inner ear which shunts sound-induced stapes volume velocity away from the cochlea through the opening in the SC. To test the hypothesis and to understand the third window mechanisms the middle-ear input admittance and sound-induced stapes velocity were measured in chinchilla before and after surgically introducing a SC opening and after patching the opening. The extent to which patching returned the system to the presurgical state is used as a control criterion. In eight chinchilla ears a statistically significant, reversible increase in low-frequency middle-ear input admittance magnitude occurred as a result of opening the SC. In six ears a statistically significant reversible increase in stapes velocity was observed. Both of these changes are consistent with the hole creating a shunt pathway that increases the cochlear input admittance. PMID:16875223
Songer, Jocelyn E; Rosowski, John J
2006-07-01
The recent discovery of superior semicircular canal (SC) dehiscence syndrome as a clinical entity affecting both the auditory and vestibular systems has led to the investigation of the impact of a SC opening on the mechanics of hearing. It is hypothesized that the hole in the SC acts as a "third window" in the inner ear which shunts sound-induced stapes volume velocity away from the cochlea through the opening in the SC. To test the hypothesis and to understand the third window mechanisms the middle-ear input admittance and sound-induced stapes velocity were measured in chinchilla before and after surgically introducing a SC opening and after patching the opening. The extent to which patching returned the system to the presurgical state is used as a control criterion. In eight chinchilla ears a statistically significant, reversible increase in low-frequency middle-ear input admittance magnitude occurred as a result of opening the SC. In six ears a statistically significant reversible increase in stapes velocity was observed. Both of these changes are consistent with the hole creating a shunt pathway that increases the cochlear input admittance.
Modifications to a 3D-printed temporal bone model for augmented stapes fixation surgery teaching.
Nguyen, Yann; Mamelle, Elisabeth; De Seta, Daniele; Sterkers, Olivier; Bernardeschi, Daniele; Torres, Renato
2017-07-01
Functional outcomes and complications in otosclerosis surgery are governed by the surgeon's experience. Thus, teaching the procedure to residents to guide them through the learning process as quickly as possible is challenging. Artificial 3D-printed temporal bones are replacing cadaver specimens in many institutions to learn mastoidectomy, but these are not suitable for middle ear surgery training. The goal of this work was to adapt such an artificial temporal bone to aid the teaching of otosclerosis surgery and to evaluate this tool. We have modified a commercially available 3D-printed temporal bone by replacing the incus and stapes of the model with in-house 3D-printed ossicles. The incus could be attached to a 6-axis force sensor. The stapes footplate was fenestrated and attached to a 1-axis force sensor. Six junior surgeons (residents) and seven senior surgeons (fellows or consultants) were enrolled to perform piston prosthesis placement and crimping as performed during otosclerosis surgery. The time required to perform the tasks and the forces applied to the incus and stapes were collected and analyzed. No statistically significant differences were observed between the junior and senior groups for time taken to perform the tasks and the forces applied to the incus during crimping and placement of the prosthesis. However, significantly lower forces were applied to the stapes by the senior surgeons in comparison with the junior surgeons during prosthesis placement (junior vs senior group, 328 ± 202.9 vs 80 ± 99.6 mN, p = 0.008) and during prosthesis crimping (junior vs senior group, 565 ± 233 vs 66 ± 48.6 mN, p = 0.02). We have described a new teaching tool for otosclerosis surgery based on the modification of a 3D-printed temporal bone to implement force sensors on the incus and stapes. This tool could be used as a training tool to help the residents to self-evaluate their progress with recording of objective measurements.
Wegner, Inge; Eldaebes, Mostafa M A S; Landry, Thomas G; Adamson, Robert B; Grolman, Wilko; Bance, Manohar L
2016-06-01
Round window reinforcement leads to conductive hearing loss. The round window is stiffened surgically as therapy for various conditions, including perilymphatic fistula and superior semicircular canal dehiscence. Round window reinforcement reduces symptoms in these patients. However, it also reduces fluid displacement in the cochlea and might therefore increase conductive hearing loss. Perichondrium was applied to the round window membrane in nine fresh-frozen, nonpathologic temporal bones. In four temporal bones cartilage was applied subsequently. Acoustic stimuli in the form of frequency sweeps from 250 to 8000 Hz were generated at 110 dB sound pressure level. A total of 16 frequencies in a 1/3-octave series were used. Stapes velocities in response to the acoustic stimuli were measured at equally spaced multiple points covering the stapes footplate using a scanning laser Doppler interferometry system. Measurements were made at baseline, after applying perichondrium, and after applying cartilage. At frequencies up to 1000 Hz perichondrium reinforcement decreased stapes velocities by 1.5 to 2.9 dB compared with no reinforcement (p value = 0.003). Reinforcement with cartilage led to a further deterioration of stapes velocities by 2.6 to 4.2 dB at frequencies up to 1000 Hz (p value = 0.050). The higher frequencies were not affected by perichondrium reinforcement (p value = 0.774) or cartilage reinforcement (p value = 0.644). Our results seem to suggest a modest, clinically negligible effect of reinforcement with perichondrium. Placing cartilage on the round window resulted in a graded effect on stapes velocities in keeping with the increased stiffness of cartilage compared with perichondrium. Even so, the effect was relatively small.
Benefits of active middle ear implants in mixed hearing loss: Stapes versus round window.
Lee, Jeon Mi; Jung, Jinsei; Moon, In Seok; Kim, Sung Huhn; Choi, Jae Young
2017-06-01
We compared the audiologic benefits of active middle ear implants with those of passive middle ear implants with hearing aids in mixed hearing loss, and also compared the outcomes of stapes vibroplasty with those of round window vibroplasty. Retrospective chart review. Thirty-four patients with mixed hearing loss due to chronic otitis media were treated with a middle ear implant. Of these, 15 were treated with a passive middle ear implant (conventional ossiculoplasty with a partial ossicular replacement prosthesis), nine with an active middle ear implant coupling to the stapes, and 10 with an active middle ear implant coupling to the round window. Patients underwent pure-tone/free-field audiograms and speech discrimination tests before surgery and 6 months after surgery, and the results of these tests were compared. The active middle ear implant resulted in better outcomes than the passive middle ear implant with hearing aids at mid to high frequencies (P < .05). Patients who received either a stapes vibroplasty or a round window vibroplasty showed comparable hearing gain except at 8,000 Hz (48.9 dB vs. 31.0 dB, P < .05). Patients who received a stapes vibroplasty showed an improvement even in bone conduction at 1,000 Hz and 2,000 Hz (both P < .05). Active middle ear implantation could be a better option than treatment with passive middle ear implants with hearing aids for achieving rehabilitation in patients with mixed hearing loss. Vibroplasty via either oval window or round window stimulation shares similar good results. 4 Laryngoscope, 127:1435-1441, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
A 1,470 nm diode laser in stapedotomy: Mechanical, thermal, and acoustic effects.
Koenraads, Simone P C; de Boorder, Tjeerd; Grolman, Wilko; Kamalski, Digna M A
2017-08-01
Multiple laser systems have been investigated for their use in stapes surgery in patients with otosclerosis. The diode 1,470 nm laser used in this study is an attractive laser system because it is easily transported and relatively inexpensive in use. This wavelength has relative high absorption in water. This study aimed to investigate the mechanical, thermal, and acoustic effects of the diode 1,470 nm laser on a stapes in an inner ear model. Experiments were performed in an inner ear model including fresh frozen human stapes. High-speed imaging with frame rates up to 2,000 frames per second (f/s) was used to visualize the effects in the vestibule during fenestration of the footplate. A special high-speed color Schlieren technique was used to study thermal effects. The sound produced by perforation was recorded by a hydrophone. Single pulse settings of the diode 1,470 nm laser were 100 ms, 3 W. Diode 1,470 nm laser fenestration showed mechanical effects with small vapor bubbles and pressure waves pushed into the vestibule. Thermal imaging visualized an increase temperature underneath the stapes footplate. Acoustic effects were limited, but larger sounds levels were reached when vaporization bubbles arise and explode in the vestibule. The diode 1,470 nm laser highly absorbs in perilymph and is capable of forming a clear fenestration in the stapes. An overlapping laser pulse will increase the risk of vapor bubbles, pressure waves, and heating the vestibule. As long as we do not know the possible damage of these effects to the inner ear function, it seems advisable to use the laser with less potential harm. Lasers Surg. Med. 49:619-624, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
[Comparative evaluation of vertigo in patients after stapedotomy and stapedectomy].
Harmat, Kinga; Thurén, Gergely; Simon, László; Nepp, Nelli; Németh, Adrienn; Gerlinger, Imre; Bakó, Péter
2017-09-01
The reason of gradually developing conductive hearing loss in otosclerotic patients is the ossification of the stapes footplate to the surrounding bony structures and the therapy of stapes fixation is mainly surgical. In stapedotomy the footplate of the stapes is fenestrated with laser and microdrill in a diameter of 0.8 mm, whereas in stapedectomy there is complete removal of the footplate followed by the reconstruction of the ossicular chain. In the early postoperative period, temporary vertigo is frequently recorded which significantly influences the recovery. In the Department of Otorhinolaryngology, University of Pécs both stapedectomy and stapedotomy were performed on a daily basis between 01.02.2010 and 15.03.2012. Our study focused on comparing the degree of postoperative vertigo after the two types of surgery. We hypothesized that the smaller fenestration of the stapes footplate during stapedotomy limits exposure to the inner ear reducing the severity of dizziness. Vertigo was evaluated subjectively with a retrospective questionnaire and objectively with static posturography. On the 1st postoperative day, significantly fewer patients reported vertigo in the stapedotomy group and with significantly lower intensity. Results of the questionnaire regarding the later postoperative period showed no significant differences between the groups. Based on the analysis of the posturography test results, no significant difference was detected between the postoperative stability of the two groups. Results of the questionnaire and the posturography showed no correlation. Posturography test results did not confirm the presence of subjective vertigo. Many factors may play a role in the development of vertigo after stapes surgery, but the type of intervention does not influence it. Orv Hetil. 2017; 158(38): 1503-1511.
Femtosecond laser ablation of the stapes
NASA Astrophysics Data System (ADS)
McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.
2009-03-01
A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations.
The crimping problem in stapes surgery.
Kwok, Pingling; Fisch, Ugo; Strutz, Jürgen
2007-01-01
The goal of this study was to compare the attachment of stapes prostheses with differently shaped loops to the long process of the incus. Gold, steel/Teflon, platinum/Teflon, and two different titanium stapes prostheses were inserted in 30 specially prepared temporal bones by three experienced surgeons using the Fisch technique with the McGee crimper and straight alligator forceps for the crimping of the loops. In all prostheses, a sufficiently firm attachment of the long process of the incus was achieved. The band-shaped loops showed a better contact with the incus than did the wire loops. However, the broad spiral-shaped loops led to a loss of the perpendicular axis of the piston to the long incus process. The geometry of the loop affects the final length of the piston in the vestibule and its angle to the long process of the incus.
Early hominin auditory ossicles from South Africa
Quam, Rolf M.; de Ruiter, Darryl J.; Masali, Melchiorre; Arsuaga, Juan-Luis; Martínez, Ignacio; Moggi-Cecchi, Jacopo
2013-01-01
The middle ear ossicles are only rarely preserved in fossil hominins. Here, we report the discovery of a complete ossicular chain (malleus, incus, and stapes) of Paranthropus robustus as well as additional ear ossicles from Australopithecus africanus. The malleus in both early hominin taxa is clearly human-like in the proportions of the manubrium and corpus, whereas the incus and stapes resemble African and Asian great apes more closely. A deep phylogenetic origin is proposed for the derived malleus morphology, and this may represent one of the earliest human-like features to appear in the fossil record. The anatomical differences found in the early hominin incus and stapes, along with other aspects of the outer, middle, and inner ear, are consistent with the suggestion of different auditory capacities in these early hominin taxa compared with modern humans. PMID:23671079
Böhnke, Frank; Bretan, Theodor; Lehner, Stefan; Strenger, Tobias
2013-10-22
The transfer characteristic of the human middle ear with an applied middle ear implant (floating mass transducer) is examined computationally with a Multi-body System approach and compared with experimental results. For this purpose, the geometry of the middle ear was reconstructed from μ-computer tomography slice data and prepared for a Multi-body System simulation. The transfer function of the floating mass transducer, which is the ratio of the input voltage and the generated force, is derived based on a physical context. The numerical results obtained with the Multi-body System approach are compared with experimental results by Laser Doppler measurements of the stapes footplate velocities of five different specimens. Although slightly differing anatomical structures were used for the calculation and the measurement, a high correspondence with respect to the course of stapes footplate displacement along the frequency was found. Notably, a notch at frequencies just below 1 kHz occurred. Additionally, phase courses of stapes footplate displacements were determined computationally if possible and compared with experimental results. The examinations were undertaken to quantify stapes footplate displacements in the clinical practice of middle ear implants and, also, to develop fitting strategies on a physical basis for hearing impaired patients aided with middle ear implants.
The effect of rocking stapes motions on the cochlear fluid flow and on the basilar membrane motion.
Edom, Elisabeth; Obrist, Dominik; Henniger, Rolf; Kleiser, Leonhard; Sim, Jae Hoon; Huber, Alexander M
2013-11-01
The basilar membrane (BM) and perilymph motion in the cochlea due to rocking stapes motion (RSM) and piston-like stapes motion (PSM) is modeled by numerical simulations. The full Navier-Stokes equations are solved in a two-dimensional box geometry. The BM motion is modeled by independent oscillators using an immersed boundary technique. The traveling waves generated by both stimulation modes are studied. A comparison of the peak amplitudes of the BM motion is presented and their dependence on the frequency and on the model geometry (stapes position and cochlear channel height) is investigated. It is found that the peak amplitudes for the RSM are lower and decrease as frequency decreases whereas those for the PSM increase as frequency decreases. This scaling behavior can be explained by the different mechanisms that excite the membrane oscillation. Stimulation with both modes at the same time leads to either a slight increase or a slight decrease of the peak amplitudes compared to the pure PSM, depending on the phase shift between the two modes. While the BM motion is dominated by the PSM mode under normal conditions, the RSM may lead to hearing if no PSM is present or possible, e.g., due to round window atresia.
Thirty years of stapes surgery.
Shea, J J
1988-01-01
The modern stapedectomy with prosthesis insertion and living oval window seal, like the modern cataract extraction with lens replacement, is now performed, very much the same, throughout the world. I have reviewed the evolution of stapes surgery during these last thirty years and tried to gain some agreement for several important facts about otosclerosis and several basic principals of stapes surgery. While a well-performed stapedectomy can eliminate the conductive component, the sensorineural hearing loss continues and, in about one-third, will progress till the patient, after age 65, must return to a hearing aid. A piston prosthesis gives the best hearing results: 0.6 mm diameter, when half the footplate is removed and a living oval window seal interposed, and 0.6 mm diameter when a small opening is made in the footplate obliterated by otosclerosis. I prefer a teflon prosthesis to stainless steel because it can be altered by the surgeon at operation, and vein as an oval window seal. I have presented a rare group of patients who develop facial palsy 5-1/2 days after uncomplicated stapedectomy, of whom all recover quickly and completely. I am confident that progress will continue to be made in the understanding of otosclerosis, and the performance of stapes surgery, but in these last thirty years we have made a good beginning.
Szymański, M; Morshed, K; Mills, R
2007-01-01
We studied the transmission of heat to the vestibule during revision stapes surgery with a piston in situ, using a CO2 laser, in an in vitro model. A type K thermocouple was placed around the medial end of stainless steel and fluoroplastic wire pistons in a 'vestibule' filled with saline. The effect of laser hits on fluoroplastic wire and stainless steel stapes prostheses was investigated. The effect of introducing a vein graft to seal the stapedotomy was also examined. Greater temperature rises occurred with stainless steel than with fluoroplastic wire pistons. The addition of the vein graft reduced heat transmission. Application of the CO2 laser to fluoroplastic wire pistons, using the power settings suggested by the manufacturer, is not likely to damage the inner-ear structures. Application of 6 W laser energy to stainless steel pistons can potentially disturb the inner-ear function.
Modeling microstructure of incudostapedial joint and the effect on cochlear input
NASA Astrophysics Data System (ADS)
Gan, Rong Z.; Wang, Xuelin
2015-12-01
The incudostapedial joint (ISJ) connects the incus to stapes in human ear and plays an important role for sound transmission from the tympanic membrane (TM) to cochlea. ISJ is a synovial joint composed of articular cartilage on the lenticular process and stapes head with the synovial fluid between them. However, there is no study on how the synovial ISJ affects the middle ear and cochlear functions. Recently, we have developed a 3-dimensinal finite element (FE) model of synovial ISJ and connected the model to our comprehensive FE model of the human ear. The motions of TM, stapes footplate, and basilar membrane and the pressures in scala vestibule and scala tympani were derived over frequencies and compared with experimental measurements. Results show that the synovial ISJ affects sound transmission into cochlea and the frequency-dependent viscoelastic behavior of ISJ provides protection for cochlea from high intensity sound.
Stapedotomy in osteogenesis imperfecta: a prospective study of 32 consecutive cases.
Vincent, Robert; Wegner, Inge; Stegeman, Inge; Grolman, Wilko
2014-12-01
To prospectively evaluate hearing outcomes in patients with osteogenesis imperfecta undergoing primary stapes surgery and to isolate prognostic factors for success. A nonrandomized, open, prospective case series. A tertiary referral center. Twenty-five consecutive patients who underwent 32 primary stapedotomies for osteogenesis imperfecta with evidence of stapes fixation and available postoperative pure-tone audiometry. Primary stapedotomy with vein graft interposition and reconstruction with a regular Teflon piston or bucket handle-type piston. Preoperative and postoperative audiometric evaluation using conventional 4-frequency (0.5, 1, 2, and 4 kHz) audiometry. Air-conduction thresholds, bone-conduction thresholds, and air-bone gap were measured. The overall audiometric results as well as the results of audiometric evaluation at 3 months and at least 1 year after surgery were used. Overall, postoperative air-bone gap closure to within 10 dB was achieved in 88% of cases. Mean (standard deviation) gain in air-conduction threshold was 22 (9.4) dB for the entire case series, and mean (standard deviation) air-bone gap closure was 22 (9.0) dB. Backward multivariate logistic regression showed that a model with preoperative air-bone gap closure and intraoperatively established incus length accurately predicts success after primary stapes surgery. Stapes surgery is a feasible and safe treatment option in patients with osteogenesis imperfecta. Success is associated with preoperative air-bone gap and intraoperatively established incus length.
Congenital Stapes Ankylosis in Children: Surgical Findings and Results in 35 Cases.
Vincent, Robert; Wegner, Inge; Kamalski, Digna M A; Bittermann, Arnold J N; Grolman, Wilko
2016-04-01
To evaluate surgical findings and hearing results in children undergoing middle ear surgery for congenital stapes ankylosis with or without other ossicular malformations (Teunissen and Cremers class I and class II malformations). A nonrandomized, nonblinded case series of prospectively collected data. A tertiary referral center. Twenty-eight consecutive pediatric patients who underwent 35 surgical procedures for congenital stapes ankylosis with or without other ossicular malformations and had available postoperative pure-tone audiometry. Primary stapedotomy with vein graft interposition and reconstruction with a Teflon piston, bucket handle prosthesis or total ossicular replacement prosthesis. Pre- and postoperative audiometric evaluation using four-frequency (0.5, 1, 2, and 4 kHz) audiometry. Air-conduction thresholds, bone-conduction thresholds, and air-bone gaps (ABGs) were measured. Postoperative audiometry was performed at 3, 6, 9, 12, 18, and 24 months after surgery and at a yearly interval thereafter. Overall, a postoperative ABG closure of 10 dB or less was achieved in 73% of class I cases and in 50% of class II cases. A postoperative ABG closure of 20 dB or less was achieved in 77% of class I cases and 67% of class II cases. Postoperative sensorineural hearing loss occurred in one class I case (4%) and none of the class II cases. Stapedotomy is a safe and feasible treatment option in children with congenital stapes ankylosis.
Development of wide-band middle ear transmission in the Mongolian gerbil
NASA Astrophysics Data System (ADS)
Overstreet, Edward H.; Ruggero, Mario A.
2002-01-01
Stapes vibrations were measured in deeply anesthetized adult and neonatal (ages: 14 to 20 days) Mongolian gerbils. In adult gerbils, the velocity magnitude of stapes responses to tones was approximately constant over the entire frequency range of measurements, 1 to 40 kHz. Response phases referred to pressure near the tympanic membrane varied approximately linearly as a function of increasing stimulus frequency, with a slope corresponding to a group delay of 30 μs. In neonatal gerbils, the sensitivity of stapes responses to tones was lower than in adults, especially at mid-frequencies (e.g., by about 15 dB at 10-20 kHz in gerbils aged 14 days). The input impedance of the adult gerbil cochlea, calculated from stapes vibrations and published measurements of pressure in scala vestibuli near the oval window [E. Olson, J. Acoust. Soc. Am. 103, 3445-3463 (1998)], is principally dissipative at frequencies lower than 10 kHz. Conclusions: (a) middle-ear vibrations in adult gerbils do not limit the input to the cochlea up to at least 40 kHz, i.e., within 0.5 oct of the high-frequency cutoff of the behavioral audiogram; and (b) the results in both adult and neonatal gerbils are inconsistent with the hypothesis that mass reactance controls high-frequency ossicular vibrations and support the idea that the middle ear functions as a transmission line.
[The use of palisade technique in tympanoplasties after Heermann].
Wielgosz, Romuald; Mroczkowski, Edward
2006-01-01
The palisade tympanoplasties-technique with using of tragal and conchal autografts for reconstruction of the tympanic membrane and the auditory canal wall was described. The operation started with the endaural incision. Tragal and conchal autograft palisade fragments with perichondrium for reconstruction of the tympanic membrane and the auditory canal wall have been used up to 1996 in 15,300 cases. We placed palisaded cartilage fragments parallel to the manubrium of the malleus in type I tympanoplasties and in type II or III procedures parallel to the long process of the incus. The "tunnel plasty" in the eustachian tubal entrance is performed with "simmering", "architrave" and "anti-architrave" to keep the tubal entrance open. This "tunnel plasty" results in a nice reconstruction of the tympano-meatal niche. The "annulus-stapes plate" in type III tympanoplasties replaces the function of the incus, crossing the promontory and reducing adhesions. This annulus-stapes bridge is fixed with a further palisade cartilage, "step plasty", which connects the "tunnel-plasty" with "annulus-stapes plate". The palisade-epitympanum-antrum plasty allows ventilation of the antrum via a tunnel constructed of well-fitting parallel pieces of cartilage fixed by self-tension (no glue) and replacing the bony canal wall. The "columella-tunnel plasty" has an L-shaped notch in the "annulus-stapes plate" fixing a columella of cartilage, placed in the oval window. Only in a case with a narrow oval window niche, a type IV palisade plasty can be performed or a prosthesis placed. The "annulus-stapes cartilage plate" is more stable reconstruction in type III tympanoplasties than are incus of foreign body interpositions. Adhesions on the promontory are found more often with fascia than with cartilage fragments. Histologic study of autograft cartilage showed good preservation of cartilage cells even 26 years after transplantation. The use of palisade cartilage technique brings very good functional and better long-term results.
Blom, Erik F; Gunning, Marlise N; Kleinrensink, Nienke J; Lokin, Alexander S H J; Bruijnzeel, Hanneke; Smit, Adriana L; Grolman, Wilko
2015-11-01
Physicians should ideally be able to provide patients with chronic otitis media and/or cholesteatoma specific information about postoperative hearing outcome, based on their level of preoperative ossicular chain damage (OCD). To identify the influence of preoperative OCD on hearing outcomes in patients after chronic otitis media and/or cholesteatoma surgery. PubMed, EMBASE, and the Cochrane Library databases were systematically searched for available evidence, without any constraints, on December 13, 2014, for articles published between January 1, 1975, and December 13, 2014. We reviewed the literature for articles assessing the prognostic value of OCD on postoperative hearing outcome (air-bone gap [ABG] in decibels), using Austin-Kartush criteria or independent OCD classification systems. We assessed relevance and validity using a self-designed critical appraisal tool based on the Cochrane Collaboration's risk of bias tool. Characteristics of study populations and postoperative ABGs in decibels were extracted from all included studies by 4 authors (E.F.B., M.N.G., N.J.K., A.S.H.J.L.). The tested hypothesis was formulated before data collection. Primary study outcome was defined as postoperative adult hearing outcomes after COM and/or cholesteatoma surgery defined as mean postoperative ABG. Our search yielded 5661 articles. Nine articles with high relevance were included. Pooled results of studies using the Austin-Kartush criteria showed a significant (P < .001) difference in mean ABG in favor of group B, when comparing group B (patients with malleus present, stapes absent; 11.1 [95% CI, 10.3-11.8] dB) to group C (patients with malleus absent, stapes present; 15.7 [95% CI, 14.6-16.7] dB) and group B to group D (patients with malleus absent, stapes absent; 16.5 [95% CI, 15.2-17.9] dB). Three studies using independent OCD classification criteria found no influence of stapes structure (intact stapes suprastructure, 13.5 [95% CI, 10.3-16.7], 15.1 [95% CI, 11.8-18.3], and 21.9 [95% CI, 15.0-28.8] dB vs absent stapes structure, 12.8 [95% CI, 9.5-16.1], 19.5 [95% CI, 14.9-24.1], and 30.2 [95% CI, 24.7-35.8] dB) on postoperative ABG. One study reported a significant (P = .04) difference in mean ABG between patients with present (18.9 [95% CI, 15.7-22.1] dB) and absent (24.4 [95% CI, 20.2-28.6] dB) malleus. Pooled results of Austin-Kartush studies showed that in patients with COM, with or without cholesteatoma, the malleus status is a significant predictor of postoperative hearing outcome, independent of the stapes condition. Studies reporting on individual ossicle status supported this finding by showing that only malleus condition influenced postoperative hearing outcome. These findings are based on level IV evidence, which indicates the need for future high-level evidence studies.
Fast Reverse Propagation of Sound in the Living Cochlea
He, Wenxuan; Fridberger, Anders; Porsov, Edward; Ren, Tianying
2010-01-01
Abstract The auditory sensory organ, the cochlea, not only detects but also generates sounds. Such sounds, otoacoustic emissions, are widely used for diagnosis of hearing disorders and to estimate cochlear nonlinearity. However, the fundamental question of how the otoacoustic emission exits the cochlea remains unanswered. In this study, emissions were provoked by two tones with a constant frequency ratio, and measured as vibrations at the basilar membrane and at the stapes, and as sound pressure in the ear canal. The propagation direction and delay of the emission were determined by measuring the phase difference between basilar membrane and stapes vibrations. These measurements show that cochlea-generated sound arrives at the stapes earlier than at the measured basilar membrane location. Data also show that basilar membrane vibration at the emission frequency is similar to that evoked by external tones. These results conflict with the backward-traveling-wave theory and suggest that at low and intermediate sound levels, the emission exits the cochlea predominantly through the cochlear fluids. PMID:20513393
Stapes surgery in residency: the UFPR clinical hospital experience.
Caldart, Adriano Ulisses; Terruel, Igor; Enge, Dair Jocely; Kurogi, Adriana Sayuri; Buschle, Maurício; Mocellin, Marcos
2007-01-01
Surgery of the stapedius remains the established treatment for otosclerosis. Recent publications have showed that success in surgeries done by residents have decreased and hearing results are worse than those obtained by experienced otologic surgeons. To evaluate the experience of the otorhinolaryngology unit, Parana University, relative to stapes surgery done in the residency training program. A retrospective study of 114 stapes surgeries done in the past 9 years in 96 patients. Audiometric results were analysed according to the Committee on Hearing and Equilibrium guidelines and the Amsterdam Hearing Evaluation Plots. The improvement of the airway postoperative gap and thresholds were taken into account. 96 patients were included, most of them female adults (67.7%) and white (93.7%). Stapedectomy was done in 50.9% of cases, mostly under local anesthesia and sedation (96.5%), using mostly the Teflon prosthesis (37.7%). The surgical success rate was 50.88%, there was an 11.4% complication rate. Postoperative hearing gains considered as surgical success were inferior to published results in the literature, done by experienced surgeons.
Szymanski, Marcin; Mills, Robert; Abel, Eric
2003-05-01
The transmission of heat to the vestibule during revision stapes surgery with a piston in situ has been studied using a KTP laser in an in vitro model. A type K thermocouple was placed around the medial of each piston tested in a 'vestibule' filled with saline. The effect of laser hits on fluoroplastic, fluoroplastic-wire and stainless steel stapes prostheses was investigated. The effect of adding blood to the operative field, of introducing a vein graft to seal the stapedotomy and of vaporizing soft tissue in the oval window were also examined. Greater temperature rises occurred with stainless steel than with the other piston types and smaller rises occurred when there was a vein graft in situ. The maximum temperature rise recorded was 2.6 degrees C. We conclude that the use of the KTP laser to clear soft tissue from the oval window is safe when operated at the power levels recommended by the manufacturer.
Absence of Measles Virus Detection from Stapes of Patients with Otosclerosis.
Flores-García, María de Lourdes; Colín-Castro, Claudia Adriana; Hernández-Palestina, Mario Sabas; Sánchez-Larios, Roberto; Franco-Cendejas, Rafael
2018-01-01
Objective To determine molecularly the presence of measles virus genetic material in the stapes of patients with otosclerosis. Study Design A cross-sectional study. Setting A tertiary referral hospital. Subjects and Methods Genetic material was extracted from the stapes of patients with otosclerosis (n = 93) during the period from March 2011 to April 2012. The presence of viral measles sequences was evaluated by the real-time reverse transcriptase polymerase chain reaction (RT-PCR). The expression of the CD46 gene was determined. Results Ninety-three patients were included in the study. No sample was positive for any of 3 measles virus genes (H, N, and F). Measles virus RNA was not detected in any sample by real-time RT-PCR. CD46 levels were positive in 3.3% (n = 3) and negative in 96.7% (n = 90). Conclusion This study does not support the theory of measles virus as the cause of otosclerosis. It is necessary to do more research about other causal theories to clarify its etiology and prevention.
Hamerschmidt, Rogerio; Saab, Stephanie Sbizera; Carvalho, Bettina; Carmo, Carolina do
2018-01-01
Introduction Diode laser is a new alternative in stapes surgery for otosclerosis. The present study is the first to compare the short-term results of the surgery performed using diode laser to those obtained through the conventional fenestration technique. Objective To use audiometry to establish a comparative analysis between the functional results obtained through surgery for otosclerosis using diode laser and the conventional technique. Method Audiometric evaluation of 12 patients submitted to stapes surgery for otosclerosis, using diode laser or conventional fenestration by needle and drills, between 2014 and 2015. Each group was composed of 6 patients. Pre and post-operative measures were compared for three months in both groups. The speech recognition threshold, the air and bone conduction threshold, as well as the gap between them at 500 Hz, 1 KHz, 2 KHz and 4 KHz were measured. Results Significant difference in bone conduction and SRT was observed when compared post- and preoperative results in the diode group. However diode and conventional technique groups presented significant differences in air conduction and air-bone gap, suggesting that both can provide functional improvement. Conclusion Laser stapedotomy is a safe technique with good results. Both laser surgery and the conventional technique have improved the hearing of patients with a discreet advantage for the diode laser. Further prospective and randomized clinical trials are required to disclose all possible benefits of the stapes surgery using diode laser. PMID:29619098
Hamerschmidt, Rogerio; Saab, Stephanie Sbizera; Carvalho, Bettina; Carmo, Carolina do
2018-04-01
Introduction Diode laser is a new alternative in stapes surgery for otosclerosis. The present study is the first to compare the short-term results of the surgery performed using diode laser to those obtained through the conventional fenestration technique. Objective To use audiometry to establish a comparative analysis between the functional results obtained through surgery for otosclerosis using diode laser and the conventional technique. Method Audiometric evaluation of 12 patients submitted to stapes surgery for otosclerosis, using diode laser or conventional fenestration by needle and drills, between 2014 and 2015. Each group was composed of 6 patients. Pre and post-operative measures were compared for three months in both groups. The speech recognition threshold, the air and bone conduction threshold, as well as the gap between them at 500 Hz, 1 KHz, 2 KHz and 4 KHz were measured. Results Significant difference in bone conduction and SRT was observed when compared post- and preoperative results in the diode group. However diode and conventional technique groups presented significant differences in air conduction and air-bone gap, suggesting that both can provide functional improvement. Conclusion Laser stapedotomy is a safe technique with good results. Both laser surgery and the conventional technique have improved the hearing of patients with a discreet advantage for the diode laser. Further prospective and randomized clinical trials are required to disclose all possible benefits of the stapes surgery using diode laser.
Capturing thermal, mechanical, and acoustic effects of the diode (980 nm) laser in stapedotomy.
Kamalski, Digna M A; de Boorder, Tjeerd; Bittermann, Arnold J N; Wegner, Inge; Vincent, Robert; Grolman, Wilko
2014-07-01
The diode laser, with a wavelength of 980 nm, has promising characteristics for being used for the fenestration during stapedotomy. It is known that at this wavelength absorption in pigmented tissues is high, and absorption in water is relatively low compared with medical lasers in the infrared, making it theoretically an applicable laser for stapes surgery in patients with otosclerosis. Another important advantage is that, with respect to other lasers, this device is relatively inexpensive. Despite the potential advantages, the available literature only shows limited reports of this laser being used in stapes surgery. The present article evaluates the thermal, mechanical, and acoustic properties of the diode laser during stapes surgery. For the mechanical effects, high-speed imaging with a frame rate up to 4000 f/s (=250 μs resolution) was performed in an inner ear model. For thermal effects, the high-speed Schlieren technique was used. Acoustics were recorded by a hydrophone, incorporated in the model. Pulse settings were 100 ms, 3 W, which are the same settings used during stapes surgery. The application of the diode laser resulted in limited mechanical and thermal effects. Impulse noise was low with an average of 52 (SD, 7.8) dB (A). Before carbonization of the tip of the delivery laser, fiber enhances ablation of the footplate. The 980-nm diode laser is a useful tool for laser-assisted stapedotomy in patients with otosclerosis. Mechanical, thermal, and acoustic effects are limited and well within the safety limits.
Bone conduction responses of middle ear structures in Thiel embalmed heads
NASA Astrophysics Data System (ADS)
Arnold, Andreas; Stieger, Christof; Caversaccio, Marco; Kompis, Martin; Guignard, Jérémie
2015-12-01
Thiel-embalmed human whole-head specimens offer a promising alternative model for bone conduction (BC) studies of middle ear structures. In this work we present the Thiel model's linearity and stability over time as well as its possible use in the study of a fixed ossicle chain. Using laser Doppler vibrometry (LDV), the motion of the retroauricular skull, the promontory, the stapes footplate and the round window (RW) were measured. A bone-anchored hearing aid stimulated the ears with step sinus tones logarithmically spread between 0.1 and 10 kHz. Linearity of the model was verified using input levels in steps of 10 dBV. The stability of the Thiel model over time was examined with measurements repeated after hours and weeks. The influence of a cement-fixed stapes was assessed. The middle ear elements measured responded linearly in amplitude for the applied input levels (100, 32.6, and 10 mV). The variability of measurements for both short- (2 h) and long-term (4-16 weeks) repetitions in the same ear was lower than the interindividual difference. The fixation of the stapes induced a lowered RW displacement for frequencies near 750 Hz (-4 dB) and an increased displacement for frequencies above 1 kHz (max. +3.7 dB at 4 kHz). LDV assessment of BC-induced middle ear motion in Thiel heads can be performed with stable results. The vibratory RW response is affected by the fixation of the stapes, indicating a measurable effect of ossicle chain inertia on BC response in Thiel embalmed heads.
Middle ear bones of a mid-gestation ruminant foetus extracted from x-ray computed tomography
NASA Astrophysics Data System (ADS)
Costeur, Loic; Mennecart, Bastien; Müller, Bert; Schulz, Georg
2016-10-01
The timing of ossification of middle ear ossicles has been extensively studied in humans. This is an exception since it is vastly unknown in the +5000 extant species of placentals. As a preliminary approach, a cow foetus (around 115 days of gestation) was visualized using X-ray microtomography (μCT) and the ossicles including stapes, incus, and malleus could be extracted from the data set. All three bones have already undergone substantial ossification, which allow comparison to adult middle ear bones. Their ossification at this stage parallels ossification in humans at a comparable stage of gestation. While full ossification is not yet achieved almost all the morphological characters of the ossicles are observed. Bone tissue is still very porous, the stapes does not have the characteristic plate-like footplate, the lenticular process of the incus is missing and the manubrium of the malleus is very thin and not yet complete. Despite all this, the ossicles are articulate with each other and perfectly with the bony labyrinth. The stapes footplate is positioned on the oval window but is smaller than the latter while it should perfectly fit to transmit sound vibrations to the cochlea. All ossicles, especially the stapes, have not yet reached adult size, while the bony labyrinth already has. This is the first detailed description of a set of middle ear bones in a placental at mid-gestation based on high-resolution μCT. Similarities in ossification timing with humans encourage more work to be done on foetuses to understand if a general rule for placental mammals exists.
Brase, Christoph; Schwitulla, Judith; Künzel, Julian; Meusel, Thomas; Iro, Heinrich; Hornung, Joachim
2013-12-01
To compare bone conduction after fiber-enabled CO2 laser perforation of the stapes footplate with conduction after the "one-shot" technique during stapedotomy in patients with otosclerosis. Retrospective clinical study. Tertiary reference center. We evaluated data from 178 patients who had undergone primary stapedotomy for suspected stapedial ankylosis. The stapes footplate was perforated using a fiber-enabled CO2 laser in 89 patients and the "one-shot" technique in the other 89. Only consecutive surgery was considered. Bone conduction thresholds were determined at 0.5, 1, 2, and 4 kHz on the first and third postoperative days in all patients; 172 patients were followed up after 1 month. Audiograms were compared with preoperative bone conduction. The postoperative bone conduction threshold on Day 1 was significantly worse at almost all frequencies. At 0.5 and 2 kHz, it improved within a month and was significantly different from the preoperative value. Bone conduction threshold at 4 kHz showed the greatest deterioration immediately after surgery, improving considerably in 1 month but remaining worse than at baseline. Only at 1 kHz was there no significant immediate hearing loss. Direct comparison of the fiber-enabled CO2 laser and the "one-shot" technique showed no statistically significant differences. Compared with the "one-shot" technique, the fiber-enabled CO2 laser can be used safely in stapes surgery, without great risk to the patient. In our opinion, it has practical advantages, especially in difficult anatomic conditions.
Assessing stapes piston position using computed tomography: a cadaveric study.
Hahn, Yoav; Diaz, Rodney; Hartman, Jonathan; Bobinski, Matthew; Brodie, Hilary
2009-02-01
Temporal bone computed tomographic (CT) scanning in the postoperative stapedotomy patient is inaccurate in assessing stapes piston position within the vestibule. Poststapedotomy patients that have persistent vertigo may undergo CT scanning to assess the position of the stapes piston within the vestibule to rule out overly deep insertion. Vertigo is a recognized complication of the deep piston, and CT evaluation is often recommended. The accuracy of CT scan in this setting is unestablished. Stapedotomy was performed on 12 cadaver ears, and stainless steel McGee pistons were placed. The cadaver heads were then scanned using a fine-cut temporal bone protocol. Temporal bone dissection was performed with microscopic measurement of the piston depth in the vestibule. These values were compared with depth of intravestibular penetration measured on CT scan by 4 independent measurements. The intravestibular penetration as assessed by computed tomography was consistently greater than the value found on cadaveric anatomic dissection. The radiographic bias was greater when piston location within the vestibule was shallower. The axial CT scan measurement was 0.53 mm greater, on average, than the anatomic measurement. On average, the coronal CT measurement was 0.68 mm greater than the anatomic measurement. The degree of overestimation of penetration, however, was highly inconsistent. Standard temporal bone CT scan is neither an accurate nor precise examination of stapes piston depth within the vestibule. We found that CT measurement consistently overstated intravestibular piston depth. Computed tomography is not a useful study in the evaluation of piston depth for poststapedectomy vertigo and is of limited value in this setting.
Galy-Bernadoy, C; Akkari, M; Mondain, M; Uziel, A; Venail, F
2016-12-01
Bone cement is used for ossicular chain repair and revision stapes surgery. Its efficient use requires cautious removal of mucosa from the ossicles. This paper reports a technique for easy, fast and safe removal of this mucosa prior to cement application. It consists of the application of monopolar electrocoagulation on the ossicles prior to bone cement application. The outcomes of six cases of revision stapes surgery and seven cases of partial ossiculoplasty, conducted between 2007 and 2012 using this new technique, were evaluated. Intra-operative reports and audiometric data were collected. During the last assessment, reconstruction using bone cement resulted in mean post-operative air-bone gaps of 4.1 ± 6.5 dB in revision stapes surgery cases and 5.7 ± 5.5 dB in partial ossiculoplasty cases, reflecting a significant hearing improvement (p = 0.03). No complications were observed. Electrocoagulation allows the removal of mucosa from the ossicles in an easy, fast and safe manner, enabling the use of bone cement for ossicular chain reconstruction.
On the Coupling Between the Incus and the Stapes in the Cat
Heng Siah, T.; McKee, Marc D.; Daniel, Sam J.; Decraemer, Willem F.
2005-01-01
The connection between the long process and the lenticular process of the incus is extremely fine, so much so that some authors have treated the lenticular process as a separate bone. We review descriptions of the lenticular process that have appeared in the literature, and present some new histological observations. We discuss the dimensions and composition of the lenticular process and of the incudostapedial joint, and present estimates of the material properties for the bone, cartilage, and ligament of which they are composed. We present a preliminary finite-element model which includes the lenticular plate, the bony pedicle connecting the lenticular plate to the long process, the head of the stapes, and the incudostapedial joint. The model has a much simplified geometry. We present simulation results for ranges of values for the material properties. We then present simulation results for this model when it is incorporated into an overall model of the middle ear of the cat. For the geometries and material properties used here, the bony pedicle is found to contribute significant flexibility to the coupling between the incus and the stapes. PMID:15735938
A micropower miniature piezoelectric actuator for implantable middle ear hearing device.
Wang, Zhigang; Mills, Robert; Luo, Hongyan; Zheng, Xiaolin; Hou, Wensheng; Wang, Lijun; Brown, Stuart I; Cuschieri, Alfred
2011-02-01
This paper describes the design and development of a small actuator using a miniature piezoelectric stack and a flextensional mechanical amplification structure for an implantable middle ear hearing device (IMEHD). A finite-element method was used in the actuator design. Actuator vibration displacement was measured using a laser vibrometer. Preliminary evaluation of the actuator for an IMEHD was conducted using a temporal bone model. Initial results from one temporal bone study indicated that the actuator was small enough to be implanted within the middle ear cavity, and sufficient stapes displacement can be generated for patients with mild to moderate hearing losses, especially at higher frequency range, by the actuator suspended onto the stapes. There was an insignificant mass-loading effect on normal sound transmission (<3 dB) when the actuator was attached to the stapes and switched off. Improved vibration performance is predicted by more firm attachment. The actuator power consumption and its generated equivalent sound pressure level are also discussed. In conclusion, the actuator has advantages of small size, lightweight, and micropower consumption for potential use as IMHEDs.
[Effect of CO2 laser on prostheses used in middle ear surgery].
Szymański, Marcin
2005-01-01
The use of CO2 laser is advocated in primary and revision stapes surgery. The aim of the study was to assess the effect of CO2 laser on stapes prostheses. CO2 laser was applied on several types of stapes prostheses and PORPs, with power settings suggested by the manufacturer (continuous wave, 2 W and 6 W; 0,05 s). Application of the laser on stainless steel or titanium prosthesis did not exert any effect on the structure of the prosthesis. The use of the laser on the Teflon piston caused superficial burning with power 2 W, and melting and holes in the piston with power settings at 6W. Similar plastipore prostheses were melting. Hydroxyapatite PORP shattered after application of the laser energy. Teflon and hydroxyapatite prostheses are easily damaged by the laser energy, therefore applying a laser on them should be avoided. CO2 laser can be used on stainless steel and titanium prostheses without risk of damaging them. However the possibility of transmission of heat to the vestibule has to be taken into consideration.
Laser-assisted fixation of a nitinol stapes prosthesis.
Schrötzlmair, Florian; Suchan, Fabian; Pongratz, Thomas; Krause, Eike; Müller, Joachim; Sroka, Ronald
2018-02-01
Otosclerosis is an inner ear bone disease characterized by fixation of the stapes and consequently progressive hearing loss. One treatment option is the surgical replacement of the stapes by a prosthesis. When so called "smart materials" like nitinol are used, prosthesis fixation can be performed using a laser without manual crimping on the incus. However, specific laser-prosthesis interactions have not been described yet. The aim of the present study was to elucidate the thermo-mechanical properties of the NiTiBOND® prosthesis as a basis for handling instructions for laser-assisted prosthesis fixation. Closure of the NiTiBOND® prosthesis was induced ex vivo by either a diode laser emitting at λ = 940 nm or a CO 2 laser (λ = 10,600 nm). Total energy for closure was determined. Suitable laser parameters (pulse duration, power per pulse, distance between tip of the laser fiber and prosthesis) were assessed. Specific laser-prosthesis interactions were recorded. Especially the diode laser was found to be an appropriate energy source. A total energy deposit of 60 mJ by pulses in near contact application was found to be sufficient for prosthesis closure ex vivo. Energy should be transmitted through a laser fiber equipollent to the prosthesis band diameter. Specific deformation characteristics due to the zonal prosthesis composition have to be taken into account. NiTiBOND® stapes prosthesis can be closed by very little energy when appropriate energy sources like diode lasers are used, suggesting a relatively safe application in vivo. Lasers Surg. Med. 50:153-157, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Decraemer, W F; de La Rochefoucauld, O; Dong, W; Khanna, S M; Dirckx, J J J; Olson, E S
2007-05-01
It was shown that the mode of vibration of the stapes has a predominant piston component but rotations producing tilt of the footplate are also present. Tilt and piston components vary with frequency. Separately it was shown that the pressure gain between ear canal and scala vestibuli was a remarkably flat and smooth function of frequency. Is tilt functional contributing to the pressure in the scala vestibuli and helping in smoothing the pressure gain? In experiments on gerbil the pressure in the scala vestibuli directly behind the footplate was measured while recording simultaneously the pressure produced by the sound source in the ear canal. Successively the three-dimensional motion of the stapes was measured in the same animal. Combining the vibration measurements with an anatomical shape measurement from a micro-CT (CT: computed tomography) scan the piston-like motion and the tilt of the footplate was calculated and correlated to the corresponding scala vestibuli pressure curves. No evidence was found for the hypothesis that dips in the piston velocity are filled by peaks in tilt in a systematic way to produce a smooth middle ear pressure gain function. The present data allowed calculations of the individual cochlear input impedances.
Kataoka, Yuko; Ikezono, Tetsuo; Fukushima, Kunihiro; Yuen, Koji; Maeda, Yukihide; Sugaya, Akiko; Nishizaki, Kazunori
2013-08-01
Perilymphatic fistula (PLF) is defined as an abnormal leakage between perilymph from the labyrinth to the middle ear. Symptoms include hearing loss, tinnitus, and vertigo. The standard mode of PLF detection is intraoperative visualization of perilymph leakage and fistula, which ostensibly confirms the existence of PLF. Other possible methods of diagnosis include confirmation of pneumolabyrinth via diagnostic imaging. Recently, a cochlin-tomoprotein (CTP) detection test has been developed that allows definitive diagnosis of PLF-related hearing loss. We report the case of a 45-year-old man who presented with right-sided tinnitus, hearing loss, and dizziness 30 years after stapes surgery. Middle ear lavage was performed after myringotomy. A preoperative diagnosis of PLF was reached using the CTP detection test. Intraoperative observations included a necrotic long process of the incus, displaced wire piston, and fibrous tissue in the oval window. Perilymph leakage was not evident. The oval window was closed with fascia, and vertigo disappeared within 2 weeks postoperatively. When PLF is suspected after stapes surgery, the CTP detection test can be a useful, highly sensitive, and less invasive method for preoperative diagnosis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Immediate postoperative nystagmus and vestibular symptoms after stapes surgery.
Hirvonen, Timo P; Aalto, Heikki
2013-08-01
Vestibular disturbance is frequent, but mild even immediately after stapes surgery. Vestibular symptoms improved or disappeared quickly, and they did not correlate with nystagmus. Outpatient stapes surgery performed under local anaesthesia is a feasible approach. Vestibular symptoms are common and may prevent outpatient surgery. The time course of vestibular disturbance is unclear, and we aimed to evaluate it immediately after the operation in the recovery room. Twenty patients with otosclerosis undergoing stapedotomy were prospectively included in the study. Postoperative symptoms were collected and nystagmus was recorded with video-oculography (VOG) on average 29 min after the surgery. None of the patients had spontaneous nystagmus with gaze fixation. Nine patients (45%) had slow spontaneous horizontal nystagmus (mean slow phase velocity of 1.1°/s) in the primary position without gaze fixation. In seven of these, the nystagmus obeyed Alexander's law. Nine patients (45%) had vestibular symptoms at the end of the surgery, and four patients at the time of VOG recording. Vertigo was experienced immediately after the operation in five, floating sensation in two, and unspecific dizziness in two patients. Vestibular symptoms were mild or moderate in most patients. The occurrence of nystagmus did not correlate with vestibular symptoms (p > 0.05).
Middle ear function and cochlear input impedance in chinchilla
Slama, Michaël C. C.; Ravicz, Michael E.; Rosowski, John J.
2010-01-01
Simultaneous measurements of middle ear-conducted sound pressure in the cochlear vestibule PV and stapes velocity VS have been performed in only a few individuals from a few mammalian species. In this paper, simultaneous measurements of PV and VS in six chinchillas are reported, enabling computation of the middle ear pressure gain GME (ratio of PV to the sound pressure in the ear canal PTM), the stapes velocity transfer function SVTF (ratio of the product of VS and area of the stapes footplate AFP to PTM), and, for the first time, the cochlear input impedance ZC (ratio of PV to the product of VS and AFP) in individuals. |GME| ranged from 25 to 35 dB over 125 Hz–8 kHz; the average group delay between 200 Hz and 10 kHz was about 52 μs. SVTF was comparable to that of previous studies. ZC was resistive from the lowest frequencies up to at least 10 kHz, with a magnitude on the order of 1011 acoustic ohms. PV, VS, and the acoustic power entering the cochlea were good predictors of the shape of the audiogram at frequencies between 125 Hz and 2 kHz. PMID:20329840
How is sound conducted to the cochlea in toothed whales?
NASA Astrophysics Data System (ADS)
Zosuls, Aleks; Mountain, David C.; Ketten, Darlene R.
2015-12-01
Toothed whales (Odontocetes) typically have small occluded ear canals and sea water has a characteristic impedance that is much more similar to the impedance of soft tissues of the head than is the case for the air-tissue interface in terrestrial mammals. This makes it plausible that significant acoustic energy is being transmitted to their middle ear by tissue conduction. In addition, some authors have proposed that sound reaches the cochlea via bone conduction rather than via the tympanic membrane. To address these issues, we have developed a method to measure stapes velocity in response to vibrational stimulation at arbitrary locations on heads and ears harvested from stranded animals. Stapes velocity was measured with a Laser Doppler Velocimeter at the footplate with the cochlea drained. In all species tested, the transfer function of stapes velocity referenced to actuator velocity showed a high-pass characteristic. The corner frequency varied with species and experiment between 4 kHz and 60 kHz. This is similar to what is seen in odontocete audiograms but the cutoff slope is typically steeper than in the audiograms. There was no indication of high frequency cutoff within our measurement range. Disrupting the ossicles and fat bodies affected the transfer functions.
Stapes Displacement and Intracochlear Pressure in Response to Very High Level, Low Frequency Sounds
Greene, Nathaniel T.; Jenkins, Herman A.; Tollin, Daniel J.; Easter, James R.
2018-01-01
The stapes is held in the oval window by the stapedial annular ligament (SAL), which restricts total peak-to-peak displacement of the stapes. Previous studies have suggested that for moderate (< 130 dB SPL) sound levels intracochlear pressure (PIC), measured at the base of the cochlea far from the basilar membrane, increases directly proportionally with stapes displacement (DStap), thus a current model of impulse noise exposure (the Auditory Hazard Assessment Algorithm for Humans, or AHAAH) predicts that peak PIC will vary linearly with DStap up to some saturation point. However, no direct tests of DStap, or of the relationship with PIC during such motion, have been performed during acoustic stimulation of the human ear. In order to examine the relationship between DStap and PIC to very high level sounds, measurements of DStap and PIC were made in cadaveric human temporal bones. Specimens were prepared by mastoidectomy and extended facial recess to expose the ossicular chain. Measurements of PIC were made in scala vestibuli (PSV) and scala tympani (PST), along with the SPL in the external auditory canal (PEAC), concurrently with laser Doppler vibrometry (LDV) measurements of stapes velocity (VStap). Stimuli were moderate (~100 dB SPL) to very high level (up to ~170 dB SPL), low frequency tones (20–2560 Hz). Both DStap and PSV increased proportionally with sound pressure level in the ear canal up to approximately ~150 dB SPL, above which both DStap and PSV showed a distinct deviation from proportionality with PEAC. Both DStap and PSV approached saturation: DStap at a value exceeding 150 μm, which is substantially higher than has been reported for small mammals, while PSV showed substantial frequency dependence in the saturation point. The relationship between PSV and DStap remained constant, and cochlear input impedance did not vary across the levels tested, consistent with prior measurements at lower sound levels. These results suggest that PSV sound pressure holds constant relationship with DStap, described by the cochlear input impedance, at these, but perhaps not higher, stimulation levels. Additionally, these results indicate that the AHAAH model, which was developed using results from small animals, underestimates the sound pressure levels in the cochlea in response to high level sound stimulation, and must be revised. PMID:28189837
Congenital stapes malformation: Rare conductive hearing loss in a patient with Waardenburg syndrome.
Melzer, Jonathan M; Eliason, Michael; Conley, George S
2016-04-01
Waardenburg syndrome is a known autosomal dominant cause of congenital hearing loss. It is characterized by a distinctive phenotypic appearance and often involves sensorineural hearing loss. Temporal bone abnormalities and inner ear dysmorphisms have been described in association with the disease. However, middle ear abnormalities as causes of conductive hearing loss are not typically seen in Waardenburg syndrome. We discuss a case of an 8-year-old female who meets diagnostic criteria for Waardenburg syndrome type 3 and who presented with a bilateral conductive hearing loss associated with congenital stapes fixation. We discuss management strategy in this previously unreported phenotype. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Dai, Chenkai; Cheng, Tao; Wood, Mark W.; Gan, Rong Z.
2007-01-01
The aim of this study is to investigate the function of the superior malleolar ligament (SML) and the anterior malleolar ligament (AML) in human middle ear for sound transmission through simulations of fixation and detachment of these ligaments in human temporal bones and a finite element (FE) ear model. Two laser vibrometers were used to measure the vibrations of the tympanic membrane (TM) and stapes footplate. A 3-D FE ear model was used to predict the transfer function of the middle ear with ligament fixation and detachment. The results demonstrate that fixations and detachments of the SML and AML had different effects on TM and stapes footplate movements. Fixation of the SML resulted in a reduction of displacement of the TM (umbo) and the footplate at low frequencies (f < 1000 Hz), but also caused a shift of displacement peak to higher frequencies. Fixation of both SML and AML caused a reduction of 15 dB at umbo or stapes at low frequencies. Detachment of the SML had almost no effect on TM and footplate mobility, but AML detachment had a minor effect on TM and footplate movement. The FE model was able to predict the effects of SML and AML fixation and detachment. PMID:17517484
Finite element analysis of auditory characteristics in patients with middle ear diseases.
Tu, Bo; Li, Xiaoping; Nie, Zhenhua; Shi, Changzheng; Li, Hengguo
2017-07-01
This study validates that a finite element model of the human ossicular chain and tympanic membrane can be used as an effective surgical assessment tool in clinics. The present study was performed to investigate the application of a finite element model of ossicular chain and tympanic membrane for fabrication of individualized artificial ossicles. Twenty patients (20 ears) who underwent surgery for middle ear disease (n = 20) and 10 healthy controls (10 ears) were enrolled in the hospital. Computed tomography (CT) and pure tone audiometry were performed before and after surgery. A finite element model was developed using CT scans, and correlation analysis was conducted between stapes displacement and surgical methods. An audiometric test was also performed for 14 patients before and after surgery. Stapes displacement in the healthy group (average = 3.31 × 10 -5 mm) was significantly greater than that in the impaired group (average = 1.41 × 10 -6 mm) prior to surgery. After surgery, the average displacement in the impaired group was 2.55 × 10 -6 mm, which represented a significant improvement. For the patients who underwent the audiometric test, 10 improved hearing after surgery, and stapes displacement increased in nine of these 10 patients.
[First experiences with a new nickel-titanium piston with a shape memory feature].
Hornung, J; Zenk, J; Schick, B; Wurm, J; Iro, H
2007-02-01
The aim of this study was to describe a new stapes prosthesis with memory characteristics for wire crimping (SMart-Piston). This technique was used in 15 patients (mean age 43.4 years; range 28-71) undergoing routine stapes surgery. SMart-Piston prostheses with a shaft diameter of 0.5 mm and length ranging from 4.25-4.5 mm were used. Heat induced wire crimping was performed by CO2 laser in five patients, and by bipolar diathermy forceps in ten patients. In 15 patients, postoperative audiological testing was performed at an average 21.9 days and in another 10 again after 435 days following surgery. The median observed air-bone-gap (ABG) postoperatively was 8.7 dB+/-7.7 dB. A total of 73% of all patients had an ABG of 10 dB or less, and all patients had less than 20 dB. In the ten patients controlled after 435 days, the ABG was 4.4 dB+/-2.4 dB. It was lower than 10 dB in all individuals. A critical point in every stapes surgery, the prosthesis fixation to the incus, is greatly facilitated by this novel technique. Long-term results in a larger group of patients are pending.
The effect of round window reinforcement on human hearing
NASA Astrophysics Data System (ADS)
Guan, Xiying; Cheng, Y. Song; Galaiya, Deepa; Nakajima, Hideko H.
2018-05-01
The compliant round window (RW) allows volume velocity to flow within the incompressible fluid of the cochlea as the oval window vibrates during sound stimulation. Recently, surgically stiffened RW is emerging as a treatment for various conditions such as superior canal dehiscence and hyperacusis. However, we lack the basic understanding of how reinforcing the RW affects sound transmission in the ear. The aim of this study is to clarify the effect of RW reinforcement on hearing. To study the effect of RW reinforcement with tissue and adhesive, we measured intracochlear pressures in scala vestibuli (Psv) and scala tympani (Pst) at the cochlear base together with stapes velocity in response to sound at the ear canal. The cochlear input drive (Pdiff = Psv - Pst, an estimate of hearing) was determined before and after RW reinforcement in a fresh human cadaveric ear. Results show that increasing the RW stiffness by reinforcement can affect the cochlear input drive in unexpected ways. Below 200 Hz, RW reinforcement resulted in reduced stapes motion, however an increase in cochlear drive, consistent with increase in hearing. At 200-1000 Hz, the hearing and stapes motion both were slightly decreased. Reinforcing the RW had no effect above 1 kHz. To understand the cochlear mechanical effects of RW reinforcement, we used a lumped-element model that simulated our findings.
Cartilage island on stapes: autologous PORP in the hypoventilated middle ear.
Hess-Erga, Jeanette; Engelen, Bart Lambertus Henricus Jozef; Vassbotn, Flemming Slinning
2017-04-01
The most common technique in sound restoration of the middle ear is prosthetic surgery. Hypoventilation of the middle ear may cause adhesive otitis or atelectasis resulting in a higher risk of prosthetic extrusion rate and recurrence of the underlying cholesteatoma. We report long-term results using an island of tragal cartilage as an autologous PORP in selected patients with poor middle ear ventilation. Retrospective chart reviews were performed for procedures involving 52 patients between year 2000 and 2009. All patients that underwent surgery using tragal cartilage interposed between the suprastructure of the stapes and the tympanic membrane were included in this study. Audiological parameters using four frequencies, 0.5, 1, 2 and 3 kHz, according to AAO-HNS guidelines, were assessed pre-and postoperatively. The hearing results on different PTA frequencies were also investigated. We report long-term follow-up of patients with hypoventilated middle ear with a success rate of 71% (ABG <20%). With regards to the ABG, the low frequency component (5 and 1 kHz) showed a significantly (p < 0.05) larger improvement of mean values after surgery as compared to the high-frequency component (2 and 3 kHz). Cartilage island PORP on stapes is a stable and efficient method for selected patients with chronic middle ear disease.
A dynamic and harmonic damped finite element analysis model of stapedotomy.
Blayney, A W; Williams, K R; Rice, H J
1997-03-01
This study was undertaken in an attempt to better understand the mechanics of sound transmission at the footplate following stapedotomy. The insertion of a Teflon (polytetrafluoroethylene) stapes prosthesis introduces new constraints within the reconstructed ossicular chain which have an effect on the normal vibration patterns of the tympanic membrane. In a finite element model of the ear, constraints have been reproduced as a series of spring constants in the incus/prosthesis/footplate interfaces incorporating damping to simulate the impedance of the inner ear. At zero damping, the frequency response at the pseudo stapes footplate exhibit several maxima and minima between 800 Hz and 2.5 Hz. At higher damping values, these maxima and minima become smoothened out with two or three naturals occurring over the same frequency range. Severe ankylosis of a diseased footplate is reproduced by over-damped conditions. The umbo, incus and stapes footplate vibrate in phase with similar frequencies at light damping levels. The movement of the prosthesis at the pseudo-footplate can be large in the out of plane axis of the ossicular chain, unless sufficient support is provided at the reconstructed footplate. Clinically, this would suggest the vein graft interposed between the piston and stapedotomy hole should endow resistance and elasticity to the system.
Reassessment of the La Ferrassie 3 Neandertal ossicular chain.
Quam, Rolf; Martínez, Ignacio; Arsuaga, Juan Luis
2013-04-01
The ossicular chain in La Ferrassie 3 was briefly described in the monograph on the La Ferrassie Neandertal children, but to date has not been the subject of detailed study. We provide new data on these important fossils and re-examine some previous suggestions of derived Neandertal features in the middle ear ossicles based on more limited evidence. The malleus shows a curved lateral margin of the manubrium and a relatively large head. The incus shows a tall articular facet, a depressed area on the medial surface of the body, a straight anterior border of the long process and a more closed angle between the processes. The stapes shows an asymmetrical configuration of the crura, with an anteriorly skewed head, and generally small dimensions, including a smaller and relatively wider stapedial footplate. These same features can also be seen in the few other Neandertal ear ossicles known, suggesting that a consistent anatomical pattern characterizes the Neandertal ossicular chain. While the phylogenetic polarity of many of these features remains to be clarified, the asymmetrical stapes and anteriorly skewed stapedial head appear to be derived Neandertal features. In addition, while the larger malleus head and incus articular facet in La Ferrassie 3 might reflect larger body mass in Neandertals, the larger stapes footplates in Homo sapiens cannot be explained by changes in body mass. Indeed, H. sapiens seems to depart from the general mammalian pattern in combining an increase in stapes footplate size with a decrease in body mass. Although the malleus/incus lever ratio in La Ferrassie 3 is similar to that in H. sapiens, Neandertals appear to be characterized by a slightly different spatial relationship and articulation of the ossicular chain within the tympanic cavity. While only limited inferences can be drawn regarding hearing ability based on the ossicles, the few physiologically relevant dimensions in the La Ferrassie 3 ear bones are similar to H. sapiens. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
Greene, Nathaniel T; Jenkins, Herman A; Tollin, Daniel J; Easter, James R
2017-05-01
The stapes is held in the oval window by the stapedial annular ligament (SAL), which restricts total peak-to-peak displacement of the stapes. Previous studies have suggested that for moderate (<130 dB SPL) sound levels intracochlear pressure (P IC ), measured at the base of the cochlea far from the basilar membrane, increases directly proportionally with stapes displacement (D Stap ), thus a current model of impulse noise exposure (the Auditory Hazard Assessment Algorithm for Humans, or AHAAH) predicts that peak P IC will vary linearly with D Stap up to some saturation point. However, no direct tests of D Stap , or of the relationship with P IC during such motion, have been performed during acoustic stimulation of the human ear. In order to examine the relationship between D Stap and P IC to very high level sounds, measurements of D Stap and P IC were made in cadaveric human temporal bones. Specimens were prepared by mastoidectomy and extended facial recess to expose the ossicular chain. Measurements of P IC were made in scala vestibuli (P SV ) and scala tympani (P ST ), along with the SPL in the external auditory canal (P EAC ), concurrently with laser Doppler vibrometry (LDV) measurements of stapes velocity (V Stap ). Stimuli were moderate (∼100 dB SPL) to very high level (up to ∼170 dB SPL), low frequency tones (20-2560 Hz). Both D Stap and P SV increased proportionally with sound pressure level in the ear canal up to approximately ∼150 dB SPL, above which both D Stap and P SV showed a distinct deviation from proportionality with P EAC . Both D Stap and P SV approached saturation: D Stap at a value exceeding 150 μm, which is substantially higher than has been reported for small mammals, while P SV showed substantial frequency dependence in the saturation point. The relationship between P SV and D Stap remained constant, and cochlear input impedance did not vary across the levels tested, consistent with prior measurements at lower sound levels. These results suggest that P SV sound pressure holds constant relationship with D Stap , described by the cochlear input impedance, at these, but perhaps not higher, stimulation levels. Additionally, these results indicate that the AHAAH model, which was developed using results from small animals, underestimates the sound pressure levels in the cochlea in response to high level sound stimulation, and must be revised. Copyright © 2017 Elsevier B.V. All rights reserved.
Gerbil middle-ear sound transmission from 100 Hz to 60 kHz1
Ravicz, Michael E.; Cooper, Nigel P.; Rosowski, John J.
2008-01-01
Middle-ear sound transmission was evaluated as the middle-ear transfer admittance HMY (the ratio of stapes velocity to ear-canal sound pressure near the umbo) in gerbils during closed-field sound stimulation at frequencies from 0.1 to 60 kHz, a range that spans the gerbil’s audiometric range. Similar measurements were performed in two laboratories. The HMY magnitude (a) increased with frequency below 1 kHz, (b) remained approximately constant with frequency from 5 to 35 kHz, and (c) decreased substantially from 35 to 50 kHz. The HMY phase increased linearly with frequency from 5 to 35 kHz, consistent with a 20–29 μs delay, and flattened at higher frequencies. Measurements from different directions showed that stapes motion is predominantly pistonlike except in a narrow frequency band around 10 kHz. Cochlear input impedance was estimated from HMY and previously-measured cochlear sound pressure. Results do not support the idea that the middle ear is a lossless matched transmission line. Results support the ideas that (1) middle-ear transmission is consistent with a mechanical transmission line or multiresonant network between 5 and 35 kHz and decreases at higher frequencies, (2) stapes motion is pistonlike over most of the gerbil auditory range, and (3) middle-ear transmission properties are a determinant of the audiogram. PMID:18646983
Malformations of the middle and inner ear on CT imaging in 22q11 deletion syndrome.
Loos, Elke; Verhaert, Nicolas; Willaert, Annelore; Devriendt, Koenraad; Swillen, Ann; Hermans, Robert; Op de Beeck, Katya; Hens, Greet
2016-11-01
The 22q11 deletion syndrome (22q11DS), the most frequent microdeletion syndrome in humans, presents with a large variety of abnormalities. A common abnormality is hearing impairment. The exact pathophysiological explanation of the observed hearing loss remains largely unknown. The aim of this study was to analyze the middle and inner ear malformations as seen on computer tomographic imaging in patients with 22q11DS. We retrospectively reviewed the charts of 11 22q11DS patients who had undergone a CT of the temporal bone in the past. Of the 22 examined ears, two showed an abnormal malleus and incus, 10 presented with a dense stapes superstructure, and three ears had an abnormal orientation of the stapes. With regard to the inner ear, 12 ears showed an incomplete partition type II with a normal vestibular aqueduct. In four ears the vestibule and lateral semicircular canal were composed of a single cavity, in 14 ears the vestibule was too wide, and three ears had a broadened lateral semicircular canal. These findings suggest that malformations of the stapes, cochlea, vestibule, and lateral semicircular canal are frequent in 22q11DS. To our knowledge, the current study involves the largest case series describing middle and inner ear malformations in 22q11DS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Gyo, K; Yanagihara, N
1986-01-01
Ossicular mobility was assessed by direct coupling of a piezoelectric ceramic vibrator to the ossicles during middle ear surgery. The sites excited were body of the incus, head of the stapes, and footplate of the stapes through a hydroxyapatite ceramic strut. The threshold of the vibratory hearing was determined by the patient's response as a minimum audition, and the vibration threshold was obtained by subtracting the preoperative bone conduction threshold from the vibratory hearing threshold. The results were analyzed by the state of hearing after the operation, which revealed that a patient with a good vibration threshold during the operation had a tendency to get good postoperative hearing. This may mean that postoperative hearing can be predicted to some extent during the operation by the measurement of ossicular mobility.
Optical and tomographic imaging of a middle ear malformation in the bullfrog (Rana catesbeiana).
Horowitz, Seth S; Simmons, Andrea Megela; Ketten, Darlene R
2005-08-01
Using a combination of in vivo computerized tomography and histological staining, a middle ear anomaly in two wild-caught American bullfrogs (Rana catesbeiana) is characterized. In these animals, the tympanic membrane, extrastapes, and pars media (shaft) of the stapes are absent on one side of the head, with the other side exhibiting normal morphology. The pars interna (footplate) of the stapes and the operculum are present in their normal positions at the entrance of the otic capsule on both the affected and unaffected sides. The pattern of deformity suggests a partial failure of development of tympanic pathway tissues, but with a preservation of the opercularis pathway. While a definitive proximate cause of the condition could not be determined, the anomalies show similarities to developmental defects in mammalian middle ear formation.
Optical and tomographic imaging of a middle ear malformation in the bullfrog (Rana catesbeiana)
Horowitz, Seth S.; Simmons, Andrea Megela; Ketten, Darlene R.
2005-01-01
Using a combination of in vivo computerized tomography and histological staining, a middle ear anomaly in two wild-caught American bullfrogs (Rana catesbeiana) is characterized. In these animals, the tympanic membrane, extrastapes, and pars media (shaft) of the stapes are absent on one side of the head, with the other side exhibiting normal morphology. The pars interna(footplate) of the stapes and the operculum are present in their normal positions at the entrance of the otic capsule on both the affected and unaffected sides. The pattern of deformity suggests a partial failure of development of tympanic pathway tissues, but with a preservation of theopercularis pathway. While a definitive proximate cause of the condition could not be determined, the anomalies show similarities to developmental defects in mammalian middle ear formation. PMID:16158670
Transmission matrix analysis of the chinchilla middle ear
Songer, Jocelyn E.; Rosowski, John J.
2008-01-01
Despite the common use of the chinchilla as an animal model in auditory research, a complete characterization of the chinchilla middle ear using transmission matrix analysis has not been performed. In this paper we describe measurements of middle-ear input admittance and stapes velocity in ears with the middle-ear cavity opened under three conditions: intact tympano-ossicular system and cochlea, after the cochlea has been drained, and after the stapes has been fixed. These measurements, made with stimulus frequencies of 100–8000 Hz, are used to define the transmission matrix parameters of the middle ear and to calculate the cochlear input impedance as well as the middle-ear output impedance. This transmission characterization of the chinchilla middle ear will be useful for modeling auditory sensitivity in the normal and pathological chinchilla ear. PMID:17672642
[Applied anatomy of scala tympani inlet related to cochlear implantation].
Zou, Tuanming; Guo, Menghe; Zhang, Hongzheng; Shu, Fan; Xie, Nanping
2012-06-01
To investigate the related parameters of the temporal bone structure for determining the position of implanting electrode into the scala tympani in cochlear implantation surgery through the facial recess and epitympanum approach. In a surgical simulation experiment, 20 human temporal bones were studied and measured to determine the related parameters of the temporal bone structure. The distance 5.91∓0.29 mm between the short process of the incus and the round window niche, 2.11∓0.18 mm between the stapes and the round window niche, 6.70∓0.19 mm between the facial nerve in the perpendicular paragraph and the round window niche, 2.22∓0.21 mm from the pyramidal eminence to the round window, and 2.16∓0.14 mm between the stapes and the round window. The minimal distance between the implanting electrode and the vestibular window was 2.12∓0.19 mm. The distance between the cochleariform process and the round window niche was 3.79∓0.17 mm. The position of the cochlear electrode array insertion into the second cochlear turn was 2.25∓0.13 mm under the stapes. The location of the cochlear electrode array insertion into the second cochlear turn was 2.28∓0.20 mm inferior to the pyramidal eminence. These parameters provide a reference value to determine the different positions of cochlear electrode array insertion into the scale tympani in different patients.
Economic viability of stapes surgery in Germany.
Savvas, E; Maurer, J
2009-04-01
The purpose of this study was to determine the economic viability of stapes surgery in Germany. We compared the cost of the operation to the retail value and average cost of a lifelong supply of hearing aids. Retrospective study. Tertiary referral centre. One hundred and sixty-four consecutive cases of primary stapedotomy performed on patients with otosclerosis at our institution served as the representative group for the calculation. The post-operative air-bone gap average at the frequencies 500, 1000, 2000 and 4000 Hz was less than 10 dB for 62 per cent of the patients, and less than 20 dB for 92 per cent of the patients. There was a post-operative sensorineural hearing loss in 1.2 per cent of the patients. Analysis showed that, even for an elderly patient aged 65 years with a life expectancy of 15 years, the cost of a lifelong supply of hearing aids was greater than that of a stapedotomy procedure. Based on our group of patients, the stapedotomy procedure proved to be euro 800,000 K cheaper than treatment with an averagely priced hearing aid. The economic benefit was still present when taking into account possible revision surgery in 5-10 per cent of cases, and also when, in addition to the surgery, a post-operative hearing aid was required, in for example 20 per cent of cases. Stapes surgery is economically beneficial for the individual patient as well as for the general patient cohort, irrespective of age. The stapedotomy procedure also prevents the known disadvantages of conventional hearing aids, thus improving the patient's quality of life.
Grossöhmichen, Martin; Salcher, Rolf; Kreipe, Hans-Heinrich; Lenarz, Thomas; Maier, Hannes
2015-01-01
This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia) in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW). Here the perilymph stimulation with a K-piston through a stapes footplate (SFP) fenestration (N = 10) as well as stimulation of the stapes head (SH) with a Bell prosthesis (N = 9), SFP stimulation with an Omega/Aerial prosthesis (N = 8) and reverse RW stimulation (N = 10) were performed in cadaveric human temporal bones (TBs). Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL) using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5-141.8 eq. dB SPL; Omega/Aerial: 123.6-143.9 eq. dB SPL), being significantly more efficient than K-piston perilymph stimulation (108.6-131.6 eq. dB SPL) and RW stimulation (108.3-128.2 eq. dB SPL). Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented.
Yang, Aram; Kim, Jinsup; Ki, Chang-Seok; Hong, Sung Hwa; Cho, Sung Yoon; Jin, Dong-Kyu
2017-10-26
Hypoparathyroidism, sensorineural hearing loss, and renal disease (HDR) syndrome, also known as Barakat syndrome, is a rare genetic disorder with high phenotypic heterogeneity caused by haploinsufficiency of the GATA3 gene on chromosome 10p14-p15. For these reasons, the diagnosis of HDR syndrome is challenging and requires a high index of suspicion as well as genetic analysis. A 14-month-old boy, with sensorineural hearing loss in both ears, showed typical radiological features of X-linked stapes gusher on preoperative temporal bone computed tomography (CT) for cochlear implantations. Then after his discharge from hospital, he suffered a hypocalcemic seizure and we discovered a renal cyst during investigation of hypocalcemia. He was finally diagnosed with HDR syndrome by clinical findings, which were confirmed by molecular genetic testing. Direct sequencing of the GATA3 gene showed a heterozygous 2-bp deletion (c.1201_1202delAT), which is predicted to cause a frameshift of the reading frame (p.Met401Valfs*106). To our knowledge, this is the first case of HDR syndrome with a novel de novo variant mimicking a congenital X-linked stapes gusher syndrome. Novel mutations and the diversity of clinical manifestations expand the genotypic and phenotypic spectrum of HDR syndrome. Diagnosis of HDR syndrome is still challenging, but clinicians should consider it in their differential diagnosis for children with a wide range of clinical manifestations including hypocalcemia induced seizures and deafness. We hope that this case will contribute to further understanding and studies of HDR-associated GATA3 mutations.
Incudomalleal joint formation: the roles of apoptosis, migration and downregulation
Amin, Susan; Matalova, Eva; Simpson, Carol; Yoshida, Hiroki; Tucker, Abigail S
2007-01-01
Background The middle ear of mammals is composed of three endochondrial ossicles, the stapes, incus and malleus. Joints link the malleus to the incus and the incus to the stapes. In the mouse the first arch derived malleus and incus are formed from a single Sox9 and Type II collagen expressing condensation that later subdivides to give rise to two separate ossicles. In contrast the stapes forms from a separate condensation derived from the second branchial arch. Fusion of the malleus and incus is observed in a number of human syndromes and results in conductive hearing loss. Understanding how this joint forms during normal development is thus an important step in furthering our understanding of such defects. Results We show that the developing incudomalleal joint is characterised by a lack of proliferation and discrete areas of apoptosis. Apoptosis has been suggested to aid in the removal of pre-cartilaginous cells from the joint region, allowing for the physical separation of the cartilaginous elements, however, we show that joint initiation is unaffected by blocking apoptosis. There is also no evidence of cell migration out of the presumptive joint region, as observed by labelling of joint and ossicle cells in culture. Using Type II collagen lacZ reporter mice, however, it is evident that cells in the presumptive joint region remain in place and downregulate cartilage markers. Conclusion The malleus and incus first appear as a single united condensation expressing early cartilage markers. The incudomalleal joint region forms by cells in the presumptive joint region switching off cartilage markers and turning on joint markers. Failure in this process may result in fusion of this joint, as observed in human syndromes such as Branchio-Oto-Renal Syndrome or Treacher Collins Syndrome. PMID:18053235
Grossöhmichen, Martin; Salcher, Rolf; Kreipe, Hans-Heinrich; Lenarz, Thomas; Maier, Hannes
2015-01-01
This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia) in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW). Here the perilymph stimulation with a K-piston through a stapes footplate (SFP) fenestration (N = 10) as well as stimulation of the stapes head (SH) with a Bell prosthesis (N = 9), SFP stimulation with an Omega/Aerial prosthesis (N = 8) and reverse RW stimulation (N = 10) were performed in cadaveric human temporal bones (TBs). Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL) using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~ 5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5–141.8 eq. dB SPL; Omega/Aerial: 123.6–143.9 eq. dB SPL), being significantly more efficient than K-piston perilymph stimulation (108.6–131.6 eq. dB SPL) and RW stimulation (108.3–128.2 eq. dB SPL). Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~ 5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented. PMID:25785860
Middle Ear Mechanics of Cartilage Tympanoplasty Evaluated by Laser Holography and Vibrometry
Aarnisalo, Antti A.; Cheng, Jeffrey T.; Ravicz, Michael E.; Hulli, Nesim; Harrington, Ellery J.; Hernandez-Montes, Maria S.; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.
2010-01-01
Goals To assess the effects of thickness and position of cartilage used to reconstruct the tympanic membrane (TM) using a novel technique, time-averaged laser holography. Background Cartilage is commonly used in TM reconstruction to prevent formation of retraction pockets. The thickness, position, and shape of the cartilage graft may adversely affect TM motion and hearing. We sought to systematically investigate these parameters in an experimental setting. Methods Computer-assisted optoelectronic laser holography was used in 4 human cadaveric temporal bones to study sound-induced TM motion for 500 Hz to 8 kHz. Stapes velocity was measured with a laser Doppler vibrometer. Baseline (control) measurements were made with the TM intact. Measurements were repeated after a 0.5- or 1.0-mm-thick oval piece of conchal cartilage was placed on the medial TM surface in the posterior-superior quadrant. The cartilage was rotated so that it was either in contact with the bony tympanic rim and manubrium or not. Results At frequencies less than 4 kHz, the cartilage graft had only minor effects on the overall TM fringe patterns. The different conditions had no effects on stapes velocity. Greater than 4 kHz, TM motion was reduced over the grafted TM, both with 0.5- and 1.0-mm-thick grafts. No significant differences in stapes velocity were seen with the 2 different thicknesses of cartilage compared with control. Conclusion Computer-assisted optoelectronic laser holography is a promising technique to investigate middle ear mechanics after tympanoplasty. Such positioning may prevent postoperative TM retraction. These findings and conclusions apply to cartilage placed in the posterior-superior TM quadrant. PMID:19779389
[High-resolution computed tomography in stapes surgery].
Oberascher, G; Grobovschek, M
1987-06-01
Early and delayed complications in the inner or middle ear may follow stapedectomy or stapedotomy and may require revision surgery. Nowadays high resolution middle ear computed tomography (HR-MCT) using a special interpolation technique can demonstrate the smallest structures of the middle ear space, such as the long process of the incus and stapes. Stapes prostheses can also be seen in this way, but to identify the prothesis exactly it is necessary to determine the position of the piston hook in relation to the incus and of the piston shaft to the foot plate and scala vestibuli. Two points were of particular interest to us: HR-MCT identification of various metal and plastic pistons. Clinical significance of HR-MCT in complications following surgery. As the result of our experimental research on cadaver temporal bones, pistons must still be divided into four groups based on their demonstration by HR-MCT: Group I (e.g. Stainless Steel Cup Piston): whole piston visible. Group II (e.g. McGee Stainless Steel Piston): only piston shaft. Group III (Fisch Teflon-Platinum Piston): only hook visible. Group IV (e.g. Fisch Teflon-Wire Piston): piston hardly visible or not at all. In groups I-III it is possible to discover whether the piston is too long or too short, whether it is dislocated or has slipped. Group IV pistons, hooks from group II and the shaft from group III must be changed to allow detection by x-rays. With plastic pistons it might be possible to add an x-ray agent.2+ improvements in manufacture appear to be necessary, dislocation of various prostheses can now be shown.(ABSTRACT TRUNCATED AT 250 WORDS)
Biomechanical Analysis of Hearing in Whales Using Nanoindentation and the Finite Element Method
NASA Astrophysics Data System (ADS)
Tubelli, Andrew A.; Zosuls, Aleks; Ketten, Darlene R.; Mountain, David C.
2011-11-01
The detailed biomechanics of hearing in baleen whales are almost entirely unknown. As a first step to predicting the audiogram for these species, a linear three-dimensional finite-element model of the minke whale (Balaenoptera acutorostrata) middle ear was developed. A reconstruction of the ear was made from CT scans and imported into a finite element solver. Young's modulus of the bone was estimated via nanoindentation. The middle-ear transfer function was estimated by applying a pressure to the glove finger (the thick, everted equivalent of the tympanic membrane) with velocity calculated at the stapes footplate. It was found that the most sensitive frequencies corresponded with vocalization frequencies. For all frequencies tested, the malleus-incus complex flexed about the anterior process of the malleus and the stapes rotated within the oval window. Results indictae that finite element modeling is a useful approach for studying the mechanics of hearing in species that are difficult to study in vivo.
Liu, Qingsong; Feng, Guodong; Shang, Yingying; Wang, Suju; Gao, Zhiqiang
2018-04-26
Subtotal petrosectomy may be performed for refractory chronic middle ear diseases, such as massive cholesteatoma or recurrent otitis media. It involves permanent obliteration of the operative cavity, thus precluding the chance to restore conductive hearing via traditional inertial ossicular prostheses. The Vibrant Soundbridge (VSB) is an alternative option for hearing rehabilitation. Vibrant energy is delivered into the inner ear via a floating mass transducer (FMT), which can be coupled with any part of the middle ear acoustic transmission structure. To restore the hearing of a young woman with cholesteatoma, we combined subtotal petrosectomy with obliteration of the cavity and VSB implantation with an FMT coupled to the stapes head. Two years of follow-up demonstrated excellent auditory rehabilitation, improved sound source localization ability, and a lower speech recognition threshold. This study showed that the FMT works well in an obliterated cavity, and the experience acquired through this successful exploration is worth disseminating. © 2018 S. Karger AG, Basel.
Szymański, Marcin; Morshed, Kamal; Mills, Robert P
2007-01-01
The aim of the study was to assess the effect of CO(2) laser on stapes prostheses and measure the heat transmission to the vestibule in experiment model. CO(2) laser was applied on two types of prostheses with power settings (2 and 6W; 0.05 s). Transmission of heat to the 'vestibule' was measured using type K thermocouple and DC-80 data logger during application of the laser on prostheses using a training model of temporal bone. Application of the laser on stainless steel prosthesis did not have any effect on the structure of the prosthesis. The use of the laser on the fluoroplastic-wire piston caused melting and produced holes in the piston. Greater temperature rises occurred with stainless steel than with the fluoroplastic-wire piston. Application of CO(2) laser on stainless steel pistons with 6W can produce inner ear trauma. The use of the laser on fluoroplastic-wire piston is not likely to irritate the inner ear.
Sequential motion of the ossicular chain measured by laser Doppler vibrometry.
Kunimoto, Yasuomi; Hasegawa, Kensaku; Arii, Shiro; Kataoka, Hideyuki; Yazama, Hiroaki; Kuya, Junko; Fujiwara, Kazunori; Takeuchi, Hiromi
2017-12-01
In order to help a surgeon make the best decision, a more objective method of measuring ossicular motion is required. A laser Doppler vibrometer was mounted on a surgical microscope. To measure ossicular chain vibrations, eight patients with cochlear implants were investigated. To assess the motions of the ossicular chain, velocities at five points were measured with tonal stimuli of 1 and 3 kHz, which yielded reproducible results. The sequential amplitude change at each point was calculated with phase shifting from the tonal stimulus. Motion of the ossicular chain was visualized from the averaged results using the graphics application. The head of the malleus and the body of the incus showed synchronized movement as one unit. In contrast, the stapes (incudostapedial joint and posterior crus) moved synchronously in opposite phase to the malleus and incus. The amplitudes at 1 kHz were almost twice those at 3 kHz. Our results show that the malleus and incus unit and the stapes move with a phase difference.
The influence of the footplate-perilymph interface on postoperative bone conduction.
Arnold, Wolfgang; Ferekidis, Elefterios; Hamann, Karl-Friedrich
2007-01-01
In a prospective study, 165 total stapedectomies and 152 small fenestra stapedotomies were performed by three experienced surgeons between 2001 and 2003. In total stapedectomy, a self-made Schuknecht steel wire connective tissue prosthesis, and in stapedotomy, a 0.6-mm platinum wire Teflon piston was used. The pre- and postoperative bone conduction thresholds were compared at the frequencies 250 Hz, 500 Hz, 1 kHz, 1.5 kHz, 2 kHz, 3 kHz and 4 kHz. The postoperative bone conduction between 250 Hz and 3 kHz was significantly better in the total stapedectomy group than in the stapedotomy group. At 4 kHz, both groups showed a slight decrease in bone conduction but the difference was not statistically significant. Therefore, especially in cases with preoperative moderate sensorineural hearing loss, we recommend total stapedectomy using a Schuknecht steel wire connective tissue prosthesis, which offers a stapes-perilymph interface similar to the normal stapes.
Integrating optical fiber force sensors into microforceps for ORL microsurgery.
Bell, Brett; Stankowski, Stefan; Moser, Benjamin; Oliva, Vidina; Stieger, Christof; Nolte, Lutz-Peter; Caversaccio, Marco; Weber, Stefan
2010-01-01
The delicate anatomy of the ear require surgeons to use great care when operating on its internal structures. One example for such an intervention is the stapedectomy, where a small crook shaped piston is placed in the oval window of the cochlea and connected to the incus through crimping thus bypassing the diseased stapes. Performing the crimp process with the correct force is necessary since loose crimps poorly transmit sound whereas tight crimps will eventually result in necrosis of the incus. Clinically, demand is high to reproducibly conduct the crimp process through a precise force measurement. For this reason, we have developed a fiber Bragg grating (FBG) integrated microforceps for use in such interventions. This device was calibrated, and tested in cadaver preparations. With this instrument we were able to measure for the first time forces involved in crimping a stapes prosthesis to the incus. We also discuss a method of attaching and actuating such forceps in conjunction with a robot currently under development in our group. Each component of this system can be used separately or combined to improve surgical accuracy, confidence and outcome.
Clinical significance of stapedioplasty biomechanics: swimming, diving, flying after stapes surgery.
Hüttenbrink, Karl-Bernd
2007-01-01
A piston prosthesis in stapedioplasty significantly modifies the function of the normal ossicular chain. Due to the fact that the ear works as a pressure receptor, a piston prosthesis will be displaced at ambient air pressure changes in a different way than the normal stapes. Our ear is constantly exposed to these pressure changes in daily live, for example during swallowing, with tubal opening, with wind gusts at the external ear, during flying, or diving. Temporal bone experiments showed that elevated static pressures, like in tympanometry, can displace a piston up to 0.5mm in the vestibule. These large movements, which are caused by the missing attachment of the piston to the annual ligament, may explain why a short piston can be lifted out of the footplate perforation (e.g. after sneezing) or a piston with excessive length might come into contact with the membranous labyrinth, causing vertigo with an inward movement. Flying or diving can be performed by the patients after stapedioplasty, provided that a test with tympanometry is tolerated without evoking vertigo.
Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint
Zhang, Xiangming
2011-01-01
The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint. PMID:21061141
Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint.
Zhang, Xiangming; Gan, Rong Z
2011-10-01
The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint.
The Effect of Superior Semicircular Canal Dehiscence on Intracochlear Sound Pressures
Pisano, Dominic V.; Niesten, Marlien E.F.; Merchant, Saumil N.; Nakajima, Hideko Heidi
2013-01-01
Semicircular canal dehiscence (SCD) is a pathological opening in the bony wall of the inner ear that can result in conductive hearing loss. The hearing loss is variable across patients, and the precise mechanism and source of variability are not fully understood. Simultaneous measurements of basal intracochlear sound pressures in scala vestibuli (SV) and scala tympani (ST) enable quantification of the differential pressure across the cochlear partition, the stimulus that excites the cochlear partition. We used intracochlear sound pressure measurements in cadaveric preparations to study the effects of SCD size. Sound-induced pressures in SV and ST, as well as stapes velocity and ear-canal pressure were measured simultaneously for various sizes of SCD followed by SCD patching. Our results showed that at low frequencies (<600 Hz), SCD decreased the pressure in both SV and ST, as well as differential pressure, and these effects became more pronounced as dehiscence size was increased. Near 100 Hz, SV decreased about 10 dB for a 0.5 mm dehiscence and 20 dB for a 2 mm dehiscence, while ST decreased about 8 dB for a 0.5 mm dehiscence and 18 dB for a 2mm dehiscence. Differential pressure decreased about 10 dB for a 0.5 mm dehiscence and about 20 dB for a 2 mm dehiscense at 100 Hz. In some ears, for frequencies above 1 kHz, the smallest pinpoint dehiscence had bigger effects on the differential pressure (10 dB decrease) than larger dehiscenses (less than 10 dB decrease), suggesting larger hearing losses in this frequency range. These effects due to SCD were reversible by patching the dehiscence. We also showed that under certain circumstances such as SCD, stapes velocity is not related to how the ear can transduce sound across the cochlear partition because it is not directly related to the differential pressure, emphasizing that certain pathologies cannot be fully assessed by measurements such as stapes velocity. PMID:22814034
Hato, Naohito; Kohno, Hisashi; Okada, Masahiro; Hakuba, Nobuhiro; Gyo, Kiyofumi; Iwakura, Takashi; Tateno, Makoto
2006-08-01
We developed an ossicular vibration tester for the objective and quantitative assessment of ossicular mobility, which is one of the most critical factors affecting postoperative hearing after tympanoplasty. Our device consists of three components: a probe shaft with a curved tip to be attached to the target ossicle, a vibration exciter to activate the probe, and a piezoelectric sensor to detect vibrations of the probe. These components are encased in a stainless steel holder, allowing easy hand manipulation during ear surgery. The probe is activated with an electric signal at around 1,600 Hz. The system is controlled with a laptop computer, and the results are presented as the ratio of the ossicular resistance (ROR) to a reference value as a percentage. One measurement takes 10 ms. The device was applied in four selected patients during ear surgery. Several measurements in two of the cochlear implantees showed a greater difference in the RORs of the stapes (15-20% in Case 1 and 35-45% in Case 2), whereas the RORs of the malleus and incus were within the same range. This was thought to correspond to the partial cochlear calcification noted in Case 2. In Case 3, who underwent surgery because of otosclerosis, the ROR of the stapes was high, ranging from 70 to 80%. When measured for the malleus-incus fixation anomaly (Case 4), the ROR of the malleus and incus was in the range of 60 to 70%. Owing to the limited surgical view, the ROR of the stapes could not be measured. No problems related to the measurements with this device were noted. The design, principles, measuring procedures, and preliminary results of our new tool for testing ossicular mobility are reported. Measuring the ossicular mobility during surgery may provide important information for deciding the surgical procedures.
Visualization of Middle Ear Ossicles in Elder Subjects with Ultra-short Echo Time MR Imaging.
Naganawa, Shinji; Nakane, Toshiki; Kawai, Hisashi; Taoka, Toshiaki; Suzuki, Kojiro; Iwano, Shingo; Satake, Hiroko; Grodzki, David
2017-04-10
To evaluate the visualization of middle ear ossicles by ultra-short echo time magnetic resonance (MR) imaging at 3T in subjects over 50 years old. Sixty ears from 30 elder patients that underwent surgical or interventional treatment for neurovascular diseases were included (ages: 50-82, median age: 65; 10 men, 20 women). Patients received follow-up MR imaging including routine T 1 - and T 2 -weighted images, time-of-flight MR angiography, and ultra-short echo time imaging (PETRA, pointwise encoding time reduction with radial acquisition). All patients underwent computed tomography (CT) angiography before treatment. Thin-section source CT images were correlated with PETRA images. Scan parameters for PETRA were: TR 3.13, TE 0.07, flip angle 6 degrees, 0.83 × 0.83 × 0.83 mm resolution, 3 min 43 s scan time. Two radiologists retrospectively evaluated the visibility of each ossicular structure as positive or negative using PETRA images. The structures evaluated included the head of the malleus, manubrium of the malleus, body of the incus, long process of the incus, and the stapes. Signal intensity of the ossicles was classified as: between labyrinthine fluid and air, similar to labyrinthine fluid, between labyrinthine fluid and cerebellar parenchyma, or higher than cerebellar parenchyma. In all ears, the body of the incus was visible. The head of the malleus was visualized in 36/60 ears. The manubrium of the malleus and long process of the incus was visualized in 1/60 and 4/60 ears, respectively. The stapes were not visualized in any ear. Signal intensity of the visible structures was between labyrinthine fluid and air in all ears. The body of the incus was consistently visualized with intensity between air and labyrinthine fluid on PETRA images in aged subjects. Poor visualization of the manubrium of the malleus, long process of the incus, and the stapes limits clinical significance of middle ear imaging with current PETRA methods.
Pressures in the human cochlea during bone conduction
NASA Astrophysics Data System (ADS)
Stieger, Christof; Farahmand, Rosemary B.; Page, Brent F.; Roushan, Kourosh; Merchant, Julie P.; Abur, Defne; Rosowski, John J.; Nakajima, Hideko Heidi
2015-12-01
The mechanisms of bone conduction (BC) hearing, which is important in diagnosis and treatment of hearing loss, are poorly understood, thus limiting use of BC. Recently, information gained by intracochlear pressure measurements has revealed that the mechanisms of sound transmission that drive pressure differences across the cochlear partition are different for air conduction (AC) than for round-window stimulation. Presently we are utilizing these pressure measurement techniques in fresh human cadaveric preparations to improve our understanding of sound transmission during BC. We have modified our technique of intracochlear pressure measurements for the special requirements of studying BC, as bone vibration poses challenges for making these measurements. Fiberoptic pressure sensors were inserted through cochleostomies in both scalae at the base of the cochlea. The cochleostomies were then tightly sealed with the sensors in place to prevent air and fluid leaks, and the sensors were firmly secured to ensure uniform vibrations of the sensors and surrounding bone of the cochlea. The velocity of the stapes, round window and cochlear promontory were each measured with laser Doppler vibrometry simultaneous to the intracochlear pressure measurements. To understand the contribution of middle-ear inertia, the incudo-stapedial joint was severed. Subsequently, the stapes footplate was fixed (similar to the consequence of otosclerosis) to determine the effect of removing the mobility of the oval window. BC stimulation resulted in pressure in scala vestibuli that was significantly higher than in scala tympani, such that the differential pressure across the partition - the cochlear drive input - was similar to scala vestibuli pressure (and overall, similar to the relationship found during AC but different than during round-window stimulation). After removing the inertial mass of the middle ear, with only the stapes attached to the flexible oval window, all pressures dropped similarly (10 dB). Fixing the oval window resulted in further drop of all pressures (10 dB more). These decreases in pressure occurred around 1-4 kHz, consistent with clinical observations of Carhart's notch.
Disintegration of porous polyethylene prostheses.
Kerr, A G; Riley, D N
1999-06-01
A Plastipore (porous polyethylene) Total Ossicular Replacement Prosthesis gave an excellent initial hearing result which was maintained for 14 years. Hearing then began to deteriorate and revision surgery showed disintegration of the prosthesis and a defect in the stapes footplate. Histological examination confirmed previous findings in porous polyethylene with multinucleated foreign body giant cells and breakdown of the material.
Journal of Special Operations Medicine. Volume 2, Edition 1, Winter 2002
2002-01-01
regarding clean surgi- cal procedures that an antibiotic treatment regime must be based upon the expected pathogens, appro- priate pharmacokinetic properties...conduction apparatus toDiagram of ear Auricle Epitympanic recess Malleus (head) Incus Crura of stapes Tegmen tympani Cochlear nerve Vesibular nerve Facial...Prominence of lateral semicircular canal Scala vestibuli Cochlear duct containing spiral organ (of Corti) Scala tympaniAuditory (Eustachian) tube Round
The floating mass transducer at the round window: direct transmission or bone conduction?
Arnold, Andreas; Kompis, Martin; Candreia, Claudia; Pfiffner, Flurin; Häusler, Rudolf; Stieger, Christof
2010-05-01
The round window placement of a floating mass transducer (FMT) is a new approach for coupling an implantable hearing system to the cochlea. We evaluated the vibration transfer to the cochlear fluids of an FMT placed at the round window (rwFMT) with special attention to the role of bone conduction. A posterior tympanotomy was performed on eleven ears of seven human whole head specimens. Several rwFMT setups were examined using laser Doppler vibrometry measurements at the stapes and the promontory. In three ears, the vibrations of a bone anchored hearing aid (BAHA) and an FMT fixed to the promontory (pFMT) were compared to explore the role of bone conduction. Vibration transmission to the measuring point at the stapes was best when the rwFMT was perpendicularly placed in the round window and underlayed with connective tissue. Fixation of the rwFMT to the round window exhibited significantly lower vibration transmission. Although measurable, bone conduction from the pFMT was much lower than that of the BAHA. Our results suggest that the rwFMT does not act as a small bone anchored hearing aid, but instead, acts as a direct vibratory stimulator of the round window membrane. Copyright (c) 2009 Elsevier B.V. All rights reserved.
The human otitis media with effusion: a numerical-based study.
Areias, B; Parente, M P L; Santos, C; Gentil, F; Natal Jorge, R M
2017-07-01
Otitis media is a group of inflammatory diseases of the middle ear. Acute otitis media and otitis media with effusion (OME) are its two main types of manifestation. Otitis media is common in children and can result in structural alterations in the middle ear which will lead to hearing losses. This work studies the effects of an OME on the sound transmission from the external auditory meatus to the inner ear. The finite element method was applied on the present biomechanical study. The numerical model used in this work was built based on the geometrical information obtained from The visible ear project. The present work explains the mechanisms by which the presence of fluid in the middle ear affects hearing by calculating the magnitude, phase and reduction of the normalized umbo velocity and also the magnitude and phase of the normalized stapes velocity. A sound pressure level of 90 dB SPL was applied at the tympanic membrane. The harmonic analysis was performed with the auditory frequency varying from 100 Hz to 10 kHz. A decrease in the response of the normalized umbo and stapes velocity as the tympanic cavity was filled with fluid was obtained. The decrease was more accentuated at the umbo.
Gottlieb, Peter K.; Vaisbuch, Yona
2018-01-01
The role of the ossicular joints in the mammalian middle ear is still debated. This work tests the hypothesis that the two synovial joints filter potentially damaging impulsive stimuli by transforming both the peak amplitude and width of these impulses before they reach the cochlea. The three-dimensional (3D) velocity along the ossicular chain in unaltered cadaveric human temporal bones (N = 9), stimulated with acoustic impulses, is measured in the time domain using a Polytec (Waldbronn, Germany) CLV-3D laser Doppler vibrometer. The measurements are repeated after fusing one or both of the ossicular joints with dental cement. Sound transmission is characterized by measuring the amplitude, width, and delay of the impulsive velocity profile as it travels from the eardrum to the cochlea. On average, fusing both ossicular joints causes the stapes velocity amplitude and width to change by a factor of 1.77 (p = 0.0057) and 0.78 (p = 0.011), respectively. Fusing just the incudomalleolar joint has a larger effect on amplitude (a factor of 2.37), while fusing just the incudostapedial joint decreases the stapes velocity on average. The 3D motion of the ossicles is altered by fusing the joints. Finally, the ability of current computational models to predict this behavior is also evaluated.
The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
Maier, Hannes; Salcher, Rolf; Schwab, Burkard; Lenarz, Thomas
2013-07-01
The Direct Acoustic Cochlea Stimulator Partial Implant (DACS PI, Phonak Acoustic Implants SA, Switzerland) is intended to stimulate the cochlea by a conventional stapedotomy piston that is crimped onto the DACS PI artificial incus. An alternative approach to the round window (RW) is successfully done with other devices, having the advantage of being also independent of the existence of middle ear structure (e.g. ossicles). Here the possibility of stimulating the RW with the DACS actuator is investigated including the impact of static force on sound transmission to the cochlea. The maximum equivalent sound pressure output with RW stimulation was determined experimentally in fresh human temporal bones. Experiments were performed in analogy to the ASTM standard (F2504.24930-1) method for the output determination of implantable middle ear hearing devices (IMEHDs) in human cadaveric temporal bones (TBs). ASTM compliant temporal bones were stimulated with a prosthesis having a spherical tip (∅0.5 mm) attached to the actuator. The stimulation was performed perpendicular to the round window membrane (RWM) at varying position relative to the RW and the resulting static force on the RW membrane was determined. At each position the displacement output of the DACS PI actuator and the stapes footplate (SFP) vibration in response to actuator stimulation was measured with a Laser Doppler Velocimeter (LDV). By comparison of the achieved output at the stapes footplate in response to sound and transducer stimulation the equivalent sound pressure level at the tympanic membrane at 1Vrms input voltage was calculated assuming that the SFP displacement in both conditions is a measure of perceived loudness, as it is done in the ASTM standard. Ten TB preparations within the acceptance range of the ASTM standard were used for analysis. The actuator driven stapes footplate displacement amplitude as well as the resulting equivalent sound pressure level was highly dependent on the static force applied to the RW. The sound transfer efficiency from the RW to the stapes footplate increased monotonically with increasing static load. At a moderate static force load (approx. 3.9 mN) the obtained average sound equivalent sound pressure level was 102-120 eq. dB SPL @ nominally 1Vrms input for frequencies ≤4 kHz. At higher frequencies (6-10 kHz) the achieved output dropped to ∼90 dB SPL. This output was obtained at loading conditions compatible with the actuator safe operating range, although it was possible to increase the output further by increasing the static force load. Our results demonstrate for a first time that static force applied to the RW is crucial for sound transmission efficiency. Further we could show that RW stimulation with the DACS PI actuator is possible having a maximum output that is sufficient to treat moderate and pronounced sensorineural hearing losses (SNHL). This article is part of a Special Issue entitled "MEMRO 2012". Copyright © 2013 Elsevier B.V. All rights reserved.
Neudert, Marcus
2018-06-01
Heining et al. Audiological outcome of stapes surgery for far advanced cochlear otosklerosis. J Laryngol Otol 2017; 131: 961–964 DIE COCHLEäRE OTOSKLEROSE IST EINE SELTENE ERKRANKUNG DES INNENOHRES, DIE ZU EINER VERKNöCHERUNG DER HAARZELLEN FüHRT UND DIE HOMöOSTASE DER LYMPHSTRöME NEGATIV BEEINFLUSSEN KANN. BETROFFENE LEIDEN UNTER INNENOHRSCHWERHöRIGKEIT, EINE THERAPIE GILT ALS SCHWIERIG. HEINING UND KOLLEGINNEN/KOLLEGEN HABEN NUN IN EINER RETROSPEKTIVEN STUDIE UNTERSUCHT, OB PATIENTEN MIT FORTGESCHRITTENER OTOSKLEROSE VON EINER STAPEDOTOMIE PROFITIEREN KöNNEN.
High Level Impulse Sounds and Human Hearing: Standards, Physiology, Quantification
2012-05-01
a result of this change the piston-like movements of the stapes are replaced by a tilting action, which is much less effective in pushing cochlear ...Above this threshold, high noise levels result in a turbulent flow of air through the nonlinear element of the protector, effectively dissipating the...electrical diagrams of earplug and earmuff models (Kalb, 2011). In the model shown, the energy flow through the HPD propagates along three parallel
Biomechanical Modeling and Measurement of Blast Injury and Hearing Protection Mechanisms
2015-10-01
12 software into Workbench V. 15 in CFX/ANSYS; 2) building the geometry of the ear model with ossicular chain and cochlear load in CFX; 3...the ear canal to middle ear. The model consists of the ear canal, TM, middle ear ossicles and suspensory ligaments, middle ear cavity, and cochlear ...the TM, ossicles, and ligaments/muscle tendons with the cochlear load applied on the stapes footplate. 17 Fig. 21. Time-history plots of
[The influence of the stapes prosthesis on the long-term results of stapedectomy (author's transl)].
Schöndorf, J; Pilorget, J; Gräber, S
1980-05-01
In comparing two groups of patients following stapedectomies, significantly better long-term results were obtained by using the Robinson steel piston prosthesis (n = 85) as opposed to the wire prosthesis (n = 74). By so doing, the impairment of sound transmission was reduced and the Carhart depression counterbalanced. This improvement is thought to result from the increased mass and stability of the steel prosthesis as well as from its more correct anatomical positioning.
[Applied anatomy of facial recess and posterior tympanum related to cochlear implantation].
Zou, Tuanming; Xie, Nanping; Guo, Menghe; Shu, Fan; Zhang, Hongzheng
2012-05-01
To investigate the related parameters of temporal bone structure in the surgery of cochlear implantation through facial recess approach so as to offer a theoretical reference for the avoidance of facial nerve injury and the accurate localization. In a surgical simulation experiment, twenty human temporal bones were studied. The correlation parameters were measured under surgical microscope. Distance between suprameatal spine and short process of incus was (12.44 +/- 0.51) mm. Width from crotch of chorda tympani nerve to stylomastoid foramen was (2.67 +/- 0.51) mm. Distance between short process of incus and crotch of chorda tympani nerve was (15.22 +/- 0.83) mm. The location of maximal width of the facial recess into short process of incus, crotch of chorda tympani nerve were (6.28 +/- 0.41) mm, (9.81 +/- 0.71) mm, respectively. The maximal width of the facial recess was (2.73 +/- 0.20) mm. The value at level of stapes and round window were (2.48 +/- 0.20 mm) and (2.24 +/- 0.18) mm, respectively. Distance between pyramidalis eminence and anterior round window was (2.22 +/- 0.21) mm. Width from stapes to underneath round window was (2.16 +/- 0.14) mm. These parameters provide a reference value to determine the position of cochlear inserting the electrode array into the scale tympani and opening facial recess firstly to avoid potential damage to facial nerve in surgery.
Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.
Stieger, Christof; Rosowski, John J; Nakajima, Hideko Heidi
2013-07-01
The cochlea is normally driven with "forward" stimulation, in which sound is introduced to the ear canal. Alternatively, the cochlea can be stimulated at the round window (RW) using an actuator. During RW "reverse" stimulation, the acoustic flow starting at the RW does not necessarily take the same path as during forward stimulation. To understand the differences between forward and reverse stimulation, we measured ear-canal pressure, stapes velocity, RW velocity, and intracochlear pressures in scala vestibuli (SV) and scala tympani (ST) of fresh human temporal bones. During forward stimulation, the cochlear drive (differential pressure across the partition) results from the large difference in magnitude between the pressures of SV and ST, which occurs due to the high compliance of the RW. During reverse stimulation, the relatively high impedance of the middle ear causes the pressures of SV and ST to have similar magnitudes, and the differential pressure results primarily from the difference in phase of the pressures. Furthermore, the sound path differs between forward and reverse stimulation, such that motion through a third window is more significant during reverse stimulation. Additionally, we determined that although stapes velocity is a good estimate of cochlear drive during forward stimulation, it is not a good measure during reverse stimulation. This article is part of a special issue entitled "MEMRO 2012". Copyright © 2012 Elsevier B.V. All rights reserved.
Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones
NASA Astrophysics Data System (ADS)
Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.
2009-02-01
We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.
Oval Window Size and Shape: a Micro-CT Anatomical Study With Considerations for Stapes Surgery.
Zdilla, Matthew J; Skrzat, Janusz; Kozerska, Magdalena; Leszczyński, Bartosz; Tarasiuk, Jacek; Wroński, Sebastian
2018-06-01
The oval window is an important structure with regard to stapes surgeries, including stapedotomy for the treatment of otosclerosis. Recent study of perioperative imaging of the oval window has revealed that oval window niche height can indicate both operative difficulty and subjective discomfort during otosclerosis surgery. With regard to shape, structures incorporated into the oval window niche, such as cartilage grafts, must be compatible with the shape of the oval window. Despite the clinical importance of the oval window, there is little information regarding its size and shape. This study assessed oval window size and shape via micro-computed tomography paired with modern morphometric methodology in the fetal, infant, child, and adult populations. Additionally, the study compared oval window size and shape between sexes and between left- and right-sided ears. No significant differences were found among traditional morphometric parameters among age groups, sides, or sexes. However, geometric morphometric methods revealed shape differences between age groups. Further, geometric morphometric methods provided the average oval window shape and most-likely shape variance. Beyond demonstrating oval window size and shape variation, the results of this report will aid in identifying patients among whom anatomical variation may contribute to surgical difficulty and surgeon discomfort, or otherwise warrant preoperative adaptations for the incorporation of materials into and around the oval window.
[Computerized study of perioperative difficulties of stapedectomy].
Cadavid Zink, R; Ballivian, H; Gamboa, F J; Olaizola, F
1993-01-01
A retrospective study of 1035 stapedectomies was performed to assess the incidence of intraoperative complications between 1972-1990. We found 45.89% of complications. We divided this alterations in 6 groups: 1) hemorrhage (20.67%), 2) stapes, foot plate, oval window (8.40%), 3) alterations in the middle ear (6.85%), 4) alterations in the incus (3.76%), 5) alterations in the external ear canal (3.57%) and 6) problems with protesis or graf (2.60%). We have analyzed these complications. We propose to carry out the solutions.
Kamrava, Brandon; Roehm, Pamela C
2017-08-01
Objective To systematically review the anatomy of the ossicular chain. Data Sources Google Scholar, PubMed, and otologic textbooks. Review Methods A systematic literature search was performed on January 26, 2015. Search terms used to discover articles consisted of combinations of 2 keywords. One keyword from both groups was used: [ ossicular, ossicle, malleus, incus, stapes] and [ morphology, morphometric, anatomy, variation, physiology], yielding more than 50,000 hits. Articles were then screened by title and abstract if they did not contain information relevant to human ossicular chain anatomy. In addition to this search, references of selected articles were studied as well as suggested relevant articles from publication databases. Standard otologic textbooks were screened using the search criteria. Results Thirty-three sources were selected for use in this review. From these studies, data on the composition, physiology, morphology, and morphometrics were acquired. In addition, any correlations or lack of correlations between features of the ossicular chain and other features of the ossicular chain or patient were noted, with bilateral symmetry between ossicles being the only important correlation reported. Conclusion There was significant variation in all dimensions of each ossicle between individuals, given that degree of variation, custom fitting, or custom manufacturing of prostheses for each patient could optimize prosthesis fit. From published data, an accurate 3-dimensional model of the malleus, incus, and stapes can be created, which can then be further modified for each patient's individual anatomy.
Mutlu, Ahmet; Topdağ, Özlem; Topdağ, Murat; İşeri, Mete; Erdoğan, Selvet
2017-08-01
The aim of this study was to compare the hearing results of embedding the partial ossicular reconstruction prosthesis (PORP) underneath the malleus with the malleus relocation technique and tympanic membrane graft in the presence of the malleus. A retrospective review of patient charts and audiometric results in a tertiary referral center was conducted. In total, 83 patients who underwent intact canal tympanoplasty with mastoidectomy between 2010 and 2015 were included and divided into two different groups: malleus assembly to the stapes head (MASH) and tympanic membrane assembly to the stapes head (TASH). Pre- and postoperative audiometric results were assessed. The air-bone gap (ABG) and hearing gains were evaluated according to the groups. In MASH, 86.1% (n=31) of the patients were received successful surgery and the postoperative average ABG was 10.41 dB. In TASH, 82.9% (n=39) of the patients were considered successful and the postoperative ABG was 13.27 dB. According to the overall data, MASH was more statistically successful than TASH, and hearing gains at 500 Hz (p<0.036), 2000 Hz (p<0.031), and PTA (p<0.22) were statistically significant better in the MASH group. Malleus relocation is a successful technique with the presence of the malleus and provides better hearing outcomes than direct placement under the tympanomeatal flap. Both malleus- and tympanomeatal flap-linked groups were successful, but the malleus-linked group showed better ABGs.
Malleus-to-footplate prosthetic interposition: experience with 265 patients.
Colletti, V; Fiorino, F G
1999-03-01
Absence of the long process of the incus with or without absence of the stapes head accounts for more than 80% of ossicular discontinuities. Total or partial replacement prostheses, made of various materials, are interposed to restore the transfer function of the middle ear. To simplify ossicular reconstruction, reduce operative times and costs, improve functional outcomes, and avoid the risk of infections, we have adopted, during the past 10 years, a technique that makes use of a personally designed alloplastic prosthetic device. The prosthesis connects the malleus to the footplate, even in the presence of the stapes superstructure. This malleus-to-footplate prosthesis consists in a plastipore-coated steel piston and hydroxyapatite head, complete with a groove. The groove is placed beneath the malleus neck after dissection of the tensor tympani tendon and the shaft of the piston on the footplate. Two hundred ninety primary ossiculoplasties with the malleus-to-footplate prostheses were performed in 265 patients from 1986 to 1995 in the ENT Department of the University of Verona. The average postoperative air-bone gap at 0.5 to 3 kHz was 11 dB at 1 year and 14 dB at 5 years. These outcomes are significantly better than those personally obtained previously with ossicular or alloplastic prostheses. No extrusions occurred. The structural characteristics of the malleus-to-foot-plate prosthesis endow the prosthesis with a high degree of biocompatibility and stability and optimal sound-transfer function. The rationale for this particular ossiculoplasty procedure is discussed.
Carpinelli, Marina R; Kruse, Elizabeth A; Arhatari, Benedicta D; Debrincat, Marlyse A; Ogier, Jacqueline M; Bories, Jean-Christophe; Kile, Benjamin T; Burt, Rachel A
2015-07-01
E26 transformation-specific 1 (ETS1) and friend leukemia integration 1 (FLI1) are members of the ETS family of transcription factors, of which there are 28 in humans. Both genes are hemizygous in Jacobsen syndrome, an 11q contiguous gene deletion disorder involving thrombocytopenia, facial dysmorphism, growth and mental retardation, malformation of the heart and other organs, and hearing impairment associated with recurrent ear infections. To determine whether any of these defects are because of hemizygosity for ETS1 and FLI1, we characterized the phenotype of mice heterozygous for mutant alleles of Ets1 and Fli1. Fli1(+/-) mice displayed mild thrombocytopenia, as did Ets1(+/-)Fli1(+/-) animals. Fli1(+/-) and Ets1(+/-)Fli1(+/-) mice also displayed craniofacial abnormalities, including a small middle ear cavity, short nasal bone, and malformed interface between the nasal bone process and cartilaginous nasal septum. They exhibited hearing impairment, otitis media, fusions of ossicles to the middle ear wall, and deformed stapes. Hearing impairment was more penetrant and stapes malformations were more severe in Ets1(+/-)Fli1(+/-) mice than in Fli1(+/-) mice, indicating partial functional redundancy of these transcription factors during auditory development. Our findings indicate that the short nose, otitis media, and hearing impairment in Jacobsen syndrome are likely because of hemizygosity for ETS1 and FLI1. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Further delineation of the GDF6 related multiple synostoses syndrome.
Terhal, Paulien A; Verbeek, Nienke E; Knoers, Nine; Nievelstein, Rutger J A J; van den Ouweland, Ans; Sakkers, Ralph J; Speleman, Lucienne; van Haaften, Gijs
2018-01-01
A mutation in GDF6 was recently found to underlie a multiple synostoses syndrome. In this report, we describe the second family with GDF6-related multiple synostoses syndrome (SYNS4), caused by a novel c.1287C>A/p.Ser429Arg mutation in GDF6. In addition to synostoses of carpal and/or tarsal bones, at least 6 of 10 affected patients in this family have been diagnosed with mild to moderate hearing loss. In four of them otosclerosis was said to be present, one patient had hearing loss due to severe stapes fixation at the age of 6 years, providing evidence that hearing loss in the GDF6-related multiple synostoses syndrome can be present in childhood. Two others had surgery for stapes fixation at adult age. We hypothesize that, identical to the recently published GDF6-related multiple synostoses family, the p.Ser429Arg mutation also leads to a gain of function. The previously reported c.1330T>A/pTyr444Asn mutation was located in a predicted Noggin and receptor I interacting domain and the gain of function was partly due to resistance of the mutant GDF6 to the BMP-inhibitor Noggin. The results in our family show that mutations predicting to affect the type II receptor interface can lead to a similar phenotype and that otosclerosis presenting in childhood can be part of the GDF6-related multiple synostoses syndrome. © 2017 Wiley Periodicals, Inc.
Erovic, Boban M; Chan, Harley H L; Daly, Michael J; Pothier, David D; Yu, Eugene; Coulson, Chris; Lai, Philip; Irish, Jonathan C
2014-01-01
Conventional computed tomography (CT) imaging is the standard imaging technique for temporal bone diseases, whereas cone-beam CT (CBCT) imaging is a very fast imaging tool with a significant less radiation dose compared with conventional CT. We hypothesize that a system for intraoperative cone-beam CT provides comparable image quality to diagnostic CT for identifying temporal bone anatomical landmarks in cadaveric specimens. Cross-sectional study. University tertiary care facility. Twenty cadaveric temporal bones were affixed into a head phantom and scanned with both a prototype cone-beam CT C-arm and multislice helical CT. Imaging performance was evaluated by 3 otologic surgeons and 1 head and neck radiologist. Participants were presented images in a randomized order and completed landmark identification questionnaires covering 21 structures. CBCT and multislice CT have comparable performance in identifying temporal structures. Three otologic surgeons indicated that CBCT provided statistically equivalent performance for 19 of 21 landmarks, with CBCT superior to CT for the chorda tympani and inferior for the crura of the stapes. Subgroup analysis showed that CBCT performed superiorly for temporal bone structures compared with CT. The radiologist rated CBCT and CT as statistically equivalent for 18 of 21 landmarks, with CT superior to CBCT for the crura of stapes, chorda tympani, and sigmoid sinus. CBCT provides comparable image quality to conventional CT for temporal bone anatomical sites in cadaveric specimens. Clinical applications of low-dose CBCT imaging in surgical planning, intraoperative guidance, and postoperative assessment are promising but require further investigation.
Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review.
Tan, Hsern Ern Ivan; Santa Maria, Peter Luke; Wijesinghe, Philip; Francis Kennedy, Brendan; Allardyce, Benjamin James; Eikelboom, Robert Henry; Atlas, Marcus David; Dilley, Rodney James
2018-05-01
Objective To evaluate the recent developments in optical coherence tomography (OCT) for tympanic membrane (TM) and middle ear (ME) imaging and to identify what further development is required for the technology to be integrated into common clinical use. Data Sources PubMed, Embase, Google Scholar, Scopus, and Web of Science. Review Methods A comprehensive literature search was performed for English language articles published from January 1966 to January 2018 with the keywords "tympanic membrane or middle ear,"optical coherence tomography," and "imaging." Conclusion Conventional imaging techniques cannot adequately resolve the microscale features of TM and ME, sometimes necessitating diagnostic exploratory surgery in challenging otologic pathology. As a high-resolution noninvasive imaging technique, OCT offers promise as a diagnostic aid for otologic conditions, such as otitis media, cholesteatoma, and conductive hearing loss. Using OCT vibrometry to image the nanoscale vibrations of the TM and ME as they conduct acoustic waves may detect the location of ossicular chain dysfunction and differentiate between stapes fixation and incus-stapes discontinuity. The capacity of OCT to image depth and thickness at high resolution allows 3-dimensional volumetric reconstruction of the ME and has potential use for reconstructive tympanoplasty planning and the follow-up of ossicular prostheses. Implications for Practice To achieve common clinical use beyond these initial discoveries, future in vivo imaging devices must feature low-cost probe or endoscopic designs and faster imaging speeds and demonstrate superior diagnostic utility to computed tomography and magnetic resonance imaging. While such technology has been available for OCT, its translation requires focused development through a close collaboration between engineers and clinicians.
Mason, Matthew J.; Cornwall, Hannah L.; Smith, Ewan St. J.
2016-01-01
Although increasingly popular as a laboratory species, very little is known about the peripheral auditory system of the naked mole-rat, Heterocephalus glaber. In this study, middle and inner ears of naked mole-rats of a range of ages were examined using micro-computed tomography and dissection. The ears of five other bathyergid species (Bathyergus suillus, Cryptomys hottentotus, Fukomys micklemi, Georychus capensis and Heliophobius argenteocinereus) were examined for comparative purposes. The middle ears of bathyergids show features commonly found in other members of the Ctenohystrica rodent clade, including a fused malleus and incus, a synovial stapedio-vestibular articulation and the loss of the stapedius muscle. Heterocephalus deviates morphologically from the other bathyergids examined in that it has a more complex mastoid cavity structure, poorly-ossified processes of the malleus and incus, a ‘columelliform’ stapes and fewer cochlear turns. Bathyergids have semicircular canals with unusually wide diameters relative to their radii of curvature. How the lateral semicircular canal reaches the vestibule differs between species. Heterocephalus has much more limited high-frequency hearing than would be predicted from its small ear structures. The spongy bone forming its ossicular processes, the weak incudo-stapedial articulation, the columelliform stapes and (compared to other bathyergids) reduced cochlear coiling are all potentially degenerate features which might reflect a lack of selective pressure on its peripheral auditory system. Substantial intraspecific differences were found in certain middle and inner ear structures, which might also result from relaxed selective pressures. However, such interpretations must be treated with caution in the absence of experimental evidence. PMID:27926945
Su, Yu; Yuan, Hu; Song, Yue-shuai; Shen, Wei-dong; Han, Wei-ju; Liu, Jun; Han, Dong-yi; Dai, Pu
2014-08-01
Congenital absence of the oval window (CAOW) is a rare condition in which the stapes footplate fails to develop, resulting in a significant conductive hearing loss in the affected ear. The purpose of this study was to describe the surgical management and outcomes of patients with CAOW undergoing the oval window drill-out (OWD) procedure. A retrospective chart review of patients with CAOW between 1996 and 2011 was performed. Clinical data of patients who underwent OWD were collected. Seventy-nine patients (103 ears) were confirmed using exploratory tympanotomy as having congenital stapes anomalies and CAOW without any anomalies of the tympanic membrane and external auditory canal. Demographic data, CT findings, operative findings, complications, and preoperative/postoperative audiometry data of patients who underwent OWD were collected. The preoperative and postoperative audiologic findings were analyzed in 42 patients (56 ears) with complete data. Hearing restoration surgery was aborted for various reasons in 14 cases. Six patients underwent revision operations for worsening hearing after their first surgery. The average preoperative 4 tone air conduction threshold was 67 dB; the average 6-month postoperative four tone air conduction threshold was 49 dB, and the average postoperative hearing gain was 18 dB. For the 56 ears, the average 4 tone air conduction threshold 6 months after surgery was significantly lower than the preoperative threshold. The oval window drill-out procedure is a viable operation for patients with congenital absence of the oval window, and it is important for surgeons to develop personalized treatment programs to improve patients' hearing with minimal complications.
Banakis Hartl, Renee M; Mattingly, Jameson K; Greene, Nathaniel T; Jenkins, Herman A; Cass, Stephen P; Tollin, Daniel J
2016-10-01
A cochlear implant electrode within the cochlea contributes to the air-bone gap (ABG) component of postoperative changes in residual hearing after electrode insertion. Preservation of residual hearing after cochlear implantation has gained importance as simultaneous electric-acoustic stimulation allows for improved speech outcomes. Postoperative loss of residual hearing has previously been attributed to sensorineural changes; however, presence of increased postoperative ABG remains unexplained and could result in part from altered cochlear mechanics. Here, we sought to investigate changes to these mechanics via intracochlear pressure measurements before and after electrode implantation to quantify the contribution to postoperative ABG. Human cadaveric heads were implanted with titanium fixtures for bone conduction transducers. Velocities of stapes capitulum and cochlear promontory between the two windows were measured using single-axis laser Doppler vibrometry and fiber-optic sensors measured intracochlear pressures in scala vestibuli and tympani for air- and bone-conducted stimuli before and after cochlear implant electrode insertion through the round window. Intracochlear pressures revealed only slightly reduced responses to air-conducted stimuli consistent with previous literature. No significant changes were noted to bone-conducted stimuli after implantation. Velocities of the stapes capitulum and the cochlear promontory to both stimuli were stable after electrode placement. Presence of a cochlear implant electrode causes alterations in intracochlear sound pressure levels to air, but not bone, conducted stimuli and helps to explain changes in residual hearing noted clinically. These results suggest the possibility of a cochlear conductive component to postoperative changes in hearing sensitivity.
Hulka, G F; McElveen, J T
1998-09-01
Canal wall down and intact canal wall tympanomastoidectomy represent two surgical approaches to middle ear pathology. The authors hypothesize that there is a difference in the ability to view structures in the middle ear between these two methods. Depending on the individual, many surgeons have used the two different techniques of intact canal wall and canal wall down tympanomastoidectomy for approaching the middle ear. However, opinions conflict as to which approach provides the best visualization of different locations in the middle ear. This study prospectively evaluated temporal bones to determine the differences in visualizing structures of the middle ear using these two approaches. Twelve temporal bones underwent a standardized canal wall down tympanomastoidectomy using a reversible canal wall down technique. All bones were viewed in two dissections: intact canal wall and canal wall down preparations. Four points previously had been marked on each temporal bone in randomly assigned colors. These points include the sinus tympani, posterior crus of stapes, lateral epitympanum, and the Eustachian tube orifice. An observer blinded to the purpose of the study, color, and number of locations recorded the color and location of marks observed within the temporal bones. Randomized bones of two separate settings were viewed such that each bone was viewed in both the canal wall down and the intact canal wall preparations. A significant difference was noted in the ability to observe middle ear pathology between the intact canal wall versus canal wall down tympanomastoidectomy, with the latter showing superiority (p < 0.001). Of the four subsites, the sinus tympani, posterior crus of stapes, and lateral epitympanum were observed more frequently with the canal wall down. There was no significant difference in the ability to observe the Eustachian tube orifice between the two techniques. Statistical analysis shows good reproducibility and randomization of this study. The canal wall down tympanomastoidectomy allowed for superior viewing of the three locations, sinus tympanic, posterior crus of stapes, and lateral at the tympanum, as they were marked in the study. This study shows the potential for improved visualization via the canal wall down tympanomastoidectomy. A significant amount of literature written by individuals and otology group practices is available retrospectively comparing the advantages and disadvantages of intact canal wall versus canal wall down mastoidectomy procedures for approaching middle ear pathology. In the interest of objectively evaluating the differences between these two approaches, we have studied temporal bones in a prospective randomized, blinded study comparing the two. Twelve bones were used and observed twice, once in each of 2 sessions. All bones were viewed in two dissections: intact canal wall and canal wall down mastoidectomy. Four points were marked on each temporal bone in three different colors applied in a randomized order to eliminate observer expectation. The four points marked include sinus tympani, posterior crus of the stapes footplate, lateral epitympanum, and Eustachian tube orifice. Both intact canal wall and canal wall down bones were provided randomly to the observer at each viewing session. Before the observer was allowed to see the dissections, those requiring replacement of the canal for the first session of the study had this done in a method using native posterior bony canal. Temporal bones were presented to an expert otologist in a randomized fashion with each temporal bone being placed in a temporal bone bowl holder and specialized framework, allowing for rotation and repositioning approximating the experience in an operating room setting. For each temporal bone, the observer filled in a questionnaire describing his or her observations by denoting both location and color of marks observed. (ABSTRACT TRUNCATED)
Bathla, Meeta; Doshi, Hiren; Kansara, Atul
2018-03-01
Role of high resolution computerized tomography (HRCT) of temporal bone is established in cases of atticoantral chronic suppurative otitis media (CSOM) with intracranial complications. Routine use of HRCT in management of patients of atticoantral CSOM without intracranial complications has been an issue of debate. The aim of this study was to evaluate the routine use of HRCT of temporal bone in such cases. This study was a prospective study done at LG hospital, AMC MET Medical College, Ahmedabad to evaluate and compare the temporal bone findings in HRCT and intraoperative findings in 100 patients with atticoantral CSOM. All patients underwent HRCT screening followed by surgical exploration of middle ear cleft. In extent of disease HRCT showed very high sensitivity and specificity for epitympanum (100, 94%) and mesotympanum (98, 98%) areas. It gave valuable information of disease extent in hidden areas like sinus tympani and facial recess of mesotympanum. HRCT satisfactorily delineated malleus and incus erosion but had 75% sensitivity for detecting erosion of stapes suprastructure, though specificity was of 97%. For bony anatomical landmarks HRCT showed very high sensitivity and specificity for detecting erosion of lateral semicircular canal, tegmen tympani and sinus plate. Detection of facial canal erosion on HRCT had moderate sensitivity of 75%. We concluded that routine use of HRCT is justified as a reliable preoperative tool in patients with atticoantral CSOM without intracranial complications and it helps to plan type of surgical intervention. HRCT has limited role to distinguish between granulations and cholesteatoma and also to delineate stapes supra structure and facial nerve canal.
Jang, Chul Ho; Ahn, Seung Hyun; Kim, Geun Hyung
2016-12-01
Silicone sheet is a material which is commonly used in middle ear surgery to prevent the formation of adhesions between the tympanic membrane and the medial bony wall of the middle ear cavity. However, silicone sheet can induce a tight and hard fibrous capsule in the region of the stapes, and this is particularly common in cases of eustachian tube dysfunction. As a result of the fibrous encapsulation around the silicone sheet, postoperative aeration of the stapes can be interrupted causing poor hearing gain. In this study, we performed an in vitro and in vivo evaluation of the antifibrotic effects of a dexamethasone and alginate (Dx/alginate) coating on silicone sheet. The Dx/alginate-coated silicone sheets were fabricated using a plasma-treatment and coating method. The Dx/alginate-coated silicone sheets effectively limited in vitro fibroblast attachment and proliferation due to the controlled release of Dx, which can be modified by manipulation of the alginate coating. For the in-vivo evaluation, guinea pigs (albino, male, weighing 250g) were divided into two groups, with the control group (n=5) implanted with silicone sheet and the test group (n=5) receiving Dx/alginate-coated silicone sheet. Animals were sacrificed 3 weeks after implantation, and histological analysis was performed using hematoxylin and eosin (H&E) and immunohistochemical staining techniques. Dx/alginate-coated silicone sheets showed marked inhibition of fibrosis in both the in vitro and in vivo studies. Silicone sheet that incorporates a Dx/alginate coating can release Dx and inhibit fibrosis in the middle ear. This material could be utilized in middle ear surgery as a means of preserving proper aeration and hearing gain following ossiculoplasty. Copyright © 2016 Elsevier B.V. All rights reserved.
Finite element modelling of sound transmission from outer to inner ear.
Areias, Bruno; Santos, Carla; Natal Jorge, Renato M; Gentil, Fernanda; Parente, Marco Pl
2016-11-01
The ear is one of the most complex organs in the human body. Sound is a sequence of pressure waves, which propagates through a compressible media such as air. The pinna concentrates the sound waves into the external auditory meatus. In this canal, the sound is conducted to the tympanic membrane. The tympanic membrane transforms the pressure variations into mechanical displacements, which are then transmitted to the ossicles. The vibration of the stapes footplate creates pressure waves in the fluid inside the cochlea; these pressure waves stimulate the hair cells, generating electrical signals which are sent to the brain through the cochlear nerve, where they are decoded. In this work, a three-dimensional finite element model of the human ear is developed. The model incorporates the tympanic membrane, ossicular bones, part of temporal bone (external auditory meatus and tympanic cavity), middle ear ligaments and tendons, cochlear fluid, skin, ear cartilage, jaw and the air in external auditory meatus and tympanic cavity. Using the finite element method, the magnitude and the phase angle of the umbo and stapes footplate displacement are calculated. Two slightly different models are used: one model takes into consideration the presence of air in the external auditory meatus while the other does not. The middle ear sound transfer function is determined for a stimulus of 60 dB SPL, applied to the outer surface of the air in the external auditory meatus. The obtained results are compared with previously published data in the literature. This study highlights the importance of external auditory meatus in the sound transmission. The pressure gain is calculated for the external auditory meatus.
Comparison of Free-Beam- and Fiber-Type CO2 Laser Delivery Systems in Stapes Surgery.
Chang, Mun Young; Choi, Hyun Seok; Lee, Sang-Youp; Koo, Ja-Won
2017-07-01
A free-beam-type CO 2 laser, which use a micromanipulator mounted on a microscope as the delivery system, has the merit of not being affected by hand tremor at the time of shooting. However, this delivery system has several disadvantages, including a restricted operation range and a risk of incorrect focusing. A fiber-type CO 2 laser uses a hand-held delivery system and has the opposite merits and demerits. We compared the results of stapes surgery with free-beam and fiber type delivery systems. The study enrolled 36 patients who underwent stapedotomy with free-beam- (n=26) or fiber- (n=10) type CO 2 lasers. The air-bone (AB) gap closure, bone conduction (BC) change, and operating time were evaluated. The AB gap closure was calculated by subtracting the preoperative BC thresholds from the postoperative air conduction thresholds. The BC change was calculated by subtracting the postoperative BC thresholds from the preoperative BC thresholds. The mean operating time was significantly ( p =0.035) shorter in the fiber-type group (72.5±8.2 min) than in the free-beam-type group (80.5±11.4 min). The mean AB gap closure did not differ significantly ( p =0.297) between the free-beamand fiber-type groups (5.8±10.1 and 1.4±6.8 dB, respectively). The mean BC change did not differ significantly ( p =0.873) between the free-beam- and fiber-type groups (2.4±6.9 and 2.8±5.3 dB, respectively). The hearing outcomes did not differ significantly between the two groups. Operating times were significantly shorter using the fiber-type CO 2 laser, while hearing outcomes did not differ significantly between the two groups.
Auditory ossicles from southwest Asian Mousterian sites.
Quam, Rolf; Rak, Yoel
2008-03-01
The present study describes and analyzes new Neandertal and early modern human auditory ossicles from the sites of Qafzeh and Amud in southwest Asia. Some methodological issues in the measurement of these bones are considered, and a set of standardized measurement protocols is proposed. Evidence of erosive pathological processes, most likely attributed to otitis media, is present on the ossicles of Qafzeh 12 and Amud 7 but none can be detected in the other Qafzeh specimens. Qafzeh 12 and 15 extend the known range of variation in the fossil H. sapiens sample in some metric variables, but morphologically, the new specimens do not differ in any meaningful way from living humans. In most metric dimensions, the Amud 7 incus falls within our modern human range of variation, but the more closed angle between the short and long processes stands out. Morphologically, all the Neandertal incudi described to date show a very straight long process. Several tentative hypotheses can be suggested regarding the evolution of the ear ossicles in the genus Homo. First, the degree of metric and morphological variation seems greater among the fossil H. sapiens sample than in Neandertals. Second, there is a real difference in the size of the malleus between Neandertals and fossil H. sapiens, with Neandertals showing larger values in most dimensions. Third, the wider malleus head implies a larger articular facet in the Neandertals, and this also appears to be reflected in the larger (taller) incus articular facet. Fourth, there is limited evidence for a potential temporal trend toward reduction of the long process within the Neandertal lineage. Fifth, a combination of features in the malleus, incus, and stapes may indicate a slightly different relative positioning of either the tip of the incus long process or stapes footplate within the tympanic cavity in the Neandertal lineage.
Banakis Hartl, Renee M.; Mattingly, Jameson K.; Greene, Nathaniel T.; Jenkins, Herman A.; Cass, Stephen P.; Tollin, Daniel J.
2016-01-01
Hypothesis A cochlear implant electrode within the cochlea contributes to the air-bone gap (ABG) component of postoperative changes in residual hearing after electrode insertion. Background Preservation of residual hearing after cochlear implantation has gained importance as simultaneous electric-acoustic stimulation allows for improved speech outcomes. Postoperative loss of residual hearing has previously been attributed to sensorineural changes; however, presence of increased postoperative air-bone gap remains unexplained and could result in part from altered cochlear mechanics. Here, we sought to investigate changes to these mechanics via intracochlear pressure measurements before and after electrode implantation to quantify the contribution to postoperative air-bone gap. Methods Human cadaveric heads were implanted with titanium fixtures for bone conduction transducers. Velocities of stapes capitulum and cochlear promontory between the two windows were measured using single-axis laser Doppler vibrometry and fiber-optic sensors measured intracochlear pressures in scala vestibuli and tympani for air- and bone-conducted stimuli before and after cochlear implant electrode insertion through the round window. Results Intracochlear pressures revealed only slightly reduced responses to air-conducted stimuli consistent with prior literature. No significant changes were noted to bone-conducted stimuli after implantation. Velocities of the stapes capitulum and the cochlear promontory to both stimuli were stable following electrode placement. Conclusion Presence of a cochlear implant electrode causes alterations in intracochlear sound pressure levels to air, but not bone, conducted stimuli and helps to explain changes in residual hearing noted clinically. These results suggest the possibility of a cochlear conductive component to postoperative changes in hearing sensitivity. PMID:27579835
[Observation of bridging operation by an autogenous incus in the ossiculoplasty].
Li, Hao-zhun; Gong, Shu-sheng
2008-10-01
To study the clinical effects of bridging operation by an autogenous incus in the ossiculoplasty. All the postoperative follow-up data of the 68 patients were analyzed retrospectively, who underwent bridging operation by an autogenous incus in the ossiculoplasty and were followed up for 6-28 months with an average of 19.75 months. The autogenous incus which had been reshaped was implanted between the intact malleus and the intact mobile stapes. The preoperative and postoperative pure tone average (PTA) air-conduction, bone-conduction and air-bone gap on four frequencies (0.5, 1, 2 and 4 kHz) were calculated and analyzed. No postoperative autogenous includes were extruded with only two cases displaced. The pure tone air conduction improved from a preoperative average of (46.69 +/- 18.32) dB to a postoperative average of (30.21 +/- 9.46) dB, while bone conduction improved from a preoperative average of (24.72 +/- 10.63) dB to a postoperative average of (18.15 +/- 8.91) dB, as well as air-bone gap closed from a preoperative average of 21.97 +/- 10.32 dB to a postoperative average of (12.06 +/- 9.46) dB. The success rate (postoperative PTA-ABG < or = 20 dB) occurred in 75% of all the cases. The improvement of the bone conduction occurred in 66% of all the cases, at least with 10 dB occurred in at least two frequencies. Because of low expenses, high convenience in an operation, high stability in effects, very low complications and excellent hearing results for the patients, the bridging operation as stated in the above was worthy of choice. The autogenous incus could be utilized if the defects between the intact, mobile stapes and the intact malleus could be well repaired.
[Facial nerve monitoring during middle ear surgery: Results of a French survey].
Mazzaschi, O; Juvanon, J-M; Mondain, M; Lavieile, J-P; Ayache, D
2014-01-01
Facial nerve injury is a rare complication of middle ear surgery. To date there is no widely accepted consensus on the use of intraoperative facial nerve monitoring during middle ear surgery, whereas its use has been proved as a valuable adjunct in neurotologic surgery. The purpose of our study was to identify introperative facial nerve monitoring practice patterns in France for middle ear surgery. A 19-item survey has been made up by three experienced otologists under the auspices of the French Otology and Neurotology Association. With the support of the French Society of Otolaryngology--Head and Neck Surgery, the survey was electronically sent by email to 1249 practicing ENT with a valid email address. Answers were analyzed two months later. Among 1249 email sent, 299 were opened (24%) and 83 answers were collected (6,6%). Of the respondents, 66% had access to intraoperative facial nerve monitoring. Otolaryngologists involved in academic setting were influenced by their teaching duty in 27%. Intraoperative facial nerve monitoring should not be required for stapes surgery, ossiculoplasty, myringoplasty for, respectively, 92%, 93 % and 98% of the respondents. In cochlear implantation, 78% of ear surgeons used facial nerve monitoring. Answers were more controversial for chronic ear surgery, ear atresia and middle ear implant. Revision surgery and CT scan can influence answers. Despite a low response rate, results of this national survey revealed interesting findings. For most of the respondents, intraoperative facial nerve monitoring was not indicated in stapes surgery, myringoplasty and ossiculoplasty. The use of intraoperative facial nerve monitoring for cochlear implantation was supported by the majority of respondents. Variations in response rate were more significant for chronic ear surgery, including middle ear cholesteatoma, and for ear atresia surgery.
Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
Péus, Dominik; Dobrev, Ivo; Prochazka, Lukas; Thoele, Konrad; Dalbert, Adrian; Boss, Andreas; Newcomb, Nicolas; Probst, Rudolf; Röösli, Christof; Sim, Jae Hoon; Huber, Alexander; Pfiffner, Flurin
2017-08-01
Animals are frequently used for the development and testing of new hearing devices. Dimensions of the middle ear and cochlea differ significantly between humans and commonly used animals, such as rodents or cats. The sheep cochlea is anatomically more like the human cochlea in size and number of turns. This study investigated the middle-ear ossicular velocities and intracochlear sound pressure (ICSP) in sheep temporal bones, with the aim of characterizing the sheep as an experimental model for implantable hearing devices. Measurements were made on fresh sheep temporal bones. Velocity responses of the middle ear ossicles at the umbo, long process of the incus and stapes footplate were measured in the frequency range of 0.25-8 kHz using a laser Doppler vibrometer system. Results were normalized by the corresponding sound pressure level in the external ear canal (P EC ). Sequentially, ICSPs at the scala vestibuli and tympani were then recorded with custom MEMS-based hydrophones, while presenting identical acoustic stimuli. The sheep middle ear transmitted most effectively around 4.8 kHz, with a maximum stapes velocity of 0.2 mm/s/Pa. At the same frequency, the ICSP measurements in the scala vestibuli and tympani showed the maximum gain relative to the P EC (24 dB and 5 dB, respectively). The greatest pressure difference across the cochlear partition occurred between 4 and 6 kHz. A comparison between the results of this study and human reference data showed middle-ear resonance and best cochlear sensitivity at higher frequencies in sheep. In summary, sheep can be an appropriate large animal model for research and development of implantable hearing devices. Copyright © 2017 Elsevier B.V. All rights reserved.
[Stapedotomie with the use of CO2 laser--"one shot" technique].
Szyfter, Witold; Mielcarek-Kuchta, Daniela; Młodkowska, Anna; Miętkiewska-Leszniewska, Dorota; Obrębowska, Zofia; Łączkowska-Przybylska, Joanna
2013-01-01
CO2 laser is used in stapes surgery due to good water absorption and quite optimal ablation of a bony structure without the influence of inner ear parameters. the assessment of the influence of CO2 - "one shot" laser on hearing results in the patients group with otosclerosis. The study was carried out on a patients group after surgical treatment. The follow up time was at least 6 months. The hearing results were described according to the guidelines of the American Committee on Hearing and Equilibrium. The obtained results were statistically analysed with the use of the Wilcoxon sequence pair test. The CO2 - "one shot" laser has been used in Department of Otolaryngology in Poznań since July 2009. Using this system 101 operations were carried out to the end of December 2011. 54 patients were in the analysed group, there were 40 women and 14 men, the age range from 22 to 59. In the Wilcoxon sequence pair test there was a statistically significant correlation between the value of the hearing threshold in pre- and post-operative examinations at 0.5, 1, 2 and 3kHz for bone and air conduction. We found also a statistically significant correlation between the mean value of the air-bone gap before and after treatment. In the group after the surgery the cochlear reserved became closed or decreased (p<0.001). based of the hearing results we found great usefulness of CO2 - "one shot" laser in stapes surgery. Copyright © 2012 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.
Mechanics of the Mammalian Cochlea
Robles, Luis; Ruggero, Mario A.
2013-01-01
In mammals, environmental sounds stimulate the auditory receptor, the cochlea, via vibrations of the stapes, the innermost of the middle ear ossicles. These vibrations produce displacement waves that travel on the elongated and spirally wound basilar membrane (BM). As they travel, waves grow in amplitude, reaching a maximum and then dying out. The location of maximum BM motion is a function of stimulus frequency, with high-frequency waves being localized to the “base” of the cochlea (near the stapes) and low-frequency waves approaching the “apex” of the cochlea. Thus each cochlear site has a characteristic frequency (CF), to which it responds maximally. BM vibrations produce motion of hair cell stereocilia, which gates stereociliar transduction channels leading to the generation of hair cell receptor potentials and the excitation of afferent auditory nerve fibers. At the base of the cochlea, BM motion exhibits a CF-specific and level-dependent compressive nonlinearity such that responses to low-level, near-CF stimuli are sensitive and sharply frequency-tuned and responses to intense stimuli are insensitive and poorly tuned. The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the “cochlear amplifier.” This mechanism involves forces generated by the outer hair cells and controlled, directly or indirectly, by their transduction currents. At the apex of the cochlea, nonlinearities appear to be less prominent than at the base, perhaps implying that the cochlear amplifier plays a lesser role in determining apical mechanical responses to sound. Whether at the base or the apex, the properties of BM vibration adequately account for most frequency-specific properties of the responses to sound of auditory nerve fibers. PMID:11427697
Chien, Wade; Ravicz, Michael E.; Rosowski, John J.; Merchant, Saumil N.
2008-01-01
Objectives (1) To develop a cadaveric temporal-bone preparation to study the mechanism of hearing loss resulting from superior semicircular canal dehiscence (SCD) and (2) to assess the potential usefulness of clinical measurements of umbo velocity for the diagnosis of SCD. Background The syndrome of dehiscence of the superior semicircular canal is a clinical condition encompassing a variety of vestibular and auditory symptoms, including an air-bone gap at low frequencies. It has been hypothesized that the dehiscence acts as a “third window” into the inner ear that shunts acoustic energy away from the cochlea at low frequencies, causing hearing loss. Methods Sound-induced stapes, umbo, and round-window velocities were measured in prepared temporal bones (n = 8) using laser-Doppler vibrometry (1) with the superior semicircular canal intact, (2) after creation of a dehiscence in the superior canal, and (3) with the dehiscence patched. Clinical measurements of umbo velocity in live SCD ears (n = 29) were compared with similar data from our cadaveric temporal-bone preparations. Results An SCD caused a significant reduction in sound-induced round-window velocity at low frequencies, small but significant increases in sound-induced stapes and umbo velocities, and a measurable fluid velocity inside the dehiscence. The increase in sound-induced umbo velocity in temporal bones was also found to be similar to that measured in the 29 live ears with SCD. Conclusion Findings from the cadaveric temporal-bone preparation were consistent with the third-window hypothesis. In addition, measurement of umbo velocity in live ears is helpful in distinguishing SCD from other otologic pathologies presenting with an air-bone gap (e.g., otosclerosis). PMID:17255894
Anatomy, Physiology and Function of the Auditory System
NASA Astrophysics Data System (ADS)
Kollmeier, Birger
The human ear consists of the outer ear (pinna or concha, outer ear canal, tympanic membrane), the middle ear (middle ear cavity with the three ossicles malleus, incus and stapes) and the inner ear (cochlea which is connected to the three semicircular canals by the vestibule, which provides the sense of balance). The cochlea is connected to the brain stem via the eighth brain nerve, i.e. the vestibular cochlear nerve or nervus statoacusticus. Subsequently, the acoustical information is processed by the brain at various levels of the auditory system. An overview about the anatomy of the auditory system is provided by Figure 1.
Cerebrospinal fluid otorhinorrhea due to cochlear dysplasias.
Syal, Rajan; Tyagi, Isha; Goyal, Amit
2005-07-01
Cochlear dysplasia associated with defect in stapes footplate can be a cause of cerebrospinal fluid leak. Repair of cerebrospinal fluid leak in these cases is usually done by packing the vestibule with muscle or fascia. This traditional method of repair has 30-60% failure rate. Cerebrospinal fluid leak in four such patients was successfully repaired using multiple layer packing of vestibule, reinforced by pedicle temporalis muscle graft. Intraoperatively continuous lumbar drain was done. Magnetic resonance imaging of inner ear using 3D FSE T2WI and 3D FIESTA sequences was found helpful noninvasive investigation to localize site and route of cerebrospinal fluid leak.
Prostheses for stapes surgery.
Slattery, W H; House, J W
1995-04-01
A variety of different implants are available today for use by the otologic surgeon. All prostheses are well tolerated, and the risks of complication as a result of their implantation are comparable. The most commonly used prostheses are the wire-Teflon piston and the stainless steel bucket handle. Although the otologic surgeon has a wide variety of prostheses to choose from, most have a preference for one particular type. Results of hearing improvement following a successful stapedectomy is more a function of the surgeon's experience than of the type of prosthesis used. As James L. Sheehy, MD, so often says, "if a technique is working well for you, don't change for change's sake" (personal communication, 1994).
Origin of underwater hearing in whales.
Thewissen, J G; Hussain, S T
1993-02-04
All described fossil and Recent cetaceans have relatively similar ear bones (malleus, incus and stapes) that strongly diverge from those of land mammals. Here we report that the hearing organ of the oldest whale, Pakicetus, is the only known intermediate between that of land mammals and aquatic cetaceans (whales, dolphins and porpoises). The incus of Pakicetus is intermediate with respect to inflation, crural proportions, and position of the mallear joint. The incus and mandible of Pakicetus indicate that the path of soundwaves to its ear resembled that of land mammals. These fossils suggest that the first whale was amphibious, and corroborate the hypothesis that artiodactyls (for example, pigs, camels and ruminants) are the closest extant relatives of cetaceans.
Zahnert, Thomas; Metasch, Marie-Luise; Seidler, Hannes; Bornitz, Matthias; Lasurashvili, Nicoloz; Neudert, Marcus
2016-12-01
Electromagnetical excitation of ossicular vibration is suitable for middle ear transmission measurements in the experimental and clinical setting. Thereby, it can be used as a real-time monitoring system for quality control in ossiculoplasty. Positioning and coupling of middle ear prosthesis are a precondition for good postoperative hearing results, but at the same time completely dependent upon the surgeon's subjective judgment during surgery. We evaluated an electromagnetically driven measurement system that enables for in vitro and in vivo transmission measurements and thus can be used as a real-time monitoring tool in ossicular reconstruction. For electromagnetical excitation a magnet was placed on the umbo of the malleus handle and driven by a magnetic field. The induced stapes displacement was picked up by laser Doppler vibrometry on the footplate. Measurements were performed on the intact ossicular chain in five cadaveric temporal bones and during five cochlear implant surgeries. Additionally, two ossiculoplasties were performed under real-time transmission feedback with the monitoring system. Experimentally, the equivalent sound pressure level of the electromagnetic excitation was about 70 to 80 dB which is 10 to 20 dB less than the acoustic stimulation. In the intraoperative setup the generated stapes displacements were about 5 to 20 dB smaller compared with the temporal bone experiments. Applied as real-time feedback system, an improvement in the middle ear transfer function of 4.5 dB in total and 20 dB in partial ossicular reconstruction were achieved. The electromagnetical excitation and measurement system is comparable to the gold standard with acoustical stimulation in both, the experimental setup in temporal bones as well as in vivo. The technical feasibility of the electromagnetical excitation method has been proven and it is shown that it can be used as a real-time monitoring system for ossiculoplasty in the operation room.
He, Wenxuan; Porsov, Edward; Kemp, David; Nuttall, Alfred L.; Ren, Tianying
2012-01-01
Background It is commonly assumed that the cochlear microphonic potential (CM) recorded from the round window (RW) is generated at the cochlear base. Based on this assumption, the low-frequency RW CM has been measured for evaluating the integrity of mechanoelectrical transduction of outer hair cells at the cochlear base and for studying sound propagation inside the cochlea. However, the group delay and the origin of the low-frequency RW CM have not been demonstrated experimentally. Methodology/Principal Findings This study quantified the intra-cochlear group delay of the RW CM by measuring RW CM and vibrations at the stapes and basilar membrane in gerbils. At low sound levels, the RW CM showed a significant group delay and a nonlinear growth at frequencies below 2 kHz. However, at high sound levels or at frequencies above 2 kHz, the RW CM magnitude increased proportionally with sound pressure, and the CM phase in respect to the stapes showed no significant group delay. After the local application of tetrodotoxin the RW CM below 2 kHz became linear and showed a negligible group delay. In contrast to RW CM phase, the BM vibration measured at location ∼2.5 mm from the base showed high sensitivity, sharp tuning, and nonlinearity with a frequency-dependent group delay. At low or intermediate sound levels, low-frequency RW CMs were suppressed by an additional tone near the probe-tone frequency while, at high sound levels, they were partially suppressed only at high frequencies. Conclusions/Significance We conclude that the group delay of the RW CM provides no temporal information on the wave propagation inside the cochlea, and that significant group delay of low-frequency CMs results from the auditory nerve neurophonic potential. Suppression data demonstrate that the generation site of the low-frequency RW CM shifts from apex to base as the probe-tone level increases. PMID:22470560
Fritsch, Michael H; Gutt, Jason J
2005-03-01
A 3-T magnetic resonance field may cause motion or displacement of middle ear implants not seen in studies with 1.5-T magnets. Previous publications have described the safety limitations of some otologic implants in 1.5-T magnetic resonance fields. Several company-wide recalls of implants were issued. No studies to date have been reported for otologic implants within a 3-T magnetic resonance field, nor have there been comparisons with a 1.5-T field strength. Eighteen commonly used middle ear implants and prostheses were selected. In Part 1, the prostheses were placed in Petri dishes and exposed to a 3-T magnetic resonance field. In Part 2, the particular prostheses that showed movement in Part 1 were placed into their intended use positions within temporal bone laboratory specimens and exposed to a 3-T field. Both parts were repeated in a 1.5-T field. In Part 1, three prostheses moved dramatically from their start positions when exposed to the 3-T magnetic resonance field. In Part 2, the three particular prostheses that showed movement in Part 1 showed no gross displacement or movement from their start positions within the temporal bone laboratory specimens. No implants moved in the 1.5-T field in either Part 1 or Part 2. Certain stapes prostheses move dramatically in Petri dishes in 3-T fields. When placed into temporal bone laboratory specimens, the same prostheses show no signs of movement from the surgical site in a 3-T field, and it appears that the surgical position holds the implants firmly in place. Results of published 1.5-T field studies should not be used directly for safety recommendations in a 3-T magnetic resonance. Heat, voltage induction, and vibration during exposure to the magnetic resonance fields should be considered as additional possible safety issues. Preference should be given to platinum and titanium implants in manufacturing processes and surgical selection.
Middle ear dynamics in response to seismic stimuli in the Cape golden mole (Chrysochloris asiatica).
Willi, U B; Bronner, G N; Narins, P M
2006-01-01
The hypertrophied malleus in the middle ear of some golden moles has been assumed to be an adaptation for sensing substrate vibrations by inertial bone conduction, but this has never been conclusively demonstrated. The Cape golden mole (Chrysochloris asiatica) exhibits this anatomical specialization, and the dynamic properties of its middle ear response to vibrations were the subjects of this study. Detailed three-dimensional middle ear anatomy was obtained by x-ray microcomputed tomography (muCT) at a resolution of 12 microm. The ossicular chain exhibits large malleus mass, selective reduction of stiffness and displacement of the center of mass from the suspension points, all favoring low-frequency tuning of the middle ear response. Orientation of the stapes relative to the ossicular chain and the structure of the stapes footplate enable transmission of substrate vibrations arriving from multiple directions to the inner ear. With the long axes of the mallei aligned parallel to the surface, the animal's head was stimulated by a vibration exciter in the vertical and lateral directions over a frequency range from 10 to 600 Hz. The ossicular chain was shown to respond to both vertical and lateral vibrations. Resonant frequencies were found between 71 and 200 Hz and did not differ significantly between the two stimulation directions. Below resonance, the ossicular chain moves in phase with the skull. Near resonance and above, the malleus moves at a significantly larger mean amplitude (5.8+/-2.8 dB) in response to lateral vs vertical stimuli and is 180 degrees out of phase with the skull in both cases. A concise summary of the propagation characteristics of both seismic body (P-waves) and surface (R-waves) is provided. Potential mechanisms by which the animal might exploit the differential response of the ossicular chain to vertical and lateral excitation are discussed in relation to the properties of surface seismic waves.
Harris, Jeffrey P; Gong, Shusheng
2007-08-01
Recently, a new stapedotomy piston prosthesis, which is a composite metal alloy of nickel and titanium known as nitinol, has been introduced into medical use. This biocompatible alloy has the unique property of shape-memory, which permits tight self-crimping when heat is applied to the wire. To substantiate the favorable initial observations with the SMART piston, this study was undertaken to compare these results (n=26) with those obtained using conventional stainless steel or platinum ribbon prostheses (n=28). Prospective consecutive case review: consecutive cases performed by the same surgeon were analyzed. Tertiary referral center. Fifty-four healthy patients with otosclerosis. Stapedotomy using either SMART prosthesis or conventional prosthesis. Hearing outcomes by audiological assessment. The postoperative hearing mean pure-tone average was 24.81+/-16.20 dBHL for Group 1 (SMART prosthesis) and 27.46+/-15.57 dBHL for Group 2 (conventional prosthesis). Postoperative mean air-bone gap was 7.07+/-8.14 dBHL for Group 1 and 6.38+/-7.54 dBHL for Group 2 using 0.5-, 1-, 2-, and 4-kHz frequencies. When analyzed according to the American Academy of Otolaryngology-Head & Neck Surgery reporting criteria using an estimate of 3 kHz as a mean of the 2-and 4-kHz values, the postoperative mean air-bone gap was 5.42+/-5.4 dBHL for Group 1 SMART and 5.98+/-5.47 dBHL for Group 2 conventional prostheses. Postoperative speech discrimination scores were 96%+/-8.64% and 97%+/-5.9%, respectively. These differences were not shown to be statistically different. Results demonstrate that experienced surgeons may achieve comparable results with both prostheses; however, the ease of self-crimping and the tightness of the crimp may provide advantages that may have long-term benefits. The potential issue of nickel allergy is important when considering patients for this prosthesis.
Perilymph pharmacokinetics of locally-applied gentamicin in the guinea pig.
Salt, A N; Hartsock, J J; Gill, R M; King, E; Kraus, F B; Plontke, S K
2016-12-01
Intratympanic gentamicin therapy is widely used clinically to suppress the vestibular symptoms of Meniere's disease. Dosing in humans was empirically established and we still know remarkably little about where gentamicin enters the inner ear, where it reaches in the inner ear and what time course it follows after local applications. In this study, gentamicin was applied to the round window niche as a 20 μL bolus of 40 mg/ml solution. Ten 2 μL samples of perilymph were collected sequentially from the lateral semi-circular canal (LSCC) at times from 1 to 4 h after application. Gentamicin concentration was typically highest in samples originating from the vestibule and was lower in samples originating from scala tympani. To interpret these results, perilymph elimination kinetics for gentamicin was quantified by loading the entire perilymph space by injection at the LSCC with a 500 μg/ml gentamicin solution followed by sequential perilymph sampling from the LSCC after different delay times. This allowed concentration decline in perilymph to be followed with time. Gentamicin was retained well in scala vestibuli and the vestibule but declined rapidly at the base of scala tympani, dominated by interactions of perilymph with CSF, as reported for other substances. Quantitative analysis, taking into account perilymph kinetics for gentamicin, showed that more gentamicin entered at the round window membrane (57%) than at the stapes (35%) but the lower concentrations found in scala tympani were due to greater losses there. The gentamicin levels found in perilymph of the vestibule, which are higher than would be expected from round window entry alone, undoubtedly contribute to the vestibulotoxic effects of the drug. Furthermore, calculations of gentamicin distribution following targeted applications to the RW or stapes are more consistent with cochleotoxicity depending on the gentamicin concentration in scala vestibuli rather than that in scala tympani. Copyright © 2016 Elsevier B.V. All rights reserved.
Impedances of the ear estimated with intracochlear pressures in normal human temporal bones
NASA Astrophysics Data System (ADS)
Frear, Darcy; Guan, Xiying; Stieger, Christof; Nakajima, Hideko Heidi
2018-05-01
We have measured intracochlear pressures and velocities of stapes and round window (RW) evoked by air conduction (AC) stimulation in many fresh human cadaveric specimens. Our techniques have improved through the years to ensure reliable pressure sensor measurements in the scala vestibuli and scala tympani. Using these measurements, we have calculated impedances of the middle and inner ear (cochlear partition, RW, and physiological leakage impedance in scala vestibuli) to create a lumped element model. Our model simulates our data and allows us to understand the mechanisms involved in air-conducted sound transmission. In the future this model will be used as a tool to understand transmission mechanisms of various stimuli and to help create more sophisticated models of the ear.
The Envoy® Totally Implantable Hearing System, St. Croix Medical
Kroll, Kai; Grant, Iain L.; Javel, Eric
2002-01-01
The Totally Implantable Envoy® System is currently undergoing clinical trials in both the United States and Europe. The fully implantable hearing device is intended for use in patients with sensorineural hearing loss. The device employs piezoelectric transducers to sense ossicle motion and drive the stapes. Programmable signal processing parameters include amplification, compression, and variable frequency response. The fully implantable attribute allows users to take advantage of normal external ear resonances and head-related transfer functions, while avoiding undesirable earmold effects. The high sensitivity, low power consumption, and high fidelity attributes of piezoelectric transducers minimize acoustic feedback and maximize battery life (Gyo, 1996; Yanagihara, (1987) and 2001). The surgical procedure to install the device has been accurately defined and implantation is reversible. PMID:25425915
Hook Region Represented in a Cochlear Model
NASA Astrophysics Data System (ADS)
Steele, Charles R.; Kim, Namkeun; Puria, Sunil
2009-02-01
The present interest is in discontinuities. Particularly the geometry of the hook region, with the flexible round window nearly parallel with the basilar membrane, is not represented by a standard box model, in which both stapes and round window are placed at the end. A better model represents the round window by a soft membrane in the wall of scala tympani, with the end closed. This complicates the analysis considerably. Features are that the significant compression wave, i.e., the fast wave, is of negligible magnitude in this region, and that significant evanescent waves occur because of the discontinuities at the beginning and end of the simulated round window. The effect of this on both high frequency, with maximum basilar membrane response in the hook region, and lower frequencies are determined.
Chapla, Marie E; Nowacek, Douglas P; Rommel, Sentiel A; Sadler, Valerie M
2007-06-01
The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m3) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (p<0.05). The squamosal bone was significantly less dense than the other bones of the head (p<0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex.
Response Changes During Insertion of a Cochlear Implant Using Extracochlear Electrocochleography.
Giardina, Christopher K; Khan, Tatyana E; Pulver, Stephen H; Adunka, Oliver F; Buchman, Craig A; Brown, Kevin D; Pillsbury, Harold C; Fitzpatrick, Douglas C
2018-03-16
Electrocochleography is increasingly being utilized as an intraoperative monitor of cochlear function during cochlear implantation (CI). Intracochlear recordings from the advancing electrode can be obtained through the device by on-board capabilities. However, such recordings may not be ideal as a monitor because the recording electrode moves in relation to the neural and hair cell generators producing the responses. The purposes of this study were to compare two extracochlear recording locations in terms of signal strength and feasibility as intraoperative monitoring sites and to characterize changes in cochlear physiology during CI insertion. In 83 human subjects, responses to 90 dB nHL tone bursts were recorded both at the round window (RW) and then at an extracochlear position-either adjacent to the stapes or on the promontory just superior to the RW. Recording from the fixed, extracochlear position continued during insertion of the CI in 63 cases. Before CI insertion, responses to low-frequency tones at the RW were roughly 6 dB larger than when recording at either extracochlear site, but the two extracochlear sites did not differ from one another. During CI insertion, response losses from the promontory or adjacent to the stapes stayed within 5 dB in ≈61% (38/63) of cases, presumably indicating atraumatic insertions. Among responses which dropped more than 5 dB at any time during CI insertion, 12 subjects showed no response recovery, while in 13, the drop was followed by partial or complete response recovery by the end of CI insertion. In cases with recovery, the drop in response occurred relatively early (<15 mm insertion) compared to those where there was no recovery. Changes in response phase during the insertion occurred in some cases; these may indicate a change in the distributions of generators contributing to the response. Monitoring the electrocochleography during CI insertion from an extracochlear site reveals insertions that are potentially atraumatic show interaction with cochlear structures followed by response recovery or show interactions such that response losses persist to the end of recording.
Tringali, Stéphane; Koka, Kanthaiah; Deveze, Arnaud; Holland, N. Julian; Jenkins, Herman A.; Tollin, Daniel J.
2010-01-01
Objectives To assess the importance of 2 variables, transducer tip diameter and resection of the round window (RW) niche, affecting the optimization of the mechanical stimulation of the RW membrane with an active middle ear implant (AMEI). Materials and Methods: Ten temporal bones were prepared with combined atticotomy and facial recess approach to expose the RW. An AMEI stimulated the RW with 2 ball tip diameters (0.5 and 1.0 mm) before and after the resection of the bony rim of the RW niche. The RW drive performance, assessed by stapes velocities using laser Doppler velocimetry, was analyzed in 3 frequency ranges: low (0.25–1 kHz), medium (1–3 kHz) and high (3–8 kHz). Results Driving the RW produced mean peak stapes velocities (HEV) of 0.305 and 0.255 mm/s/V at 3.03 kHz, respectively, for the 1- and 0.5-mm tips, with the RW niche intact. Niche drilling increased the HEV to 0.73 and 0.832 mm/s/V for the 1- and 0.5-mm tips, respectively. The tip diameter produced no difference in output at low and medium frequencies; however, the 0.5-mm tip was 5 and 6 dB better than the 1-mm tip at high frequencies before and after niche drilling, respectively. Drilling the niche significantly improved the output by 4 dB at high frequencies for the 1-mm tip, and by 6 and 10 dB in the medium- and high-frequency ranges for the 0.5-mm tip. Conclusion The AMEI was able to successfully drive the RW membrane in cadaveric temporal bones using a classical facial recess approach. Stimulation of the RW membrane with an AMEI without drilling the niche is sufficient for successful hearing outputs. However, the resection of the bony rim of the RW niche significantly improved the RW stimulation at medium and higher frequencies. Drilling the niche enhances the exposure of the RW membrane and facilitates positioning the implant tip. PMID:20150727
Audiological comparison between two different clips prostheses in stapes surgery.
Potena, M; Portmann, D; Guindi, S
2015-01-01
To compare audiometric results and complications of stapes surgery with two different types of piston prosthesis, the Portmann Clip Piston (Medtronic) (PCP) and the Soft Clip Piston (Kurz) (SCP). Study conducted on 64 patients who underwent primary stapedotomy from 2008 to 2011. We matched for each case of stapedotomy with the PCP (Medtronic Xomed Inc. Portmann Clip Piston Stainless Steel/Fluoroplastic) a case with the SCP (Heinz Kurz GmbH Medizintechnik Soft Piston Clip Titanium). Each group consisted of 32 patients, and patients in both groups were matched with respect to gender, age, bilateral or unilateral otosclerosis, otological symptoms (tinnitus, vertigo or dizziness), family history, operated side and the Portmann grading for otosclerosis. The length of the prosthesis used was reported. Post-operative complications such as tinnitus, vertigo, hearing loss and altered taste were documented. Each patient was subjected to a preoperative and postoperative audiogram (follow-up at the second month after the surgery). We used the Student test for statistical analysis. Statistical significance was set at < 0.01. None of the patients experienced a post-operative hearing loss and none required a later revision surgery. No statistically significant difference was found between the two populations regarding demographic data (age, sex, side, bilaterality, family history, stage and lenght of piston) and hearing level (> 0.01) in the air, bone conduction and air-bone gap (ABG). Postoperative complications did not result to be significantly different between the two groups. Also, both groups showed a significant improvement (< 0.01) in the post-operative air, bone conduction and air-bone gap. There was no statistically significant difference (> 0.01) between the post-operative hearing results (bone conduction, air conduction, air-bone gap) using the two pistons. The mean ABG improvement was respectively 16.63 dB in the SCP group and 20.59 dB in the PCP group. The titanium Soft clip piston (SCP) is a good alternative to the Portmann clip piston (PCP). Nevertheless there are some differences in the surgical fixing of these two pistons in the correct position.
Hearing results using the SMart piston prosthesis.
Fayad, Jose N; Semaan, Maroun T; Meier, Josh C; House, John W
2009-12-01
SMart, a newly introduced piston prosthesis for stapedotomy, is a nitinol-based, heat-activated, self-crimping prosthesis. We review our hearing results and postoperative complications using this self-crimped piston prosthesis and compare them with those obtained using stainless steel or platinum piston prostheses. Audiometric results using the SMart piston are identical to those obtained using a conventional piston prosthesis. Retrospective chart review. Private neurotologic tertiary referral center. The 416 ears reviewed included 306 with a SMart prosthesis and 110 conventional prostheses. 61% were women. Mean follow-up time was 5.6 (standard deviation [SD], 6.3 mo) and 6.9 months (SD, 7.0 mo) for the 2 groups, respectively. Stapedotomy using the SMart or a conventional (non-SMart) prosthesis. Audiometric hearing results, including pure-tone average (PTA) and air-bone gap (ABG), and prevalence of postoperative complications. Mean postoperative PTA was 32.6 (SD, 16.8) dB for the SMart group and 29.4 (SD, 13.5) dB for the non-SMart group, with ABGs of 7.6 (SD, 8.9) and 6.0 (SD, 5.2) dB, respectively. Mean change (decrease) in ABG was 18.7 (SD, 13.1) dB for the SMart group and 19.9 (SD, 10.3) dB for the non-SMart group. High-frequency bone PTAs showed overclosure of 2.0 (SD, 7.9) dB for the SMart group and 3.6 (SD, 8.6) dB for the non-SMart group. Postoperative vertigo and tinnitus were infrequent. No significant differences in these audiometric outcomes or complication rates were noted between groups. There was no significant difference in rate of gap closure to within 10 dB (78.3 versus 84.2%, SMart and non-SMart, respectively) or 20 dB (94.2 and 98.0%). Compared with conventional stapes prostheses, the nitinol-based SMart is a safe and reliable stapes prosthesis that eliminates manual crimping without significantly altering the audiometric outcome. Complications are rare, but longer follow-up is needed before establishing long-term stability.
Tian, Hao; Wang, Line; Gao, Fenqi; Liang, Wenqi; Peng, Kevin A
2018-05-22
Incomplete partition type III (IP-III), also termed X-linked deafness with stapes gusher, is a heterogeneous condition that predominantly affects males; however, females demonstrating the phenotype also exist. The absence of a bony partition between the fundus of the internal auditory canal (IAC) and cochlea predisposes these patients to cerebrospinal fluid leak or electrode passage into the IAC when performing cochlear implantation. We describe a surgeon-fabricated guide catheter, made intraoperatively from a 16-gauge intravenous catheter, that helps avoid electrode passage into the IAC during CI for patients with IP-III. Acceptable cochlear implant outcomes were attainable in IP-III patients, but these patients scored worse than matched CI patients with normal inner ear structures. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The Lenticular Process of the Incus
Graboyes, Evan M.; Hullar, Timothy E.; Chole, Richard A.
2011-01-01
17th century anatomists, including Franciscus Sylvius, identified a small bony structure between the distal end of the incus and the stapes that they believed was a separate and thus additional ossicle. The existence of the ossicle at the distal portion of the long process of the incus was controversial for the next two hundred years. In the 19th century, anatomists including Johann Friedrich Blumenbach, Henry Jones Shrapnell, Eduard Hagenbach, and Joseph Hyrtl provided numerous arguments to demonstrate why the so-called additional ossicle was actually attached to the incus by a thin strut, and thus not a separate bone. Since then, the ovoid end of the incus has been referred to as the “lenticular process” of the incus. The best nomenclature for the bony connection between the lenticular process and the rest of the incus remains uncertain, but the term “lenticular process” should not include its connecting pedicle. PMID:21986927
Posterior semicircular canal dehiscence: value of VEMP and multidetector CT.
Vanspauwen, R; Salembier, L; Van den Hauwe, L; Parizel, P; Wuyts, F L; Van de Heyning, P H
2006-01-01
To illustrate that posterior semicircular canal dehiscence can present similarly to superior semicircular canal dehiscence. The symptomatology initially presented as probable Menière's disease evolving into a mixed conductive hearing loss with a Carhart notch-type perceptive component suggestive of otosclerosis-type stapes fixation. A small hole stapedotomy resulted in a dead ear and a horizontal semicircular canal hypofunction. Recurrent incapacitating vertigo attacks developed. Vestibular evoked myogenic potential (VEMP) testing demonstrated intact vestibulocollic reflexes. Additional evaluation with high resolution multidetector computed tomography (MDCT) of the temporal bone showed a dehiscence of the left posterior semicircular canal. Besides superior semicircular canal dehiscence, posterior semicircular canal dehiscence has to be included in the differential diagnosis of atypical Menière's disease and/or low tone conductive hearing loss. The value of performing MDCT before otosclerosis-type surgery is stressed. VEMP might contribute to establishing the differential diagnosis.
Koch, Martin; Seidler, Hannes; Hellmuth, Alexander; Bornitz, Matthias; Lasurashvili, Nikoloz; Zahnert, Thomas
2013-07-01
There is a great demand for implantable microphones for future generations of implantable hearing aids, especially Cochlea Implants. An implantable middle ear microphone based on a piezoelectric membrane sensor for insertion into the incudostapedial gap is investigated. The sensor is designed to measure the sound-induced forces acting on the center of the membrane. The sensor mechanically couples to the adjacent ossicles via two contact areas, the sensor membrane and the sensor housing. The sensing element is a piezoelectric single crystal bonded on a titanium membrane. The sensor allows a minimally invasive and reversible implantation without removal of ossicles and without additional sensor fixation in the tympanic cavity. This study investigates the implantable microphone sensor and its implantation concept. It intends to quantify the influence of the sensor's insertion position on the achievable microphone sensitivity. The investigation considers anatomical and pathological variations of the middle ear geometry and its space limitations. Temporal bone experiments on a laboratory model show that anatomical and pathological variations of the middle ear geometry can prevent the sensor from being placed optimally within the incudostapedial joint. Beyond scattering of transfer functions due to anatomic variations of individual middle ears there is the impact of variations in the sensor position within the ossicular chain that has a considerable effect on the transfer characteristics of the middle ear microphone. The centering of the sensor between incus and stapes, the direction of insertion (membrane to stapes or to incus) and the effect of additional contact points with surrounding anatomic structures affect the signal yield of the implanted sensor. The presence of additional contact points has a considerably impact on the sensitivity, yet the microphone sensitivity is quite robust against small changes in the positioning of the incus on the sensor. Signal losses can be avoided by adjusting the position of the sensor within the joint. The findings allow the development of an improved surgical insertion technique to ensure maximally achievable signal yield of the membrane sensor in the ISJ and provides valuable knowledge for a future design considerations including sensor miniaturization and geometry. Measurements of the implanted sensor in temporal bone specimens showed a microphone sensitivity in the order of 1 mV/Pa. This article is part of a special issue entitled "MEMRO 2012". Copyright © 2012 Elsevier B.V. All rights reserved.
Application of the Vibrant Soundbridge in bilateral congenital atresia in toddlers.
Frenzel, Henning; Hanke, Frauke; Beltrame, Millo; Wollenberg, Barbara
2010-08-01
The Vibrant Soundbridge offers an excellent audiologic rehabilitation for toddlers with microtia and atresia. It provides direct stimulation of the cochlea and straightforward adaption to the given anatomical structures. The 'posterior atresia incision' preserves the physical integrity of the tissue layers around the ear remnant, which is essential for an aesthetic auricular reconstruction. Patients with bilateral aural atresia require immediate auditory stimulation to ensure normal speech development. We present an operative technique that allows safe restoration of hearing before aesthetic reconstruction. A 6-year-old boy presented with bilateral microtia and osseous atresia. A hairline incision was performed through all layers and was followed by a subperiostal preparation towards the atresia plane. The fused malleus-incus-complex was removed and the transducer was crimped to the stapes suprastructure on both sides. Speech performance is nearly normal in both quiet and noise conditions. The surgery did not affect the tissues that are important for the later ear reconstruction.
NASA Astrophysics Data System (ADS)
Borgers, Charlotte; van Wieringen, Astrid; D'hondt, Christiane; Verhaert, Nicolas
2018-05-01
The cochlea is the main contributor in bone conduction perception. Measurements of differential pressure in the cochlea give a good estimation of the cochlear input provided by bone conduction stimulation. Recent studies have proven the feasibility of intracochlear pressure measurements in chinchillas and in human temporal bones to study bone conduction. However, similar measurements in fresh-frozen whole human cadaveric heads could give a more realistic representation of the five different transmission pathways of bone conduction to the cochlea compared to human temporal bones. The aim of our study is to develop and validate a framework for intracochlear pressure measurements to evaluate different aspects of bone conduction in whole human cadaveric heads. A proof of concept describing our experimental setup is provided together with the procedure. Additionally, we also present a method to fix the stapes footplate in order to simulate otosclerosis in human temporal bones. The effectiveness of this method is verified by some preliminary results.
Mechanics and materials in middle ear reconstruction.
Lesser, T H; Williams, K R; Blayney, A W
1991-02-01
The normal anatomy and physiology of the middle ear is not reproduced in ossiculoplasty and an artificial mechanism for the transmission of sound results. This is true for all types of graft, be they of natural or man-made material. There are, therefore, 2 areas for consideration when looking at the problems encountered in such reconstructions: first, the materials' biocompatability and, secondly, the mechanical effects of the positioning of the graft in the reconstructed ossicular chain. The present work examines these mechanical effects using the finite element method to determine stress and displacement levels in the reconstructed ossicular chain. It is found that the stress levels at the implant-stapedial joint increases as the implant is gradually moved down the malleus. In contrast there is thought to be an increase in sound transmission as the implant is moved down the malleus. Changes in rigidity and hardness of the implant appear to make only modest stress attenuations at the implant-stapes interface.
The "boomerang" malleus-incus complex in congenital aural atresia.
Mukherjee, S; Kesser, B W; Raghavan, P
2014-01-01
"Boomerang" malleus-incus fusion deformity is identified on axial high-resolution CT in a subset of patients with congenital aural atresia, and it is associated with an absent incudostapedial joint and stapes capitulum and attachment of the incus to the tympanic segment of the facial nerve canal. Twelve patients with this deformity were identified on a retrospective review of imaging from a cohort of 673 patients with congenital aural atresia, with surgical confirmation in 9 of these patients. Eight of 9 patients underwent partial ossicular replacement prosthesis reconstruction with improvement in hearing outcome. We hypothesize that the boomerang anomaly represents a more severe ossicular anomaly than is normally seen in congenital aural atresia, arising from an arrest earlier in the embryonic development of the first and second branchial arch. This has potentially important implications for surgical planning because hearing outcomes with placement of prosthesis may not be as good as with conventional atresia surgery, in which reconstruction is performed with the patient's native ossicular chain. © 2014 by American Journal of Neuroradiology.
Hearing Loss in Osteogenesis Imperfecta: Characteristics and Treatment Considerations
Pillion, Joseph P.; Vernick, David; Shapiro, Jay
2011-01-01
Osteogenesis imperfecta (OI) is the most common heritable disorder of connective tissue. It is associated with fractures following relatively minor injury, blue sclerae, dentinogenesis imperfecta, increased joint mobility, short stature, and hearing loss. Structures in the otic capsule and inner ear share in the histologic features common to other skeletal tissues. OI is due to mutations involving several genes, the most commonly involved are the COL1A1 or COL1A2 genes which are responsible for the synthesis of the proalpha-1 and proalpha-2 polypeptide chains that form the type I collagen triple helix. A genotype/phenotype relationship to hearing loss has not been established in OI. Hearing loss is commonly found in OI with prevalence rates ranging from 50 to 92% in some studies. Hearing loss in OI may be conductive, mixed, or sensorineural and is more common by the second or third decade. Treatment options such as hearing aids, stapes surgery, and cochlear implants are discussed. PMID:22567374
Pedersen, C B
1987-06-01
The modern surgical treatment of otosclerosis consists of replacement of the sound conducting function of the stapes by a prosthesis. The results obtained in 100 consecutive patients using the small fenestra technique and a 0.4 mm. Teflon and steel wire prosthesis are reported. The surgical technique is described. The hearing was improved in all patients. In 92 per cent of the patients an optimal hearing gain was found after an observation time of 1 to 4 years. Five patients required re-operation during the observation time. The small fenestra technique and the Fisch prosthesis were considered optimal in respect to technical difficulty, hearing improvement and complication rate. There was no sensorineural hearing loss in this series of patients. The absence of serious complications makes it reasonable to operate on both ears in patients with bilateral hearing loss. The results are as good in elderly people as in younger people. Therefore the operation can be offered for patients in all age groups.
Atypical incus necrosis: a case report and literature review.
Choudhury, N; Kumar, G; Krishnan, M; Gatland, D J
2008-10-01
We report an atypical case of ossicular necrosis affecting the incus, in the absence of any history of chronic serous otitis media. We also discuss the current theories of incus necrosis. A male patient presented with a history of right unilateral hearing loss and tinnitus. Audiometry confirmed right conductive deafness; tympanometry was normal bilaterally. He underwent a right exploratory tympanotomy, which revealed atypical erosion of the proximal long process of the incus. Middle-ear examination was otherwise normal, with a mobile stapes footplate. The redundant long process of the incus was excised and a partial ossicular replacement prosthesis was inserted, resulting in improved hearing. Ossicular pathologies most commonly affect the incus. The commonest defect is an absent lenticular and distal long process of the incus, which is most commonly associated with chronic otitis media. This is the first reported case of ossicular necrosis, particularly of the proximal long process of the incus, in the absence of chronic middle-ear pathology.
Can you hear me now? Understanding vertebrate middle ear development
Chapman, Susan Caroline
2010-01-01
The middle ear is a composite organ formed from all three germ layers and the neural crest. It provides the link between the outside world and the inner ear, where sound is transduced and routed to the brain for processing. Extensive classical and modern studies have described the complex morphology and origin of the middle ear. Non-mammalian vertebrates have a single ossicle, the columella. Mammals have three functionally equivalent ossicles, designated the malleus, incus and stapes. In this review, I focus on the role of genes known to function in the middle ear. Genetic studies are beginning to unravel the induction and patterning of the multiple middle ear elements including the tympanum, skeletal elements, the air-filled cavity, and the insertion point into the inner ear oval window. Future studies that elucidate the integrated spatio-temporal signaling mechanisms required to pattern the middle ear organ system are needed. The longer-term translational benefits of understanding normal and abnormal ear development will have a direct impact on human health outcomes. PMID:21196256
A mechano-acoustic model of the effect of superior canal dehiscence on hearing in chinchilla
Songer, Jocelyn E.; Rosowski, John J.
2008-01-01
Superior canal dehiscence (SCD) is a pathological condition of the ear that can cause a conductive hearing loss. The effect of SCD (a hole in the bony wall of the superior semicircular canal) on chinchilla middle- and inner-ear mechanics is analyzed with a circuit model of the dehiscence. The model is used to predict the effect of dehiscence on auditory sensitivity and mechanics. These predictions are compared to previously published measurements of dehiscence related changes in chinchilla cochlear potential, middle-ear input admittance and stapes velocity. The comparisons show that the model predictions are both qualitatively and quantitatively similar to the physiological results for frequencies where physiologic data are available. The similarity supports the third-window hypothesis of the effect of superior canal dehiscence on auditory sensitivity and mechanics and provides the groundwork for the development of a model that predicts the effect of superior canal dehiscence syndrome on auditory sensitivity and mechanics in humans. PMID:17672643
Evolution of the auditory ossicles in extant hominids: metric variation in African apes and humans.
Quam, Rolf M; Coleman, Mark N; Martínez, Ignacio
2014-08-01
The auditory ossicles in primates have proven to be a reliable source of phylogenetic information. Nevertheless, to date, very little data have been published on the metric dimensions of the ear ossicles in African apes and humans. The present study relies on the largest samples of African ape ear ossicles studied to date to address questions of taxonomic differences and the evolutionary transformation of the ossicles in gorillas, chimpanzees and humans. Both African ape taxa show a malleus that is characterized by a long and slender manubrium and relatively short corpus, whereas humans show the opposite constellation of a short and thick manubrium and relatively long corpus. These changes in the manubrium are plausibly linked with changes in the size of the tympanic membrane. The main difference between the incus in African apes and humans seems to be related to changes in the functional length. Compared with chimpanzees, human incudes are larger in nearly all dimensions, except articular facet height, and show a more open angle between the axes. The gorilla incus resembles humans more closely in its metric dimensions, including functional length, perhaps as a result of the dramatically larger body size compared with chimpanzees. The differences between the stapedes of humans and African apes are primarily size-related, with humans being larger in nearly all dimensions. Nevertheless, some distinctions between the African apes were found in the obturator foramen and head height. Although correlations between metric variables in different ossicles were generally lower than those between variables in the same bone, variables of the malleus/incus complex appear to be more strongly correlated than those of the incus/stapes complex, perhaps reflecting the different embryological and evolutionary origins of the ossicles. The middle ear lever ratio for the African apes is similar to other haplorhines, but humans show the lowest lever ratio within primates. Very low levels of sexual dimorphism were found in the ossicles within each taxon, but some relationship with body size and several dimensions of the ear bones was found. Several of the metric distinctions in the incus and stapes imply a slightly different articulation of the ossicular chain within the tympanic cavity in African apes compared with humans. The limited auditory implications of these metric differences in the ossicles are also discussed. Finally, the results of this study suggest that several plesiomorphic features for apes may be retained in the ear bones of the early hominin taxa Australopithecus and Paranthropus as well as in the Neandertals. © 2014 Anatomical Society.
Evolution of the auditory ossicles in extant hominids: metric variation in African apes and humans
Quam, Rolf M; Coleman, Mark N; Martínez, Ignacio
2014-01-01
The auditory ossicles in primates have proven to be a reliable source of phylogenetic information. Nevertheless, to date, very little data have been published on the metric dimensions of the ear ossicles in African apes and humans. The present study relies on the largest samples of African ape ear ossicles studied to date to address questions of taxonomic differences and the evolutionary transformation of the ossicles in gorillas, chimpanzees and humans. Both African ape taxa show a malleus that is characterized by a long and slender manubrium and relatively short corpus, whereas humans show the opposite constellation of a short and thick manubrium and relatively long corpus. These changes in the manubrium are plausibly linked with changes in the size of the tympanic membrane. The main difference between the incus in African apes and humans seems to be related to changes in the functional length. Compared with chimpanzees, human incudes are larger in nearly all dimensions, except articular facet height, and show a more open angle between the axes. The gorilla incus resembles humans more closely in its metric dimensions, including functional length, perhaps as a result of the dramatically larger body size compared with chimpanzees. The differences between the stapedes of humans and African apes are primarily size-related, with humans being larger in nearly all dimensions. Nevertheless, some distinctions between the African apes were found in the obturator foramen and head height. Although correlations between metric variables in different ossicles were generally lower than those between variables in the same bone, variables of the malleus/incus complex appear to be more strongly correlated than those of the incus/stapes complex, perhaps reflecting the different embryological and evolutionary origins of the ossicles. The middle ear lever ratio for the African apes is similar to other haplorhines, but humans show the lowest lever ratio within primates. Very low levels of sexual dimorphism were found in the ossicles within each taxon, but some relationship with body size and several dimensions of the ear bones was found. Several of the metric distinctions in the incus and stapes imply a slightly different articulation of the ossicular chain within the tympanic cavity in African apes compared with humans. The limited auditory implications of these metric differences in the ossicles are also discussed. Finally, the results of this study suggest that several plesiomorphic features for apes may be retained in the ear bones of the early hominin taxa Australopithecus and Paranthropus as well as in the Neandertals. PMID:24845949
Acoustic stimulation on the round window for active middle ear implants.
Seong, Kiwoong; Lee, Kyuyup; Puria, Sunil; Cho, Jin-Ho
2018-06-01
Many clinical reports have discussed the effectiveness of stimulating the ear's round window (RW) with a tool to mitigate conductive and mixed hearing loss. The RW is one of the two openings from the middle ear into the inner ear. Various methods have been proposed to construct a highly efficient, easily implanted, and reliable RW transducer. Devices, however, such as floating mass transducers, have difficulty establishing proper contact without some degree of bone incision around the RW. Additionally, vibration energy may not be fully transmitted to the cochlea, but instead will be spread through the soft tissue around the transducer. We propose a more direct RW stimulation with very high acoustical impedance using a receiver that is a volume velocity source. We expect this source to overcome large acoustic impedance by maximizing sound pressure in a confined space, the RW niche. To verify the effectiveness of the proposed method, ear canal pressure, RW pressure, and stapes velocity are measured by acoustic RW stimulation of human temporal bones. Copyright © 2018 Elsevier Ltd. All rights reserved.
Finite element modeling of sound transmission with perforations of tympanic membrane
Gan, Rong Z.; Cheng, Tao; Dai, Chenkai; Yang, Fan; Wood, Mark W.
2009-01-01
A three-dimensional finite element (FE) model of human ear with structures of the external ear canal, middle ear, and cochlea has been developed recently. In this paper, the FE model was used to predict the effect of tympanic membrane (TM) perforations on sound transmission through the middle ear. Two perforations were made in the posterior-inferior quadrant and inferior site of the TM in the model with areas of 1.33 and 0.82 mm2, respectively. These perforations were also created in human temporal bones with the same size and location. The vibrations of the TM (umbo) and stapes footplate were calculated from the model and measured from the temporal bones using laser Doppler vibrometers. The sound pressure in the middle ear cavity was derived from the model and measured from the bones. The results demonstrate that the TM perforations can be simulated in the FE model with geometrical visualization. The FE model provides reasonable predictions on effects of perforation size and location on middle ear transfer function. The middle ear structure-function relationship can be revealed with multi-field coupled FE analysis. PMID:19603881
[Virtual otoscopy--technique, indications and initial experiences with multislice spiral CT].
Klingebiel, R; Bauknecht, H C; Lehmann, R; Rogalla, P; Werbs, M; Behrbohm, H; Kaschke, O
2000-11-01
We report the standardized postprocessing of high-resolution CT data acquired by incremental CT and multi-slice CT in patients with suspected middle ear disorders to generate three-dimensional endoluminal views known as virtual otoscopy. Subsequent to the definition of a postprocessing protocol, standardized endoluminal views of the middle ear were generated according to their otological relevance. The HRCT data sets of 26 ENT patients were transferred to a workstation and postprocessed to 52 virtual otoscopies. Generation of predefined endoluminal views from the HRCT data sets was possible in all patients. Virtual endoscopic views added meaningful information to the primary cross-sectional data in patients suffering from ossicular pathology, having contraindications for invasive tympanic endoscopy or being assessed for surgery of the tympanic cavity. Multi slice CT improved the visualization of subtle anatomic details such as the stapes suprastructure and reduced the scanning time. Virtual endoscopy allows for the non invasive endoluminal visualization of various tympanic lesions. Use of the multi-slice CT technique reduces the scanning time and improves image quality in terms of detail resolution.
A validated methodology for the 3D reconstruction of cochlea geometries using human microCT images
NASA Astrophysics Data System (ADS)
Sakellarios, A. I.; Tachos, N. S.; Rigas, G.; Bibas, T.; Ni, G.; Böhnke, F.; Fotiadis, D. I.
2017-05-01
Accurate reconstruction of the inner ear is a prerequisite for the modelling and understanding of the inner ear mechanics. In this study, we present a semi-automated methodology for accurate reconstruction of the major inner ear structures (scalae, basilar membrane, stapes and semicircular canals). For this purpose, high resolution microCT images of a human specimen were used. The segmentation methodology is based on an iterative level set algorithm which provides the borders of the structures of interest. An enhanced coupled level set method which allows the simultaneous multiple image labeling without any overlapping regions has been developed for this purpose. The marching cube algorithm was applied in order to extract the surface from the segmented volume. The reconstructed geometries are then post-processed to improve the basilar membrane geometry to realistically represent physiologic dimensions. The final reconstructed model is compared to the available data from the literature. The results show that our generated inner ear structures are in good agreement with the published ones, while our approach is the most realistic in terms of the basilar membrane thickness and width reconstruction.
The Effect of Superior Semicircular Canal Dehiscence on Intracochlear Sound Pressures
NASA Astrophysics Data System (ADS)
Nakajima, Hideko Heidi; Pisano, Dominic V.; Merchant, Saumil N.; Rosowski, John J.
2011-11-01
Semicircular canal dehiscence (SCD) is a pathological opening in the bony wall of the inner ear that can result in conductive hearing loss. The hearing loss is variable across patients, and the precise mechanism and source of variability is not fully understood. We use intracochlear sound pressure measurements in cadaveric preparations to study the effects of SCD size. Simultaneous measurement of basal intracochlear sound pressures in scala vestibuli (SV) and scala tympani (ST) quantifies the complex differential pressure across the cochlear partition, the stimulus that excites the partition. Sound-induced pressures in SV and ST, as well as stapes velocity and ear-canal pressure are measured simultaneously for various sizes of SCD followed by SCD patching. At low frequencies (<600 Hz) our results show that SCD decreases the pressure in both SV and ST, as well as differential pressure, and these effects become more pronounced as dehiscence size is increased. For frequencies above 1 kHz, the smallest pinpoint dehiscence can have the larger effect on the differential pressure in some ears. These effects due to SCD are reversible by patching the dehiscence.
Modeling Electrically Evoked Otoacoustic Emissions
NASA Astrophysics Data System (ADS)
Grosh, K.; Deo, N.; Parthasarathi, A. A.; Nuttall, A. L.; Zheng, J. F.; Ren, T. Y.
2003-02-01
Electrical evoked otoacoustic emissions (EEOAE) are used to investigate in vivo cochlear electromechanical function. Round window electrical stimulation gives rise to a broad frequency EEOAE response, from 100 Hz or below to 40 kHz in guinea pigs. Placing bipolar electrodes very close to the basilar membrane (in the scala vestibuli and scala tympani) gives rise to a much narrower frequency range of EEOAE, limited to around 20 kHz when the electrodes are placed near the 18 kHz best frequency place. Model predictions using a three dimensional fluid model in conjunction with a simple model for outer hair cell (OHC) activity are used to interpret the experimental results. The model is solved using a 2.5D finite-element formulation. Predictions show that the high-frequency limit of the excitation is determined by the spatial extent of the current stimulus (also called the current spread). The global peaks in the EEOAE spectra are interpreted as constructive interference between electrically evoked backward traveling waves and forward traveling waves reflected from the stapes. Steady-state response predictions of the model are presented.
A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones
NASA Astrophysics Data System (ADS)
Han, Gang; Mao, Fangyuan; Bi, Shundong; Wang, Yuanqing; Meng, Jin
2017-11-01
Gliding is a distinctive locomotion type that has been identified in only three mammal species from the Mesozoic era. Here we describe another Jurassic glider that belongs to the euharamiyidan mammals and shows hair details on its gliding membrane that are highly similar to those of extant gliding mammals. This species possesses a five-boned auditory apparatus consisting of the stapes, incus, malleus, ectotympanic and surangular, representing, to our knowledge, the earliest known definitive mammalian middle ear. The surangular has not been previously identified in any mammalian middle ear, and the morphology of each auditory bone differs from those of known mammals and their kin. We conclude that gliding locomotion was probably common in euharamiyidans, which lends support to idea that there was a major adaptive radiation of mammals in the mid-Jurassic period. The acquisition of the auditory bones in euharamiyidans was related to the formation of the dentary-squamosal jaw joint, which allows a posterior chewing movement, and must have evolved independently from the middle ear structures of monotremes and therian mammals.
[Destruction of microsurgical devices by sterilisation].
Berto, Raphaela; Strutz, Jürgen
2017-11-01
Hospital facilities issue numerous risk announcements on corrosion, deformation or premature wearout of medical devices every year. As there is yet little data on the impact of reprocessing on the quality and durability of microsurgical instruments, this paper aims at evaluating the effects of the reprocessing on microsurgical instruments. Material and Methods 22 brand new microsurgical instruments for stapes surgery were being reprocessed 30 times without being used for surgery or other purposes in the interim time. After each reprocessing the instruments were examined macroscopicly and microscopicly. The results were portrayed in a photo documentation and analysed on that basis. Results Almost all devices showed mechanical damage caused by the reprocessing procedure. The increasing deterioration was often associated with missing protective caps. Furthermore contaminations and stains were apparent in several cases. Conclusions The findings illustrate that careful handling of delicate surgical devices during reprocessing is vital. They also highlight problems of protective caps. As an alternative going forward it should be considered to store microsurgical instruments statically in special racks. Georg Thieme Verlag KG Stuttgart · New York.
Comparison of Fluoroplastic Causse Loop Piston and Titanium Soft-Clip in Stapedotomy
Faramarzi, Mohammad; Gilanifar, Nafiseh; Roosta, Sareh
2017-01-01
Introduction: Different types of prosthesis are available for stapes replacement. Because there has been no published report on the efficacy of the titanium soft-clip vs the fluoroplastic Causse loop Teflon piston, we compared short-term hearing results of both types of prosthesis in patients who underwent stapedotomy due to otosclerosis. Materials and Methods: A total of 57 ears were included in the soft-clip group and 63 ears were included in the Teflon-piston group. Pre-operative and post-operative air conduction, bone conduction, air-bone gaps, speech discrimination score, and speech reception thresholds were analyzed. Results: Post-operative speech reception threshold gains did not differ significantly between the two groups (P=0.919). However, better post-operative air-bone gap improvement at low frequencies was observed in the Teflon-piston group over the short-term follow-up (at frequencies of 0.25 and 0.50 kHz; P=0.007 and P=0.001, respectively). Conclusion: Similar post-operative hearing results were observed in the two groups in the short-term. PMID:28229059
Lesinskas, E; Stankeviciute, V; Petrulionis, M
2012-12-01
To present results for the auditory rehabilitation of patients with Treacher Collins syndrome with bilateral osseous atresia, using middle-ear implantation with a Vibrant Soundbridge. Three patients underwent vibroplasty for aural atresia with moderate to severe conductive hearing loss. The pre-operative Jahrsdoerfer radiological score was 4 for all patients. Patients underwent active middle-ear implantation of a Vibrant Soundbridge implant (coupling the floating mass transducer to the rudimentary stapes or footplate distally, and positioning it adjacent to the round window membrane proximally), with audiological analysis as follow up. After implant activation, the mean air conduction threshold ± standard deviation decreased to 22.8 ± 5.5 dB HL, representing a mean functional gain of 44.5 dB. The mean word recognition score (for bisyllabic words at 65 dB SPL) increased from 0 to 97 per cent. Vibrant Soundbridge implantation is an effective hearing rehabilitation procedure in patients with Treacher Collins syndrome with bilateral osseous atresia. This is a versatile implant which can achieve coupling even in cases of severe middle-ear malformation.
Immunolocalization of aquaporin CHIP in the guinea pig inner ear.
Stanković, K M; Adams, J C; Brown, D
1995-12-01
Aquaporin CHIP (AQP-CHIP) is a water channel protein previously identified in red blood cells and water transporting epithelia. The inner ear is an organ of hearing and balance whose normal function depends critically on maintenance of fluid homeostasis. In this study, AQP-CHIP, or a close homologue, was found in specific cells of the inner ear, as assessed by immunocytochemistry with the use of affinity-purified polyclonal antibodies against AQP-CHIP.AQP-CHIP was predominantly found in fibrocytes in close association with bone, including most of the cells lining the bony labyrinth and in fibrocytes lining the endolymphatic duct and sac. AQP-CHIP-positive cells not directly apposing bone include cells under the basilar membrane, some type III fibrocytes of the spiral ligament, fibrocytes of the spiral limbus, and the trabecular perilymphatic tissue extending from the membranous to the bony labyrinth. AQP-CHIP was also found in the periosteum of the middle ear and cranial bones, as well as in chondrocytes of the oval window and stapes. The distribution of AQP-CHIP in the inner ear suggests that AQP-CHIP may have special significance for maintenance of bone and the basilar membrane, and for function of the spiral ligament.
NASA Astrophysics Data System (ADS)
Wang, Yanli; Puria, Sunil; Steele, Charles R.; Ricci, Anthony J.
2018-05-01
Mechanical stimulation of the stereocilia hair bundles of the inner and outer hair cells (IHCs and OHCs, respectively) drives IHC synaptic release and OHC electromotility. The modes of hair-bundle motion can have a dramatic influence on the electrophysiological responses of the hair cells. The in vivo modes of motion are, however, unknown for both IHC and OHC bundles. In this work, we are developing technology to investigate the in situ hair-bundle motion in excised mouse cochleae, for which the hair bundles of the OHCs are embedded in the tectorial membrane but those of the IHCs are not. Motion is generated by pushing onto the stapes at 1 kHz with a glass probe coupled to a piezo stack, and recorded using a high-speed camera at 10,000 frames per second. The motions of individual IHC stereocilia and the cell boundary are analyzed using 2D and 1D Gaussian fitting algorithms, respectively. Preliminary results show that the IHC bundle moves mainly in the radial direction and exhibits a small degree of splay, and that the stereocilia in the second row move less than those in the first row, even in the same focal plane.
Müller, J; Schön, F; Helms, J
1998-04-01
There is a reported 1% incidence of delayed migration of extrusions of the electrode arrays out of the cochlea. A titanium clip to fix the electrode array of the MED EL Combi 40 Cochlear Implant System is described. The clip is designed and shaped in a double U configuration. The clip material allows easy adaption to the individual anatomical situation. The clip is fixed to a bony bridge at the incus bar and fixes the electrode in a plane parallel to the chorda facial angle. It is closed around the electrode similarly to a stapes piston around the incus. Additional tests which examined the possible risk of damaging the electrode carrier and clinical findings are described. The clip was used in 23 cases with a follow-up period up to 1 year. No signs for dislocation of the electrode were found. In one revision case the clip was covered with a thin mucosal layer. The electrode array showed no signs of damage. Intraoperative findings confirmed the experimental tests on the electrode fixation. The titanium clip facilitates safe and quick fixation of the electrode array and prevents dislocation. its flexibility and shape minimizes the risk of damage.
The influence of the mechanical behaviour of the middle ear ligaments: a finite element analysis.
Gentil, F; Parente, M; Martins, P; Garbe, C; Jorge, R N; Ferreira, A; Tavares, João Manuel R S
2011-01-01
The interest in computer modelling of biomechanical systems, mainly by using the finite element method (FEM), has been increasing, in particular for analysis of the mechanical behaviour of the human ear. In this work, a finite element model of the middle ear was developed to study the dynamic structural response to harmonic vibrations for distinct sound pressure levels applied on the eardrum. The model includes different ligaments and muscle tendons with elastic and hyperelastic behaviour for these supportive structures. Additionally, the nonlinear behaviour of the ligaments and muscle tendons was investigated, as they are the connection between ossicles by contact formulation. Harmonic responses of the umbo and stapes footplate displacements, between 100 Hz and 10 kHz, were obtained and compared with previously published work. The stress state of ligaments (superior, lateral, and anterior of malleus and superior and posterior of incus) was analysed, with the focus on balance of the supportive structures of the middle ear, as ligaments make the link between the ossicular chain and the walls of the tympanic cavity. The results obtained in this work highlight the importance of using hyperelastic models to simulate the mechanical behaviour for the ligaments and tendons.
Yin, Ya-Lei; Pei, Rui; Zhou, Chang-Fu
2018-01-01
A new three-dimensionally preserved troodontid specimen consisting of most of the skull, partial mandibles and six articulated cervical vertebrae (PMOL-AD00102) from the Early Cretaceous Yixian Formation of Beipiao, western Liaoning, China is identified as Sinovenator changii on the basis of a surangular with a "T"-shaped cross-section. High-resolution computed tomographic data for the skull of this new specimen facilitated a detailed description of the cranial anatomy of S. changii . New diagnostic features of S. changii include a well-developed medial shelf on the jugal, a slender bar in the parasphenoid recess, a lateral groove on the pterygoid flange of the ectopterygoid, and the lateral surface of the anterior cervical vertebrae bearing two pneumatic foramina. Our new observation confirms that the braincase of Sinovenator is not as primitive as previously suggested, although it still shows an intermediate state between derived troodontids and non-troodontid paravians in having an initial stage of the subotic recess and the otosphenoidal crest. Additionally, this new specimen reveals some novel and valuable anatomical information of troodontids regarding the quadrate-quadratojugal articulation, the stapes, the epipterygoid and the atlantal ribs.
Incus replacement prostheses of hydroxylapatite in middle ear reconstruction.
Wehrs, R E
1989-05-01
Hydroxylapatite is a calcium bioceramic that has the same chemical composition as living bone, Ca10 (PO4) 6 (OH) 2. Since 1970 it has been used as a material in reconstructive prostheses and augmentation of lost tissues in various surgical specialties including maxillofacial surgery, plastic surgery, otolaryngology, and orthopedics. For over 20 years the author has used autograft and homograft ossicles in tympanoplasty. These incudi have been modified into prostheses that were utilized in ossicular reconstruction. During this time two principle prostheses have evolved, the notched incus with short and long processes. The short process prosthesis is used with an intact stapes, whereas the notched incus with long process carries the sound pressure directly to the stapedial footplate. These prostheses have been successful in improving and maintaining hearing following tympanoplasty. Unfortunately, however, the use of human tissue has certain limitations: it is not readily accessible and has a limited shelf life. Furthermore, clinicians are wary of using homograft tissue as concern over the AIDS virus spreads. Therefore it was felt prudent to develop a manmade prosthesis that would as nearly as possible match the advantages of living bone. Hydroxylapetite most nearly met those qualifications.
Kong, Soo-Keun; Chon, Kyong-Myong; Goh, Eui-Kyung; Lee, Il-Woo; Wang, Soo-Geun
2014-05-01
High-resolution computed tomography has been used mainly in the diagnosis of middle ear disease, such as high-jugular bulb, congenital cholesteatoma, and ossicular disruption. However, certain diagnoses are confirmed through exploratory tympanotomy. There are few noninvasive methods available to observe the middle ear. The purpose of this study was to investigate the effect of glycerol as a refractive index matching material and an infrared (IR) camera system for extratympanic observation. 30% glycerol was used as a refractive index matching material in five fresh cadavers. Each material was divided into four subgroups; GN (glycerol no) group, GO (glycerol out) group, GI (glycerol in) group, and GB (glycerol both) group. A printed letter and middle ear structures on the inside tympanic membrane were observed using a visible and IR ray camera system. In the GB group, there were marked a transilluminated letter or an ossicle on the inside tympanic membrane. In particular, a footplate of stapes was even transilluminated using the IR camera system in the GB group. This method can be useful in the diagnosis of diseases of the middle ear if it is clinically applied through further studies.
NASA Astrophysics Data System (ADS)
Kong, Soo-Keun; Chon, Kyong-Myong; Goh, Eui-Kyung; Lee, Il-Woo; Wang, Soo-Geun
2014-05-01
High-resolution computed tomography has been used mainly in the diagnosis of middle ear disease, such as high-jugular bulb, congenital cholesteatoma, and ossicular disruption. However, certain diagnoses are confirmed through exploratory tympanotomy. There are few noninvasive methods available to observe the middle ear. The purpose of this study was to investigate the effect of glycerol as a refractive index matching material and an infrared (IR) camera system for extratympanic observation. 30% glycerol was used as a refractive index matching material in five fresh cadavers. Each material was divided into four subgroups; GN (glycerol no) group, GO (glycerol out) group, GI (glycerol in) group, and GB (glycerol both) group. A printed letter and middle ear structures on the inside tympanic membrane were observed using a visible and IR ray camera system. In the GB group, there were marked a transilluminated letter or an ossicle on the inside tympanic membrane. In particular, a footplate of stapes was even transilluminated using the IR camera system in the GB group. This method can be useful in the diagnosis of diseases of the middle ear if it is clinically applied through further studies.
Creating an Optimal 3D Printed Model for Temporal Bone Dissection Training.
Takahashi, Kuniyuki; Morita, Yuka; Ohshima, Shinsuke; Izumi, Shuji; Kubota, Yamato; Yamamoto, Yutaka; Takahashi, Sugata; Horii, Arata
2017-07-01
Making a 3-dimensional (3D) temporal bone model is simple using a plaster powder bed and an inkjet printer. However, it is difficult to reproduce air-containing spaces and precise middle ear structures. The objective of this study was to overcome these problems and create a temporal bone model that would be useful both as a training tool and for preoperative simulation. Drainage holes were made to remove excess materials from air-containing spaces, ossicle ligaments were manually changed to bony structures, and small and/or soft tissue structures were colored differently while designing the 3D models. The outcomes were evaluated by 3 procedures: macroscopic and endoscopic inspection of the model, comparison of computed tomography (CT) images of the model to the original CT, and assessment of tactile sensation and reproducibility by 20 surgeons performing surgery on the model. Macroscopic and endoscopic inspection, CT images, and assessment by surgeons were in agreement in terms of reproducibility of model structures. Most structures could be reproduced, but the stapes, tympanic sinus, and mastoid air cells were unsatisfactory. Perioperative tactile sensation of the model was excellent. Although this model still does not embody perfect reproducibility, it proved sufficiently practical for use in surgical training.
Interpreting electrically evoked emissions using a finite-element model of the cochlea
NASA Astrophysics Data System (ADS)
Deo, Niranjan V.; Grosh, Karl; Parthasarathi, Anand
2003-10-01
Electrically evoked otoacoustic emissions (EEOAEs) are used to investigate in vivo cochlear electromechanical function. Electrical stimulation through bipolar electrodes placed very close to the basilar membrane (in the scala vestibuli and scala tympani) gives rise to a narrow frequency range of EEOAEs, limited to around 20 kHz when the electrodes are placed near the 18-kHz best frequency place. Model predictions using a three-dimensional inviscid fluid model in conjunction with a middle ear model [S. Puria and J. B. Allen, J. Acoust. Soc. Am. 104, 3463-3481 (1998)] and a simple model for outer hair cell activity [S. Neely and D. Kim, J. Acoust. Soc. Am. 94, 137-146 (1993)] are used to interpret the experimental results. To estimate effect of viscosity, model results are compared with those obtained for a viscous fluid. The models are solved using a 2.5-D finite-element formulation. Predictions show that the high frequency limit of the excitation is determined by the spatial extent of the current stimulus. The global peaks in the EEOAE spectra are interpreted as constructive interference between electrically evoked backward traveling waves and forward traveling waves reflected from the stapes. Steady state response predictions of the model are presented.
Signal flow inside the tunnel of Corti
NASA Astrophysics Data System (ADS)
de Boer, Egbert; Chen, Fangyi; Zha, Dingjun; Grosh, Karl; Nankali, Amir; Nuttall, Alfred L.
2018-05-01
All With the advent of Optical Coherence Tomography (OCT), a variation of the standard laser-interferometer technique, vibrations of various points inside the cochlea can be measured separately and concurrently. In this work we measured vibrations of the basilar membrane (BM) and the Reticular Lamina (RL) in the cochlea of the guinea pig. Stimulus tones had frequencies in the range from 10 to 25 kHz, they were generated and measured with a spacing of 250 Hz. By smoothing and interpolation the spacing was reduced to 50 Hz. We confirmed earlier findings in that in viable animals the responses at the RL are generally larger than those of the BM, and have smaller phase delays. Moreover, these differences are little dependent of the level of stimulation. Our main hypothesis is: stimulation of the stapes primarily excites the structures in the upper (RL) part of the Organ of Corti (OoC) channel. Subsequently, movements of the RL cause movements of the fluid in the OoC channel, which in turn moves the BM. Computation of the sound field generated by the RL yielded results that agree very well with the data. These results thus confirm the hypothesis.
Surgery of the ear and the lateral skull base: pitfalls and complications
Schick, Bernhard; Dlugaiczyk, Julia
2013-01-01
Surgery of the ear and the lateral skull base is a fascinating, yet challenging field in otorhinolaryngology. A thorough knowledge of the associated complications and pitfalls is indispensable for the surgeon, not only to provide the best possible care to his patients, but also to further improve his surgical skills. Following a summary about general aspects in pre-, intra-and postoperative care of patients with disorders of the ear/lateral skull base, this article covers the most common pitfalls and complications in stapes surgery, cochlear implantation and surgery of vestibular schwannomas and jugulotympanal paragangliomas. Based on these exemplary procedures, basic “dos and don’ts” of skull base surgery are explained, which the reader can easily transfer to other disorders. Special emphasis is laid on functional aspects, such as hearing, balance and facial nerve function. Furthermore, the topics of infection, bleeding, skull base defects, quality of life and indication for revision surgery are discussed. An open communication about complications and pitfalls in ear/lateral skull base surgery among surgeons is a prerequisite for the further advancement of this fascinating field in ENT surgery. This article is meant to be a contribution to this process. PMID:24403973
Choristoma of the middle ear: a component of a new syndrome?
Buckmiller, L M; Brodie, H A; Doyle, K J; Nemzek, W
2001-05-01
Salivary choristoma of the middle ear is a rare entity. The authors report the 26th known case, which is unique in several respects: the patient had abnormalities of the first and second branchial arches, as well as the otic capsule and facial nerve in ways not yet reported. Our patient presented with bilateral preauricular pits, conchal bands, an ipsilateral facial palsy, and bilateral Mondini-type deformities. A review of the literature revealed salivary choristomas of the middle ear to be frequently associated with branchial arch abnormalities, most commonly the second, as well as abnormalities of the facial nerve. All 25 cases were reviewed and the results reported with respect to clinical presentation, associated abnormalities, operative findings, and hearing results. It has been proposed that choristoma of the middle ear may represent a component of a syndrome along with unilateral hearing loss, abnormalities of the incus and/or stapes, and anomalies of the facial nerve. Eighty-six percent of the reported patients with choristoma have three or four of the four criteria listed to designate middle ear salivary choristoma as part of a syndrome. In the remaining four patients, all of the structures were not assessed.
[Complications and pitfalls in surgery of the ear/lateral skull base].
Schick, B; Dlugaiczyk, J
2013-04-01
Surgery of the ear and the lateral skull base is a fascinating, yet challenging field in otorhinolaryngology. A thorough knowledge of the associated complications and pitfalls is indispensable for the surgeon, not only to provide the best possible care to his patients, but also to further improve his surgical skills.Following a summary about general aspects in pre-, intra- and postoperative care of patients with disorders of the ear/lateral skull base, this article covers the most common pitfalls and complications in stapes surgery, cochlear implantation, surgery of vestibular schwannomas, and jugulotympanal paragangliomas. Based on these exemplary procedures, basic "do's and don'ts" of skull base surgery are explained, which the reader can easily transfer to other disorders. Special emphasis is laid on functional aspects, such as hearing, balance and facial nerve function. Furthermore, the topics of infection, bleeding, skull base defects, quality of life and indication for revision surgery are discussed.An open communication about complications and pitfalls in ear/lateral skull base surgery among surgeons is a prerequisite for the further advancement of this fascinating field in ENT surgery. This article is meant to be a contribution to this process. © Georg Thieme Verlag KG Stuttgart · New York.
Into the dark: patterns of middle ear adaptations in subterranean eulipotyphlan mammals
NASA Astrophysics Data System (ADS)
Koyabu, Daisuke; Hosojima, Misato; Endo, Hideki
2017-09-01
Evolution of the middle ear ossicles was a key innovation for mammals, enhancing the transmission of airborne sound. Radiation into various habitats from a terrestrial environment resulted in diversification of the auditory mechanisms among mammals. However, due to the paucity of phylogenetically controlled investigations, how middle ear traits have diversified with functional specialization remains unclear. In order to identify the respective patterns for various lifestyles and to gain insights into fossil forms, we employed a high-resolution tomography technique and compared the middle ear morphology of eulipotyphlan species (moles, shrews and hedgehogs), a group that has radiated into various environments, such as terrestrial, aquatic and subterranean habitats. Three-dimensional geometric morphometric analysis was conducted within a phylogenetically controlled framework. Quantitative shapes were found to strongly reflect the degree of subterranean lifestyle and weakly involve phylogeny. Our analyses demonstrate that subterranean adaptation should include a relatively shorter anterior process of the malleus, an enlarged incus, an enlarged stapes footplate and a reduction of the orbicular apophysis. These traits arguably allow improving low-frequency sound transmission at low frequencies and inhibiting the low-frequency noise which disturbs the subterranean animals in hearing airborne sounds.
Razavi, Payam; Ravicz, Michael E; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J
2016-10-01
The response of the tympanic membrane (TM) to transient environmental sounds and the contributions of different parts of the TM to middle-ear sound transmission were investigated by measuring the TM response to global transients (acoustic clicks) and to local transients (mechanical impulses) applied to the umbo and various locations on the TM. A lightly-fixed human temporal bone was prepared by removing the ear canal, inner ear, and stapes, leaving the incus, malleus, and TM intact. Motion of nearly the entire TM was measured by a digital holography system with a high speed camera at a rate of 42 000 frames per second, giving a temporal resolution of <24 μs for the duration of the TM response. The entire TM responded nearly instantaneously to acoustic transient stimuli, though the peak displacement and decay time constant varied with location. With local mechanical transients, the TM responded first locally at the site of stimulation, and the response spread approximately symmetrically and circumferentially around the umbo and manubrium. Acoustic and mechanical transients provide distinct and complementary stimuli for the study of TM response. Spatial variations in decay and rate of spread of response imply local variations in TM stiffness, mass, and damping. Copyright © 2016 Elsevier B.V. All rights reserved.
A case of chronic otitis media caused by Mycobacterium abscessus.
Sugimoto, Hisashi; Ito, Makoto; Hatano, Miyako; Nakanishi, Yosuke; Maruyama, Yumiko; Yoshizaki, Tomokazu
2010-10-01
Although it appears very uncommon in adult COM, Mycobacterium abscessus should be considered as a possible cause of a chronically draining ear. Multi-antibiotic chemotherapy including high-dose clarithromycin can effectively treat adult COM cased by M. abscessus. The first case report of adult chronic otitis media (COM) caused by M. abscessus is described here. A 61-year-old woman presented persistent otorrhea for 2 months, despite treatment with standard antimicrobial drugs. Physical examination revealed a small perforation of the tympanic membrane and edematous middle ear mucosa. Mycobacterial cultures and PCR yielded non-tuberculous mycobacteria (NTM); M. abscessus. Intravenous panipenem/betamipron and amikacin and oral clarithromycin were administered for 36 days. Computed tomography of the temporal bone showed improved aeration in the tympanic cavity, but soft tissue shadow remained unchanged in the mastoid 31 days after starting medication. She therefore underwent tympano-mastoidectomy at 36 days. At surgery, inflammation remained in the middle ear, and edematous pale mucosal tissue was noted around the stapes and ossicular chain. Histopathologic examination showed inflammation and granulation tissue, but no caseating necrosis or acid-fast bacilli. After surgery the symptoms resolved and remained well without evidence of infection recurrence 12 months after the operation. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Impaired Vibration of Auditory Ossicles in Osteopetrotic Mice
Kanzaki, Sho; Takada, Yasunari; Niida, Shumpei; Takeda, Yoshihiro; Udagawa, Nobuyuki; Ogawa, Kaoru; Nango, Nobuhito; Momose, Atsushi; Matsuo, Koichi
2011-01-01
In the middle ear, a chain of three tiny bones (ie, malleus, incus, and stapes) vibrates to transmit sound from the tympanic membrane to the inner ear. Little is known about whether and how bone-resorbing osteoclasts play a role in the vibration of auditory ossicles. We analyzed hearing function and morphological features of auditory ossicles in osteopetrotic mice, which lack osteoclasts because of the deficiency of either cytokine RANKL or transcription factor c-Fos. The auditory brainstem response showed that mice of both genotypes experienced hearing loss, and laser Doppler vibrometry revealed that the malleus behind the tympanic membrane failed to vibrate. Histological analysis and X-ray tomographic microscopy using synchrotron radiation showed that auditory ossicles in osteopetrotic mice were thicker and more cartilaginous than those in control mice. Most interestingly, the malleal processus brevis touched the medial wall of the tympanic cavity in osteopetrotic mice, which was also the case for c-Src kinase–deficient mice (with normal numbers of nonresorbing osteoclasts). Osteopetrotic mice showed a smaller volume of the tympanic cavity but had larger auditory ossicles compared with controls. These data suggest that osteoclastic bone resorption is required for thinning of auditory ossicles and enlargement of the tympanic cavity so that auditory ossicles vibrate freely. PMID:21356377
Ravicz, Michael E; Rosowski, John J
2013-10-01
The transfer function H(V) between stapes velocity V(S) and sound pressure near the tympanic membrane P(TM) is a descriptor of sound transmission through the middle ear (ME). The ME power transmission efficiency (MEE), the ratio of sound power entering the cochlea to power entering the middle ear, was computed from H(V) measured in seven chinchilla ears and previously reported measurements of ME input admittance Y(TM) and ME pressure gain G(MEP) [Ravicz and Rosowski, J. Acoust. Soc. Am. 132, 2437-2454 (2012); J. Acoust. Soc. Am. 133, 2208-2223 (2013)] in the same ears. The ME was open, and a pressure sensor was inserted into the cochlear vestibule for most measurements. The cochlear input admittance Y(C) computed from H(V) and G(MEP) is controlled by a combination of mass and resistance and is consistent with a minimum-phase system up to 27 kHz. The real part Re{Y(C)}, which relates cochlear sound power to inner-ear sound pressure, decreased gradually with frequency up to 25 kHz and more rapidly above that. MEE was about 0.5 between 0.1 and 8 kHz, higher than previous estimates in this species, and decreased sharply at higher frequencies.
Dizziness, malpractice, and the otolaryngologist.
Tolisano, Anthony M; Song, Sungjin A; Ruhl, Douglas S; Littlefield, Philip D
To assess malpractice claims related to the management of dizziness in otolaryngology in order to improve care and minimize the risk of litigation. This is a retrospective review of the LexisNexis "Jury Verdicts and Settlements" database. All lawsuits and out of court adjudications related to the management of dizziness by otolaryngologists were collected. Data including patient demographics, plaintiff allegation, procedure performed, and indemnities were analyzed. Of 21 cases meeting inclusion criteria, 17 were decided by a trial jury and four were resolved out of court. Jury verdicts favored the plaintiff 53% of the time and a payout was made in 57% of cases overall. Average payments were higher for jury verdicts in favor of the plaintiff ($1.8 million) as compared to out of court settlements ($545,000). Two-thirds of cases involved surgery, most commonly stapes surgery. Legal allegations, including physical injury, negligence, and lack of informed consent failed to predict the legal outcome. Appropriate examination, testing, and referrals within a timely manner are crucial in the management of dizzy patients to avoid misdiagnoses. It is imperative that patients undergoing ear surgery are appropriately counseled that dizziness is a potential complication. The analysis of malpractice literature is complementary to clinical studies, with the potential to educate practitioners, improve patient care, and mitigate risk. Published by Elsevier Inc.
Ravicz, Michael E.; Rosowski, John J.
2013-01-01
The transfer function HV between stapes velocity VS and sound pressure near the tympanic membrane PTM is a descriptor of sound transmission through the middle ear (ME). The ME power transmission efficiency (MEE), the ratio of sound power entering the cochlea to power entering the middle ear, was computed from HV measured in seven chinchilla ears and previously reported measurements of ME input admittance YTM and ME pressure gain GMEP [Ravicz and Rosowski, J. Acoust. Soc. Am. 132, 2437–2454 (2012); J. Acoust. Soc. Am. 133, 2208–2223 (2013)] in the same ears. The ME was open, and a pressure sensor was inserted into the cochlear vestibule for most measurements. The cochlear input admittance YC computed from HV and GMEP is controlled by a combination of mass and resistance and is consistent with a minimum-phase system up to 27 kHz. The real part Re{YC}, which relates cochlear sound power to inner-ear sound pressure, decreased gradually with frequency up to 25 kHz and more rapidly above that. MEE was about 0.5 between 0.1 and 8 kHz, higher than previous estimates in this species, and decreased sharply at higher frequencies. PMID:24116422
Sound pressure gain produced by the human middle ear.
Kurokawa, H; Goode, R L
1995-10-01
The acoustic function of the middle ear is to match sound passing from the low impedance of air to the high impedance of cochlear fluid. Little information is available on the actual middle ear pressure gain in human beings. This article describes experiments on middle ear pressure gain in six fresh human temporal bones. Stapes footplate displacement and phase were measured with a laser Doppler vibrometer before and after removal of the tympanic membrane, malleus, and incus. Acoustic insulation of the round window with clay was performed. Umbo displacement was also measured before tympanic membrane removal to assess baseline tympanic membrane function. The middle ear has its major gain in the lower frequencies, with a peak near 0.9 kHz. The mean gain was 23.0 dB below 1.0 kHz, the resonant frequency of the middle ear; the mean peak gain was 26.6 dB. Above 1.0 kHz, the second pressure gain decreased at a rate of -8.6 dB/octave, with a mean gain of 6.5 dB at 4.0 kHz. Only a small amount of gain was present above 7.0 kHz. Significant individual differences in pressure gain were found between ears that appeared related to variations in tympanic membrane function and not to variations in cochlear impedance.
Razavi, Payam; Ravicz, Michael E.; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.
2016-01-01
The response of the tympanic membrane (TM) to transient environmental sounds and the contributions of different parts of the TM to middle-ear sound transmission were investigated by measuring the TM response to global transients (acoustic clicks) and to local transients (mechanical impulses) applied to the umbo and various locations on the TM. A lightly-fixed human temporal bone was prepared by removing the ear canal, inner ear, and stapes, leaving the incus, malleus, and TM intact. Motion of nearly the entire TM was measured by a digital holography system with a high speed camera at a rate of 42 000 frames per second, giving a temporal resolution of <24 μs for the duration of the TM response. The entire TM responded nearly instantaneously to acoustic transient stimuli, though the peak displacement and decay time constant varied with location. With local mechanical transients, the TM responded first locally at the site of stimulation, and the response spread approximately symmetrically and circumferentially around the umbo and manubrium. Acoustic and mechanical transients provide distinct and complementary stimuli for the study of TM response. Spatial variations in decay and rate of spread of response imply local variations in TM stiffness, mass, and damping. PMID:26880098
Creation of a 3D printed temporal bone model from clinical CT data.
Cohen, Joss; Reyes, Samuel A
2015-01-01
Generate and describe the process of creating a 3D printed, rapid prototype temporal bone model from clinical quality CT images. We describe a technique to create an accurate, alterable, and reproducible rapid prototype temporal bone model using freely available software to segment clinical CT data and generate three different 3D models composed of ABS plastic. Each model was evaluated based on the appearance and size of anatomical structures and response to surgical drilling. Mastoid air cells had retained scaffolding material in the initial versions. This required modifying the model to allow drainage of the scaffolding material. External auditory canal dimensions were similar to those measured from the clinical data. Malleus, incus, oval window, round window, promontory, horizontal semicircular canal, and mastoid segment of the facial nerve canal were identified in all models. The stapes was only partially formed in two models and absent in the third. Qualitative feel of the ABS plastic was softer than bone. The pate produced by drilling was similar to bone dust when appropriate irrigation was used. We present a rapid prototype temporal bone model made based on clinical CT data using 3D printing technology. The model can be made quickly and inexpensively enough to have potential applications for educational training. Copyright © 2015 Elsevier Inc. All rights reserved.
A high-resolution imaging technique using a whole-body, research photon counting detector CT system
NASA Astrophysics Data System (ADS)
Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.
2016-03-01
A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.
Boundary-integral modeling of cochlear hydrodynamics
NASA Astrophysics Data System (ADS)
Pozrikidis, C.
2008-04-01
A two-dimensional model that captures the essential features of the vibration of the basilar membrane of the cochlea is proposed. The flow due to the vibration of the stapes footplate and round window is modeled by a point source and a point sink, and the cochlear pressure is computed simultaneously with the oscillations of the basilar membrane. The mathematical formulation relies on the boundary-integral representation of the potential flow established far from the basilar membrane and cochlea side walls, neglecting the thin Stokes boundary layer lining these surfaces. The boundary-integral approach furnishes integral equations for the membrane vibration amplitude and pressure distribution on the upper or lower side of the membrane. Several approaches are discussed, and numerical solutions in the frequency domain are presented for a rectangular cochlea model using different membrane response functions. The numerical results reproduce and extend the theoretical predictions of previous authors and delineate the effect of physical and geometrical parameters. It is found that the membrane vibration depends weakly on the position of the membrane between the upper and lower wall of the cochlear channel and on the precise location of the oval and round windows. Solutions of the initial-value problem with a single-period sinusoidal impulse reveal the formation of a traveling wave packet that eventually disappears at the helicotrema.
Cordas, Emily A.; Ng, Lily; Hernandez, Arturo; Kaneshige, Masahiro; Cheng, Sheue-Yann
2012-01-01
Thyroid hormone is critical for auditory development and has well-known actions in the inner ear. However, less is known of thyroid hormone functions in the middle ear, which contains the ossicles (malleus, incus, stapes) that relay mechanical sound vibrations from the outer ear to the inner ear. During the later stages of middle ear development, prior to the onset of hearing, middle ear cavitation occurs, involving clearance of mesenchyme from the middle ear cavity while the immature cartilaginous ossicles attain appropriate size and ossify. Using in situ hybridization, we detected expression of Thra and Thrb genes encoding thyroid hormone receptors α1 and β (TRα1 and TRβ, respectively) in the immature ossicles, surrounding mesenchyme and tympanic membrane in the mouse. Thra+/PV mice that express a dominant-negative TRα1 protein exhibited deafness with elevated auditory thresholds and a range of middle ear abnormalities including chronic persistence of mesenchyme in the middle ear into adulthood, markedly enlarged ossicles, and delayed ossification of the ossicles. Congenitally hypothyroid Tshr−/− mice and TR-deficient Thra1−/−;Thrb−/− mice displayed similar abnormalities. These findings demonstrate that middle ear maturation is TR dependent and suggest that the middle ear is a sensitive target for thyroid hormone in development. PMID:22253431
NASA Astrophysics Data System (ADS)
Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy; Chen, Fangyi; Subhash, Hrebesh M.; Choudhury, Niloy; Wang, Ruikang; Jacques, Steven L.; Nuttall, Alfred L.
2013-03-01
A major reason we can perceive faint sounds and communicate in noisy environments is that the outer hair cells of the organ of Corti enhance the sound-evoked motions inside the cochlea. To understand how the organ of Corti works, we have built and tested the phase-sensitive Fourier domain optical coherence tomography (PSFDOCT) system. This system has key advantages over our previous time domain OCT system [1]. The PSFDOCT system has better signal to noise and simultaneously acquires vibration data from all points along the optical-axis [2]. Feasibility of this system to measure in vitro cochlear vibrations in the apex was demonstrated earlier [3]. In this study, we measure the in vivo vibrations of the organ of Corti via round window in live anaesthetized guinea pigs using PSFDOCT. This region of the guinea pig cochlea responds to very high frequencies (10 - 40 kHz). The current vibration noise floor for native organ of Corti tissue is 0.03 nm in this frequency range. Sound-induced vibrations of the stapes, which delivers input to the cochlea, are also measured. The measured vibrations of the organ of Corti demonstrate non-linear compression and active amplification characteristic of sensitive mammalian cochlea.
Shera, Christopher A; Cooper, Nigel P
2013-04-01
At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves.
Verheij, E; Elden, L; Crowley, T B; Pameijer, F A; Zackai, E H; McDonald-McGinn, D M; Thomeer, H G X M
2018-05-01
The 22q11.2 deletion syndrome is characterized by a heterogenic phenotype, including hearing loss. The underlying cause of hearing loss, especially sensorineural hearing loss, is not yet clear. Therefore, our objective was to describe anatomic malformations in the middle and inner ear in patients with 22q11.2 deletion syndrome. A retrospective case series was conducted in 2 tertiary referral centers. All patients with 22q11.2 deletion syndrome who had undergone CT or MR imaging of the temporal bones were included. Radiologic images were evaluated on predetermined parameters, including abnormalities of the ossicular chain, cochlea, semicircular canals, and vestibule. There were 26 patients (52 ears) with a CT or MR imaging scan available. A dense stapes superstructure was found in 18 ears (36%), an incomplete partition type II was suspected in 12 cochleas (23%), the lateral semicircular canal was malformed with a small bony island in 17 ears (33%), and the lateral semicircular canal and vestibule were fused to a single cavity in 15 ears (29%). Middle and inner ear abnormalities were frequently encountered in our cohort, including malformations of the lateral semicircular canal. © 2018 by American Journal of Neuroradiology.
Pardo, Jason D.; Anderson, Jason S.
2016-01-01
Lysorophians are a group of early tetrapods with extremely elongate trunks, reduced limbs, and highly reduced skulls. Since the first discovery of this group, general similarities in outward appearance between lysorophians and some modern lissamphibian orders (specifically Urodela and Gymnophiona) have been recognized, and sometimes been the basis for hypotheses of lissamphibian origins. We studied the morphology of the skull, with particular emphasis on the neurocranium, of a partial growth series of the lysorophian Brachydectes newberryi using x-ray micro-computed tomography (μCT). Our study reveals similarities between the braincase of Brachydectes and brachystelechid recumbirostrans, corroborating prior work suggesting a close relationship between these taxa. We also describe the morphology of the epipterygoid, stapes, and quadrate in this taxon for the first time. Contra the proposals of some workers, we find no evidence of expected lissamphibian synapomorphies in the skull morphology in Brachydectes newberryi, and instead recognize a number of derived amniote characteristics within the braincase and suspensorium. Morphology previously considered indicative of taxonomic diversity within Lysorophia may reflect ontogenetic rather than taxonomic variation. The highly divergent morphology of lysorophians represents a refinement of morphological and functional trends within recumbirostrans, and is analogous to morphology observed in many modern fossorial reptiles. PMID:27563722
A 3D-printed functioning anatomical human middle ear model.
Kuru, Ismail; Maier, Hannes; Müller, Mathias; Lenarz, Thomas; Lueth, Tim C
2016-10-01
The middle ear is a sophisticated and complex structure with a variety of functions, yet a delicate organ prone to injuries due to various reasons. Both, understanding and reconstructing its functions has always been an important topic for researchers from medical and technical background. Currently, human temporal bones are generally used as model for tests, experiments and validation of the numerical results. However, fresh human preparations are not always easily accessible and their mechanical properties vary with time and between individuals. Therefore we have built an anatomically based and functional middle ear model to serve as a reproducible test environment. Our middle ear model was manufactured with the aid of 3D-printing technology. We have segmented the essential functional elements from micro computed tomography data (μCT) of a single temporal bone. The ossicles were 3D-printed by selective laser melting (SLM) and the soft tissues were casted with silicone rubber into 3D-printed molds. The ear canal, the tympanic cavity and the inner ear were artificially designed, but their design ensured the anatomically correct position of the tympanic membrane, ossicular ligaments and the oval window. For the determination of their auditory properties we have conducted two kinds of tests: measurement of the stapes footplate response to sound and tympanometry of the model. Our experiments regarding the sound transmission showed that the model has a similar behavior to a human middle ear. The transfer function has a resonance frequency at around 1 kHz, the stapes' response is almost constant for frequencies below the resonance and a roll-off is observed above the resonance. The tympanometry results show that the compliance of the middle ear model is similar to the compliance of a healthy human middle ear. We also present that we were able to manipulate the transmission behavior, so that healthy or pathological scenarios can be created. For this purpose we have built models with different mechanical properties by varying the hardness of the silicone rubber used for different structures, such as tympanic membrane, oval window and ossicle attachments in the range of Shore 10-40 A. This allowed us to set the transmission amplitudes in the plateau region higher, lower or within the tolerances of normal middle ears (Rosowski et al., 2007). Our results showed that it is possible to build an artificial model of the human middle ear by using 3D-printing technology in combination with silicone rubber molding. We were able to reproduce the anatomical shape of the middle ear's essential elements with high accuracy and also assemble them into a functioning middle ear model. The acoustic behavior of the model can be reproduced and manipulated by the choice of material. If the issues such as resonance of the casing and steep roll-off slope in higher frequencies can be solved, this model creates a reproducible environment for experiments and can be useful for the evaluation of prosthetic devices. Copyright © 2016 Elsevier B.V. All rights reserved.
Measurement of the Three-Dimensional Vibration Motion of the Ossicular Chain in the Living Gerbil
NASA Astrophysics Data System (ADS)
Decraemer, Willem F.; de La Rochefoucauld, Ombeline; Olson, Elizabeth S.
2011-11-01
In previous studies 3D motion of the middle-ear ossicles in cat and human temporal bone were explored but models for hearing research has shifted in the last decades to smaller mammals and gerbil in particular has become a hearing model of first choice. In the present study we have measured with an optical interferometer the 3D motion of the malleus and incus in anesthetized gerbil for sound of moderate intensity (90 dB SPL) in a broad frequency range. To access the malleus and incus the pars flaccida was completely removed exposing the neck and head of the malleus and the incus from the malleus-incus joint to the long process of the incus and the plate of the lenticular process. In a previous study an approach through a hole in the bullar wall was used to study the stapes motion so that we now have a complete picture of the middle ear motion. In both approaches vibration measurements were done at 6 to 7 points per ossicle while the angle of observation was varied over approximately 30 degrees to enable calculation of the 3D velocity components. Knowledge of middle ear motion is of great importance in understanding how the middle ear transforms the acoustical input from the ear canal to the cochlea.
Does stapes surgery improve tinnitus in patients with otosclerosis?
Ismi, Onur; Erdogan, Osman; Yesilova, Mesut; Ozcan, Cengiz; Ovla, Didem; Gorur, Kemal
Otosclerosis (OS) is the primary disease of the human temporal bone characterized by conductive hearing loss and tinnitus. The exact pathogenesis of tinnitus in otosclerosis patients is not known and factors affecting the tinnitus outcome in otosclerosis patients are still controversial. To find the effect of stapedotomy on tinnitus for otosclerosis patients. Fifty-six otosclerosis patients with preoperative tinnitus were enrolled to the study. Pure tone average Air-Bone Gap values, preoperative tinnitus pitch, Air-Bone Gap closure at tinnitus frequencies were evaluated for their effect on the postoperative outcome. Low pitch tinnitus had more favorable outcome compared to high pitch tinnitus (p=0.002). Postoperative average pure tone thresholds Air-Bone Gap values were not related to the postoperative tinnitus (p=0.213). There was no statistically significant difference between postoperative Air-Bone Gap closure at tinnitus frequency and improvement of high pitch tinnitus (p=0.427). There was a statistically significant difference between Air-Bone Gap improvement in tinnitus frequency and low pitch tinnitus recovery (p=0.026). Low pitch tinnitus is more likely to be resolved after stapedotomy for patients with otosclerosis. High pitch tinnitus may not resolve even after closure of the Air-Bone Gap at tinnitus frequencies. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
The lenticular process of the incus.
Graboyes, Evan M; Hullar, Timothy E; Chole, Richard A
2011-12-01
Seventeenth century anatomists, including Franciscus Sylvius, identified a small bony structure between the distal end of the incus and the stapes that they believed was a separate and thus additional ossicle. The existence of the ossicle at the distal end of the long process of the incus was controversial for the next 200 years. In the 19 th century, anatomists including Johann Friedrich Blumenbach, Samuel Thomas Soemmerring, Henry Jones Shrapnell, Eduard Hagenbach, and Joseph Hyrtl provided numerous arguments to demonstrate why the so-called additional ossicle was actually attached to the incus by a thin strut, and thus not a separate bone. The objective of this study was to review the history of the discovery and description of the lenticular process of the incus. Data sources included original published manuscripts and monographs obtained from the historical collections at Washington University in St. Louis and photographs of original materials from cooperating libraries. A detailed study of the published evidence revealed that the lenticular process of the incus was originally thought to be a separate, or fourth, ossicle. Later studies revealed that the lenticular "ossicle" was actually attached to the incus by a thin strut. The ovoid end of the incus should be referred to as the "lenticular process" of the incus, attached to the long process by a thin strut or pedicle. The best nomenclature for the bony connection between the lenticular process and the long process of the incus remains uncertain.
Gostian, Antoniu-Oreste; Schwarz, David; Mandt, Philipp; Anagiotos, Andreas; Ortmann, Magdalene; Pazen, David; Beutner, Dirk; Hüttenbrink, Karl-Bernd
2016-11-01
The round window vibroplasty is a feasible option for the treatment of conductive, sensorineural and mixed hearing loss. Although clinical data suggest a satisfying clinical outcome with various coupling methods, the most efficient coupling technique of the floating mass transducer to the round window is still a matter of debate. For this, a soft silicone-made coupler has been developed recently that aims to ease and optimize the stimulation of the round window membrane of this middle ear implant. We performed a temporal bone study evaluating the performance of the soft coupler compared to the coupling with individually shaped cartilage, perichondrium and the titanium round window coupler with loads up to 20 mN at the unaltered and fully exposed round window niche. The stimulation of the cochlea was measured by the volume velocities of the stapes footplate detected by a laser Doppler vibrometer. The coupling method was computed as significant factor with cartilage and perichondrium allowing for the highest volume velocities followed by the soft and titanium coupler. Exposure of the round window niche allowed for higher volume velocities while the applied load did not significantly affect the results. The soft coupler allows for a good contact to the round window membrane and an effective backward stimulation of the cochlea. Clinical data are mandatory to evaluate performance of this novel coupling method in vivo.
Giovanni Filippo Ingrassia: A five-hundred year-long lesson.
Cappello, Francesco; Gerbino, Aldo; Zummo, Giovanni
2010-10-01
Giovanni Filippo Ingrassia was born five centuries ago in Regalbuto, a small town in the center of Sicily. After his medical course in Padua, under the guidance of Vesalius and Fallopius, he gained international fame as a physician and was recruited as a Professor of human anatomy in Naples and later in Palermo. He is remembered as "the new Galen" or "the Sicilian Hippocrates." He contributed to the knowledge of human anatomy through the description of single bones rather than the whole skeleton. In particular, he was the first to describe the "stapes," the "lesser wings of the sphenoid" and various other structures in the head (probably the pharyngotympanic tube) as well as in the reproductive system (corpora cavernosa and seminal vesicles). He was also a pioneer in the study of forensic medicine, hygiene, surgical pathology, and teratology. As Protomedicus of Sicily, he developed the scientific culture in this country. During those years, he faced the spread of malaria and plague with competence and authoritativeness. Indeed, he was one of the first physicians to suppose that certain diseases could be transmitted between individuals, therefore, introducing revolutionary measures of prevention. He is remembered for his intellectual authority and honesty. Five-hundred years after his birth, his teaching is still alive. In this article, we survey the life and contribution of this pioneer of early anatomical study. Copyright © 2010 Wiley-Liss, Inc.
Jiang, Shangyuan; Gan, Rong Z
2018-04-01
The incudostapedial joint (ISJ) is a synovial joint connecting the incus and stapes in the middle ear. Mechanical properties of the ISJ directly affect sound transmission from the tympanic membrane to the cochlea. However, how ISJ properties change with frequency has not been investigated. In this paper, we report the dynamic properties of the human ISJ measured in eight samples using a dynamic mechanical analyzer (DMA) for frequencies from 1 to 80 Hz at three temperatures of 5, 25 and 37 °C. The frequency-temperature superposition (FTS) principle was used to extrapolate the results to 8 kHz. The complex modulus of ISJ was measured with a mean storage modulus of 1.14 MPa at 1 Hz that increased to 3.01 MPa at 8 kHz, and a loss modulus that increased from 0.07 to 0.47 MPa. A 3-dimensional finite element (FE) model consisting of the articular cartilage, joint capsule and synovial fluid was then constructed to derive mechanical properties of ISJ components by matching the model results to experimental data. Modeling results showed that mechanical properties of the joint capsule and synovial fluid affected the dynamic behavior of the joint. This study contributes to a better understanding of the structure-function relationship of the ISJ for sound transmission. Copyright © 2018. Published by Elsevier Ltd.
Songer, Jocelyn E.; Rosowski, John J.
2006-01-01
A superior semicircular canal dehiscence (SCD) is a break or hole in the bony wall of the superior semicircular canal. Patients with SCD syndrome present with a variety of symptoms: some with vestibular symptoms, others with auditory symptoms (including low-frequency conductive hearing loss) and yet others with both. We are interested in whether or not mechanically altering the superior canal by introducing a dehiscence is sufficient to cause the low-frequency conductive hearing loss associated with SCD syndrome. We evaluated the effect of a surgically introduced dehiscence on auditory responses to air-conducted (AC) stimuli in 11 chinchilla ears. Cochlear potential (CP) was recorded at the round-window before and after a dehiscence was introduced. In each ear, a decrease in CP in response to low frequency (<2 kHz) sound stimuli was observed after the introduction of the dehiscence. The dehiscence was then patched with cyanoacrylate glue leading to a reversal of the dehiscence-induced changes in CP. The reversible decrease in auditory sensitivity observed in chinchilla is consistent with the elevated AC thresholds observed in patients with SCD. According to the ‘third-window’ hypothesis the SCD shunts sound-induced stapes velocity away from the cochlea, resulting in decreased auditory sensitivity to AC sounds. The data collected in this study are consistent with predictions of this hypothesis. PMID:16150562
Auditory Brainstem Circuits That Mediate the Middle Ear Muscle Reflex
Mukerji, Sudeep; Windsor, Alanna Marie; Lee, Daniel J.
2010-01-01
The middle ear muscle (MEM) reflex is one of two major descending systems to the auditory periphery. There are two middle ear muscles (MEMs): the stapedius and the tensor tympani. In man, the stapedius contracts in response to intense low frequency acoustic stimuli, exerting forces perpendicular to the stapes superstructure, increasing middle ear impedance and attenuating the intensity of sound energy reaching the inner ear (cochlea). The tensor tympani is believed to contract in response to self-generated noise (chewing, swallowing) and nonauditory stimuli. The MEM reflex pathways begin with sound presented to the ear. Transduction of sound occurs in the cochlea, resulting in an action potential that is transmitted along the auditory nerve to the cochlear nucleus in the brainstem (the first relay station for all ascending sound information originating in the ear). Unknown interneurons in the ventral cochlear nucleus project either directly or indirectly to MEM motoneurons located elsewhere in the brainstem. Motoneurons provide efferent innervation to the MEMs. Although the ascending and descending limbs of these reflex pathways have been well characterized, the identity of the reflex interneurons is not known, as are the source of modulatory inputs to these pathways. The aim of this article is to (a) provide an overview of MEM reflex anatomy and physiology, (b) present new data on MEM reflex anatomy and physiology from our laboratory and others, and (c) describe the clinical implications of our research. PMID:20870664
How to Avoid a Learning Curve in Stapedotomy: A Standardized Surgical Technique.
Kwok, Pingling; Gleich, Otto; Dalles, Katharina; Mayr, Elisabeth; Jacob, Peter; Strutz, Jürgen
2017-08-01
To evaluate, whether a learning curve for beginners in stapedotomy can be avoided by using a prosthesis with thermal memory-shape attachment in combination with a standardized laser-assisted surgical technique. Retrospective case review. Tertiary referral center. Fifty-eight ears were operated by three experienced surgeons and compared with a group of 12 cases operated by a beginner in stapedotomy. Stapedotomy. Difference of pure-tone audiometry thresholds measured before and after surgery. The average postoperative gain for air conduction in the frequencies below 2 kHz was 20 to 25 dB and decreased for the higher frequencies. Using the Mann-Whitney-U test for comparing mean gain between experienced and inexperienced surgeons showed no significant difference (p = 0.281 at 4 kHz and p > 0.7 for the other frequencies). A Spearman rank correlation of the postoperative gain for air- and bone-conduction thresholds was obtained at each test frequency for the first 12 patients consecutively treated with a thermal memory-shape attachment prosthesis by two experienced and one inexperienced surgeon. This analysis does not support the hypothesis of a "learning effect" that should be associated with an improved outcome for successively treated patients. It is possible to avoid a learning curve in stapes surgery by applying a thermal memory-shape prosthesis in a standardized laser-assisted surgical procedure.
Surgical Management and Hearing Outcome of Traumatic Ossicular Injuries.
Delrue, Stefan; Verhaert, Nicolas; Dinther, Joost van; Zarowski, Andrzej; Somers, Thomas; Desloovere, Christian; Offeciers, Erwin
2016-12-01
The purpose of this study was to investigate etiological, clinical, and pathological characteristics of traumatic injuries of the middle ear ossicular chain and to evaluate hearing outcome after surgery. Thirty consecutive patients (31 ears) with traumatic ossicular injuries operated on between 2004 and 2015 in two tertiary referral otologic centers were retrospectively analyzed. Traumatic events, clinical features, ossicular lesions, treatment procedures, and audiometric results were evaluated. Air conduction (AC), bone conduction (BC), and air-bone gap (ABG) were analyzed preoperatively and postoperatively. Amsterdam Hearing Evaluation Plots (AHEPs) were used to visualize the individual hearing results. The mean age at the moment of trauma was 27.9±17.1 years (range, 2-75 years) and the mean age at surgery was 33.2±16.3 years (range, 5-75 years). In 10 cases (32.3%), the injury occurred by a fall on the head and in 9 (29.0%) by a traffic accident. Isolated luxation of the incus was observed in 8 cases (25.8%). Dislocation of the stapes footplate was seen in 4 cases (12.9%). The postoperative ABG closure to within 10 and 20 dB was 30% and 76.7%, respectively. Ossicular chain injury by direct or indirect trauma can provoke hearing loss, tinnitus, and vertigo. As injuries are heterogeneous, they require a tailored surgical approach. In this study, the overall hearing outcome after surgical repair was favorable.
X-Ray Constraints on the Warm-Hot Intergalactic Medium
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Snowden, S. I.; Mushotzky, R. F.; White, Nicholas E. (Technical Monitor)
2000-01-01
Three observational constraints can be placed on a warm-hot intergalactic medium (WHIM) using ROSAT Position Sensitive Proportional Counter (PSPC) pointed and survey data, the emission strength, the energy spectrum, and the fluctuation spectrum. The upper limit to the emission strength of the WHIM is 7.5 +/- 1.0 keV/(s*sq cm*sr*keV) in the 3/4 keV band, an unknown portion of which value may be due to our own Galactic halo. The spectral stape of the WHIM emission can be described as thermal emission with logT = 6.42, although the true spectrum is more likely to come from a range of temperatures. The values of emission strength and spectral shape are in reasonable agreement with hydrodynamical cosmological models. The autocorrelation function in the 0.44 keV < E < 1.21 keV band range, w(theta), for the extragalactic soft X-ray background (SXRB) which includes both the WHIM and contributions due to point sources, is approx. < 0.002 for 10 min < 0 < 20 min in the 3/4 keV band. This value is lower than the Croft et al. (2000) cosmological model by a factor of approx. 5, but is still not inconsistent with cosmological models. It is also found that the normalization of the extragalactic power law component of the soft X-ray background spectrum must be 9.5 +/- 0.9 keV/(s*sq cm*sr*keV) to be consistent with the ROSAT All-Sky Survey.
Inner ear contribution to bone conduction hearing in the human.
Stenfelt, Stefan
2015-11-01
Bone conduction (BC) hearing relies on sound vibration transmission in the skull bone. Several clinical findings indicate that in the human, the skull vibration of the inner ear dominates the response for BC sound. Two phenomena transform the vibrations of the skull surrounding the inner ear to an excitation of the basilar membrane, (1) inertia of the inner ear fluid and (2) compression and expansion of the inner ear space. The relative importance of these two contributors were investigated using an impedance lumped element model. By dividing the motion of the inner ear boundary in common and differential motion it was found that the common motion dominated at frequencies below 7 kHz but above this frequency differential motion was greatest. When these motions were used to excite the model it was found that for the normal ear, the fluid inertia response was up to 20 dB greater than the compression response. This changed in the pathological ear where, for example, otosclerosis of the stapes depressed the fluid inertia response and improved the compression response so that inner ear compression dominated BC hearing at frequencies above 400 Hz. The model was also able to predict experimental and clinical findings of BC sensitivity in the literature, for example the so called Carhart notch in otosclerosis, increased BC sensitivity in superior semicircular canal dehiscence, and altered BC sensitivity following a vestibular fenestration and RW atresia. Copyright © 2014 Elsevier B.V. All rights reserved.
Investigation of a broadband duct noise control system inspired by the middle ear mechanism
NASA Astrophysics Data System (ADS)
Wang, Chunqi; Huang, Lixi
2012-08-01
A new duct noise control device is introduced based on the mechanism of human middle ear which functions as a compact, broadband impedance transformer between the air motion in the outer ear and the liquid motion in the inner ear. The system consists of two rigid endplates, simulating the tympanic membrane and the stapes footplate, and they are connected by a single rigid rod, simulating the overall action of the ossicular chain. These three pieces are placed in a side-branch cavity, and the whole device is called an ossicular silencer. A specific configuration is investigated numerically with a two-dimensional finite element model. Results show that broadband noise attenuation can be achieved in the very low frequency regime. Typically, two or more resonance peaks are found and the transmission loss between two neighbouring peaks is maintained at a high level. The cavity length is found to be the most crucial parameter that determines the effective frequency range of the ossicular silencer. The total cavity volume, which is a major controlling factor in most existing noise control devices, becomes less influential. The fluid medium in the enclosed cavity mainly acts like an added mass, while its stiffness effect is negligible. Simplified plane wave analysis is also conducted to reveal the mechanisms of the system resonances. The first resonance is identified as of the mass-spring system with mass contributions from both fluid and the plates, while the second one is of the Herschel-Quincke (HQ) tube resonance.
Laser Doppler Vibrometry measurements of human cadaveric tympanic membrane vibration
2013-01-01
Objective To determine the feasibility of measuring tympanic membrane (TM) vibrations at multiple locations on the TM to differentiate normal eardrums from those with associated ossicular pathologies. Design Cadaveric human temporal bone study. Setting Basic science laboratory. Methods A mastoidectomy and facial recess approach was performed on four cadaveric temporal bones to obtain access to the ossicles without disrupting the TM. Ossicles were palpated to ensure normal mobility and an intact ossicular chain. Laser Doppler Vibrometry (LDV) measurements were then taken on all four TMs. LDV measurements were repeated on each TM following stapes footplate fixation, incudo-stapedial joint dislocation, and malleus head fixation. Main outcome measures LDV measurements of TM vibration at the umbo, the lateral process of the malleus, and in each of the four quadrants of the TM. Results The best signal-to-noise ratios were found between 2 and 4 kHz, at the umbo, the anterior superior quadrant, the anterior inferior quadrant, and the posterior inferior quadrant. Since our goal was to assess the ossicular chain, we selected the TM locations closest to the ossicular chain (the umbo and lateral process of the malleus) for further analysis. Differences could be seen between normals and the simulated ossicular pathologies, but values were not statistically significant. Conclusions LDV measurements are technically challenging and require optimization to obtain consistent measurements. This study demonstrates the potential of LDV to differentiate ossicular pathologies behind an intact tympanic membrane. Future studies will further characterize the clinical role of this diagnostic modality. PMID:23663748
Morphology and function of Neandertal and modern human ear ossicles
David, Romain; Gunz, Philipp; Schmidt, Tobias; Spoor, Fred; Hublin, Jean-Jacques
2016-01-01
The diminutive middle ear ossicles (malleus, incus, stapes) housed in the tympanic cavity of the temporal bone play an important role in audition. The few known ossicles of Neandertals are distinctly different from those of anatomically modern humans (AMHs), despite the close relationship between both human species. Although not mutually exclusive, these differences may affect hearing capacity or could reflect covariation with the surrounding temporal bone. Until now, detailed comparisons were hampered by the small sample of Neandertal ossicles and the unavailability of methods combining analyses of ossicles with surrounding structures. Here, we present an analysis of the largest sample of Neandertal ossicles to date, including many previously unknown specimens, covering a wide geographic and temporal range. Microcomputed tomography scans and 3D geometric morphometrics were used to quantify shape and functional properties of the ossicles and the tympanic cavity and make comparisons with recent and extinct AMHs as well as African apes. We find striking morphological differences between ossicles of AMHs and Neandertals. Ossicles of both Neandertals and AMHs appear derived compared with the inferred ancestral morphology, albeit in different ways. Brain size increase evolved separately in AMHs and Neandertals, leading to differences in the tympanic cavity and, consequently, the shape and spatial configuration of the ossicles. Despite these different evolutionary trajectories, functional properties of the middle ear of AMHs and Neandertals are largely similar. The relevance of these functionally equivalent solutions is likely to conserve a similar auditory sensitivity level inherited from their last common ancestor. PMID:27671643
Was Cheselden's One-Century-Long Otological Writings Concordant With His Time?
Corrales, C Eduardo; Mudry, Albert
2015-08-01
William Cheselden's famous anatomical treatise spanned the entire 18th century period with its 15 editions. The aim of this study is to analyze the otological knowledge described in all these editions, to identify key 18th century otological advancements, and to study their concordance.In the first edition (1713), Cheselden notably mentioned four middle ear ossicles: malleus, incus, fourth ossicle, and stapes; four auditory muscles: "external tympani," "external oblique," tensor tympani, and stapedial; and a small opening in the tympanic membrane. In subsequent editions, minimal changes appeared, except for nomenclature changes and the proposal of an artificial opening of the tympanic membrane. Virtually no changes were performed up to the last edition (1806). All Cheselden's Editions confirm the uncertain presence of a fourth ossicle, the disputable presence of a tympanic membrane opening and the "usual" accepted presence of three muscles to the malleus. Key otologic advancements, not found in any of Cheselden's writings, were catherization of the Eustachian tube, presence of fluid in the inner ear, and the surgical opening of the mastoid.This study demonstrates that Cheselden, and his subsequent editors, were unaware of some important otologic developments that revolutionized the field of otology. Description of key advancements lacking in his treatise includes catherization of the Eustachian tube, the presence of fluid in the inner ear, and the surgical opening of the mastoid. Nevertheless, Cheselden is first in proposing to artificially open the tympanic membrane in humans.
Caremans, Jeroen; Hamans, Evert; Muylle, Ludo; Van de Heyning, Paul; Van Rompaey, Vincent
2016-06-01
Allograft tympano-ossicular systems (ATOS) have proven their use over many decades in tympanoplasty and reconstruction after resection of cholesteatoma. The transcranial bone plug technique has been used in the past 50 years to procure en bloc ATOS (tympanic membrane with malleus, incus and stapes attached). Recently, our group reported the feasibility of the endoscopic procurement technique. The aim of this study was to assess whether clinical outcome is equivalent in ATOS acquired by using the endoscopic procurement technique compared to ATOS acquired by using the transcranial technique. A double-blind randomized controlled audit was performed in a tertiary referral center in patients that underwent allograft tympanoplasty because of chronic otitis media with and without cholesteatoma. Allograft epithelialisation was evaluated at the short-term postoperative visit by microscopic examination. Failures were reported if reperforation was observed. Fifty patients underwent allograft tympanoplasty: 34 received endoscopically procured ATOS and 16 received transcranially procured ATOS. One failed case was observed, in the endoscopic procurement group. We did not observe a statistically significant difference between the two groups in failure rate. This study demonstrates equivalence of the clinical outcome of allograft tympanoplasty using either endoscopic or transcranial procured ATOS and therefore indicates that the endoscopic technique can be considered the new standard procurement technique. Especially because the endoscopic procurement technique has several advantages compared to the former transcranial procurement technique: it avoids risk of prion transmission and it is faster while lacking any noticeable incision.
Elastic fiber-mediated enthesis in the human middle ear
Kawase, Tetsuaki; Shibata, Shunichi; Katori, Yukio; Ohtsuka, Aiji; Murakami, Gen; Fujimiya, Mineko
2012-01-01
Adaptation to constant vibration (acoustic oscillation) is likely to confer a specific morphology at the bone–tendon and bone–ligament interfaces at the ear ossicles, which therefore represent an exciting target of enthesis research. We histologically examined (i) the bone attachments of the tensor tympani and stapedius muscles and (ii) the annular ligament of the incudostapedial joint obtained from seven elderly donated cadavers. Notably, both aldehyde-fuchsin and elastic-Masson staining demonstrated that the major fibrous component of the entheses was not collagen fibers but mature elastic fibers. The positive controls for elastic fiber staining were the arterial wall elastic laminae included in the temporal bone materials. The elastic fibers were inserted deeply into the type II collagen-poor fibrocartilage covering the ear ossicles. The muscle tendons were composed of an outer thin layer of collagen fibers and an inner thick core of elastic fibers near the malleus or stapes. In the unique elastic fiber-mediated entheses, hyaluronan, versican and fibronectin were expressed strongly along the elastic fibers. The hyaluronan seemed to act as a friction-reducing lubricant for the elastic fibers. Aggrecan was labeled strongly in a disk- or plica-like fibrous mass on the inner side of the elastic fiber-rich ligament, possibly due to compression stress from the ligament. Tenascin-c was not evident in the entheses. The elastic fiber-mediated entheses appeared resistant to tissue destruction in an environment exposed to constant vibration. The morphology was unlikely to be the result of age-related degeneration. PMID:22803514
Non-ototoxic local delivery of bisphosphonate to the mammalian cochlea
Kang, Woo Seok; Sun, Shuting; Nguyen, Kim; Kashemirov, Boris; McKenna, Charles E.; Hacking, S. Adam; Quesnel, Alicia M.; Sewell, William F.; McKenna, Michael J.; Jung, David H.
2015-01-01
Hypothesis Local delivery of bisphosphonates results in superior localization of these compounds for the treatment of cochlear otosclerosis, without ototoxicity. Background Otosclerosis is a common disorder of abnormal bone remodeling within the human otic capsule. It is a frequent cause of conductive hearing loss from stapes fixation. Large lesions that penetrate the cochlear endosteum and injure the spiral ligament result in sensorineural hearing loss. Nitrogen-containing bisphosphonates (e.g., zoledronate) are potent inhibitors of bone remodeling with proven efficacy in the treatment of metabolic bone diseases, including otosclerosis. Local delivery to the cochlea may allow for improved drug targeting, higher local concentrations, and the avoidance of systemic complications. In this study, we utilize a fluorescently labeled bisphosphonate compound (6-FAM-ZOL) to determine drug localization and concentration within the otic capsule. Various methods for delivery are compared. Ototoxicity is evaluated by ABR and DPOAEs. Methods 6-FAM-ZOL was administered to guinea pigs via intraperitoneal injection, placement of alginate beads onto the round window membrane (RWM), or microfluidic pump infusion via a cochleostomy. Hearing was evaluated. Specimens were embedded into resin blocks, ground to a mid-modiolar section, and quantitatively imaged using fluorescence microscopy. Results There was a dose-dependent increase in fluorescent signal following systemic 6-FAM-ZOL treatment. Local delivery via the RWM or a cochleostomy increased delivery efficiency. No significant ototoxicity was observed following either systemic or local 6-FAM-ZOL delivery. Conclusions These findings establish important pre-clinical parameters for the treatment of cochlear otosclerosis in humans. PMID:25996080
[How do metallic middle ear implants behave in the MRI?].
Kwok, P; Waldeck, A; Strutz, J
2003-01-01
Magnetic resonance imaging (MRI) has gained in frequency and importance as a diagnostic procedure. In respect to the close anatomical relationship in the temporal bone it is necessary to know whether it is hazardous to patients with metallic middle ear implants regarding displacement and rise in temperature. For the MR image quality artefacts caused by metallic prostheses should be low. Four different stapes prostheses made from titanium, gold, teflon/platinum and teflon/steel, a titanium total ossicular reconstruction prosthesis (TORP) and two ventilation tubes (made from titanium and gold) were tested in a 1.5 Tesla MRI machine regarding their displacement. All objects were first placed in a petri dish, then suspended from a thread and finally immersed in a dish filled with Gadolinium. Temperature changes of the implants were recorded by a pyrometer. None of the implants moved when they were placed in the petri dish or suspended from the thread. On the water surface the teflon/platinum and the teflon/steel pistons adjusted their direction with their axis longitudinally to the MRI scanner opening and the teflon/steel piston floated towards the MRI-machine when put close enough to the scanner opening. No rise in temperature was recorded. All implants showed as little artefacts that would still make an evaluation of the surrounding tissue possible. Patients with any of the metallic middle ear implants that were examined in this study may undergo MRI-investigations without significant adverse effects.
Justicz, Natalie; Strickland, Kaitlyn F; Motamedi, Kevin K; Mattox, Douglas E
2017-04-01
Stapes surgery with a nickel titanium prosthesis is a safe and well-tolerated procedure that leads to a significant improvement in hearing outcomes. To identify the efficacy and safety of stapedotomy procedures performed with a nickel titanium prosthesis for patients with otosclerosis. A review of 431 unique stapedotomies performed over 14 years by a single surgeon at an academic tertiary care center yielded 312 cases with nickel titanium prosthesis that met inclusion criteria of otosclerosis diagnosis, initial surgery in operative ear, and presence of pre-operative and post-operative audiograms. Pure-tone averages (PTA) at baseline and 8 weeks after surgery were calculated over four frequencies; 0.5, 1, 2, and 4 kHz. Average air-bone gaps (ABG) were calculated from pre-operative and post-operative audiograms. Average pre-operative baseline PTA was 56.7 dB in the affected ear. Post-operative PTA was 30.1 dB, a 26.6 dB improvement. Initial average ABG was 29.7 dB, while post-operative ABG averaged 5.4 dB, a 24.2 dB improvement. Surgical success (closure of ABG within 10 dB) was achieved in 263 (84%) patients. Rate of surgical success was not correlated with age, gender, race, or affected ear. Complications included recurrent conductive hearing loss (14), progressive SNHL (4), and post-operative BPPV (3).
NASA Astrophysics Data System (ADS)
Kamalski, Digna M. A.; Verdaasdonk, Rudolf M.; de Boorder, Tjeerd; Grolman, Wilko
2011-03-01
The outcome of stapedotomy depends on several surgical steps. Using laser light, the ossicular chain can be handled and the oval window can be punctured with a non-touch method. Various lasers are being used or considered, however, it is not clear which settings and characteristics will contribute to optimal or adverse effects (vestibule damage and loss hearing frequencies). Using a unique high speed thermal imaging setup based on Schlieren techniques, the mechanical and thermal effects during laser stapedotomy were studied in an inner ear model consisting of human, fresh frozen stapes positioned on a liquid filled cavity in a gel cast. The cw KTP (532 nm), cw CO2 (10.6 μm), cw Thulium (2.0 μm), pulsed Er,Cr;YSGG (2.78 μm) coupled to special fiber delivery systems were applied at typical clinical settings for comparison. The imaging techniques provided a good insight in the extent of heat conduction beneath the footplate and (explosive) vapour formation on both sides. For the pulsed laser modes, explosive vapour expansion can to be controlled with optimized pulse energies while for continuous wave lasers the thermal effects can be controlled with the pulse length and repetition rate. The fluence at the tip of the delivery system and the distance to the footplate has a major impact on the ablation effect. The pulsed IR lasers with fiber delivery show to be promising for a controlled stapedotomy.
Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system
Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil
2018-01-01
Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia–reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia–reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light. PMID:29489849
Kong, Tae Hoon; Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil; Seo, Young Joon
2018-01-01
Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia-reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia-reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light.
3D finite element model of the chinchilla ear for characterizing middle ear functions
Wang, Xuelin; Gan, Rong Z.
2016-01-01
Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa - a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis. PMID:26785845
Sargsyan, Sona; Rahne, Torsten; Kösling, Sabrina; Eichler, Gerburg; Plontke, Stefan K
2014-05-01
Hearing is of utmost importance for normal speech and social development. Even children who have mild or unilateral permanent hearing loss may experience difficulties with understanding speech, as well as problems with educational and psycho-social development. The increasing advantages of middle-ear implant technologies are opening new perspectives for restoring hearing. Active middle-ear implants can be used in children and adolescents with hearing loss. In addition to the well-documented results for improving speech intelligibility and quality of hearing in sensorineural hearing loss active middle-ear implants are now successfully used in patients with conductive and mixed hearing loss. In this article we present a case of successful, single-stage vibroplasty, on the right side with the fixation of the FMT on the stapes and PORP CLiP vibroplasty on the left side in a 6-year-old girl with bilateral mixed hearing loss and multiple dyslalia associated with Franceschetti syndrome (mandibulofacial dysostosis). CT revealed bilateral middle-ear malformations as well as an atretic right and stenotic left external auditory canal. Due to craniofacial dysmorphia airway and (post)operative, management is significantly more difficult in patients with a Franceschetti syndrome which in this case favoured a single-stage bilateral procedure. No intra- or postoperative surgical complications were reported. The middle-ear implants were activated 4 weeks after surgery. In the audiological examination 6 months after surgery, the child showed 100% speech intelligibility with activated implants on each side.
Rinne revisited: steel versus aluminum tuning forks.
MacKechnie, Cheryl A; Greenberg, Jesse J; Gerkin, Richard C; McCall, Andrew A; Hirsch, Barry E; Durrant, John D; Raz, Yael
2013-12-01
(1) Determine whether tuning fork material (aluminum vs stainless steel) affects Rinne testing in the clinical assessment of conductive hearing loss (CHL). (2) Determine the relative acoustic and mechanical outputs of 512-Hz tuning forks made of aluminum and stainless steel. Prospective, observational. Outpatient otology clinic. Fifty subjects presenting May 2011 to May 2012 with negative or equivocal Rinne in at least 1 ear and same-day audiometry. Rinne test results using aluminum and steel forks were compared and correlated with the audiometric air-bone gap. Bench top measurements using sound-level meter, microphone, and artificial mastoid. Patients with CHL were more likely to produce a negative Rinne test with a steel fork than with an aluminum fork. Logistic regression revealed that the probability of a negative Rinne reached 50% at a 19 dB air-bone gap for stainless steel versus 27 dB with aluminum. Bench top testing revealed that steel forks demonstrate, in effect, more comparable air and bone conduction efficiencies while aluminum forks have relatively lower bone conduction efficiency. We have found that steel tuning forks can detect a lesser air-bone gap compared to aluminum tuning forks. This is substantiated by observations of clear differences in the relative acoustic versus mechanical outputs of steel and aluminum forks, reflecting underlying inevitable differences in acoustic versus mechanical impedances of these devices, and thus efficiency of coupling sound/vibratory energy to the auditory system. These findings have clinical implications for using tuning forks to determine candidacy for stapes surgery.
Hirakuri, Ayaka; Numasawa, Kanako; Takeishi, Hideki; Satomura, Minato; Takeda, Hiromitsu; Harada, Kuniaki; Asanuma, Osamu; Sakata, Motomichi
2012-01-01
The exposure of the eye lens caused by multi-detector row computed tomography (MDCT) of the temporal bone is a serious problem. Our aim was to evaluate the radiation dose to the eye lens by different scan baselines (orbitomeatal line; OML, acanthiomeatal line; AML) and examine the difference of the depiction of the temporal bone structures. Measurement of the exposure to the eye lens was performed by means of MDCT of the temporal bone with a radio-photoluminescence glass dosimeter using a rand phantom. Moreover, we studied only one volunteer (58-year-old male) who had no symptom and was not suspected of having any ear abnormalities with a two scan baseline. Visualization of the major anatomical structures of the temporal bone (the tympanic portion of the facial nerve canal, the body of the incus, stapes superstructures, vestibule etc.) was performed on the volunteer. The average absorbed dose was 6.42 mGy by the OML and 1.59 mGy by the AML, respectively. With regard to visualization of the temporal bone structures, all structures were of equal quality with the two scan baseline. With the AML line, the radiation dose to the eye lens was reduced to 75%. Therefore, the authors recommended an AML for use for MDCT of the temporal bone. In clinical practice, the optimization of scanning factor (kVp, mAs etc.) and the use of the radio-protection should be implemented for radiation dose reduction of the eye lens by MDCT of the temporal bone.
Effects of Skin Thickness on Cochlear Input Signal using Transcutaneous Bone Conduction Implants
Mattingly, Jameson K.; Greene, Nathaniel T.; Jenkins, Herman A.; Tollin, Daniel J.; Easter, James R.; Cass, Stephen P.
2015-01-01
Hypothesis Intracochlear sound pressures (PIC) and velocity measurements of the stapes, round window, and promontory (VStap/RW/Prom) will show frequency dependent attenuation using magnet-based, transcutaneous bone-conduction implants (TCBCI) in comparison to direct-connect, skin-penetrating implants (DCBCI). Background TCBCIs have recently been introduced as alternatives to DCBCIs. Clinical studies have demonstrated elevated high-frequency thresholds for TCBCIs as compared to DCBCIs; however, little data exists examining the direct effect of skin thickness on the cochlear input signal using TCBCIs. Methods Using seven cadveric heads, PIC was measured in the scala vestibuli and tympani with fiber-optic pressure sensors concurrently with VStap/RW/Prom via laser Doppler vibrometry. Ipsilateral titanium implant fixtures were placed and connected to either a DCBCI or TCBCI. Soft tissue flaps with varying thicknesses (no flap, 3, 6, and 9 mm) were placed successively between the magnetic plate and sound processor magnet. A bone-conduction transducer coupled to custom software provided pure tone stimuli between 120 to 10240 Hz. Results Stimulation via the DCBCI produced the largest response magnitudes. The TCBCI showed similar PSV/ST and VStap/RW/Prom with no intervening flap, and a frequency-dependent, non-linear reduction of magnitude with increasing flap thickness. Phase shows a comparable dependence on transmission delay as the acoustic baseline, and the slope steepens at higher frequencies as flap thickness increases suggesting a longer group delay. Conclusions Proper soft tissue management is critical to optimize the cochlear input signal. The skin thickness related effects on cochlear response magnitudes should be taken into account when selecting patients for a TCBCI. PMID:26164446
Traboulsi, Raghida; Avan, Paul
2007-11-01
The cochlear aqueduct connecting intralabyrinthine and cerebrospinal fluids (CSF) acts as a low-pass filter that should be able to transmit infrasonic pressure waves from CSF to cochlea. Recent experiments have shown that otoacoustic emissions generated at 1kHz respond to pressure-related stapes impedance changes with a change in phase relative to the generator tones, and provide a non-invasive means of assessing intracochlear pressure changes. In order to characterize the transmission to the cochlea of CSF pressure waves due to respiration, the distortion-product otoacoustic emissions (DPOAE) of 12 subjects were continuously monitored around 1kHz at a rate of 6.25epochs/s, and their phase relative to the stimulus tones was extracted. The subjects breathed normally, in different postures, while thoracic movements were recorded so as to monitor respiration. A correlate of respiration was found in the time variation of DPOAE phase, with an estimated mean amplitude of 10 degrees , i.e. 60mm water, suggesting little attenuation across the aqueduct. Its phase lag relative to thoracic movements varied between 0 degrees and -270 degrees . When fed into a two-compartment model of CSF and labyrinthine spaces, these results suggest that respiration rate at rest is just above the resonance frequency of the CSF compartment, and just below the corner frequency of the cochlear-aqueduct low-pass filter, in line with previous estimates from temporal bone and intracranial measurements. The fact that infrasonic CSF waves can be monitored through the cochlea opens diagnostic possibilities in neurology.
A missense mutation in Fgfr1 causes ear and skull defects in hush puppy mice.
Calvert, Jennifer A; Dedos, Skarlatos G; Hawker, Kelvin; Fleming, Michelle; Lewis, Morag A; Steel, Karen P
2011-06-01
The hush puppy mouse mutant has been shown previously to have skull and outer, middle, and inner ear defects, and an increase in hearing threshold. The fibroblast growth factor receptor 1 (Fgfr1) gene is located in the region of chromosome 8 containing the mutation. Sequencing of the gene in hush puppy heterozygotes revealed a missense mutation in the kinase domain of the protein (W691R). Homozygotes were found to die during development, at approximately embryonic day 8.5, and displayed a phenotype similar to null mutants. Reverse transcription PCR indicated a decrease in Fgfr1 transcript in heterozygotes and homozygotes. Generation of a construct containing the mutation allowed the function of the mutated receptor to be studied. Immunocytochemistry showed that the mutant receptor protein was present at the cell membrane, suggesting normal expression and trafficking. Measurements of changes in intracellular calcium concentration showed that the mutated receptor could not activate the IP(3) pathway, in contrast to the wild-type receptor, nor could it initiate activation of the Ras/MAP kinase pathway. Thus, the hush puppy mutation in fibroblast growth factor receptor 1 appears to cause a loss of receptor function. The mutant protein appears to have a dominant negative effect, which could be due to it dimerising with the wild-type protein and inhibiting its activity, thus further reducing the levels of functional protein. A dominant modifier, Mhspy, which reduces the effect of the hush puppy mutation on pinna and stapes development, has been mapped to the distal end of chromosome 7 and may show imprinting.
Hush puppy: a new mouse mutant with pinna, ossicle, and inner ear defects.
Pau, Henry; Fuchs, Helmut; de Angelis, Martin Hrabé; Steel, Karen P
2005-01-01
Deafness can be associated with abnormalities of the pinna, ossicles, and cochlea. The authors studied a newly generated mouse mutant with pinna defects and asked whether these defects are associated with peripheral auditory or facial skeletal abnormalities, or both. Furthermore, the authors investigated where the mutation responsible for these defects was located in the mouse genome. The hearing of hush puppy mutants was assessed by Preyer reflex and electrophysiological measurement. The morphological features of their middle and inner ears were investigated by microdissection, paint-filling of the labyrinth, and scanning electron microscopy. Skeletal staining of skulls was performed to assess the craniofacial dimensions. Genome scanning was performed using microsatellite markers to localize the mutation to a chromosomal region. Some hush puppy mutants showed early onset of hearing impairment. They had small, bat-like pinnae and normal malleus but abnormal incus and stapes. Some mutants had asymmetrical defects and showed reduced penetrance of the ear abnormalities. Paint-filling of newborns' inner ears revealed no morphological abnormality, although half of the mice studied were expected to carry the mutation. Reduced numbers of outer hair cells were demonstrated in mutants' cochlea on scanning electron microscopy. Skeletal staining showed that the mutants have significantly shorter snouts and mandibles. Genome scan revealed that the mutation lies on chromosome 8 between markers D8Mit58 and D8Mit289. The study results indicate developmental problems of the first and second branchial arches and otocyst as a result of a single gene mutation. Similar defects are found in humans, and hush puppy provides a mouse model for investigation of such defects.
Comparing mechanical effects and sound production of KTP, thulium, and CO2 laser in stapedotomy.
Kamalski, Digna M A; Verdaasdonk, Rudolf M; de Boorder, Tjeerd; Vincent, Robert; Versnel, Huib; Grolman, Wilko
2014-08-01
The mechanical and acoustic effects that occur during laser-assisted stapedotomy differ among KTP, CO2, and thulium lasers. Making a fenestration in stapedotomy with a laser minimizes the risk of a floating footplate caused by mechanical forces. Theoretically, the lasers used in stapedotomy could inflict mechanical trauma because of absorption in the perilymph, causing vaporization bubbles. These bubbles can generate a shock wave, when imploding. In an inner ear model, we made a fenestration in a fresh human stapes with KTP, CO2, and thulium laser. During the fenestration, we performed high-speed imaging from different angles to capture mechanical effects. The sounds produced by the fenestration were recorded simultaneously with a hydrophone; these recordings were compared with acoustics produced by a conventional microburr fenestration. KTP laser fenestration showed little mechanical effects, with minimal sound production. With CO2 laser, miniscule bubbles arose in the vestibule; imploding of these bubbles corresponded to the acoustics. Thulium laser fenestration showed large bubbles in the vestibule, with a larger sound production than the other two lasers. Each type of laser generated significantly less noise than the microburr. The microburr maximally reached 95 ± 7 dB(A), compared with 49 ± 8 dB(A) for KTP, 68 ± 4 dB(A) for CO2, and 83 ± 6 dB(A) for thulium. Mechanical and acoustic effects differ among lasers used for stapedotomy. Based on their relatively small effects, KTP and CO2 lasers are preferable to thulium laser.
Greene, Nathaniel T.; Mattingly, Jameson K.; Jenkins, Herman A.; Tollin, Daniel J.; Easter, James R.; Cass, Stephen P.
2015-01-01
Hypothesis Cochlear implants (CI) designed for hearing preservation will not alter mechanical properties of the middle and inner ear as measured by intracochlear pressure (PIC) and stapes velocity (Vstap). Background CIs designed to provide combined electrical and acoustic stimulation (EAS) are now available. To maintain functional acoustic hearing, it is important to know if a CI electrode can alter middle or inner ear mechanics, as any alteration could contribute to elevated low-frequency thresholds in EAS patients. Methods Seven human cadaveric temporal bones were prepared, and pure-tone stimuli from 120Hz–10kHz were presented at a range of intensities up to 110 dB SPL. PIC in the scala vestibuli (PSV) and tympani (PST) were measured with fiber-optic pressure sensors concurrently with VStap using laser Doppler vibrometry. Five CI electrodes from two different manufacturers, with varying dimensions were inserted via a round window approach at six different depths (16–25 mm). Results The responses of PIC and VStap to acoustic stimulation were assessed as a function of stimulus frequency, normalized to SPL in the external auditory canal (EAC), in baseline and electrode inserted conditions. Responses measured with electrodes inserted were generally within ~5 dB of baseline, indicating little effect of cochlear implant electrode insertion on PIC and VStap. Overall, mean differences across conditions were small for all responses, and no substantial differences were consistently visible across electrode types. Conclusions Results suggest that the influence of a CI electrode on middle and inner ear mechanics is minimal, despite variation in electrode lengths and configurations. PMID:26333018
Elastic fiber-mediated enthesis in the human middle ear.
Kawase, Tetsuaki; Shibata, Shunichi; Katori, Yukio; Ohtsuka, Aiji; Murakami, Gen; Fujimiya, Mineko
2012-10-01
Adaptation to constant vibration (acoustic oscillation) is likely to confer a specific morphology at the bone-tendon and bone-ligament interfaces at the ear ossicles, which therefore represent an exciting target of enthesis research. We histologically examined (i) the bone attachments of the tensor tympani and stapedius muscles and (ii) the annular ligament of the incudostapedial joint obtained from seven elderly donated cadavers. Notably, both aldehyde-fuchsin and elastic-Masson staining demonstrated that the major fibrous component of the entheses was not collagen fibers but mature elastic fibers. The positive controls for elastic fiber staining were the arterial wall elastic laminae included in the temporal bone materials. The elastic fibers were inserted deeply into the type II collagen-poor fibrocartilage covering the ear ossicles. The muscle tendons were composed of an outer thin layer of collagen fibers and an inner thick core of elastic fibers near the malleus or stapes. In the unique elastic fiber-mediated entheses, hyaluronan, versican and fibronectin were expressed strongly along the elastic fibers. The hyaluronan seemed to act as a friction-reducing lubricant for the elastic fibers. Aggrecan was labeled strongly in a disk- or plica-like fibrous mass on the inner side of the elastic fiber-rich ligament, possibly due to compression stress from the ligament. Tenascin-c was not evident in the entheses. The elastic fiber-mediated entheses appeared resistant to tissue destruction in an environment exposed to constant vibration. The morphology was unlikely to be the result of age-related degeneration. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.
MRI information for commonly used otologic implants: review and update.
Azadarmaki, Roya; Tubbs, Rhonda; Chen, Douglas A; Shellock, Frank G
2014-04-01
To review information on magnetic resonance imaging (MRI) issues for commonly used otologic implants. Manufacturing companies, National Library of Medicine's online database, and an additional online database (www.MRIsafety.com). A literature review of the National Library of Medicine's online database with focus on MRI issues for otologic implants was performed. The MRI information on implants provided by manufacturers was reviewed. Baha and Ponto Pro osseointegrated implants' abutment and fixture and the implanted magnet of the Sophono Alpha 1 and 2 abutment-free systems are approved for 3-Tesla magnetic resonance (MR) systems. The external processors of these devices are MR Unsafe. Of the implants tested, middle ear ossicular prostheses, including stapes prostheses, except for the 1987 McGee prosthesis, are MR Conditional for 1.5-Tesla (and many are approved for 3-Tesla) MR systems. Cochlear implants with removable magnets are approved for patients undergoing MRI at 1.5 Tesla after magnet removal. The MED-EL PULSAR, SONATA, CONCERT, and CONCERT PIN cochlear implants can be used in patients undergoing MRI at 1.5 Tesla with application of a protective bandage. The MED-EL COMBI 40+ can be used in 0.2-Tesla MR systems. Implants made from nonmagnetic and nonconducting materials are MR Safe. Knowledge of MRI guidelines for commonly used otologic implants is important. Guidelines on MRI issues approved by the US Food and Drug Administration are not always the same compared with other parts of the world. This monograph provides a current reference for physicians on MRI issues for commonly used otologic implants.
Gostian, Antoniu-Oreste; Pazen, David; Ortmann, Magdalene; Luers, Jan-Christoffer; Anagiotos, Andreas; Hüttenbrink, Karl-Bernd; Beutner, Dirk
2015-01-01
Interposed cartilage and the round window coupler (RWC) increase the efficiency of cochlea stimulation with the floating mass transducer (FMT) of a single active middle ear implant (AMEI) placed against the round window membrane. Treatment of mixed and conductive hearing loss with an AMEI attached to the round window is effective, yet the best placement technique of its FMT for the most efficient stimulation of the cochlea remains to be determined. Experimental study on human temporal bones with the FMT placed against firstly the unaltered round window niche and then subsequently against the fully exposed round window membrane with and without interposed cartilage and the RWC. Cochlea stimulation is measured by the volume velocities of the stapes footplate using LASER vibrometry. At the undrilled round window niche, placement of the FMT by itself and with the RWC resulted in similar volume velocities. The response was significantly raised by interposing cartilage into the undrilled round window niche. Complete exposure of the round window membrane allowed for significantly increased volume velocities. Among these, coupling of the FMT with interposed cartilage yielded responses of similar magnitude compared with the RWC but significantly higher compared with the FMT by itself. Good contact to the round window membrane is essential for efficient stimulation of the cochlea. Therefore, interposing cartilage into the undrilled round window niche is a viable option. At the drilled round window membrane, the FMT with interposed cartilage and attached to the RWC are similarly effective.
Sircoglou, Julie; Gehrke, Maria; Tardivel, Meryem; Siepmann, Florence; Siepmann, Juergen; Vincent, Christophe
2015-09-01
The purpose of this study was to develop a new strategy to deliver drugs to the inner ear from dexamethasone (DXM)-loaded silicone implants and to evaluate the distribution of the drug in the cochlea with confocal microscopy. Systemic drug administration for the treatment of inner ear disorders is tricky because of the blood-cochlear barrier, a difficult anatomical access, the small size of the cochlea, and can cause significant adverse effects. An effective way to overcome these obstacles is to administer drugs locally. In vitro, the drug release from DXM-loaded silicone-based thin films and tiny implants into artificial perilymph was thoroughly analyzed by high-performance liquid chromatography. In vivo, a silicone implant loaded with 10% DXM and 5% polyethylene glycol 400 was implanted next to the stapes's footplate of gerbils. Delivery of DXM into the inner ear was proved by confocal microscopy imaging of the whole cochlea and the organ of Corti. The study showed a continuous and prolonged release during 90 days in vitro. This was confirmed by confocal microscopy that allowed detection of DXM by fluorescence labeling in the cell body of the hair cells for at least 30 days. Interestingly, fluorescence was already observed after 20 minutes of implantation, reached a climax at day 7, and could still be detected 30 days after implantation. Thus, we developed a new device for local corticosteroids delivery into the oval window with an extended drug release of DXM to the inner ear.
Semicircular Canal Pressure Changes During High-intensity Acoustic Stimulation.
Maxwell, Anne K; Banakis Hartl, Renee M; Greene, Nathaniel T; Benichoux, Victor; Mattingly, Jameson K; Cass, Stephen P; Tollin, Daniel J
2017-08-01
Acoustic stimulation generates measurable sound pressure levels in the semicircular canals. High-intensity acoustic stimuli can cause hearing loss and balance disruptions. To examine the propagation of acoustic stimuli to the vestibular end-organs, we simultaneously measured fluid pressure in the cochlea and semicircular canals during both air- and bone-conducted sound presentation. Five full-cephalic human cadaveric heads were prepared bilaterally with a mastoidectomy and extended facial recess. Vestibular pressures were measured within the superior, lateral, and posterior semicircular canals, and referenced to intracochlear pressure within the scala vestibuli with fiber-optic pressure probes. Pressures were measured concurrently with laser Doppler vibrometry measurements of stapes velocity during stimulation with both air- and bone-conduction. Stimuli were pure tones between 100 Hz and 14 kHz presented with custom closed-field loudspeakers for air-conducted sounds and via commercially available bone-anchored device for bone-conducted sounds. Pressures recorded in the superior, lateral, and posterior semicircular canals in response to sound stimulation were equal to or greater in magnitude than those recorded in the scala vestibuli (up to 20 dB higher). The pressure magnitudes varied across canals in a frequency-dependent manner. High sound pressure levels were recorded in the semicircular canals with sound stimulation, suggesting that similar acoustical energy is transmitted to the semicircular canals and the cochlea. Since these intralabyrinthine pressures exceed intracochlear pressure levels, our results suggest that the vestibular end-organs may also be at risk for injury during exposure to high-intensity acoustic stimuli known to cause trauma in the auditory system.
Persson, P; Harder, H; Magnuson, B
1997-01-01
Hearing results in a consecutive series of 407 patients with otosclerosis undergoing primary stapes surgery were analysed (437 operated ears). Partial stapedectomy was performed in 70 ears (16%), total stapedectomy in 205 ears (47%), in both groups using the House steel wire prosthesis on fascia in the oval window. The remaining 162 ears (37%) underwent stapedotomy using the Fisch 0.4 mm teflon-platinum piston. No case of cochlear loss (> 15 dB) occurred in the total series. The comparison between the three groups one year postoperatively showed that the air-bone gap was smaller for partial and total stapedectomy for all frequencies except 4 kHz. The air-bone gap was calculated as the difference between the preoperative bone conduction and the postoperative air conduction thresholds. Partial and total stapedectomy also showed larger improvements of bone conduction thresholds compared with stapedotomy for all frequencies but 4 kHz. At the 3-year follow-up, the hearing gain for all frequencies (250-8000 Hz) was larger for partial and total stapedectomy. Yet, when comparing the decline of hearing from 1 to 3 year postoperatively, the hearing gain achieved with partial and total stapedectomy seemed to deteriorate at a higher rate, which was considered to be caused by impaired sensorineural function. Our results show that in the short-term perspective partial or total stapedectomy can still compete for better hearing results even at higher frequencies, but stapedotomy seems to yield more stable hearing results over time and should therefore be considered as the method of choice.
Kamalski, Digna M A; Verdaasdonk, Rudolf M; de Boorder, Tjeerd; Vincent, Robert; Trabelzini, Franco; Grolman, Wilko
2014-06-01
High-speed thermal imaging enables visualization of heating of the vestibule during laser-assisted stapedotomy, comparing KTP, CO2, and Thulium laser light. Perforation of the stapes footplate with laser bears the risk of heating of the inner ear fluids. The amount of heating depends on absorption of the laser light and subsequent tissue ablation. The ablation of the footplate is driven by strong water absorption for the CO2 and Thulium laser. For the KTP laser wavelength, ablation is driven by carbonization of the footplate and it might penetrate deep into the inner ear without absorption in water. The thermal effects were visualized in an inner ear model, using two new techniques: (1) high-speed Schlieren imaging shows relative dynamic changes of temperatures up to 2 ms resolution in the perilymph. (2) Thermo imaging provides absolute temperature measurements around the footplate up to 40 ms resolution. The high-speed Schlieren imaging showed minimal heating using the KTP laser. Both CO2 and Thulium laser showed heating below the footplate. Thulium laser wavelength generated heating up to 0.6 mm depth. This was confirmed with thermal imaging, showing a rise of temperature of 4.7 (±3.5) °C for KTP and 9.4 (±6.9) for Thulium in the area of 2 mm below the footplate. For stapedotomy, the Thulium and CO2 laser show more extended thermal effects compared to KTP. High-speed Schlieren imaging and thermal imaging are complimentary techniques to study lasers thermal effects in tissue.
La Ferrassie 1: New perspectives on a "classic" Neandertal.
Gómez-Olivencia, Asier; Quam, Rolf; Sala, Nohemi; Bardey, Morgane; Ohman, James C; Balzeau, Antoine
2018-04-01
The La Ferrassie 1 (LF1) skeleton, discovered over a century ago, is one of the most important Neandertal individuals both for its completeness and due to the role it has played historically in the interpretation of Neandertal anatomy and lifeways. Here we present new skeletal remains from this individual, which include a complete right middle ear ossicular chain (malleus, incus, and stapes), three vertebral fragments, and two costal remains. Additionally, the study of the skeleton has allowed us to identify new pathological lesions, including a congenital variant in the atlas, a greenstick fracture of the left clavicle, and a lesion in a mid-thoracic rib of unknown etiology. In addition, we have quantified the amount of vertebral pathology, which is greater than previously appreciated. We have complemented the paleopathological analysis with a taphonomic analysis to identify any potential perimortem fractures. The taphonomic analysis indicates that no surface alteration is present in the LF1 skeleton and that the breakage pattern is that of bone that has lost collagen, which would be consistent with the intentional burial of this individual proposed by previous researchers. In this study, we used CT and microCT scans in order to discover new skeletal elements to better characterize the pathological lesions and to quantify the fracture orientation of those bones in which the current plaster reconstruction did not allow its direct visualization, which underlines the broad potential of imaging technologies in paleoanthropological research. A century after its discovery, LF1 is still providing new insights into Neandertal anatomy and behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.
Traumatic dislocation of the incudostapedial joint repaired with fibrin tissue adhesive.
Nikolaidis, Vasilios
2011-03-01
We present a case of traumatic dislocation of the incudostapedial joint (ISJ) and a simple method for controlled application of the glue using commercial fibrin tissue adhesive. A 26-year-old female presented to our ENT clinic for hearing impairment to her left ear 2 months after a head trauma due to a motorcycle accident. The audiogram revealed a 40- to 50-dB HL conductive hearing loss with a notch configuration in bone conduction curve on the left ear. Computed tomography of the left temporal bone revealed a longitudinal fracture line. An exploratory tympanotomy was performed under general anesthesia. The ISJ was found dislocated while the incus was trapped by the edges of the bony lateral attic wall fracture. A small bony edge that impeded incus movement was removed and a small amount of the glue was precisely applied to the lenticular process of the incus with an angled incision knife. The long process of the incus was firmly pressed over the stapes for 30 seconds with a 90° hook and 60 seconds after the application of the glue the ISJ was repaired. One year after our patient achieved full airbone gap (ABG) closure (ABG, ≤10 dB HL), while she demonstrated overclosure in frequencies 2 and 4 kHz. Fibrin tissue glue allowed safe, rapid, and accurate repair of the ISJ and resulted in an anatomically normal articulation as the mass and shape of the ossicles was preserved. Moreover, our patient achieved full ABG closure. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
Hendry, J.; Chin, A.; Swan, I.R.C.; Akeroyd, M.A.; Browning, G.G.
2018-01-01
Background The Glasgow Benefit Inventory (GBI) is a validated, generic patient-recorded outcome measure widely used in otolaryngology to report change in quality of life post-intervention. Objectives of review To date, no systematic review has made (i) a quality assessment of reporting of Glasgow Benefit Inventory outcomes; (ii) a comparison between Glasgow Benefit Inventory outcomes for different interventions and objectives; (iii) an evaluation of subscales in describing the area of benefit; (iv) commented on its value in clinical practice and research. Type of review Systematic review. Search strategy ‘Glasgow Benefit Inventory’ and ‘GBI’ were used as keywords to search for published, unpublished and ongoing trials in PubMed, EMBASE, CINAHL and Google in addition to an ISI citation search for the original validating Glasgow Benefit Inventory paper between 1996 and January 2015. Evaluation method Papers were assessed for study type and quality graded by a predesigned scale, by two authors independently. Papers with sufficient quality Glasgow Benefit Inventory data were identified for statistical comparisons. Papers with <50% follow-up were excluded. Results A total of 118 eligible papers were identified for inclusion. A national audit paper (n = 4325) showed that the Glasgow Benefit Inventory gave a range of scores across the specialty, being greater for surgical intervention than medical intervention or ‘reassurance’. Fourteen papers compared one form of surgery versus another form of surgery. In all but one study, there was no difference between the Glasgow Benefit Inventory scores (or of any other outcome). The most likely reason was lack of power. Two papers took an epidemiological approach and used the Glasgow Benefit Inventory scores to predict benefit. One was for tonsillectomy where duration of sore throat episodes and days with fever were identified on multivariate analysis to predict benefit albeit the precision was low. However, the traditional factor of number of episodes of sore throat was not predictive. The other was surgery for chronic rhinosinusitis where those with polyps on univariate analysis had greater benefit than those without. Forty-three papers had a response rate of >50% and gave sufficient Glasgow Benefit Inventory total and subscales for meta-analysis. For five of the 11 operation categories (vestibular schwannoma, tonsillectomy, cochlear implant, middle ear implant and stapes surgery) that were most likely to have a single clear clinical objective, score data had low-to-moderate heterogeneity. The value in the Glasgow Benefit Inventory having both positive and negative scores was shown by an overall negative score for the management of vestibular schwannoma. The other six operations gave considerable heterogeneity with rhinoplasty and septoplasty giving the greatest percentages (98% and 99%) most likely because of the considerable variations in patient selection. The data from these operations should not be used for comparative purposes. Five papers also reported the number of patients that had no or negative benefit, a potentially a more clinically useful outcome to report. Glasgow Benefit Inventory subscores for tonsillectomy were significantly different from ear surgery suggesting different areas of benefit Conclusions The Glasgow Benefit Inventory has been shown to differentiate the benefit between surgical and medical otolaryngology interventions as well as ‘reassurance’. Reporting benefit as percentages with negative, no and positive benefit would enable better comparisons between different interventions with varying objectives and pathology. This could also allow easier evaluation of factors that predict benefit. Meta-analysis data are now available for comparison purposes for vestibular schwannoma, tonsillectomy, cochlear implant, middle ear implant and stapes surgery. Fuller report of the Glasgow Benefit Inventory outcomes for non-surgical otolaryngology interventions is encouraged. PMID:26264703
Hendry, J; Chin, A; Swan, I R C; Akeroyd, M A; Browning, G G
2016-06-01
The Glasgow Benefit Inventory (GBI) is a validated, generic patient-recorded outcome measure widely used in otolaryngology to report change in quality of life post-intervention. To date, no systematic review has made (i) a quality assessment of reporting of Glasgow Benefit Inventory outcomes; (ii) a comparison between Glasgow Benefit Inventory outcomes for different interventions and objectives; (iii) an evaluation of subscales in describing the area of benefit; (iv) commented on its value in clinical practice and research. Systematic review. 'Glasgow Benefit Inventory' and 'GBI' were used as keywords to search for published, unpublished and ongoing trials in PubMed, EMBASE, CINAHL and Google in addition to an ISI citation search for the original validating Glasgow Benefit Inventory paper between 1996 and January 2015. Papers were assessed for study type and quality graded by a predesigned scale, by two authors independently. Papers with sufficient quality Glasgow Benefit Inventory data were identified for statistical comparisons. Papers with <50% follow-up were excluded. A total of 118 eligible papers were identified for inclusion. A national audit paper (n = 4325) showed that the Glasgow Benefit Inventory gave a range of scores across the specialty, being greater for surgical intervention than medical intervention or 'reassurance'. Fourteen papers compared one form of surgery versus another form of surgery. In all but one study, there was no difference between the Glasgow Benefit Inventory scores (or of any other outcome). The most likely reason was lack of power. Two papers took an epidemiological approach and used the Glasgow Benefit Inventory scores to predict benefit. One was for tonsillectomy where duration of sore throat episodes and days with fever were identified on multivariate analysis to predict benefit albeit the precision was low. However, the traditional factor of number of episodes of sore throat was not predictive. The other was surgery for chronic rhinosinusitis where those with polyps on univariate analysis had greater benefit than those without. Forty-three papers had a response rate of >50% and gave sufficient Glasgow Benefit Inventory total and subscales for meta-analysis. For five of the 11 operation categories (vestibular schwannoma, tonsillectomy, cochlear implant, middle ear implant and stapes surgery) that were most likely to have a single clear clinical objective, score data had low-to-moderate heterogeneity. The value in the Glasgow Benefit Inventory having both positive and negative scores was shown by an overall negative score for the management of vestibular schwannoma. The other six operations gave considerable heterogeneity with rhinoplasty and septoplasty giving the greatest percentages (98% and 99%) most likely because of the considerable variations in patient selection. The data from these operations should not be used for comparative purposes. Five papers also reported the number of patients that had no or negative benefit, a potentially a more clinically useful outcome to report. Glasgow Benefit Inventory subscores for tonsillectomy were significantly different from ear surgery suggesting different areas of benefit The Glasgow Benefit Inventory has been shown to differentiate the benefit between surgical and medical otolaryngology interventions as well as 'reassurance'. Reporting benefit as percentages with negative, no and positive benefit would enable better comparisons between different interventions with varying objectives and pathology. This could also allow easier evaluation of factors that predict benefit. Meta-analysis data are now available for comparison purposes for vestibular schwannoma, tonsillectomy, cochlear implant, middle ear implant and stapes surgery. Fuller report of the Glasgow Benefit Inventory outcomes for non-surgical otolaryngology interventions is encouraged. © 2015 The Authors. Clinical Otolaryngology Published by John Wiley & Sons Ltd.
[Techniques of iconographic documentation].
Motta, G; Valentino, G; Di Lorenzo, G
1996-04-01
The Authors describe modalities of photography and videorecording that should be used in stapes surgery and report the solutions they adopted to get iconographic documentation of high quality standard. As regards videorecording systems, the authors used both S-VHS and U-Matic equipment; with both types high fidelity shootings are obtained in the active documentation of each phase of the operation. Moreover, U-Matic master copying guarantees a final copy of higher quality. Technical difficulties that the authors met in videorecording are connected to the restricted field of view, limited by the speculum, which may itself cause dazzling phenomena or light refraction. A 2/3 inch CCD Sony camera, with a modified ELC(Electronic Light Control), was used to get round these problems, so as to eliminate the reflection of surgical instruments. In order to build up a photographic archive, it is also possible to get slides from single pictures of the recorded tapes, although their definition quality is lower than the one obtained foff photos; these, however, must be taken with reference to precise optical parameters and in particular: for shooting view pictures low enlargements (1,6x) were used with an intermediate aperture (f44), while, to better visualize details(footplate hole, stapedial tendon), it was considered right to u se restricted frames (2,5x) and a low aperture (f22). Such a technical solution, in fact, gives a better relation between depth of field and brightness. Finally the Authors underline that the constant use of the intraoperative videorecording system allows: greater participation of every member of the team in the operation; a delayed critical revision of th e operation; medico-legal documentation of possible intraoperative complications; iconographic material available both for scientific and didactic purposes.
Terzić, Negra; Zivić, Ljubica
2009-01-01
Otosclerosis is a progressive osteodystrophic disease of the osseous capsule of the labyrinth which leads to the fixation of the stapes and partial deafness. The progressive hearing loss followed by ear tingling--tinitus and vertigo is of great importance for this disease. The aim of the work was to determine the changes of clinical symptomatology before and after the operative treatment of otoscleoris. The study included 32 subjects between 25 and 60 years of age affected by otosclerosis who had undergone surgical treatment at the VMA (Military Medical Academy) Clinic, Department of Otolaryngology in Belgrade. Besides the clinical examination and detailed case history, audiometry and tympanometry examinations were performed. During the postoperative period the clinical symptomatology was evaluated and audiometry examinations were performed in order to determine the effect of the surgical intervention. Of the total number of 32 subjects, partial deafness was present in all of them before the operation, whereas tinitus, vertiginous disturbances and otalgia were found in a certain number of the subjects. During the postoperative period a partial recovery was found in a larger number of the subjects in relation to the total hearing recovery. During the postoperative period tinitus of lower intensity was found in a greater number of the subjects, whereas the number of those without tinitus was smaller. The problem of vertiginous disturbances as well as otalgia were not found during the postoperative period. By following the changes of the clinical symptomatology we came to the conclusion that surgical treatment of otosclerosis results in the reduction and disappearance of subjective disturbances, tinitus, vertigo and otalgia and leads to the partial or complete hearing recovery.
Gronowicz, Gloria; Richardson, Yvonne L; Flynn, John; Kveton, John; Eisen, Marc; Leonard, Gerald; Aronow, Michael; Rodner, Craig; Parham, Kourosh
2014-10-01
Identify and compare phenotypic properties of osteoblasts from patients with otosclerosis (OSO), normal bones (HOB), and normal stapes (NSO) to determine a possible cause for OSO hypermineralization and assess any effects of the bisphosphonate, alendronate. OSO (n = 11), NSO (n = 4), and HOB (n = 13) cultures were assayed for proliferation, adhesion, mineralization, and gene expression with and without 10(-10)M-10(-8)M alendronate. Academic hospital. Cultures were matched for age, sex, and passage number. Cell attachment and proliferation + alendronate were determined by Coulter counting cells and assaying tritiated thymidine uptake, respectively. At 7, 14, and 21 days of culture + alendronate, calcium content and gene expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were determined. OSO had significantly more cells adhere but less proliferation than NSO or HOB. Calcification was significantly increased in OSO compared to HOB and NSO. NSO and HOB had similar cell adhesion and proliferation rates. A dose-dependent effect of alendronate on OSO adhesion, proliferation, and mineralization was found, resulting in levels equal to NSO and HOB. All cultures expressed osteoblast-specific genes such as RUNX2, alkaline phosphatase, type I collagen, and osteocalcin. However, osteopontin was dramatically reduced, 9.4-fold at 14 days, in OSO compared to NSO. Receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG), important in bone resorption, was elevated in OSO with decreased levels of OPG levels. Alendronate had little effect on gene expression in HOB but in OSO increased osteopontin levels and decreased RANKL/OPG. OSO cultures displayed properties of hypermineralization due to decreased osteopontin (OPN) and also had increased RANKL/OPG, which were normalized by alendronate. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
[The length of the piston in otosclerosis surgery].
Portmann, D; Alcantara, M; Vianna, M
2007-01-01
The measurement of the piston is always described as a significant stage of the surgery but its length is never clearly defined. The goal of this work is to determine the length of the prosthesis. From May 2003 to May 2005, 128 patients with otosclerosis, diagnosed on the basis of their clinical history and their audiogram, were included in this prospective study. Some of them were revision surgeries. The prosthesis generally used was the Portmann piston clip (Medtronic Xomed Inc Portmann Piston Clip Stainless Steel/Fluoroplastic). In stapedectomies, a Teflon piston of 0.6 mm of diameter was used (Pouret Company Fluoroplastic Stapes Prosthesis). These prostheses must be trimmed before their installation. The measurement technique is described. The length of the prosthesis was increased by 0.5 mm to include the thickness of the footplate. The Portmann piston clip was used 116 times (100 initial surgeries and 16 revisions surgeries) and the Teflon prosthesis of 0.6 mm of diameter only 13 times (6 primary stapedectomies and 7 revisions stapedectomies). The length of the prosthesis was between 3,5 mm and 5 mm. In the majority of cases, the length of the prosthesis was 4.75 mm (62 patients, 48.1%), followed by 4.5 mm (29 patients, 22.5%) and 5 mm (27 patients, 20.9%). In eleven cases (8.5%) the prosthesis measured less than 4,5 mm. None of the patients in this study experienced a postoperative sensorineural hearing loss. The measurement of the length of the piston is very significant, and in our study the majority of the pistons were cut at 4.75 mm which indicates an incus-footplate measurement of 4.25 mm.
A Randomised, Double Blind Trial of N-Acetylcysteine for Hearing Protection during Stapes Surgery
Bagger-Sjöbäck, Dan; Strömbäck, Karin; Hakizimana, Pierre; Plue, Jan; Larsson, Christina; Hultcrantz, Malou; Papatziamos, Georgios; Smeds, Henrik; Danckwardt-Lillieström, Niklas; Hellström, Sten; Johansson, Ann; Tideholm, Bo; Fridberger, Anders
2015-01-01
Background Otosclerosis is a disorder that impairs middle ear function, leading to conductive hearing loss. Surgical treatment results in large improvement of hearing at low sound frequencies, but high-frequency hearing often suffers. A likely reason for this is that inner ear sensory cells are damaged by surgical trauma and loud sounds generated during the operation. Animal studies have shown that antioxidants such as N-Acetylcysteine can protect the inner ear from noise, surgical trauma, and some ototoxic substances, but it is not known if this works in humans. This trial was performed to determine whether antioxidants improve surgical results at high frequencies. Methods We performed a randomized, double-blind and placebo-controlled parallel group clinical trial at three Swedish university clinics. Using block-stratified randomization, 156 adult patients undergoing stapedotomy were assigned to intravenous N-Acetylcysteine (150 mg/kg body weight) or matching placebo (1:1 ratio), starting one hour before surgery. The primary outcome was the hearing threshold at 6 and 8 kHz; secondary outcomes included the severity of tinnitus and vertigo. Findings One year after surgery, high-frequency hearing had improved 2.7 ± 3.8 dB in the placebo group (67 patients analysed) and 2.4 ± 3.7 dB in the treated group (72 patients; means ± 95% confidence interval, p = 0.54; linear mixed model). Surgery improved tinnitus, but there was no significant intergroup difference. Post-operative balance disturbance was common but improved during the first year, without significant difference between groups. Four patients receiving N-Acetylcysteine experienced mild side effects such as nausea and vomiting. Conclusions N-Acetylcysteine has no effect on hearing thresholds, tinnitus, or balance disturbance after stapedotomy. Trial Registration ClinicalTrials.gov NCT00525551 PMID:25763866
Human cochlear hydrodynamics: A high-resolution μCT-based finite element study.
De Paolis, Annalisa; Watanabe, Hirobumi; Nelson, Jeremy T; Bikson, Marom; Packer, Mark; Cardoso, Luis
2017-01-04
Measurements of perilymph hydrodynamics in the human cochlea are scarce, being mostly limited to the fluid pressure at the basal or apical turn of the scalae vestibuli and tympani. Indeed, measurements of fluid pressure or volumetric flow rate have only been reported in animal models. In this study we imaged the human ear at 6.7 and 3-µm resolution using µCT scanning to produce highly accurate 3D models of the entire ear and particularly the cochlea scalae. We used a contrast agent to better distinguish soft from hard tissues, including the auditory canal, tympanic membrane, malleus, incus, stapes, ligaments, oval and round window, scalae vestibule and tympani. Using a Computational Fluid Dynamics (CFD) approach and this anatomically correct 3D model of the human cochlea, we examined the pressure and perilymph flow velocity as a function of location, time and frequency within the auditory range. Perimeter, surface, hydraulic diameter, Womersley and Reynolds numbers were computed every 45° of rotation around the central axis of the cochlear spiral. CFD results showed both spatial and temporal pressure gradients along the cochlea. Small Reynolds number and large Womersley values indicate that the perilymph fluid flow at auditory frequencies is laminar and its velocity profile is plug-like. The pressure was found 102-106° out of phase with the fluid flow velocity at the scalae vestibule and tympani, respectively. The average flow velocity was found in the sub-µm/s to nm/s range at 20-100Hz, and below the nm/s range at 1-20kHz. Copyright © 2016 Elsevier Ltd. All rights reserved.
Model-oriented review and multi-body simulation of the ossicular chain of the human middle ear.
Volandri, G; Di Puccio, F; Forte, P; Manetti, S
2012-11-01
The ossicular chain of the human middle ear has a key role in sound conduction since it transfers vibrations from the tympanic membrane to the cochlea, connecting the outer and the inner part of the hearing organ. This study reports firstly a description of the main anatomical features of the middle ear to introduce a detailed survey of its biomechanics, focused on model development, with a collection of geometric, inertial and mechanical/material parameters. The joint issues are particularly discussed from the perspective of developing a model of the middle ear both explanatory and predictive. Such a survey underlines the remarkable dispersion of data, due also to the lack of a standardization of the experimental techniques and conditions. Subsequently, a 3D multi-body model of the ossicular chain and other structures of the middle ear is described. Such an approach is justified as the ossicles were proven to behave as rigid bodies in the human hearing range and was preferred to the more widely used finite element one as it simplifies the model development and improves joint modeling. The displacement of the umbo (a reference point of the tympanic membrane) in the 0.3-6kHz frequency range was defined as input of the model, while the stapes footplate displacement as output. A parameter identification procedure was used to find parameter values for reproducing experimental and numerical reference curves taken from the literature. This simple model might represent a valid alternative to more complex models and might provide a useful tool to simulate pathological/post-surgical/post-traumatic conditions and evaluate ossicular replacement prostheses. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Van Den Abbeele, Thierry; Noël-Petroff, Nathalie; Akin, Istemihan; Caner, Gül; Olgun, Levent; Guiraud, Jeanne; Truy, Eric; Attias, Josef; Raveh, Eyal; Belgin, Erol; Sennaroglu, Gonca; Basta, Dietmar; Ernst, Arneborg; Martini, Alessandro; Rosignoli, Monica; Levi, Haya; Elidan, Joseph; Benghalem, Abdelhamid; Amstutz-Montadert, Isabelle; Lerosey, Yannick; De Vel, Eddy; Dhooge, Ingeborg; Hildesheimer, Minka; Kronenberg, Jona; Arnold, Laure
2012-02-01
The aims of this study were to collect data on electrically evoked compound action potential (eCAP) and electrically evoked stapedius reflex thresholds (eSRT) in HiResolution(TM) cochlear implant (CI) users, and to explore the relationships between these objective measures and behavioural measures of comfort levels (M-levels). A prospective study on newly implanted subjects was designed. The eCAP was measured intra-operatively and at first fitting through neural response imaging (NRI), using the SoundWave(TM) fitting software. The eSRT was measured intra-operatively by visual monitoring of the stapes, using both single-electrode stimulation and speech bursts (four electrodes stimulated at the same time). Measures of M-levels were performed according to standard clinical practice and collected at first fitting, 3 and 6 months of CI use. One hundred seventeen subjects from 14 centres, all implanted unilaterally with a HiResolution CII Bionic Ear(®) or HiRes 90K(®), were included in the study. Speech burst stimulation elicited a significantly higher eSRT success rate than single-electrode stimulation, 84 vs. 64% respectively. The NRI success rate was 81% intra-operatively, significantly increasing to 96% after 6 months. Fitting guidelines were defined on the basis of a single NRI measurement. Correlations, analysis of variance, and multiple regression analysis were applied to generate a predictive model for the M-levels. Useful insights were produced into the behaviour of objective measures according to time, electrode location, and fitting parameters. They may usefully assist in programming the CI when no reliable feedback is obtained through standard behavioural procedures.
Wen, Haiqi; Bowling, Thomas; Meaud, Julien
2018-05-19
In this work, a three-dimensional computational model of the gerbil ear is used to investigate the generation of the 2f 1 -f 2 and 2f 2 -f 1 distortion product otoacoustic emissions (DPOAEs). In order to predict both the distortion and reflection sources, cochlear roughness is modeled by introducing random inhomogeneities in the outer hair cell properties. The model was used to simulate the generation of DPOAEs in response to a two-tone stimulus for various primary stimulus levels and frequency ratios. As in published experiments, the 2f 1 -f 2 DPOAEs are mostly dominated by the distortion component while the 2f 2 -f 1 DPOAEs are dominated by the reflection component; furthermore, the influence of the levels and frequency ratio of the primaries are consistent with measurements. Analysis of the intracochlear response shows that the distortion component has the highest magnitude at all longitudinal locations for the 2f 1 -f 2 distortion product (DP) while the distortion component only dominates close to the DP best place in the case of the 2f 2 -f 1 DP. Decomposition of the intracochlear DPs into forward and reverse waves demonstrates that the 2f 1 -f 2 DP generates reverse waves for both the distortion and reflection components; however, a reverse wave is only generated for the reflection component in the case of the 2f 2 -f 1 DP. As in experiments in the gerbil, the group delay of the reflection component of the DPOAE is between 1× and 2× the forward group delay, which is consistent with the propagation of DP towards the stapes as slow reverse waves. Copyright © 2018 Elsevier B.V. All rights reserved.
Karki, S; Pokharel, M; Suwal, S; Poudel, R
Background The exact role of High resolution computed tomography (HRCT) temporal bone in preoperative assessment of Chronic suppurative otitis media atticoantral disease still remains controversial. Objective To evaluate the role of high resolution computed tomography temporal bone in Chronic suppurative otitis media atticoantral disease and to compare preoperative computed tomographic findings with intra-operative findings. Method Prospective, analytical study conducted among 65 patients with chronic suppurative otitis media atticoantral disease in Department of Radiodiagnosis, Kathmandu University Dhulikhel Hospital between January 2015 to July 2016. The operative findings were compared with results of imaging. The parameters of comparison were erosion of ossicles, scutum, facial canal, lateral semicircular canal, sigmoid and tegmen plate along with extension of disease to sinus tympani and facial recess. Sensitivity, specificity, negative predictive value, positive predictive values were calculated. Result High resolution computed tomography temporal bone offered sensitivity (Se) and specificity (Sp) of 100% for visualization of sigmoid and tegmen plate erosion. The performance of HRCT in detecting malleus (Se=100%, Sp=95.23%), incus (Se=100%,Sp=80.48%) and stapes (Se=96.55%, Sp=71.42%) erosion was excellent. It offered precise information about facial canal erosion (Se=100%, Sp=75%), scutum erosion (Se=100%, Sp=96.87%) and extension of disease to facial recess and sinus tympani (Se=83.33%,Sp=100%). high resolution computed tomography showed specificity of 100% for lateral semicircular canal erosion (Sp=100%) but with low sensitivity (Se=53.84%). Conclusion The findings of high resolution computed tomography and intra-operative findings were well comparable except for lateral semicircular canal erosion. high resolution computed tomography temporal bone acts as a road map for surgeon to identify the extent of disease, plan for appropriate procedure that is required and prepare for potential complications that can be encountered during surgery.
[Joseph Toynbee--otologist, scientist, philanthropist].
Betlejewski, Stanisław; Betlejewski, Andrzej
2009-01-01
Joseph Tonbee's life's work may be summarized in the words of William Wilde: "The labours and investigations of Mr. Toynbee have affected more for aural pathology than those of all his predecessors either in England or on the continent". Some idea of the extent of his researches is given by the fact that he dissected some 2.000 ears. These preparations formed the Toynbee Collection in the Museum of the Royal College of Surgeons of England. He wrote the results of his researches in a catalogue that includes the description of 1,659 human ears. This catalogue forms the basis of modern otology for all time. This purely pathological catalogue was completed in 1860 with the publication of a more clinical book, "The Diseases of the Ear: their Nature, Diagnosis and Treatment". Toynbee appears to have been the first to describe the pathological changes in otosclerosis. In his book "Diseases of the Ear" he described the condition clearly, recognizing "anchylosis of the stapes to the fenestra ovalis" in 136 temporal bones. He also aligned the subjective, visual and ausculatory tests for Eustacchian tubal patency which we use today. Adam Politzer wrote: "Toynbee was the first who realized in otology that therapeutic progress depends on the knowledge of anatomy". But Toynbee was also active on other fields. Politzer, in his lecture in Vienna in 1914 said: "Toynbee was as outstanding a savant as he was a philanthropist. In addition to his scientific activity, he considered it a sacred task to dedicate his spare time to the improvement of living and health conditions of the poorer classes." Tragic enough, Toynbee's zeal for clinical experimentation went too far. Seeking to help his patients by devising a treatment to allay their tinnitus, he conceived the idea of introducing a mixture of chloroform and prussic acid into the tympanic cavity by means of Valsalva maneuver. When he made the first trial on July 7, 1866, with himself as a subject, he was found dead on the couch in his consulting room.
Birk, Stephanie; Brase, Christoph; Hornung, Joachim
2014-08-01
In the further development of alloplastic prostheses for use in middle ear surgery, the Dresden and Cologne University Hospitals, working together with a company, introduced a new partial ossicular replacement prosthesis in 2011. The ball-and-socket joint between the prosthesis and the shaft mimics the natural articulations between the malleus and incus and between the incus and stapes, allowing reaction to movements of the tympanic membrane graft, particularly during the healing process. Retrospective evaluation To reconstruct sound conduction as part of a type III tympanoplasty, partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft was implanted in 60 patients, with other standard partial ossicular replacement prosthesis implanted in 40 patients and 64 patients. Pure-tone audiometry was carried out, on average, 19 and 213 days after surgery. Results of the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft were compared with those of the standard prostheses. Early measurements showed a mean improvement of 3.3 dB in the air-bone gap (ABG) with the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft, giving similar results than the standard implants (6.6 and 6.0 dB, respectively), but the differences were not statistically significant. Later measurements showed a statistically significant improvement in the mean ABG, 11.5 dB, compared with 4.4 dB for one of the standard partial ossicular replacement prosthesis and a tendency of better results to 6.9 dB of the other standard prosthesis. In our patients, we achieved similarly good audiometric results to those already published for the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft. Intraoperative fixation posed no problems, and the postoperative complication rate was low.
Total Ossicular Replacement Prosthesis: A New Fat Interposition Technique.
Saliba, Issam; Sabbah, Valérie; Poirier, Jackie Bibeau
2018-01-01
To compare audiometric results between the standard total ossicular replacement prosthesis (TORP-S) and a new fat interposition total ossicular replacement prosthesis (TORP-F) in pediatric and adult patients and to assess the complication and the undesirable outcome. This is a retrospective study. This study included 104 patients who had undergone titanium implants with TORP-F and 54 patients who had undergone the procedure with TORP-S between 2008 and 2013 in our tertiary care centers. The new technique consists of interposing a fat graft between the 4 legs of the universal titanium prosthesis (Medtronic Xomed Inc, Jacksonville, FL, USA) to provide a more stable TORP in the ovale window niche. Normally, this prosthesis is designed to fit on the stapes' head as a partial ossicular replacement prosthesis. The postoperative air-bone gap less than 25 dB for the combined cohort was 69.2% and 41.7% for the TORP-F and the TORP-S groups, respectively. The mean follow-up was 17 months postoperatively. By stratifying data, the pediatric cohort shows 56.5% in the TORP-F group (n = 52) compared with 40% in the TORP-S group (n = 29). However, the adult cohort shows 79.3% in the TORP-F group (n = 52) compared with 43.75% in the TORP-S group (n = 25). These improvements in hearing were statistically significant. There were no statistically significant differences in the speech discrimination scores. The only undesirable outcome that was statistically different between the 2 groups was the prosthesis displacement: 7% in the TORP-F group compared with 19% in the TORP-S group ( P = .03). The interposition of a fat graft between the legs of the titanium implants (TORP-F) provides superior hearing results compared with a standard procedure (TORP-S) in pediatric and adult populations because of its better stability in the oval window niche.
Conductive Hearing Loss Caused by Third-Window Lesions of the Inner Ear
Merchant, Saumil N.; Rosowski, John J.
2008-01-01
Background Various authors have described conductive hearing loss (CHL), defined as an air-bone gap on audiometry, in patients without obvious middle ear pathologic findings. Recent investigations have suggested that many of these cases are due to disorders of the inner ear, resulting in pathologic third windows. Objective To provide an overview of lesions of the inner ear resulting in a CHL due to a third-window mechanism. The mechanism of the CHL is explained along with a classification scheme for these disorders. We also discuss methods for diagnosis of these disorders. Data Sources The data were compiled from a review of the literature and recent published research on middle and inner ear mechanics from our laboratory. Conclusion A number of disparate disorders affecting the labyrinth can produce CHL by acting as a pathologic third window in the inner ear. The common denominator is that these conditions result in a mobile window on the scala vestibuli side of the cochlear partition. The CHL results by the dual mechanism of worsening of air conduction thresholds and improvement of bone conduction thresholds. Such lesions may be anatomically discrete or diffuse. Anatomically discrete lesions may be classified by location: semicircular canals (superior, lateral, or posterior canal dehiscence), bony vestibule (large vestibular aqueduct syndrome, other inner ear malformations), or the cochlea (carotid-cochlear dehiscence, X-linked deafness with stapes gusher, etc.). An example of an anatomically diffuse lesion is Paget disease, which may behave as a distributed or diffuse third window. Third-window lesions should be considered in the differential diagnosis of CHL in patients with an intact tympanic membrane and an aerated, otherwise healthy, middle ear. Clues to suspect such a lesion include a low-frequency air-bone gap with supranormal thresholds for bone conduction, and presence of acoustic reflexes, vestibular evoked myogenic responses, or otoacoustic emission responses despite the CHL. Imaging studies can help confirm the diagnosis. PMID:18223508
NASA Astrophysics Data System (ADS)
Shera, Christopher A.
Otoacoustic emissions demonstrate that the ear creates sound while listening to sound, offering a promising acoustic window on the mechanics of hearing in awake, listening human beings. That window is clouded, however, by an incomplete knowledge of wave reflection and transmission, both forth and back within the cochlea and through the middle ear. This thesis "does windows," addressing wave propagation and scattering on both sides of the middle ear. A summary of highlights follows. Measurements of the cochlear input impedance in cat are used to identify a new symmetry in cochlear mechanics-termed "tapering symmetry" after its geometric interpretation in simple models-that guarantees that the wavelength of the traveling wave changes slowly with position near the stapes. Waves therefore propagate without reflection through the basal turns of the cochlea. Analytic methods for solving the cochlear wave equations using a perturbative scattering series are given and used to demonstrate that, contrary to common belief, conventional cochlear models exhibit negligible internal reflection whether or not they accurately represent the tapering symmetries of the inner ear. Frameworks for the systematic "deconstruction" of eardrum and middle-ear transduction characteristics are developed and applied to the analysis of noninvasive measurements of middle-ear and cochlear mechanics. A simple phenomenological model of inner-ear compressibility that correctly predicts hearing thresholds in patients with missing or disarticulated middle-ear ossicles is developed and used to establish an upper bound on cochlear compressibility several orders of magnitude smaller than that provided by direct measurements. Accurate measurements of stimulus frequency evoked otoacoustic emissions are performed and used to determine the form and frequency variation of the cochlear traveling-wave ratio noninvasively. Those measurements are inverted to obtain the spatial distribution of mechanical inhomogeneities responsible for evoked emission. Although current models require that the periodicities found in emission spectra and threshold hearing curves originate in a corresponding corrugation in the mechanics of the cochlea, it is shown that the observed spectral periodicities can arise spontaneously through the dynamics of wave propagation and reflection and that the organ of Corti, as suggested by the anatomy, need manifest no particular translational symmetries.
NASA Astrophysics Data System (ADS)
Shera, Christopher Alan
Otoacoustic emissions demonstrate that the ear creates sound while listening to sound, offering a promising acoustic window on the mechanics of hearing in awake, listening human beings. That window is clouded, however, by an incomplete knowledge of wave reflection and transmission, both forth and back within the cochlea and through the middle ear. This thesis "does windows," addressing wave propagation and scattering on both sides of the middle ear. A summary of highlights follows. Measurements of the cochlear input impedance in cat are used to identify a new symmetry in cochlear mechanics--termed "tapering symmetry" after its geometric interpretation in simple models--that guarantees that the wavelength of the traveling wave changes slowly with position near the stapes. Waves therefore propagate without reflection through the basal turns of the cochlea. Analytic methods for solving the cochlear wave equations using a perturbative scattering series are given and used to demonstrate that, contrary to common belief, conventional cochlear models exhibit negligible internal reflection whether or not they accurately represent the tapering symmetries of the inner ear. Frameworks for the systematic "deconstruction" of eardrum and middle-ear transduction characteristics are developed and applied to the analysis of noninvasive measurements of middle-ear and cochlear mechanics. A simple phenomenological model of inner-ear compressibility that correctly predicts hearing thresholds in patients with missing or disarticulated middle-ear ossicles is developed and used to establish an upper bound on cochlear compressibility several orders of magnitude smaller than that provided by direct measurements. Accurate measurements of stimulus -frequency evoked otoacoustic emissions are performed and used to determine the form and frequency variation of the cochlear traveling-wave ratio noninvasively. Those measurements are inverted to obtain the spatial distribution of mechanical inhomogeneities responsible for evoked emission. Although current models require that the periodicities found in emission spectra and threshold hearing curves originate in a corresponding corrugation in the mechanics of the cochlea, it is shown that the observed spectral periodicities can arise spontaneously through the dynamics of wave propagation and reflection and that the organ of Corti, as suggested by the anatomy, need manifest no particular translational symmetries.
De Greef, Daniel; Pires, Felipe; Dirckx, Joris J J
2017-02-01
Despite continuing advances in finite element software, the realistic simulation of middle ear response under acoustic stimulation continues to be challenging. One reason for this is the wide range of possible choices that can be made during the definition of a model. Therefore, an explorative study of the relative influences of some of these choices is potentially very helpful. Three finite element models of the human middle ear were constructed, based on high-resolution micro-computed tomography scans from three different human temporal bones. Interesting variations in modeling definitions and parameter values were selected and their influences on middle ear transmission were evaluated. The models were compared against different experimental validation criteria, both from the literature and from our own measurements. Simulation conditions were restricted to the frequency range 0.1-10 kHz. Modeling the three geometries with the same modeling definitions and parameters produces stapes footplate response curves that exhibit similar shapes, but quantitative differences of 4 dB in the lower frequencies and up to 6 dB around the resonance peaks. The model properties with the largest influences on our model outcomes are the tympanic membrane (TM) damping and stiffness and the cochlear load. Model changes with a small to negligible influence include the isotropy or orthotropy of the TM, the geometry of the connection between the TM and the malleus, the microstructure of the incudostapedial joint, and the length of the tensor tympani tendon. The presented results provide insights into the importance of different features in middle ear finite element modeling. The application of three different individual middle ear geometries in a single study reduces the possibility that the conclusions are strongly affected by geometrical abnormalities. Some modeling variations that were hypothesized to be influential turned out to be of minor importance. Furthermore, it could be confirmed that different geometries, simulated using the same parameters and definitions, can produce significantly different responses. Copyright © 2016 Elsevier B.V. All rights reserved.
Motion of the Tympanic Membrane after Cartilage Tympanoplasty Determined by Stroboscopic Holography
Aarnisalo, Antti A.; Cheng, Jeffrey T.; Ravicz, Michael E.; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.
2009-01-01
Stroboscopic holography was used to quantify dynamic deformations of the tympanic membrane (TM) of the entire surface of the TM before and after cartilage tympanoplasty of the posterior or posterior-superior part of the TM. Cartilage is widely used in tympanoplasties to provide mechanical stability for the TM. Three human cadaveric temporal bones were used. A 6 mm × 3 mm oval cartilage graft was placed through the widely opened facial recess onto the medial surface of the posterior or posterior-superior part of the TM. The graft was either in contact with the bony tympanic rim and manubrium or not. Graft thickness was either 0.5 or 1.0 mm. Stroboscopic holography produced displacement amplitude and phase maps of the TM surface in response to stimulus sound. Sound stimuli were 0.5, 1, 4 and 7 (or 8) kHz tones. Middle ear impedance was measured from the motion of the entire TM. Cartilage placement generally produced reductions in the motion of the TM apposed to the cartilage, especially at 4 kHz and 7 or 8 kHz. Some parts of the TM showed altered motion compared to the control in all three cases. In general, middle ear impedance was either unchanged or increased somewhat after cartilage reconstruction both at low (0.5 and 1 kHz) and high (4 and 7 kHz) frequencies. At 4 kHz, with the 1.0 mm thick graft that was in contact with the bony tympanic rim, the impedance slightly decreased. While our earlier work with time-averaged holography allowed us to observe differences in the pattern of TM motion caused by application of cartilage to the TM, stroboscopic holography is more sensitive to TM motions and allowed us to quantify the magnitude and phase of motion of each point on the TM surface. Nonetheless, our results are similar to those of our earlier work: The placement of cartilage on the medial surface of TM reduces the motion of the TM that apposes the cartilage. These obvious local changes occur even though the cartilage had little effect on the sound-induced motion of the stapes. PMID:19909803
[The neuroanatomy of Juan Valverde de Amusco and medicine at the time of the Spanish renaissance].
Martín Araguz, A; Bustamante Martínez, C; Toledo León, D; López Gómez, M; Moreno Martínez, J M
Juan Valverde de Amusco (c. 1525-c. 1564) is considered to have been the most important Spanish anatomist of the XVI century. A follower of Vesalius, he increased and divulged knowledge of anatomy during the Renaissance and his book The history of the composition of the human body was printed in Rome in 1556. The objective of this paper is to study the neuroanatomy in this book and present unpublished biographical data and describe the main contributions of this Castilian doctor to the neurosciences, in the context of Spanish medicine during the Renaissance period. He was born in the town of Hamusco (today Amusco) in the province of Palencia, which belonged to the Crown of Castile. Juan Valverde emigrated to Italy to improve his scientific knowledge. He carried out anatomical studies using the then revolutionary method of direct observation, as opposed to the Galenic criteria of authority inherited from the Medieval period. He trained in Padua under Realdo Colombo and lived in Rome where he practiced medicine until his death, becoming deservedly famous. He did not return to Spain since in the Spanish universities of the time there was a mentality which was reactionary to modern anatomy. His works, published in Italy but in the Spanish language, give an idea of the power of the Crown of Castile in the Europe of that period. The book is profusely illustrated with the first illustrations ever published in the history of printing, drawn by Nicolas Beatrizet. The book was sold widely and was translated and reedited on many occasions, until well into the XVIII century. For the first time Valverde made precise references to the minor circulation. He was the first anatomist to describe the muscles for movement of the eye correctly and the intracranial course of the carotid arteries. In his work he made the first drawing of the stapes, described by the Valencian Luis Collado. Vesalius and Valverde contributed decisively to the beginnings of modern neuroanatomy. Thanks to them, the brain is no longer an organ unknown to science.
Procedures for restoring vestibular disorders
Walther, Leif Erik
2005-01-01
This paper will discuss therapeutic possibilities for disorders of the vestibular organs and the neurons involved, which confront ENT clinicians in everyday practice. Treatment of such disorders can be tackled either symptomatically or causally. The possible strategies for restoring the body's vestibular sense, visual function and co-ordination include medication, as well as physical and surgical procedures. Prophylactic or preventive measures are possible in some disorders which involve vertigo (bilateral vestibulopathy, kinetosis, height vertigo, vestibular disorders when diving (Tables 1 (Tab. 1) and 2 (Tab. 2)). Glucocorticoid and training therapy encourage the compensation of unilateral vestibular loss. In the case of a bilateral vestibular loss, it is important to treat the underlying disease (e.g. Cogan's disease). Although balance training does improve the patient's sense of balance, it will not restore it completely. In the case of Meniere's disease, there are a number of medications available to either treat bouts or to act as a prophylactic (e.g. dimenhydrinate or betahistine). In addition, there are non-ablative (sacculotomy) as well as ablative surgical procedures (e.g. labyrinthectomy, neurectomy of the vestibular nerve). In everyday practice, it has become common to proceed with low risk therapies initially. The physical treatment of mild postural vertigo can be carried out quickly and easily in outpatients (repositioning or liberatory maneuvers). In very rare cases it may be necessary to carry out a semicircular canal occlusion. Isolated disturbances of the otolith function or an involvement of the otolith can be found in roughly 50% of labyrinth disturbances. A specific surgical procedure to selectively block the otolith organs is currently being studied. When an external perilymph fistula involving loss of perilymph is suspected, an exploratory tympanotomy involving also the round and oval window niches must be carried out. A traumatic rupture of the round window membrane can, for example, also be caused by an implosive inner ear barotrauma during the decompression phase of diving. Dehiscence of the anterior semicircular canal, a relatively rare disorder, can be treated conservatively (avoiding stimuli which cause dizziness), by non-ablative „resurfacing" or by „plugging" the semicircular canal. A perilymph fistula can cause a Tullio-phenomenon resulting from a traumatic dislocation or hypermobility of the stapes, which can be surgically corrected. Vestibular disorders can also result from otosurgical therapy. When balance disorders persist following stapedectomy it is necessary to carry out a revision operation in order to either exclude a perilymph fistula or shorten the piston. Surgically reducing the size of open mastoid cavities (using for example porous hydroxylapatite or cartilage) can result in a reduction of vertiginous symptoms while nursing or during exposure to ambient air. Vestibular disturbances can occur both before and after vestibular nerve surgery (acoustic neuroma). Initially, good vestibular compensation can be expected after surgically removing the acoustic neuroma. An aberrant regeneration of nerve fibers of the vestibulocochlear nerve has been suggested as a cause for secondary worsening. Episodes of vertigo can be caused by an irritation of the vestibular nerve (vascular loop). Neurovascular decompression is generally regarded as the best surgical therapy. In the elderly, vestibular disturbances can severely limit quality of life and are often aggravated by multiple comorbidities. Antivertiginous drugs (e.g. dimenhydrinate) in combination with movement training can significantly reduce symptoms. Administering antivertiginous drugs over varying periods of time (e.g. transdermal scopolamine application via patches) as well as kinetosis training can be used as both prophylactically and as a therapy for kinetosis. Exposure training should be used as a prophylactic for height vertigo. PMID:22073053
Dai, Chenkai; Lehar, Mohamed; Sun, Daniel Q; Rvt, Lani Swarthout; Carey, John P; MacLachlan, Tim; Brough, Doug; Staecker, Hinrich; Della Santina, Alexandra M; Hullar, Timothy E; Della Santina, Charles C
2017-08-01
Sensorineural losses of hearing and vestibular sensation due to hair cell dysfunction are among the most common disabilities. Recent preclinical research demonstrates that treatment of the inner ear with a variety of compounds, including gene therapy agents, may elicit regeneration and/or repair of hair cells in animals exposed to ototoxic medications or other insults to the inner ear. Delivery of gene therapy may also offer a means for treatment of hereditary hearing loss. However, injection of a fluid volume sufficient to deliver an adequate dose of a pharmacologic agent could, in theory, cause inner ear trauma that compromises functional outcome. The primary goal of the present study was to assess that risk in rhesus monkeys, which closely approximates humans with regard to middle and inner ear anatomy. Secondary goals were to identify the best delivery route into the primate ear from among two common surgical approaches (i.e., via an oval window stapedotomy and via the round window) and to determine the relative volumes of rhesus, rodent, and human labyrinths for extrapolation of results to other species. We measured hearing and vestibular functions before and 2, 4, and 8 weeks after unilateral injection of phosphate-buffered saline vehicle (PBSV) into the perilymphatic space of normal rhesus monkeys at volumes sufficient to deliver an atoh1 gene therapy vector. To isolate effects of injection, PBSV without vector was used. Assays included behavioral observation, auditory brainstem responses, distortion product otoacoustic emissions, and scleral coil measurement of vestibulo-ocular reflexes during whole-body rotation in darkness. Three groups (N = 3 each) were studied. Group A received a 10 μL transmastoid/trans-stapes injection via a laser stapedotomy. Group B received a 10 μL transmastoid/trans-round window injection. Group C received a 30 μL transmastoid/trans-round window injection. We also measured inner ear fluid space volume via 3D reconstruction of computed tomography (CT) images of adult C57BL6 mouse, rat, rhesus macaque, and human temporal bones (N = 3 each). Injection was well tolerated by all animals, with eight of nine exhibiting no signs of disequilibrium and one animal exhibiting transient disequilibrium that resolved spontaneously by 24 h after surgery. Physiologic results at the final, 8-week post-injection measurement showed that injection was well tolerated. Compared to its pretreatment values, no treated ear's ABR threshold had worsened by more than 5 dB at any stimulus frequency; distortion product otoacoustic emissions remained detectable above the noise floor for every treated ear (mean, SD and maximum deviation from baseline: -1.3, 9.0, and -18 dB, respectively); and no animal exhibited a reduction of more than 3 % in vestibulo-ocular reflex gain during high-acceleration, whole-body, passive yaw rotations in darkness toward the treated side. All control ears and all operated ears with definite histologic evidence of injection through the intended site showed similar findings, with intact hair cells in all five inner ear sensory epithelia and intact auditory/vestibular neurons. The relative volumes of mouse, rat, rhesus, and human inner ears as measured by CT were (mean ± SD) 2.5 ± 0.1, 5.5 ± 0.4, 59.4 ± 4.7 and 191.1 ± 4.7 μL. These results indicate that injection of PBSV at volumes sufficient for gene therapy delivery can be accomplished without destruction of inner ear structures required for hearing and vestibular sensation.
Therapy of unspecific tinnitus without organic cause
Frank, Wilhelm; Konta, Brigitte; Seiler, Gerda
2006-01-01
Introduction There is a variety of medical and non-medical therapies in practice, which were not evaluated regarding its effectiveness by any systematic evidence oriented investigation. A number of therapies of medical and non-medical type try to treat the different types of tinnitus. The evidence in the scientific literature also had to be cleared in the field of diagnosis and classification as well as medical/psychiatric/psychological procedures of existing medical therapy. Question The HTA report had to investigate the following questions: Which evidence do diagnostic methods in recognition of tinnitus have? Which types of therapy show medical effectiveness at the acute or chronic tinnitus without an organic cause? Which consequences (need for further research, future procedures) can be drawn? Methodology In the following databases "tinnitus" was searched according to the search string: HTA97; INAHTA; CDAR94; CDSR93; CCTR93; ME66; ME0A; HT83; SM78; CA66; CB85; BA70; BA93; EM74; IS74; ET80; EB94; IA70; AZ72; CV72; GE79; EU93; HN69; ED93; EA08 Result: 1932 studies, unsorted after assessment in accordance with EBM criterions, selection: 409 studies. Due to the completely heterogeneous representation modes of the therapeutic approaches at the treatment of the chronic tinnitus no quantitative synthesis method could be performed. Therefore the methodology of a qualitative overview has been carried out. Results The diagnostic confirmation of the non-specific tinnitus without organic cause meets with the problem of the assurance of the diagnosis tinnitus. According to the current opinion the stepwise diagnostics is carried out also in the case of the so called subjective tinnitus. Nothing can be said about the evidence of these procedures since no publication was found about that. A study concerning the evidence of the diagnostic questionnaires from Goebel and Hiller [1] comes to the end that the tinnitus questionnaire frequently used (TF) [2] is the best evaluated procedure. The number of therapies which treat tinnitus is exceptionally high and makes clear, that the search for "the" tinnitus therapy is still going on. According to the current knowledge tinnitus genesis is multifactorial and therefore there can’t be any standard therapy for tinnitus. The following seven categories can be distinguished: Ad 1: Machine-aided acoustic therapies From many studies regarding machine-aided acoustic therapy of tinnitus only two showed an evidence degree that allows scientifically correct statements about the effectiveness of these procedures. Selectively significant improvements could be shown in the comparison with a placebo (apparatus switched off) a superiority of tinnitus-maskers. Ad 2: Electrostimulation In an application study of electro-stimulation the results were not evaluated statistically, but it was described descriptively that a successful medical treatment can be expected in about 50% of the cases. Ad 3: Psychological therapy procedures Hypnosis did not show positive effectiveness. With regard to biofeedback it can be concluded that this method can be effective in individual cases, however regarded as unreliable from missing reproducibility. Neurobiofeedback could prove that it had a positive therapeutic effect. From eight controlled studies to relaxation techniques and cognitive behaviour therapy four studies showed a therapeutic effectiveness and four failed. Combined therapies proved generally to be more effective than individual types. The behaviour medical psychotherapy could show a positive therapy effect. In a study with cognitive therapy and relaxation (three groups, a passive relaxation, an active relaxation and a cognitive therapy) short-term successes could be stated (for one month), however, the parameters of success returned on the initial value after four months. Also only coincidental and short-term successes could be achieved with cognitive behaviour therapy training, autogenic training and structured group psychotherapy. Ad 4: Tinnitus Retraining Therapy (TRT) Unfortunately, the published results of the TRT are methodically frequently bad and scientific of a poor value. Many of the studies presented until now regarding tinnitus retraining therapy are not informative in their scientific context. In a study with 95 patients with a chronic tinnitus TRT could show a significant, more than six months lasting stable success by comparison to a combination of TET with group behaviour therapy (improvement be achieved around at least ten points in the tinnitus questionnaire (TF)). Ad 5: Pharmacological therapies Rheological drugs (medicines for hemodilution) could not show any statistically significant effect in the treatment of tinnitus. Studies to the medical treatment with tocainides (lidocaine) showed repeatable positive effects on tinnitus in higher dosages (as of 1.2 mg/day). Lamotrigine as a medicine had an effect positively only at with a small fraction of patients. Two studies with GABA receptor agonists could not prove therapeutic effects for tinnitus. Undesired side-effects were observed. Injections with Carvoverine (a glutamate antagonist) achieved significantly successes with a special form of tinnitus, the “Cochlear-synaptic tinnitus (CST)". A tricyclic antidepressant (Amitriptilin) could prove superiority against placebo. This effect could be confirmed in another study. However Clonazepame (a benzodiazepine), could not achieve any improvement. Short-term improvements were achieved with other benzodiazepines (Clonazepame, Diazepam, Flurazepame, Oxacepame and Alprazolame). A German retrospective study suggests a graded pharmacological therapy by means of rheological infusion therapy, applications of neurotransmitters, and injections of lidocaine. This method achieved a disappearance or a recovery of the complaints at 95.3% of the acute and 26.7% of the chronic cases. Ad 6: Surgical procedures The effects of the operative excision of the stapes (stapedectomy) showed significant effects concerning tinnitus. This method is a routine operation to recover hearing, effects on tinnitus were observed only coincidently. There are generally high frequencies of improvements of tinnitus after cochlea implantations; however the risk of deterioration is present with this method. Ad 7: Other and alternative therapy procedures The hyperbaric oxygen therapy can be considered successful after acute events with tinnitus. The therapy should be started in the first month after appearance of the tinnitus. The methods transcranial-, electromagnetic and transcutaneous nerve stimulations did not show any significant effects on tinnitus. Also low laser medical treatment showed disappointing effects. The “pneumatic external contra-pulsation” is described as an unproblematic usable procedure by the authors of the examination, but 10% of the patients had to stop the medical treatment because of complications associated with the medical treatment. Acupuncture showed significant improvements in comparison to medical treatment. The effectiveness of this therapy could not be reproduced in another study. Five other studies between 1993 and 1999 also did not show any therapeutic effect of this method. Gingko-Biloba preparations did not show any positive effects in large-scale studies on tinnitus. Discussion Neither the diagnostic procedures nor the therapeutic methods or the individual therapies reach a usual scientific level in medicine. Unsolved problems concerning insurance, economic as well as legal problems have resulted for the patients and for caring stuff from this unsatisfactory situation. Numerous competitive tinnitus emergence models led to an incredible creativity in trying out different therapy approaches. No convergence of the therapy procedures can be seen within the last decades of tinnitus research, contrariwise there is always more and more “creativity” of new approaches. Priority has to be given to find the cause of tinnitus since therapies are a consequence of a better understanding of these symptoms that evidence oriented investigations on an usual scientific level can be started. Conclusion The innumerable therapeutic approaches, seeming completely incoherent to their effects should be coordinated on the meaningfulness, on the success parameters and with patient safety in light of the most plausible explanation models for non-specific chronic Tinnitus. To this the facilities of competence centres or related science- directing facilities are recommendable. Examinations which are carried out also with small numbers show often methodical insufficiencies. It is necessary that minimal requirements on a scientifically clinical experiment, such as design, case number calculation, analytic statistics, control group, are fulfilled. It is recommendable, that further research has to be promoted regarding tinnitus causes that a coordinated evidence-orientated treatment will be developed. PMID:21289968
Therapy of unspecific tinnitus without organic cause.
Frank, Wilhelm; Konta, Brigitte; Seiler, Gerda
2006-08-30
There is a variety of medical and non-medical therapies in practice, which were not evaluated regarding its effectiveness by any systematic evidence oriented investigation. A number of therapies of medical and non-medical type try to treat the different types of tinnitus. The evidence in the scientific literature also had to be cleared in the field of diagnosis and classification as well as medical/psychiatric/psychological procedures of existing medical therapy. The HTA report had to investigate the following questions: Which evidence do diagnostic methods in recognition of tinnitus have? Which types of therapy show medical effectiveness at the acute or chronic tinnitus without an organic cause? Which consequences (need for further research, future procedures) can be drawn? In the following databases "tinnitus" was searched according to the search string: HTA97; INAHTA; CDAR94; CDSR93; CCTR93; ME66; ME0A; HT83; SM78; CA66; CB85; BA70; BA93; EM74; IS74; ET80; EB94; IA70; AZ72; CV72; GE79; EU93; HN69; ED93; EA08 1932 studies, unsorted after assessment in accordance with EBM criterions, selection: 409 studies. Due to the completely heterogeneous representation modes of the therapeutic approaches at the treatment of the chronic tinnitus no quantitative synthesis method could be performed. Therefore the methodology of a qualitative overview has been carried out. The diagnostic confirmation of the non-specific tinnitus without organic cause meets with the problem of the assurance of the diagnosis tinnitus. According to the current opinion the stepwise diagnostics is carried out also in the case of the so called subjective tinnitus. Nothing can be said about the evidence of these procedures since no publication was found about that. A study concerning the evidence of the diagnostic questionnaires from Goebel and Hiller [1] comes to the end that the tinnitus questionnaire frequently used (TF) [2] is the best evaluated procedure. The number of therapies which treat tinnitus is exceptionally high and makes clear, that the search for "the" tinnitus therapy is still going on. According to the current knowledge tinnitus genesis is multifactorial and therefore there can't be any standard therapy for tinnitus. The following seven categories can be distinguished: AD 1: MACHINE-AIDED ACOUSTIC THERAPIES From many studies regarding machine-aided acoustic therapy of tinnitus only two showed an evidence degree that allows scientifically correct statements about the effectiveness of these procedures. Selectively significant improvements could be shown in the comparison with a placebo (apparatus switched off) a superiority of tinnitus-maskers. AD 2: ELECTROSTIMULATION In an application study of electro-stimulation the results were not evaluated statistically, but it was described descriptively that a successful medical treatment can be expected in about 50% of the cases. AD 3: PSYCHOLOGICAL THERAPY PROCEDURES Hypnosis did not show positive effectiveness. With regard to biofeedback it can be concluded that this method can be effective in individual cases, however regarded as unreliable from missing reproducibility. Neurobiofeedback could prove that it had a positive therapeutic effect. From eight controlled studies to relaxation techniques and cognitive behaviour therapy four studies showed a therapeutic effectiveness and four failed. Combined therapies proved generally to be more effective than individual types. The behaviour medical psychotherapy could show a positive therapy effect. In a study with cognitive therapy and relaxation (three groups, a passive relaxation, an active relaxation and a cognitive therapy) short-term successes could be stated (for one month), however, the parameters of success returned on the initial value after four months. Also only coincidental and short-term successes could be achieved with cognitive behaviour therapy training, autogenic training and structured group psychotherapy. AD 4: TINNITUS RETRAINING THERAPY (TRT) Unfortunately, the published results of the TRT are methodically frequently bad and scientific of a poor value. Many of the studies presented until now regarding tinnitus retraining therapy are not informative in their scientific context. In a study with 95 patients with a chronic tinnitus TRT could show a significant, more than six months lasting stable success by comparison to a combination of TET with group behaviour therapy (improvement be achieved around at least ten points in the tinnitus questionnaire (TF)). AD 5: PHARMACOLOGICAL THERAPIES Rheological drugs (medicines for hemodilution) could not show any statistically significant effect in the treatment of tinnitus. Studies to the medical treatment with tocainides (lidocaine) showed repeatable positive effects on tinnitus in higher dosages (as of 1.2 mg/day). Lamotrigine as a medicine had an effect positively only at with a small fraction of patients. Two studies with GABA receptor agonists could not prove therapeutic effects for tinnitus. Undesired side-effects were observed. Injections with Carvoverine (a glutamate antagonist) achieved significantly successes with a special form of tinnitus, the "Cochlear-synaptic tinnitus (CST)". A tricyclic antidepressant (Amitriptilin) could prove superiority against placebo. This effect could be confirmed in another study. However Clonazepame (a benzodiazepine), could not achieve any improvement. Short-term improvements were achieved with other benzodiazepines (Clonazepame, Diazepam, Flurazepame, Oxacepame and Alprazolame). A German retrospective study suggests a graded pharmacological therapy by means of rheological infusion therapy, applications of neurotransmitters, and injections of lidocaine. This method achieved a disappearance or a recovery of the complaints at 95.3% of the acute and 26.7% of the chronic cases. AD 6: SURGICAL PROCEDURES The effects of the operative excision of the stapes (stapedectomy) showed significant effects concerning tinnitus. This method is a routine operation to recover hearing, effects on tinnitus were observed only coincidently. There are generally high frequencies of improvements of tinnitus after cochlea implantations; however the risk of deterioration is present with this method. AD 7: OTHER AND ALTERNATIVE THERAPY PROCEDURES The hyperbaric oxygen therapy can be considered successful after acute events with tinnitus. The therapy should be started in the first month after appearance of the tinnitus. The methods transcranial-, electromagnetic and transcutaneous nerve stimulations did not show any significant effects on tinnitus. Also low laser medical treatment showed disappointing effects. The "pneumatic external contra-pulsation" is described as an unproblematic usable procedure by the authors of the examination, but 10% of the patients had to stop the medical treatment because of complications associated with the medical treatment. Acupuncture showed significant improvements in comparison to medical treatment. The effectiveness of this therapy could not be reproduced in another study. Five other studies between 1993 and 1999 also did not show any therapeutic effect of this method. Gingko-Biloba preparations did not show any positive effects in large-scale studies on tinnitus. Neither the diagnostic procedures nor the therapeutic methods or the individual therapies reach a usual scientific level in medicine. Unsolved problems concerning insurance, economic as well as legal problems have resulted for the patients and for caring stuff from this unsatisfactory situation. Numerous competitive tinnitus emergence models led to an incredible creativity in trying out different therapy approaches. No convergence of the therapy procedures can be seen within the last decades of tinnitus research, contrariwise there is always more and more "creativity" of new approaches. Priority has to be given to find the cause of tinnitus since therapies are a consequence of a better understanding of these symptoms that evidence oriented investigations on an usual scientific level can be started. The innumerable therapeutic approaches, seeming completely incoherent to their effects should be coordinated on the meaningfulness, on the success parameters and with patient safety in light of the most plausible explanation models for non-specific chronic Tinnitus. To this the facilities of competence centres or related science- directing facilities are recommendable. Examinations which are carried out also with small numbers show often methodical insufficiencies. It is necessary that minimal requirements on a scientifically clinical experiment, such as design, case number calculation, analytic statistics, control group, are fulfilled. It is recommendable, that further research has to be promoted regarding tinnitus causes that a coordinated evidence-orientated treatment will be developed.