Science.gov

Sample records for staphylococcus aureus skin

  1. Epicutaneous Model of Community-Acquired Staphylococcus aureus Skin Infections

    PubMed Central

    Prabhakara, Ranjani; Foreman, Oded; De Pascalis, Roberto; Lee, Gloria M.; Plaut, Roger D.; Kim, Stanley Y.; Stibitz, Scott; Elkins, Karen L.

    2013-01-01

    Staphylococcus aureus is one of the most common etiological agents of community-acquired skin and soft tissue infection (SSTI). Although the majority of S. aureus community-acquired SSTIs are uncomplicated and self-clearing in nature, some percentage of these cases progress into life-threatening invasive infections. Current animal models of S. aureus SSTI suffer from two drawbacks: these models are a better representation of hospital-acquired SSTI than community-acquired SSTI, and they involve methods that are difficult to replicate. For these reasons, we sought to develop a murine model of community-acquired methicillin-resistant S. aureus SSTI (CA-MRSA SSTI) that can be consistently reproduced with a high degree of precision. We utilized this model to begin to characterize the host immune response to this type of infection. We infected mice via epicutaneous challenge of the skin on the outer ear pinna using Morrow-Brown allergy test needles coated in S. aureus USA300. When mice were challenged in this model, they developed small, purulent, self-clearing lesions with predictable areas of inflammation that mimicked a human infection. CFU in the ear pinna peaked at day 7 before dropping by day 14. The Th1 and Th17 cytokines gamma interferon (IFN-γ), interleukin-12 (IL-12) p70, tumor necrosis factor alpha (TNF-α), IL-17A, IL-6, and IL-21 were all significantly increased in the draining lymph node of infected mice, and there was neutrophil recruitment to the infection site. In vivo neutrophil depletion demonstrated that neutrophils play a protective role in preventing bacterial dissemination and fatal invasive infection. PMID:23381997

  2. Effect of Substance P in Staphylococcus aureus and Staphylococcus epidermidis Virulence: Implication for Skin Homeostasis.

    PubMed

    N'Diaye, Awa; Mijouin, Lily; Hillion, Mélanie; Diaz, Suraya; Konto-Ghiorghi, Yoan; Percoco, Giuseppe; Chevalier, Sylvie; Lefeuvre, Luc; Harmer, Nicholas J; Lesouhaitier, Olivier; Feuilloley, Marc G J

    2016-01-01

    Staphylococcus aureus and Staphylococcus epidermidis are two major skin associated bacteria, and Substance P (SP) is a major skin neuropeptide. Since bacteria are known to sense and response to many human hormones, we investigated the effects of SP on Staphylococci virulence in reconstructed human epidermis model and HaCaT keratinocytes. We show that SP is stimulating the virulence of S. aureus and S. epidermidis in a reconstructed human epidermis model. qRT-PCR array analysis of 64 genes expressed by keratinocytes in the response to bacterial infection revealed a potential link between the action of SP on Staphylococci and skin physiopathology. qRT-PCR and direct assay of cathelicidin and human β-defensin 2 secretion also provided that demonstration that the action of SP on bacteria is independent of antimicrobial peptide expression by keratinocytes. Considering an effect of SP on S. aureus and S. epidermidis, we observed that SP increases the adhesion potential of both bacteria on keratinocytes. However, SP modulates the virulence of S. aureus and S. epidermidis through different mechanisms. The response of S. aureus is associated with an increase in Staphylococcal Enterotoxin C2 (SEC2) production and a reduction of exolipase processing whereas in S. epidermidis the effect of SP appears mediated by a rise in biofilm formation activity. The Thermo unstable ribosomal Elongation factor Ef-Tu was identified as the SP-interacting protein in S. aureus and S. epidermidis. SP appears as an inter-kingdom communication factor involved in the regulation of bacterial virulence and essential for skin microflora homeostasis.

  3. Effect of Substance P in Staphylococcus aureus and Staphylococcus epidermidis Virulence: Implication for Skin Homeostasis

    PubMed Central

    N'Diaye, Awa; Mijouin, Lily; Hillion, Mélanie; Diaz, Suraya; Konto-Ghiorghi, Yoan; Percoco, Giuseppe; Chevalier, Sylvie; Lefeuvre, Luc; Harmer, Nicholas J.; Lesouhaitier, Olivier; Feuilloley, Marc G. J.

    2016-01-01

    Staphylococcus aureus and Staphylococcus epidermidis are two major skin associated bacteria, and Substance P (SP) is a major skin neuropeptide. Since bacteria are known to sense and response to many human hormones, we investigated the effects of SP on Staphylococci virulence in reconstructed human epidermis model and HaCaT keratinocytes. We show that SP is stimulating the virulence of S. aureus and S. epidermidis in a reconstructed human epidermis model. qRT-PCR array analysis of 64 genes expressed by keratinocytes in the response to bacterial infection revealed a potential link between the action of SP on Staphylococci and skin physiopathology. qRT-PCR and direct assay of cathelicidin and human β-defensin 2 secretion also provided that demonstration that the action of SP on bacteria is independent of antimicrobial peptide expression by keratinocytes. Considering an effect of SP on S. aureus and S. epidermidis, we observed that SP increases the adhesion potential of both bacteria on keratinocytes. However, SP modulates the virulence of S. aureus and S. epidermidis through different mechanisms. The response of S. aureus is associated with an increase in Staphylococcal Enterotoxin C2 (SEC2) production and a reduction of exolipase processing whereas in S. epidermidis the effect of SP appears mediated by a rise in biofilm formation activity. The Thermo unstable ribosomal Elongation factor Ef-Tu was identified as the SP-interacting protein in S. aureus and S. epidermidis. SP appears as an inter-kingdom communication factor involved in the regulation of bacterial virulence and essential for skin microflora homeostasis. PMID:27148195

  4. The effect of skin fatty acids on Staphylococcus aureus.

    PubMed

    Neumann, Yvonne; Ohlsen, Knut; Donat, Stefanie; Engelmann, Susanne; Kusch, Harald; Albrecht, Dirk; Cartron, Michael; Hurd, Alexander; Foster, Simon J

    2015-03-01

    Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb, hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS.

  5. Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin.

    PubMed

    Kohler, Thomas; Weidenmaier, Christopher; Peschel, Andreas

    2009-07-01

    Skin-colonizing gram-positive bacteria produce wall teichoic acids (WTAs) or related glycopolymers for unclear reasons. Using a WTA-deficient Staphylococcus aureus mutant, we demonstrated that WTA confers resistance to antimicrobial fatty acids from human sebaceous glands by preventing fatty acid binding. Thus, WTA is probably important for bacterial skin colonization.

  6. Staphylococcus aureus infection on cut wounds in the mouse skin: experimental staphylococcal botryomycosis.

    PubMed

    Akiyama, H; Kanzaki, H; Tada, J; Arata, J

    1996-03-01

    Staphylococcus aureus cells were inoculated on the cut wounds in the skin of cyclophosphamide-treated mice. Biopsy specimens were taken from three mice at 1, 3, 6, 12, 24, 36, 48 and 60 h after the inoculation and were examined by light and electron microscopies. One hour after the inoculation Staphylococcus aureus cells were seen around the cut wound and deeper into the subcutaneous tissue. By 6 h after the inoculation, Staphylococcus aureus cells formed clusters of bacterial colonies. By 36 h after the inoculation inflammatory cells, mainly polymorphonuclear leukocytes and macrophages, were seen around the clusters. Electron microscopic examination revealed fibril-like structures around the Staphylococcus aureus cells at 1 h. The Staphylococcus aureus cells were enclosed in membrane-like structures at 3 h. The membrane-like structures and the fibril-like structures were positive for Ruthenium red. By 12 h after the inoculation, the membrane-like structures increased in thickness and in electron density. Inflammatory cells were seen around but outside of the membrane-like structures at 24, 36 and 48 h. At 60 h the tissues around the membrane-like structures were degenerated and almost necrotic. These results suggest that Staphylococcus aureus cells may form biofilm in dermal or subcutaneous tissues in a neutropenic condition.

  7. Characterization of lipases from Staphylococcus aureus and Staphylococcus epidermidis isolated from human facial sebaceous skin.

    PubMed

    Xie, Winny; Khosasih, Vivia; Suwanto, Antonius; Kim, Hyung Kwoun

    2012-01-01

    Two staphylococcal lipases were obtained from Staphylococcus epidermidis S2 and Staphylococcus aureus S11 isolated from sebaceous areas on the skin of the human face. The molecular mass of both enzymes was estimated to be 45 kDa by SDS-PAGE. S2 lipase displayed its highest activity in the hydrolysis of olive oil at 32 degrees C and pH 8, whereas S11 lipase showed optimal activity at 31 degrees C and pH 8.5. The S2 lipase showed the property of cold-adaptation, with activation energy of 6.52 kcal/mol. In contrast, S11 lipase's activation energy, at 21 kcal/mol, was more characteristic of mesophilic lipases. S2 lipase was stable up to 45° C and within the pH range from 5 to 9, whereas S11 lipase was stable up to 50 degrees C and from pH 6 to 10. Both enzymes had high activity against tributyrin, waste soybean oil, and fish oil. Sequence analysis of the S2 lipase gene showed an open reading frame of 2,067 bp encoding a signal peptide (35 aa), a pro-peptide (267 aa), and a mature enzyme (386 aa); the S11 lipase gene, at 2,076 bp, also encoded a signal peptide (37 aa), pro-peptide (255 aa), and mature enzyme (399 aa). The two enzymes maintained amino acid sequence identity of 98-99% with other similar staphylococcal lipases. Their microbial origins and biochemical properties may make these staphylococcal lipases isolated from facial sebaceous skin suitable for use as catalysts in the cosmetic, medicinal, food, or detergent industries.

  8. Risk Factors for Community-Associated Staphylococcus aureus Skin Infection in Children of Maui

    PubMed Central

    Seifried, Steven E

    2012-01-01

    The prevalence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infection, and Staphylococcus aureus (S. aureus) infection overall, has dramatically increased in the past 10 years. Children and Native Hawaiians and Pacific Islanders (NHPI) are disproportionately affected by CA-MRSA infection. The purpose of this case-control study was to identify risk factors for CA-S. aureus skin infections in children of Maui, Hawai‘i, as a foundation for reducing the transmission of these infections. Survey data were obtained from patients in pediatric clinician offices over an 8-month period. NHPI participants were well-represented as 58% of cases and 54% of controls. Chi-square analysis and logistic regression were used to identify risk factors. Significant risk factors predictive of infection among all participants were (a) skin abrasions or wounds, (b) household contact, and (c) overweight or obesity. Risk factors predictive of infection among NHPI were (a) skin abrasions or wounds, (b) antibiotic use within 6 months, (c) overweight or obesity, and (d) a history of eczema or other skin disorder. The role of overweight or obesity in S. aureus skin infections among NHPI has not been identified in previous research and indicates a focus for additional education. Further research is needed to better understand the role of eczema, antibiotic use, overweight and obesity, and socio-cultural factors in these infections. PMID:22900237

  9. Effects of postmilking teat treatment on the colonization of Staphylococcus aureus on chapped teat skin.

    PubMed

    Fox, L K; Nagy, J A; Hillers, J K; Cronrath, J D; Ratkowsky, D A

    1991-06-01

    Sixteen Holstein cows were used to test the effect of postmilking teat treatment on colonization and intramammary infection by Staphylococcus aureus on chapped teats. Treatments were (1) chapping the teat and using 1% I2/10% glycerin postdip solution, (2) 1% I2/10% glycerin postdip solution on nonchapped teats, (3) chapping the teat and using 10% glycerin postdip solution, (4) chapping the teat and not using a postdip solution. All mammary glands were free of S aureus teat skin colonization and intramammary infection at the start of the study. Teats selected for chapping were dipped in 1N NaOH prior to 3 applications of S aureus broth culture; cultures were applied at 12-hour intervals on all teats. Treatments were applied after each milking for 30 days and were initiated after the second broth dip. Teat skin swab specimens and milk samples were collected before treatment application. Teat skin condition was scored daily. Nonchapped teats (treatment 2) did not support skin or orifice colonization by S aureus. Treatment-1 teats healed most rapidly and supported less colonization in skin and orifice than did treatment-3 and -4 teats. Teat skin scores and skin colonization were lower for treatment-3 than treatment-4 teats. A correlation between teat skin colonization and teat skin conditions was found. Two intramammary infections were found in treatment-4 quarters and 1 in a treatment-3 quarter.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1883082

  10. The Role of Staphylococcus aureus Virulence Factors in Skin Infection and Their Potential as Vaccine Antigens

    PubMed Central

    Lacey, Keenan A.; Geoghegan, Joan A.; McLoughlin, Rachel M.

    2016-01-01

    Staphylococcus aureus (S. aureus) causes the vast majority of skin and soft tissue infections (SSTIs) in humans. S. aureus has become increasingly resistant to antibiotics and there is an urgent need for new strategies to tackle S. aureus infections. Vaccines offer a potential solution to this epidemic of antimicrobial resistance. However, the development of next generation efficacious anti-S. aureus vaccines necessitates a greater understanding of the protective immune response against S. aureus infection. In particular, it will be important to ascertain if distinct immune mechanisms are required to confer protection at distinct anatomical sites. Recent discoveries have highlighted that interleukin-17-producing T cells play a particularly important role in the immune response to S. aureus skin infection and suggest that vaccine strategies to specifically target these types of T cells may be beneficial in the treatment of S. aureus SSTIs. S. aureus expresses a large number of cell wall-anchored (CWA) proteins, which are covalently attached to the cell wall peptidoglycan. The virulence potential of many CWA proteins has been demonstrated in infection models; however, there is a paucity of information regarding their roles during SSTIs. In this review, we highlight potential candidate antigens for vaccines targeted at protection against SSTIs. PMID:26901227

  11. Community-associated methicillin-resistant Staphylococcus aureus in non-outbreak skin infections

    PubMed Central

    Bonesso, Mariana Fávero; Marques, Silvio Alencar; Camargo, Carlos Henrique; Fortaleza, Carlos Magno Castelo Branco; da Cunha, Maria de Lourdes Ribeiro de Souza

    2014-01-01

    The aim of this study was to determine the prevalence of Staphylococcus aureus and risk factors for the acquisition of MRSA (Methicillin Resistant Staphylococcus aureus) as the main cause of skin and soft tissue infections. S. aureus were characterized for the presence of PVL, TSST-1 and mecA genes. SCCmec typing was carried out in mecA positive strains and PFGE was performed only in these strains. During the study period, 127 outpatients attending a dermatology clinical the Botucatu Medical School, a regional tertiary hospital in Botucatu, Sao Paulo, Brazil, were diagnosed with active skin infections. A total 66 (56.9%) S. aureus strains were isolated. The methicillin resistance gene mecA was detected in seven (10.6%) S. aureus strains. The SCCmec types detected in the seven mecA-positive S. aureus strains were type Ia in one, type II in three, and type IV in three. The PVL gene was detected in 10 (15.1%) in sensitive strains. Pulsed field gel electrophoresis revealed non-clonal diversity among the isolates. The risk factors associated with MRSA acquisition in this study were previous ciprofloxacin use and working in a healthcare environment. The risk factors indicate plausible routes of CA-MRSA transmission among the subjects studied. PMID:25763047

  12. Biofilm formation by Staphylococcus aureus isolates from skin and soft tissue infections.

    PubMed

    Kwiecinski, Jakub; Kahlmeter, Gunnar; Jin, Tao

    2015-05-01

    Many diseases caused by Staphylococcus aureus are associated with biofilm formation. However, the ability of S. aureus isolates from skin and soft tissue infections to form biofilms has not yet been investigated. We tested 160 isolates from patients with various skin infections for biofilm-forming capacity in different growth media. All the isolates formed biofilms, the extent of which depended on the type of growth medium. The thickest biofilms were formed when both plasma and glucose were present in the broth; in this case, S. aureus incorporated host fibrin into the biofilm's matrix. There were no differences in the biofilm formation between isolates from different types of skin infections, except for a particularly good biofilm formation by isolates from diabetic wounds and a weaker biofilm formation by isolates from impetigo. In conclusion, biofilm formation is a universal behavior of S. aureus isolates from skin infections. In some cases, such as in diabetic wounds, a particularly strong biofilm formation most likely contributes to the chronic and recurrent character of the infection. Additionally, as S. aureus apparently uses host fibrin as part of the biofilm structure, we suggest that plasma should be included more frequently in in vitro biofilm studies. PMID:25586078

  13. Biofilm formation by Staphylococcus aureus isolates from skin and soft tissue infections.

    PubMed

    Kwiecinski, Jakub; Kahlmeter, Gunnar; Jin, Tao

    2015-05-01

    Many diseases caused by Staphylococcus aureus are associated with biofilm formation. However, the ability of S. aureus isolates from skin and soft tissue infections to form biofilms has not yet been investigated. We tested 160 isolates from patients with various skin infections for biofilm-forming capacity in different growth media. All the isolates formed biofilms, the extent of which depended on the type of growth medium. The thickest biofilms were formed when both plasma and glucose were present in the broth; in this case, S. aureus incorporated host fibrin into the biofilm's matrix. There were no differences in the biofilm formation between isolates from different types of skin infections, except for a particularly good biofilm formation by isolates from diabetic wounds and a weaker biofilm formation by isolates from impetigo. In conclusion, biofilm formation is a universal behavior of S. aureus isolates from skin infections. In some cases, such as in diabetic wounds, a particularly strong biofilm formation most likely contributes to the chronic and recurrent character of the infection. Additionally, as S. aureus apparently uses host fibrin as part of the biofilm structure, we suggest that plasma should be included more frequently in in vitro biofilm studies.

  14. Increased Susceptibility of Humanized NSG Mice to Panton-Valentine Leukocidin and Staphylococcus aureus Skin Infection

    PubMed Central

    Tseng, Ching Wen; Kolar, Stacey L.; Müller, Sabrina; Rodriguez, Maria D.; Rezai-Zadeh, Kavon; Fan, Xuemo; Beenhouwer, David O.; Town, Terrence; Liu, George Y.

    2015-01-01

    Staphylococcus aureus is a leading cause of skin and soft-tissue infections worldwide. Mice are the most commonly used animals for modeling human staphylococcal infections. However a supra-physiologic S. aureus inoculum is required to establish gross murine skin pathology. Moreover, many staphylococcal factors, including Panton-Valentine leukocidin (PVL) elaborated by community-associated methicillin-resistant S. aureus (CA-MRSA), exhibit selective human tropism and cannot be adequately studied in mice. To overcome these deficiencies, we investigated S. aureus infection in non-obese diabetic (NOD)/severe combined immune deficiency (SCID)/IL2rγnull (NSG) mice engrafted with human CD34+ umbilical cord blood cells. These “humanized” NSG mice require one to two log lower inoculum to induce consistent skin lesions compared with control mice, and exhibit larger cutaneous lesions upon infection with PVL+ versus isogenic PVL- S. aureus. Neutrophils appear important for PVL pathology as adoptive transfer of human neutrophils alone to NSG mice was sufficient to induce dermonecrosis following challenge with PVL+ S. aureus but not PVL- S. aureus. PMX53, a human C5aR inhibitor, blocked PVL-induced cellular cytotoxicity in vitro and reduced the size difference of lesions induced by the PVL+ and PVL- S. aureus, but PMX53 also reduced recruitment of neutrophils and exacerbated the infection. Overall, our findings establish humanized mice as an important translational tool for the study of S. aureus infection and provide strong evidence that PVL is a human virulence factor. PMID:26618545

  15. In Vivo Activity of Ceftobiprole in Murine Skin Infections Due to Staphylococcus aureus and Pseudomonas aeruginosa▿

    PubMed Central

    Fernandez, Jeffrey; Hilliard, Jamese J.; Abbanat, Darren; Zhang, Wenyan; Melton, John L.; Santoro, Colleen M.; Flamm, Robert K.; Bush, Karen

    2010-01-01

    Ceftobiprole, a broad-spectrum cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA) (P. Hebeisen et al., Antimicrob. Agents Chemother. 45:825-836, 2001), was evaluated in a subcutaneous skin infection model with Staphylococcus aureus Smith OC 4172 (methicillin-susceptible S. aureus [MSSA]), S. aureus OC 8525 (MRSA), Pseudomonas aeruginosa OC 4351 (having an inducible AmpC β-lactamase), and P. aeruginosa OC 4354 (overproducing AmpC β-lactamase). In the MSSA and MRSA infection models, ceftobiprole, administered as the prodrug ceftobiprole medocaril, was more effective in reducing CFU/g skin (P < 0.001) than were cefazolin, vancomycin, or linezolid based on the dose-response profiles. Skin lesion volumes in MSSA-infected animals treated with ceftobiprole were 19 to 29% lower than those for cefazolin-, vancomycin-, or linezolid-treated animals (P < 0.001). In MRSA infections, lesion size in ceftobiprole-treated mice was 34% less than that with cefazolin or linezolid treatment (P < 0.001). Against P. aeruginosa, ceftobiprole at similar doses was as effective as meropenem-cilastatin in reductions of CFU/g skin, despite 8- and 32-fold-lower MICs for meropenem; both treatments were more effective than was cefepime (P < 0.001) against the inducible and overproducing AmpC β-lactamase strains of P. aeruginosa. Ceftobiprole was similar to meropenem-cilastatin and 47 to 54% more effective than cefepime (P < 0.01) in reducing the size of the lesion caused by either strain of P. aeruginosa in this study. These studies indicate that ceftobiprole is effective in reducing both bacterial load and lesion volume associated with infections due to MSSA, MRSA, and P. aeruginosa in this murine model of skin and soft tissue infection. PMID:19884364

  16. Methamphetamine Alters the Antimicrobial Efficacy of Phagocytic Cells during Methicillin-Resistant Staphylococcus aureus Skin Infection

    PubMed Central

    Mihu, Mircea Radu; Roman-Sosa, Jessica; Varshney, Avanish K.; Eugenin, Eliseo A.; Shah, Bhavikkumar P.; Ham Lee, Hiu; Nguyen, Long N.; Guimaraes, Allan J.; Fries, Bettina C.; Nosanchuk, Joshua D.

    2015-01-01

    ABSTRACT Methamphetamine (METH) is a major drug of abuse in the United States and worldwide. Furthermore, Staphylococcus aureus infections and METH use are coemerging public health problems. S. aureus is the single most important bacterial pathogen in infections among injection drug users, with skin and soft tissue infections (SSTI) being extremely common. Notably, the incidence of SSTI, especially in drug users, is difficult to estimate because such infections are often self-treated. Although there is substantial information on the behavioral and cognitive defects caused by METH in drug users, there is a dearth of knowledge regarding its impact on bacterial infections and immunity. Therefore, we hypothesized that METH exacerbates S. aureus skin infection. Using a murine model of METH administration and wound infection, we demonstrated that METH reduces wound healing and facilitates host-mediated collagen degradation by increased expression and production of matrix metalloproteinase-2 (MMP-2). Additionally, we found that METH induces S. aureus biofilm formation and leads to detrimental effects on the functions of human and murine phagocytic cells, enhancing susceptibility to S. aureus infection. Our findings provide empirical evidence of the adverse impact of METH use on the antimicrobial efficacy of the cells that comprise innate immunity, the initial host response to combat microbial infection. PMID:26507236

  17. Protective immunity against recurrent Staphylococcus aureus skin infection requires antibody and interleukin-17A.

    PubMed

    Montgomery, Christopher P; Daniels, Melvin; Zhao, Fan; Alegre, Maria-Luisa; Chong, Anita S; Daum, Robert S

    2014-05-01

    Although many microbial infections elicit an adaptive immune response that can protect against reinfection, it is generally thought that Staphylococcus aureus infections fail to generate protective immunity despite detectable T and B cell responses. No vaccine is yet proven to prevent S. aureus infections in humans, and efforts to develop one have been hampered by a lack of animal models in which protective immunity occurs. Our results describe a novel mouse model of protective immunity against recurrent infection, in which S. aureus skin and soft tissue infection (SSTI) strongly protected against secondary SSTI in BALB/c mice but much less so in C57BL/6 mice. This protection was dependent on antibody, because adoptive transfer of immune BALB/c serum or purified antibody into either BALB/c or C57BL/6 mice resulted in smaller skin lesions. We also identified an antibody-independent mechanism, because B cell-deficient mice were partially protected against secondary S. aureus SSTI and adoptive transfer of T cells from immune BALB/c mice resulted in smaller lesions upon primary infection. Furthermore, neutralization of interleukin-17A (IL-17A) abolished T cell-mediated protection in BALB/c mice, whereas neutralization of gamma interferon (IFN-γ) enhanced protection in C57BL/6 mice. Therefore, protective immunity against recurrent S. aureus SSTI was advanced by antibody and the Th17/IL-17A pathway and prevented by the Th1/IFN-γ pathway, suggesting that targeting both cell-mediated and humoral immunity might optimally protect against secondary S. aureus SSTI. These findings also highlight the importance of the mouse genetic background in the development of protective immunity against S. aureus SSTI.

  18. Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus.

    PubMed

    Cartron, Michaël L; England, Simon R; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon; Foster, Simon J

    2014-07-01

    Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents.

  19. Bactericidal Activity of the Human Skin Fatty Acid cis-6-Hexadecanoic Acid on Staphylococcus aureus

    PubMed Central

    Cartron, Michaël L.; England, Simon R.; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon

    2014-01-01

    Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents. PMID:24709265

  20. Evaluation of methicillin-resistant Staphylococcus aureus skin and soft-tissue infection prevention strategies at a military training center.

    PubMed

    Morrison, Stephanie M; Blaesing, Carl R; Millar, Eugene V; Chukwuma, Uzo; Schlett, Carey D; Wilkins, Kenneth J; Tribble, David R; Ellis, Michael W

    2013-08-01

    Military trainees are at high risk for skin and soft-tissue infections (SSTIs), especially those caused by methicillin-resistant Staphylococcus aureus (MRSA). A multicomponent hygiene-based SSTI prevention strategy was implemented at a military training center. After implementation, we observed 30% and 64% reductions in overall and MRSA-associated SSTI rates, respectively.

  1. Reduction in Staphylococcus aureus bacteraemia rates in patients receiving haemodialysis following alteration of skin antisepsis procedures.

    PubMed

    Stewart, B J; Gardiner, T; Perry, G J; Tong, S Y C

    2016-02-01

    This study examined all cases of Staphylococcus aureus bacteraemia (SAB) in the haemodialysis cohort at the Royal Darwin Hospital, Australia over a seven-year period. Midway through this period, antisepsis for arteriovenous fistulae (AVF) and central venous catheters (CVC) changed from 0.5% chlorhexidine solution to 2% chlorhexidine solution. Rates of SAB episodes were calculated using registry data. Trends in SAB over time were analysed using an interrupted regression analysis. Following the change to 2% chlorhexidine, average SAB rates decreased by 68%, and it is estimated that 0.111 cases of SAB/patient-year were prevented. CVC-related SAB rates remained low throughout. These results support the use of 2% chlorhexidine in skin antisepsis for patients with AVF. PMID:26778135

  2. Antimicrobial proteins from snake venoms: direct bacterial damage and activation of innate immunity against Staphylococcus aureus skin infection.

    PubMed

    Samy, R P; Stiles, B G; Gopalakrishnakone, P; Chow, V T K

    2011-01-01

    The innate immune system is the first line of defense against microbial diseases. Antimicrobial proteins produced by snake venoms have recently attracted significant attention due to their relevance to bacterial infection and potential development into new therapeutic agents. Staphylococcus aureus is one of the major human pathogens causing a variety of infections involving pneumonia, toxic shock syndrome, and skin lesions. With the recent emergence of methicillin (MRSA) and vancomycin (VRSA) resistance, S. aureus infection is a serious clinical problem that will have a grave socio-economic impact in the near future. Although S. aureus susceptibility to innate antimicrobial peptides has been reported recently, the protective effect of snake venom phospholipase A₂ (svPLA₂) proteins on the skin from S. aureus infection has been understudied. This review details the protective function of svPLA₂s derived from venoms against skin infections caused by S. aureus. We have demonstrated in vivo that local application of svPLA₂ provides complete clearance of S. aureus within 2 weeks after treatment compared to fusidic acid ointment (FAO). In vitro experiments also demonstrate that svPLA₂ proteins have inhibitory (bacteriostatic) and killing (bactericidal) effects on S. aureus in a dose-dependant manner. The mechanism of bacterial membrane damage and perturbation was clearly evidenced by electron microscopic studies. In summary, svPLA₂s from Viperidae and Elapidae snakes are novel molecules that can activate important mechanisms of innate immunity in animals to endow them with protection against skin infection caused by S. aureus.

  3. Skin-Specific Unsaturated Fatty Acids Boost the Staphylococcus aureus Innate Immune Response.

    PubMed

    Nguyen, Minh Thu; Hanzelmann, Dennis; Härtner, Thomas; Peschel, Andreas; Götz, Friedrich

    2015-10-26

    Antimicrobial fatty acids (AFAs) protect the human epidermis against invasion by pathogenic bacteria. In this study, we questioned whether human skin fatty acids (FAs) can be incorporated into the lipid moiety of lipoproteins and whether such incorporation would have an impact on innate immune stimulation in the model organism Staphylococcus aureus USA300 JE2. This organism synthesized only saturated FAs. However, when feeding USA300 with unsaturated FAs present on human skin (C16:1, C18:1, or C18:2), those were taken up, elongated stepwise by two carbon units, and finally found in the bacterial (phospho)lipid fraction. They were also observed in the lipid moiety of lipoproteins. When USA300 JE2 was fed with the unsaturated FAs, the cells and cell lysates showed an increased innate immune activation with various immune cells and peripheral blood mononuclear cells (PBMCs). Immune activation was highest with linoleic acid (C18:2). There are several pieces of evidence that the enhanced immune stimulating effect was due to the incorporation of unsaturated FAs in lipoproteins. First, the enhanced stimulation was dependent on Toll-like receptor 2 (TLR2). Second, an lgt mutant, unable to carry out lipidation of prolipoproteins, was unable to carry out immune stimulation when fed with unsaturated FAs. Third, the supplied FAs did not significantly affect growth, protein release, or expression of the model lipoprotein Lpl1. Although S. aureus is unable to synthesize unsaturated FAs, it incorporates long-chain unsaturated FAs into its lipoproteins, with the effect that the cells are better recognized by the innate immune system. This is an additional mechanism how our skin controls bacterial colonization and infection.

  4. Skin-Specific Unsaturated Fatty Acids Boost the Staphylococcus aureus Innate Immune Response

    PubMed Central

    Nguyen, Minh Thu; Hanzelmann, Dennis; Härtner, Thomas; Peschel, Andreas

    2015-01-01

    Antimicrobial fatty acids (AFAs) protect the human epidermis against invasion by pathogenic bacteria. In this study, we questioned whether human skin fatty acids (FAs) can be incorporated into the lipid moiety of lipoproteins and whether such incorporation would have an impact on innate immune stimulation in the model organism Staphylococcus aureus USA300 JE2. This organism synthesized only saturated FAs. However, when feeding USA300 with unsaturated FAs present on human skin (C16:1, C18:1, or C18:2), those were taken up, elongated stepwise by two carbon units, and finally found in the bacterial (phospho)lipid fraction. They were also observed in the lipid moiety of lipoproteins. When USA300 JE2 was fed with the unsaturated FAs, the cells and cell lysates showed an increased innate immune activation with various immune cells and peripheral blood mononuclear cells (PBMCs). Immune activation was highest with linoleic acid (C18:2). There are several pieces of evidence that the enhanced immune stimulating effect was due to the incorporation of unsaturated FAs in lipoproteins. First, the enhanced stimulation was dependent on Toll-like receptor 2 (TLR2). Second, an lgt mutant, unable to carry out lipidation of prolipoproteins, was unable to carry out immune stimulation when fed with unsaturated FAs. Third, the supplied FAs did not significantly affect growth, protein release, or expression of the model lipoprotein Lpl1. Although S. aureus is unable to synthesize unsaturated FAs, it incorporates long-chain unsaturated FAs into its lipoproteins, with the effect that the cells are better recognized by the innate immune system. This is an additional mechanism how our skin controls bacterial colonization and infection. PMID:26502910

  5. Staphylococcus aureus Colonization Among Household Contacts of Patients With Skin Infections: Risk Factors, Strain Discordance, and Complex Ecology

    PubMed Central

    Miller, Loren G.; Eells, Samantha J.; Taylor, Alexis R.; David, Michael Z.; Ortiz, Nancy; Zychowski, Diana; Kumar, Neha; Cruz, Denise; Boyle-Vavra, Susan; Daum, Robert S.

    2012-01-01

    Background. The USA300 methicillin resistant Staphylococcus aureus (MRSA) genetic background has rapidly emerged as the predominant cause of community-associated S. aureus infections in the U.S. However, epidemiologic characteristics of S. aureus household transmission are poorly understood. Methods. We performed a cross-sectional study of adults and children with S. aureus skin infections and their household contacts in Los Angeles and Chicago. Subjects were surveyed for S. aureus colonization of the nares, oropharynx, and inguinal region and risk factors for S. aureus disease. All isolates underwent genetic typing. Results. We enrolled 1162 persons (350 index patients and 812 household members). The most common infection isolate characteristic was ST8/SCCmec IV, PVL+ MRSA (USA300) (53%). S. aureus colonized 40% (137/350) of index patients and 50% (405/812) of household contacts. A nares-only survey would have missed 48% of S. aureus and 51% of MRSA colonized persons. Sixty-five percent of households had >1 S. aureus genetic background identified and 26% of MRSA isolates in household contacts were discordant with the index patients' infecting MRSA strain type. Factors independently associated (P < .05) with the index strain type colonizing household contacts were recent skin infection, recent cephalexin use, and USA300 genetic background. Conclusions. In our study population, USA300 MRSA appeared more transmissible among household members compared with other S. aureus genetic backgrounds. Strain distribution was complex; >1 S. aureus genetic background was present in many households. S. aureus decolonization strategies may need to address extra-nasal colonization and the consequences of eradicating S. aureus genetic backgrounds infrequently associated with infection. PMID:22474221

  6. A Novel Chimeric Lysin Shows Superiority to Mupirocin for Skin Decolonization of Methicillin-Resistant and -Sensitive Staphylococcus aureus Strains▿

    PubMed Central

    Pastagia, Mina; Euler, Chad; Chahales, Peter; Fuentes-Duculan, Judilyn; Krueger, James G.; Fischetti, Vincent A.

    2011-01-01

    Staphylococcus aureus is a major human pathogen responsible for a number of serious and sometimes fatal infections. One of its reservoirs on the human body is the skin, which is known to be a source of invasive infection. The potential for an engineered staphylococcus-specific phage lysin (ClyS) to be used for topical decolonization is presented. We formulated ClyS into an ointment and applied it to a mouse model of skin colonization/infection with S. aureus. Unlike the standard topical antibacterial agent mupirocin, ClyS eradicated a significantly greater number of methicillin-susceptible S. aureus (MSSA) and -resistant S. aureus (MRSA) bacteria: a 3-log reduction with ClyS as opposed to a 2-log reduction with mupirocin in our model. The use of ClyS also demonstrated a decreased potential for the development of resistance by MRSA and MSSA organisms compared to that from the use of mupirocin in vitro. Because antibodies may affect enzyme function, we tested antibodies developed after repeated ClyS exposure for their effect on ClyS killing ability. Our results showed no inhibition of ClyS activity at various antibody titers. These data demonstrate the potential of developing ClyS as a novel class of topical antimicrobial agents specific to staphylococcus. PMID:21098252

  7. Molecular characterization of Staphylococcus aureus isolates causing skin and soft tissue infections in patients from Malakand, Pakistan.

    PubMed

    Madzgalla, S; Syed, M A; Khan, M A; Rehman, S S; Müller, E; Reissig, A; Ehricht, R; Monecke, S

    2016-09-01

    Comparatively few studies have been published describing Staphylococcus aureus/MRSA epidemiology in Central Asia including Pakistan. Here, we report the genotyping of Staphylococcus aureus strains (that include both methicillin-susceptible and methicillin-resistant Staphylococcus aureus) from community- and hospital-acquired skin and soft-tissue infections in a tertiary care hospital in the Malakand district of the Khyber Pakhtunkhwa Province of Pakistan. Forty-five isolates of Staphylococcus aureus were characterized by microarray hybridization. Twenty isolates (44 %) were MRSA, whereas 22 (49 %) were PVL-positive. Fourteen isolates (31 %) harboured both mecA and PVL genes. The dominant clones were CC121-MSSA (n = 15, 33 %) and the PVL-positive "Bengal Bay Clone" (ST772-MRSA-V; n = 13, 29 %). The PVL-positive CC8-MRSA-IV strain "USA300" was found once. The pandemic ST239-MRSA-III strain was absent, although it has previously been observed in Pakistan. These observations require a re-assessment of schemes for initial antibiotic therapy to cover MRSA and they emphasise the need for a rapid and non-molecular test for PVL.

  8. Noninvasive in vivo imaging to evaluate immune responses and antimicrobial therapy against Staphylococcus aureus and USA300 MRSA skin infections.

    PubMed

    Cho, John S; Zussman, Jamie; Donegan, Niles P; Ramos, Romela Irene; Garcia, Nairy C; Uslan, Daniel Z; Iwakura, Yoichiro; Simon, Scott I; Cheung, Ambrose L; Modlin, Robert L; Kim, Jenny; Miller, Lloyd S

    2011-04-01

    Staphylococcus aureus skin infections represent a significant public health threat because of the emergence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA). As greater understanding of protective immune responses and more effective antimicrobial therapies are needed, a S. aureus skin wound infection model was developed in which full-thickness scalpel cuts on the backs of mice were infected with a bioluminescent S. aureus (methicillin sensitive) or USA300 community-acquired MRSA strain and in vivo imaging was used to noninvasively monitor the bacterial burden. In addition, the infection-induced inflammatory response was quantified using in vivo fluorescence imaging of LysEGFP mice. Using this model, we found that both IL-1α and IL-1β contributed to host defense during a wound infection, whereas IL-1β was more critical during an intradermal S. aureus infection. Furthermore, treatment of a USA300 MRSA skin infection with retapamulin ointment resulted in up to 85-fold reduction in bacterial burden and a 53% decrease in infection-induced inflammation. In contrast, mupirocin ointment had minimal clinical activity against this USA300 strain, resulting in only a 2-fold reduction in bacterial burden. Taken together, this S. aureus wound infection model provides a valuable preclinical screening method to investigate cutaneous immune responses and the efficacy of topical antimicrobial therapies.

  9. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents.

    PubMed

    Haisma, Elisabeth M; de Breij, Anna; Chan, Heelam; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H

    2014-08-01

    Burn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistant Staphylococcus aureus (MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains of S. aureus, including mupirocin-resistant MRSA strains. The peptides were derived from P60.4Ac, a peptide based on the human cathelicidin LL-37. The results showed that peptide 10 (P10) was the only peptide more efficient than P60.4Ac, which is better than LL-37, in killing MRSA strain LUH14616. All three peptides displayed good antibiofilm activities. However, both P10 and P60.4Ac were more efficient than LL-37 in eliminating biofilm-associated bacteria. No toxic effects of these three peptides on human epidermal models were detected, as observed morphologically and by staining for mitochondrial activity. In addition, P60.4Ac and P10, but not LL-37, eradicated MRSA LUH14616 and the mupirocin-resistant MRSA strain LUH15051 from thermally wounded human skin equivalents (HSE). Interestingly, P60.4Ac and P10, but not mupirocin, eradicated LUH15051 from the HSEs. None of the peptides affected the excretion of interleukin 8 (IL-8) by thermally wounded HSEs upon MRSA exposure. In conclusion, the synthetic peptides P60.4Ac and P10 appear to be attractive candidates for the development of novel local therapies to treat patients with burn wounds infected with multidrug-resistant bacteria.

  10. Variability of antibiotic susceptibility and toxin production of Staphylococcus aureus strains isolated from skin, soft tissue, and bone related infections

    PubMed Central

    2013-01-01

    Background Staphylococcus aureus is an opportunistic commensal bacterium that mostly colonizes the skin and soft tissues. The pathogenicity of S. aureus is due to both its ability to resist antibiotics, and the production of toxins. Here, we characterize a group of genes responsible for toxin production and antibiotic resistance of S. aureus strains isolated from skin, soft tissue, and bone related infections. Results A total of 136 S. aureus strains were collected from five different types of infection: furuncles, pyomyositis, abscesses, Buruli ulcers, and osteomyelitis, from hospital admissions and out-patients in Benin. All strains were resistant to benzyl penicillin, while 25% were resistant to methicillin, and all showed sensitivity to vancomycin. Panton-Valentine leukocidin (PVL) was the most commonly produced virulence factor (70%), followed by staphylococcal enterotoxin B (44%). Exfoliative toxin B was produced by 1.3% of the strains, and was only found in isolates from Buruli ulcers. The tsst-1, sec, and seh genes were rarely detected (≤1%). Conclusions This study provides new insight into the prevalence of toxin and antibiotic resistance genes in S. aureus strains responsible for skin, soft tissue, and bone infections. Our results showed that PVL was strongly associated with pyomyositis and osteomyelitis, and that there is a high prevalence of PVL-MRSA skin infections in Benin. PMID:23924370

  11. Devastating renal outcome caused by skin infection with methicillin-resistant Staphylococcus aureus

    PubMed Central

    Liang, Jun-Hua; Fang, Yu-Wei; Yang, An-Hung; Tsai, Ming Hsien

    2016-01-01

    Abstract Methicillin-resistant Staphylococcus aureus (MRSA) is an emerging pathogen that infects the skin and soft tissue. However, there are few reports of renal complications from MRSA involving immunoglobulin (Ig)A-dominated rapidly progressive glomerulonephritis (GN). Favorable renal outcomes from IgA GN are achieved by administering timely therapy. In the present study, we describe the case of a healthy young woman suffering from a cutaneous MRSA infection that initially presented with gross hematuria. Six months after eradicating the infection, severe impairment of renal function was noted because of intractable nausea and vomiting. Renal pathology revealed advanced IgA nephropathy with fibrocellular crescent formation. An aggressive treatment plan using immunosuppressants was not adopted because of her irreversible renal pathology, and she was therefore administered maintenance hemodialysis. This instructive case stresses the importance of being aware of the signs of IgA nephropathy post-MRSA infection, such as cutaneous lesions that are mostly painless and accompanied by hematuria and mild proteinuria. If the kidney cannot be salvaged, it will undergo irreversible damage with devastating consequences. PMID:27368023

  12. Staphylococcus aureus Skin Infection Recurrences Among Household Members: An Examination of Host, Behavioral, and Pathogen-Level Predictors

    PubMed Central

    Miller, Loren G.; Eells, Samantha J.; David, Michael Z.; Ortiz, Nancy; Taylor, Alexis R.; Kumar, Neha; Cruz, Denise; Boyle-Vavra, Susan; Daum, Robert S.

    2015-01-01

    Background. Many patients suffer from recurrent Staphylococcus aureus infections, but there are few data examining recurrence predictors. Methods. We followed adults and children after treatment for S. aureus skin infections and their household contacts in Los Angeles and Chicago. We surveyed subjects for S. aureus body colonization, household fomite contamination, and behavioral and clinical factors at baseline and 3 and 6 months later. Using repeated measures modeling, we examined host, pathogen, behavioral, and clinical factors associated with recurrence. Results. Among 330 index subjects, 182 (55%) were infected with an isolate of the USA300 methicillin-resistant S. aureus (MRSA) genetic background. Recurrences occurred in 39% by month 3 and 51% by month 6. Among 588 household contacts, 10% reported a skin infection by month 3 and 13% by month 6. Among index subjects, recurrence was associated with (P < .05) Los Angeles site, diabetes, recent hospitalization, recent skin infection, recent cephalexin use, and household S. aureus or MRSA fomite contamination; recurrence was inversely associated with recent contact sports participation. In the multivariate model, independent predictors of recurrence in index patients were recent hospitalization, household MRSA fomite contamination, and lack of recent contact sports participation. Among household contacts, independent predictors of subsequent skin infection were Chicago site, antibiotic use in the prior year, and skin infection in the prior 3 months. Conclusions. In our longitudinal study, patients with a S. aureus skin infection were more likely to suffer a recurrence if household fomites were MRSA contaminated. Interventions to prevent recurrence may be enhanced by decontamination of household fomites. PMID:25428411

  13. Staphylococcus aureus toxins.

    PubMed

    Otto, Michael

    2014-02-01

    Staphylococcus aureus is a dangerous pathogen that causes a variety of severe diseases. The virulence of S. aureus is defined by a large repertoire of virulence factors, among which secreted toxins play a preeminent role. Many S. aureus toxins damage biological membranes, leading to cell death. In particular, S. aureus produces potent hemolysins and leukotoxins. Among the latter, some were recently identified to lyse neutrophils after ingestion, representing an especially powerful weapon against bacterial elimination by innate host defense. Furthermore, S. aureus secretes many factors that inhibit the complement cascade or prevent recognition by host defenses. Several further toxins add to this multi-faceted program of S. aureus to evade elimination in the host. This review will give an overview over S. aureus toxins focusing on recent advances in our understanding of how leukotoxins work in receptor-mediated or receptor-independent fashions.

  14. Molecular Epidemiology of Staphylococcus aureus among Patients with Skin and Soft Tissue Infections in Two Chinese Hospitals

    PubMed Central

    Gu, Fei-Fei; Chen, Ye; Dong, De-Ping; Song, Zhen; Guo, Xiao-Kui; Ni, Yu-Xing; Han, Li-Zhong

    2016-01-01

    Background: Staphylococcus aureus is one of the predominant causes of skin and soft tissue infections (SSTIs), but limited data were available regarding the characterization of S. aureus from SSTIs patients in Jiangsu Province in China. We aimed to investigate the molecular epidemiology of S. aureus among SSTIs patients in two hospitals of Jiangsu Province. Methods: Sixty-two patients with SSTIs from two Chinese hospitals in Jiangsu Province were enrolled in this study, and 62 S. aureus isolates were collected from February 2014 to January 2015. S. aureus isolates were characterized by antimicrobial susceptibility testing, toxin gene detection, and molecular typing with sequence type, Staphylococcus protein A gene type, accessory gene regulator (agr) group, and Staphylococcal cassette chromosome mec type. Results: Sixteen (25.8%) methicillin-resistant S. aureus (MRSA) isolates were detected, and there was no isolate found resistant to vancomycin, teicoplanin, sulfamethoxazole-trimethoprim, and linezolid. The sei was the toxin gene most frequently found, and no lukS/F-PV-positive isolates were detected among the SSTIs’ patients. Molecular analysis revealed that ST398 (10/62, 16.1%; 2 MRSA and 8 methicillin-susceptible S. aureus) to be the dominant clone, followed by ST5 (8/62, 12.9%) and ST7 (8/62, 12.9%). Conclusions: The livestock ST398 was the most common clone among patients with S. aureus SSTIs in Jiangsu Province, China. Surveillance and further studies on the important livestock ST398 clone in human infections are necessarily requested. PMID:27647191

  15. Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice.

    PubMed

    Heunis, Tiaan D J; Smith, Carine; Dicks, Leon M T

    2013-08-01

    Staphylococcus aureus is a virulent pathogen and a major causative agent of superficial and invasive skin and soft tissue infections (SSSTIs). Antibiotic resistance in S. aureus, among other bacterial pathogens, has rapidly increased, and this is placing an enormous burden on the health care sector and has serious implications for infected individuals, especially immunocompromised patients. Alternative treatments thus need to be explored to continue to successfully treat infections caused by S. aureus, including antibiotic-resistant strains of S. aureus. In this study, an antimicrobial nanofiber wound dressing was generated by electrospinning nisin (Nisaplin) into poly(ethylene oxide) and poly(d,l-lactide) (50:50) blend nanofibers. Active nisin diffused from the nanofiber wound dressings for at least 4 days in vitro, as shown by consecutive transfers onto plates seeded with strains of methicillin-resistant S. aureus (MRSA). The nisin-containing nanofiber wound dressings significantly reduced S. aureus Xen 36 bioluminescence in vivo and viable cell numbers in a murine excisional skin infection model. The bacterial burden of wounds treated with nisin-containing nanofiber wound dressings was 4.3 × 10(2) CFU/wound, whereas wounds treated with control nanofiber wound dressings had 2.2 × 10(7) CFU/wound on the last day of the trial (day 7). Furthermore, the wound dressings stimulated wound closure of excisional wounds, and no adverse effects were observed by histological analysis. Nisin-containing nanofiber wound dressings have the potential to treat S. aureus skin infections and to potentially accelerate wound healing of excisional wounds. PMID:23733456

  16. Evaluation of a Nisin-Eluting Nanofiber Scaffold To Treat Staphylococcus aureus-Induced Skin Infections in Mice

    PubMed Central

    Heunis, Tiaan D. J.; Smith, Carine

    2013-01-01

    Staphylococcus aureus is a virulent pathogen and a major causative agent of superficial and invasive skin and soft tissue infections (SSSTIs). Antibiotic resistance in S. aureus, among other bacterial pathogens, has rapidly increased, and this is placing an enormous burden on the health care sector and has serious implications for infected individuals, especially immunocompromised patients. Alternative treatments thus need to be explored to continue to successfully treat infections caused by S. aureus, including antibiotic-resistant strains of S. aureus. In this study, an antimicrobial nanofiber wound dressing was generated by electrospinning nisin (Nisaplin) into poly(ethylene oxide) and poly(d,l-lactide) (50:50) blend nanofibers. Active nisin diffused from the nanofiber wound dressings for at least 4 days in vitro, as shown by consecutive transfers onto plates seeded with strains of methicillin-resistant S. aureus (MRSA). The nisin-containing nanofiber wound dressings significantly reduced S. aureus Xen 36 bioluminescence in vivo and viable cell numbers in a murine excisional skin infection model. The bacterial burden of wounds treated with nisin-containing nanofiber wound dressings was 4.3 × 102 CFU/wound, whereas wounds treated with control nanofiber wound dressings had 2.2 × 107 CFU/wound on the last day of the trial (day 7). Furthermore, the wound dressings stimulated wound closure of excisional wounds, and no adverse effects were observed by histological analysis. Nisin-containing nanofiber wound dressings have the potential to treat S. aureus skin infections and to potentially accelerate wound healing of excisional wounds. PMID:23733456

  17. Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation.

    PubMed

    Liese, Jan; Rooijakkers, Suzan H M; van Strijp, Jos A G; Novick, Richard P; Dustin, Michael L

    2013-06-01

    Staphylococcus (S.) aureus is a frequent cause of severe skin infections. The ability to control the infection is largely dependent on the rapid recruitment of neutrophils (PMN). To gain more insight into the dynamics of PMN migration and host-pathogen interactions in vivo, we used intravital two-photon (2-P) microscopy to visualize S. aureus skin infections in the mouse. Reporter S. aureus strains expressing fluorescent proteins were developed, which allowed for detection of the bacteria in vivo. By employing LysM-EGFP mice to visualize PMN, we observed the rapid appearance of PMN in the extravascular space of the dermis and their directed movement towards the focus of infection, which led to the delineation of an abscess within 1 day. Moreover, tracking of transferred labelled bone-marrow neutrophils showed that PMN localization to the site of infection is dependent on the presence of G-protein-coupled receptors on the PMN, whereas Interleukin-1 receptor was required on host cells other than PMN. Furthermore, the S. aureus complement inhibitor Ecb could block PMN accumulation at thesite of infection. Our results establish that 2-P microscopy is a powerful tool to investigate the orchestration of the immune cells, S. aureus location and gene expression in vivo on a single cell level.

  18. Staphylococcus aureus and Pregnancy

    MedlinePlus

    ... known as “methicillin resistance to staphylococcus aureus” or “MRSA”. Other medications are available for treatment in this situation. What will a staph or MRSA skin infection look like? Staph bacterial infections, including ...

  19. Importance of B Lymphocytes and the IgG-Binding Protein Sbi in Staphylococcus aureus Skin Infection

    PubMed Central

    Zhao, Fan; Chong, Anita S.; Montgomery, Christopher P.

    2016-01-01

    Recurrent Staphylococcus aureus infections are common, suggesting that immunity elicited by these infections is not protective. We previously reported that S. aureus skin infection (SSTI) elicited antibody-mediated immunity against secondary SSTI in BALB/c mice. In this study, we investigated the role of humoral immunity and the IgG-binding proteins Sbi and SpA in S. aureus SSTI. We found that B lymphocyte-deficient μMT mice were highly susceptible to infection, compared with congenic BALB/c mice. Importantly, transfer of immune serum protected μMT mice, demonstrating an appropriate response to protective antibody. We found that deletion of sbi, but not spa, impaired virulence, as assessed by skin lesion severity, and that Sbi-mediated virulence required B lymphocytes/antibody. Furthermore, neither Sbi nor SpA impaired the elicited antibody response or protection against secondary SSTI. Taken together, these findings highlight a B lymphocyte/antibody-dependent role of Sbi in the pathogenesis of S. aureus SSTI, and demonstrate that neither Sbi nor SpA interfered with elicited antibody-mediated immunity. PMID:26828524

  20. Fermentation of Propionibacterium acnes, a Commensal Bacterium in the Human Skin Microbiome, as Skin Probiotics against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Yu, Jinghua; Kuo, Sherwin; Coda, Alvin; Jiang, Yong; Gallo, Richard L.; Huang, Chun-Ming

    2013-01-01

    Bacterial interference creates an ecological competition between commensal and pathogenic bacteria. Through fermentation of milk with gut-friendly bacteria, yogurt is an excellent aid to balance the bacteriological ecosystem in the human intestine. Here, we demonstrate that fermentation of glycerol with Propionibacterium acnes (P. acnes), a skin commensal bacterium, can function as a skin probiotic for in vitro and in vivo growth suppression of USA300, the most prevalent community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). We also promote the notion that inappropriate use of antibiotics may eliminate the skin commensals, making it more difficult to fight pathogen infection. This study warrants further investigation to better understand the role of fermentation of skin commensals in infectious disease and the importance of the human skin microbiome in skin health. PMID:23405142

  1. Characterization of Staphylococcus aureus Isolated from Non-Native Patients with Skin and Soft Tissue Infections in Shanghai

    PubMed Central

    Yang, Hai-Hui; Zhu, Yue-Qiu; Guo, Xiao-Kui; Ni, Yu-Xing; Han, Li-Zhong

    2015-01-01

    Background Staphylococcus aureus is one predominant cause of skin and soft-tissue infections (SSTIs), but little information exists regarding the characterization of S. aureus from non-native patients with SSTIs in China. Methods In this study, we enrolled 52 non-native patients with S. aureus SSTIs, and 65 native control patients with S. aureus SSTIs in Shanghai. 52 and 65 S. aureus isolates were collected from both groups, respectively. S. aureus isolates were characterized by antimicrobial susceptibility testing, toxin gene detection, and molecular typing with sequence type, spa type, agr group and SCCmec type. Results Methicillin-resistant S. aureus (MRSA) was detected in 8 non-native patients and 14 native patients with SSTIs. Overall, antimicrobial susceptibilities of S. aureus isolated from non-native patients were found higher than those from native patients. CC59 (ST338 and ST59) was found in a total of 14 isolates (4 from non-native patients; 10 from native patients), 9 of which were carrying lukS/F-PV (3 from non-native patients; 6 from native patients). ST7 was found in 12 isolates and all 12 isolates were found in native patients. The livestock-associated clone ST398 was found in 11 isolates (6 from non-native patients; 5 from native patients), and 5 ST398 lukS/F-PV-positive methicillin-susceptible S. aureus (MSSA) were all discovered among non-native patients. The molecular epidemiology of S. aureus isolated from non-native patients was quite different from those from native patients. lukS/F-PV was more frequent in isolates originating from non-native patients with SSTIs compared to native patients (31 vs. 7, P <0.0001). Conclusions CC59 was the most common clonal complex among patients with SSTIs in Shanghai. The other most common sequence types were ST7 and Livestock ST398. The molecular epidemiology of S. aureus isolated from non-native patients was quite different from those from native patients. S. aureus isolated from non-native patients was

  2. Active Immunization with an Octa-Valent Staphylococcus aureus Antigen Mixture in Models of S. aureus Bacteremia and Skin Infection in Mice

    PubMed Central

    van den Berg, Sanne; Koedijk, Dennis G. A. M.; Back, Jaap Willem; Neef, Jolanda; Dreisbach, Annette; van Dijl, Jan Maarten; Bakker-Woudenberg, Irma A. J. M.; Buist, Girbe

    2015-01-01

    Proteomic studies with different Staphylococcus aureus isolates have shown that the cell surface-exposed and secreted proteins IsaA, LytM, Nuc, the propeptide of Atl (pro-Atl) and four phenol-soluble modulins α (PSMα) are invariantly produced by this pathogen. Therefore the present study was aimed at investigating whether these proteins can be used for active immunization against S. aureus infection in mouse models of bacteremia and skin infection. To this end, recombinant His-tagged fusions of IsaA, LytM, Nuc and pro-Atl were isolated from Lactococcus lactis or Escherichia coli, while the PSMα1-4 peptides were chemically synthesized. Importantly, patients colonized by S. aureus showed significant immunoglobulin G (IgG) responses against all eight antigens. BALB/cBYJ mice were immunized subcutaneously with a mixture of the antigens at day one (5 μg each), and boosted twice (25 μg of each antigen) with 28 days interval. This resulted in high IgG responses against all antigens although the response against pro-Atl was around one log lower compared to the other antigens. Compared to placebo-immunized mice, immunization with the octa-valent antigen mixture did not reduce the S. aureus isolate P load in blood, lungs, spleen, liver, and kidneys in a bacteremia model in which the animals were challenged for 14 days with a primary load of 3 × 105 CFU. Discomfort scores and animal survival rates over 14 days did not differ between immunized mice and placebo-immunized mice upon bacteremia with S. aureus USA300 (6 × 105 CFU). In addition, this immunization did not reduce the S. aureus isolate P load in mice with skin infection. These results show that the target antigens are immunogenic in both humans and mice, but in the used animal models do not result in protection against S. aureus infection. PMID:25710376

  3. Active immunization with an octa-valent Staphylococcus aureus antigen mixture in models of S. aureus bacteremia and skin infection in mice.

    PubMed

    van den Berg, Sanne; Koedijk, Dennis G A M; Back, Jaap Willem; Neef, Jolanda; Dreisbach, Annette; van Dijl, Jan Maarten; Bakker-Woudenberg, Irma A J M; Buist, Girbe

    2015-01-01

    Proteomic studies with different Staphylococcus aureus isolates have shown that the cell surface-exposed and secreted proteins IsaA, LytM, Nuc, the propeptide of Atl (pro-Atl) and four phenol-soluble modulins α (PSMα) are invariantly produced by this pathogen. Therefore the present study was aimed at investigating whether these proteins can be used for active immunization against S. aureus infection in mouse models of bacteremia and skin infection. To this end, recombinant His-tagged fusions of IsaA, LytM, Nuc and pro-Atl were isolated from Lactococcus lactis or Escherichia coli, while the PSMα1-4 peptides were chemically synthesized. Importantly, patients colonized by S. aureus showed significant immunoglobulin G (IgG) responses against all eight antigens. BALB/cBYJ mice were immunized subcutaneously with a mixture of the antigens at day one (5 μg each), and boosted twice (25 μg of each antigen) with 28 days interval. This resulted in high IgG responses against all antigens although the response against pro-Atl was around one log lower compared to the other antigens. Compared to placebo-immunized mice, immunization with the octa-valent antigen mixture did not reduce the S. aureus isolate P load in blood, lungs, spleen, liver, and kidneys in a bacteremia model in which the animals were challenged for 14 days with a primary load of 3 × 10(5) CFU. Discomfort scores and animal survival rates over 14 days did not differ between immunized mice and placebo-immunized mice upon bacteremia with S. aureus USA300 (6 × 10(5) CFU). In addition, this immunization did not reduce the S. aureus isolate P load in mice with skin infection. These results show that the target antigens are immunogenic in both humans and mice, but in the used animal models do not result in protection against S. aureus infection.

  4. Dose of trimethoprim-sulfamethoxazole to treat skin and skin structure infections caused by methicillin-resistant Staphylococcus aureus.

    PubMed

    Cadena, Jose; Nair, Shalini; Henao-Martinez, Andres F; Jorgensen, James H; Patterson, Jan E; Sreeramoju, Pranavi V

    2011-12-01

    We undertook this study to investigate whether treatment with a higher dose of trimethoprim-sulfamethoxazole (TMP/SMX) led to greater clinical resolution in patients with skin and soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA). A prospective, observational cohort with nested case-control study was performed at a public tertiary health system. Among patients with MRSA SSTIs during the period from May 2008 to September 2008 who received oral monotherapy with TMP/SMX and whose clinical outcome was known, the clinical characteristics and outcomes were compared between patients treated with a high dose of TMP/SMX (320 mg/1,600 mg twice daily) for 7 to 15 days and patients treated with the standard dose of TMP/SMX (160 mg/800 mg twice daily) for 7 to 15 days. In patients with MRSA SSTIs, those treated with the high dose of TMP/SMX (n = 121) had clinical characteristics similar to those of patients treated with the standard dose of TMP/SMX (n = 170). The only exception was a higher proportion of patients with a history of trauma upon admission among the patients treated with the higher dose. The proportion of patients with clinical resolution of infection was not different in the two groups (88/121 [73%] versus 127/170 [75%]; P = 0.79). The lack of significance remained in patients with abscess upon stratified analysis by whether surgical drainage was performed. The study found that patients with MRSA SSTIs treated with the higher dose of TMP/SMX (320/1,600 mg twice daily) for 7 to 15 days had a similar rate of clinical resolution as patients treated with the standard dose of TMP/SMX (160/800 mg twice daily) for 7 to 15 days. PMID:21930870

  5. The role of primary care prescribers in the diagnosis and management of community-associated methicillin-resistant Staphylococcus aureus skin and soft tissue infections.

    PubMed

    Lawrence, Kenneth R; Golik, Monica V; Davidson, Lisa

    2009-01-01

    Nosocomial infections caused by methicillin-resistant Staphylococcus aureus were first reported in the United States in the early 1960s. Beginning in the 1990s, healthy individuals from the community with no risk factors for resistant bacteria began presenting with methicillin-resistant Staphylococcus aureus infections, acquiring the name "community-associated methicillin-resistant Staphylococcus aureus" (CA-MRSA). CA-MRSA has a tendency to affect the skin and skin structures, generally in the form of abscesses and furuncles, carbuncles, and cellulitis. Cases of invasive infections including bacteremia, endocarditis, and necrotizing pneumonia have also been reported. A patient complaint of a "spider bite" is frequently associated with CA-MRSA. CA-MRSA and the traditional health care-associated methicillin-resistant Staphylococcus aureus are distinguished by their genetic composition, virulence factors, and susceptibility patterns to non-beta-lactam antibiotics. Appropriate management of CA-MRSA skin and skin structure infections includes incision and drainage of infected tissue and appropriate antimicrobial therapy. It has been suggested that when prevalence of CA-MRSA within a community eclipses 10%-15%, empiric use of non-beta-lactam antibiotics with in vitro activity against CA-MRSA be initiated when treating skin and skin structure infections. CA-MRSA retains susceptibility to a range of older antibiotics available in oral formulations such as minocycline, doxycycline, sulfamethoxazole-trimethoprim, moxifloxacin, levofloxacin, and clindamycin. Local susceptibility patterns and individual patient factors should guide the selection of antibiotics. PMID:19617720

  6. The role of primary care prescribers in the diagnosis and management of community-associated methicillin-resistant Staphylococcus aureus skin and soft tissue infections.

    PubMed

    Lawrence, Kenneth R; Golik, Monica V; Davidson, Lisa

    2009-01-01

    Nosocomial infections caused by methicillin-resistant Staphylococcus aureus were first reported in the United States in the early 1960s. Beginning in the 1990s, healthy individuals from the community with no risk factors for resistant bacteria began presenting with methicillin-resistant Staphylococcus aureus infections, acquiring the name "community-associated methicillin-resistant Staphylococcus aureus" (CA-MRSA). CA-MRSA has a tendency to affect the skin and skin structures, generally in the form of abscesses and furuncles, carbuncles, and cellulitis. Cases of invasive infections including bacteremia, endocarditis, and necrotizing pneumonia have also been reported. A patient complaint of a "spider bite" is frequently associated with CA-MRSA. CA-MRSA and the traditional health care-associated methicillin-resistant Staphylococcus aureus are distinguished by their genetic composition, virulence factors, and susceptibility patterns to non-beta-lactam antibiotics. Appropriate management of CA-MRSA skin and skin structure infections includes incision and drainage of infected tissue and appropriate antimicrobial therapy. It has been suggested that when prevalence of CA-MRSA within a community eclipses 10%-15%, empiric use of non-beta-lactam antibiotics with in vitro activity against CA-MRSA be initiated when treating skin and skin structure infections. CA-MRSA retains susceptibility to a range of older antibiotics available in oral formulations such as minocycline, doxycycline, sulfamethoxazole-trimethoprim, moxifloxacin, levofloxacin, and clindamycin. Local susceptibility patterns and individual patient factors should guide the selection of antibiotics.

  7. Antibiotic susceptibility and resistance of Staphylococcus aureus isolated from fresh porcine skin xenografts: risk to recipients with thermal injury.

    PubMed

    Busby, Stacey-Ann; Robb, Andrew; Lang, Sue; Takeuchi, Yasu; Vesely, Pavel; Scobie, Linda

    2014-03-01

    The previous use of fresh porcine xenografts at the Prague Burn Centre had raised concerns over the transmission of zoonotic pathogens. This study examines the risk of zoonotic Staphylococcus aureus colonisation of burn patients from fresh porcine skin xenografts. Samples were collected from the nares, skin and perineum of commercial pigs (n=101) and were screened for methicillin sensitive S. aureus (MSSA) and resistant S. aureus (MRSA). The efficacy of the antibiotic wash used in decontamination of the pigskin was tested against planktonic- and biofilm-grown isolates. The spa type of each isolate was also confirmed. All pig swabs were negative for MRSA but 86% positive for MSSA. All planktonic-grown isolates of MSSA were sensitive to chloramphenicol and nitrofurantoin and 44% of isolates were resistant to streptomycin. Isolates grown as biofilm exhibited higher rates of antimicrobial resistance. Sequence analysis revealed three distinct spa types of the MRSA ST398 clonal type. This finding demonstrates the existence of a MSSA reservoir containing spa types resembling those of well-known MRSA strains. These MSSA exhibit resistance to antibiotics used for decontamination of the pigskin prior to xenograft. Amended use of procurement could allow the use of fresh pigskin xenografts to be reinstated.

  8. Mannitol utilisation is required for protection of Staphylococcus aureus from human skin antimicrobial fatty acids.

    PubMed

    Kenny, John G; Moran, Josephine; Kolar, Stacey L; Ulanov, Alexander; Li, Zhong; Shaw, Lindsey N; Josefsson, Elisabet; Horsburgh, Malcolm J

    2013-01-01

    Mannitol (Mtl) fermentation, with the subsequent production of acid, is a species signature of Staphylococcus aureus, and discriminates it from most other members of the genus. Inactivation of the gene mtlD, encoding Mtl-1-P dehydrogenase was found to markedly reduce survival in the presence of the antimicrobial fatty acid, linoleic acid. We demonstrate that the sugar alcohol has a potentiating action for this membrane-acting antimicrobial. Analysis of cellular metabolites revealed that, during exponential growth, the mtlD mutant accumulated high levels of Mtl and Mtl-P. The latter metabolite was not detected in its isogenic parent strain or a deletion mutant of the entire mtlABFD operon. In addition, the mtlD mutant strain exhibited a decreased MIC for H2O2, however virulence was unaffected in a model of septic arthritis.

  9. Mannitol Utilisation is Required for Protection of Staphylococcus aureus from Human Skin Antimicrobial Fatty Acids

    PubMed Central

    Kolar, Stacey L.; Ulanov, Alexander; Li, Zhong; Shaw, Lindsey N.; Josefsson, Elisabet; Horsburgh, Malcolm J.

    2013-01-01

    Mannitol (Mtl) fermentation, with the subsequent production of acid, is a species signature of Staphylococcus aureus, and discriminates it from most other members of the genus. Inactivation of the gene mtlD, encoding Mtl-1-P dehydrogenase was found to markedly reduce survival in the presence of the antimicrobial fatty acid, linoleic acid. We demonstrate that the sugar alcohol has a potentiating action for this membrane-acting antimicrobial. Analysis of cellular metabolites revealed that, during exponential growth, the mtlD mutant accumulated high levels of Mtl and Mtl-P. The latter metabolite was not detected in its isogenic parent strain or a deletion mutant of the entire mtlABFD operon. In addition, the mtlD mutant strain exhibited a decreased MIC for H2O2, however virulence was unaffected in a model of septic arthritis. PMID:23861785

  10. Surveillance of Physician-Diagnosed Skin and Soft Tissue Infections Consistent With Methicillin-Resistant "Staphylococcus aureus" (MRSA) among Nebraska High School Athletes, 2008-2012

    ERIC Educational Resources Information Center

    Buss, Bryan F.; Connolly, Susan

    2014-01-01

    Though historically confined to hospital settings, methicillin-resistant Staphylococcus aureus (MRSA) has received increasing attention in the wider community, particularly among athletes. A 2007-2008 investigation in Nebraska concluded that MRSA skin infections were an emerging problem among the state's student athletes. Statewide…

  11. Proteomic Identification of saeRS-Dependent Targets Critical for Protective Humoral Immunity against Staphylococcus aureus Skin Infection.

    PubMed

    Zhao, Fan; Cheng, Brian L; Boyle-Vavra, Susan; Alegre, Maria-Luisa; Daum, Robert S; Chong, Anita S; Montgomery, Christopher P

    2015-09-01

    Recurrent Staphylococcus aureus skin and soft tissue infections (SSTIs) are common despite detectable antibody responses, leading to the belief that the immune response elicited by these infections is not protective. We recently reported that S. aureus USA300 SSTI elicits antibodies that protect against recurrent SSTI in BALB/c but not C57BL/6 mice, and in this study, we aimed to uncover the specificity of the protective antibodies. Using a proteomic approach, we found that S. aureus SSTI elicited broad polyclonal antibody responses in both BALB/c and C57BL/6 mice and identified 10 S. aureus antigens against which antibody levels were significantly higher in immune BALB/c serum. Four of the 10 antigens identified are regulated by the saeRS operon, suggesting a dominant role for saeRS in protection. Indeed, infection with USA300Δsae failed to protect against secondary SSTI with USA300, despite eliciting a strong polyclonal antibody response against antigens whose expression is not regulated by saeRS. Moreover, the antibody repertoire after infection with USA300Δsae lacked antibodies specific for 10 saeRS-regulated antigens, suggesting that all or a subset of these antigens are necessary to elicit protective immunity. Infection with USA300Δhla elicited modest protection against secondary SSTI, and complementation of USA300Δsae with hla restored protection but incompletely. Together, these findings support a role for both Hla and other saeRS-regulated antigens in eliciting protection and suggest that host differences in immune responses to saeRS-regulated antigens may determine whether S. aureus infection elicits protective or nonprotective immunity against recurrent infection.

  12. Proteomic Identification of saeRS-Dependent Targets Critical for Protective Humoral Immunity against Staphylococcus aureus Skin Infection

    PubMed Central

    Zhao, Fan; Cheng, Brian L.; Boyle-Vavra, Susan; Alegre, Maria-Luisa; Daum, Robert S.; Chong, Anita S.

    2015-01-01

    Recurrent Staphylococcus aureus skin and soft tissue infections (SSTIs) are common despite detectable antibody responses, leading to the belief that the immune response elicited by these infections is not protective. We recently reported that S. aureus USA300 SSTI elicits antibodies that protect against recurrent SSTI in BALB/c but not C57BL/6 mice, and in this study, we aimed to uncover the specificity of the protective antibodies. Using a proteomic approach, we found that S. aureus SSTI elicited broad polyclonal antibody responses in both BALB/c and C57BL/6 mice and identified 10 S. aureus antigens against which antibody levels were significantly higher in immune BALB/c serum. Four of the 10 antigens identified are regulated by the saeRS operon, suggesting a dominant role for saeRS in protection. Indeed, infection with USA300Δsae failed to protect against secondary SSTI with USA300, despite eliciting a strong polyclonal antibody response against antigens whose expression is not regulated by saeRS. Moreover, the antibody repertoire after infection with USA300Δsae lacked antibodies specific for 10 saeRS-regulated antigens, suggesting that all or a subset of these antigens are necessary to elicit protective immunity. Infection with USA300Δhla elicited modest protection against secondary SSTI, and complementation of USA300Δsae with hla restored protection but incompletely. Together, these findings support a role for both Hla and other saeRS-regulated antigens in eliciting protection and suggest that host differences in immune responses to saeRS-regulated antigens may determine whether S. aureus infection elicits protective or nonprotective immunity against recurrent infection. PMID:26169277

  13. Antimicrobial Synergic Effect of Allicin and Silver Nanoparticles on Skin Infection Caused by Methicillin-Resistant Staphylococcus aureus spp

    PubMed Central

    Sharifi-Rad, J; Hoseini Alfatemi, SM; Sharifi Rad, M; Iriti, M

    2014-01-01

    Background: Today, the commonly used antibiotics may more and more frequently be ineffective against multiple pathogens, due to the selection of resistant microbial strains. As a result, an effort to find a new approach for solving this issue has been considered. Aim: The aim of this study is to investigate antimicrobial properties of allicin, silver nanoparticles (Ag NPs) and their combination again skin infection caused by methicillin-resistant Staphylococcus aureus (MRSA) strains in an animal model. Materials and Methods: In vivo, the effects of allicin, Ag NPs and their combination were investigated on mice in which the skin infection was caused by MRSA strains. In animals, S. aureus colony-forming units (CFU)/mL were counted the 4th day after treatment. In vitro, minimum inhibitory concentration (MIC) of bacterial growth and minimum bactericidal concentration (MBC) of allicin, Ag NPs and their combination were determined by microdilution technique. Results: The results of in vitro assays showed that MIC of allicin and Ag NPs were 2.2 mg/mL and 5.6 mg/mL, respectively, and MBC of allicin and Ag NPs were 3.1 ppm and 7.5 ppm, respectively. However, MIC and MBC of allicin and Ag NPs together on MRSA strains were 0.4 mg/mL and 1.1 ppm, respectively. The results of in vivo tests on skin infection showed that bacteria counted for control, Ag NPs, allicin and their combination were 377 × 108, 80 × 106, 43 × 105, and 0 CFU/mL, respectively. Conclusion: The obtained results clearly indicated (for the first time, to the best of our knowledge) that allicin and Ag NPs, when used in combination, exhibited a synergistic activity. Therefore, the present results can be of interest in the future to improve the treatment of skin infections caused by MRSA strains. PMID:25506477

  14. Immunomodulation and Disease Tolerance to Staphylococcus aureus

    PubMed Central

    Li, Zhigang; Peres, Adam G.; Damian, Andreea C.; Madrenas, Joaquín

    2015-01-01

    The Gram-positive bacterium Staphylococcus aureus is one of the most frequent pathogens that causes severe morbidity and mortality throughout the world. S. aureus can infect skin and soft tissues or become invasive leading to diseases such as pneumonia, endocarditis, sepsis or toxic shock syndrome. In contrast, S. aureus is also a common commensal microbe and is often part of the human nasal microbiome without causing any apparent disease. In this review, we explore the immunomodulation and disease tolerance mechanisms that promote commensalism to S. aureus. PMID:26580658

  15. Specific Behaviors Predict Staphylococcus aureus Colonization and Skin and Soft Tissue Infections Among Human Immunodeficiency Virus-Infected Persons.

    PubMed

    Crum-Cianflone, Nancy F; Wang, Xun; Weintrob, Amy; Lalani, Tahaniyat; Bavaro, Mary; Okulicz, Jason F; Mende, Katrin; Ellis, Michael; Agan, Brian K

    2015-04-01

    Background.  Few data exist on the incidence and risk factors of Staphylococcus aureus colonization and skin and soft tissue infections (SSTIs) among patients infected with human immunodeficiency virus (HIV). Methods.  Over a 2-year period, we prospectively evaluated adults infected with HIV for incident S aureus colonization at 5 body sites and SSTIs. Cox proportional hazard models using time-updated covariates were performed. Results.  Three hundred twenty-two participants had a median age of 42 years (interquartile range, 32-49), an HIV duration of 9.4 years (2.7-17.4), and 58% were on highly active antiretroviral therapy (HAART). Overall, 102 patients (32%) became colonized with S aureus with an incidence rate of 20.6 (95% confidence interval [CI], 16.8-25.0) per 100 person-years [PYs]. Predictors of colonization in the final multivariable model included illicit drug use (hazard ratios [HR], 4.26; 95% CI, 1.33-13.69) and public gym use (HR 1.66, 95% CI, 1.04-2.66), whereas antibacterial soap use was protective (HR, 0.50; 95% CI, 0.32-0.78). In a separate model, perigenital colonization was associated with recent syphilis infection (HR, 4.63; 95% CI, 1.01-21.42). Fifteen percent of participants developed an SSTI (incidence rate of 9.4 cases [95% CI, 6.8-12.7] per 100 PYs). Risk factors for an SSTI included incident S aureus colonization (HR 2.52; 95% CI, 1.35-4.69), public shower use (HR, 2.59; 95% CI, 1.48-4.56), and hospitalization (HR 3.54; 95% CI, 1.67-7.53). The perigenital location for S aureus colonization was predictive of SSTIs. Human immunodeficiency virus-related factors (CD4 count, HIV RNA level, and HAART) were not associated with colonization or SSTIs. Conclusions.  Specific behaviors, but not HIV-related factors, are predictors of colonization and SSTIs. Behavioral modifications may be the most important strategies in preventing S aureus colonization and SSTIs among persons infected with HIV. PMID:26380335

  16. Retrospective Analysis of Clinical and Cost Outcomes Associated with Methicillin-Resistant Staphylococcus aureus Complicated Skin and Skin Structure Infections Treated with Daptomycin, Vancomycin, or Linezolid

    PubMed Central

    Wright, Bradley M.; Eiland, Edward H.

    2011-01-01

    Objective. The objective of this analysis was to compare clinical and cost outcomes associated with patients who had suspected or documented methicillin-resistant Staphylococcus aureus (MRSA) infections treated with daptomycin, vancomycin, or linezolid in complicated skin and skin structure infections (cSSSIs). Design. This was a retrospective analysis conducted from February to June of 2007. Appropriate data was collected, collated, and subsequently evaluated with the purpose of quantifying length of stay, antibiotic therapy duration, clinical cure rates, adverse drug events, and cost of hospitalization. Results. All 82 patients included in the analysis experienced clinical cure. The duration of antibiotic therapy was similar among the three groups yet the length of hospitalization was slightly shorter in the daptomycin group. Conclusions. The incidence of resistant staphylococcal infections is increasing; therefore, judicious use of MRSA active agents is paramount. Future studies are necessary to determine if MRSA treatment options can be stratified based on the severity of the infectious process. PMID:22567330

  17. Bacteriophage Transduction in Staphylococcus aureus.

    PubMed

    Olson, Michael E

    2016-01-01

    The genetic manipulation of Staphylococcus aureus for molecular experimentation is a valuable tool for assessing gene function and virulence. Genetic variability between strains coupled with difficult laboratory techniques for strain construction is a frequent roadblock in S. aureus research. Bacteriophage transduction greatly increases the speed and ease of S. aureus studies by allowing movement of chromosomal markers and plasmids between strains. This technique enables the S. aureus research community to focus investigations on clinically relevant isolates.

  18. RNA-Seq Analysis of the Host Response to Staphylococcus aureus Skin and Soft Tissue Infection in a Mouse Model

    PubMed Central

    Brady, Rebecca A.; Bruno, Vincent M.; Burns, Drusilla L.

    2015-01-01

    Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTI), which are primarily self-limiting. We conducted a comprehensive analysis of the host transcriptome during a S. aureus SSTI to provide insight on the protective mechanisms that thwart these infections. We utilized a murine SSTI model in which one ear is epicutaneously challenged while the other is not. We then harvested these infected and uninfected ears, as well as ears from naïve mice, at one, four, and seven days post-challenge, and performed RNA sequencing (RNA-seq) using the Illumina platform. RNA-seq data demonstrated a robust response at the site of infection. Comparison of gene expression profiles between infected ears and the non-infected ears of challenged mice defined the local response to infection, while comparisons of expression profiles of non-infected ears from challenged mice to ears of naïve mice revealed changes in gene expression levels away from the site indicative of a systemic response. Over 1000 genes exhibited increased expression locally at all tested time points. The local response was more robust than the systemic response. Through evaluation of the RNA-seq data using the Upstream Regulator Analytic as part of the Ingenuity Pathway Analysis software package, we found that changes in the activation and inhibition of regulatory pathways happen first locally, and lag behind systemically. The activated pathways are highly similar at all three time points during SSTI, suggesting a stable global response over time. Transcript increases and pathway activation involve pro- and anti-inflammatory mediators, chemotaxis, cell signaling, keratins, and TH1/TH17 cytokines. Transcript decreases and pathway inhibition demonstrate that metabolic genes and anti-inflammatory pathways are repressed. These data provide insight on the host responses that may aid in resolution of this self-limited S. aureus infection, and may shed light on potential immune correlates of

  19. Comparative Exoproteomics and Host Inflammatory Response in Staphylococcus aureus Skin and Soft Tissue Infections, Bacteremia, and Subclinical Colonization

    PubMed Central

    Liew, Yun Khoon; Awang Hamat, Rukman; van Belkum, Alex; Chong, Pei Pei

    2015-01-01

    The exoproteome of Staphylococcus aureus contains enzymes and virulence factors that are important for host adaptation. We investigated the exoprotein profiles and cytokine/chemokine responses obtained in three different S. aureus-host interaction scenarios by using two-dimensional gel electrophoresis (2-DGE) and two-dimensional immunoblotting (2D-IB) combined with tandem mass spectrometry (MS/MS) and cytometric bead array techniques. The scenarios included S. aureus bacteremia, skin and soft tissue infections (SSTIs), and healthy carriage. By the 2-DGE approach, 12 exoproteins (the chaperone protein DnaK, a phosphoglycerate kinase [Pgk], the chaperone GroEL, a multisensor hybrid histidine kinase, a 3-methyl-2-oxobutanoate hydroxymethyltransferase [PanB], cysteine synthase A, an N-acetyltransferase, four isoforms of elongation factor Tu [EF-Tu], and one signature protein spot that could not be reliably identified by MS/MS) were found to be consistently present in more than 50% of the bacteremia isolates, while none of the SSTI or healthy-carrier isolates showed any of these proteins. By the 2D-IB approach, we also identified five antigens (methionine aminopeptidase [MetAPs], exotoxin 15 [Set15], a peptidoglycan hydrolase [LytM], an alkyl hydroperoxide reductase [AhpC], and a haptoglobin-binding heme uptake protein [HarA]) specific for SSTI cases. Cytokine and chemokine production varied during the course of different infection types and carriage. Monokine induced by gamma interferon (MIG) was more highly stimulated in bacteremia patients than in SSTI patients and healthy carriers, especially during the acute phase of infection. MIG could therefore be further explored as a potential biomarker of bacteremia. In conclusion, 12 exoproteins from bacteremia isolates, MIG production, and five antigenic proteins identified during SSTIs should be further investigated for potential use as diagnostic markers. PMID:25809633

  20. Antimicrobial susceptibility, virulence determinant carriage and molecular characteristics of Staphylococcus aureus isolates associated with skin and soft tissue infections.

    PubMed

    Yu, Fangyou; Liu, Yunling; Lv, Jinnan; Qi, Xiuqin; Lu, Chaohui; Ding, Yu; Li, Dan; Liu, Huanle; Wang, Liangxing

    2015-01-01

    A better understanding of the antimicrobial susceptibility, carriage of virulence determinants and molecular characteristics of Staphylococcus aureus isolates associated with skin and soft tissue infections (SSTIs) may provide further insights related to clinical outcomes with these infections. From January 2012 to September 2013, a total of 128 non-duplicate S. aureus isolates were recovered from patients with SSTIs. All 128 S. aureus SSTI isolates carried at least five virulence genes tested. Virulence genes detected among at least 70% of all tested isolates included hld (100%), hla (95.3%), icaA (96.9%), clf (99.2%), sdrC (79.7%), sdrD (70.3%), and sdrE (72.7%). The prevalence of MRSA isolates with 10 virulence genes tested (54.4%, 31/56) was significantly higher than that among MSSA isolates (35.2%, 25/71) (p<0.05). The positive rates of seb, sen, sem, sdrE and pvl among MRSA isolates were significantly higher than among MSSA isolates (p<0.05). ST7 and ST630 accounting for 10.9% were found to be the predominant STs. The most prevalent spa type was t091 (8.6%). MRSA-ST59-SCCmec IV was the most common clone (12.3%) among MRSA isolates whereas among MSSA isolates the dominant clone was MSSA-ST7 (15.5%). Six main clonal complexes (CCs) were found, including CC5 (52.3%), CC7 (11.7%), CC59 (8.6%), CC88 (6.3%), CC398 (4.7%), and CC121 (3.1%). A higher carriage of seb and sec was found among CC59 isolates. In comparison to CC5 and CC7 isolates, those with the highest carriage rates (>80.0%) of sdrC and sdrD, CC59 isolates had lower prevalence of these two virulence genes. All CC59 isolates were susceptible to gentamicin and trimethoprim/sulfamethoxazole, while CC5 and CC7 isolates had resistance rates to these two antimicrobials of 25.4% and 20.9%, and 40.0% and 40.0%, respectively. The resistance rates for tetracycline, clindamycin, and erythromycin among CC5 isolates were lower than among CC7 and CC59 isolates. In conclusion, the molecular typing of S. aureus SSTI

  1. Change in Antimicrobial Susceptibility of Skin-Colonizing Staphylococcus aureus in Korean Patients with Atopic Dermatitis during Ten-Year Period

    PubMed Central

    Park, Jung-Min; Jo, Ju-Hyun; Jin, Hyunju; Ko, Hyun-Chang; Kim, Moon-Bum; Kim, Jung-Min; Kim, Do-Won; Jang, Ho-Sun

    2016-01-01

    Background A small subset of adolescents atopic dermatitis (AD) tends to persist. This also leads to get more antibiotics exposure with advancing years. Antibiotic resistance has been regarded as a serious problem during Staphylococcus aureus treatment, especially methicillin-resistant S. aureus (MRSA). Objective It was investigated the S. aureus colonization frequency in the skin lesions and anterior nares of adolescent AD patients and evaluated the changes in S. aureus antimicrobial susceptibility for years. Methods Patients who visited our clinic from September 2003 to August 2005 were classified into group A, and patients who visited from August 2010 to March 2012 were classified into group B. To investigate the differences with regard to patients' age and disease duration, the patients were subdivided into groups according to age. Lesional and nasal specimens were examined. Results Among the 295 AD patients, the total S. aureus colonization rate in skin lesions was 66.9% (95/142) for group A and 78.4% (120/153) for group B. No significant changes in the systemic antimicrobial susceptibilities of S. aureus strains isolated from adolescent AD patients were observed during about 10-year period. The increased trend of MRSA isolation in recent adolescent AD outpatients suggest that the community including school could be the source of S. aureus antibiotic resistance and higher fusidic acid resistance rates provides evidence of imprudent topical use. Conclusion Relatively high MRSA isolation and fusidic acid resistance rates in recent AD patients suggest that the community harbors antibiotic-resistant S. aureus. PMID:27489430

  2. Increased susceptibility to Staphylococcus aureus colonization of the skin of the NOA mouse: a potentially useful animal model for evaluating antiseptic effects.

    PubMed

    Kondo, Taizo; Ohno, Hitoshi; Taguchi, Keisuke; Satode, Ryotaro; Kondo, Toshio; Shiomoto, Yasuhisa

    2006-01-01

    Isolation of bacteria from wet skin lesions was attempted using Naruto Research Institute Otsuka Atrichia (NOA) mice, which develop such lesions spontaneously at a high rate. As a result, Staphylococcus aureus was demonstrated to have colonized the wet skin lesions at high density. In addition, the isolated S. aureus was found to be similar to the strain of S. aureus thought to colonize the eczematous lesions seen in humans with atopic dermatitis. Furthermore, a survey of the S. aureus colonization status of NOA mice with no wet skin lesions confirmed colonization at higher density than in HR-1 mice as control, indicating that the skin of the NOA mouse has the novel characteristic of increased susceptibility to S. aureus colonization. Thus, by using changes in S. aureus counts as an index, the NOA mouse can be expected to serve as a useful animal model for evaluating the effects of topical antiseptics. The antiseptic effects of an ointment and a lotion containing chlorhexidine gluconate were confirmed using this animal model.

  3. Utility of a single nasal polymerase chain reaction assay in predicting absence of skin and environmental contamination in hospitalized patients with past methicillin-resistant Staphylococcus aureus.

    PubMed

    Guerrero, Dubert M; Wagner, Matthew; Carson, Grace; Hanish, Christine; Thompson, Jody; Orr, Megan; Roth, Felix; Carson, Paul J

    2016-06-01

    We evaluated hospitalized patients with a history of methicillin-resistant Staphylococcus aureus (MRSA) for persistent colonization and need for contact precautions. Up to 3 daily cultures of nares, skin, and any present wounds were compared with a single nasal polymerase chain reaction (PCR) assay. Most patients (76.2%) were no longer colonized with MRSA. A single PCR assay was sufficient to exclude persistent colonization and environmental contamination and remove the contact precautions.

  4. Contribution of Staphylococcus aureus Coagulases and Clumping Factor A to Abscess Formation in a Rabbit Model of Skin and Soft Tissue Infection

    PubMed Central

    Malachowa, Natalia; Kobayashi, Scott D.; Porter, Adeline R.; Braughton, Kevin R.; Scott, Dana P.; Gardner, Donald J.; Missiakas, Dominique M.; Schneewind, Olaf; DeLeo, Frank R.

    2016-01-01

    Staphylococcus aureus produces numerous factors that facilitate survival in the human host. S. aureus coagulase (Coa) and von Willebrand factor-binding protein (vWbp) are known to clot plasma through activation of prothrombin and conversion of fibrinogen to fibrin. In addition, S. aureus clumping factor A (ClfA) binds fibrinogen and contributes to platelet aggregation via a fibrinogen- or complement-dependent mechanism. Here, we evaluated the contribution of Coa, vWbp and ClfA to S. aureus pathogenesis in a rabbit model of skin and soft tissue infection. Compared to skin abscesses caused by the Newman wild-type strain, those caused by isogenic coa, vwb, or clfA deletion strains, or a strain deficient in coa and vwb, were significantly smaller following subcutaneous inoculation in rabbits. Unexpectedly, we found that fibrin deposition and abscess capsule formation appear to be independent of S. aureus coagulase activity in the rabbit infection model. Similarities notwithstanding, S. aureus strains deficient in coa and vwb elicited reduced levels of several proinflammatory molecules in human blood in vitro. Although a specific mechanism remains to be determined, we conclude that S. aureus Coa, vWbp and ClfA contribute to abscess formation in rabbits. PMID:27336691

  5. Mixed Nocardia cyriacigeorgica and Staphylococcus aureus infection in the periocular skin and orbit in an immunocompetent adult.

    PubMed

    Rath, Suryasnata; Sharma, Savitri; Mohapatra, Samir; Roy, Aravind; Vemuganti, Geeta K; Balne, Praveen; Reddy, Ashok

    2012-12-01

    A 32-year-old non-alcoholic, immunocompetent male with history of prior trauma presented with pain and protrusion of the left eye of 8 months' duration. A firm nontender mass could be palpated in the superomedial orbit and the periocular skin had multiple discharging nodules. Computed tomography of the orbit showed an ill-defined lesion in the left orbit with preseptal soft tissue thickening, lacrimal gland infiltration and a moth eaten appearance of the left orbital roof. Tissue sampling from discharging cutaneous sinuses grew confluent colonies of Staphylococcus aureus and Nocardia cyriacigeorgica (16S rRNA gene sequencing; GQ376180). Histopathological examination showed mixed inflammatory infiltrates and eosinophilic granules showing Splendore-Hoeppli phenomenon. Despite an early response to treatment with intravenous amikacin, reactivation of left orbital inflammation led to eventual loss of vision. A prolonged treatment course with intravenous amikacin and oral trimethoprim-sulfamethoxazole over a period of 1 year showed clinical resolution with periocular scarring, hypoglobus, and sensory exotropia. PMID:22715939

  6. [Protein toxins of Staphylococcus aureus].

    PubMed

    Shamsutdinov, A F; Tiurin, Iu A

    2014-01-01

    Main scientific-research studies regarding protein bacterial toxins of the most widespread bacteria that belong to Staphylococcus spp. genus and in particular the most pathogenic species for humans--Staphylococcus aureus, are analyzed. Structural and biological properties of protein toxins that have received the name of staphylococcus pyrogenic toxins (PTSAg) are presented. Data regarding genetic regulation of secretion and synthesis of these toxins and 3 main regulatory genetic systems (agr--accessory gene regulator, xpr--extracellular protein regulator, sar--staphylococcal accessory regulator) that coordinate synthesis of the most important protein toxins and enzymes for virulence of S. aureus, are presented.

  7. Ceftaroline Fosamil for the Treatment of Staphylococcus aureus Bacteremia Secondary to Acute Bacterial Skin and Skin Structure Infections or Community-Acquired Bacterial Pneumonia

    PubMed Central

    Vazquez, Jose A.; Maggiore, Christy R.; Cole, Phillip; Smith, Alexander; Jandourek, Alena; Friedland, H. David

    2015-01-01

    Background The Clinical Assessment Program and Teflaro® Utilization Registry is designed to collect information on the clinical use of ceftaroline fosamil in the Unites States. This report presents data on the treatment of patients with Staphylococcus aureus bacteremia (SAB) secondary to acute bacterial skin and skin structure infections (ABSSSIs) or community-acquired bacterial pneumonia (CABP). Methods Patients diagnosed with ABSSSI or CABP were identified through sequential review of randomly ordered charts generated from pharmacy listings from August 2011 to February 2013. Data were collected by chart review 30 days or more after completion of ceftaroline fosamil therapy. Results Secondary SAB was reported in a total of 48 of 1428 evaluable patients (27 with ABSSSI, 21 with CABP). The mean (SD) patient age was 61 (15) years. At least 1 comorbidity was recorded for 74% of patients with ABSSSI and 81% with CABP. Methicillin-resistant S. aureus was isolated from 59% of patients with ABSSSI and 76% with CABP. The mean (SD) duration of ceftaroline fosamil therapy was 5.8 (4.8) days for ABSSSI and 7.0 (3.8) days for CABP. Clinical success among all patients with SAB treated with ceftaroline fosamil was 58% (52% for SAB secondary to ABSSSI, 67% for SAB secondary to CABP). Clinical success rates of methicillin-resistant S. aureus SAB were 50% (8/16) for ABSSSI and 63% (10/16) for CABP. Conclusions This study supports the use of ceftaroline fosamil as a viable treatment option in hospitalized patients with SAB secondary to ABSSSI or CABP. Further studies evaluating the use of ceftaroline fosamil for the treatment of SAB are warranted. PMID:25574117

  8. Antimicrobial resistance profile of Staphylococcus aureus isolates obtained from skin and soft tissue infections of outpatients from a university hospital in Recife - PE, Brazil*

    PubMed Central

    Caraciolo, Fabiana Beserra; Maciel, Maria Amélia Vieira; dos Santos, Josemir Belo; Rabelo, Marcelle Aquino; Magalhães, Vera

    2012-01-01

    BACKGROUND Staphylococcus aureus has a notable ability to acquire resistance to antibiotics, and methicillin resistance represents a growing public health problem. Methicillin-resistant S. aureus (MRSA) has also become important outside the hospital environment, particularly in the United States. In Brazil, since 2005, cases of community skin infections caused by MRSA have been reported, but resistance studies involving outpatients are scarce. OBJECTIVE To know the resistance profile of S. aureus involved in skin and soft tissue infections of patients seen at the Dermatology outpatient clinic of a university hospital in Recife, Pernambuco State, northeastern Brazil. METHODS Prospective study involving 30 patients with skin and soft tissue infections, seen at the Dermatology outpatient clinic from May until November 2011. To evaluate the susceptibility of S. aureus to antibiotics, the disk diffusion method and oxacillin screening agar were used. RESULTS From a total of 30 samples of skin lesions, 19 (63%) had positive culture for S. aureus. The following resistance patterns of S. aureus were observed: penicillin, 95%; tetracycline, 32%; erythromycin, 21%; gentamicin, 16%; cefoxitin, 11%; oxacillin, 11%; trimethoprim-sulfamethoxazole, 11%; chloramphenicol, 11%; clindamycin, 5% ; and ciprofloxacin, 0%. One of the identified MRSA was obtained from a patient without risk factors for its acquisition, and was resistant, beyond to the beta-lactams, only to tetracycline. CONCLUSIONS With regard to the resistance patterns of S. aureus, resistances to tetracycline, erythromycin and gentamicin were the highest. It was documented, for the first time in Pernambuco, a case of skin infection caused by community-associated MRSA. PMID:23197204

  9. Molecular Types of Methicillin-Resistant Staphylococcus aureus and Methicillin-Sensitive S. aureus Strains Causing Skin and Soft Tissue Infections and Nasal Colonization, Identified in Community Health Centers in New York City.

    PubMed

    Pardos de la Gandara, Maria; Raygoza Garay, Juan Antonio; Mwangi, Michael; Tobin, Jonathan N; Tsang, Amanda; Khalida, Chamanara; D'Orazio, Brianna; Kost, Rhonda G; Leinberger-Jabari, Andrea; Coffran, Cameron; Evering, Teresa H; Coller, Barry S; Balachandra, Shirish; Urban, Tracie; Parola, Claude; Salvato, Scott; Jenks, Nancy; Wu, Daren; Burgess, Rhonda; Chung, Marilyn; de Lencastre, Herminia; Tomasz, Alexander

    2015-08-01

    In November 2011, The Rockefeller University Center for Clinical and Translational Science (CCTS), the Laboratory of Microbiology and Infectious Diseases, and Clinical Directors Network (CDN) launched a research and learning collaborative project with six community health centers in the New York City metropolitan area to determine the nature (clonal type) of community-acquired Staphylococcus aureus strains causing skin and soft tissue infections (SSTIs). Between November 2011 and March 2013, wound and nasal samples from 129 patients with active SSTIs suspicious for S. aureus were collected and characterized by molecular typing techniques. In 63 of 129 patients, the skin wounds were infected by S. aureus: methicillin-resistant S. aureus (MRSA) was recovered from 39 wounds and methicillin-sensitive S. aureus (MSSA) was recovered from 24. Most-46 of the 63-wound isolates belonged to the CC8/Panton-Valentine leukocidin-positive (PVL(+)) group of S. aureus clone USA300: 34 of these strains were MRSA and 12 were MSSA. Of the 63 patients with S. aureus infections, 30 were also colonized by S. aureus in the nares: 16 of the colonizing isolates were MRSA, and 14 were MSSA, and the majority of the colonizing isolates belonged to the USA300 clonal group. In most cases (70%), the colonizing isolate belonged to the same clonal type as the strain involved with the infection. In three of the patients, the identity of invasive and colonizing MRSA isolates was further documented by whole-genome sequencing.

  10. Molecular Types of Methicillin-Resistant Staphylococcus aureus and Methicillin-Sensitive S. aureus Strains Causing Skin and Soft Tissue Infections and Nasal Colonization, Identified in Community Health Centers in New York City

    PubMed Central

    Pardos de la Gandara, Maria; Raygoza Garay, Juan Antonio; Mwangi, Michael; Tobin, Jonathan N.; Tsang, Amanda; Khalida, Chamanara; D'Orazio, Brianna; Kost, Rhonda G.; Leinberger-Jabari, Andrea; Coffran, Cameron; Evering, Teresa H.; Coller, Barry S.; Balachandra, Shirish; Urban, Tracie; Parola, Claude; Salvato, Scott; Jenks, Nancy; Wu, Daren; Burgess, Rhonda; Chung, Marilyn; de Lencastre, Herminia

    2015-01-01

    In November 2011, The Rockefeller University Center for Clinical and Translational Science (CCTS), the Laboratory of Microbiology and Infectious Diseases, and Clinical Directors Network (CDN) launched a research and learning collaborative project with six community health centers in the New York City metropolitan area to determine the nature (clonal type) of community-acquired Staphylococcus aureus strains causing skin and soft tissue infections (SSTIs). Between November 2011 and March 2013, wound and nasal samples from 129 patients with active SSTIs suspicious for S. aureus were collected and characterized by molecular typing techniques. In 63 of 129 patients, the skin wounds were infected by S. aureus: methicillin-resistant S. aureus (MRSA) was recovered from 39 wounds and methicillin-sensitive S. aureus (MSSA) was recovered from 24. Most—46 of the 63–wound isolates belonged to the CC8/Panton-Valentine leukocidin-positive (PVL+) group of S. aureus clone USA300: 34 of these strains were MRSA and 12 were MSSA. Of the 63 patients with S. aureus infections, 30 were also colonized by S. aureus in the nares: 16 of the colonizing isolates were MRSA, and 14 were MSSA, and the majority of the colonizing isolates belonged to the USA300 clonal group. In most cases (70%), the colonizing isolate belonged to the same clonal type as the strain involved with the infection. In three of the patients, the identity of invasive and colonizing MRSA isolates was further documented by whole-genome sequencing. PMID:26063853

  11. Longitudinal Antibiotic Susceptibility Profiles of Staphylococcus aureus Cutaneous Infections in a Pediatric Outpatient Population.

    PubMed

    Slater, Nathaniel A; Gilligan, Peter H; Morrell, Dean S

    2016-09-01

    This longitudinal update on Staphylococcus aureus prevalence and antibiotic resistance patterns surveyd 291 cultures from 188 patients in a pediatric outpatient dermatology clinic with suspected skin and soft tissue infections. The prevalence of methicillin-resistant Staphylococcus aureus remained stable at 24%. Staphylococcus aureus resistance to tetracyclines modestly but demonstrably increased in the interval since 2009. PMID:27384814

  12. Pathogenesis of Staphylococcus aureus Bloodstream Infections

    PubMed Central

    Thomer, Lena; Schneewind, Olaf; Missiakas, Dominique

    2016-01-01

    Staphylococcus aureus , a Gram-positive bacterium colonizing nares, skin, and the gastrointestinal tract, frequently invades the skin, soft tissues, and bloodstreams of humans. Even with surgical and antibiotic therapy, bloodstream infections are associated with significant mortality. The secretion of coagulases, proteins that associate with and activate the host hemostatic factor prothrombin, and the bacterial surface display of agglutinins, proteins that bind polymerized fibrin, are key virulence strategies for the pathogenesis of S. aureus bloodstream infections, which culminate in the establishment of abscess lesions. Pathogen-controlled processes, involving a wide spectrum of secreted factors, are responsible for the recruitment and destruction of immune cells, transforming abscess lesions into purulent exudate, with which staphylococci disseminate to produce new infectious lesions or to infect new hosts. Research on S. aureus bloodstream infections is a frontier for the characterization of protective vaccine antigens and the development of immune therapeutics aiming to prevent disease or improve outcomes. PMID:26925499

  13. Severity of Staphylococcus aureus Infection of the Skin Is Associated with Inducibility of Human β-Defensin 3 but Not Human β-Defensin 2▿

    PubMed Central

    Zanger, Philipp; Holzer, Johannes; Schleucher, Regina; Scherbaum, Helmut; Schittek, Birgit; Gabrysch, Sabine

    2010-01-01

    Gram-positive bacteria are the predominant cause of skin infections. Antimicrobial peptides (AMPs) are believed to be of major importance in skin's innate defense against these pathogens. This study aimed at providing clinical evidence for the contribution of AMP inducibility to determining the severity of Gram-positive skin infection. Using real-time PCR, we determined the induction of human β-defensin 2 (HBD-2), HBD-3, and RNase 7 by comparing healthy and lesional mRNA levels in 32 patients with Gram-positive skin infection. We then examined whether AMP induction differed by disease severity, as measured by number of recurrences and need for surgical drainage in patients with Staphylococcus aureus-positive lesions. We found that HBD-2 and -3, but not RNase 7, mRNA expression was highly induced by Gram-positive bacterial infection in otherwise healthy skin. Less induction of HBD-3, but not HBD-2, was associated with more-severe S. aureus skin infection: HBD-3 mRNA levels were 11.4 times lower in patients with more than 6 recurrences (P = 0.01) and 8.8 times lower in patients reporting surgical drainage (P = 0.01) than in the respective baseline groups. This suggests that inducibility of HBD-3 influences the severity of Gram-positive skin infection in vivo. The physiological function of HBD-2 induction in this context remains unclear. PMID:20404083

  14. Prevalence of community-associated meticillin-resistant Staphylococcus aureus and Panton-Valentine leucocidin-positive S. aureus in general practice patients with skin and soft tissue infections in the northern and southern regions of The Netherlands.

    PubMed

    Mithoe, D; Rijnders, M I A; Roede, B M; Stobberingh, E; Möller, A V M

    2012-03-01

    The purpose of this investigation was to determine the prevalence of community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA) and Panton-Valentine leucocidin (PVL)-positive S. aureus in general practice (GP) patients with skin and soft tissue infections (SSTI) in the northern (Groningen and Drenthe) and southern (Limburg) regions of The Netherlands. Secondary objectives were to assess the possible risk factors for patients with SSTI caused by S. aureus and PVL-positive S. aureus using a questionnaire-based survey. From 2007 to 2008, wound and nose cultures were obtained from patients with SSTI in general practice. These swabs were analysed for the presence of S. aureus and the antibiotic susceptibility was determined. The presence of the PVL toxin gene was determined by polymerase chain reaction (PCR) and the genetic background with the use of spa typing. A survey was performed to detect risk factors for S. aureus infection and for the presence of PVL toxin.S. aureus was isolated from 219 out of 314 (70%) patients with SSTI, of which two (0.9%) patients were MRSA-positive. In 25 (11%) patients, the PVL toxin gene was found. A higher prevalence of PVL-positive S. aureus of patients with SSTI was found in the northern region compared to the south (p < 0.05). Regional differences were found in the spa types of PVL-positive S. aureus isolates, and for PVL-negative S. aureus isolates, the genetic background was similar in both regions. The prevalence of CA-MRSA in GP patients with SSTI in The Netherlands is low. Regional differences were found in the prevalence of PVL-positive S. aureus isolates from GP patients with SSTI. Household contacts having similar symptoms were found to be a risk factor for SSTI with S. aureus.

  15. Skin Barrier Function and Staphylococcus aureus Colonization in Vestibulum Nasi and Fauces in Healthy Infants and Infants with Eczema: A Population-Based Cohort Study.

    PubMed

    Berents, Teresa Løvold; Carlsen, Karin Cecilie Lødrup; Mowinckel, Petter; Skjerven, Håvard Ove; Kvenshagen, Bente; Rolfsjord, Leif Bjarte; Bradley, Maria; Lieden, Agne; Carlsen, Kai-Håkon; Gaustad, Peter; Gjersvik, Petter

    2015-01-01

    Atopic eczema (AE) is associated with Staphylococcus aureus (S. aureus) colonization and skin barrier dysfunction, often measured by increased transepidermal water loss (TEWL). In the present study, the primary aim was to see whether S. aureus colonization in the vestibulum nasi and/or fauces was associated with increased TEWL in infants with healthy skin and infants with eczema. Secondarily, we aimed to investigate whether TEWL measurements on non-lesional skin on the lateral upper arm is equivalent to volar forearm in infants. In 167 of 240 infants, recruited from the general population, TEWL measurements on the lateral upper arm and volar forearm, using a DermaLab USB, fulfilled our environmental requirements. The mean of three TEWL measurements from each site was used for analysis. The infants were diagnosed with no eczema (n = 110), possible AE (n = 28) or AE (n = 29). DNA samples were analysed for mutations in the filaggrin gene (FLG). Bacterial cultures were reported positive with the identification of at least one culture with S. aureus from vestibulum nasi and/or fauces. S. aureus colonization, found in 89 infants (53%), was not associated with increased TEWL (i.e. TEWL in the upper quartile), neither on the lateral upper arm or volar forearm (p = 0.08 and p = 0.98, respectively), nor with AE (p = 0.10) or FLG mutation (p = 0.17). TEWL was significantly higher on both measuring sites in infants with AE compared to infants with possible AE and no eczema. FLG mutation was significantly associated with increased TEWL, with a 47% difference in TEWL. We conclude that S. aureus in vestibulum nasi and/or fauces was not associated with TEWL, whereas TEWL measurements on the lateral upper arm and volar forearm appear equally appropriate in infants.

  16. Skin Barrier Function and Staphylococcus aureus Colonization in Vestibulum Nasi and Fauces in Healthy Infants and Infants with Eczema: A Population-Based Cohort Study

    PubMed Central

    Berents, Teresa Løvold; Carlsen, Karin Cecilie Lødrup; Mowinckel, Petter; Skjerven, Håvard Ove; Kvenshagen, Bente; Rolfsjord, Leif Bjarte; Bradley, Maria; Lieden, Agne; Carlsen, Kai-Håkon; Gaustad, Peter; Gjersvik, Petter

    2015-01-01

    Atopic eczema (AE) is associated with Staphylococcus aureus (S. aureus) colonization and skin barrier dysfunction, often measured by increased transepidermal water loss (TEWL). In the present study, the primary aim was to see whether S. aureus colonization in the vestibulum nasi and/or fauces was associated with increased TEWL in infants with healthy skin and infants with eczema. Secondarily, we aimed to investigate whether TEWL measurements on non-lesional skin on the lateral upper arm is equivalent to volar forearm in infants. In 167 of 240 infants, recruited from the general population, TEWL measurements on the lateral upper arm and volar forearm, using a DermaLab USB, fulfilled our environmental requirements. The mean of three TEWL measurements from each site was used for analysis. The infants were diagnosed with no eczema (n = 110), possible AE (n = 28) or AE (n = 29). DNA samples were analysed for mutations in the filaggrin gene (FLG). Bacterial cultures were reported positive with the identification of at least one culture with S. aureus from vestibulum nasi and/or fauces. S. aureus colonization, found in 89 infants (53%), was not associated with increased TEWL (i.e. TEWL in the upper quartile), neither on the lateral upper arm or volar forearm (p = 0.08 and p = 0.98, respectively), nor with AE (p = 0.10) or FLG mutation (p = 0.17). TEWL was significantly higher on both measuring sites in infants with AE compared to infants with possible AE and no eczema. FLG mutation was significantly associated with increased TEWL, with a 47% difference in TEWL. We conclude that S. aureus in vestibulum nasi and/or fauces was not associated with TEWL, whereas TEWL measurements on the lateral upper arm and volar forearm appear equally appropriate in infants. PMID:26070153

  17. Toward an Alternative Therapeutic Approach for Skin Infections: Antagonistic Activity of Lactobacilli Against Antibiotic-Resistant Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Hafez, Mohamed M; Maghrabi, Ibrahim A; Zaki, Noha M

    2013-09-01

    The wide spread of antimicrobial resistance has urged the need of alternative therapeutic approach. In this context, probiotic lactobacilli have been reported for the prevention and treatment of many gastrointestinal and urogenital infections. However, very little is known about their antagonistic activity against skin pathogens. Accordingly, the present study aimed to investigate the potential of lactobacilli to interfere with pathogenesis features of two antibiotic-resistant skin pathogens, namely methicillin-resistant Staphylococcus aureus and multiple-resistant Pseudomonas aeruginosa. A total of 49 lactobacilli were recovered, identified and tested for their antagonistic activities against the aforementioned pathogens. Of these, eight isolates were capable of blocking the adherence of pathogens to mammalian cells independent of the skin pathogen tested or model adopted. Moreover, three Lactobacillus isolates (LRA4, LC2 and LR5) effectively prevented the pathogen internalization into epithelial cells in addition to potentiating phagocyte-mediated pathogen killing. Interestingly, the lactobacilli LC2, LF9 and LRA4 markedly inhibited the growth of P. aeruginosa and S. aureus isolates in coculture experiments. Besides, the lactobacilli LRA4, LC2, LR5 and LF9 have counteracted pathogen cytotoxicity. Taken together, the present study revealed some inhibitory activities of lactobacilli against two antibiotic-resistant skin pathogens. Moreover, it revealed two lactobacilli, namely LC2 and LRA4, with antagonistic capacity against different virulence determinants of skin pathogens. These lactobacilli are considered promising probiotic candidates that may represent an alternative therapeutic approach for skin infections.

  18. Spread of community-acquired meticillin-resistant Staphylococcus aureus skin and soft-tissue infection within a family: implications for antibiotic therapy and prevention.

    PubMed

    Amir, N H; Rossney, A S; Veale, J; O'Connor, M; Fitzpatrick, F; Humphreys, H

    2010-04-01

    Outbreaks or clusters of community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA) within families have been reported. We describe a family cluster of CA-MRSA skin and soft-tissue infection where CA-MRSA was suspected because of recurrent infections which failed to respond to flucloxacillin. While the prevalence of CA-MRSA is low worldwide, CA-MRSA should be considered in certain circumstances depending on clinical presentation and risk assessment. Surveillance cultures of family contacts of patients with MRSA should be considered to help establish the prevalence of CA-MRSA and to inform the optimal choice of empiric antibiotic treatment.

  19. Persistent Nasal Carriage of Staphylococcus aureus Is Associated with Deficient Induction of Human β-Defensin 3 after Sterile Wounding of Healthy Skin In Vivo ▿

    PubMed Central

    Zanger, Philipp; Nurjadi, Dennis; Vath, Bernadette; Kremsner, Peter G.

    2011-01-01

    Persistent nasal carriage of Staphylococcus aureus is the primary reservoir for this pathogen and a risk factor for infection. The nares of 12 to 30% of healthy individuals are persistently colonized with staphylococci. Elucidating the yet enigmatic determinants of this phenomenon is of major public health interest. We hypothesized that differences in the levels of antimicrobial peptides (AMPs) that are found in human skin and have pronounced antistaphylococcal activity may contribute to this phenomenon. We compared constitutive and induced mRNA levels of RNase 7 and human β-defensin 3 (HBD-3) in healthy and experimentally wounded gluteal skin of 60 volunteers after ascertaining their carrier status through repeated nasal cultures. We found that levels of HBD-3 expression in skin of persistent nasal carriers of S. aureus were lower: induced levels in carriers were 63% (95% confidence interval, 43 to 94%; P = 0.02) and constitutive levels were 76% (95% confidence interval, 52 to 110%; P = 0.14) of those found in noncarriers. No such associations were present for RNase 7. In conjunction with existing knowledge, these findings suggest that healthy individuals with deficient HBD-3 expression in keratinocytes are more prone to persistent nasal colonization with S. aureus. PMID:21464083

  20. Prospective Multicenter Study of Community-Associated Skin and Skin Structure Infections due to Methicillin-Resistant Staphylococcus aureus in Buenos Aires, Argentina

    PubMed Central

    López Furst, María José; de Vedia, Lautaro; Fernández, Silvina; Gardella, Noella; Ganaha, María Cristina; Prieto, Sergio; Carbone, Edith; Lista, Nicolás; Rotryng, Flavio; Morera, Graciana I.; Mollerach, Marta; Stryjewski, Martín E.

    2013-01-01

    Background Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is now the most common cause of skin and skin structure infections (SSSI) in several world regions. In Argentina prospective, multicenter clinical studies have only been conducted in pediatric populations. Objective Primary: describe the prevalence, clinical and demographic characteristics of adult patients with community acquired SSSI due to MRSA; secondary: molecular evaluation of CA-MRSA strains. Patients with MRSA were compared to those without MRSA. Materials and Methods Prospective, observational, multicenter, epidemiologic study, with molecular analysis, conducted at 19 sites in Argentina (18 in Buenos Aires) between March 2010 and October 2011. Patients were included if they were ≥14 years, were diagnosed with SSSI, a culture was obtained, and there had no significant healthcare contact identified. A logistic regression model was used to identify factors associated with CA-MRSA. Pulse field types, SCCmec, and PVL status were also determined. Results A total of 311 patients were included. CA-MRSA was isolated in 70% (218/311) of patients. Clinical variables independently associated with CA-MRSA were: presence of purulent lesion (OR 3.29; 95%CI 1.67, 6.49) and age <50 years (OR 2.39; 95%CI 1.22, 4.70). The vast majority of CA-MRSA strains causing SSSI carried PVL genes (95%) and were SCCmec type IV. The sequence type CA-MRSA ST30 spa t019 was the predominant clone. Conclusions CA-MRSA is now the most common cause of SSSI in our adult patients without healthcare contact. ST30, SCCmec IV, PVL+, spa t019 is the predominant clone in Buenos Aires, Argentina. PMID:24324543

  1. Effects of the Staphylococcus aureus and Staphylococcus epidermidis Secretomes Isolated from the Skin Microbiota of Atopic Children on CD4+ T Cell Activation.

    PubMed

    Laborel-Préneron, Emeline; Bianchi, Pascale; Boralevi, Franck; Lehours, Philippe; Fraysse, Frédérique; Morice-Picard, Fanny; Sugai, Motoyuki; Sato'o, Yusuke; Badiou, Cédric; Lina, Gérard; Schmitt, Anne-Marie; Redoulès, Daniel; Casas, Christiane; Davrinche, Christian

    2015-01-01

    Interactions between the immune system and skin bacteria are of major importance in the pathophysiology of atopic dermatitis (AD), yet our understanding of them is limited. From a cohort of very young AD children (1 to 3 years old), sensitized to Dermatophagoides pteronyssinus allergens (Der p), we conducted culturomic analysis of skin microbiota, cutaneous transcript profiling and quantification of anti-Der p CD4+ T cells. This showed that the presence of S. aureus in inflamed skin of AD patients was associated with a high IgE response, increased expression of inflammatory and Th2/Th22 transcripts and the prevalence of a peripheral Th2 anti-Der p response. Monocyte-derived dendritic cells (moDC) exposed to the S. aureus and S. epidermidis secretomes were found to release pro-inflammatory IFN-γ and anti-inflammatory IL-10, respectively. Allogeneic moDC exposed to the S. aureus secretome also induced the proliferation of CD4+ T cells and this effect was counteracted by concurrent exposure to the S. epidermidis secretome. In addition, whereas the S. epidermidis secretome promoted the activity of regulatory T cells (Treg) in suppressing the proliferation of conventional CD4+ T cells, the Treg lost this ability in the presence of the S. aureus secretome. We therefore conclude that S. aureus may cause and promote inflammation in the skin of AD children through concomitant Th2 activation and the silencing of resident Treg cells. Commensals such as S. epidermidis may counteract these effects by inducing the release of IL-10 by skin dendritic cells.

  2. Experimental Staphylococcus aureus brain abscess.

    PubMed

    Enzmann, D R; Britt, R R; Obana, W G; Stuart, J; Murphy-Irwin, K

    1986-01-01

    The virulent organism Staphylococcus aureus produced brain abscesses that were quantitatively and qualitatively different from those caused by less virulent organisms. S. aureus abscesses created larger lesions, as earlier ependymitis, delayed progress toward healing, and caused areas of inflammatory escape outside the collagen capsule. Imaging tests revealed similar findings: the abscesses were larger, had more extensive central necrosis, and showed earlier evidence of ependymitis. This virulent organism also demonstrated that white matter is more susceptible than overlying gray matter to destruction by infection. The pattern of spread and other histologic findings suggest that collagen capsule formation has less of an infection "containment" function than was previously thought. PMID:3085444

  3. The association between bedding material and the bacterial counts of Staphylococcus aureus, Streptococcus uberis and coliform bacteria on teat skin and in teat canals in lactating dairy cattle.

    PubMed

    Paduch, Jan-Hendrik; Mohr, Elmar; Krömker, Volker

    2013-05-01

    Several mastitis-causing pathogens are able to colonize the bovine teat canal. The objective of this study was to investigate the association between the treatment of sawdust bedding with a commercial alkaline conditioner and the bacterial counts on teat skin and in the teat canal. The study used a crossover design. Ten lactating Holstein cows that were free of udder infections and mastitis were included in the study. The animals were bedded on either untreated sawdust or sawdust that had been treated with a hydrated lime-based conditioner. Once a day, fresh bedding material was added. After 3 weeks, the bedding material was removed from the cubicles, fresh bedding material was provided, and the cows were rotated between the two bedding material groups. Teat skin and teat canals were sampled using the wet and dry swab technique after weeks 1, 2, 3, 4, 5 and 6. Staphylococcus aureus, Streptococcus uberis, Escherichia coli and other coliform bacteria were detected in the resulting agar plate cultures. The treatment of the bedding material was associated with the teat skin bacterial counts of Str. uberis, Esch. coli and other coliform bacteria. An association was also found between the bedding material and the teat canal bacterial counts of coliform bacteria other than Esch. coli. For Staph. aureus, no associations with the bedding material were found. In general, the addition of a hydrated lime-based conditioner to sawdust reduces the population sizes of environmental pathogens on teat skin and in teat canals.

  4. The association between bedding material and the bacterial counts of Staphylococcus aureus, Streptococcus uberis and coliform bacteria on teat skin and in teat canals in lactating dairy cattle.

    PubMed

    Paduch, Jan-Hendrik; Mohr, Elmar; Krömker, Volker

    2013-05-01

    Several mastitis-causing pathogens are able to colonize the bovine teat canal. The objective of this study was to investigate the association between the treatment of sawdust bedding with a commercial alkaline conditioner and the bacterial counts on teat skin and in the teat canal. The study used a crossover design. Ten lactating Holstein cows that were free of udder infections and mastitis were included in the study. The animals were bedded on either untreated sawdust or sawdust that had been treated with a hydrated lime-based conditioner. Once a day, fresh bedding material was added. After 3 weeks, the bedding material was removed from the cubicles, fresh bedding material was provided, and the cows were rotated between the two bedding material groups. Teat skin and teat canals were sampled using the wet and dry swab technique after weeks 1, 2, 3, 4, 5 and 6. Staphylococcus aureus, Streptococcus uberis, Escherichia coli and other coliform bacteria were detected in the resulting agar plate cultures. The treatment of the bedding material was associated with the teat skin bacterial counts of Str. uberis, Esch. coli and other coliform bacteria. An association was also found between the bedding material and the teat canal bacterial counts of coliform bacteria other than Esch. coli. For Staph. aureus, no associations with the bedding material were found. In general, the addition of a hydrated lime-based conditioner to sawdust reduces the population sizes of environmental pathogens on teat skin and in teat canals. PMID:23445624

  5. Molecular characterization of Staphylococcus aureus isolates from skin and soft tissue infections samples and healthy carriers in the Central Slovenia region.

    PubMed

    Svent-Kucina, Natasa; Pirs, Mateja; Kofol, Romina; Blagus, Rok; Smrke, Dragica Maja; Bilban, Marjan; Seme, Katja

    2016-04-01

    Staphylococcus aureus is among the most important human pathogens. It is associated with different infections and is a major cause of skin and soft tissue infections (SSTIs). The aim of our study was to compare S. aureus isolates associated with SSTIs with isolates obtained from healthy carriers in the Central Slovenia region in terms of antimicrobial susceptibility, genetic diversity by clonal complex (CC)/sequence type, spa type, and by toxin gene profiling. In total, 274 S. aureus isolates were collected prospectively by culturing wound samples from 461 SSTI patients and nasal samples from 451 healthy carriers. We have demonstrated high heterogeneity in terms of CCs and spa type in both groups of isolates. The main clone among SSTI strains was Panton-Valentine leukocidin gene (pvl) positive CC121, whereas the main clone among carrier strains was CC45 carrying a large range of toxin genes. The main spa type in both groups was t091. Pvl was more frequently present in SSTI strains (31.2% SSTI vs 3.6% carrier strains) and staphylococcal enterotoxin C was more frequently present in carrier strains (1.6% SSTI vs 17.0% carrier strains). We have also demonstrated that methicillin-resistant S. aureus was a rare cause (2.8%) of SSTIs in our region.

  6. Examination of hospital length of stay in Canada among patients with acute bacterial skin and skin structure infection caused by methicillin-resistant Staphylococcus aureus

    PubMed Central

    Potashman, Michele H; Stokes, Michael; Liu, Jieruo; Lawrence, Robin; Harris, Linda

    2016-01-01

    Purpose Skin infections, particularly those caused by resistant pathogens, represent a clinical burden. Hospitalization associated with acute bacterial skin and skin structure infections (ABSSSI) caused by methicillin-resistant Staphylococcus aureus (MRSA) is a major contributor to the economic burden of the disease. This study was conducted to provide current, real-world data on hospitalization patterns for patients with ABSSSI caused by MRSA across multiple geographic regions in Canada. Patients and methods This retrospective cohort study evaluated length of stay (LOS) for hospitalized patients with ABSSSI due to MRSA diagnosis across four Canadian geographic regions using the Discharge Abstract Database. Patients with ICD-10-CA diagnosis consistent with ABSSSI caused by MRSA between January 2008 and December 2014 were selected and assigned a primary or secondary diagnosis based on a prespecified ICD-10-CA code algorithm. Results Among 6,719 patients, 3,273 (48.7%) and 3,446 (51.3%) had a primary and secondary diagnosis, respectively. Among patients with a primary or secondary diagnosis, the cellulitis/erysipelas subtype was most common. The majority of patients presented with 0 or 1 comorbid condition; the most common comorbidity was diabetes. The mean LOS over the study period varied by geographic region and year; in 2014 (the most recent year analyzed), LOS ranged from 7.7 days in Ontario to 13.4 days in the Canadian Prairie for a primary diagnosis and from 18.2 days in Ontario to 25.2 days in Atlantic Canada for a secondary diagnosis. A secondary diagnosis was associated with higher rates of continuing care compared with a primary diagnosis (10.6%–24.2% vs 4.6%–12.1%). Conclusion This study demonstrated that the mean LOS associated with ABSSSI due to MRSA in Canada was minimally 7 days. Clinical management strategies, including medication management, which might facilitate hospital discharge, have the potential to reduce hospital LOS and related economic

  7. High prevalence of methicillin resistance and PVL genes amongStaphylococcus aureus isolates from the nares and skin lesions of pediatric patients with atopic dermatitis

    PubMed Central

    Cavalcante, F.S.; Abad, E.D.; Lyra, Y.C.; Saintive, S.B.; Ribeiro, M.; Ferreira, D.C.; dos Santos, K.R.N.

    2015-01-01

    Staphylococcus aureus is highly prevalent among patients with atopic dermatitis (AD), and this pathogen may trigger and aggravate AD lesions. The aim of this study was to determine the prevalence of S. aureus in the nares of pediatric subjects and verify the phenotypic and molecular characteristics of the isolates in pediatric patients with AD. Isolates were tested for antimicrobial susceptibility, SCCmectyping, and Panton-Valentine Leukocidin (PVL) genes. Lineages were determined by pulsed-field gel electrophoresis and multilocus sequence typing (MLST). AD severity was assessed with the Scoring Atopic Dermatitis (SCORAD) index. Among 106 patients, 90 (85%) presented S. aureus isolates in their nares, and 8 also presented the pathogen in their skin infections. Two patients had two positive lesions, making a total of 10 S. aureusisolates from skin infections. Methicillin-resistant S. aureus(MRSA) was detected in 24 (26.6%) patients, and PVL genes were identified in 21 (23.3%), including 6 (75%) of the 8 patients with skin lesions but mainly in patients with severe and moderate SCORAD values (P=0.0095). All 24 MRSA isolates were susceptible to trimethoprim/sulfamethoxazole, while 8 isolates had a minimum inhibitory concentration (MIC) to mupirocin >1024 μg/mL. High lineage diversity was found among the isolates including USA1100/ST30, USA400/ST1, USA800/ST5, ST83, ST188, ST718, ST1635, and ST2791. There was a high prevalence of MRSA and PVL genes among the isolates recovered in this study. PVL genes were found mostly among patients with severe and moderate SCORAD values. These findings can help clinicians improve the therapies and strategies for the management of pediatric patients with AD. PMID:25992644

  8. Staphylococcus aureus vaccines: Deviating from the carol.

    PubMed

    Missiakas, Dominique; Schneewind, Olaf

    2016-08-22

    Staphylococcus aureus, a commensal of the human nasopharynx and skin, also causes invasive disease, most frequently skin and soft tissue infections. Invasive disease caused by drug-resistant strains, designated MRSA (methicillin-resistant S. aureus), is associated with failure of antibiotic therapy and elevated mortality. Here we review polysaccharide-conjugate and subunit vaccines that were designed to prevent S. aureus infection in patients at risk of bacteremia or surgical wound infection but failed to reach their clinical endpoints. We also discuss vaccines with ongoing trials for combinations of polysaccharide-conjugates and subunits. S. aureus colonization and invasive disease are not associated with the development of protective immune responses, which is attributable to a large spectrum of immune evasion factors. Two evasive strategies, assembly of protective fibrin shields via coagulases and protein A-mediated B cell superantigen activity, are discussed as possible vaccine targets. Although correlates for protective immunity are not yet known, opsonophagocytic killing of staphylococci by phagocytic cells offers opportunities to establish such criteria. PMID:27526714

  9. Antibacterial Evaluation of Synthetic Thiazole Compounds In Vitro and In Vivo in a Methicillin-Resistant Staphylococcus aureus (MRSA) Skin Infection Mouse Model.

    PubMed

    Mohammad, Haroon; Cushman, Mark; Seleem, Mohamed N

    2015-01-01

    The emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA), including strains resistant to current antibiotics, has contributed to an increase in the number of skin infections reported in humans in recent years. New therapeutic options are needed to counter this public health challenge. The aim of the present study was to examine the potential of thiazole compounds synthesized by our research group to be used topically to treat MRSA skin and wound infections. The broth microdilution method confirmed that the lead thiazole compound and four analogues are capable of inhibiting MRSA growth at concentrations as low as 1.3 μg/mL. Additionally, three compounds exhibited a synergistic relationship when combined with the topical antibiotic mupirocin against MRSA in vitro via the checkerboard assay. Thus the thiazole compounds have potential to be used alone or in combination with mupirocin against MRSA. When tested against human keratinocytes, four derivatives of the lead compound demonstrated an improved toxicity profile (were found to be non-toxic up to a concentration of 20 μg/mL). Utilizing a murine skin infection model, we confirmed that the lead compound and three analogues exhibited potent antimicrobial activity in vivo, with similar capability as the antibiotic mupirocin, as they reduced the burden of MRSA present in skin wounds by more than 90%. Taken altogether, the present study provides important evidence that these thiazole compounds warrant further investigation for development as novel topical antimicrobials to treat MRSA skin infections.

  10. Antibacterial Evaluation of Synthetic Thiazole Compounds In Vitro and In Vivo in a Methicillin-Resistant Staphylococcus aureus (MRSA) Skin Infection Mouse Model

    PubMed Central

    Mohammad, Haroon; Cushman, Mark; Seleem, Mohamed N.

    2015-01-01

    The emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA), including strains resistant to current antibiotics, has contributed to an increase in the number of skin infections reported in humans in recent years. New therapeutic options are needed to counter this public health challenge. The aim of the present study was to examine the potential of thiazole compounds synthesized by our research group to be used topically to treat MRSA skin and wound infections. The broth microdilution method confirmed that the lead thiazole compound and four analogues are capable of inhibiting MRSA growth at concentrations as low as 1.3 μg/mL. Additionally, three compounds exhibited a synergistic relationship when combined with the topical antibiotic mupirocin against MRSA in vitro via the checkerboard assay. Thus the thiazole compounds have potential to be used alone or in combination with mupirocin against MRSA. When tested against human keratinocytes, four derivatives of the lead compound demonstrated an improved toxicity profile (were found to be non-toxic up to a concentration of 20 μg/mL). Utilizing a murine skin infection model, we confirmed that the lead compound and three analogues exhibited potent antimicrobial activity in vivo, with similar capability as the antibiotic mupirocin, as they reduced the burden of MRSA present in skin wounds by more than 90%. Taken altogether, the present study provides important evidence that these thiazole compounds warrant further investigation for development as novel topical antimicrobials to treat MRSA skin infections. PMID:26536129

  11. [Staphylococcus aureus bacteremia and endocarditis].

    PubMed

    Lagier, J-C; Letranchant, L; Selton-Suty, C; Nloga, J; Aissa, N; Alauzet, C; Carteaux, J-P; May, T; Doco-Lecompte, T

    2008-04-01

    The prevalence of Stapylococcus bacteriaemia is increasing worldwide, because of the increasing use of invasive procedures leading to nosocomial infections, but also of a changing way of life (increasing fashion for tattoos or piercing, use of intravenous drugs). Infective endocarditis develops in 10-30% of the cases of staphylococcus bacteriaemia. Staphylococcus aureus endocarditis must be suspected when it develops in the year following heart surgery or implantation of permanent devices. In drug users, it usually involves the tricuspid valve. According to the resistance of the germ to meticillin, antibiotic therapy uses a combination of intravenous penicillin or glycopeptide and an aminoside. Other antibiotics such as fosfomycin, rifampicin, fusidic acid, or clindamycin can be used when aminosides are contra-indicated. The role of newer antibiotic agents, such as daptomycin or linezolide, remains to be established.

  12. Methicillin resistant Staphylococcus aureus meningitis

    PubMed Central

    Pereira, Noella Maria Delia; Shah, Ira; Ohri, Alpana; Shah, Forum

    2015-01-01

    Methicillin resistant Staphylococcus aureus (MRSA) meningitis is rarely known to occur in children. We report an 11-year-old girl with fever, headache and vomiting, right hemiparesis with left-sided upper motor neuron facial nerve palsy and bladder incontinence. On investigation, she was found to have MRSA meningitis with an acute left thalamo-corpuscular infarct. She was treated with vancomycin, linezolid and rifampicin. She recovered successfully with residual right-sided lower limb monoparesis. MRSA meningitis is rare but can occur in children. PMID:26609421

  13. Molecular Characterization of Community-Associated Methicillin-Resistant Staphylococcus aureus Isolated from Skin and Pus Samples of Outpatients in Japan.

    PubMed

    Yamaguchi, Tetsuo; Okamura, Sakiko; Miura, Yuri; Koyama, Shinobu; Yanagisawa, Hideji; Matsumoto, Tetsuya

    2015-08-01

    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is now endemic in the United States. In Japan, CA-MRSA infections and CA-MRSA surveillance have been scarcely reported. In this study, we conducted a nationwide survey of CA-MRSA in Japan. We collected MRSA strains isolated from outpatients with skin and soft-tissue infection (SSTI) at 107 medical facilities from 24 prefectures in 2010 and 2012. Among 10,385 clinical samples from SSTI patients, 3,581 S. aureus isolates (35%) were obtained and 673 of the S. aureus strains (19%) were identified as MRSA. Among 625 MRSA strains tested in this study, 266 strains (43%) and 114 strains (18%) were classified as SCCmec types IV and V, respectively. Detection of virulence genes was as follows: Panton-Valentine leukocidin (PVL) gene (57 strains, 9%), exfoliative toxin (ET) gene (179 strains, 29%), toxic shock syndrome toxin-1 (TSST-1) gene (195 strains, 31%), or none. PVL-positive strains were classified into eight sequence types (STs) (i.e., ST1, ST5, ST8, ST22, ST30, ST452, ST59, and ST154) and six clonal complexes (i.e., CC1, CC5, CC8, CC22, CC30, and CC59). Only 10 PVL-positive strains (2%) were pulsed-field type USA300 clone. There were a wide variety of CA-MRSA clones in Japan, which were different from the situation in the United States.

  14. SAMMD: Staphylococcus aureus Microarray Meta-Database

    PubMed Central

    Nagarajan, Vijayaraj; Elasri, Mohamed O

    2007-01-01

    Background Staphylococcus aureus is an important human pathogen, causing a wide variety of diseases ranging from superficial skin infections to severe life threatening infections. S. aureus is one of the leading causes of nosocomial infections. Its ability to resist multiple antibiotics poses a growing public health problem. In order to understand the mechanism of pathogenesis of S. aureus, several global expression profiles have been developed. These transcriptional profiles included regulatory mutants of S. aureus and growth of wild type under different growth conditions. The abundance of these profiles has generated a large amount of data without a uniform annotation system to comprehensively examine them. We report the development of the Staphylococcus aureus Microarray meta-database (SAMMD) which includes data from all the published transcriptional profiles. SAMMD is a web-accessible database that helps users to perform a variety of analysis against and within the existing transcriptional profiles. Description SAMMD is a relational database that uses MySQL as the back end and PHP/JavaScript/DHTML as the front end. The database is normalized and consists of five tables, which holds information about gene annotations, regulated gene lists, experimental details, references, and other details. SAMMD data is collected from the peer-reviewed published articles. Data extraction and conversion was done using perl scripts while data entry was done through phpMyAdmin tool. The database is accessible via a web interface that contains several features such as a simple search by ORF ID, gene name, gene product name, advanced search using gene lists, comparing among datasets, browsing, downloading, statistics, and help. The database is licensed under General Public License (GPL). Conclusion SAMMD is hosted and available at . Currently there are over 9500 entries for regulated genes, from 67 microarray experiments. SAMMD will help staphylococcal scientists to analyze their

  15. Analysis of skin and secretions of Dybowski's frogs (Rana dybowskii) exposed to Staphylococcus aureus or Escherichia coli identifies immune response proteins.

    PubMed

    Xiao, Xiang-Hong; Miao, Hui-Min; Xu, Yi-Gang; Zhang, Jing-Yu; Chai, Long-Hui; Xu, Jia-Jia

    2014-04-01

    The aim of the present study was to investigate responses in Dybowski's frogs (Rana dybowskii) exposed to bacteria, using proteomic and transcriptomic approaches. Staphylococcus aureus and Escherichia coli were used as representative Gram-positive and Gram-negative bacteria, respectively, in an infectious challenge model. Frog skin and skin secretions were collected and protein expression in infected frogs compared to control frogs by two-dimensional gel electrophoresis, silver staining, and image analysis. Proteins that demonstrated differential expression were analysed by mass spectrometry and identified by searching protein databases. More than 180 protein spots demonstrated differential expression in E. coli- or S. aureus-challenged groups and, of these, more than 55 spots were up- or down-regulated at least sixfold, post-infection. Proteins with a potential function in the immune response were identified, such as stathmin 1a, annexin A1, superoxide dismutase A, C-type lectin, lysozyme, antimicrobial peptides, cofilin-1-B, mannose receptor, histone H4, prohormone convertase 1, carbonyl reductase 1 and some components of the Toll-like receptor (TLR) signalling pathway. These molecules are potential candidates for further investigation of immune mechanisms in R. dybowskii; in particular, TLR-mediated responses, which might be activated in frogs exposed to pathogenic bacteria as part of innate immune defence, but which might also impact on adaptive immunity to infection.

  16. ENDOGENOUS RESPIRATION OF STAPHYLOCOCCUS AUREUS

    PubMed Central

    Ramsey, H. H.

    1962-01-01

    Ramsey, H. H. (Stanford University, Palo Alto, Calif.). Endogenous respiration of Staphylococcus aureus. J. Bacteriol. 83:507–514. 1962.—The endogenous respiration of Staphylococcus aureus is dependent upon the medium used to grow the cell suspension. Within wide ranges, the concentration of glucose in the medium has no effect upon subsequent endogenous respiration of the cells, but the concentration of amino acids in the medium, within certain limits, has a very marked effect. The total carbohydrate content of the cells does not decrease during endogenous respiration. As endogenous respiration proceeds, ammonia appears in the supernatant, and the concentration of glutamic acid in the free amino acid pool decreases. Organisms grown in the presence of labeled glutamic acid liberate labeled CO2 when allowed to respire without added substrate. The principal source of this CO2 is the free glutamate in the metabolic pool; its liberation is not suppressed by exogenous glucose or glutamate. With totally labeled cells, the free pool undergoes a rapid, but not total, depletion and remains at a low level for a long time. Activity of the protein fraction declines with time and shows the largest net decrease of all fractions. Exogenous glucose does not inhibit the release of labeled CO2 by totally labeled cells. Other amino acids in the free pool which can serve as endogenous substrates are aspartic acid and, to much lesser extents, glycine and alanine. The results indicate that both free amino acids and cellular protein may serve as endogenous substrates of S. aureus. PMID:14490204

  17. Fluorescent reporters for Staphylococcus aureus.

    PubMed

    Malone, Cheryl L; Boles, Blaise R; Lauderdale, Katherine J; Thoendel, Matthew; Kavanaugh, Jeffrey S; Horswill, Alexander R

    2009-06-01

    With the emergence of Staphylococcus aureus as a prominent pathogen in community and healthcare settings, there is a growing need for effective reporter tools to facilitate physiology and pathogenesis studies. Fluorescent proteins are ideal as reporters for their convenience in monitoring gene expression, performing host interaction studies, and monitoring biofilm growth. We have developed a suite of fluorescent reporter plasmids for labeling S. aureus cells. These plasmids encode either green fluorescent protein (GFP) or higher wavelength reporter variants for yellow (YFP) and red (mCherry) labeling. The reporters were placed under control of characterized promoters to enable constitutive or inducible expression. Additionally, plasmids were assembled with fluorescent reporters under control of the agr quorum-sensing and sigma factor B promoters, and the fluorescent response with wildtype and relevant mutant strains was characterized. Interestingly, reporter expression displayed a strong dependence on ribosome binding site (RBS) sequence, with the superoxide dismutase RBS displaying the strongest expression kinetics of the sequences examined. To test the robustness of the reporter plasmids, cell imaging was performed with fluorescence microscopy and cell populations were separated using florescence-activated cell sorting (FACS), demonstrating the possibilities of simultaneous monitoring of multiple S. aureus properties. Finally, a constitutive YFP reporter displayed stable, robust labeling of biofilm growth in a flow-cell apparatus. This toolbox of fluorescent reporter plasmids will facilitate cell labeling for a variety of different experimental applications. PMID:19264102

  18. Molecular characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains isolated from outpatients with skin and soft tissue infections in Wuhan, China.

    PubMed

    Liu, Xiaoli; Liang, Jiansheng; Jiang, Yuanshan; Wang, Bin; Yuan, Hong; Zhang, Lihua; Zhou, Yanfei; Xu, Huiqiong; Zhou, Wang

    2016-06-01

    This study aims to investigate the antimicrobial susceptibility, molecular characteristics and virulence genes of community-acquired methicillin-resistant ITALIC! Staphylococcus aureus(CA-MRSA) isolates with skin and soft tissue infections (SSTIs). Outpatients with SSTIs visiting five medical and health institutions were enrolled from 2011 to 2013. Available ITALIC! S. aureus isolates were characterized by antimicrobial susceptibility testing, and detection of PVL genes. For CA-MRSA isolates, we performed typing of staphylococcal cassette chromosome ITALIC! mec(SCC ITALIC! mec), multi locus sequence typing (MLST) and carriage of 27 virulence genes. A total of 203 ITALIC! S. aureusstrains were isolated from 1400 outpatients with SSTIs, and 21 (10.3%) were CA-MRSA isolates. The positive rate of PVL genes among ITALIC! S. aureus, CA-MRSA and methicillin-susceptible ITALIC! S. aureus(MSSA) isolates were 39.4%, 71.4% and 35.7%, respectively. CA-MRSA strains had greater sensitivity to non-β-lactam antimicrobial agents. All CA-MRSA isolates belonged to SCC ITALIC! mecIV and V, accounting for 47.6% and 52.4%, respectively. ST59 was the most common lineage accounting for 76.2%; ST59-SCC ITALIC! mecIVa-PVL-positive clone was found to be the predominant clone, accounting for 38.1%. All CA-MRSA isolates were found to be positive for one or more virulence genes, 28.6% of isolates carried PVL, ITALIC! seb, ITALIC! sek, ITALIC! seq, ITALIC! hla, ITALIC! hlb, ITALIC! hldand ITALIC! hlg-2. CA-MRSA infections were relatively uncommon in outpatients with SSTIs, but they carried many virulence genes, ST59-SCC ITALIC! mecIV a-PVL-positive clone was the predominant clone in Wuhan, China.

  19. Status Report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society: Part 3: Current Perspectives on Skin and Soft Tissue Infections with Emphasis on Methicillin-resistant Staphylococcus aureus, Commonly Encountered Scenarios when Antibiotic Use May Not Be Needed, and Concluding Remarks on Rational Use of Antibiotics in Dermatology.

    PubMed

    Del Rosso, James Q; Rosen, Ted; Thiboutot, Diane; Webster, Guy F; Gallo, Richard L; Leyden, James J; Walker, Clay; Zhanel, George; Eichenfield, Lawrence

    2016-06-01

    In this third article of the three-part series, management of skin and soft tissue infections is reviewed with emphasis on new information on methicillin-resistant Staphylococcus aureus. Due to changes in the evolution of methicillin-resistant Staphylococcus aureus clones, previous distinctions between healthcare-acquired methicillin-resistant Staphylococcus aureus and community-acquired methicillin-resistant Staphylococcus aureus are currently much less clinically relevant. Many nosocomial cases of methicillin-resistant Staphylococcus aureus infection are now caused by community-acquired methicillin-resistant Staphylococcus aureus, with changing patterns of antibiotic susceptibility and resistance. Also reviewed are clinical scenarios where antibiotics may not be needed and suggestions for optimal use of antibiotic therapy for dermatologie conditions, including recommendations on perioperative antibiotic use. PMID:27386047

  20. Efficacy of a New Fluoroquinolone, JNJ-Q2, in Murine Models of Staphylococcus aureus and Streptococcus pneumoniae Skin, Respiratory, and Systemic Infections▿§

    PubMed Central

    Fernandez, Jeffrey; Hilliard, Jamese J.; Morrow, Brian J.; Melton, John L.; Flamm, Robert K.; Barron, Alfred M.; Lynch, A. Simon

    2011-01-01

    The in vivo efficacy of JNJ-Q2, a new broad-spectrum fluoroquinolone (FQ), was evaluated in a murine septicemia model with methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) and in a Streptococcus pneumoniae lower respiratory tract infection model. JNJ-Q2 and comparators were also evaluated in an acute murine skin infection model using a community-acquired MRSA strain and in an established skin infection (ESI) model using a hospital-acquired strain, for which the selection of resistant mutants was also determined. JNJ-Q2 demonstrated activity in the MSSA septicemia model that was comparable to that moxifloxacin (JNJ-Q2 50% effective dose [ED50], 0.2 mg/kg of body weight administered subcutaneously [s.c.] and 2 mg/kg administered orally [p.o.]) and activity in the MRSA septicemia model that was superior to that of vancomycin (JNJ-Q2 ED50, 1.6 mg/kg administered s.c.). In an S. pneumoniae lower respiratory tract infection model, JNJ-Q2 displayed activity (ED50, 1.9 mg/kg administered s.c. and 7.4 mg/kg administered p.o.) that was comparable to that of gemifloxacin and superior to that of moxifloxacin. In both MRSA skin infection models, treatment with JNJ-Q2 resulted in dose-dependent reductions in bacterial titers in the skin, with the response to JNJ-Q2 at each dose exceeding the responses of the comparators ciprofloxacin, moxifloxacin, linezolid, and vancomycin. Additionally, in the ESI model, JNJ-Q2 showed a low or nondetectable propensity for ciprofloxacin resistance selection, in contrast to the selection of ciprofloxacin-resistant mutants observed for both ciprofloxacin and moxifloxacin. JNJ-Q2 demonstrated activity that was comparable or superior to the activity of fluoroquinolone or antistaphylococcal comparators in several local and systemic skin infection models performed with both S. aureus and S. pneumoniae and is currently being evaluated in phase II human clinical trials. PMID:21911568

  1. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Staphylococcus aureus serological reagents. 866... Staphylococcus aureus serological reagents. (a) Identification. Staphylococcus aureus serological reagents are... epidemiological information on these diseases. Certain strains of Staphylococcus aureus produce an...

  2. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Staphylococcus aureus serological reagents. 866... Staphylococcus aureus serological reagents. (a) Identification. Staphylococcus aureus serological reagents are... epidemiological information on these diseases. Certain strains of Staphylococcus aureus produce an...

  3. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Staphylococcus aureus serological reagents. 866... Staphylococcus aureus serological reagents. (a) Identification. Staphylococcus aureus serological reagents are... epidemiological information on these diseases. Certain strains of Staphylococcus aureus produce an...

  4. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Staphylococcus aureus serological reagents. 866... Staphylococcus aureus serological reagents. (a) Identification. Staphylococcus aureus serological reagents are... epidemiological information on these diseases. Certain strains of Staphylococcus aureus produce an...

  5. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Staphylococcus aureus serological reagents. 866... Staphylococcus aureus serological reagents. (a) Identification. Staphylococcus aureus serological reagents are... epidemiological information on these diseases. Certain strains of Staphylococcus aureus produce an...

  6. Exploring Staphylococcus aureus pathways to disease for vaccine development

    PubMed Central

    DeDent, Andrea; Kim, Hwan Keun; Missiakas, Dominique; Schneewind, Olaf

    2012-01-01

    Staphylococcus aureus is a commensal of the human skin or nares and a pathogen that frequently causes skin and soft tissue infections as well as bacteremia and sepsis. Recent efforts in understanding the molecular mechanisms of pathogenesis revealed key virulence strategies of S. aureus in host tissues: bacterial scavenging of iron, induction of coagulation pathways to promote staphylococcal agglutination in the vasculature, and suppression of innate and adaptive immune responses. Advances in all three areas have been explored for opportunities in vaccine design in an effort to identify the critical protective antigens of S. aureus. Human clinical trials with specific subunit vaccines have failed, yet provide important insights for the design of future trials that must address the current epidemic of S. aureus infections with drug-resistant isolates (MRSA, methicillin-resistant S. aureus). PMID:22130613

  7. Staphylococcus aureus Shifts toward Commensalism in Response to Corynebacterium Species.

    PubMed

    Ramsey, Matthew M; Freire, Marcelo O; Gabrilska, Rebecca A; Rumbaugh, Kendra P; Lemon, Katherine P

    2016-01-01

    Staphylococcus aureus-human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe-microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr) system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence toward a commensal state when exposed to commensal Corynebacterium species.

  8. Staphylococcus aureus Shifts toward Commensalism in Response to Corynebacterium Species.

    PubMed

    Ramsey, Matthew M; Freire, Marcelo O; Gabrilska, Rebecca A; Rumbaugh, Kendra P; Lemon, Katherine P

    2016-01-01

    Staphylococcus aureus-human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe-microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr) system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence toward a commensal state when exposed to commensal Corynebacterium species. PMID:27582729

  9. Staphylococcus aureus Shifts toward Commensalism in Response to Corynebacterium Species

    PubMed Central

    Ramsey, Matthew M.; Freire, Marcelo O.; Gabrilska, Rebecca A.; Rumbaugh, Kendra P.; Lemon, Katherine P.

    2016-01-01

    Staphylococcus aureus–human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe–microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr) system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence toward a commensal state when exposed to commensal Corynebacterium species. PMID:27582729

  10. 9 CFR 113.115 - Staphylococcus Aureus Bacterin-Toxoid.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Staphylococcus Aureus Bacterin-Toxoid... REQUIREMENTS Inactivated Bacterial Products § 113.115 Staphylococcus Aureus Bacterin-Toxoid. Staphylococcus... Staphylococcus aureus which has been inactivated and is nontoxic. Each serial of biological product...

  11. 9 CFR 113.115 - Staphylococcus Aureus Bacterin-Toxoid.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Staphylococcus Aureus Bacterin-Toxoid... REQUIREMENTS Inactivated Bacterial Products § 113.115 Staphylococcus Aureus Bacterin-Toxoid. Staphylococcus... Staphylococcus aureus which has been inactivated and is nontoxic. Each serial of biological product...

  12. 9 CFR 113.115 - Staphylococcus Aureus Bacterin-Toxoid.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Staphylococcus Aureus Bacterin-Toxoid... REQUIREMENTS Inactivated Bacterial Products § 113.115 Staphylococcus Aureus Bacterin-Toxoid. Staphylococcus... Staphylococcus aureus which has been inactivated and is nontoxic. Each serial of biological product...

  13. 9 CFR 113.115 - Staphylococcus Aureus Bacterin-Toxoid.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Staphylococcus Aureus Bacterin-Toxoid... REQUIREMENTS Inactivated Bacterial Products § 113.115 Staphylococcus Aureus Bacterin-Toxoid. Staphylococcus... Staphylococcus aureus which has been inactivated and is nontoxic. Each serial of biological product...

  14. 9 CFR 113.115 - Staphylococcus Aureus Bacterin-Toxoid.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Staphylococcus Aureus Bacterin-Toxoid... REQUIREMENTS Inactivated Bacterial Products § 113.115 Staphylococcus Aureus Bacterin-Toxoid. Staphylococcus... Staphylococcus aureus which has been inactivated and is nontoxic. Each serial of biological product...

  15. In vivo bioluminescence imaging to evaluate systemic and topical antibiotics against community-acquired methicillin-resistant Staphylococcus aureus-infected skin wounds in mice.

    PubMed

    Guo, Yi; Ramos, Romela Irene; Cho, John S; Donegan, Niles P; Cheung, Ambrose L; Miller, Lloyd S

    2013-02-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) frequently causes skin and soft tissue infections, including impetigo, cellulitis, folliculitis, and infected wounds and ulcers. Uncomplicated CA-MRSA skin infections are typically managed in an outpatient setting with oral and topical antibiotics and/or incision and drainage, whereas complicated skin infections often require hospitalization, intravenous antibiotics, and sometimes surgery. The aim of this study was to develop a mouse model of CA-MRSA wound infection to compare the efficacy of commonly used systemic and topical antibiotics. A bioluminescent USA300 CA-MRSA strain was inoculated into full-thickness scalpel wounds on the backs of mice and digital photography/image analysis and in vivo bioluminescence imaging were used to measure wound healing and the bacterial burden. Subcutaneous vancomycin, daptomycin, and linezolid similarly reduced the lesion sizes and bacterial burden. Oral linezolid, clindamycin, and doxycycline all decreased the lesion sizes and bacterial burden. Oral trimethoprim-sulfamethoxazole decreased the bacterial burden but did not decrease the lesion size. Topical mupirocin and retapamulin ointments both reduced the bacterial burden. However, the petrolatum vehicle ointment for retapamulin, but not the polyethylene glycol vehicle ointment for mupirocin, promoted wound healing and initially increased the bacterial burden. Finally, in type 2 diabetic mice, subcutaneous linezolid and daptomycin had the most rapid therapeutic effect compared with vancomycin. Taken together, this mouse model of CA-MRSA wound infection, which utilizes in vivo bioluminescence imaging to monitor the bacterial burden, represents an alternative method to evaluate the preclinical in vivo efficacy of systemic and topical antimicrobial agents.

  16. In vivo bioluminescence imaging to evaluate systemic and topical antibiotics against community-acquired methicillin-resistant Staphylococcus aureus-infected skin wounds in mice.

    PubMed

    Guo, Yi; Ramos, Romela Irene; Cho, John S; Donegan, Niles P; Cheung, Ambrose L; Miller, Lloyd S

    2013-02-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) frequently causes skin and soft tissue infections, including impetigo, cellulitis, folliculitis, and infected wounds and ulcers. Uncomplicated CA-MRSA skin infections are typically managed in an outpatient setting with oral and topical antibiotics and/or incision and drainage, whereas complicated skin infections often require hospitalization, intravenous antibiotics, and sometimes surgery. The aim of this study was to develop a mouse model of CA-MRSA wound infection to compare the efficacy of commonly used systemic and topical antibiotics. A bioluminescent USA300 CA-MRSA strain was inoculated into full-thickness scalpel wounds on the backs of mice and digital photography/image analysis and in vivo bioluminescence imaging were used to measure wound healing and the bacterial burden. Subcutaneous vancomycin, daptomycin, and linezolid similarly reduced the lesion sizes and bacterial burden. Oral linezolid, clindamycin, and doxycycline all decreased the lesion sizes and bacterial burden. Oral trimethoprim-sulfamethoxazole decreased the bacterial burden but did not decrease the lesion size. Topical mupirocin and retapamulin ointments both reduced the bacterial burden. However, the petrolatum vehicle ointment for retapamulin, but not the polyethylene glycol vehicle ointment for mupirocin, promoted wound healing and initially increased the bacterial burden. Finally, in type 2 diabetic mice, subcutaneous linezolid and daptomycin had the most rapid therapeutic effect compared with vancomycin. Taken together, this mouse model of CA-MRSA wound infection, which utilizes in vivo bioluminescence imaging to monitor the bacterial burden, represents an alternative method to evaluate the preclinical in vivo efficacy of systemic and topical antimicrobial agents. PMID:23208713

  17. Carotenoid Formation by Staphylococcus aureus

    PubMed Central

    Hammond, Ray K.; White, David C.

    1970-01-01

    The carotenoid pigments of Staphylococcus aureus U-71 were identified as phytoene; ζ-carotene; δ-carotene; phytofluenol; a phytofluenol-like carotenoid, rubixanthin; and three rubixanthin-like carotenoids after extraction, saponification, chromatographic separation, and determination of their absorption spectra. There was no evidence of carotenoid esters or glycoside ethers in the extract before saponification. During the aerobic growth cycle the total carotenoids increased from 45 to 1,000 nmoles per g (dry weight), with the greatest increases in the polar, hydroxylated carotenoids. During the anaerobic growth cycle, the total carotenoids increased from 20 nmoles per g (dry weight) to 80 nmoles per g (dry weight), and only traces of the polar carotenoids were formed. Light had no effect on carotenoid synthesis. About 0.14% of the mevalonate-2-14C added to the culture was incorporated into the carotenoids during each bacterial doubling. The total carotenoids did not lose radioactivity when grown in the absence of 14C for 2.5 bacterial doublings. The total carotenoids did not lose radioactivity when grown in the absence of 14C for 2.5 bacterial doublings. The incorporation and turnover of 14C indicated the carotenes were sequentially desaturated and hydroxylated to form the polar carotenoids. PMID:5423369

  18. Epidemiological data of staphylococcal scalded skin syndrome in France from 1997 to 2007 and microbiological characteristics of Staphylococcus aureus associated strains.

    PubMed

    Lamand, V; Dauwalder, O; Tristan, A; Casalegno, J S; Meugnier, H; Bes, M; Dumitrescu, O; Croze, M; Vandenesch, F; Etienne, J; Lina, G

    2012-12-01

    Epidemiological data on staphylococcal scalded skin syndromes (SSSS), including bullous impetigo (BI) and generalized exfoliative syndrome (GES), are scarce. To better characterize SSSS and associated Staphylococcus aureus strains, we conducted a retrospective study of 349 cases collected in France between 1997 and 2007 by the National Reference Centre of Staphylococci. Our results showed a stationary evolution of SSSS cases, with a heterogeneous distribution of cases in France. Although notification was not exhaustive, we estimated an incidence of 0.56 cases/year/million inhabitants, in accordance with previous studies conducted in France and Europe, with a median age of 2 years old and sex ratios of 1. A seasonal effect was observed, with a higher GES/BI ratio in autumn compared with other seasons, which could be explained by the impact of viral co-infection. Genetic analysis of S. aureus strains showed that accessory gene regulator (agr) 4, exfoliative toxin A (eta) and B (etb) genes, staphylococcal and enterotoxin-like O (selo) gene and agr4 etb selo profiles were predominantly associated with GES, whereas agr2 eta and agr4 eta selo were more frequently observed with BI. Only one methicillin-resistant strain was found. Protein A (spa) typing identified two main genotypes: spa clonal complex (CC) 159/sequence-type (ST) 121 (75%) and spaCC346/ST15 (18%). spaCC159 was mainly associated with agr4 eta etb selo, agr4 eta selo and agr4 etb selo, and spaCC346 was mainly associated with agr2 eta, suggesting that French SSSS cases are caused by these two main lineages. However, in a multivariate analysis, only etb was independently associated with GES. PMID:23078129

  19. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis

    PubMed Central

    Kobayashi, Tetsuro; Glatz, Martin; Horiuchi, Keisuke; Kawasaki, Hiroshi; Akiyama, Haruhiko; Kaplan, Daniel H.; Kong, Heidi H.; Amagai, Masayuki; Nagao, Keisuke

    2015-01-01

    Summary Staphylococcus aureus skin colonization is universal in atopic dermatitis and common in cancer patients treated with epidermal growth factor receptor inhibitors. However, the causal relationship of dysbiosis and eczema has yet to be clarified. Herein, we demonstrate that Adam17fl/flSox9-Cre mice, generated to model ADAM17-deficiency in human, developed eczematous dermatitis with naturally occurring dysbiosis, similar to that observed in atopic dermatitis. Corynebacterium mastitidis, S. aureus, and Corynebacterium bovis sequentially emerged during the onset of eczematous dermatitis, and antibiotic specific for these bacterial species almost completely reversed dysbiosis and eliminated skin inflammation. Whereas S. aureus prominently drove eczema formation, C. bovis induced robust T helper 2 cell responses. Langerhans cells were required for eliciting immune responses against S. aureus inoculation. These results characterize differential contributions of dysbiotic flora during eczema formation, and highlight the microbiota-host immunity axis as a possible target for future therapeutics in eczematous dermatitis. PMID:25902485

  20. Risk factors for methicillin-resistant Staphylococcus aureus skin and soft tissue infection in MRSA-colonized patients discharged from a Veterans Affairs hospital.

    PubMed

    Cadena, J; Richardson, A M; Frei, C R

    2016-02-01

    Currently, limited studies have quantified the risk of methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infections (SSTIs) for MRSA-colonized patients on discharge from hospital. Our retrospective, case-control study identified independent risk factors for the development of MRSA SSTIs among such patients detected by active MRSA nasal screening in an acute care hospital by PCR on admission, and bacteriological cultures on discharge. Cases were MRSA-colonized patients aged ⩾18 years who developed a MRSA SSTI post-discharge and controls were those who did not develop a MRSA SSTI post-discharge. Controls were matched to cases by length of follow-up (±10 days) for up to 18 months. Potential demographic and clinical risk factors for MRSA infection were identified using electronic queries and manual chart abstraction; data were compared by standard statistical tests and variables with P values ⩽0·05 in bivariable analysis were entered into a logistic regression model. Multivariable analysis demonstrated prior hospital admission within 12 months (P = 0·02), prior MRSA infection (P = 0·05), and previous myocardial infarction (P = 0·01) were independently predictive of a MRSA SSTI post-discharge. Identification of MRSA colonization upon admission and recognition of risk factors could help identify a high-risk population that could benefit from MRSA SSTI prevention strategies.

  1. Use of the Antimicrobial Peptide Pardaxin (GE33) To Protect against Methicillin-Resistant Staphylococcus aureus Infection in Mice with Skin Injuries

    PubMed Central

    Huang, Han-Ning; Pan, Chieh-Yu; Chan, Yi-Lin

    2014-01-01

    Antimicrobial peptides (AMPs) have recently been determined to be potential candidates for treating drug-resistant bacterial infections. Pardaxin (GE33), a marine antimicrobial peptide, has been reported to possess antimicrobial function. In this study, we investigated whether pardaxin promoted healing of contaminated wounds in mice. One square centimeter of outer skin was excised from the ventral region of mice, and a lethal dose of methicillin-resistant Staphylococcus aureus (MRSA) was applied in the presence or absence of methicillin, vancomycin, or pardaxin. While untreated mice and mice treated with methicillin died within 3 days, mice treated with pardaxin survived infection. Pardaxin decreased MRSA bacterial counts in the wounded region and also enhanced wound closure. Reepithelialization and dermal maturation were also faster in mice treated with pardaxin than in mice treated with vancomycin. In addition, pardaxin treatment controlled excess recruitment of monocytes and macrophages and increased the expression of vascular endothelial growth factor (VEGF). In conclusion, these results suggest that pardaxin is capable of enhancing wound healing. Furthermore, this study provides an excellent platform for comparing the antimicrobial activities of peptide and nonpeptide antibiotics. PMID:24366739

  2. Hidden Staphylococcus aureus Carriage: Overrated or Underappreciated?

    PubMed

    van Belkum, Alex

    2016-01-01

    Staphylococcus aureus is a persistent companion bacterial species in one-third of humankind. Reservoirs include the nasal and nasopharyngeal cavities, skin, and gastrointestinal (GI) tract. Despite earlier claims that colonization of individuals is caused by clonal organisms, next-generation sequencing (NGS) has revealed that resident type heterogeneity is not exceptional. Carriage, whether overt or hidden, is correlated with a risk of autoinfection. In a recent article in mBio, it was shown that, based on staphylococcal genome sequencing, low-level GI persistence may cause long-term nosocomial outbreaks [L. Senn et al., 7(1):e02039-15, 2016, doi:10.1128/mBio.02039-15]. Institutional endemicity with methicillin-resistant S. aureus (MRSA) sequence type 228 (ST228) is shown to originate not from high-level nasal carriage or poor compliance with infection control practice but from low-grade asymptomatic GI colonization. This shows the power of NGS in elucidating staphylococcal epidemiology and, even more important, demonstrates that (drug-resistant) microorganisms may possess stealthy means of persistence. Identifying these persistence mechanisms is key to successful infection control. PMID:26884429

  3. Progress Toward a Staphylococcus aureus Vaccine

    PubMed Central

    Spellberg, Brad

    2012-01-01

    High attack rates and the ability of Staphylococcus aureus to develop resistance to all antibiotics in medical practice heightens the urgency for vaccine development. S. aureus causes many disease syndromes, including invasive disease, pneumonia, and skin and soft tissue infections. It remains unclear whether a single vaccine could protect against all of these. Vaccine composition is also challenging. Active immunization with conjugated types 5 and 8 capsular polysaccharides, an iron scavenging protein, isdB, and passive immunization against clumping factor A and lipoteichoic acid have all proven unsuccessful in clinical trials. Many experts advocate an approach using multiple antigens and have suggested that the right combination of antigens has not yet been identified. Others advocate that a successful vaccine will require antigens that work by multiple immunologic mechanisms. Targeting staphylococcal protein A and stimulating the T-helper 17 lymphocyte pathway have each received recent attention as alternative approaches to vaccination in addition to the more traditional identification of opsonophagocytic antibodies. Many questions remain as to how to successfully formulate a successful vaccine and to whom it should be deployed. PMID:22186773

  4. Recent microbiological shifts in perianal bacterial dermatitis: Staphylococcus aureus predominance.

    PubMed

    Heath, Candrice; Desai, Nina; Silverberg, Nanette B

    2009-01-01

    Traditionally, bacterial infections of the anal skin have been found to be caused by Streptococcus. The aim of this study was to determine the breakdown of bacterial isolates and the current presentation of bacterial diseases involving the perineum. From the chart review of children who had bacterial cultures of the anus from 2005 to 2008 in a pediatric dermatology practice population in New York City, 26 pediatric patients (ages 5 months to 12 yrs) who had the indications of anal erythema or recurrent buttocks dermatitis were identified. Bacterial cultures of 17 patients grew pathogens, that of 14 (82% of identifiably infected patients) grew Staphylococcus aureus, in 11 as a solo pathogen (6 MSSA and 5 MRSA in 2 family clusters). Streptococcus was identified in three patients, two on culture and one on latex agglutination test; and two patients were identified as having both group A beta hemolytic Streptococcus and Staphylococcus aureus (2 MSSA and 1 MRSA). In patients with S. aureus perianally, concurrent small papules and pustules of the buttocks or extension of the erythema to adjacent buttock skin was the primary clinical feature distinguishing this condition from isolated streptococcal disease. Whereas Streptococcal infections of the anus and buttocks occur commonly, Staphylococcus aureus has become the leading cause of anal bacterial infection in the setting of skin involvement; therefore, antibacterial therapy for anal and buttock bacterial infections should be tailored accordingly. PMID:20199443

  5. Facing Antibiotic Resistance: Staphylococcus aureus Phages as a Medical Tool

    PubMed Central

    Kaźmierczak, Zuzanna; Górski, Andrzej; Dąbrowska, Krystyna

    2014-01-01

    Staphylococcus aureus is a common and often virulent pathogen in humans. This bacterium is widespread, being present on the skin and in the nose of healthy people. Staphylococcus aureus can cause infections with severe outcomes ranging from pustules to sepsis and death. The introduction of antibiotics led to a general belief that the problem of bacterial infections would be solved. Nonetheless, pathogens including staphylococci have evolved mechanisms of drug resistance. Among current attempts to address this problem, phage therapy offers a promising alternative to combat staphylococcal infections. Here, we present an overview of current knowledge on staphylococcal infections and bacteriophages able to kill Staphylococcus, including experimental studies and available data on their clinical use. PMID:24988520

  6. Presence of Laminin Receptors in Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Lopes, J. D.; Dos Reis, M.; Brentani, R. R.

    1985-07-01

    A characteristic feature of infection by Staphylococcus aureus is bloodstream invasion and widespread metastatic abscess formation. The ability to extravasate, which entails crossing the vascular basement membrane, appears to be critical for the organism's pathogenicity. Extravasation by normal and neoplastic mammalian cells has been correlated with the presence of specific cell surface receptors for the basement membrane glycoprotein laminin. Similar laminin receptors were found in Staphylococcus aureus but not in Staphylococcus epidermidis, a noninvasive pathogen. There were about 100 binding sites per cell, with an apparent binding affinity of 2.9 nanomolar. The molecular weight of the receptor was 50,000 and pI was 4.2. Eukaryotic laminin receptors were visualized by means of the binding of S. aureus in the presence of laminin. Prokaryotic and eukaryotic invasive cells might utilize similar, if not identical, mechanisms for invasion.

  7. Targeting Staphylococcus aureus α-toxin as a novel approach to reduce severity of recurrent skin and soft-tissue infections.

    PubMed

    Sampedro, Georgia R; DeDent, Andrea C; Becker, Russell E N; Berube, Bryan J; Gebhardt, Michael J; Cao, Hongyuan; Bubeck Wardenburg, Juliane

    2014-10-01

    Staphyococcus aureus frequently causes recurrent skin and soft-tissue infection (SSTI). In the pediatric population, elevated serum antibody targeting S. aureus α-toxin is correlated with a reduced incidence of recurrent SSTI. Using a novel model of recurrent SSTI, we demonstrated that expression of α-toxin during primary infection increases the severity of recurrent disease. Antagonism of α-toxin by either a dominant-negative toxin mutant or a small molecule inhibitor of the toxin receptor ADAM10 during primary infection reduces reinfection abscess severity. Early neutralization of α-toxin activity during S. aureus SSTI therefore offers a new therapeutic strategy to mitigate primary and recurrent disease.

  8. Triclosan promotes Staphylococcus aureus nasal colonization.

    PubMed

    Syed, Adnan K; Ghosh, Sudeshna; Love, Nancy G; Boles, Blaise R

    2014-01-01

    The biocide triclosan is used in many personal care products, including toothpastes, soaps, clothing, and medical equipment. Consequently, it is present as a contaminant in the environment and has been detected in some human fluids, including serum, urine, and milk. Staphylococcus aureus is an opportunistic pathogen that colonizes the noses and throats of approximately 30% of the population. Colonization with S. aureus is known to be a risk factor for several types of infection. Here we demonstrate that triclosan is commonly found in the nasal secretions of healthy adults and the presence of triclosan trends positively with nasal colonization by S. aureus. We demonstrate that triclosan can promote the binding of S. aureus to host proteins such as collagen, fibronectin, and keratin, as well as inanimate surfaces such as plastic and glass. Lastly, triclosan-exposed rats are more susceptible to nasal colonization with S. aureus. These data reveal a novel factor that influences the ability of S. aureus to bind surfaces and alters S. aureus nasal colonization. IMPORTANCE Triclosan has been used as a biocide for over 40 years, but the broader effects that it has on the human microbiome have not been investigated. We demonstrate that triclosan is present in nasal secretions of a large portion of a test population and its presence correlates with Staphylococcus aureus nasal colonization. Triclosan also promotes the binding of S. aureus to human proteins and increases the susceptibility of rats to nasal colonization by S. aureus. These findings are significant because S. aureus colonization is a known risk factor for the development of several types of infections. Our data demonstrate the unintended consequences of unregulated triclosan use and contribute to the growing body of research demonstrating inadvertent effects of triclosan on the environment and human health. PMID:24713325

  9. Triclosan promotes Staphylococcus aureus nasal colonization.

    PubMed

    Syed, Adnan K; Ghosh, Sudeshna; Love, Nancy G; Boles, Blaise R

    2014-04-08

    The biocide triclosan is used in many personal care products, including toothpastes, soaps, clothing, and medical equipment. Consequently, it is present as a contaminant in the environment and has been detected in some human fluids, including serum, urine, and milk. Staphylococcus aureus is an opportunistic pathogen that colonizes the noses and throats of approximately 30% of the population. Colonization with S. aureus is known to be a risk factor for several types of infection. Here we demonstrate that triclosan is commonly found in the nasal secretions of healthy adults and the presence of triclosan trends positively with nasal colonization by S. aureus. We demonstrate that triclosan can promote the binding of S. aureus to host proteins such as collagen, fibronectin, and keratin, as well as inanimate surfaces such as plastic and glass. Lastly, triclosan-exposed rats are more susceptible to nasal colonization with S. aureus. These data reveal a novel factor that influences the ability of S. aureus to bind surfaces and alters S. aureus nasal colonization. IMPORTANCE Triclosan has been used as a biocide for over 40 years, but the broader effects that it has on the human microbiome have not been investigated. We demonstrate that triclosan is present in nasal secretions of a large portion of a test population and its presence correlates with Staphylococcus aureus nasal colonization. Triclosan also promotes the binding of S. aureus to human proteins and increases the susceptibility of rats to nasal colonization by S. aureus. These findings are significant because S. aureus colonization is a known risk factor for the development of several types of infections. Our data demonstrate the unintended consequences of unregulated triclosan use and contribute to the growing body of research demonstrating inadvertent effects of triclosan on the environment and human health.

  10. Antimicrobial agent of susceptibilities and antiseptic resistance gene distribution among methicillin-resistant Staphylococcus aureus isolates from patients with impetigo and staphylococcal scalded skin syndrome.

    PubMed

    Noguchi, Norihisa; Nakaminami, Hidemasa; Nishijima, Setsuko; Kurokawa, Ichiro; So, Hiromu; Sasatsu, Masanori

    2006-06-01

    The susceptibilities to antimicrobial agents of and distributions of antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) strains isolated between 1999 and 2004 in Japan were examined. The data of MRSA strains that are causative agents of impetigo and staphylococcal scalded skin syndrome (SSSS) were compared with those of MRSA strains isolated from patients with other diseases. The susceptibilities to antiseptic agents in MRSA isolates from patients with impetigo and SSSS were higher than those in MRSA isolates from patients with other diseases. The distribution of the qacA/B genes in MRSA strains isolated from patients with impetigo and SSSS (1.3%, 1/76) was remarkably lower than that in MRSA strains isolated from patients with other diseases (45.9%, 95/207). Epidemiologic typings of staphylococcal cassette chromosome mec (SCCmec) and pulsed-field gel electrophoresis (PFGE) showed that MRSA strains isolated from patients with impetigo and SSSS had type IV SCCmec (75/76), except for one strain, and 64.5% (49/76) of the strains had different PFGE types. In addition, the patterns of restriction digestion of all tested qacA/B plasmid in MRSA isolates having different PFGE types were identical. The results showed that a specific MRSA clone carrying qacA/B was not prevalent, but qacA/B was spread among health care-associated MRSA strains. Therefore, it was concluded that the lower distribution rate of qacA/B resulted in higher susceptibilities to cationic antiseptic agents in MRSA isolated from patients with impetigo and SSSS.

  11. Hygiene Strategies to Prevent Methicillin-Resistant Staphylococcus aureus Skin and Soft Tissue Infections: A Cluster-Randomized Controlled Trial Among High-Risk Military Trainees

    PubMed Central

    Ellis, Michael W.; Schlett, Carey D.; Millar, Eugene V.; Wilkins, Kenneth J.; Crawford, Katrina B.; Morrison-Rodriguez, Stephanie M.; Pacha, Laura A.; Gorwitz, Rachel J.; Lanier, Jeffrey B.; Tribble, David R.

    2014-01-01

    Background. Effective measures are needed to prevent methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infections (SSTIs) in high-risk community settings. The study objective was to evaluate the effect of personal hygiene–based strategies on rates of overall SSTI and MRSA SSTI. Methods. We conducted a prospective, field-based, cluster-randomized trial in US Army Infantry trainees from May 2010 through January 2012. There were 3 study groups with incrementally increased education and hygiene-based interventions: standard (S), enhanced standard (ES), and chlorhexidine (CHG). The primary endpoints were incidence of overall SSTI and MRSA SSTI. Results. The study included 30 209 trainees constituting 540 platoons (168 S, 192 ES, and 180 CHG). A total of 1203 (4%) participants developed SSTI, 316 (26%) due to MRSA. The overall SSTI rate was 4.15 (95% confidence interval [CI], 3.77–4.58) per 100 person-cycles. SSTI rates by study group were 3.48 (95% CI, 2.87–4.22) for S, 4.18 (95% CI, 3.56–4.90) for ES, and 4.71 (95% CI, 4.03–5.50) for CHG. The MRSA SSTI rate per 100 person-cycles for all groups was 1.10 (95% CI, .91–1.32). MRSA SSTI rates by study group were 1.0 (95% CI, .70–1.42) for S, 1.29 (95% CI, .98–1.71) for ES, and 0.97 (95% CI, .70–1.36) for CHG. Conclusions. Personal hygiene and education measures, including once-weekly use of chlorhexidine body wash, did not prevent overall SSTI or MRSA SSTI in a high-risk population of military trainees. Clinical Trials Registration. NCT01105767. PMID:24633684

  12. Weight-based antibiotic dosing in a real-world European study of complicated skin and soft-tissue infections due to methicillin-resistant Staphylococcus aureus.

    PubMed

    Lawson, W; Nathwani, D; Eckmann, C; Corman, S; Stephens, J; Solem, C; Macahilig, C; Li, J; Baillon-Plot, N; Charbonneau, C; Haider, S

    2015-09-01

    We aimed to characterize real-world dosing of weight-based intravenous (IV) antibiotic therapy in patients hospitalized for methicillin-resistant Staphylococcus aureus (MRSA) complicated skin and soft-tissue infections (cSSTIs). This was a subgroup analysis of a retrospective chart review that captured data from 12 European countries. The study included patients ≥18 years old, hospitalized with an MRSA cSSTI between 1 July 2010 and 30 June 2011 and discharged alive by 31 July 2011. Patients treated with IV vancomycin, teicoplanin or daptomycin at any stage during hospitalization were included in this analysis. Analyses were conducted at the regimen level (dosing in mg/kg or in mg, frequency, and total daily dose (TDD)), with potentially multiple regimens per patient, and the patient level, categorizing patients into low, standard (labelled) and high dosing groups according to their initial MRSA-targeted regimen. Among the 1502 patients in the parent study, 998 patients contributed a total of 1050 daptomycin, teicoplanin or vancomycin regimens. Across all regimens, the mean initial TDDs were 6.3 ± 1.9 mg/kg for daptomycin, 10.5 ± 4.9 mg/kg for teicoplanin and 28.5 ± 11.5 mg/kg for vancomycin. A total of 789 patients received first-line therapy with one of the above antibiotics. The majority of patients receiving first-line teicoplanin and daptomycin (96% and 80%, respectively) received higher than labelled cSSTI doses, whereas vancomycin doses were lower than labelled doses in >40% of patients. These real-world data reveal significant deviation from labelled antibiotic dosing in 12 European countries and the potential for suboptimal outcomes in patients with MRSA cSSTIs.

  13. Selenium nanoparticles inhibit Staphylococcus aureus growth.

    PubMed

    Tran, Phong A; Webster, Thomas J

    2011-01-01

    Staphylococcus aureus is a key bacterium commonly found in numerous infections. S. aureus infections are difficult to treat due to their biofilm formation and documented antibiotic resistance. While selenium has been used for a wide range of applications including anticancer applications, the effects of selenium nanoparticles on microorganisms remain largely unknown to date. The objective of this in vitro study was thus to examine the growth of S. aureus in the presence of selenium nanoparticles. Results of this study provided the first evidence of strongly inhibited growth of S. aureus in the presence of selenium nanoparticles after 3, 4, and 5 hours at 7.8, 15.5, and 31 μg/mL. The percentage of live bacteria also decreased in the presence of selenium nanoparticles. Therefore, this study suggests that selenium nanoparticles may be used to effectively prevent and treat S. aureus infections and thus should be further studied for such applications.

  14. The T Cell Response to Staphylococcus aureus

    PubMed Central

    Bröker, Barbara M.; Mrochen, Daniel; Péton, Vincent

    2016-01-01

    Staphylococcus aureus (S. aureus) is a dangerous pathogen and a leading cause of both nosocomial and community acquired bacterial infection worldwide. However, on the other hand, we are all exposed to this bacterium, often within the first hours of life, and usually manage to establish equilibrium and coexist with it. What does the adaptive immune system contribute toward lifelong control of S. aureus? Will it become possible to raise or enhance protective immune memory by vaccination? While in the past the S. aureus-specific antibody response has dominated this discussion, the research community is now coming to appreciate the role that the cellular arm of adaptive immunity, the T cells, plays. There are numerous T cell subsets, each with differing functions, which together have the ability to orchestrate the immune response to S. aureus and hence to tip the balance between protection and pathology. This review summarizes the state of the art in this dynamic field of research. PMID:26999219

  15. Anatomical patterns of colonization of pets with staphylococcal species in homes of people with methicillin-resistant Staphylococcus aureus (MRSA) skin or soft tissue infection (SSTI).

    PubMed

    Iverson, S A; Brazil, A M; Ferguson, J M; Nelson, K; Lautenbach, E; Rankin, S C; Morris, D O; Davis, M F

    2015-03-23

    Methicillin-resistant strains of Staphylococcus aureus (MRSA), Staphylococcus pseudintermedius (MRSP), and other pathogenic staphylococci can cause infections in companion animals and humans. Identification of colonized animals is fundamental to research and practice needs, but harmonized methods have not yet been established. To establish the optimal anatomic site for the recovery of methicillin-resistant coagulase positive staphylococci (CPS), survey data and swabs were collected from 196 pets (dogs, cats, reptiles, birds, fish and pocket pets) that lived in households with an MRSA-infected person. Using broth-enrichment culture and PCR for speciation, S. aureus was identified in 27 of 179 (15%) pets sampled at baseline and 19 of 125 (15%) pets sampled at a three-month follow-up home visit. S. pseudintermedius was isolated from 33 of 179 (18%) pets sampled at baseline and 21 of 125 (17%) of pets sampled at follow-up. The baseline MRSA and MRSP prevalence was 8% and 1% respectively from 145 mammalian pets. The follow-up MRSA and MRSP prevalence was 7% and <1% respectively from 95 mammalian pets. The mouth was the most sensitive single site sampled for isolation of S. aureus and S. pseudintermedius in mammals. In a subset of pets, from which all available isolates were identified, dual carriage of S. aureus and S. pseudintermedius was 22% at baseline and 11% at follow-up. These results identify the mouth as the most sensitive site to screen for pathogenic staphylococci and suggest that it should be included in sampling protocols.

  16. Eradication of Drug Resistant Staphylococcus aureus by Liposomal Oleic Acids

    PubMed Central

    Huang, Chun-Ming; Chen, Chao-Hsuan; Pornpattananangkul, Dissaya; Zhang, Li; Chan, Michael; Hsieh, Ming-Fa; Zhang, Liangfang

    2010-01-01

    Staphylococcus aureus (S. aureus) represents a major threat to a broad range of healthcare and community associated infections. This bacterium has rapidly evolved resistance to multiple drugs throughout its antibiotic history and thus it is imperative to develop novel antimicrobial strategies to enrich the currently shrinking therapeutic options against S. aureus. This study evaluated the antimicrobial activity and therapeutic efficacy of oleic acid (OA) in a liposomal formulation as an innate bactericide against methicillin-resistant S. aureus (MRSA). In vitro studies showed that these OA-loaded liposomes (LipoOA) could rapidly fuse into the bacterial membranes, thereby significantly improving the potency of OA to kill MRSA compared with the use of free OA. Further in vivo tests demonstrated that LipoOA were highly effective in curing skin infections caused by MRSA bacteria and preserving the integrity of the infected skin using a mouse skin model. Moreover, a preliminary skin toxicity study proved high biocompatibility of LipoOA to normal skin tissues. These findings suggest that LipoOA hold great potential to become a new, effective, and safe antimicrobial agent for the treatment of MRSA infections. PMID:20880576

  17. Emergence of the Epidemic Methicillin-Resistant Staphylococcus aureus Strain USA300 Coincides with Horizontal Transfer of the Arginine Catabolic Mobile Element and speG-mediated Adaptations for Survival on Skin

    PubMed Central

    Planet, Paul J.; LaRussa, Samuel J.; Dana, Ali; Smith, Hannah; Xu, Amy; Ryan, Chanelle; Uhlemann, Anne-Catrin; Boundy, Sam; Goldberg, Julia; Narechania, Apurva; Kulkarni, Ritwij; Ratner, Adam J.; Geoghegan, Joan A.; Kolokotronis, Sergios-Orestis; Prince, Alice

    2013-01-01

    ABSTRACT The arginine catabolic mobile element (ACME) is the largest genomic region distinguishing epidemic USA300 strains of methicillin-resistant Staphylococcus aureus (MRSA) from other S. aureus strains. However, the functional relevance of ACME to infection and disease has remained unclear. Using phylogenetic analysis, we have shown that the modular segments of ACME were assembled into a single genetic locus in Staphylococcus epidermidis and then horizontally transferred to the common ancestor of USA300 strains in an extremely recent event. Acquisition of one ACME gene, speG, allowed USA300 strains to withstand levels of polyamines (e.g., spermidine) produced in skin that are toxic to other closely related S. aureus strains. speG-mediated polyamine tolerance also enhanced biofilm formation, adherence to fibrinogen/fibronectin, and resistance to antibiotic and keratinocyte-mediated killing. We suggest that these properties gave USA300 a major selective advantage during skin infection and colonization, contributing to the extraordinary evolutionary success of this clone. PMID:24345744

  18. Food compounds inhibit Staphylococcus aureus bacteria and the toxicity of Staphylococcus Enterotoxin A (SEA) associated with atopic dermatitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atopic dermatitis or eczema is characterized by skin rashes and itching is an inflammatory disease that affects 10-20% of children and 1-3% of adults. Staphylococcus aureus bacteria are present on the skin of nearly all patients with atopic dermatitis. Antibiotics that suppress colonization of S. au...

  19. Methicillin-Resistant Staphylococcus aureus Adaptation to Human Keratinocytes

    PubMed Central

    Soong, Grace; Paulino, Franklin; Wachtel, Sarah; Parker, Dane; Wickersham, Matthew; Zhang, Dongni; Brown, Armand; Lauren, Christine; Dowd, Margaret; West, Emily; Horst, Basil; Planet, Paul

    2015-01-01

    ABSTRACT Skin is the most common site of Staphylococcus aureus infection. While most of these infections are self-limited, recurrent infections are common. Keratinocytes and recruited immune cells participate in skin defense against infection. We postulated that S. aureus is able to adapt to the milieu within human keratinocytes to avoid keratinocyte-mediated clearance. From a collection of S. aureus isolated from chronically infected patients with atopic dermatitis, we noted 22% had an agr mutant-like phenotype. Using several models of human skin infection, we demonstrate that toxin-deficient, agr mutants of methicillin-resistant S. aureus (MRSA) USA300 are able to persist within keratinocytes by stimulating autophagy and evading caspase-1 and inflammasome activation. MRSA infection induced keratinocyte autophagy, as evidenced by galectin-8 and LC3 accumulation. Autophagy promoted the degradation of inflammasome components and facilitated staphylococcal survival. The recovery of more than 58% agr or RNAIII mutants (P < 0.0001) of an inoculum of wild-type (WT) MRSA from within wortmannin-treated keratinocytes compared to control keratinocytes reflected the survival advantage for mutants no longer expressing agr-dependent toxins. Our results illustrate the dynamic interplay between S. aureus and keratinocytes that can result in the selection of mutants that have adapted specifically to evade keratinocyte-mediated clearance mechanisms. PMID:25900653

  20. Generation of ramoplanin-resistant Staphylococcus aureus.

    PubMed

    Schmidt, John W; Greenough, Adrienne; Burns, Michelle; Luteran, Andrea E; McCafferty, Dewey G

    2010-09-01

    Ramoplanin is a lipoglycodepsipeptide antimicrobial active against clinically important Gram-positive bacteria including methicillin-resistant Staphylococcus aureus. To proactively examine ramoplanin resistance, we subjected S. aureus NCTC 8325-4 to serial passage in the presence of increasing concentrations of ramoplanin, generating the markedly resistant strain RRSA16. Susceptibility testing of RRSA16 revealed the unanticipated acquisition of cross-resistance to vancomycin and nisin. RRSA16 displayed phenotypes, including a thickened cell wall and reduced susceptibility to Triton X-100-induced autolysis, which are associated with vancomycin intermediate-resistant S. aureus strains. Passage of RRSA16 for 18 days in a drug-free medium yielded strain R16-18d with restored antibiotic susceptibility. The RRSA16 isolate may be used to identify the genetic and biochemical basis for ramoplanin resistance and to further our understanding of the evolution of antibiotic cross-resistance mechanisms in S. aureus. PMID:20659164

  1. Physicochemical characterization of Staphylococcus aureus-lysing LysK enzyme in complexes with polycationic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Staphylococcus aureus causes many serious visceral, skin, and respiratory diseases. About 90% of clinical strains are multi-drug resistant, but the use of bacteriophage lytic enzymes offers a viable alternative to antibiotic therapy. LysK, the phage K endolysin can lyse S. aureus when purified and ...

  2. Genomic Analysis of Companion Rabbit Staphylococcus aureus

    PubMed Central

    Holmes, Mark A.; Harrison, Ewan M.; Fisher, Elizabeth A.; Graham, Elizabeth M.; Parkhill, Julian; Foster, Geoffrey; Paterson, Gavin K.

    2016-01-01

    In addition to being an important human pathogen, Staphylococcus aureus is able to cause a variety of infections in numerous other host species. While the S. aureus strains causing infection in several of these hosts have been well characterised, this is not the case for companion rabbits (Oryctolagus cuniculus), where little data are available on S. aureus strains from this host. To address this deficiency we have performed antimicrobial susceptibility testing and genome sequencing on a collection of S. aureus isolates from companion rabbits. The findings show a diverse S. aureus population is able to cause infection in this host, and while antimicrobial resistance was uncommon, the isolates possess a range of known and putative virulence factors consistent with a diverse clinical presentation in companion rabbits including severe abscesses. We additionally show that companion rabbit isolates carry polymorphisms within dltB as described as underlying host-adaption of S. aureus to farmed rabbits. The availability of S. aureus genome sequences from companion rabbits provides an important aid to understanding the pathogenesis of disease in this host and in the clinical management and surveillance of these infections. PMID:26963381

  3. Genomic Analysis of Companion Rabbit Staphylococcus aureus.

    PubMed

    Holmes, Mark A; Harrison, Ewan M; Fisher, Elizabeth A; Graham, Elizabeth M; Parkhill, Julian; Foster, Geoffrey; Paterson, Gavin K

    2016-01-01

    In addition to being an important human pathogen, Staphylococcus aureus is able to cause a variety of infections in numerous other host species. While the S. aureus strains causing infection in several of these hosts have been well characterised, this is not the case for companion rabbits (Oryctolagus cuniculus), where little data are available on S. aureus strains from this host. To address this deficiency we have performed antimicrobial susceptibility testing and genome sequencing on a collection of S. aureus isolates from companion rabbits. The findings show a diverse S. aureus population is able to cause infection in this host, and while antimicrobial resistance was uncommon, the isolates possess a range of known and putative virulence factors consistent with a diverse clinical presentation in companion rabbits including severe abscesses. We additionally show that companion rabbit isolates carry polymorphisms within dltB as described as underlying host-adaption of S. aureus to farmed rabbits. The availability of S. aureus genome sequences from companion rabbits provides an important aid to understanding the pathogenesis of disease in this host and in the clinical management and surveillance of these infections. PMID:26963381

  4. Genomic Analysis of Companion Rabbit Staphylococcus aureus.

    PubMed

    Holmes, Mark A; Harrison, Ewan M; Fisher, Elizabeth A; Graham, Elizabeth M; Parkhill, Julian; Foster, Geoffrey; Paterson, Gavin K

    2016-01-01

    In addition to being an important human pathogen, Staphylococcus aureus is able to cause a variety of infections in numerous other host species. While the S. aureus strains causing infection in several of these hosts have been well characterised, this is not the case for companion rabbits (Oryctolagus cuniculus), where little data are available on S. aureus strains from this host. To address this deficiency we have performed antimicrobial susceptibility testing and genome sequencing on a collection of S. aureus isolates from companion rabbits. The findings show a diverse S. aureus population is able to cause infection in this host, and while antimicrobial resistance was uncommon, the isolates possess a range of known and putative virulence factors consistent with a diverse clinical presentation in companion rabbits including severe abscesses. We additionally show that companion rabbit isolates carry polymorphisms within dltB as described as underlying host-adaption of S. aureus to farmed rabbits. The availability of S. aureus genome sequences from companion rabbits provides an important aid to understanding the pathogenesis of disease in this host and in the clinical management and surveillance of these infections.

  5. Development of a vaccine against Staphylococcus aureus

    PubMed Central

    Daum, Robert

    2014-01-01

    A vaccine to prevent infections caused by Staphylococcus aureus would have a tremendously beneficial impact on public health. In contrast to typical encapsulated bacterial pathogens, such as Streptococcus pneumoniae, H. influenzae, and Neisseria meningitides, the capsule of S. aureus is not clearly linked to strain virulence in vivo. Furthermore, it is not clear that natural infection caused by S. aureus induces a protective humoral immune response, as does infection caused by typical encapsulated bacteria. Finally, pure B cell or antibody deficiency, in either animal models or in patients, does not predispose to more frequent or more severe S. aureus infections, as it does for infections caused by typical encapsulated bacteria. Rather, primary immune mechanisms necessary for protection against S. aureus infections include professional phagocytes and T lymphocytes (Th17 cells, in particular) which upregulate phagocytic activity. Thus, it is not clear whether an antibody-mediated neutralization of S. aureus virulence factors should be the goal of vaccination. Rather, the selection of antigenic targets which induce potent T cell immune responses that react to the broadest possible array of S. aureus strains should be the focus of antigen selection. Of particular promise is the potential to select antigens which induce both humoral and T cell-mediated immunity in order to generate immune synergy against S. aureus infections. A single-antigen vaccine may achieve this immune synergy. However, multivalent antigens may be more likely to induce both humoral and T cell immunity and to induce protection against a broader array of S. aureus isolates. A number of candidate vaccines are in development, raising the promise that effective vaccines against S. aureus will become available in the not-so-distant future. Possible development programs for such vaccines are discussed. PMID:22080194

  6. Epidemiology of Staphylococcus aureus during space flight

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Chidambaram, M.; Heath, J. D.; Mallary, L.; Mishra, S. K.; Sharma, B.; Weinstock, G. M.

    1996-01-01

    Staphylococcus aureus was isolated over 2 years from Space Shuttle mission crewmembers to determine dissemination and retention of bacteria. Samples before and after each mission were from nasal, throat, urine, and feces and from air and surface sampling of the Space Shuttle. DNA fingerprinting of samples by digestion of DNA with SmaI restriction endonuclease followed by pulsed-field gel electrophoresis showed S. aureus from each crewmember had a unique fingerprint and usually only one strain was carried by an individual. There was only one instance of transfer between crewmembers. Strains from interior surfaces after flight matched those of crewmembers, suggesting microbial fingerprinting may have forensic application.

  7. Antimicrobial Peptide P60.4Ac-Containing Creams and Gel for Eradication of Methicillin-Resistant Staphylococcus aureus from Cultured Skin and Airway Epithelial Surfaces.

    PubMed

    Haisma, Elisabeth M; Göblyös, Anikó; Ravensbergen, Bep; Adriaans, Alwin E; Cordfunke, Robert A; Schrumpf, Jasmijn; Limpens, Ronald W A L; Schimmel, Kirsten J M; den Hartigh, Jan; Hiemstra, Pieter S; Drijfhout, Jan Wouter; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H

    2016-07-01

    We previously found the LL-37-derived peptide P60.4Ac to be effective against methicillin-resistant Staphylococcus aureus (MRSA) on human epidermal models (EMs). The goal of this study was to identify the preferred carrier for this peptide for topical application on skin and mucosal surfaces. We prepared P60.4Ac in three formulations, i.e., a water-in-oil cream with lanolin (Softisan 649), an oil-in-water cream with polyethylene glycol hexadecyl ether (Cetomacrogol), and a hydroxypropyl methylcellulose (hypromellose) 4000 gel. We tested the antimicrobial efficacy of the peptide in these formulations against mupirocin-resistant and -sensitive MRSA strains on EMs and bronchial epithelial models (BEMs). The cytotoxic effects of formulated P60.4Ac on these models were determined using histology and WST-1 and lactate dehydrogenase assays. Moreover, we assessed the stability of the peptide in these formulations with storage for up to 3 months. Killing of MRSA by P60.4Ac in the two creams was less effective than that by P60.4Ac in the hypromellose gel. In agreement with those findings, P60.4Ac in the hypromellose gel was highly effective in eradicating the two MRSA strains from EMs. We found that even 0.1% (wt/wt) P60.4Ac in the hypromellose gel killed >99% of the viable planktonic bacteria and >85% of the biofilm-associated bacteria on EMs. Hypromellose gels containing 0.1% and 0.5% (wt/wt) P60.4Ac effectively reduced the numbers of viable MRSA cells from BEMs by >90%. No cytotoxic effects of P60.4Ac in the hypromellose gel with up to 2% (wt/wt) P60.4Ac on keratinocytes in EMs and in the hypromellose gel with up to 0.5% (wt/wt) P60.4Ac on epithelial cells in BEMs were observed. High-performance liquid chromatography analysis showed that P60.4Ac was stable in the Softisan cream and the hypromellose gel but not in the Cetomacrogol cream. We conclude that P60.4Ac formulated in hypromellose gel is both stable and highly effective in eradicating MRSA from colonized EMs and

  8. Antimicrobial Peptide P60.4Ac-Containing Creams and Gel for Eradication of Methicillin-Resistant Staphylococcus aureus from Cultured Skin and Airway Epithelial Surfaces.

    PubMed

    Haisma, Elisabeth M; Göblyös, Anikó; Ravensbergen, Bep; Adriaans, Alwin E; Cordfunke, Robert A; Schrumpf, Jasmijn; Limpens, Ronald W A L; Schimmel, Kirsten J M; den Hartigh, Jan; Hiemstra, Pieter S; Drijfhout, Jan Wouter; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H

    2016-07-01

    We previously found the LL-37-derived peptide P60.4Ac to be effective against methicillin-resistant Staphylococcus aureus (MRSA) on human epidermal models (EMs). The goal of this study was to identify the preferred carrier for this peptide for topical application on skin and mucosal surfaces. We prepared P60.4Ac in three formulations, i.e., a water-in-oil cream with lanolin (Softisan 649), an oil-in-water cream with polyethylene glycol hexadecyl ether (Cetomacrogol), and a hydroxypropyl methylcellulose (hypromellose) 4000 gel. We tested the antimicrobial efficacy of the peptide in these formulations against mupirocin-resistant and -sensitive MRSA strains on EMs and bronchial epithelial models (BEMs). The cytotoxic effects of formulated P60.4Ac on these models were determined using histology and WST-1 and lactate dehydrogenase assays. Moreover, we assessed the stability of the peptide in these formulations with storage for up to 3 months. Killing of MRSA by P60.4Ac in the two creams was less effective than that by P60.4Ac in the hypromellose gel. In agreement with those findings, P60.4Ac in the hypromellose gel was highly effective in eradicating the two MRSA strains from EMs. We found that even 0.1% (wt/wt) P60.4Ac in the hypromellose gel killed >99% of the viable planktonic bacteria and >85% of the biofilm-associated bacteria on EMs. Hypromellose gels containing 0.1% and 0.5% (wt/wt) P60.4Ac effectively reduced the numbers of viable MRSA cells from BEMs by >90%. No cytotoxic effects of P60.4Ac in the hypromellose gel with up to 2% (wt/wt) P60.4Ac on keratinocytes in EMs and in the hypromellose gel with up to 0.5% (wt/wt) P60.4Ac on epithelial cells in BEMs were observed. High-performance liquid chromatography analysis showed that P60.4Ac was stable in the Softisan cream and the hypromellose gel but not in the Cetomacrogol cream. We conclude that P60.4Ac formulated in hypromellose gel is both stable and highly effective in eradicating MRSA from colonized EMs and

  9. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management

    PubMed Central

    Davis, Joshua S.; Eichenberger, Emily; Holland, Thomas L.

    2015-01-01

    SUMMARY Staphylococcus aureus is a major human pathogen that causes a wide range of clinical infections. It is a leading cause of bacteremia and infective endocarditis as well as osteoarticular, skin and soft tissue, pleuropulmonary, and device-related infections. This review comprehensively covers the epidemiology, pathophysiology, clinical manifestations, and management of each of these clinical entities. The past 2 decades have witnessed two clear shifts in the epidemiology of S. aureus infections: first, a growing number of health care-associated infections, particularly seen in infective endocarditis and prosthetic device infections, and second, an epidemic of community-associated skin and soft tissue infections driven by strains with certain virulence factors and resistance to β-lactam antibiotics. In reviewing the literature to support management strategies for these clinical manifestations, we also highlight the paucity of high-quality evidence for many key clinical questions. PMID:26016486

  10. [Ecthyma gangrenosum caused by Staphylococcus aureus].

    PubMed

    Jaque, Alejandra; Moll-Manzur, Catherina; Dossi, María Teresa; Berroeta-Mauriziano, Daniela; Araos-Baeriswyl, Esteban; Monsalve, Ximena

    2016-06-01

    Ecthyma gangrenosum is an uncommon necrotizing vasculitis, in most cases secondary to sepsis by Pseudo-mona aeruginosa in immunocompromised patients. However, there have been several reports of ecthyma gangre-nosum caused by other infectious etiologies. We report an unusual case of ecthyma gangrenosum associated with methicillin-resistant Staphylococcus aureus infection in a patient without the classic immunological risk factors described in the literature. PMID:27598286

  11. Staphylococcus aureus and Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) in and Around Therapeutic Whirlpools in College Athletic Training Rooms

    PubMed Central

    Kahanov, Leamor; Kim, Young Kyun; Eberman, Lindsey; Dannelly, Kathleen; Kaur, Haninder; Ramalinga, A.

    2015-01-01

    Context: Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a leading cause of skin and soft tissue infection in the nonhospitalized community. Care of the athletes in athletic training rooms is specifically designed with equipment tailored to the health care needs of the athletes, yet recent studies indicate that CA-MRSA is still prevalent in athletic facilities and that cleaning methods may not be optimal. Objective: To investigate the prevalence of Staphylococcus aureus and CA-MRSA in and around whirlpools in the athletic training room. Design: Cross-sectional study. Setting: National Collegiate Athletic Association Division I university. Patients or Other Participants: Student-athletes (n = 109) consisting of 46 men (42%) and 63 women (58%) representing 6 sports. Main Outcome Measure(s): Presence of MRSA and Staphylococcus aureus in and around the whirlpool structures relative to sport and number of athletes using the whirlpools. Results: We identified Staphylococcus aureus in 22% (n = 52/240) of the samples and MRSA in 0.8% (n = 2/240). A statistically significant difference existed between the number of athletes using the whirlpool and the presence of Staphylococcus aureus in and around the whirlpools (F2,238 = 2.445, P = .007). However, Staphylococcus aureus was identified regardless of whether multiple athletes used a whirlpool or no athletes used a whirlpool. We did not identify a relationship between the number of athletes who used a whirlpool and Staphylococcus aureus or MRSA density (P = .134). Conclusions: Staphylococcus aureus and MRSA were identified in and around the whirlpools. Transmission of the bacteria can be reduced by following the cleaning and disinfecting protocols recommended by the Centers for Disease Control and Prevention. Athletic trainers should use disinfectants registered by the Environmental Protection Agency to sanitize all whirlpools between uses. PMID:25710853

  12. Low level laser therapy (AlGaInP) applied at 5J/cm2 reduces the proliferation of Staphylococcus aureus MRSA in infected wounds and intact skin of rats*

    PubMed Central

    Silva, Daniela Conceição Gomes Gonçalves e; Plapler, Helio; da Costa, Mateus Matiuzzi; Silva, Silvio Romero Gonçalves e; de Sá, Maria da Conceição Aquino; Silva, Benedito Sávio Lima e

    2013-01-01

    BACKGROUND Laser therapy is a low cost, non-invasive procedure with good healing results. Doubts exist as to whether laser therapy action on microorganisms can justify research aimed at investigating its possible effects on bacteria-infected wounds. OBJECTIVE To assess the effect of low intensity laser on the rate of bacterial contamination in infected wounds in the skin of rats. METHODS An experimental study using 56 male Wistar rats. The animals were randomly divided into eight groups of seven each. Those in the "infected" groups were infected by Staphylococcus aureus MRSA in the dorsal region. Red laser diode (AlGaInP) 658nm, 5J/cm2 was used to treat the animals in the "treated" groups in scan for 3 consecutive days. Samples were drawn before inoculating bacteria and following laser treatment. For statistical analysis we used the nonparametric Wilcoxon (paired data) method with a significance level of p <0.05. RESULTS The statistical analysis of median values showed that the groups submitted to laser treatment had low bacterial proliferation. CONCLUSION The laser (AlGaInP), with a dose of 5J/cm2 in both intact skin and in wounds of rats infected with Staphylococcus aureus MRSA, is shown to reduce bacterial proliferation. PMID:23539003

  13. Mobile genetic elements of Staphylococcus aureus

    PubMed Central

    Malachowa, Natalia

    2010-01-01

    Bacteria such as Staphylococcus aureus are successful as commensal organisms or pathogens in part because they adapt rapidly to selective pressures imparted by the human host. Mobile genetic elements (MGEs) play a central role in this adaptation process and are a means to transfer genetic information (DNA) among and within bacterial species. Importantly, MGEs encode putative virulence factors and molecules that confer resistance to antibiotics, including the gene that confers resistance to beta-lactam antibiotics in methicillin-resistant S. aureus (MRSA). Inasmuch as MRSA infections are a significant problem worldwide and continue to emerge in epidemic waves, there has been significant effort to improve diagnostic assays and to develop new antimicrobial agents for treatment of disease. Our understanding of S. aureus MGEs and the molecules they encode has played an important role toward these ends and has provided detailed insight into the evolution of antimicrobial resistance mechanisms and virulence. PMID:20668911

  14. Genomics of Natural Populations of Staphylococcus aureus.

    PubMed

    Fitzgerald, J Ross; Holden, Matthew T G

    2016-09-01

    Staphylococcus aureus is a major human pathogen and an important cause of livestock infections. The first S. aureus genomes to be published, 15 years ago, provided the first view of genome structure and gene content. Since then, thousands of genomes from a wide array of strains from different sources have been sequenced. Comparison of these sequences has resulted in broad insights into population structure, bacterial evolution, clone emergence and expansion, and the molecular basis of niche adaptation. Furthermore, this information is now being applied clinically in outbreak investigations to inform infection control measures and to determine appropriate treatment regimens. In this review, we summarize some of the broad insights into S. aureus biology gained from the analysis of genomes and discuss future directions and opportunities in this dynamic field of research.

  15. Genomics of Natural Populations of Staphylococcus aureus.

    PubMed

    Fitzgerald, J Ross; Holden, Matthew T G

    2016-09-01

    Staphylococcus aureus is a major human pathogen and an important cause of livestock infections. The first S. aureus genomes to be published, 15 years ago, provided the first view of genome structure and gene content. Since then, thousands of genomes from a wide array of strains from different sources have been sequenced. Comparison of these sequences has resulted in broad insights into population structure, bacterial evolution, clone emergence and expansion, and the molecular basis of niche adaptation. Furthermore, this information is now being applied clinically in outbreak investigations to inform infection control measures and to determine appropriate treatment regimens. In this review, we summarize some of the broad insights into S. aureus biology gained from the analysis of genomes and discuss future directions and opportunities in this dynamic field of research. PMID:27482738

  16. Age- and gender-associated Staphylococcus aureus spa types found among nasal carriers in a general population: the Tromso Staph and Skin Study.

    PubMed

    Sangvik, Maria; Olsen, Renate Slind; Olsen, Karina; Simonsen, Gunnar Skov; Furberg, Anne-Sofie; Sollid, Johanna U Ericson

    2011-12-01

    Staphylococcus aureus nasal carriers risk autoinfection; however, knowledge about the factors that make specific strains successful colonizers is limited. This study was undertaken to identify the most successful S. aureus clones in nasal carriers and compare their distribution among host groups. The population structure of S. aureus isolates from healthy adults was investigated by spa typing 1,981 isolates from persistent and intermittent nasal carriers participating in a health survey. In the baseline screening (1,113 isolates), the most common spa types were t012 (8.4%), t084 (7.6%), and t065 (4.9%). Three large spa clonal complexes (spa CC012, spa CC065, and spa CC084) comprised 62.4% of the isolates. In multivariate models adjusted for age and smoking status, male sex was associated with higher risk for spa type t084 (odds ratio [OR], 1.72; 95% confidence interval [CI], 1.06 to 2.77), and lower risk of spa type t012 (OR, 0.60; 95% CI, 0.39 to 0.92) colonization. The prevalence of spa type t012 decreased significantly with increasing age (P = 0.03), with a prevalence almost twice as high in the youngest group (age 30 to 44 years, prevalence = 11.1%) as in the oldest group (age, 60 to 87 years; prevalence = 5.6%). Among baseline isolates, spa type t084 had a twofold-higher prevalence among intermittent carriers than among persistent carriers (10.6% versus 5.5%; P = 0.04). In summary, the two most prevalent spa types found in this study were significantly associated with age and/or gender. This may provide valuable clues to the multifactorial mechanisms, among them bacterial factors, involved in nasal colonization with S. aureus.

  17. Modulation of Staphylococcus aureus spreading by water

    PubMed Central

    Lin, Mei-Hui; Ke, Wan-Ju; Liu, Chao-Chin; Yang, Meng-Wei

    2016-01-01

    Staphylococcus aureus is known to spread rapidly and form giant colonies on the surface of soft agar and animal tissues by a process called colony spreading. So far, the mechanisms underlying spreading remain poorly understood. This study investigated the spreading phenomenon by culturing S. aureus and its mutant derivatives on Tryptic Soy Agarose (TSA) medium. We found that S. aureus extracts water from the medium and floats on water at 2.5 h after inoculation, which could be observed using phase contrast microscopy. The floating of the bacteria on water could be verified by confocal microscopy using an S. aureus strain that constitutively expresses green fluorescence protein. This study also found that as the density of bacterial colony increases, a quorum sensing response is triggered, resulting in the synthesis of the biosurfactants, phenolic-soluble modulins (PSMs), which weakens water surface tension, causing water to flood the medium surface to allow the bacteria to spread rapidly. This study reveals a mechanism that explains how an organism lacking a flagellar motor is capable of spreading rapidly on a medium surface, which is important to the understanding of how S. aureus spreads in human tissues to cause infections. PMID:27125382

  18. Immunopathological features of rat Staphylococcus aureus arthritis.

    PubMed Central

    Bremell, T; Lange, S; Holmdahl, R; Rydén, C; Hansson, G K; Tarkowski, A

    1994-01-01

    Staphylococcus aureus is the most common bacterial species found in nongonococcal bacterial arthritis in humans. We present the first description, to our knowledge, of an outbreak of spontaneous staphylococcal arthritis in a rat colony. In a group of 10 rats, 9 displayed arthritis. Clinically, the most obvious findings were arthritis of one or both hindpaws and malaise. Bacteriophage typing showed the common phage type 85 in isolates recovered from the joints, blood, and bedding of rats and from the nose and cheeks of one person from the staff of the animal facility. The S. aureus strain proved to produce staphylococcal enterotoxin A and exhibited strong binding to collagen types I and II and bone sialoprotein, which are potentially important virulence factors. When the recovered S. aureus strain was injected intravenously into healthy rats, severe septic arthritis was induced in almost all of the animals. The arthritic lesions were characterized by infiltration of phagocytic cells and T lymphocytes into the synovium. Many of the synovial cells strongly expressed major histocompatibility complex class II molecules. Increased levels of interleukin 6 in serum as well as a prominent polyclonal B-cell activation were noted throughout the disease course. Pretreatment of S. aureus-injected rats in vivo with an antibody to the alpha beta T-cell receptor significantly decreased the severity of the arthritis. Our results indicate that alpha beta + T lymphocytes contribute to an erosive and persistent course of S. aureus arthritis. Images PMID:8188356

  19. Ecological Overlap and Horizontal Gene Transfer in Staphylococcus aureus and Staphylococcus epidermidis

    PubMed Central

    Méric, Guillaume; Miragaia, Maria; de Been, Mark; Yahara, Koji; Pascoe, Ben; Mageiros, Leonardos; Mikhail, Jane; Harris, Llinos G.; Wilkinson, Thomas S.; Rolo, Joana; Lamble, Sarah; Bray, James E.; Jolley, Keith A.; Hanage, William P.; Bowden, Rory; Maiden, Martin C.J.; Mack, Dietrich; de Lencastre, Hermínia; Feil, Edward J.; Corander, Jukka; Sheppard, Samuel K.

    2015-01-01

    The opportunistic pathogens Staphylococcus aureus and Staphylococcus epidermidis represent major causes of severe nosocomial infection, and are associated with high levels of mortality and morbidity worldwide. These species are both common commensals on the human skin and in the nasal pharynx, but are genetically distinct, differing at 24% average nucleotide divergence in 1,478 core genes. To better understand the genome dynamics of these ecologically similar staphylococcal species, we carried out a comparative analysis of 324 S. aureus and S. epidermidis genomes, including 83 novel S. epidermidis sequences. A reference pan-genome approach and whole genome multilocus-sequence typing revealed that around half of the genome was shared between the species. Based on a BratNextGen analysis, homologous recombination was found to have impacted on 40% of the core genes in S. epidermidis, but on only 24% of the core genes in S. aureus. Homologous recombination between the species is rare, with a maximum of nine gene alleles shared between any two S. epidermidis and S. aureus isolates. In contrast, there was considerable interspecies admixture of mobile elements, in particular genes associated with the SaPIn1 pathogenicity island, metal detoxification, and the methicillin-resistance island SCCmec. Our data and analysis provide a context for considering the nature of recombinational boundaries between S. aureus and S. epidermidis and, the selective forces that influence realized recombination between these species. PMID:25888688

  20. Ecological Overlap and Horizontal Gene Transfer in Staphylococcus aureus and Staphylococcus epidermidis.

    PubMed

    Méric, Guillaume; Miragaia, Maria; de Been, Mark; Yahara, Koji; Pascoe, Ben; Mageiros, Leonardos; Mikhail, Jane; Harris, Llinos G; Wilkinson, Thomas S; Rolo, Joana; Lamble, Sarah; Bray, James E; Jolley, Keith A; Hanage, William P; Bowden, Rory; Maiden, Martin C J; Mack, Dietrich; de Lencastre, Hermínia; Feil, Edward J; Corander, Jukka; Sheppard, Samuel K

    2015-04-16

    The opportunistic pathogens Staphylococcus aureus and Staphylococcus epidermidis represent major causes of severe nosocomial infection, and are associated with high levels of mortality and morbidity worldwide. These species are both common commensals on the human skin and in the nasal pharynx, but are genetically distinct, differing at 24% average nucleotide divergence in 1,478 core genes. To better understand the genome dynamics of these ecologically similar staphylococcal species, we carried out a comparative analysis of 324 S. aureus and S. epidermidis genomes, including 83 novel S. epidermidis sequences. A reference pan-genome approach and whole genome multilocus-sequence typing revealed that around half of the genome was shared between the species. Based on a BratNextGen analysis, homologous recombination was found to have impacted on 40% of the core genes in S. epidermidis, but on only 24% of the core genes in S. aureus. Homologous recombination between the species is rare, with a maximum of nine gene alleles shared between any two S. epidermidis and S. aureus isolates. In contrast, there was considerable interspecies admixture of mobile elements, in particular genes associated with the SaPIn1 pathogenicity island, metal detoxification, and the methicillin-resistance island SCCmec. Our data and analysis provide a context for considering the nature of recombinational boundaries between S. aureus and S. epidermidis and, the selective forces that influence realized recombination between these species.

  1. Potassium Uptake Modulates Staphylococcus aureus Metabolism

    PubMed Central

    Gries, Casey M.; Sadykov, Marat R.; Bulock, Logan L.; Chaudhari, Sujata S.; Thomas, Vinai C.; Bose, Jeffrey L.

    2016-01-01

    ABSTRACT As a leading cause of community-associated and nosocomial infections, Staphylococcus aureus requires sophisticated mechanisms that function to maintain cellular homeostasis in response to its exposure to changing environmental conditions. The adaptation to stress and maintenance of homeostasis depend largely on membrane activity, including supporting electrochemical gradients and synthesis of ATP. This is largely achieved through potassium (K+) transport, which plays an essential role in maintaining chemiosmotic homeostasis, affects antimicrobial resistance, and contributes to fitness in vivo. Here, we report that S. aureus Ktr-mediated K+ uptake is necessary for maintaining cytoplasmic pH and the establishment of a proton motive force. Metabolite analyses revealed that K+ deficiency affects both metabolic and energy states of S. aureus by impairing oxidative phosphorylation and directing carbon flux toward substrate-level phosphorylation. Taken together, these results underline the importance of K+ uptake in maintaining essential components of S. aureus metabolism. IMPORTANCE Previous studies describing mechanisms for K+ uptake in S. aureus revealed that the Ktr-mediated K+ transport system was required for normal growth under alkaline conditions but not under neutral or acidic conditions. This work focuses on the effect of K+ uptake on S. aureus metabolism, including intracellular pH and carbon flux, and is the first to utilize a pH-dependent green fluorescent protein (GFP) to measure S. aureus cytoplasmic pH. These studies highlight the role of K+ uptake in supporting proton efflux under alkaline conditions and uncover a critical role for K+ uptake in establishing efficient carbon utilization. PMID:27340697

  2. Potassium Uptake Modulates Staphylococcus aureus Metabolism.

    PubMed

    Gries, Casey M; Sadykov, Marat R; Bulock, Logan L; Chaudhari, Sujata S; Thomas, Vinai C; Bose, Jeffrey L; Bayles, Kenneth W

    2016-01-01

    As a leading cause of community-associated and nosocomial infections, Staphylococcus aureus requires sophisticated mechanisms that function to maintain cellular homeostasis in response to its exposure to changing environmental conditions. The adaptation to stress and maintenance of homeostasis depend largely on membrane activity, including supporting electrochemical gradients and synthesis of ATP. This is largely achieved through potassium (K(+)) transport, which plays an essential role in maintaining chemiosmotic homeostasis, affects antimicrobial resistance, and contributes to fitness in vivo. Here, we report that S. aureus Ktr-mediated K(+) uptake is necessary for maintaining cytoplasmic pH and the establishment of a proton motive force. Metabolite analyses revealed that K(+) deficiency affects both metabolic and energy states of S. aureus by impairing oxidative phosphorylation and directing carbon flux toward substrate-level phosphorylation. Taken together, these results underline the importance of K(+) uptake in maintaining essential components of S. aureus metabolism. IMPORTANCE Previous studies describing mechanisms for K(+) uptake in S. aureus revealed that the Ktr-mediated K(+) transport system was required for normal growth under alkaline conditions but not under neutral or acidic conditions. This work focuses on the effect of K(+) uptake on S. aureus metabolism, including intracellular pH and carbon flux, and is the first to utilize a pH-dependent green fluorescent protein (GFP) to measure S. aureus cytoplasmic pH. These studies highlight the role of K(+) uptake in supporting proton efflux under alkaline conditions and uncover a critical role for K(+) uptake in establishing efficient carbon utilization. PMID:27340697

  3. Ultrastructural Study on the Antibacterial Activity of Artonin E versus Streptomycin against Staphylococcus aureus Strains.

    PubMed

    Zajmi, Asdren; Mohd Hashim, Najihah; Noordin, Mohamed Ibrahim; Khalifa, Shaden A M; Ramli, Faiqah; Mohd Ali, Hapipah; El-Seedi, Hesham R

    2015-01-01

    Staphylococci are facultative anaerobes, perfectly spherical un-encapsulated cocci, with a diameter not exceeding 1 micrometer in diameter. Staphylococcus aureus are generally harmless and remain confined to the skin unless they burrow deep into the body, causing life-threatening infections in bones, joints, bloodstream, heart valves and lungs. Among the 20 medically important staphylococci species, Staphylococcus aureus is one of the emerging human pathogens. Streptomycin had its highest potency against Staphylococcus infections despite the likelihood of getting a resistant type of staphylococcus strains. Methicillin-resistant S. aureus (MRSA) is the persister type of Staphylococcus aureus and was evolved after decades of antibiotic misuse. Inadequate penetration of the antibiotic is one of the principal factors related to success/failure of the therapy. The active drug needs to reach the bacteria at concentrations necessary to kill or suppress the pathogen's growth. In turn the effectiveness of the treatment relied on the physical properties of Staphylococcus aureus. Thus understanding the cell integrity, shape and roughness is crucial to the overall influence of the therapeutic agent on S. aureus of different origins. Hence our experiments were designed to clarify ultrastructural changes of S. aureus treated with streptomycin (synthetic compound) in comparison to artonin E (natural compound). In addition to the standard in vitro microbial techniques, we used transmission electron microscopy to study the disrupted cell architecture under antibacterial regimen and we correlate this with scanning electron microscopy (SEM) to compare results of both techniques.

  4. Ultrastructural Study on the Antibacterial Activity of Artonin E versus Streptomycin against Staphylococcus aureus Strains

    PubMed Central

    Zajmi, Asdren; Mohd Hashim, Najihah; Noordin, Mohamed Ibrahim; Khalifa, Shaden A. M.; Ramli, Faiqah; Mohd Ali, Hapipah; El-Seedi, Hesham R.

    2015-01-01

    Staphylococci are facultative anaerobes, perfectly spherical un-encapsulated cocci, with a diameter not exceeding 1 micrometer in diameter. Staphylococcus aureus are generally harmless and remain confined to the skin unless they burrow deep into the body, causing life-threatening infections in bones, joints, bloodstream, heart valves and lungs. Among the 20 medically important staphylococci species, Staphylococcus aureus is one of the emerging human pathogens. Streptomycin had its highest potency against Staphylococcus infections despite the likelihood of getting a resistant type of staphylococcus strains. Methicillin-resistant S. aureus (MRSA) is the persister type of Staphylococcus aureus and was evolved after decades of antibiotic misuse. Inadequate penetration of the antibiotic is one of the principal factors related to success/failure of the therapy. The active drug needs to reach the bacteria at concentrations necessary to kill or suppress the pathogen's growth. In turn the effectiveness of the treatment relied on the physical properties of Staphylococcus aureus. Thus understanding the cell integrity, shape and roughness is crucial to the overall influence of the therapeutic agent on S. aureus of different origins. Hence our experiments were designed to clarify ultrastructural changes of S. aureus treated with streptomycin (synthetic compound) in comparison to artonin E (natural compound). In addition to the standard in vitro microbial techniques, we used transmission electron microscopy to study the disrupted cell architecture under antibacterial regimen and we correlate this with scanning electron microscopy (SEM) to compare results of both techniques. PMID:26030925

  5. An Aromatic Hydroxyamide Attenuates Multiresistant Staphylococcus aureus Toxin Expression.

    PubMed

    Vomacka, Jan; Korotkov, Vadim S; Bauer, Bianca; Weinandy, Franziska; Kunzmann, Martin H; Krysiak, Joanna; Baron, Oliver; Böttcher, Thomas; Lorenz-Baath, Katrin; Sieber, Stephan A

    2016-01-26

    Methicillin-resistant Staphylococcus aureus (MRSA) causes severe infections with only few effective antibiotic therapies currently available. To approach this challenge, chemical entities with a novel and resistance-free mode of action are desperately needed. Here, we introduce a new hydroxyamide compound that effectively reduces the expression of devastating toxins in various S. aureus and MRSA strains. The molecular mechanism was investigated by transcriptome analysis as well as by affinity-based protein profiling. Down-regulation of several pathogenesis associated genes suggested the inhibition of a central virulence-related pathway. Mass spectrometry-based chemical proteomics revealed putative molecular targets. Systemic treatment with the hydroxyamide showed significant reduction of abscess sizes in a MRSA mouse skin infection model. The absence of resistance development in vitro further underlines the finding that targeting virulence could lead to prolonged therapeutic options in comparison to antibiotics that directly address bacterial survival. PMID:26748534

  6. An Aromatic Hydroxyamide Attenuates Multiresistant Staphylococcus aureus Toxin Expression.

    PubMed

    Vomacka, Jan; Korotkov, Vadim S; Bauer, Bianca; Weinandy, Franziska; Kunzmann, Martin H; Krysiak, Joanna; Baron, Oliver; Böttcher, Thomas; Lorenz-Baath, Katrin; Sieber, Stephan A

    2016-01-26

    Methicillin-resistant Staphylococcus aureus (MRSA) causes severe infections with only few effective antibiotic therapies currently available. To approach this challenge, chemical entities with a novel and resistance-free mode of action are desperately needed. Here, we introduce a new hydroxyamide compound that effectively reduces the expression of devastating toxins in various S. aureus and MRSA strains. The molecular mechanism was investigated by transcriptome analysis as well as by affinity-based protein profiling. Down-regulation of several pathogenesis associated genes suggested the inhibition of a central virulence-related pathway. Mass spectrometry-based chemical proteomics revealed putative molecular targets. Systemic treatment with the hydroxyamide showed significant reduction of abscess sizes in a MRSA mouse skin infection model. The absence of resistance development in vitro further underlines the finding that targeting virulence could lead to prolonged therapeutic options in comparison to antibiotics that directly address bacterial survival.

  7. A humanized monoclonal antibody targeting Staphylococcus aureus.

    PubMed

    Patti, Joseph M

    2004-12-01

    This current presentation describes the in vitro and in vivo characterization of Aurexis (tefibazumab), a humanized monoclonal antibody that exhibits a high affinity and specificity and for the Staphylococcus aureus MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) protein ClfA. Aurexis inhibited ClfA binding to human fibrinogen, and enhanced the opsonophagocytic uptake of ClfA-coated beads. Preclinical in vivo testing revealed that a single administration of Aurexis significantly protected against an IV challenge with a methicillin resistant S. aureus (MRSA) strain in murine septicemia and rabbit infective endocarditis (IE) models. Safety and pharmacokinetic data from a 19-patient phase I study support continued evaluation of Aurexis in phase II studies. PMID:15576200

  8. Staphylococcus aureus persisters tolerant to bactericidal antibiotics

    PubMed Central

    Lechner, Sabrina; Lewis, Kim; Bertram, Ralph

    2012-01-01

    Bacterial persister cells are non- or slow growing reversible phenotypic variants of the wild type, tolerant to bactericidal antibiotics. We here analyzed Staphylococcus aureus persister levels by monitoring colony forming unit (CFU) counts of planktonically grown cells treated with six different antimicrobials over time. Model laboratory strains HG001-HG003, SA113 and small colony variant (SCV) strains hemB and menD were challenged by the compounds at different logs of minimal inhibitory concentration (MIC) in exponential or stationary growth phase. Antibiotic tolerance was usually elevated in SCV strains compared to normally growing cells and in stationary vs. exponential phase cultures. Biphasic killing kinetics, typical for persister cell enrichment, were observed in both growth phases under different selective conditions. Treatment of exponential phase cultures of HG001-HG003 with 10-fold MIC of tobramycin resulted in the isolation of persisters which upon cultivation on plates formed either normal or phenotypically stable small colonies. Trajectories of different killing curves indicated physiological heterogeneity within persister subpopulations. Daptomycin added at 100-fold MIC to stationary phase SA113 cells rapidly isolated very robust persisters. Fractions of antibiotic tolerant cells were observed with all S. aureus strains and mutants tested. Our results refute the hypothesis that S. aureus stationary phase cells are equivalent to persisters, as not all of these cells showed antibiotic tolerance. Isolation of S. aureus persisters of different robustness seems to dependent on the kind and concentration of the antibiotic, as well as on the strain used. PMID:22986269

  9. Methicillin-resistant Staphylococcus aureus laryngitis.

    PubMed

    Liakos, Tracey; Kaye, Keith; Rubin, Adam D

    2010-09-01

    Infections due to methicillin-resistant Staphylococcus aureus (MRSA) have become more prevalent, in part because of the emergence and spread of community-acquired MRSA. This trend is particularly concerning because of the significant rates of morbidity and mortality associated with MRSA infections, and because MRSA strains are often resistant to many classes of antibiotics. Reports of infections of the head and neck, including wound infections, cellulitis, sinusitis, otitis media, and otitis externa, are well documented. However, to our knowledge, there have been no reports of bacterial laryngitis due to MRSA. We report the first published case of bacterial laryngitis caused by MRSA.

  10. Staphylococcus aureus and Staphylococcus epidermidis Virulence Strains as Causative Agents of Persistent Infections in Breast Implants.

    PubMed

    Chessa, Daniela; Ganau, Giulia; Spiga, Luisella; Bulla, Antonio; Mazzarello, Vittorio; Campus, Gian Vittorio; Rubino, Salvatore

    2016-01-01

    Staphylococcus epidermidis and Staphylococcus aureus are currently considered two of the most important pathogens in nosocomial infections associated with catheters and other medical implants and are also the main contaminants of medical instruments. However because these species of Staphylococcus are part of the normal bacterial flora of human skin and mucosal surfaces, it is difficult to discern when a microbial isolate is the cause of infection or is detected on samples as a consequence of contamination. Rapid identification of invasive strains of Staphylococcus infections is crucial for correctly diagnosing and treating infections. The aim of the present study was to identify specific genes to distinguish between invasive and contaminating S. epidermidis and S. aureus strains isolated on medical devices; the majority of our samples were collected from breast prostheses. As a first step, we compared the adhesion ability of these samples with their efficacy in forming biofilms; second, we explored whether it is possible to determine if isolated pathogens were more virulent compared with international controls. In addition, this work may provide additional information on these pathogens, which are traditionally considered harmful bacteria in humans, and may increase our knowledge of virulence factors for these types of infections.

  11. Methicillin-Susceptible, Vancomycin-Resistant Staphylococcus aureus, Brazil.

    PubMed

    Panesso, Diana; Planet, Paul J; Diaz, Lorena; Hugonnet, Jean-Emmanuel; Tran, Truc T; Narechania, Apurva; Munita, Jose M; Rincon, Sandra; Carvajal, Lina P; Reyes, Jinnethe; Londoño, Alejandra; Smith, Hannah; Sebra, Robert; Deikus, Gintaras; Weinstock, George M; Murray, Barbara E; Rossi, Flavia; Arthur, Michel; Arias, Cesar A

    2015-10-01

    We report characterization of a methicillin-susceptible, vancomycin-resistant bloodstream isolate of Staphylococcus aureus recovered from a patient in Brazil. Emergence of vancomycin resistance in methicillin-susceptible S. aureus would indicate that this resistance trait might be poised to disseminate more rapidly among S. aureus and represents a major public health threat. PMID:26402569

  12. Methicillin-Susceptible, Vancomycin-Resistant Staphylococcus aureus, Brazil.

    PubMed

    Panesso, Diana; Planet, Paul J; Diaz, Lorena; Hugonnet, Jean-Emmanuel; Tran, Truc T; Narechania, Apurva; Munita, Jose M; Rincon, Sandra; Carvajal, Lina P; Reyes, Jinnethe; Londoño, Alejandra; Smith, Hannah; Sebra, Robert; Deikus, Gintaras; Weinstock, George M; Murray, Barbara E; Rossi, Flavia; Arthur, Michel; Arias, Cesar A

    2015-10-01

    We report characterization of a methicillin-susceptible, vancomycin-resistant bloodstream isolate of Staphylococcus aureus recovered from a patient in Brazil. Emergence of vancomycin resistance in methicillin-susceptible S. aureus would indicate that this resistance trait might be poised to disseminate more rapidly among S. aureus and represents a major public health threat.

  13. Aspartate inhibits Staphylococcus aureus biofilm formation.

    PubMed

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp.

  14. Toxin-Antitoxin Systems of Staphylococcus aureus.

    PubMed

    Schuster, Christopher F; Bertram, Ralph

    2016-05-05

    Toxin-antitoxin (TA) systems are small genetic elements found in the majority of prokaryotes. They encode toxin proteins that interfere with vital cellular functions and are counteracted by antitoxins. Dependent on the chemical nature of the antitoxins (protein or RNA) and how they control the activity of the toxin, TA systems are currently divided into six different types. Genes comprising the TA types I, II and III have been identified in Staphylococcus aureus. MazF, the toxin of the mazEF locus is a sequence-specific RNase that cleaves a number of transcripts, including those encoding pathogenicity factors. Two yefM-yoeB paralogs represent two independent, but auto-regulated TA systems that give rise to ribosome-dependent RNases. In addition, omega/epsilon/zeta constitutes a tripartite TA system that supposedly plays a role in the stabilization of resistance factors. The SprA1/SprA1AS and SprF1/SprG1 systems are post-transcriptionally regulated by RNA antitoxins and encode small membrane damaging proteins. TA systems controlled by interaction between toxin protein and antitoxin RNA have been identified in S. aureus in silico, but not yet experimentally proven. A closer inspection of possible links between TA systems and S. aureus pathophysiology will reveal, if these genetic loci may represent druggable targets. The modification of a staphylococcal TA toxin to a cyclopeptide antibiotic highlights the potential of TA systems as rather untapped sources of drug discovery.

  15. Toxin-Antitoxin Systems of Staphylococcus aureus

    PubMed Central

    Schuster, Christopher F.; Bertram, Ralph

    2016-01-01

    Toxin-antitoxin (TA) systems are small genetic elements found in the majority of prokaryotes. They encode toxin proteins that interfere with vital cellular functions and are counteracted by antitoxins. Dependent on the chemical nature of the antitoxins (protein or RNA) and how they control the activity of the toxin, TA systems are currently divided into six different types. Genes comprising the TA types I, II and III have been identified in Staphylococcus aureus. MazF, the toxin of the mazEF locus is a sequence-specific RNase that cleaves a number of transcripts, including those encoding pathogenicity factors. Two yefM-yoeB paralogs represent two independent, but auto-regulated TA systems that give rise to ribosome-dependent RNases. In addition, omega/epsilon/zeta constitutes a tripartite TA system that supposedly plays a role in the stabilization of resistance factors. The SprA1/SprA1AS and SprF1/SprG1 systems are post-transcriptionally regulated by RNA antitoxins and encode small membrane damaging proteins. TA systems controlled by interaction between toxin protein and antitoxin RNA have been identified in S. aureus in silico, but not yet experimentally proven. A closer inspection of possible links between TA systems and S. aureus pathophysiology will reveal, if these genetic loci may represent druggable targets. The modification of a staphylococcal TA toxin to a cyclopeptide antibiotic highlights the potential of TA systems as rather untapped sources of drug discovery. PMID:27164142

  16. Aspartate inhibits Staphylococcus aureus biofilm formation.

    PubMed

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. PMID:25687923

  17. Characterization of Staphylococcus aureus infections in children with Down syndrome.

    PubMed

    Johnston, Jeffrey N; Kaplan, Sheldon L; Mason, Edward O; Hulten, Kristina G

    2015-11-01

    Staphylococcus aureus infections in the Down syndrome (DS) population have not been well characterized. This study determined clinical and molecular characteristics of S. aureus infections in children with DS followed at Texas Children's Hospital (TCH), from 2001 to 2011. Patients were retrospectively identified from an ongoing S. aureus surveillance study. Medical records were reviewed. Isolates were characterized by antimicrobial susceptibility, pulsed-field gel electrophoresis patterns, and detection of PVL genes (pvl), mupA (high-level mupirocin resistance gene), smr (chlorhexidine resistance conferring gene), and Staphylococcal Chromosomal Cassette mec (SCCmec) type. Twenty-six patients with DS had a total of 34 S. aureus infections (8 recurrent); 61% were MRSA. DS patients represented 16.8 per 10,000 community onset S. aureus infections seen at TCH. Among 26 initial infections 17 were skin and soft tissue (SSTI), 7 were outer or middle ear and 2 were invasive infections. Seventeen patients were hospitalized. Thirteen (65%) of 20 available isolates were USA300, 14 were pvl+, 5 were mupA+, and 8 were smr+. Five of 8 (63%) recurrent infections were ear infections. All 4 recurrent ear isolates available for study were smr+, ciprofloxacin non-susceptible and treated with ciprofloxacin otic drops. S. aureus infections among patients with DS were similar in presentation to other patient groups, except for a greater proportion being associated with ear infections. Seventy percent of ear fluid isolates carried antiseptic and fluoroquinolone resistance genes. A study of a greater number of DS patients is warranted to further explore these findings.

  18. Characterization of Staphylococcus aureus infections in children with Down syndrome.

    PubMed

    Johnston, Jeffrey N; Kaplan, Sheldon L; Mason, Edward O; Hulten, Kristina G

    2015-11-01

    Staphylococcus aureus infections in the Down syndrome (DS) population have not been well characterized. This study determined clinical and molecular characteristics of S. aureus infections in children with DS followed at Texas Children's Hospital (TCH), from 2001 to 2011. Patients were retrospectively identified from an ongoing S. aureus surveillance study. Medical records were reviewed. Isolates were characterized by antimicrobial susceptibility, pulsed-field gel electrophoresis patterns, and detection of PVL genes (pvl), mupA (high-level mupirocin resistance gene), smr (chlorhexidine resistance conferring gene), and Staphylococcal Chromosomal Cassette mec (SCCmec) type. Twenty-six patients with DS had a total of 34 S. aureus infections (8 recurrent); 61% were MRSA. DS patients represented 16.8 per 10,000 community onset S. aureus infections seen at TCH. Among 26 initial infections 17 were skin and soft tissue (SSTI), 7 were outer or middle ear and 2 were invasive infections. Seventeen patients were hospitalized. Thirteen (65%) of 20 available isolates were USA300, 14 were pvl+, 5 were mupA+, and 8 were smr+. Five of 8 (63%) recurrent infections were ear infections. All 4 recurrent ear isolates available for study were smr+, ciprofloxacin non-susceptible and treated with ciprofloxacin otic drops. S. aureus infections among patients with DS were similar in presentation to other patient groups, except for a greater proportion being associated with ear infections. Seventy percent of ear fluid isolates carried antiseptic and fluoroquinolone resistance genes. A study of a greater number of DS patients is warranted to further explore these findings. PMID:26386776

  19. Staphylococcus aureus persisters tolerant to bactericidal antibiotics.

    PubMed

    Lechner, Sabrina; Lewis, Kim; Bertram, Ralph

    2012-01-01

    Bacterial persister cells are non- or slow-growing reversible phenotypic variants of the wild type, tolerant to bactericidal antibiotics. We analyzed here Staphylococcus aureus persister levels by monitoring colony-forming unit counts of planktonically grown cells treated with six different antimicrobials over time. The model laboratory strains HG001-HG003, SA113 and the small colony variant (SCV) strains hemB and menD were challenged by the compounds at different logs of minimal inhibitory concentration (MIC) in exponential or stationary growth phase. Antibiotic tolerance was usually elevated in SCV strains compared to normally growing cells and in stationary versus exponential phase cultures. Biphasic killing kinetics, typical for persister cell enrichment, were observed in both growth phases under different selective conditions. Treatment of exponential phase cultures of HG001-HG003 with 10-fold MIC of tobramycin resulted in the isolation of persisters which upon cultivation on plates formed either normal or phenotypically stable small colonies. Trajectories of different killing curves indicated physiological heterogeneity within persister subpopulations. Daptomycin added at 100-fold MIC to stationary phase SA113 cells rapidly isolated very robust persisters. Fractions of antibiotic-tolerant cells were observed with all S. aureus strains and mutants tested. Our results refute the hypothesis that S. aureus stationary phase cells are equivalent to persisters, as not all of these cells showed antibiotic tolerance. Isolation of S. aureus persisters of different robustness seems to depend on the kind and concentration of the antibiotic, as well as on the strain used. PMID:22986269

  20. Characteristics of Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) Strains Isolated from Skin and Soft-Tissue Infections in Uruguay

    PubMed Central

    Pardo, Lorena; Machado, Virginia; Mollerach, Marta; Mota, María Inés; Tuchscherr, Lorena P. N.; Gadea, Pilar; Gardella, Noella; Sordelli, Daniel O.; Vola, Magdalena; Schelotto, Felipe; Varela, Gustavo

    2009-01-01

    We analyzed 90 nonduplicates community-associated methicillin-resistant S. aureus (CA-MRSA) strains isolated from skin and soft-tissue infections. All strains were mecA positive. Twenty-four of the 90 strains showed inducible macrolide-lincosamide-streptogramin B resistance. All strains produced α-toxin; 96% and 100% of them displayed positive results for lukS-F and cna genes, respectively. Eigthy-five strains expressed capsular polysaccharide serotype 8. Six different pulsotypes were discriminated by pulsed-field gel electrophoresis (PFGE) and three predominant groups of CA-MRSA strains (1, 2, and 4) were identified, in agreement with phenotypic and genotypic characteristics. Strains of group 1 (pulsotype A, CP8+, and Panton-Valentine leukocidin (PVL)+) were the most frequently recovered and exhibited a PFGE band pattern identical to other CA-MRSA strains previously isolated in Uruguay and Brazil. Three years after the first local CA-MRSA report, these strains are still producing skin and soft-tissue infections demonstrating the stability over time of this community-associated emerging pathogen. PMID:20016669

  1. Methicillin-resistant Staphylococcus aureus, Western Australia

    PubMed Central

    Dailey, Lynne; Coombs, Geoffrey W.; O'Brien, Frances G.; Pearman, John W.; Christiansen, Keryn; Grubb, Warren B.

    2005-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a notable cause of hospital-acquired infections. A statewide screening and control policy was implemented in Western Australia (WA) after an outbreak of epidemic MRSA in a Perth hospital in 1982. We report on statutory notifications from1998 to 2002 and review the 20-year period from 1983 to 2002. The rate of reporting of community-associated Western Australia MRSA (WAMRSA) escalated from 1998 to 2002 but may have peaked in 2001. Several outbreaks were halted, but they resulted in an increase in reports as a result of screening. A notable increase in ciprofloxacin resistance during the study period was observed as a result of more United Kingdom epidemic MRSA (EMRSA) -15 and -16. WA has seen a persistently low incidence of multidrug-resistant MRSA because of the screening and decolonization program. Non–multidrug-resistant, community-associated WAMRSA strains have not established in WA hospitals. PMID:16318700

  2. Multilocus sequence typing (MLST) of Staphylococcus aureus.

    PubMed

    Saunders, Nicholas A; Holmes, Anne

    2007-01-01

    Multilocus sequence typing (MLST) is a widely accepted method of DNA sequencebased typing that relies on analysis of relatively conserved genes that encode essential proteins. For Staphylococcus aureus, the level of discrimination provided by MLST is sufficient to provide a relatively detailed picture of the global dissemination of the organism. The technique is not restrictive in the precise methodology used to acquire the sequences, but the method of assigning types requires that the data be of high quality. Excellent Web-based tools have been developed and are curated by the groups that launched MLST. These tools have allowed the scheme to be maintained as a coherent global asset and assist users in the analysis of their data.

  3. Proline betaine is a highly effective osmoprotectant for Staphylococcus aureus.

    PubMed

    Amin, U S; Lash, T D; Wilkinson, B J

    1995-02-01

    Proline betaine is an osmoprotectant that is at least as effective as glycine betaine, and more effective than L-proline, for various strains of Staphylococcus aureus, and Staphylococcus epidermidis and Staphylococcus saprophyticus. 13C NMR studies revealed that proline betaine accumulated to high levels in osmotically stressed S. aureus, but was also detected in organisms grown in its presence in the absence of osmotic stress. Competition experiments indicated that proline betaine was taken up by the proline transport systems of S. aureus, but not by the high affinity glycine betaine transport system.

  4. Clinical Management of Staphylococcus aureus Bacteremia

    PubMed Central

    Holland, Thomas L.; Arnold, Christopher; Fowler, Vance G.

    2014-01-01

    Importance Several management strategies may improve outcomes in patients with Staphylococcus aureus bacteremia (SAB). The strength of evidence supporting these management strategies, however, varies widely. Objective To perform a systematic review of the evidence for two unresolved questions involving management strategies for SAB: 1) is transesophageal echocardiography (TEE) necessary in all cases of SAB; and 2) what is the optimal antibiotic therapy for methicillin resistant Staphylococcus aureus (MRSA) bacteremia? Evidence acquisition A PubMed search from inception through May 2014 was performed to find studies that addressed the role of TEE in SAB. A second search of PubMed, EMBASE, and The Cochrane Library from 1/1/1990 to 5/28/2014 was performed to find studies that addressed antibiotic treatment of MRSA bacteremia. Studies that reported outcomes of systemic antibiotic therapy for MRSA bacteremia were included. All searches were augmented by review of bibliographic references from included studies. The quality of evidence was assessed using the GRADE system by consensus of independent evaluations by at least two authors. Results In 9 studies with a total of 3513 patients, use of TEE was associated with higher rates of diagnosis of endocarditis (14–25%) when compared with TTE (2–14%). Five studies proposed criteria to identify patients in whom TEE might safely be avoided. Only one high-quality trial of antibiotic therapy for MRSA bacteremia was identified from the 83 studies considered. Conclusions and relevance Most contemporary management strategies for SAB are based upon low quality evidence. TEE is indicated in most patients with SAB. It may be possible to identify a subset of SAB patients for whom TEE can be safely avoided. Vancomycin and daptomycin are the first-line antibiotic choices for MRSA bacteremia. Well-designed studies to address the management of SAB are desperately needed. PMID:25268440

  5. Activity of Gallidermin on Staphylococcus aureus and Staphylococcus epidermidis Biofilms

    PubMed Central

    Saising, Jongkon; Dube, Linda; Ziebandt, Anne-Kathrin; Voravuthikunchai, Supayang Piyawan; Nega, Mulugeta

    2012-01-01

    Due to their abilities to form strong biofilms, Staphylococcus aureus and Staphylococcus epidermidis are the most frequently isolated pathogens in persistent and chronic implant-associated infections. As biofilm-embedded bacteria are more resistant to antibiotics and the immune system, they are extremely difficult to treat. Therefore, biofilm-active antibiotics are a major challenge. Here we investigated the effect of the lantibiotic gallidermin on two representative biofilm-forming staphylococcal species. Gallidermin inhibits not only the growth of staphylococci in a dose-dependent manner but also efficiently prevents biofilm formation by both species. The effect on biofilm might be due to repression of biofilm-related targets, such as ica (intercellular adhesin) and atl (major autolysin). However, gallidermin's killing activity on 24-h and 5-day-old biofilms was significantly decreased. A subpopulation of 0.1 to 1.0% of cells survived, comprising “persister” cells of an unknown genetic and physiological state. Like many other antibiotics, gallidermin showed only limited activity on cells within mature biofilms. PMID:22926575

  6. Health care-associated Staphylococcus aureus pneumonia

    PubMed Central

    Webster, Duncan; Chui, Linda; Tyrrell, Gregory J; Marrie, Thomas J

    2007-01-01

    INTRODUCTION While Staphylococcus aureus is an uncommon but serious cause of traditional community-acquired pneumonia (CAP), it is a predominant cause of nosocomial pneumonia in addition to the unique clinical entity of health care-associated pneumonia (HCAP). A cohort of bacteremic S aureus pneumonia cases was reviewed to determine the role of HCAP among the cohort, and to assess for differences between CAP and HCAP. PATIENTS AND METHODS Bacteremic S aureus pneumonia cases were identified from a prospective study of all patients diagnosed with CAP who presented to hospitals in Edmonton, Alberta, between November 2000 and November 2002. These cases were subsequently reviewed retrospectively. Demographic, clinical and microbiological data were obtained, and patients were classified as having CAP or HCAP. Relatedness of isolates was determined by pulsed-field gel electrophoresis analysis in conjunction with epidemiological information. RESULTS There were 28 cases of bacteremic S aureus pneumonia identified. Fifty-seven per cent were reclassified as having HCAP, and 43% remained classified as having CAP. The CAP cohort was significantly younger than the HCAP cohort (mean age 49.0±23.7 years versus 67.8±18.6 years; P=0.035) with higher rates of intravenous drug use (50% versus 0%; P=0.002). Long-term care facility residence (44%) was common in the HCAP cohort. The HCAP cohort presented with more severe illness, having a higher mean pneumonia severity index score (143.1±41.1 versus 98.2±54.6; P=0.028), and despite fewer embolic complications, there was a trend toward a significantly higher mortality rate (31% versus 0%; P=0.052). Two community-acquired isolates cultured in the setting of intravenous drug use were methicillin-resistant, and no isolates were positive for Panton-Valentine leukocidin. There was evidence of relatedness involving 44% of the HCAP isolates by pulsed-field gel electrophoresis analysis. CONCLUSION HCAP accounts for a significant number of

  7. Tryptophan biosynthetic enzymes of Staphylococcus aureus.

    PubMed

    Proctor, A R; Kloos, W E

    1973-04-01

    Tryptophan biosynthetic enzymes were assayed in various tryptophan mutants of Staphylococcus aureus strain 655 and the wild-type parent. All mutants, except trpB mutants, lacked only the activity corresponding to the particular biosynthetic block, as suggested previously by analysis of accumulated intermediates and auxonography. Tryptophan synthetase A was not detected in extracts of either trpA or trpB mutants but appeared normal in other mutants. Mutants in certain other classes exhibited partial loss of another particular tryptophan enzyme activity. Tryptophan synthetase B activity was not detected in cell extract preparations but was detected in whole cells. The original map order proposed for the S. aureus tryptophan gene cluster was clarified by the definition of trpD (phosphoribosyl transferase(-)) and trpF (phosphoribosyl anthranilate isomerase(-)) mutants. These mutants were previously unresolved and designated as trp(DF) mutants (anthranilate accumulators). Phosphoribosyl anthranilate isomerase and indole-3-glycerol phosphate synthetase enzymes were separable by molecular sieve chromatography, suggesting that these functions are coded by separate loci. Molecular sieve chromatography failed to reveal aggregates involving anthranilate synthetase, phosphoribosyl transferase, phosphoribosyl anthranilate isomerase, and indole-3-glycerol phosphate synthetase, and this procedure provided an estimate of the molecular weights of these enzymes. Tryptophan was shown to repress synthesis of all six tryptophan biosynthetic enzymes, and derepression of all six activities was incident upon tryptophan starvation. Tryptophan inhibited the activity of anthranilate synthetase, the first enzyme of the pathway. PMID:4698207

  8. Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus.

    PubMed

    Vemula, Harika; Ayon, Navid J; Gutheil, William G

    2016-02-01

    Intracellular cytoplasmic peptidoglycan (PG) intermediate levels were determined in Staphylococcus aureus during log-phase growth in enriched media. Levels of UDP-linked intermediates were quantitatively determined using ion pairing LC-MS/MS in negative mode, and amine intermediates were quantitatively determined stereospecifically as their Marfey's reagent derivatives in positive mode. Levels of UDP-linked intermediates in S. aureus varied from 1.4 μM for UDP-GlcNAc-Enolpyruvyate to 1200 μM for UDP-MurNAc. Levels of amine intermediates (L-Ala, D-Ala, D-Ala-D-Ala, L-Glu, D-Glu, and L-Lys) varied over a range of from 860 μM for D-Ala-D-Ala to 30-260 mM for the others. Total PG was determined from the D-Glu content of isolated PG, and used to estimate the rate of PG synthesis (in terms of cytoplasmic metabolite flux) as 690 μM/min. The total UDP-linked intermediates pool (2490 μM) is therefore sufficient to sustain growth for 3.6 min. Comparison of UDP-linked metabolite levels with published pathway enzyme characteristics demonstrates that enzymes on the UDP-branch range from >80% saturation for MurA, Z, and C, to <5% saturation for MurB. Metabolite levels were compared with literature values for Escherichia coli, with the major difference in UDP-intermediates being the level of UDP-MurNAc, which was high in S. aureus (1200 μM) and low in E. coli (45 μM). PMID:26612730

  9. Food Poisoning and Staphylococcus aureus Enterotoxins

    PubMed Central

    Argudín, María Ángeles; Mendoza, María Carmen; Rodicio, María Rosario

    2010-01-01

    Staphylococcus aureus produces a wide variety of toxins including staphylococcal enterotoxins (SEs; SEA to SEE, SEG to SEI, SER to SET) with demonstrated emetic activity, and staphylococcal-like (SEl) proteins, which are not emetic in a primate model (SElL and SElQ) or have yet to be tested (SElJ, SElK, SElM to SElP, SElU, SElU2 and SElV). SEs and SEls have been traditionally subdivided into classical (SEA to SEE) and new (SEG to SElU2) types. All possess superantigenic activity and are encoded by accessory genetic elements, including plasmids, prophages, pathogenicity islands, vSa genomic islands, or by genes located next to the staphylococcal cassette chromosome (SCC) implicated in methicillin resistance. SEs are a major cause of food poisoning, which typically occurs after ingestion of different foods, particularly processed meat and dairy products, contaminated with S. aureus by improper handling and subsequent storage at elevated temperatures. Symptoms are of rapid onset and include nausea and violent vomiting, with or without diarrhea. The illness is usually self-limiting and only occasionally it is severe enough to warrant hospitalization. SEA is the most common cause of staphylococcal food poisoning worldwide, but the involvement of other classical SEs has been also demonstrated. Of the new SE/SEls, only SEH have clearly been associated with food poisoning. However, genes encoding novel SEs as well as SEls with untested emetic activity are widely represented in S. aureus, and their role in pathogenesis may be underestimated. PMID:22069659

  10. Outbreak of Skin Infections Due to Panton-Valentine Leukocidin-Positive Methicillin-Susceptible Staphylococcus aureus in a French Prison in 2010-2011.

    PubMed

    Bourigault, Céline; Corvec, Stéphane; Brulet, Virginie; Robert, Pierre-Yves; Mounoury, Olivier; Goubin, Chloé; Boutoille, David; Hubert, Bruno; Bes, Michèle; Tristan, Anne; Etienne, Jérôme; Lepelletier, Didier

    2014-01-01

    Background. An outbreak of PVL-positive MSSA skin and soft tissue-infections (SSTIs) was suspected in May 2010 when recurrent SSTI was diagnosed in an inmate of a large prison in Nantes, France. Methods and findings. Retrospective and prospective investigations were performed. Microbiological characterisation was by DNA microarray testing (S. aureus genotyping - Identibac, Alere). We identified 14 inmates meeting our clinical and microbiological case definition for PVL-MSSA SSTI between March 2010 and April 2011. The SSTIs developed in tattooed areas in 4 patients and in areas shaved daily with a mechanical razor in 4 other patients. All case isolates exhibited a similar SmaI pulsed-field gel electrophoresis pattern. Microarray analysis showed that all 14 isolates harboured genes encoding PVL and enterotoxins (A, H, K, and Q) and belonged to clonal complex 1 (CC1). Individual and collective hygiene measures, education delivered to inmates and prison employees, and antibiotic treatment of SSTIs were successful in controlling the outbreak. No new cases were identified after April 2011. Routine screening for PVL-positive MSSA carriage was not feasible. Conclusions. Our data suggest that tattooing and shaving with mechanical razors may constitute risk factors for SSTIs among previously colonised inmates and contribute to the PVL-MSSA outbreak in the prison. Allowing inmates access to professional tattooists and to the hygiene and safety conditions available to people in the community would help to prevent tattoo-related infections. PMID:24619564

  11. Staphylococcus aureus meningitis from osteomyelitis of the spine.

    PubMed Central

    Markus, H. S.; Allison, S. P.

    1989-01-01

    Two cases of vertebral osteomyelitis presenting with secondary Staphylococcus aureus meningitis are described. In staphylococcal meningitis a search for a primary source should include the lower vertebral spine. PMID:2616438

  12. Threat of drug resistant Staphylococcus aureus to health in Nepal

    PubMed Central

    2014-01-01

    Background Staphylococcus aureus is the most commonly isolated organism from the different clinical samples in hospital. The emergence and dissemination of methicillin resistant Staphylococcus aureus (MRSA) and growing resistance to non-beta-lactam antibiotics is making treatment of infections due to this organism increasingly difficult. Methods This study was conducted to determine the frequency of Staphylococcus aureus isolated from different clinical samples, rates of MRSA and full antibiotic susceptibility profiles. Clinical samples were cultured and Staphylococcus aureus was identified using standard microbiological methods recommended by the American Society for Microbiology (ASM). Methicillin resistance was confirmed using cefoxitin and oxacillin disks. Inducible clindamycin resistance was identified using D-zone test. Results From the processed samples, 306 isolates of Staphylococcus aureus were recovered. All the isolates were susceptible to vancomycin and teicoplanin. Methicillin resistance was observed in 43.1% of isolates while inducible clindamycin resistance in 12.4% of the isolates. Conclusions The results of our study reveals that rates of resistance to commonly prescribed antibiotics in Staphylococcus aureus clinical isolates is high. In particular, rate of methicillin resistance is alarming, prompting concern on the rational use of antibiotics and vigilant laboratory-based surveillance of resistance rates in Nepal. PMID:24655316

  13. Clearance of experimental cutaneous Staphylococcus aureus infections in mice

    PubMed Central

    Onunkwo, Charles C.; Hahn, Beth L.

    2010-01-01

    Staphylococcal skin infections are quite common in human patients. These infections often clear spontaneously, but may also progress locally and/or disseminate to cause serious and sometimes fatal deep infections. The present studies were undertaken to examine the clearance phase of experimental cutaneous Staphylococcus aureus infections in a mouse model system. Previous work in this system has shown that staphylococci applied to the skin rapidly disseminate to the spleen and kidney. In the present experiments the bacteria were found to persist at the skin infection site at a time (8 days after inoculation) when they had disappeared from the spleen and kidney. Examination of the infected skin at earlier times revealed rapid (within 6 h) invasion into the stratum corneum, stratum Malpighii, and dermis, but subsequent redistribution of bacteria (at 1–2 days) to more superficial sites, particularly crusts located just above the skin surface. The crusts seen in these infections were of two distinct types, which were termed type 1 and type 2. Type 1 crusts appeared first, consisted of bacteria, inflammatory cells, and debris, and developed over an intact epidermis. Type 2 crusts arose from the process of dermal necrosis previously reported to take place at 2 days in this model system. In the latter situation the bacteria were not really cleared from the epidermis and dermis; rather those layers were transformed into a superficial crust that contained the bacteria. Deep hair follicle infections in the dermis were found in these infections, but they did not persist and did not seem to be a reservoir for organisms in the dermis. Resolution of these experimental infections appeared to involve redistribution of invading bacteria to more superficial locations in crusts above the skin surface, marked proliferation of the epidermis, loss of the bacteria-laden crusts from the skin, and eventual healing of the cutaneous damage. PMID:20130894

  14. Staphylococcus aureus subverts cutaneous defense by D-alanylation of teichoic acids.

    PubMed

    Simanski, Maren; Gläser, Regine; Köten, Bente; Meyer-Hoffert, Ulf; Wanner, Stefanie; Weidenmaier, Christopher; Peschel, Andreas; Harder, Jürgen

    2013-04-01

    The Gram-positive bacterium Staphylococcus aureus is a frequent skin colonizer that often causes severe skin infections. It has been reported that neutralizing the negatively charged bacterial surface through the incorporation of d-alanine in its teichoic acids confers reduced susceptibility of S. aureus towards cationic antimicrobial peptides (AMPs). Using a S. aureus strain deficient in d-alanylated teichoic acids (dltA mutant), we demonstrate that d-alanylation of its surface reduces the susceptibility of S. aureus to skin-derived AMPs such as RNase 7 and human beta-defensins. This is accompanied by a higher killing activity of skin extracts towards the S. aureus dltA mutant as well as towards clinical isolates expressing lower levels of dltA. We conclude that modulation of cell envelope d-alanylation may help S. aureus to persist on human skin through evasion of cutaneous innate defense provided by cationic skin-derived AMPs.

  15. Skin tissue engineering for the infected wound site: biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and Staphylococcus aureus.

    PubMed

    Mohiti-Asli, Mahsa; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2014-10-01

    Wound infection presents a challenging and growing problem. With the increased prevalence and growth of multidrug-resistant bacteria, there is a mounting need to reduce and eliminate wound infections using methodologies that limit the ability of bacteria to evolve into further drug-resistant strains. A well-known strategy for combating bacterial infection and preventing wound sepsis is through the delivery of silver ions to the wound site. High surface area silver nanoparticles (AgNPs) allowing extensive silver ion release have therefore been explored in different wound dressings and/or skin substitutes. However, it has been recently shown that AgNPs can penetrate into the stratum corneum of skin or diffuse into the cellular plasma membrane, and may interfere with a variety of cellular mechanisms. The goal of this study was to introduce and evaluate a new type of high surface area metallic silver in the form of highly porous silver microparticles (AgMPs). Polylactic acid (PLA) nanofibers were successfully loaded with either highly porous AgMPs or AgNPs and the antimicrobial efficacy and cytotoxicity of the two silver-based wound dressings were assessed and compared. To better mimic the physiological environment in vivo where both human cells and bacteria are present, a novel coculture system combining human epidermal keratinocytes and Staphylococcus aureus bacteria was designed to simultaneously evaluate human skin cell cytotoxicity with antimicrobial efficacy in a three-dimensional environment. We found that highly porous AgMPs could be successfully incorporated in nanofibrous wound dressings, and exhibited comparable antimicrobial efficacy and cytotoxicity to AgNPs. Further, PLA nanofibers containing highly porous AgMPs exhibited steady silver ion release, at a greater rate of release, than nanofibers containing AgNPs. The replacement of AgNPs with the newly introduced AgMPs overcomes concerns regarding the use of nanoparticles and holds great promise as skin

  16. Bacillithiol: a key protective thiol in Staphylococcus aureus.

    PubMed

    Perera, Varahenage R; Newton, Gerald L; Pogliano, Kit

    2015-01-01

    Bacillithiol is a low-molecular-weight thiol analogous to glutathione and is found in several Firmicutes, including Staphylococcus aureus. Since its discovery in 2009, bacillithiol has been a topic of interest because it has been found to contribute to resistance during oxidative stress and detoxification of electrophiles, such as the antibiotic fosfomycin, in S. aureus. The rapid increase in resistance of methicillin-resistant Staphylococcus aureus (MRSA) to available therapeutic agents is a great health concern, and many research efforts are focused on identifying new drugs and targets to combat this organism. This review describes the discovery of bacillithiol, studies that have elucidated the physiological roles of this molecule in S. aureus and other Bacilli, and the contribution of bacillithiol to S. aureus fitness during pathogenesis. Additionally, the bacillithiol biosynthesis pathway is evaluated as a novel drug target that can be utilized in combination with existing therapies to treat S. aureus infections.

  17. Agglutinating serum for distinguishing Staphylococcus aureus of human biotype.

    PubMed

    Live, I

    1975-08-01

    Antiserum to Staphylococcus aureus strain 17 was treated with S. aureus strain 61218 until the antibodies against thermostable agglutinogen were removed. The absorbed serum agglutinated phage-typable as well as phageuntypable staphylococci of human biotype, whether recovered from people or from dogs. PMID:125241

  18. Early infective endocarditis due to Staphylococcus aureus following dental procedures.

    PubMed

    Kasmi, Gentian; Refatllari, Etleva; Dumani, Selman; Refatllari, Ali

    2014-01-01

    Staphylococcus aureus is now the most common cause of infective endocarditis (IE) in many areas of the developed world. Patients with S. aureus IE exhibit different characteristics compared to patients with IE deriving from oth- er organisms [1]. IE in general is a complication of bacteremia following invasive procedures. PMID:25648038

  19. Propionibacterium acnes biofilm - A sanctuary for Staphylococcus aureus?

    PubMed

    Tyner, Harmony; Patel, Robin

    2016-08-01

    The purpose of this study was to measure the effect of combined culture of Propionibacterium acnes and Staphylococcus aureus on biofilm formation under different oxygen concentrations. We measured planktonic growth and biofilm formation of P. acnes and S. aureus alone and together under aerobic and anaerobic conditions. Both P. acnes and S. aureus grew under anaerobic conditions. When grown under anaerobic conditions, P. acnes with or without S. aureus formed a denser biomass biofilm than did S. aureus alone. Viable S. aureus was recovered from a16-day old combined P. acnes and S. aureus biofilm, but not a monomicrobial S. aureus biofilm.

  20. Imported Methicillin-Resistant Staphylococcus aureus, Sweden

    PubMed Central

    Örtqvist, Åke; Ringberg, Håkan; Larsson, Leif; Olsson-Liljequist, Barbro; Hæggman, Sara; Kalin, Mats; Ekdahl, Karl

    2010-01-01

    Countries such as Sweden that have a low prevalence of methicillin-resistant Staphylococcus aureus (MRSA) offer the opportunity to discern and study transmission of imported cases of MRSA. We analyzed 444 imported cases of MRSA acquisition reported in Sweden during 2000–2003. Risk for MRSA in returning travelers ranged from 0.1 (95% confidence interval [CI] 0.01–0.4) per 1 million travelers to Nordic countries to 59.4 (95% CI 44.5–79.3) per 1 million travelers to North Africa and the Middle East. Most imported cases (246, 55%) were healthcare acquired, but regions with the highest risk for MRSA in travelers showed a correlation with community acquisition (r = 0.81, p = 0.001). Characteristic differences in MRSA strains acquired were dependent on the region from which they originated and whether they were community or healthcare acquired. Knowledge of differences in transmission of MRSA may improve control measures against imported cases. PMID:20113546

  1. Predictors of Mortality in Staphylococcus aureus Bacteremia

    PubMed Central

    Jensen, Slade O.; Vaska, Vikram L.; Espedido, Björn A.; Paterson, David L.; Gosbell, Iain B.

    2012-01-01

    Summary: Staphylococcus aureus bacteremia (SAB) is an important infection with an incidence rate ranging from 20 to 50 cases/100,000 population per year. Between 10% and 30% of these patients will die from SAB. Comparatively, this accounts for a greater number of deaths than for AIDS, tuberculosis, and viral hepatitis combined. Multiple factors influence outcomes for SAB patients. The most consistent predictor of mortality is age, with older patients being twice as likely to die. Except for the presence of comorbidities, the impacts of other host factors, including gender, ethnicity, socioeconomic status, and immune status, are unclear. Pathogen-host interactions, especially the presence of shock and the source of SAB, are strong predictors of outcomes. Although antibiotic resistance may be associated with increased mortality, questions remain as to whether this reflects pathogen-specific factors or poorer responses to antibiotic therapy, namely, vancomycin. Optimal management relies on starting appropriate antibiotics in a timely fashion, resulting in improved outcomes for certain patient subgroups. The roles of surgery and infectious disease consultations require further study. Although the rate of mortality from SAB is declining, it remains high. Future international collaborative studies are required to tease out the relative contributions of various factors to mortality, which would enable the optimization of SAB management and patient outcomes. PMID:22491776

  2. Staphylococcus aureus subsp. anaerobius strain ST1464 genome sequence

    PubMed Central

    Elbir, Haitham; Robert, Catherine; Nguyen, Ti Thien; Gimenez, Grégory; El Sanousi, Sulieman M.; Flock, Jan-Ingmar; Raoult, Didier

    2013-01-01

    Staphylococcus aureus subsp. anaerobius is responsible for Morel's disease in animals and a cause of abscess in humans. It is characterized by a microaerophilic growth, contrary to the other strains of S. aureus. The 2,604,446-bp genome (32.7% GC content) of S. anaerobius ST1464 comprises one chromosome and no plasmids. The chromosome contains 2,660 open reading frames (ORFs), 49 tRNAs and three complete rRNAs, forming one complete operon. The size of ORFs ranges between 100 to 4,600 bp except for two ORFs of 6,417 and 7,173 bp encoding segregation ATPase and non-ribosomal peptide synthase, respectively. The chromosome harbors Staphylococcus phage 2638A genome and incomplete Staphylococcus phage genome PT1028, but no detectable CRISPRS. The antibiotic resistance gene for tetracycline was found although Staphylococcus aureus subsp. anaerobius is susceptible to tetracycline in-vitro. Intact oxygen detoxification genes encode superoxide dismutase and cytochrome quinol oxidase whereas the catalase gene is impaired by a stop codon. Based on the genome, in-silico multilocus sequence typing indicates that S. aureus subsp. anaerobius emerged as a clone separated from all other S. aureus strains, illustrating host-adaptation linked to missing functions. Availability of S. aureus subsp. anaerobius genome could prompt the development of post-genomic tools for its rapid discrimination from S. aureus. PMID:24501641

  3. Community-onset Staphylococcus aureus Surveillance Programme annual report, 2012.

    PubMed

    Coombs, Geoffrey W; Daly, Denise A; Pearson, Julie C; Nimmo, Graeme R; Collignon, Peter J; McLaws, Mary-Louise; Robinson, James O; Turnidge, John D

    2014-03-01

    In 2012, the Australian Group on Antimicrobial Resistance (AGAR) conducted a community-onset period-prevalence survey of clinical Staphylococcus aureus isolated from hospital outpatients and general practice patients including nursing homes, long term care facilities and hospice patients. Day surgery and dialysis patients were excluded. Twenty-nine medical microbiology laboratories from all state and mainland territories participated. Isolates were tested by Vitek2® (AST-P612 card). Results were compared with previous AGAR community surveys. Nationally, the proportion of S. aureus that were methicillin-resistant S. aureus (MRSA) increased significantly from 11.5% in 2000 to 17.9% in 2012 (P<0.0001). Resistance to the non-ß-lactam antimicrobials varied between regions. No resistance was detected to vancomycin, teicoplanin or linezolid. Resistance in methicillin susceptible S. aureus was rare apart from erythromycin (12.8%) and was absent for vancomycin, teicoplanin, linezolid and daptomycin. The proportion of S. aureus characterised as health care-associated MRSA (HA-MRSA) was 5.1%. Three HA-MRSA clones were characterised, with 72.9% and 26.4% of HA-MRSA classified as ST22-IV [2B] (EMRSA-15) and ST239-III [3A] (Aus-2/3 EMRSA) respectively. Multi-clonal community-associated MRSA (CA-MRSA) accounted for 12.5% of all S. aureus. Regional variation in resistance in MRSA was primarily due to the differential distribution of the 2 major HA-MRSA clones; ST239-III [3A] (Aus-2/3 EMRSA), which is resistant to multiple non-ß-lactam antimicrobials, and ST22-IV [2B] (EMRSA-15), which is resistant to ciprofloxacin and typically erythromycin. Although the majority of CA-MRSA were non-multi-resistant, a significant expansion of Panton-Valentine leukocidin (PVL) positive CA-MRSA clones has occurred nationally. The mean age of patients (31.7 years, 95% CI 28.9-34.5) with a PVL positive CA-MRSA infection was significantly lower (P<0.0001), than the mean age of patients with a PVL

  4. Predominance of dfrG as determinant of trimethoprim resistance in imported Staphylococcus aureus.

    PubMed

    Nurjadi, D; Schäfer, J; Friedrich-Jänicke, B; Mueller, A; Neumayr, A; Calvo-Cano, A; Goorhuis, A; Molhoek, N; Lagler, H; Kantele, A; Van Genderen, P J J; Gascon, J; Grobusch, M P; Caumes, E; Hatz, C; Fleck, R; Mockenhaupt, F P; Zanger, P

    2015-12-01

    To investigate the global occurrence of trimethoprim-sulfamethoxazole resistance and the genetic mechanisms of trimethoprim resistance, we analysed Staphylococcus aureus from travel-associated skin and soft-tissue infections treated at 13 travel clinics in Europe. Thirty-eight per cent (75/196) were trimethoprim-resistant and 21% (41/196) were resistant to trimethoprim-sulfamethoxazole. Among methicillin-resistant S. aureus, these proportions were 30% (7/23) and 17% (4/23), respectively. DfrG explained 92% (69/75) of all trimethoprim resistance in S. aureus. Travel to South Asia was associated with the highest risk of acquiring trimethoprim-sulfamethoxazole-resistant S. aureus. We conclude that globally dfrG is the predominant determinant of trimethoprim resistance in human S. aureus infection.

  5. Bovine Staphylococcus aureus: diagnostic properties of specific media.

    PubMed

    Graber, H U; Pfister, S; Burgener, P; Boss, R; Meylan, M; Hummerjohann, J

    2013-08-01

    As accurate discrimination between Staphylococcus (S.) aureus and NSA (non-S. aureus staphylococci) involved in bovine mastitis is essential in terms of clinical prognosis and outcome, the aim of this study was to reevaluate the classical bacteriological procedures to identify these agents. Various media and the coagulase tube test were investigated using 116 strains of S. aureus and 115 of NSA, all isolated from cows with spontaneous intramammary infections (IMI). Furthermore, 25 NSA reference strains were analyzed. The study demonstrated that a few media were appropriate for differentiating S. aureus from NSA, provided that the staphylococci were isolated from bovine IMI. Evaluation of hemolysis further revealed that double or incomplete hemolysis are specific for S. aureus and are, therefore, a decisive diagnostic criterion. For strains showing complete hemolysis, maximal discrimination between S. aureus and NSA was observed by subculturing them on CHROMagar Staph. aureus.

  6. Clinical implications of vancomycin heteroresistant and intermediately susceptible Staphylococcus aureus.

    PubMed

    Gomes, Diane M; Ward, Kristina E; LaPlante, Kerry L

    2015-04-01

    Staphylococcus aureus (S. aureus) has proven to be a major pathogen with the emergence of methicillin-resistant S. aureus (MRSA) infections and recently with heteroresistant vancomycin-intermediate S. aureus (hVISA) and vancomycin-intermediate S. aureus (VISA) infections. Although vancomycin is traditionally a first-line and relatively effective antibiotic, its continued use is under question because reports of heteroresistance in S. aureus isolates are increasing. Both hVISA and VISA infections are associated with complicated clinical courses and treatment failures. The prevalence, mechanism of resistance, clinical significance, and laboratory detection of hVISA and VISA infections are not conclusive, making it difficult to apply research findings to clinical situations. We provide an evidence-based review of S. aureus isolates expressing heterogenic and reduced susceptibility to vancomycin.

  7. Outbreak of Panton-Valentine Leukocidin-Associated Methicillin-Susceptible Staphylococcus aureus Infection in a Rugby Team, France, 2010-2011.

    PubMed

    Couvé-Deacon, Elodie; Tristan, Anne; Pestourie, Nathalie; Faure, Christian; Doffoel-Hantz, Valérie; Garnier, Fabien; Laurent, Frédéric; Lina, Gerard; Ploy, Marie-Cecile

    2016-01-01

    Staphylococcus aureus strains that produce Panton-Valentine leukocidin are known to cause community infections. We describe an outbreak of skin abscesses caused by Panton-Valentine leukocidin-producing methicillin-susceptible S. aureus (clonal complex 121) in a professional rugby team in France during July 2010-February 2011. Eight team members were carriers; 7 had skin abscesses. PMID:26690308

  8. Evaluation of two iodophor teat germicides: activity against Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C

    1997-08-01

    Two germicides containing 0.5 and 1% titratable iodine were tested for efficacy against the development of new intramammary infections (IMI) caused by Staphylococcus aureus and Streptococcus agalactiae. The two trials for postmilking teat dip used a model for experimental challenge that was recommended by the National Mastitis Council. The 0.5% iodine formulation reduced new Staph. aureus IMI by 78.2% and reduced new Strep. agalactiae IMI by 73.2%. The 1% iodine product reduced new Staph. aureus IMI by 43.5% and reduced new Strep. agalactiae IMI by 46.4%. No adverse effects on the condition of teat skin or on teat ends were observed over the course of the trials. At the completion of each trial, the teat skin of dipped quarters was characterized as normal, smooth skin that was free from scales, cracks, or chapping; the teat orifice was characterized as smooth without evidence of irritation. PMID:9276825

  9. High salivary Staphylococcus aureus carriage rate among healthy paedodontic patients.

    PubMed

    Petti, Stefano; Boss, Maurizio; Messano, Giuseppe A; Protano, Carmela; Polimeni, Antonella

    2014-01-01

    Staphylococcus aureus can be responsible for oral and dental healthcare-associated infections. Patients with high salivary S. aureus levels are potential sources of infection, because saliva is spread in the environment during dental therapy. This study assessed the salivary S. aureus carriage rate in 97 children (6-12 years) in good general health, attending a paedodontic department. Samples of unstimulated saliva were collected, S. aureus was presumptively identified. The salivary carriage rate was 43% (95% confidence interval, 33%-53%). 6.2% children harboured levels >103 colony forming units/mL. These data suggest that the risk for environmental contamination and infection in dental healthcare settings could be high.

  10. Panton-Valentine Leukocidin (PVL)-Positive Health Care-Associated Methicillin-Resistant Staphylococcus aureus Isolates Are Associated with Skin and Soft Tissue Infections and Colonized Mainly by Infective PVL-Encoding Bacteriophages

    PubMed Central

    Hu, Qiwen; Cheng, Hang; Yuan, Wenchang; Zeng, Fangyin; Shang, Weilong; Tang, Dahai; Xue, Wencheng; Fu, Jianfeng; Zhou, Renjie; Zhu, Junmin; Yang, Jie; Hu, Zhen; Yuan, Jizhen; Zhang, Xia; Rao, Qing; Li, Shu; Chen, Zhijin; Hu, Xiaomei; Wu, Xingan

    2014-01-01

    The emergence of Panton-Valentine leukocidin (PVL)-positive methicillin-resistant Staphylococcus aureus (MRSA) is a public health concern worldwide. PVL is associated with community-associated MRSA and is linked to skin and soft tissue infections (SSTIs). However, PVL genes have also been detected in health care-associated (HA) MRSA isolates. The diseases associated with PVL-positive HA-MRSA isolates and the distributions of PVL-encoding bacteriophages in HA-MRSA have not been determined. In this study, a total of 259 HA-MRSA strains isolated between 2009 and 2012 in China from inpatients with SSTIs, pneumonia, and bacteremia were selected for molecular typing, including staphylococcal cassette chromosome mec typing, multilocus sequence typing, and staphylococcal protein A gene typing. The PVL genes and PVL bacteriophages in the MRSA isolates were characterized by PCR. Among the tested MRSA isolates, 28.6% (74/259) were PVL positive. The high prevalence of PVL-carrying HA-MRSA was observed to be associated with SSTIs but not with pneumonia or bacteremia. The PVL-positive HA-MRSA isolates were colonized mainly by infective PVL phages, namely, Φ7247PVL, ΦSLT, and ΦSa2958. The distribution of PVL-carrying bacteriophages differed geographically. Our study highlights the potential risk of the emergence of multidrug-resistant HA-MRSA strains with increased virulence. PMID:25339405

  11. Alpha-toxin of Staphylococcus aureus.

    PubMed Central

    Bhakdi, S; Tranum-Jensen, J

    1991-01-01

    Alpha-toxin, the major cytotoxic agent elaborated by Staphylococcus aureus, was the first bacterial exotoxin to be identified as a pore former. The protein is secreted as a single-chain, water-soluble molecule of Mr 33,000. At low concentrations (less than 100 nM), the toxin binds to as yet unidentified, high-affinity acceptor sites that have been detected on a variety of cells including rabbit erythrocytes, human platelets, monocytes and endothelial cells. At high concentrations, the toxin additionally binds via nonspecific absorption to lipid bilayers; it can thus damage both cells lacking significant numbers of the acceptor and protein-free artificial lipid bilayers. Membrane damage occurs in both cases after membrane-bound toxin molecules collide via lateral diffusion to form ring-structured hexamers. The latter insert spontaneously into the lipid bilayer to form discrete transmembrane pores of effective diameter 1 to 2 nm. A hypothetical model is advanced in which the pore is lined by amphiphilic beta-sheets, one surface of which interacts with lipids whereas the other repels apolar membrane constitutents to force open an aqueous passage. The detrimental effects of alpha-toxin are due not only to the death of susceptible targets, but also to the presence of secondary cellular reactions that can be triggered via Ca2+ influx through the pores. Well-studied phenomena include the stimulation of arachidonic acid metabolism, triggering of granule exocytosis, and contractile dysfunction. Such processes cause profound long-range disturbances such as development of pulmonary edema and promotion of blood coagulation.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:1779933

  12. Healthcare-Associated Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Kumari, Jyoti; Shenoy, Shalini M.; Baliga, Shrikala; Chakrapani, M.; Bhat, Gopalkrishna K.

    2016-01-01

    Objectives: Healthcare-associated methicillin-resistant Staphylococcus aureus (MRSA) is a common pathogen worldwide and its multidrug resistance is a major concern. This study aimed to determine the clinical characteristics and antibiotic susceptibility profile of healthcare-associated MRSA with emphasis on resistance to macrolide-lincosamide-streptogramin B (MLSB) phenotypes and vancomycin. Methods: This cross-sectional study was carried out between February 2014 and February 2015 across four tertiary care hospitals in Mangalore, South India. Healthcare-associated infections among 291 inpatients at these hospitals were identified according to the Centers for Disease Control and Prevention guidelines. Clinical specimens were collected based on infection type. S. aureus and MRSA isolates were identified and antibiotic susceptibility tests performed using the Kirby-Bauer disk diffusion method. The minimum inhibitory concentration of vancomycin was determined using the Agar dilution method and inducible clindamycin resistance was detected with a double-disk diffusion test (D-test). Results: Out of 291 healthcare-associated S. aureus cases, 88 were MRSA (30.2%). Of these, 54.6% were skin and soft tissue infections. All of the isolates were susceptible to teicoplanin and linezolid. Four MRSA isolates exhibited intermediate resistance to vancomycin (4.6%). Of the MRSA strains, 10 (11.4%) were constitutive MLSB phenotypes, 31 (35.2%) were inducible MLSB phenotypes and 14 (15.9%) were macrolide-streptogramin B phenotypes. Conclusion: Healthcare-associated MRSA multidrug resistance was alarmingly high. In routine antibiotic susceptibility testing, a D-test should always be performed if an isolate is resistant to erythromycin but susceptible to clindamycin. Determination of the minimum inhibitory concentration of vancomycin is necessary when treating patients with MRSA infections. PMID:27226908

  13. Comparative genomic analysis of the genus Staphylococcus including Staphylococcus aureus and its newly described sister species Staphylococcus simiae

    PubMed Central

    2012-01-01

    Background Staphylococcus belongs to the Gram-positive low G + C content group of the Firmicutes division of bacteria. Staphylococcus aureus is an important human and veterinary pathogen that causes a broad spectrum of diseases, and has developed important multidrug resistant forms such as methicillin-resistant S. aureus (MRSA). Staphylococcus simiae was isolated from South American squirrel monkeys in 2000, and is a coagulase-negative bacterium, closely related, and possibly the sister group, to S. aureus. Comparative genomic analyses of closely related bacteria with different phenotypes can provide information relevant to understanding adaptation to host environment and mechanisms of pathogenicity. Results We determined a Roche/454 draft genome sequence for S. simiae and included it in comparative genomic analyses with 11 other Staphylococcus species including S. aureus. A genome based phylogeny of the genus confirms that S. simiae is the sister group to S. aureus and indicates that the most basal Staphylococcus lineage is Staphylococcus pseudintermedius, followed by Staphylococcus carnosus. Given the primary niche of these two latter taxa, compared to the other species in the genus, this phylogeny suggests that human adaptation evolved after the split of S. carnosus. The two coagulase-positive species (S. aureus and S. pseudintermedius) are not phylogenetically closest but share many virulence factors exclusively, suggesting that these genes were acquired by horizontal transfer. Enrichment in genes related to mobile elements such as prophage in S. aureus relative to S. simiae suggests that pathogenesis in the S. aureus group has developed by gene gain through horizontal transfer, after the split of S. aureus and S. simiae from their common ancestor. Conclusions Comparative genomic analyses across 12 Staphylococcus species provide hypotheses about lineages in which human adaptation has taken place and contributions of horizontal transfer in pathogenesis. PMID

  14. Zosteriform Staphylococcus aureus Cutaneous Infection: Report of Two Patients With Dermatomal Bacterial Infection.

    PubMed

    Schepp, Elizabeth D; Cohen, Philip R

    2015-01-01

    The aim of this study was to describe cutaneous infections, which are zosteriform in distribution, including two patients with dermatomal Staphylococcus aureus infection. Herpes zoster infectious lesions usually occur in a dermatomal distribution. Other viruses, such as herpes simplex virus, can also appear with zosteriform lesions and closely mimic the clinical presentation of herpes zoster. Additionally, other skin infections, less commonly, are zosteriform. Two patients who developed zosteriform S aureus skin infection are described. A medical literature search for zosteriform dermatomal infections yielded other cutaneous infections with a zosteriform presentation. Two patients had S aureus and methicillin-resistant S aureus infection with skin lesions occupying the T11-T12 dermatomes and the T4 dermatome, respectively. They responded to antibacterial agents and adjuvant therapy. Patients with viral, fungal, and spirochete zosteriform infections are summarized. In addition to varicella-zoster virus infection, zosteriform skin infection can occur with viral (varicella-zoster virus, herpes simplex virus, and Epstein-Barr virus), superficial (dermatophyte), and deep (phaeohyphomycosis and zygomycosis) fungal, and bacterial (S aureus and methicillin-resistant S aureus) infections. These infections should be considered in the differential diagnosis of a zosteriform infection that does not present with the classic clinical picture for herpes zoster or that does not respond to standard treatments for varicellazoster virus. PMID:26861424

  15. Complete Genome Sequence of the Quality Control Strain Staphylococcus aureus subsp. aureus ATCC 25923

    PubMed Central

    Treangen, Todd J.; Maybank, Rosslyn A.; Enke, Sana; Friss, Mary Beth; Diviak, Lynn F.; Karaolis, David K. R.; Koren, Sergey; Ondov, Brian; Phillippy, Adam M.; Bergman, Nicholas H.

    2014-01-01

    Staphylococcus aureus subsp. aureus ATCC 25923 is commonly used as a control strain for susceptibility testing to antibiotics and as a quality control strain for commercial products. We present the completed genome sequence for the strain, consisting of the chromosome and a 27.5-kb plasmid. PMID:25377701

  16. Complete Genome Sequence of the Quality Control Strain Staphylococcus aureus subsp. aureus ATCC 25923.

    PubMed

    Treangen, Todd J; Maybank, Rosslyn A; Enke, Sana; Friss, Mary Beth; Diviak, Lynn F; Karaolis, David K R; Koren, Sergey; Ondov, Brian; Phillippy, Adam M; Bergman, Nicholas H; Rosovitz, M J

    2014-01-01

    Staphylococcus aureus subsp. aureus ATCC 25923 is commonly used as a control strain for susceptibility testing to antibiotics and as a quality control strain for commercial products. We present the completed genome sequence for the strain, consisting of the chromosome and a 27.5-kb plasmid. PMID:25377701

  17. Expression of a cloned Staphylococcus aureus alpha-hemolysin determinant in Bacillus subtilis and Staphylococcus aureus.

    PubMed Central

    Fairweather, N; Kennedy, S; Foster, T J; Kehoe, M; Dougan, G

    1983-01-01

    A DNA sequence encoding Staphylococcus aureus alpha-hemolysin, which had been previously cloned and mapped in Escherichia coli K-12, was introduced into Bacillus subtilis BD170 and several strains of S. aureus by using plasmid vectors, some of which could replicate in all three organisms. The determinant was cloned on a 3.3-kilobase pair DNA fragment into B. subtilis by using the vector plasmid pXZ105 to form the hybrid plasmid pXZ111. B. subtilis cells harboring pXZ111 produced large zones of alpha-hemolysis after 18 h of growth at 37 degrees C on rabbit blood agar plates, and alpha-hemolysin activity was detected in supernatants prepared from growing cultures of this strain. The alpha-hemolysin was apparently secreted across the B. subtilis cell envelope. Polypeptides of molecular weights 34,000 and 33,000 were precipitated with anti-alpha-hemolysin serum from lysates prepared from BD170 cells harboring pXZ111. A hybrid replicon which could replicate in both E. coli and S. aureus was constructed in E. coli by ligating a HindIII fragment encoding the replication functions and chloramphenicol resistance genes of S. aureus plasmid pCW59 to the pBR322 alpha-hemolysin hybrid plasmid pDU1150. The DNA of this plasmid, pDU1212, was prepared in E. coli and used to transform protoplasts prepared from a non-alpha-hemolytic, nonrestricting strain of S. aureus RN4220. Some of the transformants contained plasmids which had suffered extensive deletions. Some plasmids, however, were transformed intact into RN4220. Such plasmids were subsequently maintained in a stable manner. pDU1212 DNA was prepared from RN4220 and transformed into alpha-hemolytic S. aureus 8325-4 and two mutant derivatives defective in alpha-hemolysin synthesis. All three strains expressed alpha-hemolysin when harboring pDU1212. Images PMID:6411618

  18. Expanded Glucose Import Capability Affords Staphylococcus aureus Optimized Glycolytic Flux during Infection

    PubMed Central

    Vitko, Nicholas P.; Grosser, Melinda R.; Khatri, Dal; Lance, Thurlow R.

    2016-01-01

    ABSTRACT Acquisition of numerous virulence determinants affords Staphylococcus aureus greater pathogenicity than other skin-colonizing staphylococci in humans. Additionally, the metabolic adaptation of S. aureus to nonrespiratory conditions encountered during infection (e.g., hypoxia, nitric oxide, iron chelation) has been implicated as contributing to S. aureus virulence. Specifically, S. aureus has been shown to ferment glycolytic substrates in nonrespiratory environments encountered within the host. Here, we show that S. aureus has acquired unique carbohydrate transporters that facilitate the maximal uptake of host sugars and serve to support nonrespiratory growth in inflamed tissue. The carbohydrate substrates of 11 S. aureus transporters were identified, and at least four of their genes encode S. aureus glucose transporters (glcA, glcB, glcC, and glcU). Moreover, two transporter genes (glcA and glcC) are unique to S. aureus and contribute disproportionately to the nonrespiratory growth of S. aureus on glucose. Targeted inactivation of sugar transporters reduced glucose uptake and attenuated S. aureus in a murine model of skin and soft tissue infections. These data expand the evidence for metabolic adaptation of S. aureus to invasive infection and demonstrate the specific requirement for the fermentation of glucose over all other available carbohydrates. Ultimately, acquisition of foreign genes allows S. aureus to adopt a metabolic strategy resembling that of infiltrating host immune cells: high glycolytic flux coupled to lactate excretion. PMID:27329749

  19. Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection.

    PubMed

    Kim, Min-Ho; Yamayoshi, Itsukyo; Mathew, Steven; Lin, Hubert; Nayfach, Joseph; Simon, Scott I

    2013-03-01

    The incidence of wound infections that do not adequately respond to standard-of-care antimicrobial treatment has been increasing. To address this challenge, a novel antimicrobial magnetic thermotherapy platform has been developed in which a high-amplitude, high-frequency, alternating magnetic field is used to rapidly heat magnetic nanoparticles that are bound to Staphylococcus aureus (S. aureus). The antimicrobial efficacy of this platform was evaluated in the treatment of both an in vitro culture model of S. aureus biofilm and a mouse model of cutaneous S. aureus infection. We demonstrated that an antibody-targeted magnetic nanoparticle bound to S. aureus was effective at thermally inactivating S. aureus and achieving accelerated wound healing without causing tissue injury.

  20. COAGULASE-NEGATIVE MUTANTS OF STAPHYLOCOCCUS AUREUS: GENETIC STUDIES.

    PubMed

    KORMAN, R Z

    1963-09-01

    Korman, Ruth Z. (Cornell University, Ithaca, N.Y.). Coagulase-negative mutants of Staphylococcus aureus: genetic studies. J. Bacteriol. 86:363-369. 1963.-The behavior in mutation and transduction of pleiotropic coagulase-negative mutants of Staphylococcus aureus PS 53 (NCTC 8511) was analyzed. Coagulase-positive colonies were recovered, as well as a novel phenotype resistant to some cell-wall inhibitors and differing in sugar fermentation pattern. The hypothesis that the coagulase-negative strains differ from the original propagating strain in the structure or organization of the cell wall is discussed.

  1. Community-acquired methicillin resistant Staphylococcus aureus in a women's collegiate basketball team.

    PubMed

    Stevens, Michael P; Bearman, Gonzalo; Rosato, Adriana; Edmond, Michael

    2008-10-01

    Community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) infections are becoming increasingly frequent, and cutaneous disease with this organism is often seen in otherwise healthy organized sports participants. A case of CA-MRSA skin and soft tissue infection in a female collegiate basketball player is presented, and screening and management of her team is discussed. Interestingly, multiple MRSA strains were discovered on testing of the team, raising concern that the prevalence of colonization in this population may be high.

  2. Bacteriophage Transduction in Staphylococcus aureus: Broth-Based Method.

    PubMed

    Krausz, Kelsey L; Bose, Jeffrey L

    2016-01-01

    The ability to move DNA between Staphylococcus strains is essential for the genetic manipulation of this bacterium. Often in the Staphylococci, this is accomplished through transduction using generalized transducing phage and can be performed in different ways and therefore the presence of two transduction procedures in this book. The following protocol is a relatively easy-to-perform, broth-based procedure that we have used extensively to move both plasmids and chromosomal fragments between strains of Staphylococcus aureus.

  3. High numbers of Staphylococcus aureus at three bathing beaches in South Florida.

    PubMed

    Esiobu, Nwadiuto; Green, Melissa; Echeverry, Andrea; Bonilla, Tonya D; Stinson, Corine Melanie; Hartz, Aaron; Rogerson, Andrew; McCorquodale, Donald S

    2013-01-01

    While the value of Staphylococcus aureus as an indicator for non-enteric diseases is unclear, understanding its prevalence in recreational beaches would prove useful, given its pathogenic potential. Staphylococcus aureus levels were evaluated in sand and seawater at three beaches during one year. To elucidate possible S. aureus sources or colonization trends, distribution in sand was analyzed at Hollywood Beach. Staphylococcus aureus levels fluctuated throughout the study with highest average densities detected in dry sand (3.46 × 10⁵ CFU/g, Hobie Beach), particularly at beaches with high human density. Patchy distribution marked hotspots of human use and/or possible bacterial re-growth. Data from a brief epidemiological survey indicated a very slight association between beach usage and skin conditions; suggesting high S. aureus levels in sand may not necessarily constitute major health risks. Because the possibility of disease transmission exists, particularly to children and immuno-compromised beach-goers, periodic surveying of highly frequented beaches seems warranted.

  4. Stilbenes reduce Staphylococcus aureus hemolysis, biofilm formation, and virulence.

    PubMed

    Lee, Kayeon; Lee, Jin-Hyung; Ryu, Shi Yong; Cho, Moo Hwan; Lee, Jintae

    2014-09-01

    Stilbenoids have a broad range of beneficial health effects. On the other hand, the emergence of antibiotic-resistant Staphylococcus aureus presents a worldwide problem that requires new antibiotics or nonantibiotic strategies. S. aureus produces α-hemolysin (a pore-forming cytotoxin) that has been implicated in the pathogenesis of sepsis and pneumonia. Furthermore, the biofilms formed by S. aureus constitute a mechanism of antimicrobial resistance. In this study, we investigated the hemolytic and antibiofilm activities of 10 stilbene-related compounds against S. aureus. trans-Stilbene and resveratrol at 10 μg/mL were found to markedly inhibit human blood hemolysis by S. aureus, and trans-stilbene also inhibited S. aureus biofilm formation without affecting its bacterial growth. Furthermore, trans-stilbene and resveratrol attenuated S. aureus virulence in vivo in the nematode Caenorhabditis elegans, which is normally killed by S. aureus. Transcriptional analysis showed that trans-stilbene repressed the α-hemolysin hla gene and the intercellular adhesion locus (icaA and icaD) in S. aureus, and this finding was in line with observed reductions in virulence and biofilm formation. In addition, vitisin B, a stilbenoid tetramer, at 1 μg/mL was observed to significantly inhibit human blood hemolysis by S. aureus.

  5. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice.

    PubMed

    Cho, John S; Pietras, Eric M; Garcia, Nairy C; Ramos, Romela Irene; Farzam, David M; Monroe, Holly R; Magorien, Julie E; Blauvelt, Andrew; Kolls, Jay K; Cheung, Ambrose L; Cheng, Genhong; Modlin, Robert L; Miller, Lloyd S

    2010-05-01

    Staphylococcus aureus is the most common cause of skin and soft tissue infections, and rapidly emerging antibiotic-resistant strains are creating a serious public health concern. If immune-based therapies are to be an alternative to antibiotics, greater understanding is needed of the protective immune response against S. aureus infection in the skin. Although neutrophil recruitment is required for immunity against S. aureus, a role for T cells has been suggested. Here, we used a mouse model of S. aureus cutaneous infection to investigate the contribution of T cells to host defense. We found that mice deficient in gammadelta but not alphabeta T cells had substantially larger skin lesions with higher bacterial counts and impaired neutrophil recruitment compared with WT mice. This neutrophil recruitment was dependent upon epidermal Vgamma5+ gammadelta T cell production of IL-17, but not IL-21 and IL-22. Furthermore, IL-17 induction required IL-1, TLR2, and IL-23 and was critical for host defense, since IL-17R-deficient mice had a phenotype similar to that of gammadelta T cell-deficient mice. Importantly, gammadelta T cell-deficient mice inoculated with S. aureus and treated with a single dose of recombinant IL-17 had lesion sizes and bacterial counts resembling those of WT mice, demonstrating that IL-17 could restore the impaired immunity in these mice. Our study defines what we believe to be a novel role for IL-17-producing epidermal gammadelta T cells in innate immunity against S. aureus cutaneous infection.

  6. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin.

    PubMed

    Popov, Lauren M; Marceau, Caleb D; Starkl, Philipp M; Lumb, Jennifer H; Shah, Jimit; Guerrera, Diego; Cooper, Rachel L; Merakou, Christina; Bouley, Donna M; Meng, Wenxiang; Kiyonari, Hiroshi; Takeichi, Masatoshi; Galli, Stephen J; Bagnoli, Fabio; Citi, Sandra; Carette, Jan E; Amieva, Manuel R

    2015-11-17

    Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7(-/-) mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections.

  7. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin

    PubMed Central

    Popov, Lauren M.; Marceau, Caleb D.; Starkl, Philipp M.; Lumb, Jennifer H.; Shah, Jimit; Guerrera, Diego; Cooper, Rachel L.; Merakou, Christina; Bouley, Donna M.; Meng, Wenxiang; Kiyonari, Hiroshi; Takeichi, Masatoshi; Galli, Stephen J.; Bagnoli, Fabio; Citi, Sandra; Carette, Jan E.; Amieva, Manuel R.

    2015-01-01

    Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7−/− mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections. PMID:26489655

  8. Differential Expression and Roles of Staphylococcus aureus Virulence Determinants during Colonization and Disease

    PubMed Central

    Jenkins, Amy; Diep, Binh An; Mai, Thuy T.; Vo, Nhung H.; Warrener, Paul; Suzich, Joann; Stover, C. Kendall

    2015-01-01

    ABSTRACT Staphylococcus aureus is a Gram-positive, commensal bacterium known to asymptomatically colonize the human skin, nares, and gastrointestinal tract. Colonized individuals are at increased risk for developing S. aureus infections, which range from mild skin and soft tissue infections to more severe diseases, such as endocarditis, bacteremia, sepsis, and osteomyelitis. Different virulence factors are required for S. aureus to infect different body sites. In this study, virulence gene expression was analyzed in two S. aureus isolates during nasal colonization, bacteremia and in the heart during sepsis. These models were chosen to represent the stepwise progression of S. aureus from an asymptomatic colonizer to an invasive pathogen. Expression of 23 putative S. aureus virulence determinants, representing protein and carbohydrate adhesins, secreted toxins, and proteins involved in metal cation acquisition and immune evasion were analyzed. Consistent upregulation of sdrC, fnbA, fhuD, sstD, and hla was observed in the shift between colonization and invasive pathogen, suggesting a prominent role for these genes in staphylococcal pathogenesis. Finally, gene expression data were correlated to the roles of the genes in pathogenesis by using knockout mutants in the animal models. These results provide insights into how S. aureus modifies virulence gene expression between commensal and invasive pathogens. PMID:25691592

  9. Virulence and antibiotic susceptibility of Staphylococcus aureus strains isolated from various origins.

    PubMed

    Van der Mee-Marquet, N; Blanchard, M; Domelier, A-S; Quentin, R

    2004-12-01

    We looked for links between the antibiotic susceptibility pattern of Staphylococcus aureus strains, their source and their virulence genes. Forty-four methicillin-sensitive and -resistant S. aureus strains from four antibiogroups were studied by SmaI macrorestriction and PCR detection of ea, eb, tst, lukS-PV and lukF-PV. Genes encoding virulence factors were most prevalent (i) in S. aureus strains originated from skin, (ii) in methicillin-sensitive, quinolone-resistant strains or in methicillin-sensitive multiresistant strains (EMSSA strains), and (iii) in strains with decreased susceptibility or resistance to fusidic acid. This is consistent with the hypothesis that S. aureus antibiotic resistance promoted by local antibiotic treatment also contributes to the emergence of virulence strains.

  10. The Staphylococcus aureus RNome and Its Commitment to Virulence

    PubMed Central

    Felden, Brice; Vandenesch, François; Bouloc, Philippe; Romby, Pascale

    2011-01-01

    Staphylococcus aureus is a major human pathogen causing a wide spectrum of nosocomial and community-associated infections with high morbidity and mortality. S. aureus generates a large number of virulence factors whose timing and expression levels are precisely tuned by regulatory proteins and RNAs. The aptitude of bacteria to use RNAs to rapidly modify gene expression, including virulence factors in response to stress or environmental changes, and to survive in a host is an evolving concept. Here, we focus on the recently inventoried S. aureus regulatory RNAs, with emphasis on those with identified functions, two of which are directly involved in pathogenicity. PMID:21423670

  11. Identification of Infantile Diarrhea Caused by Breast Milk-Transmitted Staphylococcus aureus Infection.

    PubMed

    Chen, Zhong; Pan, Wei-Guang; Xian, Wei-Yi; Cheng, Hang; Zheng, Jin-Xin; Hu, Qing-Hua; Yu, Zhi-Jian; Deng, Qi-Wen

    2016-10-01

    Staphylococcus aureus is a well-known organism which is responsible for a variety of human infectious diseases including skin infections, pneumonia, bacteremia, and endocarditis. Few of the microorganisms can be transmitted from mother to the newborn or infant by milk breastfeeding. This study aims to identify transmission of S. aureus from healthy, lactating mothers to their infants by breastfeeding. Stool specimens of diarrheal infants and breast milk of their mother (totally three pairs) were collected and six Staphylococcus aureus isolates were cultured positively. Homology and molecular characters of isolated strains were tested using pulsed-field gel electrophoresis (PFGE), spa typing, and multilocus sequence typing. Furthermore, toxin genes detection was also performed. Each pair of isolates has the same PFGE type and spa type. Four Sequence types (STs) were found among all the isolates; they are ST15, ST188, and ST59, respectively. Among the strains, seb, sec, and tst genes were found, and all were negative for pvl gene. The homology of the S. aureus strains isolated from the infants' stool and the mothers' milk was genetically demonstrated, which indicated that breastfeeding may be important in the transmission of S. aureus infection, and the character of S. aureus needed to be further evaluated. PMID:27344596

  12. Protease production by Staphylococcus epidermidis and its effect on Staphylococcus aureus biofilms.

    PubMed

    Vandecandelaere, Ilse; Depuydt, Pieter; Nelis, Hans J; Coenye, Tom

    2014-04-01

    Due to the resistance of Staphylococcus aureus to several antibiotics, treatment of S. aureus infections is often difficult. As an alternative to conventional antibiotics, the field of bacterial interference is investigated. Staphylococcus epidermidis produces a serine protease (Esp) which inhibits S. aureus biofilm formation and which degrades S. aureus biofilms. In this study, we investigated the protease production of 114 S. epidermidis isolates, obtained from biofilms on endotracheal tubes (ET). Most of the S. epidermidis isolates secreted a mixture of serine, cysteine and metalloproteases. We found a link between high protease production by S. epidermidis and the absence of S. aureus in ET biofilms obtained from the same patient. Treating S. aureus biofilms with the supernatant (SN) of the most active protease producing S. epidermidis isolates resulted in a significant biomass decrease compared to untreated controls, while the number of metabolically active cells was not affected. The effect on the biofilm biomass was mainly due to serine proteases. Staphylococcus aureus biofilms treated with the SN of protease producing S. epidermidis were thinner with almost no extracellular matrix. An increased survival of Caenorhabditis elegans, infected with S. aureus Mu50, was observed when the SN of protease positive S. epidermidis was added.

  13. Gastrointestinal Dissemination and Transmission of Staphylococcus aureus following Bacteremia

    PubMed Central

    Kernbauer, Elisabeth; Maurer, Katie; Torres, Victor J.

    2014-01-01

    Mutations that alter virulence and antibiotic susceptibility arise and persist during Staphylococcus aureus bacteremia. However, an experimental system demonstrating transmission following bacteremia has been lacking, and thus implications of within-host adaptation for between-host transmission are unknown. We report that S. aureus disseminates to the gastrointestinal tract of mice following intravenous injection and readily transmits to cohoused naive mice. Both intestinal dissemination and transmission were linked to the production of virulence factors based on gene deletion studies of the sae and agr two-component systems. Furthermore, antimicrobial selection for antibiotic-resistant S. aureus displaced susceptible S. aureus from the intestine of infected hosts, which led to the preferential transmission and dominance of antibiotic-resistant bacteria among cohoused untreated mice. These findings establish an animal model to investigate gastrointestinal dissemination and transmission of S. aureus and suggest that adaptation during the course of systemic infection has implications beyond the level of a single host. PMID:25385792

  14. Staphylococcus aureus vs. Osteoblast: Relationship and Consequences in Osteomyelitis

    PubMed Central

    Josse, Jérôme; Velard, Frédéric; Gangloff, Sophie C.

    2015-01-01

    Bone cells, namely osteoblasts and osteoclasts work in concert and are responsible for bone extracellular matrix formation and resorption. This homeostasis is, in part, altered during infections by Staphylococcus aureus through the induction of various responses from the osteoblasts. This includes the over-production of chemokines, cytokines and growth factors, thus suggesting a role for these cells in both innate and adaptive immunity. S. aureus decreases the activity and viability of osteoblasts, by induction of apoptosis-dependent and independent mechanisms. The tight relationship between osteoclasts and osteoblasts is also modulated by S. aureus infection. The present review provides a survey of the relevant literature discussing the important aspects of S. aureus and osteoblast interaction as well as the ability for antimicrobial peptides to kill intra-osteoblastic S. aureus, hence emphasizing the necessity for new anti-infectious therapeutics. PMID:26636047

  15. Impact of Staphylococcus aureus on Pathogenesis in Polymicrobial Infections

    PubMed Central

    Nair, Nisha; Biswas, Raja; Götz, Friedrich

    2014-01-01

    Polymicrobial infections involving Staphylococcus aureus exhibit enhanced disease severity and morbidity. We reviewed the nature of polymicrobial interactions between S. aureus and other bacterial, fungal, and viral cocolonizers. Microbes that were frequently recovered from the infection site with S. aureus are Haemophilus influenzae, Enterococcus faecalis, Pseudomonas aeruginosa, Streptococcus pneumoniae, Corynebacterium sp., Lactobacillus sp., Candida albicans, and influenza virus. Detailed analyses of several in vitro and in vivo observations demonstrate that S. aureus exhibits cooperative relations with C. albicans, E. faecalis, H. influenzae, and influenza virus and competitive relations with P. aeruginosa, Streptococcus pneumoniae, Lactobacillus sp., and Corynebacterium sp. Interactions of both types influence changes in S. aureus that alter its characteristics in terms of colony formation, protein expression, pathogenicity, and antibiotic susceptibility. PMID:24643542

  16. Prevention and treatment of Staphylococcus aureus biofilms.

    PubMed

    Bhattacharya, Mohini; Wozniak, Daniel J; Stoodley, Paul; Hall-Stoodley, Luanne

    2015-01-01

    S. aureus colonizes both artificial and tissue surfaces in humans causing chronic persistent infections that are difficult to cure. It is a notorious pathogen due to its antibiotic recalcitrance and phenotypic adaptability, both of which are facilitated by its ability to develop biofilms. S. aureus biofilms challenge conventional anti-infective approaches, most notably antibiotic therapy. Therefore there is an unmet need to develop and include parallel approaches that target S. aureus biofilm infections. This review discusses two broad anti-infective strategies: (1) preventative approaches (anti-biofilm surface coatings, the inclusion of biofilm-specific vaccine antigens); and (2) approaches aimed at eradicating established S. aureus biofilms, particularly those associated with implant infections. Advances in understanding the distinct nature of S. aureus biofilm development and pathogenesis have led to growing optimism in S. aureus biofilm targeted anti-infective strategies. Further research is needed however, to see the successful administration and validation of these approaches to the diverse types of infections caused by S. aureus biofilms from multiple clinical strains. PMID:26646248

  17. Differential susceptibility of Cx26 mutations associated with epidermal dysplasias to peptidoglycan derived from Staphylococcus aureus and Staphylococcus epidermidis.

    PubMed

    Donnelly, Steven; English, Grant; de Zwart-Storm, Eugene A; Lang, Sue; van Steensel, Maurice A M; Martin, Patricia E

    2012-08-01

    Mutations in Connexin26 (Cx26) give rise to a spectrum of dominantly inherited hyperproliferating skin disorders, the severest being keratitis-ichthyosis-deafness (KID) syndrome, an inflammatory skin disorder, with patients prone to opportunistic infections. We compared the effects of peptidoglycan (PGN) extracted from the skin commensal Staphylococcus epidermidis and the opportunistic pathogen Staphylococcus aureus on interleukin-6 and connexin expression in HaCaT cells (a keratinocyte cell line) and connexin channel activity in HaCaT and HeLa (connexin deficient) cells transfected to express KID and non-KID Cx26 mutations. In both cell types, PGN from S. aureus induced hemichannel activity in cells expressing KID mutants as monitored by ATP release assays following 15-min challenge, while that from S. epidermidis evoked a response in HeLa cells. In KID mutant expressing cells, ATP release was significantly higher than in cells transfected with wild-type Cx26. No ATP release was observed in non-KID mutant transfected cells or in the presence of carbenoxolone, a connexin channel blocker. PGN isolated from S. aureus but not S. epidermidis induced interleukin-6 and Cx26 expression in HaCaT cells following 6-h challenge. Challenge by PGN from S. aureus evoked a greater interleukin-6 response in cells expressing KID mutants than in cells expressing wtCx26 or non-KID mutants. This response returned to basal levels if acute KID hemichannel signalling was blocked prior to PGN challenge. Thus, KID mutants form channels that can be triggered by the pro-inflammatory mediator PGN from opportunistic pathogens but not skin commensals, providing further insight into the genotype-phenotype relationship of Cx26 disorders.

  18. Early-switch/early-discharge opportunities for hospitalized patients with methicillin-resistant Staphylococcus aureus complicated skin and soft tissue infections: proof of concept in the United Arab Emirates

    PubMed Central

    El Houfi, Ashraf; Javed, Nadeem; Solem, Caitlyn T; Macahilig, Cynthia; Stephens, Jennifer M; Raghubir, Nirvana; Chambers, Richard; Li, Jim Z; Haider, Seema

    2015-01-01

    Objectives To describe real-world treatment patterns and health care resource use and to estimate opportunities for early-switch (ES) from intravenous (IV) to oral (PO) antibiotics and early-discharge (ED) for patients hospitalized in the United Arab Emirates (UAE) with methicillin-resistant Staphylococcus aureus (MRSA) complicated skin and soft tissue infections. Methods This retrospective observational medical chart review study enrolled physicians from four UAE sites to collect data for 24 patients with documented MRSA complicated skin and soft tissue infections, hospitalized between July 2010 and June 2011, and discharged alive by July 2011. Data include clinical characteristics and outcomes, hospital length of stay (LOS), MRSA-targeted IV and PO antibiotic use, and ES and ED eligibility using literature-based and expert-validated criteria. Results Five included patients (20.8%) were switched from IV to PO antibiotics while being inpatients. Actual length of MRSA-active treatment was 10.8±7.0 days, with 9.8±6.6 days of IV therapy. Patients were hospitalized for a mean 13.9±9.3 days. The most frequent initial MRSA-active therapies used were vancomycin (37.5%), linezolid (16.7%), and clindamycin (16.7%). Eight patients were discharged with MRSA-active antibiotics, with linezolid prescribed most frequently (n=3; 37.5%). Fifteen patients (62.5%) met ES criteria and potentially could have discontinued IV therapy 8.3±6.0 days sooner, and eight (33.3%) met ED criteria and potentially could have been discharged 10.9±5.8 days earlier. Conclusion While approximately one-fifth of patients were switched from IV to PO antibiotics in the UAE, there were clear opportunities for further optimization of health care resource use. Over half of UAE patients hospitalized for MRSA complicated skin and soft tissue infections could be eligible for ES, with one-third eligible for ED opportunities, resulting in substantial potential for reductions in IV days and bed days. PMID

  19. Killing of Staphylococcus aureus via Magnetic Hyperthermia Mediated by Magnetotactic Bacteria

    PubMed Central

    Chen, Changyou; Chen, Linjie; Yi, Yong; Chen, Chuanfang

    2016-01-01

    Staphylococcus aureus is a common hospital and household pathogen. Given the emergence of antibiotic-resistant derivatives of this pathogen resulting from the use of antibiotics as general treatment, development of alternative therapeutic strategies is urgently needed. Here, we assess the feasibility of killing S. aureus cells in vitro and in vivo through magnetic hyperthermia mediated by magnetotactic bacteria that possess magnetic nanocrystals and demonstrate magnetically steered swimming. The S. aureus suspension was added to magnetotactic MO-1 bacteria either directly or after coating with anti-MO-1 polyclonal antibodies. The suspensions were then subjected to an alternating magnetic field (AMF) for 1 h. S. aureus viability was subsequently assessed through conventional plate counting and flow cytometry. We found that approximately 30% of the S. aureus cells mixed with uncoated MO-1 cells were killed after AMF treatment. Moreover, attachment between the magnetotactic bacteria and S. aureus increased the killing efficiency of hyperthermia to more than 50%. Using mouse models, we demonstrated that magnetic hyperthermia mediated by antibody-coated magnetotactic MO-1 bacteria significantly improved wound healing. These results collectively demonstrated the effective eradication of S. aureus both in vitro and in vivo, indicating the potential of magnetotactic bacterium-mediated magnetic hyperthermia as a treatment for S. aureus-induced skin or wound infections. PMID:26873320

  20. Phagocytosis and killing of Staphylococcus aureus by human neutrophils.

    PubMed

    Lu, Thea; Porter, Adeline R; Kennedy, Adam D; Kobayashi, Scott D; DeLeo, Frank R

    2014-01-01

    Neutrophils are essential for host defense against Staphylococcus aureus infections. Although significant progress has been made, our understanding of neutrophil interactions with S. aureus remains incomplete. To provide a more comprehensive view of this process, we investigated phagocytosis and killing of S. aureus by human neutrophils using varied assay conditions in vitro. A greater percentage of bacteria were internalized by adherent neutrophils compared to those in suspension, and, unexpectedly, uptake of S. aureus by adherent neutrophils occurred efficiently in the absence of opsonins. An antibody specific for S. aureus promoted uptake of unopsonized bacteria in suspension, but had little or no capacity to enhance phagocytosis of S. aureus opsonized with normal human serum or by adherent neutrophils. Collectively, these results indicate that assay conditions can have a significant influence on the phagocytosis and killing of S. aureus by neutrophils. More importantly, the results suggest a vaccine approach directed to enhance opsonophagocytosis alone is not sufficient to promote increased killing of S. aureus by human neutrophils. With the emergence and reemergence of antibiotic-resistant microorganisms, establishing parameters that are optimal for studying neutrophil-S. aureus interactions will pave the way towards developing immune-directed strategies for anti-staphylococcal therapies.

  1. Superantigens Modulate Bacterial Density during Staphylococcus aureus Nasal Colonization

    PubMed Central

    Xu, Stacey X.; Kasper, Katherine J.; Zeppa, Joseph J.; McCormick, John K.

    2015-01-01

    Superantigens (SAgs) are potent microbial toxins that function to activate large numbers of T cells in a T cell receptor (TCR) Vβ-specific manner, resulting in excessive immune system activation. Staphylococcus aureus possesses a large repertoire of distinct SAgs, and in the context of host-pathogen interactions, staphylococcal SAg research has focused primarily on the role of these toxins in severe and invasive diseases. However, the contribution of SAgs to colonization by S. aureus remains unclear. We developed a two-week nasal colonization model using SAg-sensitive transgenic mice expressing HLA-DR4, and evaluated the role of SAgs using two well-studied stains of S. aureus. S. aureus Newman produces relatively low levels of staphylococcal enterotoxin A (SEA), and although we did not detect significant TCR-Vβ specific changes during wild-type S. aureus Newman colonization, S. aureus Newman Δsea established transiently higher bacterial loads in the nose. S. aureus COL produces relatively high levels of staphylococcal enterotoxin B (SEB), and colonization with wild-type S. aureus COL resulted in clear Vβ8-specific T cell skewing responses. S. aureus COL Δseb established consistently higher bacterial loads in the nose. These data suggest that staphylococcal SAgs may be involved in regulating bacterial densities during nasal colonization. PMID:26008236

  2. Detection of Staphylococcus aureus biofilm on tampons and menses components.

    PubMed

    Veeh, Richard H; Shirtliff, Mark E; Petik, Jill R; Flood, Janine A; Davis, Catherine C; Seymour, Jon L; Hansmann, Melanie A; Kerr, Kathy M; Pasmore, Mark E; Costerton, John W

    2003-08-15

    Culturing has detected vaginal Staphylococcus aureus in 10%-20% of women. Because growth mode can affect virulence expression, this study examined S. aureus-biofilm occurrence in 44 paired-tampon and vaginal-wash-specimens from 18 prescreened women, using fluorescent in situ hybridization (FISH). All 44 specimens were also analyzed for S. aureus by standard culturing on mannitol salt agar, which produced positive results for 15 of the 44 specimens. FISH detected S. aureus cells in all 44 specimens, and S. aureus biofilm was observed in 37 of the 44 specimens. Independent confirmation of the presence of S. aureus in specimens from all 18 women was also obtained by amplification, via polymerase chain reaction, of an S. aureus-specific nuclease gene. The results of this study demonstrate that S. aureus biofilm can form on tampons and menses components in vivo. Additionally, the prevalence of vaginal S. aureus carriage may be more prevalent than what is currently demonstrated by standard culturing techniques.

  3. Staphylococcus aureus in Acne Pathogenesis: A Case-Control Study

    PubMed Central

    Khorvash, Farzin; Abdi, Fatemeh; Kashani, Hessam H.; Naeini, Farahnaz Fatemi; Narimani, Tahmineh

    2012-01-01

    Background: There is considerable evidence which suggests a possible pathogenetic role for Staphylococcus aureus (S. aureus) in acne vulgaris. Aim: The study was to determine S. aureus colonization and antibiotic susceptibility patterns in patients with acne and of healthy people. Materials and Methods: In the case-control study, a total of 324 people were screened for nasal carriage of S. aureus: 166 acne patients and 158 healthy persons. One control subject was individually matched to one case. Nasal swabs from anterior nares of individuals were cultured and identified as S. aureus. Antibiotic sensitivity was performed with recognized laboratory techniques. Results: S. aureus was detected in 21.7% of the subjects in acne, and in 26.6% of control groups. There was no statistical difference in colonization rates between two groups (P=0.3). In patient group, most of S. aureus isolates were resistant to doxicycline and tetracycline (P=0.001), and were more sensitive to rifampicin compared to other drugs. In control samples, the isolated demonstrated higher resistance to cotrimoxazole compared to patient samples (P=0.0001). There was no difference between groups regarding resistance to rifampicin, vancomycin, methicillin, and oxacillin. Conclusion: It is still unclear whether S. aureus is actually a causal agent in the pathogenesis of acne. Based on microbiological data of both healthy and acne-affected persons, we propose that contribution of S. aureus in acne pathogenesis is controversial. PMID:23181229

  4. Antibiotic treatment patterns across Europe in patients with complicated skin and soft-tissue infections due to meticillin-resistant Staphylococcus aureus: a plea for implementation of early switch and early discharge criteria.

    PubMed

    Eckmann, Christian; Lawson, Wendy; Nathwani, Dilip; Solem, Caitlyn T; Stephens, Jennifer M; Macahilig, Cynthia; Simoneau, Damien; Hajek, Petr; Charbonneau, Claudie; Chambers, Richard; Li, Jim Z; Haider, Seema

    2014-07-01

    This retrospective observational medical chart review aimed to describe country-specific variations across Europe in real-world meticillin-resistant Staphylococcus aureus (MRSA) complicated skin and soft-tissue infection (cSSTI) treatment patterns, antibiotic stewardship activity, and potential opportunities for early switch (ES) from intravenous (i.v.) to oral formulations and early discharge (ED) from hospital using standardised data collection and criteria and economic implications of these opportunities. Patients were randomly sampled from 12 countries (Austria, Czech Republic, France, Germany, Greece, Ireland, Italy, Poland, Portugal, Slovakia, Spain and the UK), aged ≥18 years, with documented MRSA cSSTI, hospitalised between 1 July 2010 and 30 June 2011, discharged alive by 31 July 2011. Of 1502 patients, 1468 received MRSA-targeted therapy. Intravenous-to-oral switch rates ranged from 2.0% to 20.2%, i.v. length of therapy from 10.1 to 18.6 days and hospital length of stay (LoS) from 15.2 to 25.0 days across Europe. Of 341 sites, 82.9% had antibiotic steering committees, 23.7% had i.v.-to-oral switch antibiotic protocols and 12.9% had ED protocols for MRSA cSSTI. ES and ED eligibility ranged from 12.0% (Slovakia) to 56.3% (Greece) and from 10% (Slovakia) to 48.2% (Portugal), respectively. Potential cost savings per ED-eligible patient ranged from €414 (Slovakia) to €2703 (France). MRSA cSSTI treatment patterns varied widely across countries, but further reductions in i.v. therapy, hospital LoS and associated costs could be realised. These data provide insight into clinical practice patterns across diverse European healthcare systems and identify potential opportunities for local clinicians and policy-makers to improve clinical care and cost-effectiveness of this therapeutic area.

  5. Genotyping of skin and soft tissue infection (SSTI)-associated methicillin-resistant Staphylococcus aureus (MRSA) strains among outpatients in a teaching hospital in Japan: application of a phage-open reading frame typing (POT) kit.

    PubMed

    Maeda, Tadashi; Saga, Tomoo; Miyazaki, Taito; Kouyama, Yuichi; Harada, Sohei; Iwata, Morihiro; Yoshizawa, Sadako; Kimura, Soichiro; Ishii, Yoshikazu; Urita, Yoshihisa; Sugimoto, Motonobu; Yamaguchi, Keizo; Tateda, Kazuhiro

    2012-12-01

    We aimed to elucidate the current epidemiological features of outpatient skin and soft tissue infection (SSTI)-associated methicillin-resistant Staphylococcus aureus (MRSA) in Japan. Altogether, we evaluated the performance of a phage-open reading frame typing (POT) kit for genotyping these MRSA strains. We collected 57 MRSA strains from all outpatients with SSTIs attending a teaching hospital in Japan. Drug susceptibility measurement and genotyping including SCCmec typing, spa typing, multilocus sequence typing, pulsed-field gel electrophoresis, and commercial POT-kit were performed. The majority of strains (39 strains, 68 %) had the SCCmec-II element. Seventeen strains (30 %) with SCCmec-IV accounted for the second largest population. Strains with SCCmec-IV and SCCmec-V appeared multiclonal, and a predominance of Panton-Valentine leukocidin (PVL) gene-negative CC8/spa-CC008 strains, as well as the first isolate of an ST93 strain in Japan, was observed among them. Only one USA300 strain was identified. Strains with SCCmec-IV and SCCmec-V were significantly susceptible to antimicrobials. The PVL gene was found in 5 SCCmec-IV strains and 1 SCCmec-V strain. The POT-kit successfully predicted the SCCmec type in 54 strains (95 %), and typing by POT1 scores was highly concordant with SCCmec typing and spa typing. Moreover, three PVL-positive strains fell into a particular POT type (POT scores, 106-77-113). Simpson's index of the POT-kit was 0.977. In conclusion, the present study clarified the multiclonal nature of outpatient SSTI-associated MRSA in a teaching hospital in Japan. These data also underscore the utility of the POT-kit for non-outbreak surveillance through its simple platform consisting of two multiplex PCRs without sequencing.

  6. Comparison of vancomycin and linezolid in patients with peripheral vascular disease and/or diabetes in an observational European study of complicated skin and soft-tissue infections due to methicillin-resistant Staphylococcus aureus.

    PubMed

    Eckmann, C; Nathwani, D; Lawson, W; Corman, S; Solem, C; Stephens, J; Macahilig, C; Li, J; Charbonneau, C; Baillon-Plot, N; Haider, S

    2015-09-01

    Suboptimal antibiotic penetration into soft tissues can occur in patients with poor circulation due to peripheral vascular disease (PVD) or diabetes. We conducted a real-world analysis of antibiotic treatment, hospital resource use and clinical outcomes in patients with PVD and/or diabetes receiving linezolid or vancomycin for the treatment of methicillin-resistant Staphylococcus aureus complicated skin and soft-tissue infections (MRSA cSSTIs) across Europe. This subgroup analysis evaluated data obtained from a retrospective, observational medical chart review study that captured patient data from 12 European countries. Data were obtained from the medical records of patients ≥ 18 years of age, hospitalized with an MRSA cSSTI between 1 July 2010 and 30 June 2011 and discharged alive by 31 July 2011. Hospital length of stay and length of treatment were compared between the treatment groups using inverse probability of treatment weights to adjust for clinical and demographic differences. A total of 485 patients had PVD or diabetes and received treatment with either vancomycin (n = 258) or linezolid (n = 227). After adjustment, patients treated with linezolid compared with vancomycin respectively had significantly shorter hospital stays (17.9 ± 13.6 vs. 22.6 ± 13.6 days; p < 0.001) and treatment durations (12.9 ± 7.9 vs. 16.4 ± 8.3 days; p < 0.001). The proportions of patients prescribed oral, MRSA-active antibiotics at discharge were 43.2% and 12.4% of patients in the linezolid and vancomycin groups, respectively (p < 0.001). The reduction in resource use may result in lower hospital costs for patients with PVD and/or diabetes and MRSA cSSTIs if treated with linezolid compared with vancomycin.

  7. Identification of LytSR-regulated genes from Staphylococcus aureus.

    PubMed

    Brunskill, E W; Bayles, K W

    1996-10-01

    In this report, the characterization of a Staphylococcus aureus operon containing two LytSR-regulated genes, lrgA and lrgB, is described. Sequence and mutagenesis studies of these genes suggest that lrgA encodes a murein hydrolase exporter similar to bacteriophage holin proteins while lrgB may encode a protein having murein hydrolase activity. PMID:8824633

  8. Methicillin‐resistant Staphylococcus aureus and the media.

    PubMed

    Perencevich, Eli N; Treise, Debbie M

    2010-11-01

    How the media communicate and how the scientific community influences the media are important factors to consider in the public health response to emerging pathogens, including methicillin-resistant Staphylococcus aureus. Social representation theory suggests that the media link "the threatening" to commonplace "anchor representations" which can serve to educate or to create fear.

  9. Nisin stimulates oxygen consumption by Staphylococcus aureus and Escherichia coli.

    PubMed Central

    Carneiro de Melo, A M; Cook, G M; Miles, R J; Poole, R K

    1996-01-01

    Nisin stimulated oxygen consumption by nongrowing, glucose-metabolizing Staphylococcus aureus and Escherichia coli cells, indicating a protonophore mode of action. A similar stimulation in E. coli cells osmotically stressed to disrupt the outer cell membrane confirmed the cytoplasmic membrane as the site of nisin action and showed that nisin uptake was not prevented by the outer membrane. PMID:8633884

  10. An Interdisciplinary Experiment: Azo-Dye Metabolism by "Staphylococcus Aureus"

    ERIC Educational Resources Information Center

    Brocklesby, Kayleigh; Smith, Robert; Sharp, Duncan

    2012-01-01

    An interdisciplinary and engaging practical is detailed which offers great versatility in the study of a qualitative and quantitative metabolism of azo-dyes by "Staphylococcus aureus". This practical has broad scope for adaptation in the number and depth of variables to allow a focused practical experiment or small research project. Azo-dyes are…

  11. Vancomycin-resistant Staphylococcus aureus: no apocalypse now.

    PubMed

    Goldstein, F W; Kitzis, M D

    2003-08-01

    The number of reports concerning vancomycin-resistant Staphylococcus aureus is much higher than the number of true resistant strains or unexpected clinical failures. Many confounding factors, including inadequate serum levels, severely ill patients, foreign devices or undrained abscesses, are more likely to be responsible for the clinical failures than resistance to vancomycin. PMID:14616695

  12. Staphylococcus aureus ST398, New York City and Dominican Republic

    PubMed Central

    Bhat, Meera; Dumortier, Caroline; Taylor, Barbara S.; Miller, Maureen; Vasquez, Glenny; Yunen, Jose; Brudney, Karen; Rodriguez-Taveras, Carlos; Rojas, Rita; Leon, Patricia

    2009-01-01

    Closely related Staphylococcus aureus strains of ST398, an animal-associated strain, were identified in samples collected from humans in northern Manhattan, New York, NY, USA, and in the Dominican Republic. A large population in northern Manhattan has close ties to the Dominican Republic, suggesting international transmission. PMID:19193274

  13. Community-acquired Methicillin-resistant Staphylococcus aureus, Uruguay

    PubMed Central

    Ma, Xiao Xue; Galiana, Antonio; Pedreira, Walter; Mowszowicz, Martin; Christophersen, Inés; Machiavello, Silvia; Lope, Liliana; Benaderet, Sara; Buela, Fernanda; Vicentino, Walter; Albini, María; Bertaux, Olivier; Constenla, Irene; Bagnulo, Homero; Llosa, Luis; Ito, Teruyo

    2005-01-01

    A novel, methicillin-resistant Staphylococcus aureus clone (Uruguay clone) with a non–multidrug-resistant phenotype caused a large outbreak, including 7 deaths, in Montevideo, Uruguay. The clone was distinct from the highly virulent community clone represented by strain MW2, although both clones carried Panton-Valentine leukocidin gene and cna gene. PMID:15963301

  14. Endogenous methicillin-resistant Staphylococcus aureus endophthalmitis after leg trauma.

    PubMed

    Larson, Katie E; Carrillo-Marquez, Maria

    2015-08-01

    We present a case of endogenous endophthalmitis in a 13-year-old boy with methicillin-resistant Staphylococcus aureus sepsis. The patient underwent magnetic resonance imaging of the brain after intermittent anisocoria was noted on examination, leading to a diagnosis of endophthalmitis with a chorodial abscess.

  15. Community-associated methicillin-resistant Staphylococcus aureus, Canada.

    PubMed

    Mulvey, Michael R; MacDougall, Laura; Cholin, Brenda; Horsman, Greg; Fidyk, Melanie; Woods, Shirley

    2005-06-01

    A total of 184 methicillin-resistant Staphylococcus aureus (MRSA) strains were collected from patients who sought treatment primarily for skin and soft tissue infections from January 1, 1999, to March 31, 2002, in east-central Saskatchewan, Canada. Molecular subtyping analysis using pulsed-field gel electrophoresis showed 2 major clusters. Cluster A (n = 55) was composed of a multidrug-resistant MRSA strain associated with a long-term care facility and was similar to the previously reported nosocomial Canadian epidemic strain labeled CMRSA-2. Cluster B (n = 125) was associated with cases identified at community health centers and was indistinguishable from a community-associated (CA)-MRSA strain identified previously in the United States (USA400). Cluster B remained susceptible to a number of classes of antimicrobial agents and harbored the lukF-PV and lukS-PV toxin genes. Over 50% of both clonal groups displayed high-level resistance to mupirocin. This is the first report of the USA400 strain harboring the lukF-PV and lukS-PV toxin genes in Canada.

  16. A systematic review and meta-analysis on Staphylococcus aureus carriage in psoriasis, acne and rosacea.

    PubMed

    Totté, J E E; van der Feltz, W T; Bode, L G M; van Belkum, A; van Zuuren, E J; Pasmans, S G M A

    2016-07-01

    Staphylococcus aureus might amplify symptoms in chronic inflammatory skin diseases. This study evaluates skin and mucosal colonization with S. aureus in patients with psoriasis, acne and rosacea. A systematic literature search was conducted. Both odds ratios (OR) for colonization in patients versus controls and the prevalence of colonization in patients are reported. Fifteen articles about psoriasis and 13 about acne (12 having a control group) were included. No study in rosacea met our inclusion criteria. For psoriasis, one study out of three controlled studies showed increased skin colonization (OR 18.86; 95 % confidence interval [CI] 2.20-161.99). Three out of the five studies that reported on nasal colonization showed significant ORs varying from 1.73 (95 % CI 1.16-2.58) to 14.64 (95 % CI 2.82-75.95). For acne one of the three studies that evaluated skin colonization reported a significant OR of 4.16 (95 % CI 1.74-9.94). A relation between nasal colonization and acne was not found. Limitations in study design and low sample sizes should be taken into consideration when interpreting the results. Colonisation with S. aureus seems to be increased in patients with psoriasis. This bacterial species, known for its potential to induce long-lasting inflammation, might be involved in psoriasis pathogenesis. Information on acne is limited. Prospective controlled studies should further investigate the role of S. aureus in chronic inflammatory skin diseases. PMID:27151386

  17. Peptides from Tetraspanin CD9 Are Potent Inhibitors of Staphylococcus Aureus Adherence to Keratinocytes.

    PubMed

    Ventress, Jennifer K; Partridge, Lynda J; Read, Robert C; Cozens, Daniel; MacNeil, Sheila; Monk, Peter N

    2016-01-01

    Staphylococcus aureus is one of the primary causative agents of skin and wound infections. As bacterial adherence is essential for infection, blocking this step can reduce invasion of host tissues by pathogens. An anti-adhesion therapy, based on a host membrane protein family, the tetraspanins, has been developed that can inhibit the adhesion of S. aureus to human cells. Synthetic peptides derived from a keratinocyte-expressed tetraspanin, CD9, were tested for anti-adhesive properties and at low nanomolar concentrations were shown to inhibit bacterial adhesion to cultured keratinocytes and to be effective in a tissue engineered model of human skin infection. These potential therapeutics had no effect on keratinocyte viability, migration or proliferation, indicating that they could be a valuable addition to current treatments for skin infection. PMID:27467693

  18. Peptides from Tetraspanin CD9 Are Potent Inhibitors of Staphylococcus Aureus Adherence to Keratinocytes

    PubMed Central

    Ventress, Jennifer K.; Partridge, Lynda J.; Read, Robert C.; Cozens, Daniel; MacNeil, Sheila

    2016-01-01

    Staphylococcus aureus is one of the primary causative agents of skin and wound infections. As bacterial adherence is essential for infection, blocking this step can reduce invasion of host tissues by pathogens. An anti-adhesion therapy, based on a host membrane protein family, the tetraspanins, has been developed that can inhibit the adhesion of S. aureus to human cells. Synthetic peptides derived from a keratinocyte-expressed tetraspanin, CD9, were tested for anti-adhesive properties and at low nanomolar concentrations were shown to inhibit bacterial adhesion to cultured keratinocytes and to be effective in a tissue engineered model of human skin infection. These potential therapeutics had no effect on keratinocyte viability, migration or proliferation, indicating that they could be a valuable addition to current treatments for skin infection. PMID:27467693

  19. Community-acquired methicillin-resistant Staphylococcus aureus infections in two scuba divers returning from the Philippines.

    PubMed

    Bochet, Mélanie; Francois, Patrice; Longtin, Yves; Gaide, Olivier; Renzi, Gesuele; Harbarth, Stephan

    2008-01-01

    We describe two patients who had skin infection due to identical strains of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) after returning from the Philippines. Both patients did not share risk factors for CA-MRSA acquisition besides scuba diving. Scuba diving equipment may represent a possible new mode of acquisition of CA-MRSA.

  20. Growth and enterotoxin production of Staphylococcus aureus in shrimp.

    PubMed Central

    Beckers, H. J.; Van Leusden, F. M.; Tips, P. D.

    1985-01-01

    Strains of Staphylococcus aureus isolated from shrimp were examined for phage pattern and enterotoxin production; 63% of the strains isolated from North Sea shrimp were typable with the International and additional set of phages, as were 38% of the strains isolated from South-East Asian shrimp. Staphylococcal enterotoxin(s) (SE) were produced by 48% and 35% of strains isolated from North Sea and South-East Asian shrimp respectively. Growth and enterotoxin production by S. aureus in shrimp was examined in storage experiments at 22 degrees C. S. aureus increased by 1-2 log units in 24 h when the organism was only a minor part of the total microflora of shrimp. When S. aureus was an equivalent part of the total flora its numbers increased by 3-4 log units in 24 h. Enterotoxins A and B became detectable when the number of S. aureus exceeded 10(7) per g in aseptically peeled shrimp. Results indicate that S. aureus is able to produce enterotoxin in shrimp, but its production depends upon a number of factors, including the relationship between S. aureus and competitive micro-organisms. It is concluded that the presence of S. aureus on commercially produced shrimp represents a potential hazard to health. PMID:4093610

  1. Duplex Identification of Staphylococcus aureus by Aptamer and Gold Nanoparticles.

    PubMed

    Chang, Tianjun; Wang, Libo; Zhao, Kexu; Ge, Yu; He, Meng; Li, Gang

    2016-06-01

    Staphylococcus aureus is the top common pathogen causing infections and food poisoning. Identification of S. aureus is crucial for the disease diagnosis and regulation of food hygiene. Herein, we report an aptamer-AuNPs based method for duplex identification of S. aureus. Using AuNPs as an indicator, SA23, an aptamer against S. aureus, can well identify its target from Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa. Furthermore, we find citrate-coated AuNPs can strongly bind to S. aureus, but not bind to Salmonella enterica and Proteus mirabilis, which leads to different color changes in salt solution. This colorimetric response is capable of distinguishing S. aureus from S. enteritidis and P. mirabilis. Thus, using the aptasensor and AuNPs together, S. aureus can be accurately identified from the common pathogens. This duplex identification system is a promising platform for simple visual identification of S. aureus. Additionally, in the aptasensing process, bacteria are incubated with aptamers and then be removed before the aptamers adding to AuNPs, which may avoid the interactions between bacteria and AuNPs. This strategy can be potentially applied in principle to detect other cells by AuNPs-based aptasensors.

  2. Duplex Identification of Staphylococcus aureus by Aptamer and Gold Nanoparticles.

    PubMed

    Chang, Tianjun; Wang, Libo; Zhao, Kexu; Ge, Yu; He, Meng; Li, Gang

    2016-06-01

    Staphylococcus aureus is the top common pathogen causing infections and food poisoning. Identification of S. aureus is crucial for the disease diagnosis and regulation of food hygiene. Herein, we report an aptamer-AuNPs based method for duplex identification of S. aureus. Using AuNPs as an indicator, SA23, an aptamer against S. aureus, can well identify its target from Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa. Furthermore, we find citrate-coated AuNPs can strongly bind to S. aureus, but not bind to Salmonella enterica and Proteus mirabilis, which leads to different color changes in salt solution. This colorimetric response is capable of distinguishing S. aureus from S. enteritidis and P. mirabilis. Thus, using the aptasensor and AuNPs together, S. aureus can be accurately identified from the common pathogens. This duplex identification system is a promising platform for simple visual identification of S. aureus. Additionally, in the aptasensing process, bacteria are incubated with aptamers and then be removed before the aptamers adding to AuNPs, which may avoid the interactions between bacteria and AuNPs. This strategy can be potentially applied in principle to detect other cells by AuNPs-based aptasensors. PMID:27427591

  3. Determinants of Acquisition and Carriage of Staphylococcus aureus in Infancy

    PubMed Central

    Peacock, Sharon J.; Justice, Anita; Griffiths, D.; de Silva, G. D. I.; Kantzanou, M. N.; Crook, Derrick; Sleeman, Karen; Day, Nicholas P. J.

    2003-01-01

    Nasal carriage of Staphylococcus aureus is a major risk factor for invasive S. aureus disease. The aim of this study was to define factors associated with carriage. We conducted a prospective, longitudinal community-based study of infants and their mothers for a period of 6 months following delivery. The epidemiology of carriage was examined for 100 infant-mother pairs. Infant carriage varied significantly with age, falling from 40 to 50% during the first 8 weeks to 21% by 6 months. Determinants of infant S. aureus carriage included maternal carriage, breastfeeding, and number of siblings. Bacterial typing of S. aureus was performed by pulsed-field gel electrophoresis and multilocus sequence typing. The majority of individuals carried a single strain of S. aureus over time, and the mother was the usual source for colonizing isolates in infants. The effect of other components of the normal nasal flora on the development of S. aureus carriage was examined in 157 consecutive infants. Negative associations (putative bacterial interference) between S. aureus and other species occurred early in infancy but were not sustained. An increasing antistaphylococcal effect observed over time was not attributable to bacterial interference. S. aureus carriage in infants is likely to be determined by a combination of host, environmental, and bacterial factors, but bacterial interference does not appear to be an ultimate determinant of carrier status. PMID:14662966

  4. Vulvar Abscess Caused by Methicillin-resistant Staphylococcus Aureus (MRSA) in a Postmenopausal Woman

    PubMed Central

    Kim, Tae-Hee; Kim, Soo Ah; Heo, Gyeong-Eun

    2016-01-01

    Infections of the vulva can present a complex differential to the gynecologist, ranging from superficial skin infections to lifethreatening necrotizing fasciitis. Recognition and timely treatment remain universal to skin and soft-tissue infections as the subcutaneous anatomy of the vulva can facilitate rapid spread to other tissues with significant morbidity and mortality. Employing a multidisciplinary team approach to care for vulvar cellulitis and abscess can guide treatment from antibiotic therapies to more aggressive surgical debridement. In this report, we describe a case of vulvar abscess caused by Methicillin-resistant staphylococcus aureus (MRSA) in a postmenopausal woman with underlying diseases of bronchiectasis and atelectasis. PMID:27617247

  5. Vulvar Abscess Caused by Methicillin-resistant Staphylococcus Aureus (MRSA) in a Postmenopausal Woman

    PubMed Central

    Kim, Tae-Hee; Kim, Soo Ah; Heo, Gyeong-Eun

    2016-01-01

    Infections of the vulva can present a complex differential to the gynecologist, ranging from superficial skin infections to lifethreatening necrotizing fasciitis. Recognition and timely treatment remain universal to skin and soft-tissue infections as the subcutaneous anatomy of the vulva can facilitate rapid spread to other tissues with significant morbidity and mortality. Employing a multidisciplinary team approach to care for vulvar cellulitis and abscess can guide treatment from antibiotic therapies to more aggressive surgical debridement. In this report, we describe a case of vulvar abscess caused by Methicillin-resistant staphylococcus aureus (MRSA) in a postmenopausal woman with underlying diseases of bronchiectasis and atelectasis.

  6. Vulvar Abscess Caused by Methicillin-resistant Staphylococcus Aureus (MRSA) in a Postmenopausal Woman.

    PubMed

    Kim, Tae-Hee; Seap, Bel; Kim, Soo Ah; Heo, Gyeong-Eun

    2016-08-01

    Infections of the vulva can present a complex differential to the gynecologist, ranging from superficial skin infections to lifethreatening necrotizing fasciitis. Recognition and timely treatment remain universal to skin and soft-tissue infections as the subcutaneous anatomy of the vulva can facilitate rapid spread to other tissues with significant morbidity and mortality. Employing a multidisciplinary team approach to care for vulvar cellulitis and abscess can guide treatment from antibiotic therapies to more aggressive surgical debridement. In this report, we describe a case of vulvar abscess caused by Methicillin-resistant staphylococcus aureus (MRSA) in a postmenopausal woman with underlying diseases of bronchiectasis and atelectasis. PMID:27617247

  7. Staphylococcus aureus colonization and infection in patients on continuous ambulatory peritoneal dialysis.

    PubMed Central

    Pignatari, A; Pfaller, M; Hollis, R; Sesso, R; Leme, I; Herwaldt, L

    1990-01-01

    Staphylococcus aureus is the most common cause of peritonitis in patients undergoing peritoneal dialysis in Brazil. Using restriction endonuclease analysis of plasmid DNA, we investigated the importance of chronic carriage of S. aureus in the development of peritonitis in patients on continuous ambulatory peritoneal dialysis at the Division of Nephrology, Escola Paulista de Medicina, Sao Paulo, Brazil. A total of 117 isolates (30 patients) of S. aureus were available for typing, including 51 isolates (22 patients) from the nares, 58 isolates (27 patients) from pericatheter skin, and 8 isolates (6 patients) from peritoneal fluid, from patients with peritonitis. Restriction endonuclease subtyping showed that although most patients harbored more than one subtype of S. aureus, in the majority of patients nasal and/or pericatheter skin isolates with identical restriction endonuclease digest patterns were recovered on more than one occasion. Furthermore, 95% of patients with both nasal and pericatheter colonization were colonized with the same subtypes at both sites. All of the patients with peritonitis were infected with a subtype which colonized the nares, pericatheter skin, or both. These results demonstrate the importance of an endogenous source of S. aureus in the development of continuous ambulatory peritoneal dialysis-associated peritonitis. Images PMID:2172293

  8. The adherence of Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli on cotton, polyester and their blends.

    PubMed

    Hsieh, Y L; Merry, J

    1986-06-01

    The adherent behaviour of the Gram-positive Staphylococcus aureus and Staphylococcus epidermidis and the Gram-negative Escherichia coli on cotton, polyester and their blends through contact in aqueous suspensions was studied. Staphylococcus epidermidis was found to adhere to fabrics much more so than Staph. aureus. The adherence of both Staph. epidermidis and Staph. aureus to fabrics increased as the content of polyester fibres in the fabrics increased. The attachment of E. coli to all fabrics was very low and was not affected by the fibre contents. Total numbers of adherent bacteria on cotton and polyester fabrics were related directly to the concentrations of the bacterial suspensions. The extents of adherence, expressed by the percentage of adherent bacteria from the suspension, however, were independent of the concentration. The length of contact with bacteria was also found to affect the adherence of bacteria on fabrics studied.

  9. Contribution of Cell Surface Hydrophobicity in the Resistance of Staphylococcus aureus against Antimicrobial Agents

    PubMed Central

    Lather, Puja; Mohanty, A. K.; Jha, Pankaj; Garsa, Anita Kumari

    2016-01-01

    Staphylococcus aureus is found in a wide variety of habitats, including human skin, where many strains are commensals that may be clinically significant or contaminants of food. To determine the physiological characteristics of resistant strain of Staphylococcus aureus against pediocin, a class IIa bacteriocin, a resistant strain was compared with wild type in order to investigate the contribution of hydrophobicity to this resistance. Additional clumping of resistant strain relative to wild type in light microscopy was considered as an elementary evidence of resistance attainment. A delay in log phase attainment was observed in resistant strain compared to the wild type strain. A significant increase in cell surface hydrophobicity was detected for resistant strain in both hexadecane and xylene indicating the contribution of cell surface hydrophobicity as adaptive reaction against antimicrobial agents. PMID:26966577

  10. Evaluation of Staphylococcus aureus Eradication Therapy in Vascular Surgery

    PubMed Central

    Donker, J. M. W.; van Rijen, M. M. L.; Kluytmans, J. A. J. W.; van der Laan, L.

    2016-01-01

    Introduction Surgical site infections (SSI) are a serious complication in vascular surgery which may lead to severe morbidity and mortality. Staphylococcus aureus nasal carriage is associated with increased risk for development of SSIs in central vascular surgery. The risk for SSI can be reduced by perioperative eradication of S. aureus carriage in cardiothoracic and orthopedic surgery. This study analyzes the relation between S. aureus eradication therapy and SSI in a vascular surgery population. Methods A prospective cohort study was performed, including all patients undergoing vascular surgery between February 2013 and April 2015. Patients were screened for S. aureus nasal carriage and, when tested positive, were subsequently treated with eradication therapy. The presence of SSI was recorded based on criteria of the CDC. The control group consisted of a cohort of vascular surgery patients in 2010, who were screened, but received no treatment. Results A total of 444 patients were screened. 104 nasal swabs were positive for S. aureus, these patients were included in the intervention group. 204 patients were screened in the 2010 cohort. 51 tested positive and were included in the control group. The incidence of S. aureus infection was 5 out of 51 (9.8%) in the control group versus 3 out of 104 in the eradication group (2.2%; 95% confidence interval 0.02–1.39; P = 0.13). A subgroup analysis showed that the incidence of S. aureus infection was 3 out of 23 (13.0%) in the control group in central reconstructive surgery versus 0 out of 44 in the intervention group (P = 0.074). The reduction of infection pressure by S. aureus was stronger than the reduction of infection pressure by other pathogens (exact maximum likelihood estimation; OR = 0.0724; 95% CI: 0.001–0.98; p = 0.0475). Conclusion S. aureus eradication therapy reduces the infection pressure of S. aureus, resulting in a reduction of SSIs caused by S. aureus. PMID:27529551

  11. Staphylococcus aureus reservoirs during traditional Austrian raw milk cheese production.

    PubMed

    Walcher, Georg; Gonano, Monika; Kümmel, Judith; Barker, Gary C; Lebl, Karin; Bereuter, Othmar; Ehling-Schulz, Monika; Wagner, Martin; Stessl, Beatrix

    2014-11-01

    Sampling approaches following the dairy chain, including microbiological hygiene status of critical processing steps and physicochemical parameters, contribute to our understanding of how Staphylococcus aureus contamination risks can be minimised. Such a sampling approach was adopted in this study, together with rapid culture-independent quantification of Staph. aureus to supplement standard microbiological methods. A regional cheese production chain, involving 18 farms, was sampled on two separate occasions. Overall, 51·4% of bulk milk samples were found to be Staph. aureus positive, most of them (34·3%) at the limit of culture-based detection. Staph. aureus positive samples >100 cfu/ml were recorded in 17·1% of bulk milk samples collected mainly during the sampling in November. A higher number of Staph. aureus positive bulk milk samples (94·3%) were detected after applying the culture-independent approach. A concentration effect of Staph. aureus was observed during curd processing. Staph. aureus were not consistently detectable with cultural methods during the late ripening phase, but >100 Staph. aureus cell equivalents (CE)/ml or g were quantifiable by the culture-independent approach until the end of ripening. Enterotoxin gene PCR and pulsed-field gel electrophoresis (PFGE) typing provided evidence that livestock adapted strains of Staph. aureus mostly dominate the post processing level and substantiates the belief that animal hygiene plays a pivotal role in minimising the risk of Staph. aureus associated contamination in cheese making. Therefore, the actual data strongly support the need for additional sampling activities and recording of physicochemical parameters during semi-hard cheese-making and cheese ripening, to estimate the risk of Staph. aureus contamination before consumption.

  12. Disseminated Staphylococcus aureus infection following spinal anesthesia: a case report.

    PubMed

    Zhang, Zhongheng; Xu, Xiao; Ni, Hongying

    2016-09-01

    We here presented a 65-year-old woman with disseminated Staphylococcus aureus infection following spinal anesthesia. The patient underwent spinal anesthesia for great saphenous vein stripping. Twenty days after the procedure, the patient developed hydrocephalus, pulmonary infection, and epidural abscess. Microbiological culture of the pus showed infection by S aureus. Appropriate antibiotic therapy and prompt surgical abscess drainage were associated with good outcome. Hydrocephalus is thought to be associated with arachnoiditis caused by S aureus infection, which provides new insights into the pathophysiology of arachnoiditis. Here we reported a case of disseminated S aureus infection following spinal anesthesia, implicating that appropriate interventions should not be delayed for waiting for the microbiological results. PMID:27555207

  13. Evolution of Staphylococcus aureus and MRSA during outbreaks.

    PubMed

    Lindsay, Jodi A

    2014-01-01

    Investigation of Staphylococcus aureus outbreaks, and particularly those due to methicillin-resistant S. aureus (MRSA) in hospitals, can identify infection reservoirs and prevent further colonization and infection. During outbreaks, S. aureus genomes develop single nucleotide polymorphisms (SNPs), small genetic rearrangements, and/or acquire and lose mobile genetic elements (MGE) encoding resistance and virulence genes. Whole genome sequencing (WGS) is the most powerful method for discriminating between related isolates and deciding which are involved in an outbreak. Isolates with only minor variations are detectable and can identify MRSA transmission routes and identify reservoirs. Some patients may carry 'clouds' of related isolates, and this has consequences for how we interpret the data from outbreak investigations. Different clones of MRSA are evolving at different rates, influencing their typability. S. aureus genome variation reveals the importance of antibiotic resistance in the long term evolution of successful hospital clones, contributing to strategies to prevent the spread of successful MRSA clones.

  14. Isolation of Staphylococcus aureus from sputum in cystic fibrosis.

    PubMed

    Sparham, P D; Lobban, D I; Speller, D C

    1978-10-01

    The success in the isolation of Staphylococcus aureus of different methods of sputum processing was investigated in 60 specimens collected from 14 patients with cystic fibrosis during a seven-month period. Fifty specimens (83%) from 11 patients yielded Staph. aureus by one or more methods. Direct plating of purulent portions of sputum on to media designed for general use in respiratory infections gave unsatisfactory results (35% yield of Staph. aureus). Some increase in isolations was obtained with preliminary liquefaction of sputum; but the best results were given by the addition of a medium selective for staphylococci (mannitol salt agar, BBL) or by initial sonication of sputum (each 83% yield). Seven of the 11 strains of Staph. aureus were thymidine-dependent and otherwise atypical in laboratory characteristics; these were isolated from patients who had received co-trimoxazole. PMID:101553

  15. A Compound Inhibits Biofilm Formation of Staphylococcus aureus from Streptomyces.

    PubMed

    Suzuki, Naomoto; Ohtaguro, Norihiro; Yoshida, Yasuaki; Hirai, Motoshi; Matsuo, Hirotaka; Yamada, Yoichi; Imamura, Nobutaka; Tsuchiya, Tomofusa

    2015-01-01

    Biofilm is one virulence factor of bacteria. It contributes not only to bacterial adherence to many kinds of infection-establishing surfaces, but also to bacterial resistance against antimicrobial agents and antiseptic agents. Thus, inhibitors of bacterial biofilm formation should be useful in the prevention of infections. We found that a culture of Streptomyces sp. strain MC11024 showed inhibitory activity on biofilm formation by Staphylococcus aureus and isolated streptorubin B as an inhibitor of this formation in S. aureus. The biofilm formation of methicillin resistant S. aureus (MRSA) N315 was reduced to less than 30% at 1 µg/mL of streptorubin B, and at this concentration cell growth was not affected. Our study suggests that streptorubin B has the potential to be a leading compound of anti-infectious agents of S. aureus.

  16. Evolution of Staphylococcus aureus and MRSA during outbreaks.

    PubMed

    Lindsay, Jodi A

    2014-01-01

    Investigation of Staphylococcus aureus outbreaks, and particularly those due to methicillin-resistant S. aureus (MRSA) in hospitals, can identify infection reservoirs and prevent further colonization and infection. During outbreaks, S. aureus genomes develop single nucleotide polymorphisms (SNPs), small genetic rearrangements, and/or acquire and lose mobile genetic elements (MGE) encoding resistance and virulence genes. Whole genome sequencing (WGS) is the most powerful method for discriminating between related isolates and deciding which are involved in an outbreak. Isolates with only minor variations are detectable and can identify MRSA transmission routes and identify reservoirs. Some patients may carry 'clouds' of related isolates, and this has consequences for how we interpret the data from outbreak investigations. Different clones of MRSA are evolving at different rates, influencing their typability. S. aureus genome variation reveals the importance of antibiotic resistance in the long term evolution of successful hospital clones, contributing to strategies to prevent the spread of successful MRSA clones. PMID:23665384

  17. Phevalin (aureusimine B) production by Staphylococcus aureus biofilm and impacts on human keratinocyte gene expression.

    PubMed

    Secor, Patrick R; Jennings, Laura K; James, Garth A; Kirker, Kelly R; Pulcini, Elinor Delancey; McInnerney, Kate; Gerlach, Robin; Livinghouse, Tom; Hilmer, Jonathan K; Bothner, Brian; Fleckman, Philip; Olerud, John E; Stewart, Philip S

    2012-01-01

    Staphylococcus aureus biofilms are associated with chronic skin infections and are orders of magnitude more resistant to antimicrobials and host responses. S. aureus contains conserved nonribosomal peptide synthetases that produce the cyclic dipeptides tyrvalin and phevalin (aureusimine A and B, respectively). The biological function of these compounds has been speculated to be involved in virulence factor gene expression in S. aureus, protease inhibition in eukaryotic cells, and interspecies bacterial communication. However, the exact biological role of these compounds is unknown. Here, we report that S. aureus biofilms produce greater amounts of phevalin than their planktonic counterparts. Phevalin had no obvious impact on the extracellular metabolome of S. aureus as measured by high-performance liquid chromatography-mass spectrometry and nuclear magnetic resonance. When administered to human keratinocytes, phevalin had a modest effect on gene expression. However, conditioned medium from S. aureus spiked with phevalin amplified differences in keratinocyte gene expression compared to conditioned medium alone. Phevalin may be exploited as potential biomarker and/or therapeutic target for chronic, S. aureus biofilm-based infections.

  18. Monoclonal Antibody Targeting Staphylococcus aureus Surface Protein A (SasA) Protect Against Staphylococcus aureus Sepsis and Peritonitis in Mice.

    PubMed

    Yang, Yilong; Qian, Mengying; Yi, Shaoqiong; Liu, Shuling; Li, Bing; Yu, Rui; Guo, Qiang; Zhang, Xiaopeng; Yu, Changming; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Epidemic methicillin-resistant Staphylococcus aureus (MRSA) imposes an increasing impact on public health. Due to multi-antibiotics resistance in MRSA strains, there is an urgent need to develop novel therapeutics such as effective monoclonal antibodies (mAbs) against MRSA infections. Staphylococcus aureus surface protein A (SasA), a large surface-located protein (~240 kDa), is one of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and a potential target for immunotherapeutic approaches against S. aureus infections. In the present study, we analyzed the sequence of SasA with bioinformatics tools and generated a protective monoclonal antibody (2H7) targeting the conserved domain of SasA. 2H7 was shown to recognize wild-type S. aureus and promote opsonophagocytic killing of S. aureus. In both sepsis and peritoneal infection models, prophylactic administration of 2H7 improved the survival of BALB/c mice challenged by S. aureus strain USA300 and ST239 (prevalent MRSA clones in North America and Asian countries, respectively) and enhanced bacterial clearance in kidneys. Additionally, 2H7 prophylaxis prevented the formation of intraperitoneal abscess in a murine model of peritoneal infection and therapeutic administration of 2H7 showed protective efficacy in a murine sepsis model. Our results presented here provide supporting evidences that an anti-SasA mAb might be a potential component in an antibody-based immunotherapeutic treatment of MRSA infections. PMID:26926145

  19. Monoclonal Antibody Targeting Staphylococcus aureus Surface Protein A (SasA) Protect Against Staphylococcus aureus Sepsis and Peritonitis in Mice.

    PubMed

    Yang, Yilong; Qian, Mengying; Yi, Shaoqiong; Liu, Shuling; Li, Bing; Yu, Rui; Guo, Qiang; Zhang, Xiaopeng; Yu, Changming; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Epidemic methicillin-resistant Staphylococcus aureus (MRSA) imposes an increasing impact on public health. Due to multi-antibiotics resistance in MRSA strains, there is an urgent need to develop novel therapeutics such as effective monoclonal antibodies (mAbs) against MRSA infections. Staphylococcus aureus surface protein A (SasA), a large surface-located protein (~240 kDa), is one of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and a potential target for immunotherapeutic approaches against S. aureus infections. In the present study, we analyzed the sequence of SasA with bioinformatics tools and generated a protective monoclonal antibody (2H7) targeting the conserved domain of SasA. 2H7 was shown to recognize wild-type S. aureus and promote opsonophagocytic killing of S. aureus. In both sepsis and peritoneal infection models, prophylactic administration of 2H7 improved the survival of BALB/c mice challenged by S. aureus strain USA300 and ST239 (prevalent MRSA clones in North America and Asian countries, respectively) and enhanced bacterial clearance in kidneys. Additionally, 2H7 prophylaxis prevented the formation of intraperitoneal abscess in a murine model of peritoneal infection and therapeutic administration of 2H7 showed protective efficacy in a murine sepsis model. Our results presented here provide supporting evidences that an anti-SasA mAb might be a potential component in an antibody-based immunotherapeutic treatment of MRSA infections.

  20. Staphylococcus aureus with reduced susceptibility to vancomycin in healthcare settings.

    PubMed

    Spagnolo, A M; Orlando, P; Panatto, D; Amicizia, D; Perdelli, F; Cristina, M L

    2014-12-01

    Glycopeptide resistance in Staphylococcus aureus is a source of great concern because, especially in hospitals, this class of antibiotics, particularly vancomycin, is one of the main resources for combating infections caused by methicillin-resistant Staphylococcus aureus strains (MRSA). Reduced susceptibility to vancomycin (VISA) was first described in 1996 in Japan; since then, a phenotype with heterogeneous resistance to vancomycin (h-VISA) has emerged. H-VISA isolates are characterised by the presence of a resistant subpopulation, typically at a rate of 1 in 10(5) organisms, which constitutes the intermediate stage betweenfully vancomycin-susceptible S. aureus (VSSA) and VISA isolates. As VISA phenotypes are almost uniformly cross-resistant to teicoplanin, they are also called Glycopeptides-intermediate Staphylococcus aureus strains (GISA) and, in the case of heterogeneous resistance to glycopeptides, h-GISA. The overall prevalence of h-VISA is low, accounting for approximately 1.3% of all MRSA isolates tested. Mortality due to h-GISA infections is very high (about 70%), especially among patients hospitalised in high-risk departments, such as intensive care units (ICU). Given the great clinical relevance of strains that are heteroresistant to glycopeptides and the possible negative impact on treatment choices, it is important to draw up and implement infection control practices, including surveillance, the appropriate use of isolation precautions, staff training, hand hygiene, environmental cleansing and good antibiotic stewardship.

  1. Staphylococcus aureus with reduced susceptibility to vancomycin in healthcare settings.

    PubMed

    Spagnolo, A M; Orlando, P; Panatto, D; Amicizia, D; Perdelli, F; Cristina, M L

    2014-12-01

    Glycopeptide resistance in Staphylococcus aureus is a source of great concern because, especially in hospitals, this class of antibiotics, particularly vancomycin, is one of the main resources for combating infections caused by methicillin-resistant Staphylococcus aureus strains (MRSA). Reduced susceptibility to vancomycin (VISA) was first described in 1996 in Japan; since then, a phenotype with heterogeneous resistance to vancomycin (h-VISA) has emerged. H-VISA isolates are characterised by the presence of a resistant subpopulation, typically at a rate of 1 in 10(5) organisms, which constitutes the intermediate stage betweenfully vancomycin-susceptible S. aureus (VSSA) and VISA isolates. As VISA phenotypes are almost uniformly cross-resistant to teicoplanin, they are also called Glycopeptides-intermediate Staphylococcus aureus strains (GISA) and, in the case of heterogeneous resistance to glycopeptides, h-GISA. The overall prevalence of h-VISA is low, accounting for approximately 1.3% of all MRSA isolates tested. Mortality due to h-GISA infections is very high (about 70%), especially among patients hospitalised in high-risk departments, such as intensive care units (ICU). Given the great clinical relevance of strains that are heteroresistant to glycopeptides and the possible negative impact on treatment choices, it is important to draw up and implement infection control practices, including surveillance, the appropriate use of isolation precautions, staff training, hand hygiene, environmental cleansing and good antibiotic stewardship. PMID:26137787

  2. Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus.

    PubMed

    Lee, Jin-Hyung; Cho, Hyun Seob; Kim, Younghoon; Kim, Jung-Ae; Banskota, Suhrid; Cho, Moo Hwan; Lee, Jintae

    2013-05-01

    Human pathogens can readily develop drug resistance due to the long-term use of antibiotics that mostly inhibit bacterial growth. Unlike antibiotics, antivirulence compounds diminish bacterial virulence without affecting cell viability and thus, may not lead to drug resistance. Staphylococcus aureus is a major agent of nosocomial infections and produces diverse virulence factors, such as the yellow carotenoid staphyloxanthin, which promotes resistance to reactive oxygen species (ROS) and the host immune system. To identify novel antivirulence compounds, bacterial signal indole present in animal gut and diverse indole derivatives were investigated with respect to reducing staphyloxanthin production and the hemolytic activity of S. aureus. Treatment with indole or its derivative 7-benzyloxyindole (7BOI) caused S. aureus to become colorless and inhibited its hemolytic ability without affecting bacterial growth. As a result, S. aureus was more easily killed by hydrogen peroxide (H₂O₂) and by human whole blood in the presence of indole or 7BOI. In addition, 7BOI attenuated S. aureus virulence in an in vivo model of nematode Caenorhabditis elegans, which is readily infected and killed by S. aureus. Transcriptional analyses showed that both indole and 7BOI repressed the expressions of several virulence genes such as α-hemolysin gene hla, enterotoxin seb, and the protease genes splA and sspA and modulated the expressions of the important regulatory genes agrA and sarA. These findings show that indole derivatives are potential candidates for use in antivirulence strategies against persistent S. aureus infection. PMID:23318836

  3. Molecular characteristics of Staphylococcus aureus associated with chronic rhinosinusitis.

    PubMed

    Thunberg, Ulrica; Hugosson, Svante; Monecke, Stefan; Ehricht, Ralf; Söderquist, Bo

    2015-01-01

    The anterior nares have been regarded as the major carriage site of Staphylococcus aureus. From here, the organism can spread to other parts of the body where it might act as harmless commensal or cause mild to severe infections. Nasal sinuses are normally sterile, but in patients with chronic rhinosinusitis (CRS), the finding of S. aureus in maxillary sinus cultures is common. Isolates were obtained from the nares and maxillary sinus of patients with CRS and the nares of healthy controls. A significantly higher frequency of S. aureus was found in nares samples from patients (24/42) compared to controls (16/57) (p = 0.004). There is no consensus regarding whether S. aureus is a relevant pathogen in CRS. A DNA microarray was used to investigate the prevalence of S. aureus virulence genes with focus on staphylococcal enterotoxins, toxic shock syndrome toxin-1, agr types, and cell wall-associated proteins. The genotyping of S. aureus isolates revealed only small and non-significant differences in gene prevalence between isolates collected from patients with CRS and those collected from healthy nasal carriers. This study provides an increased knowledge of the genetic pattern of virulence genes among S. aureus collected in CRS. PMID:25131615

  4. Salicylic acid diminishes Staphylococcus aureus capsular polysaccharide type 5 expression.

    PubMed

    Alvarez, Lucía P; Barbagelata, María S; Gordiola, Mariana; Cheung, Ambrose L; Sordelli, Daniel O; Buzzola, Fernanda R

    2010-03-01

    Capsular polysaccharides (CP) of serotypes 5 (CP5) and 8 (CP8) are major Staphylococcus aureus virulence factors. Previous studies have shown that salicylic acid (SAL), the main aspirin metabolite, affects the expression of certain bacterial virulence factors. In the present study, we found that S. aureus strain Reynolds (CP5) cultured with SAL was internalized by MAC-T cells in larger numbers than strain Reynolds organisms not exposed to SAL. Furthermore, the internalization of the isogenic nonencapsulated Reynolds strain into MAC-T cells was not significantly affected by preexposure to SAL. Pretreatment of S. aureus strain Newman with SAL also enhanced internalization into MAC-T cells compared with that of untreated control strains. Using strain Newman organisms, we evaluated the activity of the major cap5 promoter, which was significantly decreased upon preexposure to SAL. Diminished transcription of mgrA and upregulation of the saeRS transcript, both global regulators of CP expression, were found in S. aureus cultured in the presence of SAL, as ascertained by real-time PCR analysis. In addition, CP5 production by S. aureus Newman was also decreased by treatment with SAL. Collectively, our data demonstrate that exposure of encapsulated S. aureus strains to low concentrations of SAL reduced CP production, thus unmasking surface adhesins and leading to an increased capacity of staphylococci to invade epithelial cells. The high capacity of internalization of the encapsulated S. aureus strains induced by SAL pretreatment may contribute to the persistence of bacteria in certain hosts.

  5. Identification and Characterization of a Monofunctional Glycosyltransferase from Staphylococcus aureus

    PubMed Central

    Wang, Q. May; Peery, Robert B.; Johnson, Robert B.; Alborn, William E.; Yeh, Wu-Kuang; Skatrud, Paul L.

    2001-01-01

    A gene (mgt) encoding a monofunctional glycosyltransferase (MGT) from Staphylococcus aureus has been identified. This first reported gram-positive MGT shared significant homology with several MGTs from gram-negative bacteria and the N-terminal glycosyltransferase domain of class A high-molecular-mass penicillin-binding proteins from different species. S. aureus MGT contained an N-terminal hydrophobic domain perhaps involved with membrane association. It was expressed in Escherichia coli cells as a truncated protein lacking the hydrophobic domain and purified to homogeneity. Analysis by circular dichroism revealed that secondary structural elements of purified truncated S. aureus MGT were consistent with predicted structural elements, indicating that the protein might exhibit the expected folding. In addition, purified S. aureus MGT catalyzed incorporation of UDP-N-acetylglucosamine into peptidoglycan, proving that it was enzymatically active. MGT activity was inhibited by moenomycin A, and the reaction product was sensitive to lysozyme treatment. Moreover, a protein matching the calculated molecular weight of S. aureus MGT was identified from an S. aureus cell lysate using antibodies developed against purified MGT. Taken together, our results suggest that this enzyme is natively present in S. aureus cells and that it may play a role in bacterial cell wall biosynthesis. PMID:11466281

  6. Global antibody response to Staphylococcus aureus live-cell vaccination.

    PubMed

    Selle, Martina; Hertlein, Tobias; Oesterreich, Babett; Klemm, Theresa; Kloppot, Peggy; Müller, Elke; Ehricht, Ralf; Stentzel, Sebastian; Bröker, Barbara M; Engelmann, Susanne; Ohlsen, Knut

    2016-01-01

    The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration. PMID:27103319

  7. Global antibody response to Staphylococcus aureus live-cell vaccination

    PubMed Central

    Selle, Martina; Hertlein, Tobias; Oesterreich, Babett; Klemm, Theresa; Kloppot, Peggy; Müller, Elke; Ehricht, Ralf; Stentzel, Sebastian; Bröker, Barbara M.; Engelmann, Susanne; Ohlsen, Knut

    2016-01-01

    The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration. PMID:27103319

  8. Molecular Correlates of Host Specialization in Staphylococcus aureus

    PubMed Central

    Herron-Olson, Lisa; Fitzgerald, J. Ross; Musser, James M.; Kapur, Vivek

    2007-01-01

    Background The majority of Staphylococcus aureus isolates that are recovered from either serious infections in humans or from mastitis in cattle represent genetically distinct sets of clonal groups. Moreover, population genetic analyses have provided strong evidence of host specialization among S. aureus clonal groups associated with human and ruminant infection. However, the molecular basis of host specialization in S. aureus is not understood. Methodology/Principal Findings We sequenced the genome of strain ET3-1, a representative isolate of a common bovine mastitis-causing S. aureus clone. Strain ET3-1 encodes several genomic elements that have not been previously identified in S. aureus, including homologs of virulence factors from other Gram-positive pathogens. Relative to the other sequenced S. aureus associated with human infection, allelic variation in ET3-1 was high among virulence and surface-associated genes involved in host colonization, toxin production, iron metabolism, antibiotic resistance, and gene regulation. Interestingly, a number of well-characterized S. aureus virulence factors, including protein A and clumping factor A, exist as pseudogenes in ET3-1. Whole-genome DNA microarray hybridization revealed considerable similarity in the gene content of highly successful S. aureus clones associated with bovine mastitis, but not among those clones that are only infrequently recovered from bovine hosts. Conclusions/Significance Whole genome sequencing and comparative genomic analyses revealed a set of molecular genetic features that distinguish clones of highly successful bovine-associated S. aureus optimized for mastitis pathogenesis in cattle from those that infect human hosts or are only infrequently recovered from bovine sources. Further, the results suggest that modern bovine specialist clones diverged from a common ancestor resembling human-associated S. aureus clones through a combination of foreign DNA acquisition and gene decay. PMID:17971880

  9. Is methicillin-resistant Staphylococcus aureus replacing methicillin-susceptible S. aureus?

    PubMed Central

    Mostofsky, Elizabeth; Lipsitch, Marc; Regev-Yochay, Gili

    2011-01-01

    Despite extensive research on the emergence of and treatments for methicillin-resistant Staphylococcus aureus (MRSA), prior studies have not rigorously evaluated the impact of methicillin resistance on the overall incidence of S. aureus infections. Yet, there are direct clinical and research implications of determining whether methicillin-susceptible S. aureus (MSSA) infection rates remain stable in the face of increasing MRSA prevalence or whether MSSA will be replaced over time. A synthesis of prior studies indicates that the emergence of healthcare-associated MRSA (HA-MRSA) and community-associated MRSA (CA-MRSA) has led to an increase in the overall incidence of S. aureus infections, with MRSA principally adding to, rather than replacing, MSSA. However, colonization with CA-MRSA may at least partially replace colonization with MSSA. So far, evidence indicates that MSSA still accounts for many infections. Therefore, eradication of MRSA alone is not sufficient to address the public health burden of S. aureus. PMID:21737459

  10. Activity of antibacterial protein from maggots against Staphylococcus aureus in vitro and in vivo.

    PubMed

    Zhang, Zhen; Wang, Jiangning; Zhang, Bo; Liu, Huanran; Song, Wei; He, Jiao; Lv, Decheng; Wang, Shouyu; Xu, Xiaoguang

    2013-05-01

    Maggots (larvae of Lucilia sericata) have shown therapeutic effects on refractory wounds infected with bacteria, yet the bacterial killing mechanisms are unclear. Herein, we report the isolation and purification of an antibacterial protein from maggots (MAMP). MAMP demonstrated inhibitory activity against both standard strains and clinically isolated antibiotic-resistant strains of Staphylococcus aureus in vitro. The topical use of MAMP effectively decreased the viability of S. aureus and promoted wound healing in an S. aureus mouse skin infection model. MAMP exerted its antibacterial activity via a bactericidal mechanism based on observations using scanning electron and transmission electron microscopy. MAMP interacted with the bacterial cell membrane and disrupted the cell surface structure. In addition, MAMP had weak hemolytic activity at a high concentration. Taken together, MAMP exhibits potential use as a topical agent for treating bacterial infections.

  11. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity

    PubMed Central

    Cassat, James E.

    2013-01-01

    Transition metals are essential nutrients to virtually all forms of life, including bacterial pathogens. In Staphylococcus aureus, metal ions participate in diverse biochemical processes such as metabolism, DNA synthesis, regulation of virulence factors, and defense against oxidative stress. As an innate immune response to bacterial infection, vertebrate hosts sequester transition metals in a process that has been termed “nutritional immunity.” To successfully infect vertebrates, S. aureus must overcome host sequestration of these critical nutrients. The objective of this review is to outline the current knowledge of staphylococcal metal ion acquisition systems, as well as to define the host mechanisms of nutritional immunity during staphylococcal infection. PMID:22048835

  12. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications.

    PubMed

    Jang, Soojin

    2016-01-01

    Antibiotic resistance is rapidly spreading among bacteria such as Staphylococcus aureus, an opportunistic bacterial pathogen that causes a variety of diseases in humans. For the last two decades, bacterial multidrug efflux pumps have drawn attention due to their potential association with clinical multidrug resistance. Numerous researchers have demonstrated efflux-mediated resistance in vitro and in vivo and found novel multidrug transporters using advanced genomic information about bacteria. This article aims to provide a concise summary of multidrug efflux pumps and their important clinical implications, focusing on recent findings concerning S. aureus efflux pumps.

  13. Dysregulation of the endothelium following Staphylococcus aureus infection.

    PubMed

    Kerrigan, Steven W; McDonnell, Cormac

    2015-08-01

    The cardiovascular system is typically a sterile environment; however entry of a microorganism into the circulation can cause potentially life threatening cardiac and/or vascular disease. Staphylococcus aureus endothelial cell interactions are arguably the most important interactions in the pathogenesis of cardiovascular infection. These interactions can trigger cardiac valve destruction in the case of endocarditis, multi-organ dysfunction in the case of sepsis and coagulopathy. Here, we review the interactions between S. aureus and endothelial cells and discuss the implications of these interactions in the progression of cardiovascular infection.

  14. Dissemination of panton-valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in Okinawa, Japan.

    PubMed

    Mine, Yoshiko; Nakasone, Isamu; Yamamoto, Yuichi; Utani, Atsushi; Yamane, Nobuhisa; Uezato, Hiroshi; Takahashi, Kenzo

    2013-01-01

    Panton-Valentine leukocidin (PVL) is a pore-forming cytotoxin that is produced by Staphylococcus aureus closely associated with skin and soft-tissue infections (SSTI). PVL-positive S. aureus strains have been identified worldwide, including in the USA; however, few studies have reported the presence of these strains in Japan. In this study, we prospectively investigated the prevalence of PVL in S. aureus strains from outpatients presenting with SSTI in Okinawa and characterized the PVL-positive S. aureus strains by polymerase chain reaction (PCR) and multilocus sequence typing (MLST). From 2008-2010, 499 clinical samples were obtained from 497 people. S. aureus was identified in 274 samples, and 36% (99 of 274) were methicillin-resistant S. aureus (MRSA). Seventeen (6.2%) PVL-positive S. aureus strains were detected by PCR, and 12 of the 17 PVL-positive strains were MRSA. Most PVL-positive S. aureus caused furuncles or carbuncles. Nine of the 17 PVL-positive isolates had an ST8 MRSA genotype and most harbored SCCmec type IVa and the arcA gene of the arginine catabolic mobile element, which is identical to the USA300 clone prevalent in the USA. PVL-positive S. aureus strains were more likely to be resistant to erythromycin (65%) and levofloxacin (53%). PVL-positive S. aureus strains have emerged and are spreading as a causative pathogen for SSTI in Okinawa.

  15. Evaluation of Two New Chromogenic Media, CHROMagar MRSA and S. aureus ID, for Identifying Staphylococcus aureus and Screening Methicillin-Resistant S. aureus

    PubMed Central

    Hedin, Göran; Fang, Hong

    2005-01-01

    Thirty-nine methicillin-resistant Staphylococcus aureus (MRSA) isolates with diverse genetic backgrounds and two reference strains were correctly identified as S. aureus on CHROMagar MRSA and S. aureus ID media. Growth inhibition on CHROMagar MRSA was noted. A combination of cefoxitin disk and S. aureus ID was found suitable for rapid MRSA screening. PMID:16081989

  16. Draft Genome Sequence of Staphylococcus aureus subsp. aureus Strain HG003, an NCTC8325 Derivative

    PubMed Central

    Sassi, Mohamed

    2014-01-01

    We report the draft genome sequence of a Staphylococcus aureus NCTC8325 derivative, strain HG003. HG003 contains functional global regulators rsbU and tcaR and is therefore considered as a reference for studies of regulation and virulence. The genome is composed of 2,797,898 bp and will be essential for subsequent RNAseq analysis. PMID:25169861

  17. Draft Genome Sequence of Staphylococcus aureus subsp. aureus Strain HG003, an NCTC8325 Derivative.

    PubMed

    Sassi, Mohamed; Felden, Brice; Augagneur, Yoann

    2014-01-01

    We report the draft genome sequence of a Staphylococcus aureus NCTC8325 derivative, strain HG003. HG003 contains functional global regulators rsbU and tcaR and is therefore considered as a reference for studies of regulation and virulence. The genome is composed of 2,797,898 bp and will be essential for subsequent RNAseq analysis. PMID:25169861

  18. Community-acquired methicillin-resistant Staphylococcus aureus in Central Australia.

    PubMed

    Stevens, Claire L; Ralph, Anna; McLeod, James E T; McDonald, Malcolm I

    2006-01-01

    To date, there has been scant information about the burden of methicillin-resistant Staphylococcus aureus infections in Central Australia. Our aims were to determine the proportion of Staphylococcus aureus infections due to methicillin-resistant strains in Central Australia, to characterise resistance to non-beta lactam antibiotics and to correlate findings with available demographic information. We retrospectively reviewed S. aureus isolates identified by the Microbiology Laboratory of the Pathology Department, Alice Springs Hospital between September 2005 and February 2006. Multi-resistance was defined as resistance to three or more non-beta lactam antibiotics. We identified the recovery site and extended antibiotic resistance profile of each isolate. Demographic data included place of residence, discharge diagnosis and ethnicity. There were 524 S. aureus isolates: 417 (79.6%) methicillin-sensitive S. aureus, 104 (19.7%) non-multi-resistant MRSA (nmrMRSA) and 3 (0.7%) multi-resistant MRSA (mrMRSA). MRSA accounted for 7/22 (32%) invasive infections and 91/474 (19.2%) cases of staphylococcal skin infections. Aboriginal people comprised 89 per cent (93/104) of patients with nmrMRSA; 57 per cent lived in remote communities, 21 per cent in suburban Alice Springs, and 18 per cent in Alice Springs Town Camps. Six per cent (6/104) of nmrMRSA were hospital-acquired. Of the nmrMRSA isolates, 57 per cent (59/104) were resistant to erythromycin and 7 per cent (7/104) to fusidic acid. All MRSA isolates were susceptible to co-trimoxazole. In conclusion, Central Australia has high rates of community-acquired nmrMRSA and low rates of multi-resistant MRSA. Erythromycin resistance in S. aureus is also common. These findings should prompt the review of antimicrobial prescribing guidelines for the region, especially for treatment of skin and soft tissue infections.

  19. Efficacy of teat dips containing a hypochlorous acid germicide against experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C

    1996-09-01

    Two teat dip formulations containing sodium dichloroisocyanurate, which released hypochlorous acid (2800 ppm) as the active ingredient, were tested for efficacy against new Staphylococcus aureus and Streptococcus agalactiae IMI using an experimental challenge model. Product 1 reduced the number of new Staph. aureus IMI by 73.6% and reduced the number of new Strep. agalactiae IMI by 65.1%. Product 2 reduced the number of new Staph. aureus IMI by 69.0% and reduced the number of new Strep. agalactiae IMI by 63.5%. No adverse effects on teat skin condition were observed over the course of the studies. PMID:8899537

  20. Genomics of Staphylococcus

    NASA Astrophysics Data System (ADS)

    Lindsay, Jodi A.

    The staphylococci are Gram-positive cocci that divide to form clusters that look like grapes. By 16S ribosomal sequencing, they are most closely related to the Gram-positive, low G+C content Bacillus-Lactobacillus-Staphylococcus genera (Woese, 1987). There are over 30 species of staphylococci identified, and they are typically found on the skin and mucous membranes of mammals. About a dozen species are frequently carried on humans, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus capitis, Staphylococcus hominis, Staphylococcus cohnii, Staphylococcus lugdunensis, Staphylococcus schleiferi, Staphylococcus saprophyticus, Staphylococcus simulans, Staphylococcus warneri and Staphylococcus xylosus.

  1. Misidentification of vancomycin-resistant Staphylococcus aureus as coagulase-negative Staphylococcus.

    PubMed

    Dai, Yuanyuan; Zhou, Xin; Ma, Xiaoling; Lu, Huaiwei; Li, Hua

    2012-10-01

    Reduced vancomycin susceptibility in Staphylococcus aureus in many cases appears to be associated with changes in biological characteristics, including reduced coagulase activity, cell wall thickening, slow growth, smaller colonies, decreased pigment formation and less or no haemolysis. Whether these changes affect identification by routine methods has not been reported. In this study, 24 vancomycin-susceptibility-reduced coagulase-negative staphylococci (CoNS) strains (including 22 Staphylococcus haemolyticus strains and two Staphylococcus epidermidis strains) were retested by PCR-based detection of Staphylococcus aureus-specific genes (nuc, coa and 16S rRNA). The results showed that six isolates identified by conventional biochemical tests as S. haemolyticus contained nuc, coa and 16S rRNA genes. These six strains were serial-passaged daily on nutrient agar without vancomycin supplementation, and vancomycin-susceptible revertants were obtained after 15 continuous passages. Revertant isolates were coagulase-positive and were identified as S. aureus by automated testing methods. This suggests that biochemical changes in S. aureus strains with reduced vancomycin susceptibility should be highlighted and that the detection of these strains requires more attention and improved techniques.

  2. The psmα locus regulates production of Staphylococcus aureus alpha-toxin during infection.

    PubMed

    Berube, Bryan J; Sampedro, Georgia R; Otto, Michael; Bubeck Wardenburg, Juliane

    2014-08-01

    Staphylococcus aureus is a leading cause of human bacterial infection, causing a wide spectrum of disease ranging from skin and soft tissue infections to life-threatening pneumonia and sepsis. S. aureus toxins play an essential role in disease pathogenesis, contributing to both immunomodulation and host tissue injury. Prominent among these toxins are the membrane-active pore-forming cytolysin alpha-toxin (Hla) and the amphipathic α-helical phenol-soluble modulin (PSM) peptides. As deletion of either the hla or psm locus leads to a phenotypically similar virulence defect in skin and soft tissue infection, we sought to determine the relative contribution of each locus to disease pathogenesis. Here we show that production of Hla can be modulated by PSM expression. An S. aureus mutant lacking PSM expression exhibits a transcriptional delay in hla mRNA production and therefore fails to secrete normal levels of Hla at early phases of growth. This leads to attenuation of virulence in vitro and in murine skin and lung models of infection, correlating with reduced recovery of Hla from host tissues. Production of Hla and restoration of staphylococcal virulence can be achieved in the psm mutant by plasmid-driven overexpression of hla. Our study suggests the coordinated action of Hla and PSMs in host tissue during early pathogenesis, confirming a major role for Hla in epithelial injury during S. aureus infection. These findings highlight the possibility that therapeutics targeting PSM production may simultaneously prevent Hla-mediated tissue injury.

  3. Exploring the transcriptome of Staphylococcus aureus in its natural niche.

    PubMed

    Chaves-Moreno, Diego; Wos-Oxley, Melissa L; Jáuregui, Ruy; Medina, Eva; Oxley, Andrew Pa; Pieper, Dietmar H

    2016-01-01

    Staphylococcus aureus is an important human pathogen and commensal, where the human nose is the predominant reservoir. To better understand its behavior in this environmental niche, RNA was extracted from the anterior nares of three documented S. aureus carriers and the metatranscriptome analyzed by RNAseq. In addition, the in vivo transcriptomes were compared to previously published transcriptomes of two in vitro grown S. aureus strains. None of the in vitro conditions, even growth in medium resembling the anterior nares environment, mimicked in vivo conditions. Survival in the nose was strongly controlled by the limitation of iron and evident by the expression of iron acquisition systems. S. aureus populations in different individuals clearly experience different environmental stresses, which they attempt to overcome by the expression of compatible solute biosynthetic pathways, changes in their cell wall composition and synthesis of general stress proteins. Moreover, the expression of adhesins was also important for colonization of the anterior nares. However, different S. aureus strains also showed different in vivo behavior. The assessment of general in vivo expression patterns and commonalities between different S. aureus strains will in the future result in new knowledge based strategies for controlling colonization. PMID:27641137

  4. Exploring the transcriptome of Staphylococcus aureus in its natural niche

    PubMed Central

    Chaves-Moreno, Diego; Wos-Oxley, Melissa L.; Jáuregui, Ruy; Medina, Eva; Oxley, Andrew PA; Pieper, Dietmar H.

    2016-01-01

    Staphylococcus aureus is an important human pathogen and commensal, where the human nose is the predominant reservoir. To better understand its behavior in this environmental niche, RNA was extracted from the anterior nares of three documented S. aureus carriers and the metatranscriptome analyzed by RNAseq. In addition, the in vivo transcriptomes were compared to previously published transcriptomes of two in vitro grown S. aureus strains. None of the in vitro conditions, even growth in medium resembling the anterior nares environment, mimicked in vivo conditions. Survival in the nose was strongly controlled by the limitation of iron and evident by the expression of iron acquisition systems. S. aureus populations in different individuals clearly experience different environmental stresses, which they attempt to overcome by the expression of compatible solute biosynthetic pathways, changes in their cell wall composition and synthesis of general stress proteins. Moreover, the expression of adhesins was also important for colonization of the anterior nares. However, different S. aureus strains also showed different in vivo behavior. The assessment of general in vivo expression patterns and commonalities between different S. aureus strains will in the future result in new knowledge based strategies for controlling colonization. PMID:27641137

  5. CCR5 is a receptor for Staphylococcus aureus leukotoxin ED

    PubMed Central

    III, Francis Alonzo; Kozhaya, Lina; Rawlings, Stephen A.; Reyes-Robles, Tamara; DuMont, Ashley L.; Myszka, David G.; Landau, Nathaniel; Unutmaz, Derya; Torres, Victor J.

    2012-01-01

    Pore-forming toxins are critical virulence factors for many bacterial pathogens and are central to Staphylococcus aureus-mediated killing of host cells. S. aureus encodes pore-forming bi-component leukotoxins that are toxic toward neutrophils, but also specifically target other immune cells. Despite decades since the first description of Staphylococcal leukocidal activity, the host factors responsible for the selectivity of leukotoxins toward different immune cells remain unknown. Here we identified the HIV co-receptor, CCR5, as a cellular determinant required for cytotoxic targeting of subsets of myeloid cells and T lymphocytes by the S. aureus leukotoxin ED (LukED). We further demonstrate that LukED-dependent cell killing is blocked by CCR5 receptor antagonists, including the HIV drug maraviroc. Remarkably, CCR5-deficient mice are largely resistant to lethal S. aureus infection, highlighting the importance of CCR5 targeting in S. aureus pathogenesis. Thus, depletion of CCR5+ leukocytes by LukED suggests a novel S. aureus immune evasion mechanism that can be therapeutically targeted. PMID:23235831

  6. Detoxification of toxins by bacillithiol in Staphylococcus aureus.

    PubMed

    Newton, Gerald L; Fahey, Robert C; Rawat, Mamta

    2012-04-01

    Bacillithiol (BSH), an α-anomeric glycoside of l-cysteinyl-d-glucosaminyl-l-malate, is a major low-molecular-mass thiol found in bacteria such as Bacillus sp., Staphylococcus aureus and Deinococcus radiodurans. Like other low-molecular-mass thiols such as glutathione and mycothiol, BSH is likely to be involved in protection against environmental toxins including thiol-reactive antibiotics. We report here a BSH-dependent detoxification mechanism in S. aureus. When S. aureus Newman strain was treated with monobromobimane and monochlorobimane, the cellular BSH was converted to the fluorescent S-conjugate BS-bimane. A bacillithiol conjugate amidase activity acted upon the BS-bimane to produce Cys-bimane, which was then acetylated by an N-acetyltransferase to generate N-acetyl-Cys-bimane, a mercapturic acid. An S. aureus mutant lacking BSH did not produce mercapturic acid when treated with monobromobimane and monochlorobimane, confirming the involvement of bacillithiol. Furthermore, treatment of S. aureus Newman with rifamycin, the parent compound of the first-line anti-tuberculosis drug, rifampicin, indicated that this thiol-reactive antibiotic is also detoxified in a BSH-dependent manner, since mercapturic acids of rifamycin were observed in the culture medium. These data indicate that toxins and thiol-reactive antibiotics are detoxified to less potent mercapturic acids in a BSH-dependent manner and then exported out of the cell in S. aureus.

  7. Sphingoid bases are taken up by Escherichia coli and Staphylococcus aureus and induce ultrastructural damage

    PubMed Central

    Fischer, Carol L.; Walters, Katherine S.; Drake, David R.; Blanchette, Derek R.; Dawson, Deborah V.; Brogden, Kim A.; Wertz, Philip W.

    2013-01-01

    Sphingoid bases found in the outer layers of the skin exhibit antimicrobial activity against Gram-positive and Gram-negative bacteria. We investigated the uptake of several sphingoid bases by Escherichia coli and Staphylococcus aureus, and assessed subsequent ultrastructural damage. E. coli and S. aureus were incubated with D-sphingosine, dihydrosphingosine, or phytosphingosine at ten times their MIC for 0.5 h and 4 h, respectively, to kill 50% of viable bacteria. Treated bacterial cells were immediately prepared for SEM, TEM, and analyzed for lipid content by QTLC. E. coli and S. aureus treated with sphingoid bases were distorted and their surfaces were concave and rugate. Significant differences were observed in the visual surface area relative to controls for both E. coli and S. aureus when treated with dihydrosphingosine and sphingosine (p<0.0001) but not phytosphingosine. While sphingoid base-treated S. aureus exhibited disruption and loss of cell wall and membrane, E. coli cytoplasmic membranes appeared intact and the outer envelope uncompromised. Both E. coli and S. aureus cells contained unique internal inclusion bodies, likely associated with cell death. QTLC demonstrated extensive uptake of sphingoid bases by the bacteria. Hence, sphingoid bases induce both extracellular and intracellular damage and cause intracellular inclusions that may reflect lipid uptake. PMID:23128426

  8. Repurposing the Antihistamine Terfenadine for Antimicrobial Activity against Staphylococcus aureus

    PubMed Central

    2015-01-01

    Staphylococcus aureus is a rapidly growing health threat in the U.S., with resistance to several commonly prescribed treatments. A high-throughput screen identified the antihistamine terfenadine to possess, previously unreported, antimicrobial activity against S. aureus and other Gram-positive bacteria. In an effort to repurpose this drug, structure–activity relationship studies yielded 84 terfenadine-based analogues with several modifications providing increased activity versus S. aureus and other bacterial pathogens, including Mycobacterium tuberculosis. Mechanism of action studies revealed these compounds to exert their antibacterial effects, at least in part, through inhibition of the bacterial type II topoisomerases. This scaffold suffers from hERG liabilities which were not remedied through this round of optimization; however, given the overall improvement in activity of the set, terfenadine-based analogues provide a novel structural class of antimicrobial compounds with potential for further characterization as part of the continuing process to meet the current need for new antibiotics. PMID:25238555

  9. Staphylococcus aureus biofilms: recent developments in biofilm dispersal.

    PubMed

    Lister, Jessica L; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.

  10. Chromosomal mutations involved in antibiotic resistance in Staphylococcus aureus.

    PubMed

    Espedido, Bjorn A; Gosbell, Iain B

    2012-01-01

    Staphylococcus aureus is an important pathogen involved in infections in both the community and hospital setting. Strains that are resistant to multiple classes of antibiotics, particularly methicillin-resistant strains (MRSA), are prevalent in nosocomial infections and are associated with high morbidity and mortality rates. Such antibiotic-resistant strains limit the therapeutic options and place a burden on the health care system. In the hospital setting, horizontal gene transfer plays an important role in disseminating antibiotic resistant determinants among S. aureus. However, resistance to all known classes of antibiotics have been attributed to genes found within the S. aureus chromosome or to due to mutation as a result of selection pressure. Spontaneous mutations, in particular, are pivotal in the emergence of novel resistances. Consequently, newer drugs with better activity and/or antibacterial agents with novel targets need to be developed to combat and control the further spread of antibiotic resistance.

  11. Purification and characterization of Staphylococcus aureus type 8 capsular polysaccharide.

    PubMed Central

    Fournier, J M; Vann, W F; Karakawa, W W

    1984-01-01

    Clinical isolates of Staphylococcus aureus have been previously classified into eight types on the basis of their capsular polysaccharide. The high prevalence of the type 8 capsular polysaccharide among bacteremic isolates suggests the importance of this capsular antigen in staphylococcal disease. The capsular polysaccharide was purified from extracts of three clinical isolates of S. aureus type 8 of different geographic and temperal origin by ion-exchange chromatography and gel filtration. Gas chromatography, gas chromatography-mass spectrometry, and 13C-nuclear magnetic resonance showed that the type 8 capsular polysaccharide is composed of O-acetyl groups, N-acetylfucosamine, and an aminouronic acid similar to N-acetylgalactosaminouronic acid. The purified polysaccharide reacted only with type 8 antiserum in double diffusion experiments. Our analysis shows that the type 8 polysaccharide is both chemically and serologically distinct from teichoic acid and previously characterized polysaccharides of S. aureus. Images PMID:6429051

  12. Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus.

    PubMed

    Teow, Sin-Yeang; Ali, Syed Atif

    2015-11-01

    This study evaluated the synergistic antibacterial activity of Curcumin with 8 different antibiotic groups. Two reference, one clinical and ten environmental strains of Staphylococcus aureus (S. aureus) were tested. Disc diffusion assay with 25 μg/mL Curcumin demonstrated synergism in combination with a majority of tested antibiotics against S. aureus. However, checkerboard micro dilution assay only showed synergism, fractional inhibitory concentration index (FICI) <0.5 in three antibiotics i.e. Gentamicin, Amikacin, and Ciprofloxacin. Other antibiotics showed indifferent interactions but no antagonism was observed. In time-kill curve, appreciable reduction of bacterial cells was also observed in combination therapy (Curcumin + antibiotics) compared to monotherapy (Curcumin or antibiotic(s) alone). The antibiotics with higher synergistic interaction with Curcumin are arranged in a decreasing order: Amikacin > Gentamicin > Ciprofloxacin.

  13. Genetically enhanced cows resist intramammary Staphylococcus aureus infection.

    PubMed

    Wall, Robert J; Powell, Anne M; Paape, Max J; Kerr, David E; Bannerman, Douglas D; Pursel, Vernon G; Wells, Kevin D; Talbot, Neil; Hawk, Harold W

    2005-04-01

    Mastitis, the most consequential disease in dairy cattle, costs the US dairy industry billions of dollars annually. To test the feasibility of protecting animals through genetic engineering, transgenic cows secreting lysostaphin at concentrations ranging from 0.9 to 14 micrograms/ml [corrected] in their milk were produced. In vitro assays demonstrated the milk's ability to kill Staphylococcus aureus. Intramammary infusions of S. aureus were administered to three transgenic and ten nontransgenic cows. Increases in milk somatic cells, elevated body temperatures and induced acute phase proteins, each indicative of infection, were observed in all of the nontransgenic cows but in none of the transgenic animals. Protection against S. aureus mastitis appears to be achievable with as little as 3 micrograms/ml [corrected] of lysostaphin in milk. Our results indicate that genetic engineering can provide a viable tool for enhancing resistance to disease and improve the well-being of livestock.

  14. The Potential Economic Value of a Staphylococcus aureus Vaccine for Neonates

    PubMed Central

    Lee, Bruce Y.; Ufberg, Paul J.; Bailey, Rachel R.; Wiringa, Ann E.; Smith, Kenneth J.; Nowalk, Andrew J.; Higgins, Conor; Wateska, Angela R.; Muder, Robert R.

    2010-01-01

    The continuing morbidity and mortality associated with Staphylococcus aureus (S. aureus) infections, especially methicillin-resistent Staphylococcus aureus (MRSA) infections, have motivated calls to make S. aureus vaccine development a research priority. We developed a decision analytic computer simulation model to determine the potential economic impact of a S. aureus vaccine for neonates. Our results suggest that a S. aureus vaccine for the neonatal population would be strongly cost-effective (and in many situations dominant) over a wide range of vaccine efficacies (down to 10%) for vaccine costs (≤$500), and S. aureus attack rates (≥1%). PMID:20472028

  15. Bovine Staphylococcus aureus: Subtyping, evolution, and zoonotic transfer.

    PubMed

    Boss, R; Cosandey, A; Luini, M; Artursson, K; Bardiau, M; Breitenwieser, F; Hehenberger, E; Lam, Th; Mansfeld, M; Michel, A; Mösslacher, G; Naskova, J; Nelson, S; Podpečan, O; Raemy, A; Ryan, E; Salat, O; Zangerl, P; Steiner, A; Graber, H U

    2016-01-01

    Staphylococcus aureus is globally one of the most important pathogens causing contagious mastitis in cattle. Previous studies using ribosomal spacer (RS)-PCR, however, demonstrated in Swiss cows that Staph. aureus isolated from bovine intramammary infections are genetically heterogeneous, with Staph. aureus genotype B (GTB) and GTC being the most prominent genotypes. Furthermore, Staph. aureus GTB was found to be contagious, whereas Staph. aureus GTC and all the remaining genotypes were involved in individual cow disease. In addition to RS-PCR, other methods for subtyping Staph. aureus are known, including spa typing and multilocus sequence typing (MLST). They are based on sequencing the spa and various housekeeping genes, respectively. The aim of the present study was to compare the 3 analytic methods using 456 strains of Staph. aureus isolated from milk of bovine intramammary infections and bulk tanks obtained from 12 European countries. Furthermore, the phylogeny of animal Staph. aureus was inferred and the zoonotic transfer of Staph. aureus between cattle and humans was studied. The analyzed strains could be grouped into 6 genotypic clusters, with CLB, CLC, and CLR being the most prominent ones. Comparing the 3 subtyping methods, RS-PCR showed the highest resolution, followed by spa typing and MLST. We found associations among the methods but in many cases they were unsatisfactory except for CLB and CLC. Cluster CLB was positive for clonal complex (CC)8 in 99% of the cases and typically positive for t2953; it is the cattle-adapted form of CC8. Cluster CLC was always positive for tbl 2645 and typically positive for CC705. For CLR and the remaining subtypes, links among the 3 methods were generally poor. Bovine Staph. aureus is highly clonal and a few clones predominate. Animal Staph. aureus always evolve from human strains, such that every human strain may be the ancestor of a novel animal-adapted strain. The zoonotic transfer of IMI- and milk-associated strains

  16. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus

    PubMed Central

    Miajlovic, Helen; Fallon, Padraic G.; Irvine, Alan D.; Foster, Timothy J.

    2010-01-01

    Background Colonization of the skin by Staphylococcus aureus in individuals with atopic dermatitis exacerbates inflammation. Atopic dermatitis is associated with loss-of-function mutations in the filaggrin (FLG) gene, accompanied by reduced levels of filaggrin breakdown products on the skin. Objective To assess the affect of growth in the presence of the filaggrin breakdown products urocanic acid (UCA) and pyrrolidone carboxylic acid (PCA) on fitness of and protein expression by S aureus. Methods S aureus was grown for 24 hours in the presence of UCA and PCA, and the density of the cultures was monitored by recording OD600 values. Cell wall extracts and secreted proteins of S aureus were isolated and analyzed by SDS-PAGE. Cell wall–associated proteins known to be involved in colonization and immune evasion including clumping factor B, fibronectin binding proteins, protein A, iron-regulated surface determinant A, and the serine-aspartate repeat proteins were examined by Western immunoblotting. Results Acidification of growth media caused by the presence of UCA and PCA resulted in reduced growth rates and reduced final cell density of S aureus. At the lower pH, reduced expression of secreted and cell wall–associated proteins, including proteins involved in colonization (clumping factor B, fibronectin binding protein A) and immune evasion (protein A), was observed. Decreased expression of iron-regulated surface determinant A due to growth with filaggrin breakdown products appeared to be independent of the decreased pH. Conclusion S aureus grown under mildly acidic conditions such as those observed on healthy skin expresses reduced levels of proteins that are known to be involved in immune evasion. PMID:21036388

  17. Recurrent abscesses due to Finegoldia magna, Dermabacter hominis and Staphylococcus aureus in an immunocompetent patient.

    PubMed

    Martin, J; Bemer, P; Touchais, S; Asseray, N; Corvec, S

    2009-10-01

    A case of recurrent abscesses in an immunocompetent patient is reported, involving the opportunistic human pathogen Dermabacter hominis, the virulent anaerobic pathogen Finegoldia magna and Staphylococcus aureus.

  18. Methicillin-resistant Staphylococcus aureus: an overview for manual therapists☆

    PubMed Central

    Green, Bart N.; Johnson, Claire D.; Egan, Jonathon Todd; Rosenthal, Michael; Griffith, Erin A.; Evans, Marion Willard

    2012-01-01

    Objective Methicillin-resistant Staphylococcus aureus (MRSA) is associated with difficult-to-treat infections and high levels of morbidity. Manual practitioners work in environments where MRSA is a common acquired infection. The purpose of this review is to provide a practical overview of MRSA as it applies to the manual therapy professions (eg, physical and occupational therapy, athletic training, chiropractic, osteopathy, massage, sports medicine) and to discuss how to identify and prevent MRSA infections in manual therapy work environments. Methods PubMed and CINAHL were searched from the beginning of their respective indexing years through June 2011 using the search terms MRSA, methicillin-resistant Staphylococcus aureus, and Staphylococcus aureus. Texts and authoritative Web sites were also reviewed. Pertinent articles from the authors' libraries were included if they were not already identified in the literature search. Articles were included if they were applicable to ambulatory health care environments in which manual therapists work or if the content of the article related to the clinical management of MRSA. Results Following information extraction, 95 citations were included in this review, to include 76 peer-reviewed journal articles, 16 government Web sites, and 3 textbooks. Information was organized into 10 clinically relevant categories for presentation. Information was organized into the following clinically relevant categories: microbiology, development of MRSA, risk factors for infection, clinical presentation, diagnostic tests, screening tests, reporting, treatment, prevention for patients and athletes, and prevention for health care workers. Conclusion Methicillin-resistant S aureus is a health risk in the community and to patients and athletes treated by manual therapists. Manual practitioners can play an essential role in recognizing MRSA infections and helping to control its transmission in the health care environment and the community

  19. The Bicomponent Pore-Forming Leucocidins of Staphylococcus aureus

    PubMed Central

    Alonzo, Francis

    2014-01-01

    SUMMARY The ability to produce water-soluble proteins with the capacity to oligomerize and form pores within cellular lipid bilayers is a trait conserved among nearly all forms of life, including humans, single-celled eukaryotes, and numerous bacterial species. In bacteria, some of the most notable pore-forming molecules are protein toxins that interact with mammalian cell membranes to promote lysis, deliver effectors, and modulate cellular homeostasis. Of the bacterial species capable of producing pore-forming toxic molecules, the Gram-positive pathogen Staphylococcus aureus is one of the most notorious. S. aureus can produce seven different pore-forming protein toxins, all of which are believed to play a unique role in promoting the ability of the organism to cause disease in humans and other mammals. The most diverse of these pore-forming toxins, in terms of both functional activity and global representation within S. aureus clinical isolates, are the bicomponent leucocidins. From the first description of their activity on host immune cells over 100 years ago to the detailed investigations of their biochemical function today, the leucocidins remain at the forefront of S. aureus pathogenesis research initiatives. Study of their mode of action is of immediate interest in the realm of therapeutic agent design as well as for studies of bacterial pathogenesis. This review provides an updated perspective on our understanding of the S. aureus leucocidins and their function, specificity, and potential as therapeutic targets. PMID:24847020

  20. Fatal cases of Staphylococcus aureus pleural empyema in infants.

    PubMed

    Rougemont, Anne-Laure; Buteau, Chantal; Ovetchkine, Philippe; Bergeron, Cybèle; Fournet, Jean-Christophe; Bouron-Dal Soglio, Dorothée

    2009-01-01

    Community-associated infections and especially pleural empyema due to Staphylococcus aureus are increasing worldwide. The virulence of staphylococcal strains is notably determined by different toxin expressing-genes, such as the Panton-Valentine leukocidin (PVL) gene found in S. aureus isolates obtained from pediatric necrotizing pneumonia samples. We describe 2 similar cases of infants with severe respiratory distress and death after an upper respiratory tract infection, having occurred in the same urban area during the same winter time. Necropsies performed between November 2006 and March 2007 revealed bronchopneumonia and an important pleural empyema, justifying the review of clinical charts and laboratory exams. A methicillin-sensitive S. aureus (MSSA) isolate carrying the PVL gene was identified in both cases. We have subsequently cared for an additional case in the same time interval with sudden death and similar pathological findings. No positive microbiological results were obtained, a negative finding possibly related to a 5-day antibiotics regimen. This report describes the pathological features of these cases and stresses the need to recognize PVL-positive S. aureus infections in young children. Finally, we believe that all lethal infections due to PVL-positive S. aureus, independently of the methicillin resistance profile, deserve a mandatory report to the provincial public health authorities. PMID:19192951

  1. A systematic review of animal models for Staphylococcus aureus osteomyelitis

    PubMed Central

    Reizner, W.; Hunter, J.G.; O’Malley, N.T.; Southgate, R.D.; Schwarz, E.M.; Kates, S.L.

    2015-01-01

    Staphylococcus aureus (S. aureus) osteomyelitis is a significant complication for orthopaedic patients undergoing surgery, particularly with fracture fixation and arthroplasty. Given the difficulty in studying S. aureus infections in human subjects, animal models serve an integral role in exploring the pathogenesis of osteomyelitis, and aid in determining the efficacy of prophylactic and therapeutic treatments. Animal models should mimic the clinical scenarios seen in patients as closely as possible to permit the experimental results to be translated to the corresponding clinical care. To help understand existing animal models of S. aureus, we conducted a systematic search of PubMed & Ovid MEDLINE to identify in vivo animal experiments that have investigated the management of S. aureus osteomyelitis in the context of fractures and metallic implants. In this review, experimental studies are categorized by animal species and are further classified by the setting of the infection. Study methods are summarized and the relevant advantages and disadvantages of each species and model are discussed. While no ideal animal model exists, the understanding of a model’s strengths and limitations should assist clinicians and researchers to appropriately select an animal model to translate the conclusions to the clinical setting. PMID:24668594

  2. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus

    PubMed Central

    McCarthy, Hannah; Rudkin, Justine K.; Black, Nikki S.; Gallagher, Laura; O'Neill, Eoghan; O'Gara, James P.

    2015-01-01

    Antibiotic resistance and biofilm-forming capacity contribute to the success of Staphylococcus aureus as a human pathogen in both healthcare and community settings. These virulence factors do not function independently of each other and the biofilm phenotype expressed by clinical isolates of S. aureus is influenced by acquisition of the methicillin resistance gene mecA. Methicillin-sensitive S. aureus (MSSA) strains commonly produce an icaADBC operon-encoded polysaccharide intercellular adhesin (PIA)-dependent biofilm. In contrast, the release of extracellular DNA (eDNA) and cell surface expression of a number of sortase-anchored proteins, and the major autolysin have been implicated in the biofilm phenotype of methicillin-resistant S. aureus (MRSA) isolates. Expression of high level methicillin resistance in a laboratory MSSA strain resulted in (i) repression of PIA-mediated biofilm production, (ii) down-regulation of the accessory gene regulator (Agr) system, and (iii) attenuation of virulence in murine sepsis and device infection models. Here we review the mechanisms of MSSA and MRSA biofilm production and the relationships between antibiotic resistance, biofilm and virulence gene regulation in S. aureus. PMID:25674541

  3. Multi-drug-resistant Staphylococcus aureus and future chemotherapy.

    PubMed

    Hiramatsu, K; Katayama, Y; Matsuo, M; Sasaki, T; Morimoto, Y; Sekiguchi, A; Baba, T

    2014-10-01

    Staphylococcus (S.) aureus silently stays as our natural flora, and yet sometimes threatens our life as a tenacious pathogen. In addition to its ability to outwit our immune system, its multi-drug resistance phenotype makes it one of the most intractable pathogenic bacteria in the history of antibiotic chemotherapy. It conquered practically all the antibiotics that have been developed since 1940s. In 1961, the first MRSA was found among S. aureus clinical isolates. Then MRSA prevailed throughout the world as a multi-resistant hospital pathogen. In 1997, MRSA strain Mu50 with reduced susceptibility to vancomycin was isolated. Vancomycin-intermediate S. aureus (VISA), so named according to the CLSI criteria, was the product of adaptive mutation of S. aureus against vancomycin that had long been the last resort to MRSA infection. Here, we describe the genetic basis for the remarkable ability of S. aureus to acquire multi-antibiotic resistance, and propose a novel paradigm for future chemotherapy against the multi-resistant pathogens.

  4. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    PubMed Central

    Li, Xianglu; Fusco, William G.; Seo, Keun S.; Bayles, Kenneth W.; Mosley, Erin E.; McGuire, Mark A.; Bohach, Gregory A.

    2009-01-01

    HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization. PMID:20016671

  5. The antimicrobial peptide-sensing system aps of Staphylococcus aureus.

    PubMed

    Li, Min; Cha, David J; Lai, Yuping; Villaruz, Amer E; Sturdevant, Daniel E; Otto, Michael

    2007-12-01

    Staphylococcus aureus is a leading cause of hospital-associated and, more recently, community-associated infections caused by highly virulent methicillin-resistant strains (CA-MRSA). S. aureus survival in the human host is largely defined by the ability to evade attacks by antimicrobial peptides (AMPs) and other mechanisms of innate host defence. Here we show that AMPs induce resistance mechanisms in CA-MRSA via the aps AMP sensor/regulator system, including (i) the d-alanylation of teichoic acids, (ii) the incorporation of lysyl-phosphatidylglycerol in the bacterial membrane and a concomitant increase in lysine biosynthesis, and (iii) putative AMP transport systems such as the vraFG transporter, for which we demonstrate a function in AMP resistance. In contrast to the aps system of S. epidermidis, induction of the aps response in S. aureus was AMP-selective due to structural differences in the AMP binding loop of the ApsS sensor protein. Finally, using a murine infection model, we demonstrate the importance of the aps regulatory system in S. aureus infection. This study shows that while significant interspecies differences exist in the AMP-aps interaction, the AMP sensor system aps is functional and efficient in promoting resistance to a variety of AMPs in a clinically relevant strain of the important human pathogen S. aureus.

  6. Prevalence of Staphylococcus aureus carriage among dogs and their owners

    PubMed Central

    BOOST, M. V.; O'DONOGHUE, M. M.; JAMES, A.

    2008-01-01

    SUMMARY Case reports have indicated transmission of Staphylococcus aureus between humans and pets. We investigated associations between level of contact between dog and owner, and S. aureus colonization. In a cross-sectional study, nasal carriage and antibiotic susceptibility of S. aureus was determined for 830 dogs and 736 owners. Relatedness of isolates was investigated using antibiograms and pulsed-field gel electrophoresis (PFGE). Associations between carriage and demographics or amount of contact between owners and dogs were documented. S. aureus was isolated in 24% of humans and 8·8% of dogs. Antibiotic resistance was significantly more common in canine isolates. Of 17 owner/dog colonized pairs, six were indistinguishable by PFGE. Colonization of dogs was not associated with close human contact, but was strongly associated with health-care occupations (OR 3·29, 95% CI 1·49–7·26, P=0·002). In outbreak situations health-care workers' pets should be considered as a source of S. aureus. High rates of resistance indicate increased monitoring of antibiotic use in veterinary practice is needed. PMID:17678561

  7. Enterotoxin gene profiles among Staphylococcus aureus isolated from raw milk

    PubMed Central

    Nazari, R; Godarzi, H; Rahimi Baghi, F; Moeinrad, M

    2014-01-01

    Milk is considered a nutritious food because it contains several important nutrients including proteins and vitamins. Conversely, it can be a vehicle for several pathogenic bacteria such as Staphylococcus aureus. This study aimed to analyze the frequency of genes encoding the nine Staphylococcal enterotoxins (SEs) and enterotoxin gene profiles in S. aureus isolates derived from raw bovine milk. A total of 52 S. aureus isolates were obtained from 246 milk samples of 246 dairy cows from eight different farms in Qom, Iran. On the basis of cultural and biochemical properties as well as by amplification of the 23S rRNA specific to S. aureus, all isolates could be identified as S. aureus. Of the 52 isolates studied, 80.7% were positive for one or more genes encoding the enterotoxins, and 12 different genotypes were identified. The gene encoding for enterotoxin A (Sea) was the most frequent (16 isolates, 30.7%), followed by Seb (14 isolates, 26.9%) and Sed (8 isolates, 15.37%). Among the genes encoding the other enterotoxins, Seg and Seh were the most frequently observed (8 isolates each, 15.38%), followed by Sej (6 isolates, 11.5%) and Sei (1 isolates, 3.84%). With the recent identification of new SEs, the frequency of enterotoxigenic strains has increased, suggesting that the pathogenic potential of Staphylococci may be higher than previously thought. These results of enterotoxin genes positivity of milk-derived Staphylococci constitute a potential risk for consumers’ health. PMID:27175141

  8. Pyogranulomatous myocarditis due to Staphylococcus aureus septicaemia in two harbour porpoises (Phocoena phocoena).

    PubMed

    Siebert, U; Müller, G; Desportes, G; Weiss, R; Hansen, K; Baumgärtner, W

    2002-03-01

    Staphylococcus aureus septicaemia was diagnosed in a dead, stranded harbour porpoise from the German Baltic Sea and in a live harbour porpoise by-caught in inner Danish waters and taken into captivity. Lesions included pyogranulomatous myocarditis, necrotising suppurative bronchopneumonia, pyelonephritis, osteomyelitis and leptomeningitis, and abscesses in lymph nodes and skeletal muscles. The captive animal had fibrinous suppurative epicarditis and pyogranulomatous myocarditis with abscesses. In both animals the organism was suspected to have entered through skin lesions or via the respiratory tract. PMID:11918049

  9. Prevalence of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus in Retail Ready-to-Eat Foods in China.

    PubMed

    Yang, Xiaojuan; Zhang, Jumei; Yu, Shubo; Wu, Qingping; Guo, Weipeng; Huang, Jiahui; Cai, Shuzhen

    2016-01-01

    Staphylococcus aureus, particularly methicillin-resistant S.aureus (MRSA), is a life-threatening pathogen in humans, and its presence in food is a public health concern. MRSA has been identified in foods in China, but little information is available regarding MRSA in ready-to-eat (RTE) foods. We aimed to investigate the prevalence of S. aureus and MRSA in Chinese retail RTE foods. All isolated S. aureus were tested for antimicrobial susceptibility, and MRSA isolates were further characterized by multilocus sequence typing (MLST) and staphylococcal cassette chromosome mec (SCCmec) typing. Of the 550 RTE foods collected from 2011 to 2014, 69 (12.5%) were positive for S. aureus. Contamination levels were mostly in the range of 0.3-10 most probable number (MPN)/g, with five samples exceeding 10 MPN/g. Of the 69 S. aureus isolates, seven were identified as MRSA by cefoxitin disc diffusion test. Six isolates were mecA-positive, while no mecC-positive isolates were identified. In total, 75.8% (47/62) of the methicillin-susceptible S. aureus isolates and all of the MRSA isolates were resistant to three or more antibiotics. Amongst the MRSA isolates, four were identified as community-acquired strains (ST59-MRSA-IVa (n = 2), ST338-MRSA-V, ST1-MRSA-V), while one was a livestock-associated strain (ST9, harboring an unreported SCCmec type 2C2). One novel sequence type was identified (ST3239), the SCCmec gene of which could not be typed. Overall, our findings showed that Chinese retail RTE foods are likely vehicles for transmission of multidrug-resistant S. aureus and MRSA lineages. This is a serious public health risk and highlights the need to implement good hygiene practices. PMID:27375562

  10. Prevalence of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus in Retail Ready-to-Eat Foods in China

    PubMed Central

    Yang, Xiaojuan; Zhang, Jumei; Yu, Shubo; Wu, Qingping; Guo, Weipeng; Huang, Jiahui; Cai, Shuzhen

    2016-01-01

    Staphylococcus aureus, particularly methicillin-resistant S.aureus (MRSA), is a life-threatening pathogen in humans, and its presence in food is a public health concern. MRSA has been identified in foods in China, but little information is available regarding MRSA in ready-to-eat (RTE) foods. We aimed to investigate the prevalence of S. aureus and MRSA in Chinese retail RTE foods. All isolated S. aureus were tested for antimicrobial susceptibility, and MRSA isolates were further characterized by multilocus sequence typing (MLST) and staphylococcal cassette chromosome mec (SCCmec) typing. Of the 550 RTE foods collected from 2011 to 2014, 69 (12.5%) were positive for S. aureus. Contamination levels were mostly in the range of 0.3–10 most probable number (MPN)/g, with five samples exceeding 10 MPN/g. Of the 69 S. aureus isolates, seven were identified as MRSA by cefoxitin disc diffusion test. Six isolates were mecA-positive, while no mecC-positive isolates were identified. In total, 75.8% (47/62) of the methicillin-susceptible S. aureus isolates and all of the MRSA isolates were resistant to three or more antibiotics. Amongst the MRSA isolates, four were identified as community-acquired strains (ST59-MRSA-IVa (n = 2), ST338-MRSA-V, ST1-MRSA-V), while one was a livestock-associated strain (ST9, harboring an unreported SCCmec type 2C2). One novel sequence type was identified (ST3239), the SCCmec gene of which could not be typed. Overall, our findings showed that Chinese retail RTE foods are likely vehicles for transmission of multidrug-resistant S. aureus and MRSA lineages. This is a serious public health risk and highlights the need to implement good hygiene practices. PMID:27375562

  11. Prevalence of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus in Retail Ready-to-Eat Foods in China.

    PubMed

    Yang, Xiaojuan; Zhang, Jumei; Yu, Shubo; Wu, Qingping; Guo, Weipeng; Huang, Jiahui; Cai, Shuzhen

    2016-01-01

    Staphylococcus aureus, particularly methicillin-resistant S.aureus (MRSA), is a life-threatening pathogen in humans, and its presence in food is a public health concern. MRSA has been identified in foods in China, but little information is available regarding MRSA in ready-to-eat (RTE) foods. We aimed to investigate the prevalence of S. aureus and MRSA in Chinese retail RTE foods. All isolated S. aureus were tested for antimicrobial susceptibility, and MRSA isolates were further characterized by multilocus sequence typing (MLST) and staphylococcal cassette chromosome mec (SCCmec) typing. Of the 550 RTE foods collected from 2011 to 2014, 69 (12.5%) were positive for S. aureus. Contamination levels were mostly in the range of 0.3-10 most probable number (MPN)/g, with five samples exceeding 10 MPN/g. Of the 69 S. aureus isolates, seven were identified as MRSA by cefoxitin disc diffusion test. Six isolates were mecA-positive, while no mecC-positive isolates were identified. In total, 75.8% (47/62) of the methicillin-susceptible S. aureus isolates and all of the MRSA isolates were resistant to three or more antibiotics. Amongst the MRSA isolates, four were identified as community-acquired strains (ST59-MRSA-IVa (n = 2), ST338-MRSA-V, ST1-MRSA-V), while one was a livestock-associated strain (ST9, harboring an unreported SCCmec type 2C2). One novel sequence type was identified (ST3239), the SCCmec gene of which could not be typed. Overall, our findings showed that Chinese retail RTE foods are likely vehicles for transmission of multidrug-resistant S. aureus and MRSA lineages. This is a serious public health risk and highlights the need to implement good hygiene practices.

  12. Increased neutrophil extracellular trap-mediated Staphylococcus aureus clearance through inhibition of nuclease activity by clindamycin and immunoglobulin.

    PubMed

    Schilcher, Katrin; Andreoni, Federica; Uchiyama, Satoshi; Ogawa, Taiji; Schuepbach, Reto A; Zinkernagel, Annelies S

    2014-08-01

    The Gram-positive human pathogen Staphylococcus aureus causes a variety of human diseases such as skin infections, pneumonia, and endocarditis. The micrococcal nuclease Nuc1 is one of the major S. aureus virulence factors and allows the bacterium to avoid neutrophil extracellular trap (NET)-mediated killing. We found that addition of the protein synthesis inhibitor clindamycin to S. aureus LAC cultures decreased nuc1 transcription and subsequently blunted nuclease activity in a molecular beacon-based fluorescence assay. We also observed reduced NET degradation through Nuc1 inhibition translating into increased NET-mediated clearance. Similarly, pooled human immunoglobulin specifically inhibited nuclease activity in a concentration-dependent manner. Inhibition of nuclease activity by clindamycin and immunoglobulin enhanced S. aureus clearance and should be considered in the treatment of S. aureus infections.

  13. Staphylococcus aureus small colony variants in diabetic foot infections

    PubMed Central

    Cervantes-García, Estrella; García-Gonzalez, Rafael; Reyes-Torres, Angélica; Resendiz-Albor, Aldo Arturo; Salazar-Schettino, Paz María

    2015-01-01

    Background Staphylococcus aureus (S. aureus) is one of the major pathogens causing chronic infections. The ability of S. aureus to acquire resistance to a diverse range of antimicrobial compounds results in limited treatment options, particularly in methicillin-resistant S. aureus (MRSA). A mechanism by which S. aureus develops reduced susceptibility to antimicrobials is through the formation of small colony variants (SCVs). Infections by SCVs of S. aureus are an upcoming problem due to difficulties in laboratory diagnosis and resistance to antimicrobial therapy. Methods A prospective study was performed on 120 patients diagnosed with both type 2 diabetes mellitus and infected diabetic foot ulcers. The study was carried out from July 2012 to December 2013 in Hospital General de Mexico. The samples were cultured in blood agar, mannitol salt agar, and MacConkey agar media, and incubated at 37°C in aerobic conditions. Results We describe the first known cases of diabetic foot infections caused by MRSA-SCVs in patients diagnosed with type 2 diabetes mellitus and infected diabetic foot ulcers. In all of our cases, the patients had not received any form of gentamicin therapy. Conclusions The antibiotic therapy commonly used in diabetic patients with infected diabetic foot ulcers fails in the case of MRSA-SCVs because the intracellular location protects S. aureus-SCVs from the host's defenses and also helps them resist antibiotics. The cases studied in this article add to the spectrum of persistent and relapsing infections attributed to MRSA-SCVs and emphasizes that these variants may also play a relevant role in diabetic foot infections. PMID:25787018

  14. Draft Genome Sequences of Vancomycin-Susceptible Staphylococcus aureus Related to Heterogeneous Vancomycin-Intermediate S. aureus.

    PubMed

    Ramaraj, Thiruvarangan; Matyi, Stephanie A; Sundararajan, Anitha; Lindquist, Ingrid E; Devitt, Nicolas P; Schilkey, Faye D; Lamichhane-Khadka, Reena; Hoyt, Peter R; Mudge, Joann; Gustafson, John E

    2014-01-01

    We report the draft genome sequences of three vancomycin-susceptible methicillin-resistant Staphylococcus aureus strains. S. aureus strain MV8 is a sequence type 8 (ST-8) staphylococcal cassette chromosome mec element type IV (SCCmec IV) derivative, while the other two strains (S. aureus MM25 and MM61) are ST-5 SCCmec II strains. MM61 is also closely related to the heterogeneous vancomycin-intermediate S. aureus strain MM66. PMID:25301662

  15. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus

    PubMed Central

    Mohamed, Mohamed F.; Abdelkhalek, Ahmed; Seleem, Mohamed N.

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections present a serious challenge because of the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. Herein, we investigated the antibacterial activity of two short novel peptides (WR12, a 12 residue peptide composed exclusively of arginine and tryptophan, and D-IK8, an eight residue β-sheet peptide) against multidrug resistant staphylococci. In vitro, both peptides exhibited good antibacterial activity against MRSA, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis. WR12 and D-IK8 were able to eradicate persisters, MRSA in stationary growth phase, and showed significant clearance of intracellular MRSA in comparison to both vancomycin and linezolid. In vivo, topical WR12 and D-IK8 significantly reduced both the bacterial load and the levels of the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in MRSA-infected skin lesions. Moreover, both peptides disrupted established in vitro biofilms of S. aureus and S. epidermidis significantly more so than traditional antimicrobials tested. Taken together, these results support the potential of WR12 and D-IK8 to be used as a topical antimicrobial agent for the treatment of staphylococcal skin infections. PMID:27405275

  16. Ulcerative dermatitis and valvular endocarditis associated with Staphylococcus aureus in a hyacinth macaw (Anadorhynchus hyacinthinus).

    PubMed

    Huynh, Minh; Carnaccini, Silvia; Driggers, Todd; Shivaprasad, H L

    2014-06-01

    An 18-yr-old male hyacinth macaw (Anadorhynchus hyacinthinus) was found dead in his aviary with no preexisting signs. The bird had a chronic history of feather damaging behavior, with severe ulcerative dermatitis. Pathologic findings revealed a vegetative valvular endocarditis, myocarditis, septicemia, chronic severe glomerulonephritis, and thyroid dysplasia. Staphylococcus aureus was isolated from the valve, the liver, and the skin. Repeated trauma and low-rate bacteriemia may have contributed to the development of endocarditis. Translocation of S. aureus skin infection in the bloodstream may lead to subacute endocarditis in humans and such mechanism is suspected in this case. This case suggests that endocarditis associated with S. aureus septicemia is a potential complication of feather damaging behavior. This case also reports a systemic complication of ulcerative dermatitis secondary to feather damaging behavior. Endocarditis has been poorly reported in psittacine species, and such medical complication of feather damaging behavior has never been reported to our knowledge. Furthermore, S. aureus is a bacteria of public health concern and should be integrated into the differential when pet parrots with dermatitis are in proximity to owners.

  17. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus.

    PubMed

    Mohamed, Mohamed F; Abdelkhalek, Ahmed; Seleem, Mohamed N

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections present a serious challenge because of the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. Herein, we investigated the antibacterial activity of two short novel peptides (WR12, a 12 residue peptide composed exclusively of arginine and tryptophan, and D-IK8, an eight residue β-sheet peptide) against multidrug resistant staphylococci. In vitro, both peptides exhibited good antibacterial activity against MRSA, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis. WR12 and D-IK8 were able to eradicate persisters, MRSA in stationary growth phase, and showed significant clearance of intracellular MRSA in comparison to both vancomycin and linezolid. In vivo, topical WR12 and D-IK8 significantly reduced both the bacterial load and the levels of the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in MRSA-infected skin lesions. Moreover, both peptides disrupted established in vitro biofilms of S. aureus and S. epidermidis significantly more so than traditional antimicrobials tested. Taken together, these results support the potential of WR12 and D-IK8 to be used as a topical antimicrobial agent for the treatment of staphylococcal skin infections. PMID:27405275

  18. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm

    PubMed Central

    Xu, Yuanxi; Jones, John E.; Yu, Haiqing; Yu, Qingsong; Christensen, Gordon D.

    2015-01-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections. PMID:26369955

  19. Predictors of Staphylococcus aureus Colonization and Results after Decolonization

    PubMed Central

    Malcolm, Tennison L.; Robinson, Le Don; Klika, Alison K.; Ramanathan, Deepak; Higuera, Carlos A.

    2016-01-01

    Protocols for the screening and decolonization of Staphylococcus aureus prior to total joint arthroplasty (TJA) have become widely adopted. The goals of this study were to determine: (1) whether implementation of a screening protocol followed by decolonization with mupirocin/vancomycin and chlorhexidine reduces the risk of revision compared with no screening protocol (i.e., chlorhexidine alone) and (2) whether clinical criteria could reliably predict colonization with MSSA and/or MRSA. Electronic medical records of primary patients undergoing TJA that were screened (n = 3,927) and were not screened (n = 1,751) for Staphylococcus aureus at least 4 days prior to surgery, respectively, were retrospectively reviewed. All patients received chlorhexidine body wipes preoperatively. Patients carrying MSSA and MRSA were treated preoperatively with mupirocin and vancomycin, respectively, along with the standard preoperative antibiotics and chlorhexidine body wipes. Screened patients were 50% less likely to require revision due to prosthetic joint infection compared to those not screened (p = 0.04). Multivariate regression models were poorly accurate in predicting colonization with MSSA (AUC = 0.58) and MRSA (AUC = 0.62). These results support the routine screening and decolonization of S. aureus prior to TJA. PMID:27528869

  20. Predictors of Staphylococcus aureus Colonization and Results after Decolonization.

    PubMed

    Malcolm, Tennison L; Robinson, Le Don; Klika, Alison K; Ramanathan, Deepak; Higuera, Carlos A; Murray, Trevor G

    2016-01-01

    Protocols for the screening and decolonization of Staphylococcus aureus prior to total joint arthroplasty (TJA) have become widely adopted. The goals of this study were to determine: (1) whether implementation of a screening protocol followed by decolonization with mupirocin/vancomycin and chlorhexidine reduces the risk of revision compared with no screening protocol (i.e., chlorhexidine alone) and (2) whether clinical criteria could reliably predict colonization with MSSA and/or MRSA. Electronic medical records of primary patients undergoing TJA that were screened (n = 3,927) and were not screened (n = 1,751) for Staphylococcus aureus at least 4 days prior to surgery, respectively, were retrospectively reviewed. All patients received chlorhexidine body wipes preoperatively. Patients carrying MSSA and MRSA were treated preoperatively with mupirocin and vancomycin, respectively, along with the standard preoperative antibiotics and chlorhexidine body wipes. Screened patients were 50% less likely to require revision due to prosthetic joint infection compared to those not screened (p = 0.04). Multivariate regression models were poorly accurate in predicting colonization with MSSA (AUC = 0.58) and MRSA (AUC = 0.62). These results support the routine screening and decolonization of S. aureus prior to TJA. PMID:27528869

  1. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm.

    PubMed

    Xu, Yuanxi; Jones, John E; Yu, Haiqing; Yu, Qingsong; Christensen, Gordon D; Chen, Meng; Sun, Hongmin

    2015-12-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections. PMID:26369955

  2. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm.

    PubMed

    Xu, Yuanxi; Jones, John E; Yu, Haiqing; Yu, Qingsong; Christensen, Gordon D; Chen, Meng; Sun, Hongmin

    2015-12-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections.

  3. Staphylococcus aureus chronic and relapsing infections: Evidence of a role for persister cells: An investigation of persister cells, their formation and their role in S. aureus disease.

    PubMed

    Conlon, Brian P

    2014-10-01

    Staphylococcus aureus is an opportunistic pathogen capable of causing a variety of diseases including osteomyelitis, endocarditis, infections of indwelling devices and wound infections. These infections are often chronic and highly recalcitrant to antibiotic treatment. Persister cells appear to be central to this recalcitrance. A multitude of factors contribute to S. aureus virulence and high levels of treatment failure. These include its ability to colonize the skin and nares of the host, its ability to evade the host immune system and its development of resistance to a variety of antibiotics. Less understood is the phenomenon of persister cells and their role in S. aureus infections and treatment outcome. Persister cells occur as a sub-population of phenotypic variants that are tolerant to antibiotic treatment. This review examines the importance of persisters in chronic and relapsing S. aureus infections and proposes methods for their eradication.

  4. ω-Hydroxyemodin Limits Staphylococcus aureus Quorum Sensing-Mediated Pathogenesis and Inflammation

    PubMed Central

    Daly, Seth M.; Elmore, Bradley O.; Kavanaugh, Jeffrey S.; Triplett, Kathleen D.; Figueroa, Mario; Raja, Huzefa A.; El-Elimat, Tamam; Crosby, Heidi A.; Femling, Jon K.; Cech, Nadja B.; Horswill, Alexander R.; Oberlies, Nicholas H.

    2015-01-01

    Antibiotic-resistant pathogens are a global health threat. Small molecules that inhibit bacterial virulence have been suggested as alternatives or adjuncts to conventional antibiotics, as they may limit pathogenesis and increase bacterial susceptibility to host killing. Staphylococcus aureus is a major cause of invasive skin and soft tissue infections (SSTIs) in both the hospital and community settings, and it is also becoming increasingly antibiotic resistant. Quorum sensing (QS) mediated by the accessory gene regulator (agr) controls virulence factor production essential for causing SSTIs. We recently identified ω-hydroxyemodin (OHM), a polyhydroxyanthraquinone isolated from solid-phase cultures of Penicillium restrictum, as a suppressor of QS and a compound sought for the further characterization of the mechanism of action. At concentrations that are nontoxic to eukaryotic cells and subinhibitory to bacterial growth, OHM prevented agr signaling by all four S. aureus agr alleles. OHM inhibited QS by direct binding to AgrA, the response regulator encoded by the agr operon, preventing the interaction of AgrA with the agr P2 promoter. Importantly, OHM was efficacious in a mouse model of S. aureus SSTI. Decreased dermonecrosis with OHM treatment was associated with enhanced bacterial clearance and reductions in inflammatory cytokine transcription and expression at the site of infection. Furthermore, OHM treatment enhanced the immune cell killing of S. aureus in vitro in an agr-dependent manner. These data suggest that bacterial disarmament through the suppression of S. aureus QS may bolster the host innate immune response and limit inflammation. PMID:25645827

  5. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks.

    PubMed Central

    Kluytmans, J; van Belkum, A; Verbrugh, H

    1997-01-01

    Staphylococcus aureus has long been recognized as an important pathogen in human disease. Due to an increasing number of infections caused by methicillin-resistant S. aureus (MRSA) strains, therapy has become problematic. Therefore, prevention of staphylococcal infections has become more important. Carriage of S. aureus appears to play a key role in the epidemiology and pathogenesis of infection. The ecological niches of S. aureus are the anterior nares. In healthy subjects, over time, three patterns of carriage can be distinguished: about 20% of people are persistent carriers, 60% are intermittent carriers, and approximately 20% almost never carry S. aureus. The molecular basis of the carrier state remains to be elucidated. In patients who repeatedly puncture the skin (e.g., hemodialysis or continuous ambulatory peritoneal dialysis [CAPD] patients and intravenous drug addicts) and patients with human immunodeficiency virus (HIV) infection, increased carriage rates are found. Carriage has been identified as an important risk factor for infection in patients undergoing surgery, those on hemodialysis or CAPD, those with HIV infection and AIDS, those with intravascular devices, and those colonized with MRSA. Elimination of carriage has been found to reduce the infection rates in surgical patients and those on hemodialysis and CAPD. Elimination of carriage appears to be an attractive preventive strategy in patients at risk. Further studies are needed to optimize this strategy and to define the groups at risk. PMID:9227864

  6. Skin and Soft Tissue Infection (Cellulitis) (Beyond the Basics)

    MedlinePlus

    ... skin infections are discussed separately. (See "Patient education: Methicillin-resistant Staphylococcus aureus (MRSA) (Beyond the Basics)" and "Patient ... be caused by a skin infection known as methicillin-resistant Staphylococcus aureus (MRSA). This is discussed separately. (See " ...

  7. Differentiation of Staphylococcus aureus and Staphylococcus epidermidis by PCR for the fibrinogen binding protein gene.

    PubMed

    Sunagar, R; Deore, S N; Deshpande, P V; Rizwan, A; Sannejal, A D; Sundareshan, S; Rawool, D B; Barbuddhe, S B; Jhala, M K; Bannalikar, A S; Mugalikar, D M; Kumari, V J; Dhanalakshmi, K; Reddy, Y N; Rao, P P; Babra, C; Tiwari, J G; Mukkur, T K; Costantino, P; Wetherall, J D; Isloor, S; Hegde, N R

    2013-05-01

    Mastitis is one of the most common and burdensome diseases afflicting dairy animals. Among other causes of mastitis, staphylococci are frequently associated with clinical and subclinical mastitis. Although Staphylococcus aureus is the predominant species involved, Staphylococcus epidermidis and other coagulase-negative staphylococci are increasingly being isolated from cases of bovine mastitis. Although Staph. aureus and Staph. epidermidis can be easily differentiated based on their biochemical properties, such phenotypic identification is time consuming and laborious. This study aimed to rapidly identify Staph. aureus and Staph. epidermidis. Accordingly, a multiplex PCR was developed and we found that a single gene encoding the adhesin fibrinogen binding protein could be used to identify and differentiate the two species. Consequently, a multiplex reaction combining a triplex PCR for Staph. aureus and a duplex PCR for Staph. epidermidis was standardized, first using bacterial cultures and then with pasteurized milk spiked with live organisms or DNA extracted from the organisms. The test could specifically detect Staph. aureus and Staph. epidermidis even in the presence of a dozen other organisms. The limit of detection for detecting Staph. aureus and Staph. epidermidis separately was 10 to 100 cfu/mL for simplex PCR and 10(4)cfu/mL for multiplex PCR. Conversely, the limit was 10(6)cfu/mL by multiplex PCR for simultaneous detection of both the organisms when spiked into culture medium or pasteurized milk. Overnight enrichment enhanced the assay sensitivity 100-fold. The assay had a high diagnostic sensitivity and specificity. The application of the test was verified on 602 field isolates of staphylococci that had been characterized earlier by phenotypic methods. Importantly, 25 coagulase-negative isolates were identified as Staph. aureus by the multiplex PCR. The test could be adapted for use in clinical diagnostic laboratories.

  8. Staphylococcus aureus resistance to topical antimicrobials in atopic dermatitis*

    PubMed Central

    Bessa, Giancarlo Rezende; Quinto, Vanessa Petry; Machado, Daiane Corrêa; Lipnharski, Caroline; Weber, Magda Blessmann; Bonamigo, Renan Rangel; D'Azevedo, Pedro Alves

    2016-01-01

    Background Topical antimicrobial drugs are indicated for limited superficial pyodermitis treatment, although they are largely used as self-prescribed medication for a variety of inflammatory dermatoses, including atopic dermatitis. Monitoring bacterial susceptibility to these drugs is difficult, given the paucity of laboratory standardization. Objective To evaluate the prevalence of Staphylococcus aureus topical antimicrobial drug resistance in atopic dermatitis patients. Methods We conducted a cross-sectional study of children and adults diagnosed with atopic dermatitis and S. aureus colonization. We used miscellaneous literature reported breakpoints to define S. aureus resistance to mupirocin, fusidic acid, gentamicin, neomycin and bacitracin. Results A total of 91 patients were included and 100 S. aureus isolates were analyzed. All strains were methicillin-susceptible S. aureus. We found a low prevalence of mupirocin and fusidic acid resistance (1.1% and 5.9%, respectively), but high levels of neomycin and bacitracin resistance (42.6% and 100%, respectively). Fusidic acid resistance was associated with more severe atopic dermatitis, demonstrated by higher EASI scores (median 17.8 vs 5.7, p=.009). Our results also corroborate the literature on the absence of cross-resistance between the aminoglycosides neomycin and gentamicin. Conclusions Our data, in a southern Brazilian sample of AD patients, revealed a low prevalence of mupirocin and fusidic acid resistance of S. aureus atopic eczema colonizer strains. However, for neomycin and bacitracin, which are commonly used topical antimicrobial drugs in Brazil, high levels of resistance were identified. Further restrictions on the use of these antimicrobials seem necessary to keep resistance as low as possible.

  9. New epidemiology of Staphylococcus aureus infection in Asia.

    PubMed

    Chen, C-J; Huang, Y-C

    2014-07-01

    Not only is Asia the most populous region in the world, but inappropriate therapy, including self-medication with over-the-counter antimicrobial agents, is a common response to infectious diseases. The high antibiotic selective pressure among the overcrowded inhabitants creates an environment that is suitable for the rapid development and efficient spread of numerous multidrug-resistant pathogens. Indeed, Asia is among the regions with the highest prevalence rates of healthcare-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) and community-associated methicillin-resistant S. aureus (CA-MRSA) in the world. Most hospitals in Asia are endemic for multidrug-resistant methicillin-resistant S. aureus (MRSA), with an estimated proportion from 28% (in Hong Kong and Indonesia) to >70% (in Korea) among all clinical S. aureus isolates in the early 2010s. Isolates with reduced susceptibility or a high level of resistance to glycopeptides have also been increasingly identified in the past few years. In contrast, the proportion of MRSA among community-associated S. aureus infections in Asian countries varies markedly, from <5% to >35%. Two pandemic HA-MRSA clones, namely multilocus sequence type (ST) 239 and ST5, are disseminated internationally in Asia, whereas the molecular epidemiology of CA-MRSA in Asia is characterized by clonal heterogeneity, similar to that in Europe. In this review, the epidemiology of S. aureus in both healthcare facilities and communities in Asia is addressed, with an emphasis on the prevalence, clonal structure and antibiotic resistant profiles of the MRSA strains. The novel MRSA strains from livestock animals have been considered to constitute a public health threat in western countries. The emerging livestock-associated MRSA strains in Asia are also included in this review.

  10. An overview of Staphylococcus epidermidis and Staphylococcus aureus with a focus on developing countries.

    PubMed

    Chessa, Daniela; Ganau, Giulia; Mazzarello, Vittorio

    2015-06-01

    Most nosocomial infections by Staphylococcus epidermidis and Staphylococcus aureus have gained considerable attention due to an increase of infections caused by these strains that have been reported in recent years throughout the world. Most notably, it is important to underline the presence of S. epidermidis and S. aureus in the human epithelia microflora and to highlight that it is impossible to eradicate them from humans. There are various virulence factors that normally sustain the infection life cycle, such as antibiotic resistance (methicillin resistance). Furthermore, it is important to evaluate the usefulness of typing the spa gene from isolated strains in order to study genotypes and geographical distributions. In the present review, different cases related to patients infected by Staphylococci and an overview of this problem worldwide are reported.

  11. Community-Associated Methicillin-Resistant Staphylococcus aureus Case Studies

    PubMed Central

    Sowash, Madeleine G.; Uhlemann, Anne-Catrin

    2014-01-01

    Over the past decade, the emergence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has changed the landscape of S. aureus infections around the globe. Initially recognized for its ability to cause disease in young and healthy individuals without healthcare exposures as well as for its distinct genotype and phenotype, this original description no longer fully encompasses the diversity of CA-MRSA as it continues to expand its niche. Using four case studies, we highlight a wide range of the clinical presentations and challenges of CA-MRSA. Based on these cases we further explore the globally polygenetic background of CA-MRSA with a special emphasis on generally less characterized populations. PMID:24085688

  12. Octameric structure of Staphylococcus aureus enolase in complex with phosphoenolpyruvate

    PubMed Central

    Wu, Yunfei; Wang, Chengliang; Lin, Shenglong; Wu, Minhao; Han, Lu; Tian, Changlin; Zhang, Xuan; Zang, Jianye

    2015-01-01

    Staphylococcus aureus is a Gram-positive bacterium with strong pathogenicity that causes a wide range of infections and diseases. Enolase is an evolutionarily conserved enzyme that plays a key role in energy production through glycolysis. Additionally, enolase is located on the surface of S. aureus and is involved in processes leading to infection. Here, crystal structures of Sa_enolase with and without bound phosphoenolpyruvate (PEP) are presented at 1.6 and 2.45 Å resolution, respectively. The structure reveals an octameric arrangement; however, both dimeric and octameric conformations were observed in solution. Furthermore, enzyme-activity assays show that only the octameric variant is catalytically active. Biochemical and structural studies indicate that the octameric form of Sa_enolase is enzymatically active in vitro and likely also in vivo, while the dimeric form is catalytically inactive and may be involved in other biological processes. PMID:26627653

  13. The amino acid sequence of Staphylococcus aureus penicillinase.

    PubMed Central

    Ambler, R P

    1975-01-01

    The amino acid sequence of the penicillinase (penicillin amido-beta-lactamhydrolase, EC 3.5.2.6) from Staphylococcus aureus strain PC1 was determined. The protein consists of a single polypeptide chain of 257 residues, and the sequence was determined by characterization of tryptic, chymotryptic, peptic and CNBr peptides, with some additional evidence from thermolysin and S. aureus proteinase peptides. A mistake in the preliminary report of the sequence is corrected; residues 113-116 are now thought to be -Lys-Lys-Val-Lys- rather than -Lys-Val-Lys-Lys-. Detailed evidence for the amino acid sequence has been deposited as Supplementary Publication SUP 50056 (91 pages) at the British Library (Lending Division), Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1975) 145, 5. PMID:1218078

  14. A mathematical model of Staphylococcus aureus control in dairy herds.

    PubMed Central

    Zadoks, R. N.; Allore, H. G.; Hagenaars, T. J.; Barkema, H. W.; Schukken, Y. H.

    2002-01-01

    An ordinary differential equation model was developed to simulate dynamics of Staphylococcus aureus mastitis. Data to estimate model parameters were obtained from an 18-month observational study in three commercial dairy herds. A deterministic simulation model was constructed to estimate values of the basic (R0) and effective (Rt) reproductive number in each herd, and to examine the effect of management on mastitis control. In all herds R0 was below the threshold value 1, indicating control of contagious transmission. Rt was higher than R0 because recovered individuals were more susceptible to infection than individuals without prior infection history. Disease dynamics in two herds were well described by the model. Treatment of subclinical mastitis and prevention of influx of infected individuals contributed to decrease of S. aureus prevalence. For one herd, the model failed to mimic field observations. Explanations for the discrepancy are given in a discussion of current knowledge and model assumptions. PMID:12403116

  15. Peptidoglycan architecture can specify division planes in Staphylococcus aureus.

    PubMed

    Turner, Robert D; Ratcliffe, Emma C; Wheeler, Richard; Golestanian, Ramin; Hobbs, Jamie K; Foster, Simon J

    2010-01-01

    Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations. PMID:20975691

  16. Cell wall sorting of lipoproteins in Staphylococcus aureus.

    PubMed Central

    Navarre, W W; Daefler, S; Schneewind, O

    1996-01-01

    Many surface proteins are thought to be anchored to the cell wall of gram-positive organisms via their C termini, while the N-terminal domains of these molecules are displayed on the bacterial surface. Cell wall anchoring of surface proteins in Staphylococcus aureus requires both an N-terminal leader peptide and a C-terminal cell wall sorting signal. By fusing the cell wall sorting of protein A to the C terminus of staphylococcal beta-lactamase, we demonstrate here that lipoproteins can also be anchored to the cell wall of S. aureus. The topology of cell wall-anchored beta-lactamase is reminiscent of that described for Braun's murein lipoprotein in that the N terminus of the polypeptide chain is membrane anchored whereas the C-terminal end is tethered to the bacterial cell wall. PMID:8550464

  17. Efficacy of ofloxacin in experimental Staphylococcus aureus endocarditis.

    PubMed Central

    Kaatz, G W; Seo, S M; Barriere, S L; Albrecht, L M; Rybak, M J

    1990-01-01

    The efficacy of ofloxacin was compared with that of vancomycin in the therapy of experimental Staphylococcus aureus endocarditis. Rabbits infected with either a methicillin-susceptible (MSSA-1199) or a methicillin-resistant (MRSA-494) test strain were treated with ofloxacin (20 mg/kg of body weight every 8 h) or vancomycin (17.5 mg/kg of body weight every 6 h) for 4 days. The antimicrobial agents were found to be equally effective in clearing bacteremia and in reducing bacterial counts in vegetations and in renal and splenic tissue of animals infected with either test strain. The drugs were of equal efficacy in curing MRSA-494 endocarditis. No resistance to ofloxacin emerged in either test strain during therapy. We conclude that in this model ofloxacin is as efficacious as vancomycin and that, unlike for other fluoroquinolones we have evaluated, resistance to the drug does not develop during therapy of this serious S. aureus infection. PMID:2327773

  18. Cavity Forming Pneumonia Due to Staphylococcus aureus Following Dengue Fever.

    PubMed

    Miyata, Nobuyuki; Yoshimura, Yukihiro; Tachikawa, Natsuo; Amano, Yuichiro; Sakamoto, Yohei; Kosuge, Youko

    2015-11-01

    While visiting Malaysia, a 22-year-old previously healthy Japanese man developed myalgia, headache, and fever, leading to a diagnosis of classical dengue fever. After improvement and returning to Japan after a five day hospitalization, he developed productive cough several days after defervescing from dengue. Computed tomography (CT) thorax scan showed multiple lung cavities. A sputum smear revealed leukocytes with phagocytized gram-positive cocci in clusters, and grew an isolate Staphylococcus aureus sensitive to semi-synthetic penicillin; he was treated successfully with ceftriaxone and cephalexin. This second reported case of pneumonia due to S. aureus occurring after dengue fever, was associated both with nosocomial exposure and might have been associated with dengue-associated immunosuppression. Clinicians should pay systematic attention to bacterial pneumonia following dengue fever to establish whether such a connection is causally associated. PMID:26304914

  19. Menaquinone biosynthesis potentiates haem toxicity in Staphylococcus aureus

    PubMed Central

    Wakeman, Catherine A.; Hammer, Neal D.; Stauff, Devin L.; Attia, Ahmed S.; Anzaldi, Laura L.; Dikalov, Sergey I.; Calcutt, M. Wade; Skaar, Eric P.

    2012-01-01

    Summary Staphylococcus aureus is a pathogen that infects multiple anatomical sites leading to a diverse array of diseases. Although vertebrates can restrict the growth of invading pathogens by sequestering iron within haem, S. aureus surmounts this challenge by employing high-affinity haem uptake systems. However, the presence of excess haem is highly toxic, necessitating tight regulation of haem levels. To overcome haem stress, S. aureus expresses the detoxification system HrtAB. In this work, a transposon screen was performed in the background of a haem-susceptible, HrtAB-deficient S. aureus strain to identify the substrate transported by this putative pump and the source of haem toxicity. While a recent report indicates that HrtAB exports haem itself, the haem-resistant mutants uncovered by the transposon selection enabled us to elucidate the cellular factors contributing to haem toxicity. All mutants identified in this screen inactivated the menaquinone (MK) biosynthesis pathway. Deletion of the final steps of this pathway revealed that quinone molecules localizing to the cell membrane potentiate haem-associated superoxide production and subsequent oxidative damage. These data suggest a model in which membrane-associated haem and quinone molecules form a redox cycle that continuously generates semiquinones and reduced haem, both of which react with atmospheric oxygen to produce superoxide. PMID:23043465

  20. Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections.

    PubMed

    Cohen, Taylor S; Hilliard, Jamese J; Jones-Nelson, Omari; Keller, Ashley E; O'Day, Terrence; Tkaczyk, Christine; DiGiandomenico, Antonio; Hamilton, Melissa; Pelletier, Mark; Wang, Qun; Diep, Binh An; Le, Vien T M; Cheng, Lily; Suzich, JoAnn; Stover, C Kendall; Sellman, Bret R

    2016-03-01

    Broad-spectrum antibiotic use may adversely affect a patient's beneficial microbiome and fuel cross-species spread of drug resistance. Although alternative pathogen-specific approaches are rationally justified, a major concern for this precision medicine strategy is that co-colonizing or co-infecting opportunistic bacteria may still cause serious disease. In a mixed-pathogen lung infection model, we find that the Staphylococcus aureus virulence factor α toxin potentiates Gram-negative bacterial proliferation, systemic spread, and lethality by preventing acidification of bacteria-containing macrophage phagosomes, thereby reducing effective killing of both S. aureus and Gram-negative bacteria. Prophylaxis or early treatment with a single α toxin neutralizing monoclonal antibody prevented proliferation of co-infecting Gram-negative pathogens and lethality while also promoting S. aureus clearance. These studies suggest that some pathogen-specific, antibody-based approaches may also work to reduce infection risk in patients colonized or co-infected with S. aureus and disparate drug-resistant Gram-negative bacterial opportunists.

  1. Strain Discrimination of Staphylococcus aureus Using Superantigen Profiles.

    PubMed

    Tsen, Hau-Yang; Li, Sheng-Chih; Chiang, Yu-Cheng; Tsai, Shuo-Wen

    2016-01-01

    Staphylococcus aureus is one of the major bacterial species that may cause clinical infection and food-poisoning cases. Strains of this species may produce a series of superantigens (SAgs). Due to the importance of staphylococcal infections, reliable methods for the discrimination of strains of this species are important. Such data may allow us to trace the infection origins and be used for epidemiological study. For strain discrimination, genotyping methods, such as pulsed-field gel electrophoresis (PFGE), random amplified polymorphic DNA (RAPD), and multi-locus sequence typing (MLST), etc., could be used. Recently, toxin gene profiles, which can be used for the elucidation of the genetic and pathogenic relatedness between strains, also have been used to improve the strain discrimination. For S. aureus, as more SAg genes were discovered, the SAg profiles become more useful for the strain discrimination of S. aureus. In this chapter, a method for the discrimination of S. aureus strains using superantigen profiles will be described in detail.

  2. Riccardin C derivatives cause cell leakage in Staphylococcus aureus.

    PubMed

    Morita, Daichi; Sawada, Hiromi; Ogawa, Wakano; Miyachi, Hiroyuki; Kuroda, Teruo

    2015-10-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major problem in clinical settings, and because it is resistant to most antimicrobial agents, MRSA infections are difficult to treat. We previously reported that synthetic macrocyclic bis(bibenzyl) derivatives, which were originally discovered in liverworts, had anti-MRSA activity. However, the action mechanism responsible was unclear. In the present study, we elucidated the action mechanism of macrocyclic bis(bibenzyl) RC-112 and its partial structure, IDPO-9 (2-phenoxyphenol). Survival experiments demonstrated that RC-112 had a bactericidal effect on MRSA, whereas IDPO-9 had bacteriostatic effects. IDPO-9-resistant mutants exhibited cross-resistance to triclosan, but not to RC-112. The mutation was identified in the fabI, enoyl-acyl carrier protein reductase gene, a target of triclosan. We have not yet isolated the RC-112-resistant mutant. On the other hand, the addition of RC-112, unlike IDPO-9, caused the inflow of ethidium and propidium into S. aureus cells. RC-112-dependent ethidium outflow was observed in ethidium-loaded S. aureus cells. Transmission electron microscopy also revealed that S. aureus cells treated with RC-112 had intracellular lamellar mesosomal-like structures. Intracellular Na+ and K+ concentrations were significantly changed by the RC-112 treatment. These results indicated that RC-112 increased membrane permeability to ethidium, propidium, Na+, and K+, and also that the action mechanism of IDPO-9 was different from those of the other compounds. PMID:26003535

  3. Human Staphylococcus aureus lineages among Zoological Park residents in Greece

    PubMed Central

    Drougka, E.; Foka, A.; Posantzis, D.; Giormezis, N.; Anastassiou, E.D.; Petinaki, E.; Spiliopoulou, I.

    2015-01-01

    Staphylococcus aureus is a part of the microbiota flora in many animal species. The clonal spread of S. aureus among animals and personnel in a Zoological Park was investigated. Samples were collected from colonized and infected sites among 32 mammals, 11 birds and eight humans. The genes mecA, mecC, lukF/lukS-PV (encoding Panton-Valentine leukocidin, PVL) and tst (toxic shock syndrome toxin-1) were investigated by PCR. Clones were defined by Multilocus Sequence Typing (MLST), spa type and Pulsed-Field Gel Electrophoresis (PFGE). Seven S. aureus isolates were recovered from four animals and one from an employee. All were mecA, mecC and tst–negative, whereas, one carried the PVL genes and was isolated from an infected Squirrel monkey. Clonal analysis revealed the occurrence of seven STs, eight PFGE and five spa types including ones of human origin. Even though a variety of genotypes were identified among S. aureus strains colonizing zoo park residents, our results indicate that colonization with human lineages has indeed occurred. PMID:26623381

  4. Phenotype switching is a natural consequence of Staphylococcus aureus replication.

    PubMed

    Edwards, Andrew M

    2012-10-01

    The pathogen Staphylococcus aureus undergoes phenotype switching in vivo from its normal colony phenotype (NCP) to a slow-growing, antibiotic-resistant small-colony-variant (SCV) phenotype that is associated with persistence in host cells and tissues. However, it is not clear whether phenotype switching is the result of a constitutive process that is selected for under certain conditions or is triggered by particular environmental stimuli. Examination of cultures of diverse S. aureus strains in the absence of selective pressure consistently revealed a small gentamicin-resistant SCV subpopulation that emerged during exponential-phase NCP growth and increased in number until NCP stationary phase. Treatment of replicating bacteria with the antibiotic gentamicin, which inhibited NCP but not SCV replication, resulted in an initial decrease in SCV numbers, demonstrating that SCVs arise as a consequence of NCP replication. However, SCV population expansion in the presence of gentamicin was reestablished by selection of phenotype-stable SCVs and subsequent SCV replication. In the absence of selective pressure, however, phenotype switching was bidirectional and occurred at a high frequency during NCP replication, resulting in SCV turnover. In summary, these data demonstrate that S. aureus phenotype switching occurs via a constitutive mechanism that generates a dynamic, antibiotic-resistant subpopulation of bacteria that can revert to the parental phenotype. The emergence of SCVs can therefore be considered a normal part of the S. aureus life cycle and provides an insurance policy against exposure to antibiotics that would otherwise eliminate the entire population.

  5. Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus*

    PubMed Central

    Soares da Costa, Tatiana P.; Tieu, William; Yap, Min Y.; Pendini, Nicole R.; Polyak, Steven W.; Sejer Pedersen, Daniel; Morona, Renato; Turnidge, John D.; Wallace, John C.; Wilce, Matthew C. J.; Booker, Grant W.; Abell, Andrew D.

    2012-01-01

    There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (Ki 90 nm) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class. PMID:22437830

  6. Efficacy of two Staphylococcus aureus phage cocktails in cheese production.

    PubMed

    El Haddad, Lynn; Roy, Jean-Pierre; Khalil, Georges E; St-Gelais, Daniel; Champagne, Claude P; Labrie, Steve; Moineau, Sylvain

    2016-01-18

    Staphylococcus aureus is one of the most prevalent pathogenic bacteria contaminating dairy products. In an effort to reduce food safety risks, virulent phages are investigated as antibacterial agents to control foodborne pathogens. The aim of this study was to compare sets of virulent phages, design phage cocktails, and use them in a cocktail to control pathogenic staphylococci in cheese. Six selected phages belonging to the three Caudovirales families (Myoviridae, Siphoviridae, Podoviridae) were strictly lytic, had a broad host range, and did not carry genes coding for virulence traits in their genomes. However, they were sensitive to pasteurization. At MOI levels of 15, 45, and 150, two anti-S. aureus phage cocktails, each containing three phages, one from each of the three phage families, eradicated a 10(6)CFU/g S. aureus population after 14 days of Cheddar cheese curd ripening at 4°C. The use of these phages did not trigger over-production of S. aureus enterotoxin C. The use of phage cocktails and their rotation may prevent the emergence of phage resistant bacterial strains. PMID:26476571

  7. Human Staphylococcus aureus lineages among Zoological Park residents in Greece.

    PubMed

    Drougka, E; Foka, A; Posantzis, D; Giormezis, N; Anastassiou, E D; Petinaki, E; Spiliopoulou, I

    2015-01-01

    Staphylococcus aureus is a part of the microbiota flora in many animal species. The clonal spread of S. aureus among animals and personnel in a Zoological Park was investigated. Samples were collected from colonized and infected sites among 32 mammals, 11 birds and eight humans. The genes mecA, mecC, lukF/lukS-PV (encoding Panton-Valentine leukocidin, PVL) and tst (toxic shock syndrome toxin-1) were investigated by PCR. Clones were defined by Multilocus Sequence Typing (MLST), spa type and Pulsed-Field Gel Electrophoresis (PFGE). Seven S. aureus isolates were recovered from four animals and one from an employee. All were mecA, mecC and tst-negative, whereas, one carried the PVL genes and was isolated from an infected Squirrel monkey. Clonal analysis revealed the occurrence of seven STs, eight PFGE and five spa types including ones of human origin. Even though a variety of genotypes were identified among S. aureus strains colonizing zoo park residents, our results indicate that colonization with human lineages has indeed occurred. PMID:26623381

  8. Simple method for correct enumeration of Staphylococcus aureus.

    PubMed

    Haaber, J; Cohn, M T; Petersen, A; Ingmer, H

    2016-06-01

    Optical density (OD) measurement is applied universally to estimate cell numbers of microorganisms growing in liquid cultures. It is a fast and reliable method but is based on the assumption that the bacteria grow as single cells of equal size and that the cells are dispersed evenly in the liquid culture. When grown in such liquid cultures, the human pathogen Staphylococcus aureus is characterized by its aggregation of single cells into clusters of variable size. Here, we show that aggregation during growth in the laboratory standard medium tryptic soy broth (TSB) is common among clinical and laboratory S. aureus isolates and that aggregation may introduce significant bias when applying standard enumeration methods on S. aureus growing in laboratory batch cultures. We provide a simple and efficient sonication procedure, which can be applied prior to optical density measurements to give an accurate estimate of cellular numbers in liquid cultures of S. aureus regardless of the aggregation level of the given strain. We further show that the sonication procedure is applicable for accurate determination of cell numbers using agar plate counting of aggregating strains. PMID:27080188

  9. Efficacy of two Staphylococcus aureus phage cocktails in cheese production.

    PubMed

    El Haddad, Lynn; Roy, Jean-Pierre; Khalil, Georges E; St-Gelais, Daniel; Champagne, Claude P; Labrie, Steve; Moineau, Sylvain

    2016-01-18

    Staphylococcus aureus is one of the most prevalent pathogenic bacteria contaminating dairy products. In an effort to reduce food safety risks, virulent phages are investigated as antibacterial agents to control foodborne pathogens. The aim of this study was to compare sets of virulent phages, design phage cocktails, and use them in a cocktail to control pathogenic staphylococci in cheese. Six selected phages belonging to the three Caudovirales families (Myoviridae, Siphoviridae, Podoviridae) were strictly lytic, had a broad host range, and did not carry genes coding for virulence traits in their genomes. However, they were sensitive to pasteurization. At MOI levels of 15, 45, and 150, two anti-S. aureus phage cocktails, each containing three phages, one from each of the three phage families, eradicated a 10(6)CFU/g S. aureus population after 14 days of Cheddar cheese curd ripening at 4°C. The use of these phages did not trigger over-production of S. aureus enterotoxin C. The use of phage cocktails and their rotation may prevent the emergence of phage resistant bacterial strains.

  10. Staphylococcus aureus exotoxins are present in vivo in tampons.

    PubMed

    Schlievert, Patrick M; Nemeth, Kimberly A; Davis, Catherine C; Peterson, Marnie L; Jones, Bruce E

    2010-05-01

    Staphylococcal toxic shock syndrome toxin 1 (TSST-1) is the cause of menstrual toxic shock syndrome (mTSS) associated with vaginal colonization by Staphylococcus aureus. In this pilot study, we measured TSST-1 and alpha-toxin, another exotoxin, on used tampons from four healthy women with S. aureus on tampons and from two women with tampon-associated mTSS. Tampons from all six women were sectioned into approximately 0.5-cm(3) pieces, some containing menstrual blood and some lacking menstrual blood. The pH of tampon sections with or without menstrual blood was neutral. S. aureus CFU were present in tampon sections at approximately equivalent counts (total counts were 1 x 10(8) to 2 x 10(9) CFU/tampon). TSST-1 (2 to 80 microg/tampon) and alpha-toxin (28 to 30 microg/tampon) were present only in the sections containing little or no menstrual blood (low hemoglobin density). In the tampons from TSS patients, the cytokine gamma interferon (IFN-gamma) was detected only in menstrual-blood-containing sections, whereas the chemokines macrophage inflammatory protein 3alpha and interleukin-8 were detected in all sections. Thus, IFN-gamma was being produced systemically, whereas the chemokines were being produced both locally by epithelial cells and systemically. The data show that S. aureus exotoxins can be identified in tampons ex vivo in sites with low hemoglobin density.

  11. Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections.

    PubMed

    Cohen, Taylor S; Hilliard, Jamese J; Jones-Nelson, Omari; Keller, Ashley E; O'Day, Terrence; Tkaczyk, Christine; DiGiandomenico, Antonio; Hamilton, Melissa; Pelletier, Mark; Wang, Qun; Diep, Binh An; Le, Vien T M; Cheng, Lily; Suzich, JoAnn; Stover, C Kendall; Sellman, Bret R

    2016-03-01

    Broad-spectrum antibiotic use may adversely affect a patient's beneficial microbiome and fuel cross-species spread of drug resistance. Although alternative pathogen-specific approaches are rationally justified, a major concern for this precision medicine strategy is that co-colonizing or co-infecting opportunistic bacteria may still cause serious disease. In a mixed-pathogen lung infection model, we find that the Staphylococcus aureus virulence factor α toxin potentiates Gram-negative bacterial proliferation, systemic spread, and lethality by preventing acidification of bacteria-containing macrophage phagosomes, thereby reducing effective killing of both S. aureus and Gram-negative bacteria. Prophylaxis or early treatment with a single α toxin neutralizing monoclonal antibody prevented proliferation of co-infecting Gram-negative pathogens and lethality while also promoting S. aureus clearance. These studies suggest that some pathogen-specific, antibody-based approaches may also work to reduce infection risk in patients colonized or co-infected with S. aureus and disparate drug-resistant Gram-negative bacterial opportunists. PMID:26962155

  12. Molecular mechanisms of methicillin resistance in Staphylococcus aureus.

    PubMed

    Domínguez, M A; Liñares, J; Martín, R

    1997-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most common nosocomial pathogens. The most significant mechanism of resistance to methicillin in this-species is the acquisition of a genetic determinant (mecA gene). However, resistance seems to have a more complex molecular basis, since additional chromosomal material is involved in such resistance. Besides, overproduction of penicillinase and/or alterations in the PBPs can contribute to the formation of resistance phenotypes. Genetic and environmental factors leading to MRSA are reviewed.

  13. Inhibition of methicillin resistant Staphylococcus aureus by a plasma needle

    NASA Astrophysics Data System (ADS)

    Miletić, Maja; Vuković, Dragana; Živanović, Irena; Dakić, Ivana; Soldatović, Ivan; Maletić, Dejan; Lazović, Saša; Malović, Gordana; Petrović, Zoran; Puač, Nevena

    2014-03-01

    In numerous recent papers plasma chemistry of non equilibrium plasma sources operating at atmospheric pressure has been linked to plasma medical effects including sterilization. In this paper we present a study of the effectiveness of an atmospheric pressure plasma source, known as plasma needle, in inhibition of the growth of biofilm produced by methicillin resistant Staphylococcus aureus (MRSA). Even at the lowest powers the biofilms formed by inoculi of MRSA of 104 and 105 CFU have been strongly affected by plasma and growth in biofilms was inhibited. The eradication of the already formed biofilm was not achieved and it is required to go to more effective sources.

  14. Antibacterial activity of alimentary plants against Staphylococcus aureus growth.

    PubMed

    Pérez, C; Anesini, C

    1994-01-01

    Alimentary plants were screened for antibacterial activity against a penicillin G resistant strain of Staphylococcus aureus. Twenty-five samples of plant material corresponding to 21 species from 13 families were used. Both aqueous and ethanol extracts were obtained from them. Antibacterial activity was determined by the agar-well diffusion method, using cephazolin as a standard antibiotic. Seventeen ethanol extracts were found active. Eugenia caryophyllata (clavo de olor*) flowers, Myristica fragans (nuez moscada*) seeds, Theobroma cacao (cacao*) seed bark, Triticum sp (trigo*) fruit, Zea mays (maíz*) fruit and Piper nigrum (pimienta*) ripe fruit produced some of the more active extracts (* = Argentine vulgar names).

  15. Methicillin-resistant Staphylococcus aureus antibiotic resistance and virulence.

    PubMed

    Xia, Jufeng; Gao, Jianjun; Kokudo, Norihiro; Hasegawa, Kiyoshi; Tang, Wei

    2013-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most critical causes of healthcare-related or community-related infections. Resistance to most β-lactam antibiotics makes MRSA a big threat to clinical treatment. Utilization of low efficiency antibiotics such as vancomycin and teicoplanin makes new choices for therapies. Recently, much researchhas shed light on relevance between genetic mutations of MRSA and clinical characteristics such as antibiotic resistance, and virulence. These findings could contribute to development of novel antibiotics and vaccines.

  16. Haemodialysis nurses knowledge about methicillin-resistant Staphylococcus aureus.

    PubMed

    Lindberg, Maria; Lindberg, Magnus

    2012-06-01

    Healthcare workers may lack knowledge about antibiotic-resistant bacteria and thereby increase the spread of such organisms. The aim of the present study was to describe the relationship between self-rated knowledge and actual knowledge about methicillin-resistant Staphylococcus aureus (MRSA) among 326 Swedish haemodialysis nurses. Data were collected through a postal questionnaire. The findings suggest that ongoing education about MRSA should be provided to haemodialysis nurses, but also that standardised evaluation of adequate knowledge, skills and competencies' regarding safe practices is warranted. Future research should focus on effective mechanisms to ensure that haemodialysis nurses provide safe MRSA care. PMID:22085397

  17. Targeting Staphylococcus aureus Quorum Sensing with Nonpeptidic Small Molecule Inhibitors

    PubMed Central

    2014-01-01

    A series of 3-oxo-C12-HSL, tetramic acid, and tetronic acid analogues were synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were noncompetitive inhibitors of the autoinducing peptide (AIP) activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as negative allosteric modulators and are exemplified by 3-tetradecanoyltetronic acid 17, which reduced nasal cell colonization and arthritis in a murine infection model. PMID:24592914

  18. spa typing for epidemiological surveillance of Staphylococcus aureus.

    PubMed

    Hallin, Marie; Friedrich, Alexander W; Struelens, Marc J

    2009-01-01

    The spa typing method is based on sequencing of the polymorphic X region of the protein A gene (spa), present in all strains of Staphylococcus aureus. The X region is constituted of a variable number of 24-bp repeats flanked by well-conserved regions. This single-locus sequence-based typing method combines a number of technical advantages, such as rapidity, reproducibility, and portability. Moreover, due to its repeat structure, the spa locus simultaneously indexes micro- and macrovariations, enabling the use of spa typing in both local and global epidemiological studies. These studies are facilitated by the establishment of standardized spa type nomenclature and Internet shared databases.

  19. Controlling meticillin-susceptible Staphylococcus aureus: not simply meticillin-resistant S. aureus revisited.

    PubMed

    Lepelletier, D; Lucet, J-C

    2013-05-01

    Despite a large body of work evaluating the ability of meticillin-resistant Staphylococcus aureus (MRSA) screening and decolonization to decrease the risk of MRSA infection and transmission, many uncertainties remain regarding the efficacy of this strategy in hospitals located in endemic areas. With meticillin-susceptible S. aureus (MSSA), the objective is simply to eradicate the organism in order to diminish the risk of infection. MSSA decolonization was recently found to be effective in high-risk clean surgery, where the intervention was cost-effective and cost-saving. The many unanswered issues include the role for rapid screening tests, the optimal decolonization regimen, the indication for decolonization in other situations at risk, the frequency of replacement of S. aureus infections with infections due to other micro-organisms, and the risk of emergence of mupirocin resistance. PMID:23523159

  20. In vitro antimicrobial activity of orbifloxacin against Staphylococcus intermedius isolates from canine skin and ear infections.

    PubMed

    Ganière, Jean-Pierre; Médaille, Christine; Etoré, Florence

    2004-08-01

    The objective of the study was to evaluate the in vitro activity of orbifloxacin against Staphylococcus intermedius strains isolated in France from canine skin and ear infections. The minimum inhibitory concentrations (MICs) of orbifloxacin against 240 field S. intermedius isolates (69 skin and 171 ear isolates) ranged from 0.016 to 8 mg l(-1), with MIC50 and MIC90 equal to 0.5 and 1 mg l(-1), respectively. Only one strain, a pyoderma isolate was resistant (MIC=8 mg l(-1)). Orbifloxacin was tested at different concentrations for killing rate against five isolates obtained from pyoderma cases and against a reference strain (Staphylococcus aureus ATCC 29213). Orbifloxacin expressed a concentration-dependent bactericidal activity against the S. aureus reference strain, but a time-dependent bactericidal activity against S. intermedius. Orbifloxacin induced bactericidal effect against the S. intermedius strains tested with concentrations equal to or two times MIC.

  1. Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections.

    PubMed

    Sikorska, Hanna; Smoragiewicz, Wanda

    2013-12-01

    Meticillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant micro-organism and is the principal nosocomial pathogen worldwide. Following initial in vitro experiments demonstrating that Lactobacillus acidophilus CL1285(®) and Lactobacillus casei LBC80R(®) commercial strains exhibit antibacterial activity against clinical MRSA isolates, we conducted a literature search to find any evidence of probiotic efficacy in decolonisation or treatment of S. aureus infection. As summarised below, many strains of lactobacilli and bifidobacteria isolated from a variety of sources inhibited the growth of S. aureus and clinical isolates of MRSA in vitro. The most active strains were Lactobacillus reuteri, Lactobacillus rhamnosus GG, Propionibacterium freudenreichii, Propionibacterium acnes, Lactobacillus paracasei, L. acidophilus, L. casei, Lactobacillus plantarum, Lactobacillus bulgaricus, Lactobacillus fermentum and Lactococcus lactis. Their effects were mediated both by direct cell competitive exclusion as well as production of acids or bacteriocin-like inhibitors. L. acidophilus also inhibited S. aureus biofilm formation and lipase production. In vitro antimicrobial activity did not necessarily assure efficacy in vivo in animal infectious models, e.g. S. aureus 8325-4 was most sensitive in vitro to L. acidophilus, whilst in vivo Bifidobacterium bifidum best inhibited experimental intravaginal staphylococcosis in mice. On the other hand, L. plantarum, which showed the highest inhibition activity against S. aureus in vitro, was also very effective topically in preventing skin wound infection with S. aureus in mice. Very few clinical data were found on the interactions between probiotics and MRSA, but the few identified clinical cases pointed to the feasibility of elimination or reduction of MRSA colonisation with probiotic use.

  2. Community-Acquired Methicillin-Resistant "Staphylococcus aureus": Considerations for School Nurses

    ERIC Educational Resources Information Center

    Alex, Aniltta; Letizia, MariJo

    2007-01-01

    Methicillin-resistant "Staphylococcus aureus" (MRSA) is a disease-causing organism that has been present in hospital settings since the 1960s. However, a genetically distinct strain of MRSA, called community-acquired methicillin-resistant "Staphylococcus aureus" (CA-MRSA), has emerged in recent years in community settings among healthy…

  3. Nasal carriage of Staphylococcus aureus in Botucatu, Brazil: a population-based survey.

    PubMed

    Pires, Fabiana Venegas; da Cunha, Maria de Lourdes Ribeiro de Souza; Abraão, Lígia Maria; Martins, Patrícia Y F; Camargo, Carlos Henrique; Fortaleza, Carlos Magno Castelo Branco

    2014-01-01

    Recent increases in the incidence and severity of staphylococcal infections renewed interest in studies that assess the burden of asymptomatic carriage of Staphylococcus aureus in the community setting. We conducted a population-based survey in the city of Botucatu, Brazil (122,000 inhabitants), in order to identify the prevalence of nasal carriage of Staphylococcus aureus (including methicillin-resistant strains). Nasal swabs were obtained from 686 persons over one year of age. Resistance to methicillin was assessed through phenotypic methods, identification of the mecA gene and typing of the Staphylococcal Chromosome Cassette mec (SCCmec). Methicillin-resistant S. aureus (MRSA) isolates were characterized using Pulsed-Field Gel Electrophoresis (PFGE), Multilocus Sequence Typing (MLST) and spa typing. Polymerase chain reaction was applied to identify genes coding for Panton-Valentine Leukocidin (PVL) in isolates. The prevalence of overall S. aureus carriage was 32.7% (95%CI, 29.2%-36.2%). Carriers were significantly younger (mean age, 28.1 versus 36.3 for non-carriers; OR for age, 0.98; 95%CI, 0.97-0.99) and likely to report recent skin infection (OR, 1.85; 95%CI, 1.03-3.34). Carriage of methicillin-resistant S. aureus (MRSA) was found in 0.9% of study subjects (95%CI, 0.4%-1.8%). All MRSA isolates harbored SCCmec type IV, and belonged to spa types t002 or t021, but none among them harbored genes coding for PLV. In MLST, most isolates belonged to clones ST5 or ST1776. However, we found one subject who carried a novel clone, ST2594. Two out of six MRSA carriers had household contacts colonized with isolates similar to theirs. Our study pointed to dissemination of community-associated MRSA among the Brazilian population. PMID:24663818

  4. Population Genomics of Reduced Vancomycin Susceptibility in Staphylococcus aureus

    PubMed Central

    Rishishwar, Lavanya; Kraft, Colleen S.

    2016-01-01

    ABSTRACT The increased prevalence of vancomycin-intermediate Staphylococcus aureus (VISA) is an emerging health care threat. Genome-based comparative methods hold great promise to uncover the genetic basis of the VISA phenotype, which remains obscure. S. aureus isolates were collected from a single individual that presented with recurrent staphylococcal bacteremia at three time points, and the isolates showed successively reduced levels of vancomycin susceptibility. A population genomic approach was taken to compare patient S. aureus isolates with decreasing vancomycin susceptibility across the three time points. To do this, patient isolates were sequenced to high coverage (~500×), and sequence reads were used to model site-specific allelic variation within and between isolate populations. Population genetic methods were then applied to evaluate the overall levels of variation across the three time points and to identify individual variants that show anomalous levels of allelic change between populations. A successive reduction in the overall levels of population genomic variation was observed across the three time points, consistent with a population bottleneck resulting from antibiotic treatment. Despite this overall reduction in variation, a number of individual mutations were swept to high frequency in the VISA population. These mutations were implicated as potentially involved in the VISA phenotype and interrogated with respect to their functional roles. This approach allowed us to identify a number of mutations previously implicated in VISA along with allelic changes within a novel class of genes, encoding LPXTG motif-containing cell-wall-anchoring proteins, which shed light on a novel mechanistic aspect of vancomycin resistance. IMPORTANCE The emergence and spread of antibiotic resistance among bacterial pathogens are two of the gravest threats to public health facing the world today. We report the development and application of a novel population genomic

  5. Population Genomics of Reduced Vancomycin Susceptibility in Staphylococcus aureus.

    PubMed

    Rishishwar, Lavanya; Kraft, Colleen S; Jordan, I King

    2016-01-01

    The increased prevalence of vancomycin-intermediate Staphylococcus aureus (VISA) is an emerging health care threat. Genome-based comparative methods hold great promise to uncover the genetic basis of the VISA phenotype, which remains obscure. S. aureus isolates were collected from a single individual that presented with recurrent staphylococcal bacteremia at three time points, and the isolates showed successively reduced levels of vancomycin susceptibility. A population genomic approach was taken to compare patient S. aureus isolates with decreasing vancomycin susceptibility across the three time points. To do this, patient isolates were sequenced to high coverage (~500×), and sequence reads were used to model site-specific allelic variation within and between isolate populations. Population genetic methods were then applied to evaluate the overall levels of variation across the three time points and to identify individual variants that show anomalous levels of allelic change between populations. A successive reduction in the overall levels of population genomic variation was observed across the three time points, consistent with a population bottleneck resulting from antibiotic treatment. Despite this overall reduction in variation, a number of individual mutations were swept to high frequency in the VISA population. These mutations were implicated as potentially involved in the VISA phenotype and interrogated with respect to their functional roles. This approach allowed us to identify a number of mutations previously implicated in VISA along with allelic changes within a novel class of genes, encoding LPXTG motif-containing cell-wall-anchoring proteins, which shed light on a novel mechanistic aspect of vancomycin resistance. IMPORTANCE The emergence and spread of antibiotic resistance among bacterial pathogens are two of the gravest threats to public health facing the world today. We report the development and application of a novel population genomic

  6. Response of Staphylococcus Aureus to a Spaceflight Analogue

    NASA Technical Reports Server (NTRS)

    Castro, S. L.; Ott, C. M.

    2010-01-01

    The decreased gravity of the spaceflight environment creates quiescent, low fluid shear conditions. This environment can impart considerable effects on the physiology of microorganisms as well as their interactions with potential hosts. Using the rotating wall vessel (RWV), as a spaceflight analogue, the consequence of low fluid shear culture on microbial pathogenesis has provided a better understanding of the risks to the astronaut crew from infectious microorganisms. While the outcome of low fluid shear culture has been investigated for several bacterial pathogens, little has been done to understand how this environmental factor affects Staphylococcus aureus. S. aureus is an opportunistic human pathogen which presents a high level of infection risk to the crew, as it has been isolated from both the space shuttle and International Space Station. Given that approximately forty percent of the population are carriers of the bacteria, eradication of this organism from in flight environments is impractical. These reasons have lead to us to assess the response of S. aureus to a reduced fluid shear environment. Culture in the RWV demonstrated that S. aureus grown under the low-shear condition had lower cell concentrations after 10 hours when compared to the control culture. Furthermore, the low-shear cultured bacteria displayed a reduction in carotenoid production, pigments responsible for their yellow/gold coloration. When exposed to various environmental stressors, post low-shear culture, a decrease in the ability to survive oxidative assault was observed compared to control cultures. The low fluid shear environment also resulted in a decrease in hemolysin secretion, a staphylococcal toxin responsible for red blood cell lysis. When challenged by the immune components present in human whole blood, low-shear cultured S. aureus demonstrated significantly reduced survival rates as compared to the control culture. Assays to determine the duration of these alterations

  7. Comparison of the BBL CHROMagar Staph aureus Agar Medium to Conventional Media for Detection of Staphylococcus aureus in Respiratory Samples

    PubMed Central

    Flayhart, Diane; Lema, Clara; Borek, Anita; Carroll, Karen C.

    2004-01-01

    Screening for Staphylococcus aureus has become routine in certain patient populations. This study is the first clinical evaluation of the BBL CHROMagar Staph aureus agar (CSA) medium (BD Diagnostics, Sparks, Md.) for detection of S. aureus in nasal surveillance cultures and in respiratory samples from cystic fibrosis (CF) patients. S. aureus colonies appear mauve on CSA. Other organisms are inhibited or produce a distinctly different colony color. S. aureus was identified from all media by slide coagulase, exogenous DNase, and mannitol fermentation assays. Susceptibility testing was performed using the agar dilution method. A total of 679 samples were evaluated. All samples were inoculated onto CSA. Nasal surveillance cultures were inoculated onto sheep blood agar (SBA) (BD Diagnostics), and samples from CF patients were inoculated onto mannitol salt agar (MSA) (BD Diagnostics). Of the 679 samples cultured, 200 organisms produced a mauve color on CSA (suspicious for S. aureus) and 180 were positive for S. aureus on SBA or MSA. Of 200 CSA-positive samples 191 were identified as S. aureus. Nine mauve colonies were slide coagulase negative and were subsequently identified as Staphylococcus lugdunensis (one), Staphylococcus epidermidis (three), Staphylococcus haemolyticus (one), and Corynebacterium species (four). CSA improved the ability to detect S. aureus by recovering 12 S. aureus isolates missed by conventional media. Of the 192 S. aureus isolates recovered, 122 were methicillin susceptible and 70 were methicillin resistant. Overall, the sensitivity and specificity of CSA in this study were 99.5 and 98%, respectively. There was no difference in the performance of the slide coagulase test or in susceptibility testing performed on S. aureus recovered from CSA compared to SBA or MSA. Our data support the use of CSA in place of standard culture media for detection of S. aureus in heavily contaminated respiratory samples. PMID:15297498

  8. Comparison of the BBL CHROMagar Staph aureus agar medium to conventional media for detection of Staphylococcus aureus in respiratory samples.

    PubMed

    Flayhart, Diane; Lema, Clara; Borek, Anita; Carroll, Karen C

    2004-08-01

    Screening for Staphylococcus aureus has become routine in certain patient populations. This study is the first clinical evaluation of the BBL CHROMagar Staph aureus agar (CSA) medium (BD Diagnostics, Sparks, Md.) for detection of S. aureus in nasal surveillance cultures and in respiratory samples from cystic fibrosis (CF) patients. S. aureus colonies appear mauve on CSA. Other organisms are inhibited or produce a distinctly different colony color. S. aureus was identified from all media by slide coagulase, exogenous DNase, and mannitol fermentation assays. Susceptibility testing was performed using the agar dilution method. A total of 679 samples were evaluated. All samples were inoculated onto CSA. Nasal surveillance cultures were inoculated onto sheep blood agar (SBA) (BD Diagnostics), and samples from CF patients were inoculated onto mannitol salt agar (MSA) (BD Diagnostics). Of the 679 samples cultured, 200 organisms produced a mauve color on CSA (suspicious for S. aureus) and 180 were positive for S. aureus on SBA or MSA. Of 200 CSA-positive samples 191 were identified as S. aureus. Nine mauve colonies were slide coagulase negative and were subsequently identified as Staphylococcus lugdunensis (one), Staphylococcus epidermidis (three), Staphylococcus haemolyticus (one), and Corynebacterium species (four). CSA improved the ability to detect S. aureus by recovering 12 S. aureus isolates missed by conventional media. Of the 192 S. aureus isolates recovered, 122 were methicillin susceptible and 70 were methicillin resistant. Overall, the sensitivity and specificity of CSA in this study were 99.5 and 98%, respectively. There was no difference in the performance of the slide coagulase test or in susceptibility testing performed on S. aureus recovered from CSA compared to SBA or MSA. Our data support the use of CSA in place of standard culture media for detection of S. aureus in heavily contaminated respiratory samples.

  9. Phenotypic Characteristics of Vancomycin-Non-Susceptible Staphylococcus aureus

    PubMed Central

    Sirichoat, Auttawit; Wongthong, Sujintana; Kanyota, Ratdawan; Tavichakorntrakool, Ratree; Chanawong, Aroonwadee; Welbat, Jariya Umka; Lulitanond, Aroonlug

    2016-01-01

    Background: Staphylococcus aureus, with reduced vancomycin susceptibility, is probably under the regulation of several genes and various express phenotypes. Objectives: This study aimed to investigate the phenotypic differences between vancomycin-susceptible S. aureus (VSSA), vancomycin-intermediate S. aureus (VISA), and heterogeneous VISA (hVISA) isolates. Materials and Methods: A total of 130 methicillin-resistant S. aureus (MRSA) isolates were studied, including 49 VSSA, 28 hVISA, and 5 VISA isolates from blood cultures and 48 isolates (two VSSA, six hVISA, and 40 VISA) derived in vitro (laboratory-induced/sub-passaged). Their phenotypes were examined using a coagulase tube test, colony spreading on soft agar, and urease activity. The SCCmec and agr typing were performed using multiplex PCR. Results: Most of the MRSA isolates were SCCmec III-agr I (84.5%), followed by SCCmec II-agr II (11.8%). The average plasma coagulation time of vancomycin-non-susceptible isolates was longer than that of the susceptible isolates (12 vs. 2.6 hours). Four hVISA (P = 0.023) and nine VISA (P < 0.001) isolates yielded a negative coagulase test after 24-hour incubation. The percentage of VSSA isolates showing non-spreading colonies (accessory gene regulator (agr) dysfunction) was significantly lower than in the VISA group (P = 0.013), but no significant difference was found between VSSA and hVISA. The VISA group showed higher urease activity than that of the VSSA and hVISA groups (P = 0.002). Conclusions: There were diverse phenotypic changes among vancomycin-non-susceptible S. aureus isolates. This may be due to the variety of related regulatory systems. The diversity of phenotypic expression may result in its misidentification in routine laboratory checks. PMID:27099678

  10. agr-Mediated Dispersal of Staphylococcus aureus Biofilms

    PubMed Central

    Boles, Blaise R.; Horswill, Alexander R.

    2008-01-01

    The agr quorum-sensing system of Staphylococcus aureus modulates the expression of virulence factors in response to autoinducing peptides (AIPs). Recent studies have suggested a role for the agr system in S. aureus biofilm development, as agr mutants exhibit a high propensity to form biofilms, and cells dispersing from a biofilm have been observed displaying an active agr system. Here, we report that repression of agr is necessary to form a biofilm and that reactivation of agr in established biofilms through AIP addition or glucose depletion triggers detachment. Inhibitory AIP molecules did not induce detachment and an agr mutant was non-responsive, indicating a dependence on a functional, active agr system for dispersal. Biofilm detachment occurred in multiple S. aureus strains possessing divergent agr systems, suggesting it is a general S. aureus phenomenon. Importantly, detachment also restored sensitivity of the dispersed cells to the antibiotic rifampicin. Proteinase K inhibited biofilm formation and dispersed established biofilms, suggesting agr-mediated detachment occurred in an ica-independent manner. Consistent with a protease-mediated mechanism, increased levels of serine proteases were detected in detaching biofilm effluents, and the serine protease inhibitor PMSF reduced the degree of agr-mediated detachment. Through genetic analysis, a double mutant in the agr-regulated Aur metalloprotease and the SplABCDEF serine proteases displayed minimal extracellular protease activity, improved biofilm formation, and a strongly attenuated detachment phenotype. These findings indicate that induction of the agr system in established S. aureus biofilms detaches cells and demonstrate that the dispersal mechanism requires extracellular protease activity. PMID:18437240

  11. Type I Signal Peptidase and Protein Secretion in Staphylococcus aureus

    PubMed Central

    Schallenberger, Mark A.; Niessen, Sherry; Shao, Changxia; Fowler, Bruce J.

    2012-01-01

    Staphylococcus aureus is an important human pathogen whose virulence relies on the secretion of many different proteins. In general, the secretion of most proteins in S. aureus, as well as other bacteria, is dependent on the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein to the general secretory pathway. The arylomycins are a class of natural product antibiotics that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. While wild-type S. aureus (NCTC 8325) is naturally resistant to the arylomycins, sensitivity is conferred via a point mutation in its SPase. Here, we use a synthetic arylomycin along with a sensitized strain of S. aureus and multidimensional protein identification technology (MudPIT) mass spectrometry to identify 46 proteins whose extracellular accumulation requires SPase activity. Forty-four possess identifiable Sec-type signal peptides and thus are likely canonically secreted proteins, while four also appear to possess cell wall retention signals. We also identified the soluble C-terminal domains of two transmembrane proteins, lipoteichoic acid synthase, LtaS, and O-acyteltransferase, OatA, both of which appear to have noncanonical, internal SPase cleavage sites. Lastly, we identified three proteins, HtrA, PrsA, and SAOUHSC_01761, whose secretion is induced by arylomycin treatment. In addition to elucidating fundamental aspects of the physiology and pathology of S. aureus, the data suggest that an arylomycin-based therapeutic would reduce virulence while simultaneously eradicating an infection. PMID:22447899

  12. Heme Recognition By a Staphylococcus Aureus IsdE

    SciTech Connect

    Grigg, J.C.; Vermeiren, C.L.; Heinrichs, D.E.; Murphy, M.E.P.

    2009-06-03

    Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single {alpha}-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met{sup 78} and His{sup 229}. Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His{sup 299} is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.

  13. Efficacy of extended cefquinome treatment of clinical Staphylococcus aureus mastitis.

    PubMed

    Swinkels, J M; Cox, P; Schukken, Y H; Lam, T J G M

    2013-08-01

    Clinical Staphylococcus aureus mastitis is difficult to cure. Extended antimicrobial treatment is often advocated as a practical approach to improve cure rates; however, scientific evidence of this hypothesis is lacking. A multi-centered, nonblinded, randomized, positive-controlled clinical trial was conducted in 5 European countries-France, Hungary, Italy, the Netherlands, and the United Kingdom-to study the efficacy of an extended intramammary cefquinome treatment (5 d) compared with a standard intramammary cefquinome treatment (1.5 d) of Staph. aureus clinical mastitis. Least squares means estimates of bacteriological cure during lactation were 34% [standard error (SE)=9.9%] for the standard treatment group and 27% (SE=8.4%) for the extended treatment group. In the final model, extended therapy was not significantly better. The only factor predicting bacteriological cure was pretreatment cow somatic cell count (SCC). Cows with >250,000 cells/mL in milk before treatment were less likely to cure. Least squares means of clinical cure during lactation was 60% (SE=19%) for the standard treatment group and 82% (SE=12%) for the extended treatment group. In the final model, clinical cure after extended treatment was significantly better. Pretreatment cow udder firmness predicted clinical cure. Firm udders were less likely to cure clinically. Irrespective of treatment regimen, new infection rates with pathogens other than Staph. aureus were higher (42%) after bacteriological cure than after nonbacteriological cure (22%) and cured cows had a significantly lower SCC. In conclusion, independent of the treatment protocol, cows with an SCC <250,000 cells/mL before treatment showed a higher probability of bacteriological cure. It appears that successful treatment of clinical Staph. aureus mastitis with cefquinome is associated with an increased number of new infections with coagulase-negative staphylococci. Extended treatment improved clinical, but not bacteriological, cure

  14. Characterization of a Mouse-Adapted Staphylococcus aureus Strain

    PubMed Central

    Holtfreter, Silva; Radcliff, Fiona J.; Grumann, Dorothee; Read, Hannah; Johnson, Sarah; Monecke, Stefan; Ritchie, Stephen; Clow, Fiona; Goerke, Christiane; Bröker, Barbara M.; Fraser, John D.; Wiles, Siouxsie

    2013-01-01

    More effective antibiotics and a protective vaccine are desperately needed to combat the ‘superbug’ Staphylococcus aureus. While in vivo pathogenicity studies routinely involve infection of mice with human S. aureus isolates, recent genetic studies have demonstrated that S. aureus lineages are largely host-specific. The use of such animal-adapted S. aureus strains may therefore be a promising approach for developing more clinically relevant animal infection models. We have isolated a mouse-adapted S. aureus strain (JSNZ) which caused a severe outbreak of preputial gland abscesses among male C57BL/6J mice. We aimed to extensively characterize this strain on a genomic level and determine its virulence potential in murine colonization and infection models. JSNZ belongs to the MLST type ST88, rare among human isolates, and lacks an hlb-converting phage encoding human-specific immune evasion factors. Naive mice were found to be more susceptible to nasal and gastrointestinal colonization with JSNZ than with the human-derived Newman strain. Furthermore, naïve mice required antibiotic pre-treatment to become colonized with Newman. In contrast, JSNZ was able to colonize mice in the absence of antibiotic treatment suggesting that this strain can compete with the natural flora for space and nutrients. In a renal abscess model, JSNZ caused more severe disease than Newman with greater weight loss and bacterial burden. In contrast to most other clinical isolates, JSNZ can also be readily genetically modified by phage transduction and electroporation. In conclusion, the mouse-adapted strain JSNZ may represent a valuable tool for studying aspects of mucosal colonization and for screening novel vaccines and therapies directed at preventing colonization. PMID:24023720

  15. Staphylococcus aureus Entrance into the Dairy Chain: Tracking S. aureus from Dairy Cow to Cheese

    PubMed Central

    Kümmel, Judith; Stessl, Beatrix; Gonano, Monika; Walcher, Georg; Bereuter, Othmar; Fricker, Martina; Grunert, Tom; Wagner, Martin; Ehling-Schulz, Monika

    2016-01-01

    Staphylococcus aureus is one of the most important contagious mastitis pathogens in dairy cattle. Due to its zoonotic potential, control of S. aureus is not only of great economic importance in the dairy industry but also a significant public health concern. The aim of this study was to decipher the potential of bovine udder associated S. aureus as reservoir for S. aureus contamination in dairy production and processing. From 18 farms, delivering their milk to an alpine dairy plant for the production of smeared semi-hard and hard cheese. one thousand hundred seventy six one thousand hundred seventy six quarter milk (QM) samples of all cows in lactation (n = 294) and representative samples form bulk tank milk (BTM) of all farms were surveyed for coagulase positive (CPS) and coagulase negative Staphylococci (CNS). Furthermore, samples from different steps of the cheese manufacturing process were tested for CPS and CNS. As revealed by chemometric-assisted FTIR spectroscopy and molecular subtyping (spa typing and multi locus sequence typing), dairy cattle represent indeed an important, yet underreported, entrance point of S. aureus into the dairy chain. Our data clearly show that certain S. aureus subtypes are present in primary production as well as in the cheese processing at the dairy plant. However, although a considerable diversity of S. aureus subtypes was observed in QM and BTM at the farms, only certain S. aureus subtypes were able to enter and persist in the cheese manufacturing at the dairy plant and could be isolated from cheese until day 14 of ripening. Farm strains belonging to the FTIR cluster B1 and B3, which show genetic characteristics (t2953, ST8, enterotoxin profile: sea/sed/sej) of the recently described S. aureus genotype B, most successfully contaminated the cheese production at the dairy plant. Thus, our study fosters the hypothesis that genotype B S. aureus represent a specific challenge in control of S. aureus in the dairy chain that requires

  16. Cigarette Smoke Increases Staphylococcus aureus Biofilm Formation via Oxidative Stress

    PubMed Central

    Kulkarni, Ritwij; Antala, Swati; Wang, Alice; Amaral, Fábio E.; Rampersaud, Ryan; LaRussa, Samuel J.; Planet, Paul J.

    2012-01-01

    The strong epidemiological association between cigarette smoke (CS) exposure and respiratory tract infections is conventionally attributed to immunosuppressive and irritant effects of CS on human cells. Since pathogenic bacteria such as Staphylococcus aureus are members of the normal microbiota and reside in close proximity to human nasopharyngeal cells, we hypothesized that bioactive components of CS might affect these organisms and potentiate their virulence. Using Staphylococcus aureus as a model organism, we observed that the presence of CS increased both biofilm formation and host cell adherence. Analysis of putative molecular pathways revealed that CS exposure decreased expression of the quorum-sensing agr system, which is involved in biofilm dispersal, and increased transcription of biofilm inducers such as sarA and rbf. CS contains bioactive compounds, including free radicals and reactive oxygen species, and we observed transcriptional induction of bacterial oxidoreductases, including superoxide dismutase, following exposure. Moreover, pretreatment of CS with an antioxidant abrogated CS-mediated enhancement of biofilms. Exposure of bacteria to hydrogen peroxide alone increased biofilm formation. These observations are consistent with the hypothesis that CS induces staphylococcal biofilm formation in an oxidant-dependent manner. CS treatment induced transcription of fnbA (encoding fibronectin binding protein A), leading to increased binding of CS-treated staphylococci to immobilized fibronectin and increased adherence to human cells. These observations indicate that the bioactive effects of CS may extend to the resident microbiota of the nasopharynx, with implications for the pathogenesis of respiratory infection in CS-exposed humans. PMID:22890993

  17. Staphylococcus aureus Clumping Factor A Remains a Viable Vaccine Target for Prevention of S. aureus Infection

    PubMed Central

    Scully, Ingrid L.; Buurman, Ed T.; Eiden, Joseph; Jansen, Kathrin U.

    2016-01-01

    ABSTRACT In a recent article, X. Li et al. [mBio 7(1):e02232-15, 2016, http://dx.doi.org/10.1128/mBio.02232-15] investigate the utility of a vaccine composed of the Staphylococcus aureus protein clumping factor A (ClfA) in protecting mice from S. aureus infection. ClfA, one of the first proteins to be identified as a potential vaccine antigen for S. aureus prophylaxis, is currently a component of several investigational vaccines. The authors conclude that ClfA may not be effective for S. aureus prophylaxis. In contrast, previously published papers reporting positive data suggested that ClfA was potentially an important vaccine target to prevent invasive S. aureus disease. This commentary addresses the observed differences between the findings of Li et al. and those from other publications, highlighting the importance for preclinical vaccine antigen assessments to reflect the biological role of said antigen in virulence and, consequently, the importance of choosing appropriate preclinical disease models to test such antigens. PMID:26956591

  18. Clinical isolates of Pantone-Valentine leucocidin- and gamma-haemolysin-producing Staphylococcus aureus: prevalence and association with clinical infections.

    PubMed

    Mesrati, I; Saïdani, M; Ennigrou, S; Zouari, B; Ben Redjeb, S

    2010-08-01

    Pantone-Valentine leucocidin (PVL) and gAMMA-haemolysin (Hlg) are members of the synergohymenotropic toxin family produced by Staphylococcus aureus and encoded by pvl and hlg genes, respectively. Many reports describe an association between PVL toxin and necrotic lesions involving skin and mucosa. The aim of this study was to determine the prevalence of S. aureus strains carrying pvl and hlg genes and to investigate a possible relationship between pvl- and hlg-positive S. aureus with specific clinical presentations. Between January 2005 and July 2007, a total of 143 S. aureus strains including 58 meticillin-resistant S. aureus (MRSA) and 85 meticillin-susceptible S. aureus were screened for pvl and hlg genes by multiplex polymerase chain reaction. These strains were isolated from 141 patients for whom demographic and clinical data were recorded. Thirty-one (21.7%) and 77 (53.7%) isolates were positive for pvl and hlg genes, respectively. Twenty-one (67.7%) pvl-positive strains were MRSA (P = 0.001). Among pvl-positive strains, 16 (51.6%) were community-acquired. There was a strong association between pvl genes and skin and soft tissue infections, especially abscesses (60% of strains; P = 0.008) and furunculosis (55.5% of strains; P = 0.036). Our findings confirmed the association between pvl-positive strains, cutaneous infections and meticillin resistance in S. aureus. PMID:20635511

  19. Chloride anion transporters inhibit growth of methicillin-resistant Staphylococcus aureus (MRSA) in vitro.

    PubMed

    Share, Andrew I; Patel, Khushali; Nativi, Cristina; Cho, Eun J; Francesconi, Oscar; Busschaert, Nathalie; Gale, Philip A; Roelens, Stefano; Sessler, Jonathan L

    2016-06-18

    A series of aminopyrrolic receptors were tested as anion transporters using POPC liposome model membranes. Many were found to be effective Cl(-) transporters and to inhibit clinical strains of Staphylococcus aureus growth in vitro. The best transporters proved effective against the methicillin-resistant Staphylococcus aureus (MRSA) strains, Mu50 and HP1173. Tris-thiourea tren-based chloride transporters were also shown to inhibit the growth of S. aureus in vitro.

  20. Novel Staphylococcus aureus Secreted Protein Alters Keratinocyte Proliferation and Elicits a Proinflammatory Response In Vitro and In Vivo.

    PubMed

    Merriman, Joseph A; Klingelhutz, Aloysius J; Diekema, Daniel J; Leung, Donald Y M; Schlievert, Patrick M

    2015-08-11

    Staphylococcus aureus is a leading cause of surgical site infections that results in increased hospital stays due to the development of chronic wounds. Little is known about factors involved in S. aureus' ability to prevent wounds from healing. We discovered a novel secreted protein produced by a surgical site isolate of S. aureus that prevents keratinocyte proliferation. The protein has a molecular weight of 15.7 kDa and an isoelectric point of 8.9. The cloned and purified protein has cytotoxic and proinflammatory properties, as shown in vitro and in vivo. Potent biological effects on keratinocytes and rabbit skin suggest that this protein may play an important role in preventing re-epithelialization. Its lack of homology to known exotoxins suggests that this protein is novel, and this observation is likely to open a new field of research in S. aureus exotoxins. Due to its cytotoxic activities, we call this new protein ε-cytotoxin. PMID:26177220

  1. Efficacy of two barrier teat dips containing chlorous acid germicides against experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C; Kemp, G K

    1994-10-01

    Two postmilking teat dips were tested for efficacy against Staphylococcus aureus and Streptococcus agalactiae using experimental challenge procedures recommended by the National Mastitis Council. Both dips contained chlorous acid as the primary germicidal agent and lactic acid or mandelic acid as the chlorous acid activator. The dip activated with mandelic acid significantly reduced new IMI by Staph. aureus and Strep. agalactiae. The IMI rate was reduced 68.7% for Staph. aureus and 56.4% for Strep. agalactiae. The dip activated with lactic acid significantly reduced new Staph. aureus IMI by 69.3% but did not significantly reduce new Strep. agalactiae IMI (35.2% reduction) through the full 11-wk study period. Teat skin condition did not change from pretrial status after using either teat dip during the study. PMID:7836608

  2. Specific and cross-reacting antigens of Staphylococcus aureus of human and canine origins.

    PubMed

    Live, I

    1985-01-01

    Biotype -specificity of Staphylococcus aureus of human and canine origins has been found to be associated with thermolabile agglutinogens represented in S. aureus strains 17 and 61218, respectively. Both strains also have exhibited a common thermostable antigen. On that basis, absorbed antisera have been developed for the differentiation of S. aureus of the two biotypes. In the present study, still another thermostable agglutinogen was established, shared by strain 17 and some S. aureus strains of canine origin, as represented by S. aureus strain 887. These findings led to modification and enhanced specificity of the serological method of distinguishing S. aureus of the human biotype from S. aureus of the canine biotype. PMID:2578480

  3. Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions.

    PubMed

    Crosby, H A; Kwiecinski, J; Horswill, A R

    2016-01-01

    The human commensal bacterium Staphylococcus aureus can cause a wide range of infections ranging from skin and soft tissue infections to invasive diseases like septicemia, endocarditis, and pneumonia. Muticellular organization almost certainly contributes to S. aureus pathogenesis mechanisms. While there has been considerable focus on biofilm formation and its role in colonizing prosthetic joints and indwelling devices, less attention has been paid to nonsurface-attached group behavior like aggregation and clumping. S. aureus is unique in its ability to coagulate blood, and it also produces multiple fibrinogen-binding proteins that facilitate clumping. Formation of clumps, which are large, tightly packed groups of cells held together by fibrin(ogen), has been demonstrated to be important for S. aureus virulence and immune evasion. Clumps of cells are able to avoid detection by the host's immune system due to a fibrin(ogen) coat that acts as a shield, and the size of the clumps facilitates evasion of phagocytosis. In addition, clumping could be an important early step in establishing infections that involve tight clusters of cells embedded in host matrix proteins, such as soft tissue abscesses and endocarditis. In this review, we discuss clumping mechanisms and regulation, as well as what is known about how clumping contributes to immune evasion. PMID:27565579

  4. Subpopulations of Staphylococcus aureus clonal complex 121 are associated with distinct clinical entities.

    PubMed

    Kurt, Kevin; Rasigade, Jean-Philippe; Laurent, Frederic; Goering, Richard V; Žemličková, Helena; Machova, Ivana; Struelens, Marc J; Zautner, Andreas E; Holtfreter, Silva; Bröker, Barbara; Ritchie, Stephen; Reaksmey, Sin; Limmathurotsakul, Direk; Peacock, Sharon J; Cuny, Christiane; Layer, Franziska; Witte, Wolfgang; Nübel, Ulrich

    2013-01-01

    We investigated the population structure of Staphylococcus aureus clonal complex CC121 by mutation discovery at 115 genetic housekeeping loci from each of 154 isolates, sampled on five continents between 1953 and 2009. In addition, we pyro-sequenced the genomes from ten representative isolates. The genome-wide SNPs that were ascertained revealed the evolutionary history of CC121, indicating at least six major clades (A to F) within the clonal complex and dating its most recent common ancestor to the pre-antibiotic era. The toxin gene complement of CC121 isolates was correlated with their SNP-based phylogeny. Moreover, we found a highly significant association of clinical phenotypes with phylogenetic affiliations, which is unusual for S. aureus. All isolates evidently sampled from superficial infections (including staphylococcal scalded skin syndrome, bullous impetigo, exfoliative dermatitis, conjunctivitis) clustered in clade F, which included the European epidemic fusidic-acid resistant impetigo clone (EEFIC). In comparison, isolates from deep-seated infections (abscess, furuncle, pyomyositis, necrotizing pneumonia) were disseminated in several clades, but not in clade F. Our results demonstrate that phylogenetic lineages with distinct clinical properties exist within an S. aureus clonal complex, and that SNPs serve as powerful discriminatory markers, able to identify these lineages. All CC121 genomes harboured a 41-kilobase prophage that was dissimilar to S. aureus phages sequenced previously. Community-associated MRSA and MSSA from Cambodia were extremely closely related, suggesting this MRSA arose in the region. PMID:23505464

  5. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin.

    PubMed

    Vivekananda, Jeevalatha; Salgado, Christi; Millenbaugh, Nancy J

    2014-02-14

    Staphylococcus aureus is a versatile pathogen capable of causing a broad spectrum of diseases ranging from superficial skin infections to life threatening conditions such as endocarditis, septicemia, pneumonia and toxic shock syndrome. In vitro and in vivo studies identified an exotoxin, α-toxin, as a major cause of S. aureus toxicity. Because S. aureus has rapidly evolved resistance to a number of antibiotics, including methicillin, it is important to identify new therapeutic strategies, other than antibiotics, for inhibiting the harmful effects of this pathogen. Aptamers are single-stranded DNA or RNA oligonucleotides with three-dimensional folded conformations that bind with high affinity and selectivity to targets and modulate their biological functions. The goal of this study was to isolate DNA aptamers that specifically inhibit the cytotoxic activity of α-toxin. After 10 rounds of Systematic Evolution of Ligands by EXponential Enrichment (SELEX), 49 potential anti-α-toxin aptamers were identified. In vitro neutralization assays demonstrated that 4 of these 49 aptamers, AT-27, AT-33, AT-36, and AT-49, significantly inhibited α-toxin-mediated cell death in Jurkat T cells. Furthermore, RT-PCR analysis revealed that α-toxin increased the transcription of the inflammatory cytokines TNF-α and IL-17 and that anti-α-toxin aptamers AT-33 and AT-36 inhibited the upregulation of these genes. Collectively, the data suggest the feasibility of generating functionally effective aptamers against α-toxin for treatment of S. aureus infections.

  6. Synergism between Medihoney and rifampicin against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Müller, Patrick; Alber, Dagmar G; Turnbull, Lynne; Schlothauer, Ralf C; Carter, Dee A; Whitchurch, Cynthia B; Harry, Elizabeth J

    2013-01-01

    Skin and chronic wound infections caused by highly antibiotic resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) are an increasing and urgent health problem worldwide, particularly with sharp increases in obesity and diabetes. New Zealand manuka honey has potent broad-spectrum antimicrobial activity, has been shown to inhibit the growth of MRSA strains, and bacteria resistant to this honey have not been obtainable in the laboratory. Combinational treatment of chronic wounds with manuka honey and common antibiotics may offer a wide range of advantages including synergistic enhancement of the antibacterial activity, reduction of the effective dose of the antibiotic, and reduction of the risk of antibiotic resistance. The aim of this study was to investigate the effect of Medihoney in combination with the widely used antibiotic rifampicin on S. aureus. Using checkerboard microdilution assays, time-kill curve experiments and agar diffusion assays, we show a synergism between Medihoney and rifampicin against MRSA and clinical isolates of S. aureus. Furthermore, the Medihoney/rifampicin combination stopped the appearance of rifampicin-resistant S. aureus in vitro. Methylglyoxal (MGO), believed to be the major antibacterial compound in manuka honey, did not act synergistically with rifampicin and is therefore not the sole factor responsible for the synergistic effect of manuka honey with rifampicin. Our findings support the idea that a combination of honey and antibiotics may be an effective new antimicrobial therapy for chronic wound infections. PMID:23469049

  7. Phenotypic and genotypic antimicrobial resistance traits of foodborne Staphylococcus aureus isolates from Shanghai

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Staphylococcus aureus is a recognized pathogen in humans, which causes nosocomial infections and food poisoning. The transmission of antibiotic resistant S. aureus (ARSA), especially methicillin-resistant S. aureus (MRSA), between food products and humans has become a serious problem. Hence, it is n...

  8. Efficacy of .18% iodine teat dip against Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C

    1989-04-01

    Effective postmilking teat dip products with lower iodine concentrations are being formulated as concern increases about iodine residues in milk. Increased free iodine concentration with greater germicidal activity in teat dip products is also possible with special formulation procedures. Low iodine concentration dips are cheaper and have reduced teat irritation. A concentrated iodine teat dip containing .18% iodine and 8 ppm free iodine upon dilution was evaluated under experimental bacterial challenge to determine efficacy for prevention of new intramammary infections. The undiluted product also contained 15% collagen protein emollient as a teat skin conditioner. Efficacy of the teat dip was 93.6 and 51. 7% for Staphylococcus aureus (Newbould 305) and Streptococcus agalactiae (McDonald 44). No adverse effects of the dip on teat skin were noted. PMID:2663939

  9. Analysis of Cell Wall Teichoic Acids in Staphylococcus aureus.

    PubMed

    Covas, Gonçalo; Vaz, Filipa; Henriques, Gabriela; Pinho, Mariana G; Filipe, Sérgio R

    2016-01-01

    Most bacterial cells are surrounded by a surface composed mainly of peptidoglycan (PGN), a glycopolymer responsible for ensuring the bacterial shape and a telltale molecule that betrays the presence of bacteria to the host immune system. In Staphylococcus aureus, as in most gram-positive bacteria, peptidoglycan is concealed by covalently linked molecules of wall teichoic acids (WTA)-phosphate rich molecules made of glycerol and ribitol phosphates which may be tailored by different amino acids and sugars.In order to analyze and compare the composition of WTA produced by different S. aureus strains, we describe methods to: (1) quantify the total amount of WTA present at the bacterial cell surface, through the determination of the inorganic phosphate present in phosphodiester linkages of WTA; (2) identify which sugar constituents are present in the assembled WTA molecules, by detecting the monosaccharides, released by acid hydrolysis, through an high-performance anion exchange chromatography analysis coupled with pulsed amperometric detection (HPAEC-PAD) and (3) compare the polymerization degree of WTA found at the cell surface of different S. aureus strains, through their different migration in a polyacrylamide gel electrophoresis (PAGE). PMID:27311674

  10. Investigational drugs to treat methicillin-resistant Staphylococcus aureus

    PubMed Central

    Vuong, Cuong; Yeh, Anthony J; Cheung, Gordon YC; Otto, Michael

    2016-01-01

    Introduction Staphylococcus aureus remains one of the leading causes of morbidity and mortality worldwide. This is to a large extent due to antibiotic-resistant strains, in particular methicillin-resistant S. aureus (MRSA). While the toll of invasive MRSA infections appears to decrease in U.S. hospitals, the rate of community-associated MRSA infections remains constant and there is a surge of MRSA in many other countries. This situation calls for continuing if not increased efforts to find novel strategies to combat MRSA infections. Areas covered This review will provide an overview of current investigational antibiotics in clinical development (up to phase II), and of therapeutic antibodies and alternative drugs against S. aureus in preclinical and clinical development, including a short description of the mechanism of action and a presentation of microbiological and clinical data. Expert opinion Increased recent antibiotic development efforts and results from pathogenesis research have led to several new antibiotics and alternative drugs, as well as a more informed selection of targets for vaccination efforts against MRSA. This developing portfolio of novel anti-staphylococcal drugs will hopefully provide us with additional and more efficient ways to combat MRSA infections in the near future and prevent us from running out of treatment options, even if new resistances arise. PMID:26536498

  11. The phosphoproteome and its physiological dynamics in Staphylococcus aureus.

    PubMed

    Bäsell, Katrin; Otto, Andreas; Junker, Sabryna; Zühlke, Daniela; Rappen, Gerd-Martin; Schmidt, Sabrina; Hentschker, Christian; Macek, Boris; Ohlsen, Knut; Hecker, Michael; Becher, Dörte

    2014-03-01

    Phosphorylation events on proteins during growth and stress/starvation can represent crucial regulation processes inside the bacterial cell. Therefore, serine, threonine and tyrosine phosphorylation patterns were analyzed by two powerful complementary proteomic methods for the human pathogen Staphylococcus aureus. Using 2D-gel analysis with a phosphosensitive stain (Pro-Q Diamond) and gel-free titanium dioxide based phosphopeptide enrichment, 103 putative phosphorylated proteins with successfully mapped 68 different phosphorylation sites were found in the soluble proteome of S. aureus. Additionally, in a proof of concept study, 8 proteins phosphorylated on arginine residues have been identified. Most important for functional analyses of S. aureus, proteins related to pathogenicity and virulence were found to be phosphorylated: the virulence regulator SarA, the potential antimicrobial target FbaA and the elastin-binding protein EbpS. Besides newly identified phosphorylation sites we compared our dataset with existing data from literature and subsequent experiments revealed additional phosphorylation events on highly conserved localizations in FbaA. Differential analysis of phosphorylation signals on the 2D-gels showed significant changes in phosphorylation under different physiological conditions for 10 proteins. Among these, we were able to detect newly appearing signals for phosphorylated isoforms of FdaB and HchA under nitrosative stress conditions. PMID:24457182

  12. Modulation of Drug Resistance in Staphylococcus aureus with Coumarin Derivatives

    PubMed Central

    de Araújo, Rodrigo Santos Aquino; Barbosa-Filho, José Maria; Scotti, Marcus Tullius; Scotti, Luciana; da Cruz, Ryldene Marques Duarte; Falcão-Silva, Vivyanne dos Santos; de Siqueira-Júnior, José Pinto; Mendonça-Junior, Francisco Jaime Bezerra

    2016-01-01

    Semisynthetic and commercial coumarins were investigated for their antibacterial and adjuvant properties with antibiotic agents against norfloxacin, erythromycin, and tetracycline resistant Staphylococcus aureus as based on efflux mechanisms. The coumarins and certain commercial antibiotics had their Minimum Inhibitory Concentrations determined by broth microdilution assay against resistant S. aureus strains which overexpress efflux pump proteins. For evaluation of the modulatory activity, the antibiotics MICs were determined in the presence of the coumarin derivatives at subinhibitory concentration. Although the coumarins did not display relevant antibacterial activity (MIC ≥ 128 µg/mL), they did modulate the antibiotics activities. Various coumarins, especially the alkylated derivatives in combination with antibiotics at subinhibitory concentrations, modulated antibiotic activity, reducing the MIC for tetracycline and norfloxacin by 2 to 8 times. Polar Surface Area (PSA) studies were performed and the fact that the presence of apolar groups is an important factor for the modulatory activity of coumarins was corroborated. Docking on the Penicillin-Binding Protein from MRSA identified that 18 is a potential ligand presenting low Ebinding. The results indicate that coumarin derivatives modulated antibiotic resistance and may be used as potential antibiotic adjuvants, acting by bacterial efflux pump inhibition in S. aureus. PMID:27200211

  13. Planktonic Aggregates of Staphylococcus aureus Protect against Common Antibiotics

    PubMed Central

    Haaber, Jakob; Cohn, Marianne Thorup; Frees, Dorte; Andersen, Thorbjørn Joest; Ingmer, Hanne

    2012-01-01

    Bacterial cells are mostly studied during planktonic growth although in their natural habitats they are often found in communities such as biofilms with dramatically different physiological properties. We have examined another type of community namely cellular aggregates observed in strains of the human pathogen Staphylococcus aureus. By laser-diffraction particle–size analysis (LDA) we show, for strains forming visible aggregates, that the aggregation starts already in the early exponential growth phase and proceeds until post-exponential phase where more than 90% of the population is part of the aggregate community. Similar to some types of biofilm, the structural component of S. aureus aggregates is the polysaccharide intercellular adhesin (PIA). Importantly, PIA production correlates with the level of aggregation whether altered through mutations or exposure to sub-inhibitory concentrations of selected antibiotics. While some properties of aggregates resemble those of biofilms including increased mutation frequency and survival during antibiotic treatment, aggregated cells displayed higher metabolic activity than planktonic cells or cells in biofilm. Thus, our data indicate that the properties of cells in aggregates differ in some aspects from those in biofilms. It is generally accepted that the biofilm life style protects pathogens against antibiotics and the hostile environment of the host. We speculate that in aggregate communities S. aureus increases its tolerance to hazardous environments and that the combination of a biofilm-like environment with mobility has substantial practical and clinical importance. PMID:22815921

  14. Modulation of Drug Resistance in Staphylococcus aureus with Coumarin Derivatives.

    PubMed

    de Araújo, Rodrigo Santos Aquino; Barbosa-Filho, José Maria; Scotti, Marcus Tullius; Scotti, Luciana; da Cruz, Ryldene Marques Duarte; Falcão-Silva, Vivyanne Dos Santos; de Siqueira-Júnior, José Pinto; Mendonça-Junior, Francisco Jaime Bezerra

    2016-01-01

    Semisynthetic and commercial coumarins were investigated for their antibacterial and adjuvant properties with antibiotic agents against norfloxacin, erythromycin, and tetracycline resistant Staphylococcus aureus as based on efflux mechanisms. The coumarins and certain commercial antibiotics had their Minimum Inhibitory Concentrations determined by broth microdilution assay against resistant S. aureus strains which overexpress efflux pump proteins. For evaluation of the modulatory activity, the antibiotics MICs were determined in the presence of the coumarin derivatives at subinhibitory concentration. Although the coumarins did not display relevant antibacterial activity (MIC ≥ 128 µg/mL), they did modulate the antibiotics activities. Various coumarins, especially the alkylated derivatives in combination with antibiotics at subinhibitory concentrations, modulated antibiotic activity, reducing the MIC for tetracycline and norfloxacin by 2 to 8 times. Polar Surface Area (PSA) studies were performed and the fact that the presence of apolar groups is an important factor for the modulatory activity of coumarins was corroborated. Docking on the Penicillin-Binding Protein from MRSA identified that 18 is a potential ligand presenting low E binding. The results indicate that coumarin derivatives modulated antibiotic resistance and may be used as potential antibiotic adjuvants, acting by bacterial efflux pump inhibition in S. aureus. PMID:27200211

  15. Staphylococcus aureus Regulatory RNAs as Potential Biomarkers for Bloodstream Infections

    PubMed Central

    Bordeau, Valérie; Cady, Anne; Revest, Matthieu; Rostan, Octavie; Sassi, Mohamed; Tattevin, Pierre; Donnio, Pierre-Yves

    2016-01-01

    Staphylococcus aureus is a commensal bacterium and pathogen. Identifying biomarkers for the transition from colonization to disease caused by this organism would be useful. Several S. aureus small RNAs (sRNAs) regulate virulence. We investigated presence and expression of 8 sRNAs in 83 S. aureus strains from 42 patients with sepsis or septic shock and 41 asymptomatic colonized carriers. Small pathogenicity island sRNAs sprB and sprC were clade specific. Six sRNAs had variable expression not correlated with clinical status. Expression of RNAIII was lower in strains from septic shock patients than in strains from colonized patients. When RNAIII was associated with expression of sprD, colonizing strains could be discriminated from strains in patients with bloodstream infections, including patients with sepsis and septic shock. Isolates associated with colonization might have sRNAs with target expression different from those of disease isolates. Monitoring expression of RNAIII and sprD could help determine severity of bloodstream infections. PMID:27224202

  16. Temporal and Stochastic Control of Staphylococcus aureus Biofilm Development

    PubMed Central

    Moormeier, Derek E.; Bose, Jeffrey L.; Horswill, Alexander R.

    2014-01-01

    ABSTRACT Biofilm communities contain distinct microniches that result in metabolic heterogeneity and variability in gene expression. Previously, these niches were visualized within Staphylococcus aureus biofilms by observing differential expression of the cid and lrg operons during tower formation. In the present study, we examined early biofilm development and identified two new stages (designated “multiplication” and “exodus”) that were associated with changes in matrix composition and a distinct reorganization of the cells as the biofilm matured. The initial attachment and multiplication stages were shown to be protease sensitive but independent of most cell surface-associated proteins. Interestingly, after 6 h of growth, an exodus of the biofilm population that followed the transition of the biofilm to DNase I sensitivity was demonstrated. Furthermore, disruption of the gene encoding staphylococcal nuclease (nuc) abrogated this exodus event, causing hyperproliferation of the biofilm and disrupting normal tower development. Immediately prior to the exodus event, S. aureus cells carrying a nuc::gfp promoter fusion demonstrated Sae-dependent expression but only in an apparently random subpopulation of cells. In contrast to the existing model for tower development in S. aureus, the results of this study suggest the presence of a Sae-controlled nuclease-mediated exodus of biofilm cells that is required for the development of tower structures. Furthermore, these studies indicate that the differential expression of nuc during biofilm development is subject to stochastic regulatory mechanisms that are independent of the formation of metabolic microniches. PMID:25316695

  17. Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power

    PubMed Central

    de Lencastre, Herminia; Oliveira, Duarte; Tomasz, Alexander

    2009-01-01

    Summary Nothing documents better the spectacular adaptive capacity of Staphylococcus aureus than the response of this important human and animal pathogen to the introduction of antimicrobial agents into the clinical environment. The effectiveness of penicillin introduced in the early 1940s was virtually annulled within a decade due to the plasmid epidemics that spread the ß-lactamase gene through the entire species of S. aureus. In 1960 within one to two years of the introduction of penicillinase resistant ß-lactams (methicillin), methicillin resistant S. aureus (MRSA) strains were identified in clinical specimens. By the 1980s, epidemic clones of MRSA acquired multidrug resistant traits and spread worldwide to become one of the most important causative agents of hospital acquired infections. In the early 2000s, MRSA strains carrying the Tn1546 transposon-based enterococcal vancomycin resistant mechanism were identified in clinical specimens, bringing the specter of a totally resistant bacterial pathogen closer to reality. Then, in the late 1990s, just as effective hygienic and antibiotic use policies managed to bring down the frequency of MRSA in hospitals of several countries, MRSA strains began to show up in the community. PMID:17921044

  18. Staphylococcus aureus CodY Negatively Regulates Virulence Gene Expression▿

    PubMed Central

    Majerczyk, Charlotte D.; Sadykov, Marat R.; Luong, Thanh T.; Lee, Chia; Somerville, Greg A.; Sonenshein, Abraham L.

    2008-01-01

    CodY is a global regulatory protein that was first discovered in Bacillus subtilis, where it couples gene expression to changes in the pools of critical metabolites through its activation by GTP and branched-chain amino acids. Homologs of CodY can be found encoded in the genomes of nearly all low-G+C gram-positive bacteria, including Staphylococcus aureus. The introduction of a codY-null mutation into two S. aureus clinical isolates, SA564 and UAMS-1, through allelic replacement, resulted in the overexpression of several virulence genes. The mutant strains had higher levels of hemolytic activity toward rabbit erythrocytes in their culture fluid, produced more polysaccharide intercellular adhesin (PIA), and formed more robust biofilms than did their isogenic parent strains. These phenotypes were associated with derepressed levels of RNA for the hemolytic alpha-toxin (hla), the accessory gene regulator (agr) (RNAII and RNAIII/hld), and the operon responsible for the production of PIA (icaADBC). These data suggest that CodY represses, either directly or indirectly, the synthesis of a number of virulence factors of S. aureus. PMID:18156263

  19. Persister formation in Staphylococcus aureus is associated with ATP depletion.

    PubMed

    Conlon, Brian P; Rowe, Sarah E; Gandt, Autumn Brown; Nuxoll, Austin S; Donegan, Niles P; Zalis, Eliza A; Clair, Geremy; Adkins, Joshua N; Cheung, Ambrose L; Lewis, Kim

    2016-01-01

    Persisters are dormant phenotypic variants of bacterial cells that are tolerant to killing by antibiotics(1). Persisters are associated with chronic infections and antibiotic treatment failure(1-3). In Escherichia coli, toxin-antitoxin modules have been linked to persister formation(4-6). The mechanism of persister formation in Gram-positive bacteria is unknown. Staphylococcus aureus is a major human pathogen, responsible for a variety of chronic and relapsing infections such as osteomyelitis, endocarditis and infections of implanted devices. Deleting toxin-antitoxin modules in S. aureus did not affect the level of persisters. Here, we show that S. aureus persisters are produced due to a stochastic entrance into the stationary phase accompanied by a drop in intracellular adenosine triphosphate. Cells expressing stationary-state markers are present throughout the growth phase, and increase in frequency with cell density. Cell sorting revealed that the expression of stationary markers is associated with a 100-1,000-fold increase in the likelihood of survival to antibiotic challenge. The adenosine triphosphate level of the cell is predictive of bactericidal antibiotic efficacy and explains bacterial tolerance to antibiotics. PMID:27572649

  20. Rot is a key regulator of Staphylococcus aureus biofilm formation

    PubMed Central

    Mootz, Joe M.; Benson, Meredith A.; Heim, Cortney E.; Crosby, Heidi A.; Kavanaugh, Jeffrey S.; Dunman, Paul M.; Kielian, Tammy; Torres, Victor J.; Horswill, Alexander R.

    2015-01-01

    AUTHOR SUMMARY Staphylococcus aureus is a significant cause of chronic biofilm infections on medical implants. We investigated the biofilm regulatory cascade and discovered that the repressor of toxins (Rot) is part of this pathway. A USA300 community-associated methicillin-resistant S. aureus (CA-MRSA) strain deficient in Rot was unable to form a biofilm using multiple different assays, and we found rot mutants in other strain lineages were also biofilm deficient. By performing a global analysis of transcripts and protein production controlled by Rot, we observed that all the secreted protease genes were upregulated in a rot mutant, and we hypothesized that this regulation could be responsible for the biofilm phenotype. To investigate this question, we determined that Rot bound to the protease promoters, and we observed that activity levels of these enzymes, in particular the cysteine proteases, were increased in a rot mutant. By inactivating these proteases, biofilm capacity was restored to the mutant, demonstrating they are responsible for the biofilm negative phenotype. Finally, we tested the rot mutant in a mouse catheter model of biofilm infection and observed a significant reduction in biofilm burden. Thus S. aureus uses the transcription factor Rot to repress secreted protease levels in order to build a biofilm. PMID:25612137

  1. Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation

    PubMed Central

    Cucarella, Carme; Solano, Cristina; Valle, Jaione; Amorena, Beatriz; Lasa, Íñigo; Penadés, José R.

    2001-01-01

    Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350 S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection model bap was involved in pathogenesis, causing a persistent infection. PMID:11292810

  2. Persister formation in Staphylococcus aureus is associated with ATP depletion

    PubMed Central

    Conlon, Brian P.; Rowe, Sarah E.; Gandt, Autumn Brown; Nuxoll, Austin S.; Donegan, Niles P.; Zalis, Eliza A.; Clair, Geremy; Adkins, Joshua N.; Cheung, Ambrose L.; Lewis, Kim

    2016-01-01

    Persisters are dormant phenotypic variants of bacterial cells that are tolerant to killing by antibiotics1. Persisters are associated with chronic infections and antibiotic treatment failure1–3. In Escherichia coli, toxin/antitoxin (TA) modules have been linked to persister formation4–6. The mechanism of persister formation in Gram-positive bacteria is unknown. Staphylococcus aureus is a major human pathogen, responsible for a variety of chronic and relapsing infections such as osteomyelitis, endocarditis and infections of implanted devices. Deleting TA modules in S. aureus did not affect the level of persisters. Here we show that S. aureus persisters are produced due to a stochastic entrance into stationary phase accompanied by a drop in intracellular ATP. Cells expressing stationary state markers are present throughout the growth phase, increasing in frequency with cell density. Cell sorting revealed that expression of stationary markers is associated with a 100–1000 fold increase in the likelihood of survival to antibiotic challenge. The ATP level of the cell is predictive of bactericidal antibiotic efficacy and explains bacterial tolerance to antibiotics. PMID:27398229

  3. Genomic fingerprinting of bacteriocin-producer strains of Staphylococcus aureus.

    PubMed

    Nascimento, Janaína dos S; Giambiagi-deMarval, Marcia; de Oliveira, Selma S; Ceotto, Hilana; dos Santos, Kátia Regina N; Bastos, Maria do Carmo de F

    2005-09-01

    Among 363 strains of Staphylococcus aureus, 21 were shown to produce bacteriocins (Bac), antimicrobial peptides with potential biotechnological applications. This collection includes strains which are either isolated from food, patients and healthy cattle, or are involved in subclinical bovine mastitis. From these 21 strains, 17 were shown to carry closely-related 8.0-kb Bac plasmids encoding bacteriocins either identical to or similar to aureocin A70, a bacteriocin able to inhibit strains of Listeria monocytogenes, a food-borne pathogen. Such findings prompted us to investigate the genetic relationships among these Bac+ strains. To obtain more discriminatory results, a combined analysis of AP-PCR, rep-PCR, and a modified PCR technique that we designated SD-PCR was employed. The 17 Bac+ strains harboring 8.0-kb Bac plasmids exhibited seven fingerprint patterns. One such genotype was composed of 8 out of the 11 strains associated with bovine mastitis, which suggests the prevalence of a clone of Bac+ strains involved in this animal infection carrying 8.0-kb Bac plasmids. Our data support the assumption that Bac+ strains of S. aureus carrying genetically related 8.0-kb Bac plasmids do not belong to a single clone. It seems, therefore, that 8.0-kb Bac plasmids have spread horizontally among different S. aureus strains. There also seems to be genetic diversity among the remaining Bac+ strains analyzed. PMID:16171981

  4. Staphylococcus aureus Regulatory RNAs as Potential Biomarkers for Bloodstream Infections.

    PubMed

    Bordeau, Valérie; Cady, Anne; Revest, Matthieu; Rostan, Octavie; Sassi, Mohamed; Tattevin, Pierre; Donnio, Pierre-Yves; Felden, Brice

    2016-09-01

    Staphylococcus aureus is a commensal bacterium and pathogen. Identifying biomarkers for the transition from colonization to disease caused by this organism would be useful. Several S. aureus small RNAs (sRNAs) regulate virulence. We investigated presence and expression of 8 sRNAs in 83 S. aureus strains from 42 patients with sepsis or septic shock and 41 asymptomatic colonized carriers. Small pathogenicity island sRNAs sprB and sprC were clade specific. Six sRNAs had variable expression not correlated with clinical status. Expression of RNAIII was lower in strains from septic shock patients than in strains from colonized patients. When RNAIII was associated with expression of sprD, colonizing strains could be discriminated from strains in patients with bloodstream infections, including patients with sepsis and septic shock. Isolates associated with colonization might have sRNAs with target expression different from those of disease isolates. Monitoring expression of RNAIII and sprD could help determine severity of bloodstream infections. PMID:27224202

  5. An investigation of exudative epidermitis (greasy pig disease) and antimicrobial resistance patterns of Staphylococcus hyicus and Staphylococcus aureus isolated from clinical cases

    PubMed Central

    Park, Jeonghwa; Friendship, Robert M.; Poljak, Zvonimir; Weese, J. Scott; Dewey, Cate E.

    2013-01-01

    Exudative epidermitis (EE) is a common skin disease of young pigs, caused mainly by Staphylococcus hyicus. Increased prevalence of EE and poor response to treatment are reported. Common strategies used by Ontario pork producers to treat pigs with EE were determined using a survey. Injection of penicillin G was reported as the most common parenteral antibiotic choice. Antimicrobial resistance patterns of S. hyicus and Staphylococcus aureus isolated from clinical cases (30 herds with samples from approximately 6 pigs per farm) showed that 97% of S. hyicus isolates were resistant to penicillin G and ampicillin; 71% of these isolates were resistant to ceftiofur. Similar resistance was noted among S. aureus isolates. Antimicrobial resistance has become a problem in the treatment of EE in Ontario. PMID:23904636

  6. Implantation of Corynebacterium pseudodiphtheriticum for elimination of Staphylococcus aureus from the nasal cavity in volunteers

    NASA Astrophysics Data System (ADS)

    Viacheslav, Ilyin; Kiryukhina, Nataliya

    Nasal carriage of Staphylococcus aureus is a well-documented risk factor of infection and inflammation of the skin, soft tissues and bacteremia. It is also known that most often etiology of these disorders is associated with autoinfection. The present-day methods of opportunistic pathogens eradication from the nasal cavity are based principally on the use of antiseptic and antibacterial agents. For instance, a local antibiotic mupirocin in the form of nasal ointment is considered to be the gold standard for the treatment of S. aureus carriage. The literature describes investigations showing how mupirocin can strengthen antibiotic resistance in S. aureus strains, including those with methicillin resistance (MRSA). It is also common knowledge that recolonization of the nasal mucous membrane takes place within several months after mupirocin treatment. This circumstance dictates the necessity to look for alternative ways of preventing the S. aureus carriage and methods of elimination. One of the methods of nasal S. aureus elimination is implantation of nonpathogenic microorganisms which will extrude opportunistic pathogens without impinging the symbiotic microbiota. Effectiveness of saline suspension of Corynebacterium pseudodiphtheriticum containing spray was assessed in a several chamber experiments with simulation of some spaceflight factors (dry immersion, isolation). Various schemes of application of preparations were applied. In all cases of corynebacteria application the strong inhibiting effect against S. aureus was detected. This fact opens a prospect of using nonpathogenic corynebacteria as a nasal probiotic. Administration of the nasal corynebacteria spray possibly prevented cross-infection by MRSA and appearance of staphylococcal infection. Further pre-clinical and clinical study of this bacterial therapy method is under development.

  7. Prevalence of Toxin Genes among the Clinical Isolates of Staphylococcus aureus and its Clinical Impact

    PubMed Central

    Deodhar, Divya; Varghese, George; Balaji, Veeraraghavan; John, James; Rebekah, Grace; Janardhanan, Jeshina; Jeyaraman, Ranjith; Jasmine, Sudha; Mathews, Prasad

    2015-01-01

    Introduction: Staphylococcus aureus (S. aureus) causes a variety of infections, ranging from a mild skin infection to blood stream infections and deep seated infections. As Stapylococcus aureus bacteremia (SAB) has the tendency to cause endovascular and metastatic infections, complications can occur at almost all sites of the body. Hence, SAB is associated with increased morbidity and mortality in spite of appropriate antimicrobial treatment. The virulence in S. aureus is determined by the presence of adhesins and toxins, which behave like superantigens (SAgs) and leads to a massive release of proinflammatory cytokines causing overwhelming inflammatory response leading to endothelial leakage, hemodynamic shock, multiorgan failure, and possibly death. Materials and Methods: One year prospective study conducted in a tertiary care hospital in southern part of India included all patients with SAB. Clinical details were filled according to. All isolates were subjected to polymerase chain reaction (PCR) for enterotoxin profiling. Results: A total of 101 patients of SAB were identified which comprises of 61 (60.4%) patients with methicillin-susceptible S. aureus (MSSA) and 40 (39.6%) patients with methicillin-resistant S. aureus (MRSA). Most common predictors of mortality were prior hospitalization and antibiotic intake, severe organ dysfunction, shock, tachycardia, and leukocytosis. Two-third of the isolates had at least one enterotoxin, most prevalent was sea; 28% and 27% (P - value = 0.001) MSSA isolates had seg and sei; whereas, 38.6% (P - value < 0.001) of MRSA isolates were found to have sea. The most common enterotoxin associated with mortality was sei, which comprised of 38% of all mortality. Conclusion: In SAB, the significant predictors of mortality were prior hospitalization and antibiotic intake, presence of multiorgan dysfunction, and shock. Although overall significance between the enterotoxin and shock could not be demonstrated, it successfully demonstrated

  8. Improving the safety of Staphylococcus aureus polyvalent phages by their production on a Staphylococcus xylosus strain.

    PubMed

    El Haddad, Lynn; Ben Abdallah, Nour; Plante, Pier-Luc; Dumaresq, Jeannot; Katsarava, Ramaz; Labrie, Steve; Corbeil, Jacques; St-Gelais, Daniel; Moineau, Sylvain

    2014-01-01

    Team1 (vB_SauM_Team1) is a polyvalent staphylococcal phage belonging to the Myoviridae family. Phage Team1 was propagated on a Staphylococcus aureus strain and a non-pathogenic Staphylococcus xylosus strain used in industrial meat fermentation. The two Team1 preparations were compared with respect to their microbiological and genomic properties. The burst sizes, latent periods, and host ranges of the two derivatives were identical as were their genome sequences. Phage Team1 has 140,903 bp of double stranded DNA encoding for 217 open reading frames and 4 tRNAs. Comparative genomic analysis revealed similarities to staphylococcal phages ISP (97%) and G1 (97%). The host range of Team1 was compared to the well-known polyvalent staphylococcal phages phi812 and K using a panel of 57 S. aureus strains collected from various sources. These bacterial strains were found to represent 18 sequence types (MLST) and 14 clonal complexes (eBURST). Altogether, the three phages propagated on S. xylosus lysed 52 out of 57 distinct strains of S. aureus. The identification of phage-insensitive strains underlines the importance of designing phage cocktails with broadly varying and overlapping host ranges. Taken altogether, our study suggests that some staphylococcal phages can be propagated on food-grade bacteria for biocontrol and safety purposes. PMID:25061757

  9. Improving the Safety of Staphylococcus aureus Polyvalent Phages by Their Production on a Staphylococcus xylosus Strain

    PubMed Central

    El Haddad, Lynn; Ben Abdallah, Nour; Plante, Pier-Luc; Dumaresq, Jeannot; Katsarava, Ramaz; Labrie, Steve; Corbeil, Jacques; St-Gelais, Daniel; Moineau, Sylvain

    2014-01-01

    Team1 (vB_SauM_Team1) is a polyvalent staphylococcal phage belonging to the Myoviridae family. Phage Team1 was propagated on a Staphylococcus aureus strain and a non-pathogenic Staphylococcus xylosus strain used in industrial meat fermentation. The two Team1 preparations were compared with respect to their microbiological and genomic properties. The burst sizes, latent periods, and host ranges of the two derivatives were identical as were their genome sequences. Phage Team1 has 140,903 bp of double stranded DNA encoding for 217 open reading frames and 4 tRNAs. Comparative genomic analysis revealed similarities to staphylococcal phages ISP (97%) and G1 (97%). The host range of Team1 was compared to the well-known polyvalent staphylococcal phages phi812 and K using a panel of 57 S. aureus strains collected from various sources. These bacterial strains were found to represent 18 sequence types (MLST) and 14 clonal complexes (eBURST). Altogether, the three phages propagated on S. xylosus lysed 52 out of 57 distinct strains of S. aureus. The identification of phage-insensitive strains underlines the importance of designing phage cocktails with broadly varying and overlapping host ranges. Taken altogether, our study suggests that some staphylococcal phages can be propagated on food-grade bacteria for biocontrol and safety purposes. PMID:25061757

  10. Global distribution and diversity of ovine-associated Staphylococcus aureus.

    PubMed

    Smith, Edward M; Needs, Polly F; Manley, Grace; Green, Laura E

    2014-03-01

    Staphylococcus aureus is an important pathogen of many species, including sheep, and impacts on both human and animal health, animal welfare, and farm productivity. Here we present the widest global diversity study of ovine-associated S. aureus to date. We analysed 97 S. aureus isolates from sheep and sheep products from the UK, Turkey, France, Norway, Australia, Canada and the USA using multilocus sequence typing (MLST) and spa typing. These were compared with 196 sheep isolates from Europe (n=153), Africa (n=28), South America (n=14) and Australia (n=1); 172 bovine, 68 caprine and 433 human S. aureus profiles. Overall there were 59 STs and 87 spa types in the 293 ovine isolates; in the 97 new ovine isolates there were 22 STs and 37 spa types, including three novel MLST alleles, four novel STs and eight novel spa types. Three main CCs (CC133, CC522 and CC700) were detected in sheep and these contained 61% of all isolates. Four spa types (t002, t1534, t2678 and t3576) contained 31% of all isolates and were associated with CC5, CC522, CC133 and CC522 respectively. spa types were consistent with MLST CCs, only one spa type (t1403) was present in multiple CCs. The three main ovine CCs have different but overlapping patterns of geographical dissemination that appear to match the location and timing of sheep domestication and selection for meat and wool production. CC133, CC522 and CC700 remained ovine-associated following the inclusion of additional host species. Ovine isolates clustered separately from human and bovine isolates and those from sheep cheeses, but closely with caprine isolates. As with cattle isolates, patterns of clonal diversification of sheep isolates differ from humans, indicative of their relatively recent host-jump.

  11. Genetic Variation among Staphylococcus aureus Strains from Norwegian Bulk Milk

    PubMed Central

    Jørgensen, H. J.; Mørk, T.; Caugant, D. A.; Kearns, A.; Rørvik, L. M.

    2005-01-01

    Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex. PMID:16332822

  12. Bactericidal Effect of a Photoresponsive Carbon Monoxide-Releasing Nonwoven against Staphylococcus aureus Biofilms.

    PubMed

    Klinger-Strobel, Mareike; Gläser, Steve; Makarewicz, Oliwia; Wyrwa, Ralf; Weisser, Jürgen; Pletz, Mathias W; Schiller, Alexander

    2016-07-01

    Staphylococcus aureus is a leading pathogen in skin and skin structure infections, including surgical and traumatic infections that are associated with biofilm formation. Because biofilm formation is accompanied by high phenotypic resistance of the embedded bacteria, they are almost impossible to eradicate by conventional antibiotics. Therefore, alternative therapeutic strategies are of high interest. We generated nanostructured hybrid nonwovens via the electrospinning of a photoresponsive carbon monoxide (CO)-releasing molecule [CORM-1, Mn2(CO)10] and the polymer polylactide. This nonwoven showed a CO-induced antimicrobial activity that was sufficient to reduce the biofilm-embedded bacteria by 70% after photostimulation at 405 nm. The released CO increased the concentration of reactive oxygen species (ROS) in the biofilms, suggesting that in addition to inhibiting the electron transport chain, ROS might play a role in the antimicrobial activity of CORMs on S. aureus The nonwoven showed increased cytotoxicity on eukaryotic cells after longer exposure, most probably due to the released lactic acid, that might be acceptable for local and short-time treatments. Therefore, CO-releasing nonwovens might be a promising local antimicrobial therapy against biofilm-associated skin wound infections.

  13. Bactericidal Effect of a Photoresponsive Carbon Monoxide-Releasing Nonwoven against Staphylococcus aureus Biofilms.

    PubMed

    Klinger-Strobel, Mareike; Gläser, Steve; Makarewicz, Oliwia; Wyrwa, Ralf; Weisser, Jürgen; Pletz, Mathias W; Schiller, Alexander

    2016-07-01

    Staphylococcus aureus is a leading pathogen in skin and skin structure infections, including surgical and traumatic infections that are associated with biofilm formation. Because biofilm formation is accompanied by high phenotypic resistance of the embedded bacteria, they are almost impossible to eradicate by conventional antibiotics. Therefore, alternative therapeutic strategies are of high interest. We generated nanostructured hybrid nonwovens via the electrospinning of a photoresponsive carbon monoxide (CO)-releasing molecule [CORM-1, Mn2(CO)10] and the polymer polylactide. This nonwoven showed a CO-induced antimicrobial activity that was sufficient to reduce the biofilm-embedded bacteria by 70% after photostimulation at 405 nm. The released CO increased the concentration of reactive oxygen species (ROS) in the biofilms, suggesting that in addition to inhibiting the electron transport chain, ROS might play a role in the antimicrobial activity of CORMs on S. aureus The nonwoven showed increased cytotoxicity on eukaryotic cells after longer exposure, most probably due to the released lactic acid, that might be acceptable for local and short-time treatments. Therefore, CO-releasing nonwovens might be a promising local antimicrobial therapy against biofilm-associated skin wound infections. PMID:27114272

  14. Tissue-specific patterning of host innate immune responses by Staphylococcus aureus α-toxin.

    PubMed

    Becker, Russell E N; Berube, Bryan J; Sampedro, Georgia R; DeDent, Andrea C; Bubeck Wardenburg, Juliane

    2014-01-01

    Immunomodulatory cytotoxins are prominent virulence factors produced by Staphylococcus aureus, a leading cause of bacterial sepsis, skin infection, and pneumonia. S. aureus α-toxin is a pore-forming toxin that utilizes a widely expressed receptor, ADAM10, to injure the host epithelium, endothelium, and immune cells. As each host tissue is characterized by a unique composition of resident cells and recruited immune cells, the outcome of α-toxin-mediated injury may depend on the infected tissue environment. Utilizing myeloid lineage-specific Adam10 knockout mice, we show that α-toxin exerts tissue-specific effects on innate immunity to staphylococcal infection. Loss of ADAM10 expression exacerbates skin infection, yet affords protection against lethal pneumonia. These diverse outcomes are not related to altered immune cell recruitment, but rather correlate with a defect in toxin-induced IL-1β production. Extension of these studies through analysis of ADAM10 double-knockout mice affecting both the myeloid lineage and either the skin or lung epithelium highlight the prominence of toxin-induced injury to the epithelium in governing the outcome of infection. Together, these studies provide evidence of tissue specificity of pore-forming cytotoxin action in the modulation of host immunity, and illustrate that the outcome of infection is a collective manifestation of all effects of the toxin within the tissue microenvironment.

  15. Tissue-specific Patterning of the Host Innate Immune Response by Staphylococcus aureus α-toxin

    PubMed Central

    Becker, Russell E. N.; Berube, Bryan J.; Sampedro, Georgia R.; DeDent, Andrea C.; Wardenburg, Juliane Bubeck

    2014-01-01

    Immunomodulatory cytotoxins are prominent virulence factors produced by Staphylococcus aureus, a leading cause of bacterial sepsis, skin infection, and pneumonia. S. aureus α-toxin is a pore-forming toxin that utilizes a widely-expressed receptor, ADAM10, to injure the host epithelium, endothelium, and immune cells. As each host tissue is characterized by a unique composition of resident cells and recruited immune cells, the outcome of α-toxin-mediated injury may depend on the infected tissue environment. Utilizing myeloid lineage-specific Adam10 knockout mice, we show that α-toxin exerts tissue-specific effects on innate immunity to staphylococcal infection. Loss of ADAM10 expression exacerbates skin infection, yet affords protection against lethal pneumonia. These diverse outcomes are not related to altered immune cell recruitment, but rather correlate with a defect in toxin-induced IL-1β production. Extension of these studies through analysis of ADAM10 double knockout mice affecting both the myeloid lineage and either the skin or lung epithelium highlight the prominence of toxin-induced injury to the epithelium in governing the outcome of infection. Together, these studies provide evidence of tissue specificity of pore-forming cytotoxin action in modulation of host immunity, and illustrate that the outcome of infection is a collective manifestation of all effects of the toxin within the tissue microenvironment. PMID:24820433

  16. Temporal and stochastic control of Staphylococcus aureus biofilm development.

    PubMed

    Moormeier, Derek E; Bose, Jeffrey L; Horswill, Alexander R; Bayles, Kenneth W

    2014-01-01

    Biofilm communities contain distinct microniches that result in metabolic heterogeneity and variability in gene expression. Previously, these niches were visualized within Staphylococcus aureus biofilms by observing differential expression of the cid and lrg operons during tower formation. In the present study, we examined early biofilm development and identified two new stages (designated "multiplication" and "exodus") that were associated with changes in matrix composition and a distinct reorganization of the cells as the biofilm matured. The initial attachment and multiplication stages were shown to be protease sensitive but independent of most cell surface-associated proteins. Interestingly, after 6 h of growth, an exodus of the biofilm population that followed the transition of the biofilm to DNase I sensitivity was demonstrated. Furthermore, disruption of the gene encoding staphylococcal nuclease (nuc) abrogated this exodus event, causing hyperproliferation of the biofilm and disrupting normal tower development. Immediately prior to the exodus event, S. aureus cells carrying a nuc::gfp promoter fusion demonstrated Sae-dependent expression but only in an apparently random subpopulation of cells. In contrast to the existing model for tower development in S. aureus, the results of this study suggest the presence of a Sae-controlled nuclease-mediated exodus of biofilm cells that is required for the development of tower structures. Furthermore, these studies indicate that the differential expression of nuc during biofilm development is subject to stochastic regulatory mechanisms that are independent of the formation of metabolic microniches. Importance: In this study, we provide a novel view of four early stages of biofilm formation by the human pathogen Staphylococcus aureus. We identified an initial nucleoprotein matrix during biofilm development that is DNase I insensitive until a critical point when a nuclease-mediated exodus of the population is induced prior

  17. Temporal and stochastic control of Staphylococcus aureus biofilm development.

    PubMed

    Moormeier, Derek E; Bose, Jeffrey L; Horswill, Alexander R; Bayles, Kenneth W

    2014-01-01

    Biofilm communities contain distinct microniches that result in metabolic heterogeneity and variability in gene expression. Previously, these niches were visualized within Staphylococcus aureus biofilms by observing differential expression of the cid and lrg operons during tower formation. In the present study, we examined early biofilm development and identified two new stages (designated "multiplication" and "exodus") that were associated with changes in matrix composition and a distinct reorganization of the cells as the biofilm matured. The initial attachment and multiplication stages were shown to be protease sensitive but independent of most cell surface-associated proteins. Interestingly, after 6 h of growth, an exodus of the biofilm population that followed the transition of the biofilm to DNase I sensitivity was demonstrated. Furthermore, disruption of the gene encoding staphylococcal nuclease (nuc) abrogated this exodus event, causing hyperproliferation of the biofilm and disrupting normal tower development. Immediately prior to the exodus event, S. aureus cells carrying a nuc::gfp promoter fusion demonstrated Sae-dependent expression but only in an apparently random subpopulation of cells. In contrast to the existing model for tower development in S. aureus, the results of this study suggest the presence of a Sae-controlled nuclease-mediated exodus of biofilm cells that is required for the development of tower structures. Furthermore, these studies indicate that the differential expression of nuc during biofilm development is subject to stochastic regulatory mechanisms that are independent of the formation of metabolic microniches. Importance: In this study, we provide a novel view of four early stages of biofilm formation by the human pathogen Staphylococcus aureus. We identified an initial nucleoprotein matrix during biofilm development that is DNase I insensitive until a critical point when a nuclease-mediated exodus of the population is induced prior

  18. Nostrils of healthy volunteers are independent with regard to Staphylococcus aureus carriage.

    PubMed

    Kildow, Beau J; Conradie, Johan P; Robson, Rachel L

    2012-11-01

    The right and left nares of healthy adults (n = 251) were swabbed separately to determine carriage of Staphylococcus aureus in each nostril. Carriers were significantly more likely to carry S. aureus in one nostril than in both. Of those carrying S. aureus in both nostrils, 20% carried genetically distinct strains in each. Nostrils belonging to a single individual should not be assumed to be homogenous with respect to carriage of S. aureus. PMID:22915611

  19. Nostrils of Healthy Volunteers Are Independent with Regard to Staphylococcus aureus Carriage

    PubMed Central

    Kildow, Beau J.; Conradie, Johan P.

    2012-01-01

    The right and left nares of healthy adults (n = 251) were swabbed separately to determine carriage of Staphylococcus aureus in each nostril. Carriers were significantly more likely to carry S. aureus in one nostril than in both. Of those carrying S. aureus in both nostrils, 20% carried genetically distinct strains in each. Nostrils belonging to a single individual should not be assumed to be homogenous with respect to carriage of S. aureus. PMID:22915611

  20. Population-Based Estimates of Methicillin-Resistant "Staphylococcus aureus" (MRSA) Infections among High School Athletes--Nebraska, 2006-2008

    ERIC Educational Resources Information Center

    Buss, Bryan F.; Mueller, Shawn W.; Theis, Max; Keyser, Alison; Safranek, Thomas J.

    2009-01-01

    Methicillin-resistant "Staphylococcus aureus" (MRSA) is an emerging cause of skin and soft-tissue infections among athletes. To determine statewide incidence among high school athletes, we surveyed all 312 Nebraska high schools regarding sport programs offered, program-specific participation numbers, number of athletes with physician-diagnosed…

  1. Petrifilm rapid S. aureus Count Plate method for rapid enumeration of Staphylococcus aureus in selected foods: collaborative study.

    PubMed

    Silbernagel, K M; Lindberg, K G

    2001-01-01

    A rehydratable dry-film plating method for Staphylococcus aureus in foods, the 3M Petrifilm Rapid S. aureus Count Plate method, was compared with AOAC Official Method 975.55 (Staphylococcus aureus in Foods). Nine foods-instant nonfat dried milk, dry seasoned vegetable coating, frozen hash browns, frozen cooked chicken patty, frozen ground raw pork, shredded cheddar cheese, fresh green beans, pasta filled with beef and cheese, and egg custard-were analyzed for S. aureus by 13 collaborating laboratories. For each food tested, the collaborators received 8 blind test samples consisting of a control sample and 3 levels of inoculated test sample, each in duplicate. The mean log counts for the methods were comparable for pasta filled with beef and cheese; frozen hash browns; cooked chicken patty; egg custard; frozen ground raw pork; and instant nonfat dried milk. The repeatability and reproducibility variances of the Petrifilm Rapid S. aureus Count Plate method were similar to those of the standard method.

  2. [Clonal eosinophilia revealed by recurrent Staphylococcus aureus infection].

    PubMed

    Vandenbos, F; Figueredo, M; Dumon-Gubeno, M-C; Nicolle, I; Tarhini, A; Medioni, L-D; Naman, H; Mouroux, J

    2011-06-01

    Acquired eosinophilia is currently classified into secondary (reactional to underlying diseases), clonal (presence of a bone marrow histological, cytogenetic or molecular marker of a myeloid malignancy) and idiopathic (neither secondary nor clonal) categories. We report the case of a 47-year-old male who was admitted to the hospital for Staphylococcus aureus recurring infections. An hypereosinophilia was discovered and led to molecular analysis. The identification of FIP1L1-PDGFRA fusion gene permitted the diagnostic of clonal eosinophilia. Treatment by imatinib mesylate induced an haematological remission, the control of the infection and thoracotomy cicatrization. This case is original because of its infectious presentation and the efficacy of imatinib mesylate to control the infectious process. PMID:21665081

  3. Colonization of Cimex lectularius with methicillin-resistant Staphylococcus aureus.

    PubMed

    Barbarin, Alexis M; Hu, Baofeng; Nachamkin, Irving; Levy, Michael Z

    2014-05-01

    A recent paper published by Lowe and Romney in Emerging Infectious Diseases titled, Bed bugs as Vectors for Drug-Resistant Bacteria has sparked a renewed interest in bed bug vector potential. We followed a pyrethroid resistant strain of the human bed bug (Cimex lectularius, L.) fed either human blood or human blood with added methicillin resistant Staphylococcus aureus (MRSA) for 9 days post-feeding. Results indicated that while the bed bug midgut is a hospitable environment for MRSA, the bacteria does not survive longer than 9 days within the midgut. Additionally, MRSA is not amplified within the midgut of the bug as the infection was cleared within 9 days. Due to the weekly feeding behaviours of bed bugs, these results suggest that bed bug transmission of MRSA is highly unlikely. PMID:24589308

  4. Preparation of Cell Wall Antigens of Staphylococcus aureus

    PubMed Central

    Kowalski, J. J.; Tipper, Donald J.; Berman, David T.

    1970-01-01

    Cell walls were prepared from Staphylococcus aureus strains Copenhagen and 263 by high-speed mixing in the presence of glass beads followed by differential centrifugation. Insoluble peptidoglycan complexes were derived from cell walls by extraction of teichoic acid with 10% trichloroacetic acid. Intact teichoic acid was prepared from each strain by digestion of cell walls with lysostaphin and isolated by column chromatography. Soluble glycopeptide (peptidoglycan in which only the glycan has been fragmented) and the stable complex of teichoic acid with glycopeptide were prepared by digestion of cell walls with Chalaropsis B endo-N-acetylmuramidase and were separated by column chromatography. Amino acid and amino sugar contents of walls and subunits of walls were comparable to those reported by others. Images PMID:16557799

  5. SbnG, a Citrate Synthase in Staphylococcus aureus

    PubMed Central

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; Heinrichs, David E.; Murphy, Michael E. P.

    2014-01-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. PMID:25336653

  6. Strategies for controlling methicillin-resistant Staphylococcus aureus in hospitals.

    PubMed

    Boyce, J M

    1995-07-01

    In areas where the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) is very low, aggressive strategies, which appear to have been effective, such as those used in the Netherlands and western Australia, may be feasible. In hospitals where MRSA is epidemic or highly endemic, less rigorous strategies are appropriate. However, which isolation techniques and barrier precautions are optimal is controversial. In addition, there is no consensus regarding the epidemiological importance of environmental contamination. Rapid detection of MRSA, prompt implementation of barrier precautions and prospective surveillance are essential components of a successful control programme. Eradicating nasal carriage of MRSA among patients and personnel can be useful during epidemics, but the cost-effectiveness of using this approach in hospitals where the prevalence of MRSA is low is unknown. Additional studies of this issue need to include surveillance for mupirocin-resistant strains.

  7. Bilateral sudden sensorineural hearing loss in Staphylococcus aureus endocarditis.

    PubMed

    Lau, Joanne Wai Ling; Ceranic, Borka; Harris, Robert; Timehin, Elwina

    2015-09-14

    This case highlights the diagnostic challenges in patients presenting with bilateral sudden sensorinueral hearing loss (SNHL). The aetiology of bilateral sudden SNHL may span several medical disciplines. Therefore, clinicians should be mindful of such presentations, and consider aetiologies beyond otological and neurological causes. We present a case of a previously healthy 51-year-old woman who presented with coryzal symptoms and sudden audiovestibular failure. Examination revealed fever, tachycardia, bilateral profound hearing loss and nystagmus. Following investigations, an initial working diagnosis of vasculitis was made. Later, blood cultures revealed methicillin-sensitive Staphylococcus aureus (MSSA) and a transoesophageal echocardiogram confirmed endocarditis. The patient made a good recovery, but the hearing loss was permanent and managed with a cochlear implant.

  8. Antibacterial effect of borage (Echium amoenum) on Staphylococcus aureus.

    PubMed

    Abolhassani, Mohsen

    2004-10-01

    Borage (Echium amoenum) is a large annual plant of the Boraginaceae family, which grows in most of Europe and in northern Iran. The borage flower is used as a medicinal herb in France and other countries. Iranian borage is used in traditional medicine for infectious diseases, flu and as an anti-febrile. We tested the aqueous extract of borage dried flowers in vitro for its antibacterial activity. The extract showed concentration-dependent antibacterial activity against Staphylococcus aureus 8327. This activity was heat resistant, but the activity of freeze-dried extract gradually diminished during a 90-day period. The traditional use of Iranian borage flowers for infectious diseases and for controlling fever appears to be justified. PMID:15798815

  9. Community-associated methicillin-resistant Staphylococcus aureus, Iowa, USA.

    PubMed

    Van De Griend, Philip; Herwaldt, Loreen A; Alvis, Bret; DeMartino, Mary; Heilmann, Kristopher; Doern, Gary; Winokur, Patricia; Vonstein, Diana DeSalvo; Diekema, Daniel

    2009-10-01

    We performed antimicrobial drug susceptibility testing and molecular typing on invasive methicillin-resistant Staphylococcus aureus (MRSA) isolates (n = 1,666) submitted to the University of Iowa Hygienic Laboratory during 1999-2006 as part of a statewide surveillance system. All USA300 and USA400 isolates were resistant to

  10. Mechanism of Gene Regulation by a Staphylococcus aureus Toxin

    PubMed Central

    Joo, Hwang-Soo; Chatterjee, Som S.; Villaruz, Amer E.; Dickey, Seth W.; Tan, Vee Y.; Chen, Yan; Sturdevant, Daniel E.; Ricklefs, Stacy M.

    2016-01-01

    ABSTRACT The virulence of many bacterial pathogens, including the important human pathogen Staphylococcus aureus, depends on the secretion of frequently large amounts of toxins. Toxin production involves the need for the bacteria to make physiological adjustments for energy conservation. While toxins are primarily targets of gene regulation, such changes may be accomplished by regulatory functions of the toxins themselves. However, mechanisms by which toxins regulate gene expression have remained poorly understood. We show here that the staphylococcal phenol-soluble modulin (PSM) toxins have gene regulatory functions that, in particular, include inducing expression of their own transport system by direct interference with a GntR-type repressor protein. This capacity was most pronounced in PSMs with low cytolytic capacity, demonstrating functional specification among closely related members of that toxin family during evolution. Our study presents a molecular mechanism of gene regulation by a bacterial toxin that adapts bacterial physiology to enhanced toxin production. PMID:27795396

  11. Personal hygiene and methicillin-resistant Staphylococcus aureus infection.

    PubMed

    Turabelidze, George; Lin, Mei; Wolkoff, Barbara; Dodson, Douglas; Gladbach, Stephen; Zhu, Bao-Ping

    2006-03-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections outside the healthcare setting are an increasing concern. We conducted a case-control study to investigate an MRSA outbreak during 2002-2003 in a Missouri prison and focused on hygiene factors. Information on sociodemographic characteristics, medical history, and hygiene practices of study participants was collected by interview and medical record review. Logistic regression was used to evaluate MRSA infection in relation to hygiene factors individually and as a composite hygiene score; potential confounding factors were controlled. Selected MRSA isolates were analyzed by pulsed-field gel electrophoresis (PFGE). MRSA infection was significantly associated with a low composite hygiene score. Transmission among prison inmates appeared to be responsible for this outbreak. PFGE analysis showed that isolates were indistinguishable and associated with community-onset MRSA infections in other US prisons. Improving hygiene practices and environmental conditions may help prevent and interrupt future MRSA outbreaks in prison settings. PMID:16704779

  12. [Takotsubo cardiomyopathy in the context of Staphylococcus aureus sepsis].

    PubMed

    Núñez, D; Bermejo, R; Rodríguez-Velasco, A

    2014-03-01

    Takotsubo cardiomyopathy consists of a transient dysfunction of the left ventricle. It is characterised by an impaired left ventricular segmentary contractility, without significant coronary lesions in the coronary angiography. It usually occurs after an episode of physical or emotional stress. We present the case of a 70 year-old woman, who, in the postoperative period of an ankle osteosynthesis, developed a Takotsubo cardiomyopathy in the context of a sepsis caused by Staphylococcus aureus. She presented with acute lung oedema and a clinical picture of low cardiac output. The echocardiogram showed left ventricular medioapical akinesia. Coronary angiography was normal. She was treated with supportive measures with good progress. At 33 days from onset she was able to be discharged from hospital to home with normal systolic function on echocardiography.

  13. Emergence of Daptomycin-Resistant Staphylococcus aureus during Treatment.

    PubMed

    Hagiya, Hideharu; Haruki, Yuto; Uchida, Taeko; Wada, Tomoko; Shiota, Sumiko; Ishida, Tomoharu; Ogawa, Hiroko; Murase, Tomoko; Otsuka, Fumio

    2016-01-01

    A 68-year-old man with persistent bacteremia accompanying a large iliopsoas abscess, vertebral osteomyelitis, discitis and central venous port infection caused by methicillin-resistant Staphylococcus aureus (MRSA) was admitted to our hospital. During the course of treatment, the emergence of a daptomycin (DAP)-resistant MRSA strain was confirmed; the minimum inhibitory concentration was 1 to 2 μg/mL for vancomycin and more than 1 μg/mL for DAP. Although the bacterial cell wall was not significantly thickened, an increased positive surface charge and single-nucleotide polymorphism within mprF have been confirmed in DAP-resistant strains. Still rare, but clinicians need to be cautious of the emergence of DAP-resistant MRSA during treatment. PMID:26726090

  14. Quorum sensing inhibitors of Staphylococcus aureus from Italian medicinal plants.

    PubMed

    Quave, Cassandra L; Plano, Lisa R W; Bennett, Bradley C

    2011-01-01

    Morbidity and mortality estimates due to methicillin-resistant Staphylococcus aureus (MRSA) infections continue to rise. Therapeutic options are limited by antibiotic resistance. Anti-pathogenic compounds, which inhibit quorum sensing (QS) pathways, may be a useful alternative to antibiotics. Staphylococcal QS is encoded by the AGR locus and is responsible for the production of δ-hemolysin. Quantification of δ-hemolysin found in culture supernatants permits the analysis of AGR activity at the translational rather than transcriptional level. We employed reversed phase high performance chromatographic (RP-HPLC) techniques to investigate the anti-QS activity of 168 extracts from 104 Italian plants through quantification of δ-hemolysin. Extracts from three medicinal plants (Ballota nigra, Castanea sativa, and Sambucus ebulus) exhibited a dose-dependent response in the production of δ-hemolysin, indicating anti-QS activity in a pathogenic MRSA isolate.

  15. Quorum Sensing Inhibitors for Staphylococcus aureus from Italian Medicinal Plants

    PubMed Central

    Quave, Cassandra L.; Plano, Lisa R.W.; Bennett, Bradley C.

    2010-01-01

    Morbidity and mortality estimates due to methicillin-resistant Staphylococcus aureus (MRSA) infections continue to rise. Therapeutic options are limited by antibiotic resistance. Anti-pathogenic compounds, which inhibit quorum sensing (QS) pathways, may be a useful alternative to antibiotics. Staphylococcal QS is encoded by the agr locus and is responsible for the production of δ-hemolysin. Quantification of δ-hemolysin found in culture supernatants permits the analysis of agr activity at the translational, rather than transcriptional, level. We employed RP-HPLC techniques to investigate the anti-QS activity of 168 extracts from 104 Italian plants through quantification of δ-hemolysin. Extracts from three medicinal plants (Ballota nigra, Castanea sativa, and Sambucus ebulus) exhibited a dose-dependent response in the production of δ-hemolysin, indicating strong anti-QS activity in a pathogenic MRSA isolate. PMID:20645243

  16. Antibacterial effect of borage (Echium amoenum) on Staphylococcus aureus.

    PubMed

    Abolhassani, Mohsen

    2004-10-01

    Borage (Echium amoenum) is a large annual plant of the Boraginaceae family, which grows in most of Europe and in northern Iran. The borage flower is used as a medicinal herb in France and other countries. Iranian borage is used in traditional medicine for infectious diseases, flu and as an anti-febrile. We tested the aqueous extract of borage dried flowers in vitro for its antibacterial activity. The extract showed concentration-dependent antibacterial activity against Staphylococcus aureus 8327. This activity was heat resistant, but the activity of freeze-dried extract gradually diminished during a 90-day period. The traditional use of Iranian borage flowers for infectious diseases and for controlling fever appears to be justified.

  17. A model for surveillance of methicillin-resistant Staphylococcus aureus.

    PubMed

    Simons, Hannah; Alcabes, Philip

    2008-01-01

    It is well recognized that methicillin-resistant Staphylococcus aureus (MRSA) has become a community pathogen. Several key differences between community-associated and hospital-associated MRSA strains exist, including distinct methicillin resistance genes and genetic backgrounds and differing susceptibility to antibiotics. Recent studies have demonstrated that typical hospital and community strains easily move between hospital and community environments. Despite evidence of MRSA's expanding reach in the community, the best methods for population-level detection and containment have not been established. In an effort to determine effective methods for monitoring the spread of MRSA, we reviewed the literature on hospital-associated and community-associated MRSA (CA-MRSA) in the community and proposed a model for enhanced surveillance. By linking epidemiologic and molecular techniques within a surveillance system that coordinates activities in the community and health-care setting, scientists and public health officials can begin to measure the true extent of CA-MRSA in communities and hospitals.

  18. Osmolyte transport in Staphylococcus aureus and the role in pathogenesis

    PubMed Central

    Schwan, William R; Wetzel, Keith J

    2016-01-01

    Osmolyte transport is a pivotal part of bacterial life, particularly in high salt environments. Several low and high affinity osmolyte transport systems have been identified in various bacterial species. A lot of research has centered on characterizing the osmolyte transport systems of Gram‐negative bacteria, but less has been done to characterize the same transport systems in Gram‐positive bacteria. This review will focus on the previous work that has been done to understand the osmolyte transport systems in the species Staphylococcus aureus and how these transporters may serve dual functions in allowing the bacteria to survive and grow in a variety of environments, including on the surface or within humans or other animals. PMID:27429907

  19. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus.

    PubMed

    Shangguan, Jingfang; Li, Yuhong; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Zou, Zhen; Shi, Hui

    2015-07-01

    Staphylococcus aureus (S. aureus) is an important human pathogen that causes several diseases ranging from superficial skin infections to life-threatening diseases. Here, a method combining positive dielectrophoresis (pDEP) driven on-line enrichment and aptamer-fluorescent silica nanoparticle label has been developed for the rapid and sensitive detection of S. aureus in microfluidic channels. An aptamer, having high affinity to S. aureus, is used as the molecular recognition tool and immobilized onto chloropropyl functionalized fluorescent silica nanoparticles through a click chemistry approach to obtain S. aureus aptamer-nanoparticle bioconjugates (Apt(S.aureus)/FNPs). The pDEP driven on-line enrichment technology was used for accumulating the Apt(S.aureus)/FNP labeled S. aureus. After incubating with S. aureus, the mixture of Apt(S.aureus)/FNP labeled S. aureus and Apt(S.aureus)/FNPs was directly introduced into the pDEP-based microfluidic system. By applying an AC voltage in a pDEP frequency region, the Apt(S.aureus)/FNP labelled S. aureus moved to the electrodes and accumulated in the electrode gap, while the free Apt(S.aureus)/FNPs flowed away. The signal that came from the Apt(S.aureus)/FNP labelled S. aureus in the focused detection areas was then detected. Profiting from the specificity of aptamer, signal amplification of FNP label and pDEP on-line enrichment, this assay can detect as low as 93 and 270 cfu mL(-1)S. aureus in deionized water and spiked water samples, respectively, with higher sensitivities than our previously reported Apt(S.aureus)/FNP based flow cytometry. Moreover, without the need for separation and washing steps usually required for FNP label involved bioassays, the total assay time including sample pretreatment was within 2 h.

  20. Phenazine antibiotic inspired discovery of potent bromophenazine antibacterial agents against Staphylococcus aureus and Staphylococcus epidermidis.

    PubMed

    Borrero, Nicholas V; Bai, Fang; Perez, Cristian; Duong, Benjamin Q; Rocca, James R; Jin, Shouguang; Huigens, Robert W

    2014-02-14

    Nearly all clinically used antibiotics have been (1) discovered from microorganisms (2) using phenotype screens to identify inhibitors of bacterial growth. The effectiveness of these antibiotics is attributed to their endogenous roles as bacterial warfare agents against competing microorganisms. Unfortunately, every class of clinically used antibiotic has been met with drug resistant bacteria. In fact, the emergence of resistant bacterial infections coupled to the dismal pipeline of new antibacterial agents has resulted in a global health care crisis. There is an urgent need for innovative antibacterial strategies and treatment options to effectively combat drug resistant bacterial pathogens. Here, we describe the implementation of a Pseudomonas competition strategy, using redox-active phenazines, to identify novel antibacterial leads against Staphylococcus aureus and Staphylococcus epidermidis. In this report, we describe the chemical synthesis and evaluation of a diverse 27-membered phenazine library. Using this microbial warfare inspired approach, we have identified several bromophenazines with potent antibacterial activities against S. aureus and S. epidermidis. The most potent bromophenazine analogue from this focused library demonstrated a minimum inhibitory concentration (MIC) of 0.78-1.56 μM, or 0.31-0.62 μg mL(-1), against S. aureus and S. epidermidis and proved to be 32- to 64-fold more potent than the phenazine antibiotic pyocyanin in head-to-head MIC experiments. In addition to the discovery of potent antibacterial agents against S. aureus and S. epidermidis, we also report a detailed structure-activity relationship for this class of bromophenazine small molecules.

  1. A case of cavernous sinus thrombosis with meningitis caused by community acquired methicillin resistant Staphylococcus aureus.

    PubMed

    Dinaker, Manjunath; Sharabu, Chandrahasa; Kattula, Sri Rama Surya Tez; Kommalapati, Varun

    2014-05-01

    Septic cavernous sinus thrombosis is a rare clinical condition. Although Staphylococcus aureus is the most common pathogen causing septic cavernous sinus thrombosis [CST], it is an uncommon cause of meningitis. We report the first case of CST with meningitis in Hyderabad, Andhra Pradesh, caused by community acquired epidemic strain of Methicillin resistant staphylococcus aureus [MRSA], in a previously healthy individual with no risk factors. The patient recovered completely following treatment with Vancomycin. We consecutively reviewed all cases of community acquired staphylococcus aureus [CA-MRSA] with central nervous system involvement available in literature. PMID:25508014

  2. A case of cavernous sinus thrombosis with meningitis caused by community acquired methicillin resistant Staphylococcus aureus.

    PubMed

    Dinaker, Manjunath; Sharabu, Chandrahasa; Kattula, Sri Rama Surya Tez; Kommalapati, Varun

    2014-05-01

    Septic cavernous sinus thrombosis is a rare clinical condition. Although Staphylococcus aureus is the most common pathogen causing septic cavernous sinus thrombosis [CST], it is an uncommon cause of meningitis. We report the first case of CST with meningitis in Hyderabad, Andhra Pradesh, caused by community acquired epidemic strain of Methicillin resistant staphylococcus aureus [MRSA], in a previously healthy individual with no risk factors. The patient recovered completely following treatment with Vancomycin. We consecutively reviewed all cases of community acquired staphylococcus aureus [CA-MRSA] with central nervous system involvement available in literature. PMID:25438497

  3. [Severe infection by methicillin sensitive Staphylococcus aureus producing Panton-Valentine leukocidin: reports of two cases].

    PubMed

    Brizuela, Martín; Pérez, Guadalupe; Ruvinsky, Silvina; Sarkis, Claudia; Romero, Romina; Mastroianni, Alejandra; Casimir, Lidia; Venuta, María E; Gómez Bonduele, Verónica; Bologna, Rosa

    2016-08-01

    Staphylococcus aureus is a major etiologic agent of infections in children from the community and the hospital setting. The severity of these conditions is associated with virulence factors, including the Panton-Valentine leukocidin. Both methicillin resistant and sensitive Staphylococcus aureus produce this leukocidin although with varying frequency. We present two children with severe infection by sensitive Staphylococcus aureus producer of Panton-Valentine leukocidin with musculoskeletal and endovascular complications. It is essential the suspected diagnosis, appropriate antibiotic treatment and early surgical management to improve the approach of these infections. Epidemiological surveillance should be mantained to detect the frequency of infections caused by these bacteria. PMID:27399020

  4. [Severe infection by methicillin sensitive Staphylococcus aureus producing Panton-Valentine leukocidin: reports of two cases].

    PubMed

    Brizuela, Martín; Pérez, Guadalupe; Ruvinsky, Silvina; Sarkis, Claudia; Romero, Romina; Mastroianni, Alejandra; Casimir, Lidia; Venuta, María E; Gómez Bonduele, Verónica; Bologna, Rosa

    2016-08-01

    Staphylococcus aureus is a major etiologic agent of infections in children from the community and the hospital setting. The severity of these conditions is associated with virulence factors, including the Panton-Valentine leukocidin. Both methicillin resistant and sensitive Staphylococcus aureus produce this leukocidin although with varying frequency. We present two children with severe infection by sensitive Staphylococcus aureus producer of Panton-Valentine leukocidin with musculoskeletal and endovascular complications. It is essential the suspected diagnosis, appropriate antibiotic treatment and early surgical management to improve the approach of these infections. Epidemiological surveillance should be mantained to detect the frequency of infections caused by these bacteria.

  5. Changing Trends in Resistance Pattern of Methicillin Resistant Staphylococcus aureus

    PubMed Central

    Kali, Arunava; Stephen, Selvaraj; Umadevi, Sivaraman; Kumar, Shailesh; Joseph, Noyal Mariya; Srirangaraj, Sreenivasan

    2013-01-01

    Background: Methicillin resistance in Staphylococcus aureus is associated with multidrug resistance, an aggressive course, increased mortality and morbidity in both community and health care facilities. Monitoring of newly emerging and prevalent Methicillin Resistant Staphylococcus aureus (MRSA) strains for their resistance patterns to conventional as well as novel drugs, are essential for infection control. Aims: To study the changing trends in resistance patterns of MRSA at our hospital. Settings and Design: This cross sectional study was carried out in a 750 bed tertiary care hospital in south India. Material and Methods: One hundred and two clinical isolates of MRSA which were obtained in 2004-2011 were identified by using oxacillin, cefoxitin disc diffusion test and oxacillin screening agar test. Antibiotic susceptibility test was done for commonly used non beta lactam anti-Staphylococcal drugs, as well as for anti-MRSA drugs like vancomycin, linezolid, mupirocin and rifampicin. Minimum inhibitory concentration (MIC) of vancomycin was determined by using Vancomycin HiComb strip (Himedia, Mumbai, India). Statistical Analysis which was done: Chi-square test and proportions were used to compare the two groups. Results: MRSA isolates showed high resistance to co-trimoxazole (82.3%), ciprofloxacin (76.4%), gentamicin (64.7%) and tetracycline (49%) as compared to other drugs. High prevalence of ciprofloxacin resistance was detected, particularly among outpatients. Multi resistant MRSA with a ≥ 3 non-beta lactam agent resistance was 79%. All MRSA isolates were sensitive to vancomycin, linezolid, mupirocin and rifampicin. MRSA had displayed increase in resistance to most antibiotics except tetracycline in recent years. Conclusions: Taking into consideration the prevalence of multidrug resistance in MRSA, resistance patterns should be evaluated periodically and antibiotic therapy should be guided by susceptibility testing. PMID:24179914

  6. Electron microscopy of Staphylococcus aureus cell wall lysis.

    PubMed

    Virgilio, R; González, C; Muñoz, N; Mendoza, S

    1966-05-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018-2024. 1966.-A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents.

  7. Expression of methicillin resistance in heterogeneous strains of Staphylococcus aureus.

    PubMed Central

    Hartman, B J; Tomasz, A

    1986-01-01

    The phenotypic expression of methicillin resistance was studied in a number of clinical isolates and laboratory strains of Staphylococcus aureus. The methicillin-resistant S. aureus strains could be divided into three classes, homogeneous, heterogeneous, and thermosensitive heterogeneous methicillin-resistant S. aureus, on the basis of their plating efficiencies at 30 or 37 degrees C on methicillin-containing agar plates. Heterogeneous strains of methicillin-resistant S. aureus were composed of two subpopulations: a small minority of cells (10(-5) to 10(-3); MIC, 600 to 1,000 micrograms/ml) that expressed resistance to high concentrations of methicillin at 37 degrees C, and a majority of cells (MIC, 5 micrograms/ml) that remained susceptible to the drug at 37 degrees C. Cultures of a thermosensitive heterogeneous strain were able to grow in the presence of high concentrations of methicillin, provided that the growth temperature was 30 degrees C. Such cultures lost their phenotypic resistance within 30 min (i.e., in less than one doubling time) after the growth temperature was shifted to the nonpermissive 37 degrees C. Shift of the temperature of the culture in the reverse direction (37 to 30 degrees C) resulted in an equally rapid expression of phenotypic resistance. The majority of the cells in such heterogeneous strains may be considered heat (or salt) conditional in their phenotypic expression of methicillin resistance. Both heterogeneous and thermosensitive heterogeneous strains, irrespective of their temperature of cultivation and degree of phenotypic resistance, contained detectable quantities of the 78-kilodalton penicillin-binding protein 2a (PBP 2a) that previous studies have suggested is a biochemical correlate of methicillin resistance in homogeneous strains of methicillin-resistant S. aureus. However, in contrast to the homogeneous stains, in heterogeneous and thermosensitive heterogeneous isolates the ability to synthesize PBP 2a is apparently not

  8. Natural mutations in a Staphylococcus aureus virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation

    PubMed Central

    Das, Sudip; Lindemann, Claudia; Young, Bernadette C.; Muller, Julius; Österreich, Babett; Ternette, Nicola; Winkler, Ann-Cathrin; Paprotka, Kerstin; Reinhardt, Richard; Allen, Elizabeth; Flaxman, Amy; Yamaguchi, Yuko; Rollier, Christine S.; van Diemen, Pauline; Blättner, Sebastian; Remmele, Christian W.; Selle, Martina; Dittrich, Marcus; Müller, Tobias; Vogel, Jörg; Ohlsen, Knut; Crook, Derrick W.; Massey, Ruth; Wilson, Daniel J.; Rudel, Thomas; Wyllie, David H.; Fraunholz, Martin J.

    2016-01-01

    Staphylococcus aureus is a major bacterial pathogen, which causes severe blood and tissue infections that frequently emerge by autoinfection with asymptomatically carried nose and skin populations. However, recent studies report that bloodstream isolates differ systematically from those found in the nose and skin, exhibiting reduced toxicity toward leukocytes. In two patients, an attenuated toxicity bloodstream infection evolved from an asymptomatically carried high-toxicity nasal strain by loss-of-function mutations in the gene encoding the transcription factor repressor of surface proteins (rsp). Here, we report that rsp knockout mutants lead to global transcriptional and proteomic reprofiling, and they exhibit the greatest signal in a genome-wide screen for genes influencing S. aureus survival in human cells. This effect is likely to be mediated in part via SSR42, a long-noncoding RNA. We show that rsp controls SSR42 expression, is induced by hydrogen peroxide, and is required for normal cytotoxicity and hemolytic activity. Rsp inactivation in laboratory- and bacteremia-derived mutants attenuates toxin production, but up-regulates other immune subversion proteins and reduces lethality during experimental infection. Crucially, inactivation of rsp preserves bacterial dissemination, because it affects neither formation of deep abscesses in mice nor survival in human blood. Thus, we have identified a spontaneously evolving, attenuated-cytotoxicity, nonhemolytic S. aureus phenotype, controlled by a pleiotropic transcriptional regulator/noncoding RNA virulence regulatory system, capable of causing S. aureus bloodstream infections. Such a phenotype could promote deep infection with limited early clinical manifestations, raising concerns that bacterial evolution within the human body may contribute to severe infection. PMID:27185949

  9. Association of recurrent furunculosis with Panton-Valentine leukocidin and the genetic background of Staphylococcus aureus.

    PubMed

    Masiuk, Helena; Kopron, Katarzyna; Grumann, Dorothee; Goerke, Christiane; Kolata, Julia; Jursa-Kulesza, Joanna; Giedrys-Kalemba, Stefania; Bröker, Barbara M; Holtfreter, Silva

    2010-05-01

    Staphylococcus aureus is a major cause of skin and soft tissue infections, such as furuncles, carbuncles, and abscesses, but it also frequently colonizes the human skin and mucosa without causing clinical symptoms. Panton-Valentine leukocidin (PVL) is a pore-forming toxin that has been associated with soft tissue infections and necrotizing pneumonia. We have compared the genotypes, virulence gene repertoires, and phage patterns of 74 furunculosis isolates with those of 108 control strains from healthy nasal carriers. The large majority of furunculosis strains were methicillin sensitive. Clonal cluster (CC) 121 (CC121) and CC22 accounted for 70% of the furunculosis strains but for only 8% of the nasal isolates. The PVL-encoding genes luk-PV were detected in 85% of furunculosis strains, while their prevalence among colonizing S. aureus strains was below 1%. luk-PV genes were distributed over several lineages (CCs 5, 8, 22, 30, and 121 and sequence type 59). Even within the same lineages, luk-PV-positive phages characterized furunculosis strains, while their luk-PV-negative variants were frequent among nasal strains. The very tight epidemiological linkage between luk-PV and furunculosis, which could be separated from the genetic background of the S. aureus strain as well as from the gene makeup of the luk-PV-transducing phage, lends support to the notion of an important role for PVL in human furunculosis. These results make a case for the determination of luk-PV in recurrent soft tissue infections with methicillin-sensitive as well as methicillin-resistant S. aureus. PMID:20200289

  10. Novel Phenol-soluble Modulin Derivatives in Community-associated Methicillin-resistant Staphylococcus aureus Identified through Imaging Mass Spectrometry*

    PubMed Central

    Gonzalez, David J.; Okumura, Cheryl Y.; Hollands, Andrew; Kersten, Roland; Akong-Moore, Kathryn; Pence, Morgan A.; Malone, Cheryl L.; Derieux, Jaclyn; Moore, Bradley S.; Horswill, Alexander R.; Dixon, Jack E.; Dorrestein, Pieter C.; Nizet, Victor

    2012-01-01

    Staphylococcus aureus causes a wide range of human disease ranging from localized skin and soft tissue infections to potentially lethal systemic infections. S. aureus has the biosynthetic ability to generate numerous virulence factors that assist in circumventing the innate immune system during disease pathogenesis. Recent studies have uncovered a set of extracellular peptides produced by community-associated methicillin-resistant S. aureus (CA-MRSA) with homology to the phenol-soluble modulins (PSMs) from Staphylococcus epidermidis. CA-MRSA PSMs contribute to skin infection and recruit and lyse neutrophils, and truncated versions of these peptides possess antimicrobial activity. In this study, novel CA-MRSA PSM derivatives were discovered by the use of microbial imaging mass spectrometry. The novel PSM derivatives are compared with their parent full-length peptides for changes in hemolytic, cytolytic, and neutrophil-stimulating activity. A potential contribution of the major S. aureus secreted protease aureolysin in processing PSMs is demonstrated. Finally, we show that PSM processing occurs in multiple CA-MRSA strains by structural confirmation of additional novel derivatives. This work demonstrates that IMS can serve as a useful tool to go beyond genome predictions and expand our understanding of the important family of small peptide virulence factors. PMID:22371493

  11. Antimicrobial activity of essential oils against Staphylococcus aureus biofilms.

    PubMed

    Vázquez-Sánchez, Daniel; Cabo, Marta L; Rodríguez-Herrera, Juan J

    2015-12-01

    The present study was aimed to evaluate the potential of essential oils to remove the foodborne pathogen Staphylococcus aureus from food-processing facilities. The effectiveness of 19 essential oils against planktonic cells of S. aureus was firstly assessed by minimal inhibitory concentration. Planktonic cells showed a wide variability in resistance to essential oils, with thyme oil as the most effective, followed by lemongrass oil and then vetiver oil. The eight essential oils most effective against planktonic cells were subsequently tested against 48-h-old biofilms formed on stainless steel. All essential oils reduced significantly (p < 0.01) the number of viable biofilm cells, but none of them could remove biofilms completely. Thyme and patchouli oils were the most effective, but high concentrations were needed to achieve logarithmic reductions over 4 log CFU/cm(2) after 30 min exposure. Alternatively, the use of sub-lethal doses of thyme oil allowed to slow down biofilm formation and to enhance the efficiency of thyme oil and benzalkonium chloride against biofilms. However, some cellular adaptation to thyme oil was detected. Therefore, essential oil-based treatments should be based on the rotation and combination of different essential oils or with other biocides to prevent the emergence of antimicrobial-resistant strains.

  12. Purification and properties of lysozyme produced by Staphylococcus aureus.

    PubMed

    Hawiger, J

    1968-02-01

    A method based on cold ethyl alcohol fractionation at different pH levels and ionic strengths and on gel filtration on a Sephadex G-200 column was used to concentrate and purify lysozyme from the culture supernatant fluid of Staphylococcus aureus strain 524. The final, nondialyzable product exhibited a 163-fold rise in specific activity over that of the starting material. Staphylococcal lysozyme is a glycosidase which splits N-acetylamino sugars from the susceptible substrate. Staphylococcal lysozyme was shown to be similar to egg white lysozyme in its optimal temperature for reaction, optimal pH, activation by NaCl and Ca(++) ions, inhibition by sodium citrate and ethylenediaminetetraacetate, and inactivation by Cu(++) ions and sodium dodecyl sulfate. It differs from the egg white lysozyme in its temperature susceptibility range (staphylococcal lysozyme is inactivated at 56 C). It acts on whole cells and cell walls of Micrococcus lysodeikticus, murein from S. aureus 524, and cell walls of S. epidermidis Zak. The last substrate was not susceptible to the action of egg white lysozyme in the test system used. The mechanism of action of staphylococcal lysozyme seems to be analogous to that of egg white lysozyme; however, the biological specificity of the two enzymes may be different.

  13. Purification and Properties of Lysozyme Produced by Staphylococcus aureus

    PubMed Central

    Hawiger, J.

    1968-01-01

    A method based on cold ethyl alcohol fractionation at different pH levels and ionic strengths and on gel filtration on a Sephadex G-200 column was used to concentrate and purify lysozyme from the culture supernatant fluid of Staphylococcus aureus strain 524. The final, nondialyzable product exhibited a 163-fold rise in specific activity over that of the starting material. Staphylococcal lysozyme is a glycosidase which splits N-acetylamino sugars from the susceptible substrate. Staphylococcal lysozyme was shown to be similar to egg white lysozyme in its optimal temperature for reaction, optimal pH, activation by NaCl and Ca++ ions, inhibition by sodium citrate and ethylenediaminetetraacetate, and inactivation by Cu++ ions and sodium dodecyl sulfate. It differs from the egg white lysozyme in its temperature susceptibility range (staphylococcal lysozyme is inactivated at 56 C). It acts on whole cells and cell walls of Micrococcus lysodeikticus, murein from S. aureus 524, and cell walls of S. epidermidis Zak. The last substrate was not susceptible to the action of egg white lysozyme in the test system used. The mechanism of action of staphylococcal lysozyme seems to be analogous to that of egg white lysozyme; however, the biological specificity of the two enzymes may be different. PMID:4966544

  14. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin.

    PubMed

    Maurer, Katie; Reyes-Robles, Tamara; Alonzo, Francis; Durbin, Joan; Torres, Victor J; Cadwell, Ken

    2015-04-01

    Resistance and tolerance are two defense strategies employed by the host against microbial threats. Autophagy-mediated degradation of bacteria has been extensively described as a major resistance mechanism. Here we find that the dominant function of autophagy proteins during infections with the epidemic community-associated methicillin-resistant Staphylococcus aureus USA300 is to mediate tolerance rather than resistance. Atg16L1 hypomorphic mice (Atg16L1(HM)), which have reduced autophagy, were highly susceptible to lethality in both sepsis and pneumonia models of USA300 infection. Autophagy confers protection by limiting the damage caused by α-toxin, particularly to endothelial cells. Remarkably, Atg16L1(HM) mice display enhanced survival rather than susceptibility upon infection with α-toxin-deficient S. aureus. These results identify an essential role for autophagy in tolerance to Staphylococcal disease and highlight how a single virulence factor encoded by a pathogen can determine whether a given host factor promotes tolerance or resistance.

  15. Converting a Staphylococcus aureus toxin into effective cyclic pseudopeptide antibiotics.

    PubMed

    Solecki, Olivia; Mosbah, Amor; Baudy Floc'h, Michèle; Felden, Brice

    2015-03-19

    Staphylococcus aureus produces peptide toxins that it uses to respond to environmental cues. We previously characterized PepA1, a peptide toxin from S. aureus, that induces lytic cell death of both bacterial and host cells. That led us to suggest that PepA1 has an antibacterial activity. Here, we demonstrate that exogenously provided PepA1 has activity against both Gram-positive and Gram-negative bacteria. We also see that PepA1 is significantly hemolytic, thus limiting its use as an antibacterial agent. To overcome these limitations, we converted PepA1 into nonhemolytic derivatives. Our most promising derivative is a cyclic heptapseudopeptide with inconsequential toxicity to human cells, enhanced stability in human sera, and sharp antibacterial activity. Mechanistically, linear and helical PepA1 derivatives form pores at the bacterial and erythrocyte surfaces, while the cyclic peptide induces bacterial envelope reorganization, with insignificant action on the erythrocytes. Our work demonstrates that bacterial toxins might be an attractive starting point for antibacterial drug development.

  16. Investigation of biofilm formation in clinical isolates of Staphylococcus aureus.

    PubMed

    Cassat, James E; Smeltzer, Mark S; Lee, Chia Y

    2014-01-01

    Invasive methicillin-resistant Staphylococcus aureus (MRSA) infections are often characterized by recalcitrance to antimicrobial therapy, which is a function not only of widespread antimicrobial resistance among clinical isolates, but also the capacity to form biofilms. Biofilms consist of ordered populations of bacterial colonies encased in a polysaccharide and/or proteinaceous matrix. This unique physiologic adaptation limits penetration of antimicrobial molecules and innate immune effectors to the infectious focus, increasing the likelihood of treatment failure and progression to chronic infection. Investigation of mechanisms of biofilm formation and dispersal, as well as the physiologic adaptations to the biofilm lifestyle, is therefore critical to developing new therapies to combat MRSA infections. In this chapter, we describe two in vitro methods for the investigation of staphylococcal biofilm formation, a microtiter plate-based assay of biofilm formation under static conditions and a flow cell-based assay of biofilm formation under fluid shear. We also detail an in vivo murine model of catheter-associated biofilm formation that is amenable to imaging and microbiologic analyses. Special consideration is given to the conditions necessary to support biofilm formation by clinical isolates of S. aureus. PMID:24085698

  17. Staphylococcus aureus infections: transmission within households and the community

    PubMed Central

    Knox, Justin; Uhlemann, Anne-Catrin; Lowy, Franklin D.

    2015-01-01

    Staphylococcus aureus , both methicillin susceptible and resistant, are now major community-based pathogens worldwide. The basis for this is multifactorial and includes the emergence of epidemic clones with enhanced virulence, antibiotic resistance, colonization potential, or transmissibility. Household reservoirs of these unique strains are crucial to their success as community-based pathogens. Staphylococci become resident in households, either as colonizers or environmental contaminants, increasing the risk for recurrent infections. Interactions of household members with others in different households or at community sites including schools and daycare facilities play a critical role in the ability of these strains to become endemic. Colonization density at these sites appears to play an important role in facilitating transmission. The integration of research tools including whole genome sequencing, mathematical modeling and social network analysis have provided additional insight into the transmission dynamics of these strains. Thus far, interventions designed to reduce recurrent infections among household members have had limited success, likely due to the multiplicity of potential sources for recolonization. The development of better strategies to reduce the number of household-based infections will depend on greater insight into the different factors that contribute to the success of these uniquely successful epidemic clones of S. aureus. PMID:25864883

  18. Discovery of Antivirulence Agents against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Khodaverdian, Varandt; Pesho, Michelle; Truitt, Barbara; Bollinger, Lucy; Patel, Parita; Nithianantham, Stanley; Yu, Guanping; Delaney, Elizabeth; Jankowsky, Eckhard

    2013-01-01

    Antivirulence agents inhibit the production of disease-causing virulence factors but are neither bacteriostatic nor bactericidal. Antivirulence agents against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300, the most widespread community-associated MRSA strain in the United States, were discovered by virtual screening against the response regulator AgrA, which acts as a transcription factor for the expression of several of the most prominent S. aureus toxins and virulence factors involved in pathogenesis. Virtual screening was followed by similarity searches in the databases of commercial vendors. The small-molecule compounds discovered inhibit the production of the toxins alpha-hemolysin and phenol-soluble modulin α in a dose-dependent manner without inhibiting bacterial growth. These antivirulence agents are small-molecule biaryl compounds in which the aromatic rings either are fused or are separated by a short linker. One of these compounds is the FDA-approved nonsteroidal anti-inflammatory drug diflunisal. This represents a new use for an old drug. Antivirulence agents might be useful in prophylaxis and as adjuvants in antibiotic therapy for MRSA infections. PMID:23689713

  19. Haem Recognition By a Staphylococcus Aureus NEAT Domain

    SciTech Connect

    Grigg, J.C.; Vermeiren, C.; Heinrichs, D.E.; Murphy, M.E.P.

    2009-06-01

    Successful pathogenic organisms have developed mechanisms to thrive under extreme levels of iron restriction. Haem-iron represents the largest iron reservoir in the human body and is a significant source of iron for some bacterial pathogens. NEAT (NEAr Transporter) domains are found exclusively in a family of cell surface proteins in Gram-positive bacteria. Many NEAT domain-containing proteins, including IsdA in Staphylococcus aureus, are implicated in haem binding. Here, we show that overexpression of IsdA in S. aureus enhances growth and an inactivation mutant of IsdA has a growth defect, compared with wild type, when grown in media containing haem as the sole iron source. Furthermore, the haem-binding property of IsdA is contained within the NEAT domain. Crystal structures of the apo-IsdA NEAT domain and in complex with haem were solved and reveal a clathrin adapter-like beta-sandwich fold with a large hydrophobic haem-binding pocket. Haem is bound with the propionate groups directed at the molecular surface and the iron is co-ordinated solely by Tyr(166). The phenol groups of Tyr(166) and Tyr(170) form an H-bond that may function in regulating haem binding and release. An analysis of IsdA structure-sequence alignments indicate that conservation of Tyr(166) is a predictor of haem binding by NEAT domains.

  20. Expression and crystallization of DsbA from Staphylococcus aureus

    SciTech Connect

    Heras, B. Kurz, M.; Jarrott, R.; Byriel, K. A.; Jones, A.; Thöny-Meyer, L.; Martin, J. L.

    2007-11-01

    Free-interface diffusion crystallization chips were used to identify crystallization conditions for S. aureus DsbA, representing the first Gram-positive DsbA to be crystallized. Native and selenomethionine-derivative crystals diffracted to 2.1 and 2.4 Å resolution, respectively. Bacterial Dsb proteins catalyse the in vivo formation of disulfide bonds, a critical step in the stability and activity of many proteins. Most studies on Dsb proteins have focused on Gram-negative bacteria and thus the process of oxidative folding in Gram-positive bacteria is poorly understood. To help elucidate this process in Gram-positive bacteria, DsbA from Staphylococcus aureus (SaDsbA) has been focused on. Here, the expression, purification, crystallization and preliminary diffraction analysis of SaDsbA are reported. SaDsbA crystals diffract to a resolution limit of 2.1 Å and belong to the hexagonal s