Searching for Compact Binary Mergers with Advanced LIGO
NASA Astrophysics Data System (ADS)
Nitz, Alexander` Harvey
2017-06-01
Several binary black hole mergers were discovered during Advanced LIGOs first observing run, and LIGO is currently well into its second observing run. We will discuss the state of the art in searching for merger signals in LIGO data, and how this will aid in the detection of binary neutron star, neutron-star black hole, and binary black hole mergers.
Gravitational-Wave Luminosity of Binary Neutron Stars Mergers
NASA Astrophysics Data System (ADS)
Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim
2018-03-01
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.
Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim
2018-03-16
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
Binary interaction dominates the evolution of massive stars.
Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N
2012-07-27
The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.
The incidence of stellar mergers and mass gainers among massive stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Mink, S. E.; Sana, H.; Langer, N.
2014-02-10
Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the productsmore » of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.« less
Burgay, M; D'Amico, N; Possenti, A; Manchester, R N; Lyne, A G; Joshi, B C; McLaughlin, M A; Kramer, M; Sarkissian, J M; Camilo, F; Kalogera, V; Kim, C; Lorimer, D R
2003-12-04
The merger of close binary systems containing two neutron stars should produce a burst of gravitational waves, as predicted by the theory of general relativity. A reliable estimate of the double-neutron-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors will be successful in detecting such bursts. Present estimates of this rate are rather low, because we know of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we report the discovery of a 22-ms pulsar, PSR J0737-3039, which is a member of a highly relativistic double-neutron-star binary with an orbital period of 2.4 hours. This system will merge in about 85 Myr, a time much shorter than for any other known neutron-star binary. Together with the relatively low radio luminosity of PSR J0737-3039, this timescale implies an order-of-magnitude increase in the predicted merger rate for double-neutron-star systems in our Galaxy (and in the rest of the Universe).
Convective Excitation of Inertial Modes in Binary Neutron Star Mergers
NASA Astrophysics Data System (ADS)
De Pietri, Roberto; Feo, Alessandra; Font, José A.; Löffler, Frank; Maione, Francesco; Pasquali, Michele; Stergioulas, Nikolaos
2018-06-01
We present the first very long-term simulations (extending up to ˜140 ms after merger) of binary neutron star mergers with piecewise polytropic equations of state and in full general relativity. Our simulations reveal that, at a time of 30-50 ms after merger, parts of the star become convectively unstable, which triggers the excitation of inertial modes. The excited inertial modes are sustained up to several tens of milliseconds and are potentially observable by the planned third-generation gravitational-wave detectors at frequencies of a few kilohertz. Since inertial modes depend on the rotation rate of the star and they are triggered by a convective instability in the postmerger remnant, their detection in gravitational waves will provide a unique opportunity to probe the rotational and thermal state of the merger remnant. In addition, our findings have implications for the long-term evolution and stability of binary neutron star remnants.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio., M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-12-01
We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses \\in [1,3] {M}⊙ and component dimensionless spins <0.05. We also searched for neutron star-black hole systems with the same neutron star parameters, black hole mass \\in [2,99] {M}⊙ , and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary-neutron star systems with component mass distributions of 1.35 ± 0.13 M ⊙ at a volume-weighted average distance of ˜70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M ⊙ and black hole masses of at least 5 M ⊙, a volume-weighted average distance of at least ˜110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc-3 yr-1 for binary-neutron star systems and less than 3600 Gpc-3 yr-1 for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of {10}-7+20 Gpc-3 yr-1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than 2\\buildrel{\\circ}\\over{.} {3}-1.1+1.7 (4\\buildrel{\\circ}\\over{.} {3}-1.9+3.1).
NASA Astrophysics Data System (ADS)
Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman
2018-05-01
Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] < -3), possibly within the first 108 yr after the formation of the first stars. Possible loci of early-Universe r-process nucleosynthesis are the ejecta of either black hole-neutron star or neutron star-neutron star binary mergers. Here, we study the effect of the inclination-eccentricity oscillations raised by a tertiary (e.g. a star) on the coalescence time-scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.
Merging Black Hole Binaries in Galactic Nuclei: Implications for Advanced-LIGO Detections
NASA Astrophysics Data System (ADS)
Antonini, Fabio; Rasio, Frederic A.
2016-11-01
Motivated by the recent detection of gravitational waves from the black hole binary merger GW150914, we study the dynamical evolution of (stellar-mass) black holes in galactic nuclei, where massive star clusters reside. With masses of ˜ {10}7 {M}⊙ and sizes of only a few parsecs, nuclear star clusters (NSCs) are the densest stellar systems observed in the local universe and represent a robust environment where black hole binaries can dynamically form, harden, and merge. We show that due to their large escape speeds, NSCs can retain a large fraction of their merger remnants. Successive mergers can then lead to significant growth and produce black hole mergers of several tens of solar masses similar to GW150914 and up to a few hundreds of solar masses, without the need to invoke extremely low metallicity environments. We use a semi-analytical approach to describe the dynamics of black holes in massive star clusters. Our models give a black hole binary merger rate of ≈ 1.5 {{Gpc}}-3 {{yr}}-1 from NSCs, implying up to a few tens of possible detections per year with Advanced LIGO. Moreover, we find a local merger rate of ˜ 1 {{Gpc}}-3 {{yr}}-1 for high mass black hole binaries similar to GW150914; a merger rate comparable to or higher than that of similar binaries assembled dynamically in globular clusters (GCs). Finally, we show that if all black holes receive high natal kicks, ≳ 50 {km} {{{s}}}-1, then NSCs will dominate the local merger rate of binary black holes compared to either GCs or isolated binary evolution.
Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonini, Fabio; Toonen, Silvia; Hamers, Adrian S.
We consider the formation of binary black hole (BH) mergers through the evolution of field massive triple stars. In this scenario, favorable conditions for the inspiral of a BH binary are initiated by its gravitational interaction with a distant companion, rather than by a common-envelope phase invoked in standard binary evolution models. We use a code that follows self-consistently the evolution of massive triple stars, combining the secular triple dynamics (Lidov–Kozai cycles) with stellar evolution. After a BH triple is formed, its dynamical evolution is computed using either the orbit-averaged equations of motion, or a high-precision direct integrator for triplesmore » with weaker hierarchies for which the secular perturbation theory breaks down. Most BH mergers in our models are produced in the latter non-secular dynamical regime. We derive the properties of the merging binaries and compute a BH merger rate in the range (0.3–1.3) Gpc{sup −3} yr{sup −1}, or up to ≈2.5 Gpc{sup −3} yr{sup −1} if the BH orbital planes have initially random orientation. Finally, we show that BH mergers from the triple channel have significantly higher eccentricities than those formed through the evolution of massive binaries or in dense star clusters. Measured eccentricities could therefore be used to uniquely identify binary mergers formed through the evolution of triple stars. While our results suggest up to ≈10 detections per year with Advanced-LIGO, the high eccentricities could render the merging binaries harder to detect with planned space based interferometers such as LISA.« less
Searches for all types of binary mergers in the first Advanced LIGO observing run
NASA Astrophysics Data System (ADS)
Read, Jocelyn
2017-01-01
The first observational run of the Advanced LIGO detectors covered September 12, 2015 to January 19, 2016. In that time, two definitive observations of merging binary black hole systems were made. In particular, the second observation, GW151226, relied on matched-filter searches targeting merging binaries. These searches were also capable of detecting binary mergers from binary neutron stars and from black-hole/neutron-star binaries. In this talk, I will give an overview of LIGO compact binary coalescence searches, in particular focusing on systems that contain neutron stars. I will discuss the sensitive volumes of the first observing run, the astrophysical implications of detections and non-detections, and prospects for future observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, A.; André, M.; Anghinolfi, M.
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincidentmore » with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.« less
Albert, A.; André, M.; Anghinolfi, M.; ...
2017-11-29
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincidentmore » with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.« less
NASA Astrophysics Data System (ADS)
Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.-J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Ruiz, R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O’Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Pranav, D.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I. F. M.; Albury, J. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene, N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D’Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Day, J. A.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D’Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Feldbusch, F.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.; García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gottowik, M.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harvey, V. M.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino, G.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; The Pierre Auger Collaboration; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O’Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; Ormiston, R.; Ortega, L. F.; O’Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-12-01
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.
NASA Astrophysics Data System (ADS)
Fang, Xiao; Thompson, Todd A.; Hirata, Christopher M.
2018-05-01
We investigate the long-term secular dynamics and Lidov-Kozai (LK) eccentricity oscillations of quadruple systems composed of two binaries at quadrupole and octupole orders in the perturbing Hamiltonian. We show that the fraction of systems reaching high eccentricities is enhanced relative to triple systems, over a broader range of parameter space. We show that this fraction grows with time, unlike triple systems evolved at quadrupole order. This is fundamentally because with their additional degrees of freedom, quadruple systems do not have a maximal set of commuting constants of the motion, even in secular theory at quadrupole order. We discuss these results in the context of star-star and white dwarf-white dwarf (WD) binaries, with emphasis on WD-WD mergers and collisions relevant to the Type Ia supernova problem. For star-star systems, we find that more than 30 per cent of systems reach high eccentricity within a Hubble time, potentially forming triple systems via stellar mergers or close binaries. For WD-WD systems, taking into account general relativistic and tidal precession and dissipation, we show that the merger rate is enhanced in quadruple systems relative to triple systems by a factor of 3.5-10, and that the long-term evolution of quadruple systems leads to a delay-time distribution ˜1/t for mergers and collisions. In gravitational wave-driven mergers of compact objects, we classify the mergers by their evolutionary patterns in phase space and identify a regime in about 8 per cent of orbital shrinking mergers, where eccentricity oscillations occur on the general relativistic precession time-scale, rather than the much longer LK time-scale. Finally, we generalize previous treatments of oscillations in the inner binary eccentricity (evection) to eccentric mutual orbits. We assess the merger rate in quadruple and triple systems and the implications for their viability as progenitors of stellar mergers and Type Ia supernovae.
NASA Astrophysics Data System (ADS)
Shibata, Masaru; Kiuchi, Kenta
2017-06-01
Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.
Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.
Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro
2015-08-28
In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.
Merging black holes in non-spherical nuclear star clusters
NASA Astrophysics Data System (ADS)
Petrovich, Cristobal
2018-04-01
The Milky Way and a significant fraction of galaxies are observed to host a central Massive Black Hole (MBH) embedded in a non-spherical nuclear star cluster. I will discuss the orbital evolution of stellar binaries in these environments and argue that their merger rates are expected to be greatly enhanced when the effect from cluster potential is taken into account in the binary-MBH triple system. I will apply our results to compact-object binary mergers mediated by gravitational wave radiation and show that this merger channel can contribute significantly to the LIGO/Virgo detections.
Colliding Neutron Stars as the Source of Heavy Elements
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-09-01
Where do the heavy elements the chemical elements beyond iron in our universe come from? One of the primary candidate sources is the merger of two neutron stars, but recent observations have cast doubt on this model. Can neutron-star mergers really be responsible?Elements from Collisions?Periodic table showing the origin of each chemical element. Those produced by the r-process are shaded orange and attributed to supernovae in this image; though supernovae are one proposed source of r-process elements, an alternative source is the merger of two neutron stars. [Cmglee]When a binary-neutron-star system inspirals and the two neutron stars smash into each other, a shower of neutrons are released. These neutrons are thought to bombard the surrounding atoms, rapidly producing heavy elements in what is known as r-process nucleosynthesis.So could these mergers be responsible for producing the majority of the universes heavy r-process elements? Proponents of this model argue that its supported by observations. The overall amount of heavy r-process material in the Milky Way, for instance, is consistent with the expected ejection amounts from mergers, based both on predicted merger rates for neutron stars in the galaxy, and on the observed rates of soft gamma-ray bursts (which are thought to accompany double-neutron-star mergers).Challenges from Ultra-Faint DwarfsRecently, however, r-process elements have been observed in ultra-faint dwarf satellite galaxies. This discovery raises two major challenges to the merger model for heavy-element production:When neutron stars are born during a core-collapse supernova, mass is ejected, providing the stars with asymmetric natal kicks. During the second collapse in a double-neutron-star binary, wouldnt the kick exceed the low escape velocity of an ultra-faint dwarf, ejecting the binary before it could merge and enrich the galaxy?Ultra-faint dwarfs have very old stellar populations and the observation of r-process elements in these stars requires mergers to have occurred very early in the galaxys history. Can double-neutron-star systems merge quickly enough to account for the observed chemical enrichment?Small Kicks and Fast MergersFraction of double-neutron-star systems that remain bound, vs. the magnitude of the kick they receive. A typical escape velocity for an ultra-faint dwarf is ~15 km/s; roughly 55-65% of binaries receive smaller kicks than that and wouldnt be ejected from an ultra-faint dwarf. [Beniamini et al. 2016]Led by Paz Beniamini, a team of scientists from the Racah Institute of Physics at the Hebrew University of Jerusalem has set out to answer these questions. Using the statistics of our galaxys double-neutron-star population, the team performed Monte Carlo simulations to estimate the distributions of mass ejection and kick velocities for the systems.Beniamini and collaborators find that, for typical initial separations, more than half of neutron star binaries are born with small enough kicks that they remain bound and arent ejected even from small, ultra-faint dwarf galaxies.The team also used their statistics to calculate the time until merger for the population of binaries, finding that ~90% of the double-neutron-star systems merge within 300 Myr, and around 15% merge within 100 Myr quick enough to enrich even the old population of stars.This population of systems that remain confined to the galaxy and merge rapidly can therefore explain the observations of r-process material in ultra-faint dwarf galaxies. Beniamini and collaborators work suggests that the merger of neutron stars is indeed a viable model for the production of heavy elements in our universe.CitationPaz Beniamini et al 2016 ApJ 829 L13. doi:10.3847/2041-8205/829/1/L13
GRAVITATIONAL WAVE BACKGROUND FROM BINARY MERGERS AND METALLICITY EVOLUTION OF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakazato, Ken’ichiro; Sago, Norichika; Niino, Yuu, E-mail: nakazato@artsci.kyushu-u.ac.jp
The cosmological evolution of the binary black hole (BH) merger rate and the energy density of the gravitational wave (GW) background are investigated. To evaluate the redshift dependence of the BH formation rate, BHs are assumed to originate from low-metallicity stars, and the relations between the star formation rate, metallicity and stellar mass of galaxies are combined with the stellar mass function at each redshift. As a result, it is found that when the energy density of the GW background is scaled with the merger rate at the local universe, the scaling factor does not depend on the critical metallicitymore » for the formation of BHs. Also taking into account the merger of binary neutron stars, a simple formula to express the energy spectrum of the GW background is constructed for the inspiral phase. The relation between the local merger rate and the energy density of the GW background will be examined by future GW observations.« less
NASA Astrophysics Data System (ADS)
Fujibayashi, Sho; Sekiguchi, Yuichiro; Kiuchi, Kenta; Shibata, Masaru
2017-09-01
We performed general relativistic, long-term, axisymmetric neutrino radiation hydrodynamics simulations for the remnant formed after a binary neutron star merger, which consists of a massive neutron star and a torus surrounding it. As an initial condition, we employ the result derived in a three-dimensional, numerical relativity simulation for the binary neutron star merger. We investigate the properties of neutrino-driven ejecta. Due to the pair-annihilation heating, the dynamics of the neutrino-driven ejecta are significantly modified. The kinetic energy of the ejecta is about two times larger than that in the absence of pair-annihilation heating. This suggests that the pair-annihilation heating plays an important role in the evolution of merger remnants. The relativistic outflow, which is required for driving gamma-ray bursts, is not observed because the specific heating rate around the rotational axis is not sufficiently high, due to the baryon loading caused by the neutrino-driven ejecta from the massive neutron star. We discuss the condition for launching the relativistic outflow and the nucleosynthesis in the ejecta.
Multi-messenger studies of compact binary mergers in the in the ngVLA era
NASA Astrophysics Data System (ADS)
Corsi, Alessandra
2018-01-01
We explore some of the scientific opportunities that the next generation Very Large Array (ngVLA) will open in the field of multi-messenger time-domain astronomy. We focus on compact binary mergers, golden astrophysical targets of ground-based gravitational wave (GW) detectors such as advanced LIGO. A decade from now, a large number of these mergers is likely to be discovered by a world-wide network of GW detectors. We discuss how a radio array with 10 times the sensitivity of the current Karl G. Jansky VLA and 10 times the resolution, would enable resolved radio continuum studies of binary merger hosts, probing regions of the galaxy undergoing star formation (which can be heavily obscured by dust and gas), AGN components, and mapping the offset distribution of the mergers with respect to the host galaxy light. For compact binary mergers containing at least one neutron star (NS), from which electromagnetic counterparts are expected to exist, we show how the ngVLA would enable direct size measurements of the relativistic merger ejecta and probe, for the first time directly, their dynamics.
Gamma-ray bursts as the death throes of massive binary stars
NASA Technical Reports Server (NTRS)
Narayan, Ramesh; Paczynski, Bohdan; Piran, Tsvi
1992-01-01
We propose that gamma-ray bursts are created in the mergers of double neutron star binaries and black hole neutron star binaries at cosmological distances. Two different processes provide the electromagnetic energy for the bursts: neutrino-antineutrino annihilation into electron-position pairs during the merger, and magnetic flares generated by the Parker instability in a postmerger differentially rotating disk. In both cases, an optically thick fireball of size less than or approximately equal to 100 km is initially created, which expands ultrarelativistically to large radii before radiating. The scenario is only qualitative at this time, but it eliminates many previous objections to the cosmological merger model. The strongest bursts should be found close to, but not at the centers of, galaxies at redshifts of order 0.1, and should be accompanied by bursts of gravitational radiation from the spiraling-in binary which could be detected by LIGO.
NASA Astrophysics Data System (ADS)
Shapiro, Stuart
2017-01-01
Hans A. Bethe elucidated our understanding of the fundamental forces of Nature by exploring and explaining countless phenomena occurring in nuclear laboratories and in stars. With the dawn of gravitational wave astronomy we now can probe compact binary mergers - Nature's cosmic collision experiments - to deepen our understanding, especially where strong-field gravitation is involved. In addition to gravitational waves, some mergers are likely to generate observable electromagnetic and/or neutrino radiation, heralding a new era of multimessenger astronomy. Robust numerical algorithms now allow us to simulate these events in full general relativity on supercomputers. We will describe some recent magnetohydrodynamic simulations that show how binary black hole-neutron star and neutron star-neutron star mergers can launch jets, lending support to the idea that such mergers could be the engines that power short gamma-ray bursts. We will also show how the magnetorotational collapse of very massive stars to spinning black holes immersed in magnetized accretion disks can launch jets as well, reinforcing the belief that such ``collapsars'' are the progenitors of long gamma-ray bursts. Computer-generated movies highlighting some of these simulations will be shown. We gratefully acknowledge support from NSF Grants 1300903 and 1602536 and NASA Grant NNX13AH44G.
Black Hole Mergers in the Universe.
Portegies Zwart SF; McMillan
2000-01-01
Mergers of black hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates that are too low to be of observational interest. In this Letter, we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation then causes them to sink to the cluster core, where they form binaries. These black hole binaries become more tightly bound by superelastic encounters with other cluster members and are ultimately ejected from the cluster. The majority of escaping black hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational radiation causes them to coalesce within a few billion years. We predict a black hole merger rate of about 1.6x10-7 yr-1 Mpc-3, implying gravity-wave detection rates substantially greater than the corresponding rates from neutron star mergers. For the first-generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we expect about one detection during the first 2 years of operation. For its successor LIGO-II, the rate rises to roughly one detection per day. The uncertainties in these numbers are large. Event rates may drop by about an order of magnitude if the most massive clusters eject their black hole binaries early in their evolution.
Double neutron stars: merger rates revisited
NASA Astrophysics Data System (ADS)
Chruslinska, Martyna; Belczynski, Krzysztof; Klencki, Jakub; Benacquista, Matthew
2018-03-01
We revisit double neutron star (DNS) formation in the classical binary evolution scenario in light of the recent Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo DNS detection (GW170817). The observationally estimated Galactic DNS merger rate of R_MW = 21^{+28}_{-14} Myr-1, based on three Galactic DNS systems, fully supports our standard input physics model with RMW = 24 Myr-1. This estimate for the Galaxy translates in a non-trivial way (due to cosmological evolution of progenitor stars in chemically evolving Universe) into a local (z ≈ 0) DNS merger rate density of Rlocal = 48 Gpc-3 yr-1, which is not consistent with the current LIGO/Virgo DNS merger rate estimate (1540^{+3200}_{-1220} Gpc-3 yr-1). Within our study of the parameter space, we find solutions that allow for DNS merger rates as high as R_local ≈ 600^{+600}_{-300} Gpc-3 yr-1 which are thus consistent with the LIGO/Virgo estimate. However, our corresponding BH-BH merger rates for the models with high DNS merger rates exceed the current LIGO/Virgo estimate of local BH-BH merger rate (12-213 Gpc-3 yr-1). Apart from being particularly sensitive to the common envelope treatment, DNS merger rates are rather robust against variations of several of the key factors probed in our study (e.g. mass transfer, angular momentum loss, and natal kicks). This might suggest that either common envelope development/survival works differently for DNS (˜10-20 M⊙ stars) than for BH-BH (˜40-100 M⊙ stars) progenitors, or high black hole (BH) natal kicks are needed to meet observational constraints for both types of binaries. Our conclusion is based on a limited number of (21) evolutionary models and is valid within this particular DNS and BH-BH isolated binary formation scenario.
NASA Astrophysics Data System (ADS)
Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.
2018-04-01
We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.
Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A
2018-04-13
We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.
Open cluster evolutions in binary system: How they dissolved
NASA Astrophysics Data System (ADS)
Priyatikanto, R.; Arifyanto, M. I.; Wulandari, H. R. T.
2014-03-01
Binarity among stellar clusters in galaxy is such a reality which has been realized for a long time, but still hides several questions and problems to be solved. Some of binary star clusters are formed by close encounter, but the others are formed together from similar womb. Some of them undergo separation process, while the others are in the middle of merger toward common future. The products of merger binary star cluster have typical characteristics which differ from solo clusters, especially in their spatial distribution and their stellar members kinematics. On the other hand, these merger products still have to face dissolving processes triggered by both internal and external factors. In this study, we performed N-body simulations of merger binary clusters with different initial conditions. After merging, these clusters dissolve with greater mass-loss rate because of their angular momentum. These rotating clusters also experience more deceleration caused by external tidal field.
Rotational properties of hypermassive neutron stars from binary mergers
NASA Astrophysics Data System (ADS)
Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst
2017-08-01
Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.
Advanced LIGO constraints on neutron star mergers and r-process sites
Côté, Benoit; Belczynski, Krzysztof; Fryer, Chris L.; ...
2017-02-20
The role of compact binary mergers as the main production site of r-process elements is investigated by combining stellar abundances of Eu observed in the Milky Way, galactic chemical evolution (GCE) simulations, and binary population synthesis models, and gravitational wave measurements from Advanced LIGO. We compiled and reviewed seven recent GCE studies to extract the frequency of neutron star–neutron star (NS–NS) mergers that is needed in order to reproduce the observed [Eu/Fe] versus [Fe/H] relationship. We used our simple chemical evolution code to explore the impact of different analytical delay-time distribution functions for NS–NS mergers. We then combined our metallicity-dependent population synthesis models with our chemical evolution code to bring their predictions, for both NS–NS mergers and black hole–neutron star mergers, into a GCE context. Finally, we convolved our results with the cosmic star formation history to provide a direct comparison with current and upcoming Advanced LIGO measurements. When assuming that NS–NS mergers are the exclusive r-process sites, and that the ejected r-process mass per merger event is 0.01 Mmore » $${}_{\\odot }$$, the number of NS–NS mergers needed in GCE studies is about 10 times larger than what is predicted by standard population synthesis models. Here, these two distinct fields can only be consistent with each other when assuming optimistic rates, massive NS–NS merger ejecta, and low Fe yields for massive stars. For now, population synthesis models and GCE simulations are in agreement with the current upper limit (O1) established by Advanced LIGO during their first run of observations. Upcoming measurements will provide an important constraint on the actual local NS–NS merger rate, will provide valuable insights on the plausibility of the GCE requirement, and will help to define whether or not compact binary mergers can be the dominant source of r-process elements in the universe.« less
NASA Astrophysics Data System (ADS)
Ruiz, Milton; Shapiro, Stuart L.
2017-10-01
Inspiraling and merging binary neutron stars are not only important source of gravitational waves, but also promising candidates for coincident electromagnetic counterparts. These systems are thought to be progenitors of short gamma-ray bursts (sGRBs). We have shown previously that binary neutron star mergers that undergo delayed collapse to a black hole surrounded by a weighty magnetized accretion disk can drive magnetically powered jets. We now perform magnetohydrodynamic simulations in full general relativity of binary neutron stars mergers that undergo prompt collapse to explore the possibility of jet formation from black hole- light accretion disk remnants. We find that after t -tBH˜26 (MNS/1.8 M⊙) ms (MNS is the ADM mass) following prompt black hole formation, there is no evidence of mass outflow or magnetic field collimation. The rapid formation of the black hole following merger prevents magnetic energy from approaching force-free values above the magnetic poles, which is required for the launching of a jet by the usual Blandford-Znajek mechanism. Detection of gravitational waves in coincidence with sGRBs may provide constraints on the nuclear equation of state (EOS): the fate of an NSNS merger-delayed or prompt collapse, and hence the appearance or nonappearance of an sGRB-depends on a critical value of the total mass of the binary, and this value is sensitive to the EOS.
Was the nineteenth century giant eruption of Eta Carinae a merger event in a triple system?
NASA Astrophysics Data System (ADS)
Portegies Zwart, S. F.; van den Heuvel, E. P. J.
2016-03-01
We discuss the events that led to the giant eruption of Eta Carinae, and find that the mid-nineteenth century (in 1838-1843) giant mass-loss outburst has the characteristics of being produced by the merger event of a massive close binary, triggered by the gravitational interaction with a massive third companion star, which is the current binary companion in the Eta Carinae system. We come to this conclusion by a combination of theoretical arguments supported by computer simulations using the Astrophysical Multipurpose Software Environment. According to this model the ˜90 M⊙ present primary star of the highly eccentric Eta Carinae binary system is the product of this merger, and its ˜30 M⊙ companion originally was the third star in the system. In our model, the Homunculus nebula was produced by an extremely enhanced stellar wind, energized by tidal energy dissipation prior to the merger, which enormously boosted the radiation-driven wind mass-loss. The current orbital plane is then aligned with the equatorial plane of the Homunculus, and the symmetric lobes are roughly aligned with the argument of periastron of the current Eta Carina binary. The merger itself then occurred in 1838, which resulted in a massive asymmetric outflow in the equatorial plane of the Homunculus. The 1843 outburst can in our model be attributed to the subsequent encounter when the companion star (once the outermost star in the triple system) plunges through the bloated envelope of the merger product, once when it passed periastron again. We predict that the system has an excess space velocity of order 50 km s-1 in the equatorial plane of the Homunculus. Our triple model gives a viable explanation for the high runaway velocities typically observed in LBVs.
Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993
NASA Astrophysics Data System (ADS)
Palmese, A.; Hartley, W.; Tarsitano, F.; Conselice, C.; Lahav, O.; Allam, S.; Annis, J.; Lin, H.; Soares-Santos, M.; Tucker, D.; Brout, D.; Banerji, M.; Bechtol, K.; Diehl, H. T.; Fruchter, A.; García-Bellido, J.; Herner, K.; Levan, A. J.; Li, T. S.; Lidman, C.; Misra, K.; Sako, M.; Scolnic, D.; Smith, M.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; McMahon, R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Neilsen, E.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sanchez, E.; Schindler, R.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Thomas, R. C.; Walker, A. R.; Weller, J.; Zhang, Y.; Zuntz, J.
2017-11-01
We present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an I-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as {R}{NSM}{gal}={5.7}-3.3+0.57× {10}-6{{yr}}-1. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is {0.038}-0.022+0.004, as opposed to ˜0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer ≲ 200 Myr prior to the BNS coalescence.
Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmese, A.; Hartley, W.; Tarsitano, F.
Here, we present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, asmore » $${R}_{\\mathrm{NSM}}^{\\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\\times {10}^{-6}{\\mathrm{yr}}^{-1}$$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $${0.038}_{-0.022}^{+0.004}$$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer $$\\lesssim$$ 200 Myr prior to the BNS coalescence.« less
Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993
Palmese, A.; Hartley, W.; Tarsitano, F.; ...
2017-11-09
Here, we present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, asmore » $${R}_{\\mathrm{NSM}}^{\\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\\times {10}^{-6}{\\mathrm{yr}}^{-1}$$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $${0.038}_{-0.022}^{+0.004}$$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer $$\\lesssim$$ 200 Myr prior to the BNS coalescence.« less
Search for dark matter effects on gravitational signals from neutron star mergers
NASA Astrophysics Data System (ADS)
Ellis, John; Hektor, Andi; Hütsi, Gert; Kannike, Kristjan; Marzola, Luca; Raidal, Martti; Vaskonen, Ville
2018-06-01
Motivated by the recent detection of the gravitational wave signal emitted by a binary neutron star merger, we analyse the possible impact of dark matter on such signals. We show that dark matter cores in merging neutron stars may yield an observable supplementary peak in the gravitational wave power spectral density following the merger, which could be distinguished from the features produced by the neutron components.
NASA Astrophysics Data System (ADS)
Kyutoku, Koutarou; Kashiyama, Kazumi
2018-05-01
We propose a long-term strategy for detecting thermal neutrinos from the remnant of binary neutron-star mergers with a future M-ton water-Cherenkov detector such as Hyper-Kamiokande. Monitoring ≳2500 mergers within ≲200 Mpc , we may be able to detect a single neutrino with a human time-scale operation of ≈80 Mtyears for the merger rate of 1 Mpc-3 Myr-1 , which is slightly lower than the median value derived by the LIGO-Virgo Collaboration with GW170817. Although the number of neutrino events is minimal, contamination from other sources of neutrinos can be reduced efficiently to ≈0.03 by analyzing only ≈1 s after each merger identified with gravitational-wave detectors if gadolinium is dissolved in the water. The contamination may be reduced further to ≈0.01 if we allow the increase of waiting time by a factor of ≈1.7 . The detection of even a single neutrino can pin down the energy scale of thermal neutrino emission from binary neutron-star mergers and could strongly support or disfavor formation of remnant massive neutron stars. Because the dispersion relation of gravitational waves is now securely constrained to that of massless particles with a corresponding limit on the graviton mass of ≲10-22 eV /c2 by binary black-hole mergers, the time delay of a neutrino from gravitational waves can be used to put an upper limit of ≲O (10 ) meV /c2 on the absolute neutrino mass in the lightest eigenstate. Large neutrino detectors will enhance the detectability, and, in particular, 5 Mt Deep-TITAND and 10 Mt MICA planned in the future will allow us to detect thermal neutrinos every ≈16 and 8 years, respectively, increasing the significance.
Constraining the equation of state of neutron stars from binary mergers.
Takami, Kentaro; Rezzolla, Luciano; Baiotti, Luca
2014-08-29
Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.
NASA Astrophysics Data System (ADS)
Sagunski, Laura; Zhang, Jun; Johnson, Matthew C.; Lehner, Luis; Sakellariadou, Mairi; Liebling, Steven L.; Palenzuela, Carlos; Neilsen, David
2018-03-01
Observations of gravitational radiation from compact binary systems provide an unprecedented opportunity to test general relativity in the strong field dynamical regime. In this paper, we investigate how future observations of gravitational radiation from binary neutron star mergers might provide constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of freedom (d.o.f.) are a characteristic feature of many extensions of general relativity. For concreteness, we work in the context of metric f (R ) gravity, which is equivalent to general relativity and a universally coupled scalar field with a nonlinear potential whose form is fixed by the choice of f (R ). In theories where neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-range scalar force has implications for both the inspiral and merger phases of binary systems. We first present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We then perform a comparative study of binary neutron star mergers in general relativity with those of a one-parameter model of f (R ) gravity using fully relativistic hydrodynamical simulations. These simulations elucidate the effects of the scalar on the merger and postmerger dynamics. We comment on the utility of the full waveform (inspiral, merger, postmerger) to probe different regions of parameter space for both the particular model of f (R ) gravity studied here and for finite-range scalar forces more generally.
On the Progenitor of Binary Neutron Star Merger GW170817
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holgado, A. M.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimball, C.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration
2017-12-01
On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ˜40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ˜2 kpc away from the galaxy’s center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy’s star formation history, provided the stellar populations are older than 1 Gyr.
Belczynski, Krzysztof; Holz, Daniel E; Bulik, Tomasz; O'Shaughnessy, Richard
2016-06-23
The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors--massive, low-metallicity binary stars--with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.
Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald
2017-01-01
The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.
Results of the GstLAL Search for Compact Binary Mergers in Advanced LIGO's First Observing Run
NASA Astrophysics Data System (ADS)
Lang, Ryan; LIGO Scientific Collaboration; Virgo Collaboration Collaboration
2017-01-01
Advanced LIGO's first observing period ended in January 2016. We discuss the GstLAL matched-filter search over this data set for gravitational waves from compact binary objects with total mass up to 100 solar masses. In particular, we discuss the recovery of the unambiguous gravitational wave signals GW150914 and GW151226, as well as the possible third signal LVT151012. Additionally, we discuss the constraints we can place on binary-neutron-star and neutron-star-black-hole system merger rates.
NASA Astrophysics Data System (ADS)
Mills, Cameron; Tiwari, Vaibhav; Fairhurst, Stephen
2018-05-01
The observation of gravitational wave signals from binary black hole and binary neutron star mergers has established the field of gravitational wave astronomy. It is expected that future networks of gravitational wave detectors will possess great potential in probing various aspects of astronomy. An important consideration for successive improvement of current detectors or establishment on new sites is knowledge of the minimum number of detectors required to perform precision astronomy. We attempt to answer this question by assessing the ability of future detector networks to detect and localize binary neutron stars mergers on the sky. Good localization ability is crucial for many of the scientific goals of gravitational wave astronomy, such as electromagnetic follow-up, measuring the properties of compact binaries throughout cosmic history, and cosmology. We find that although two detectors at improved sensitivity are sufficient to get a substantial increase in the number of observed signals, at least three detectors of comparable sensitivity are required to localize majority of the signals, typically to within around 10 deg2 —adequate for follow-up with most wide field of view optical telescopes.
Brownian motion of massive black hole binaries and the final parsec problem
NASA Astrophysics Data System (ADS)
Bortolas, E.; Gualandris, A.; Dotti, M.; Spera, M.; Mapelli, M.
2016-09-01
Massive black hole binaries (BHBs) are expected to be one of the most powerful sources of gravitational waves in the frequency range of the pulsar timing array and of forthcoming space-borne detectors. They are believed to form in the final stages of galaxy mergers, and then harden by slingshot ejections of passing stars. However, evolution via the slingshot mechanism may be ineffective if the reservoir of interacting stars is not readily replenished, and the binary shrinking may come to a halt at roughly a parsec separation. Recent simulations suggest that the departure from spherical symmetry, naturally produced in merger remnants, leads to efficient loss cone refilling, preventing the binary from stalling. However, current N-body simulations able to accurately follow the evolution of BHBs are limited to very modest particle numbers. Brownian motion may artificially enhance the loss cone refilling rate in low-N simulations, where the binary encounters a larger population of stars due its random motion. Here we study the significance of Brownian motion of BHBs in merger remnants in the context of the final parsec problem. We simulate mergers with various particle numbers (from 8k to 1M) and with several density profiles. Moreover, we compare simulations where the BHB is fixed at the centre of the merger remnant with simulations where the BHB is free to random walk. We find that Brownian motion does not significantly affect the evolution of BHBs in simulations with particle numbers in excess of one million, and that the hardening measured in merger simulations is due to collisionless loss cone refilling.
Constraints on Short, Hard Gamma-Ray Burst Beaming Angles from Gravitational Wave Observations
NASA Astrophysics Data System (ADS)
Williams, D.; Clark, J. A.; Williamson, A. R.; Heng, I. S.
2018-05-01
The first detection of a binary neutron star merger, GW170817, and an associated short gamma-ray burst confirmed that neutron star mergers are responsible for at least some of these bursts. The prompt gamma-ray emission from these events is thought to be highly relativistically beamed. We present a method for inferring limits on the extent of this beaming by comparing the number of short gamma-ray bursts (SGRBs) observed electromagnetically with the number of neutron star binary mergers detected in gravitational waves. We demonstrate that an observing run comparable to the expected Advanced LIGO (aLIGO) 2016–2017 run would be capable of placing limits on the beaming angle of approximately θ \\in (2\\buildrel{\\circ}\\over{.} 88,14\\buildrel{\\circ}\\over{.} 15), given one binary neutron star detection, under the assumption that all mergers produce a gamma-ray burst, and that SGRBs occur at an illustrative rate of {{ \\mathcal R }}grb}=10 {Gpc}}-3 {yr}}-1. We anticipate that after a year of observations with aLIGO at design sensitivity in 2020, these constraints will improve to θ \\in (8\\buildrel{\\circ}\\over{.} 10,14\\buildrel{\\circ}\\over{.} 95), under the same efficiency and SGRB rate assumptions.
Hiding in Plain Sight: The Low Mass Helium Star Companion of EL CVn
NASA Astrophysics Data System (ADS)
Gies, Douglas
2016-10-01
Binary stars with orbital periods of a decade or less are destined to interact during their evolution. The mass donor star among intermediate binaries may be stripped of its envelope by mass transfer to reveal its helium core. In cases that avoid merger, the low mass helium star will remain in a binary orbit but be lost in the glare of the mass gainer star.Thanks to photometric time series from Kepler and WASP, we now know of 27 such systems that are oriented to produce mutual eclipses. Althoughthe helium star companions are too small and faint in the optical bandfor spectroscopic detection, they contribute a larger fraction of the total flux in the ultraviolet. HST/COS measurements of one long period system, KOI-81, successfully detected the helium star's spectrum in the far-ultraviolet, leading to estimates of its mass and temperature. Here we propose to obtain new HST/COS FUV spectra of the prototype of this class of evolved binaries, EL CVn, and to determine the mass and physical properties of a star that barely escaped a merger.
NASA Astrophysics Data System (ADS)
Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.
2017-10-01
We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational-wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at ≳ 10 {Gyr} ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 {M}⊙ yr-1, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of {11.2}-1.4+0.7 Gyr, with a 90% confidence range of 6.8{--}13.6 {Gyr}. This in turn indicates an initial binary separation of ≈ 4.5 {R}⊙ , comparable to the inferred values for Galactic BNS systems. We also use new and archival Hubble Space Telescope images to measure a projected offset of the optical counterpart of 2.1 kpc (0.64r e ) from the center of NGC 4993 and to place a limit of {M}r≳ -7.2 mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of ˜200 km s-1. Future GW-EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of r-process enrichment in the universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, P. K.; Berger, E.; Fong, W.
We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked atmore » $$\\gtrsim 10$$ Gyr ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 M$$_{\\odot}$$ yr$$^{-1}$$, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of $$11.2^{+0.7}_{-1.4}$$ Gyr, with a 90% confidence range of $6.8-13.6$ Gyr. This in turn indicates an initial binary separation of $$\\approx 4.5$$ R$$_{\\odot}$$, comparable to the inferred values for Galactic BNS systems. We also use new and archival $Hubble$ $Space$ $Telescope$ images to measure a projected offset of the optical counterpart of $2.1$ kpc (0.64$$r_{e}$$) from the center of NGC 4993 and to place a limit of $$M_{r} \\gtrsim -7.2$$ mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of $$\\sim 200$$ km s$$^{-1}$$. Future GW$-$EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of $r$-process enrichment in the Universe.« less
Blanchard, P. K.; Berger, E.; Fong, W.; ...
2017-10-16
We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked atmore » $$\\gtrsim 10$$ Gyr ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 M$$_{\\odot}$$ yr$$^{-1}$$, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of $$11.2^{+0.7}_{-1.4}$$ Gyr, with a 90% confidence range of $6.8-13.6$ Gyr. This in turn indicates an initial binary separation of $$\\approx 4.5$$ R$$_{\\odot}$$, comparable to the inferred values for Galactic BNS systems. We also use new and archival $Hubble$ $Space$ $Telescope$ images to measure a projected offset of the optical counterpart of $2.1$ kpc (0.64$$r_{e}$$) from the center of NGC 4993 and to place a limit of $$M_{r} \\gtrsim -7.2$$ mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of $$\\sim 200$$ km s$$^{-1}$$. Future GW$-$EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of $r$-process enrichment in the Universe.« less
A possible macronova in the late afterglow of the long-short burst GRB 060614.
Yang, Bin; Jin, Zhi-Ping; Li, Xiang; Covino, Stefano; Zheng, Xian-Zhong; Hotokezaka, Kenta; Fan, Yi-Zhong; Piran, Tsvi; Wei, Da-Ming
2015-06-11
Long-duration (>2 s) γ-ray bursts that are believed to originate from the death of massive stars are expected to be accompanied by supernovae. GRB 060614, that lasted 102 s, lacks a supernova-like emission down to very stringent limits and its physical origin is still debated. Here we report the discovery of near-infrared bump that is significantly above the regular decaying afterglow. This red bump is inconsistent with even the weakest known supernova. However, it can arise from a Li-Paczyński macronova--the radioactive decay of debris following a compact binary merger. If this interpretation is correct, GRB 060614 arose from a compact binary merger rather than from the death of a massive star and it was a site of a significant production of heavy r-process elements. The significant ejected mass favours a black hole-neutron star merger but a double neutron star merger cannot be ruled out.
Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kawaguchi, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration
2017-12-01
The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range between {M}{ej}={10}-3-{10}-2 {M}⊙ for various equations of state, assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if ≳10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Côté, Benoit; Belczynski, Krzysztof; Fryer, Chris L.
The role of compact binary mergers as the main production site of r-process elements is investigated by combining stellar abundances of Eu observed in the Milky Way, galactic chemical evolution (GCE) simulations, and binary population synthesis models, and gravitational wave measurements from Advanced LIGO. We compiled and reviewed seven recent GCE studies to extract the frequency of neutron star–neutron star (NS–NS) mergers that is needed in order to reproduce the observed [Eu/Fe] versus [Fe/H] relationship. We used our simple chemical evolution code to explore the impact of different analytical delay-time distribution functions for NS–NS mergers. We then combined our metallicity-dependent population synthesis models with our chemical evolution code to bring their predictions, for both NS–NS mergers and black hole–neutron star mergers, into a GCE context. Finally, we convolved our results with the cosmic star formation history to provide a direct comparison with current and upcoming Advanced LIGO measurements. When assuming that NS–NS mergers are the exclusive r-process sites, and that the ejected r-process mass per merger event is 0.01 Mmore » $${}_{\\odot }$$, the number of NS–NS mergers needed in GCE studies is about 10 times larger than what is predicted by standard population synthesis models. Here, these two distinct fields can only be consistent with each other when assuming optimistic rates, massive NS–NS merger ejecta, and low Fe yields for massive stars. For now, population synthesis models and GCE simulations are in agreement with the current upper limit (O1) established by Advanced LIGO during their first run of observations. Upcoming measurements will provide an important constraint on the actual local NS–NS merger rate, will provide valuable insights on the plausibility of the GCE requirement, and will help to define whether or not compact binary mergers can be the dominant source of r-process elements in the universe.« less
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2018-03-01
The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f =25 Hz )=1. 8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f =25 Hz )=1. 1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
Post-merger evolution of a neutron star-black hole binary with neutrino transport
NASA Astrophysics Data System (ADS)
Foucart, Francois; O'Connor, Evan; Roberts, Luke; Duez, Matthew; Kidder, Lawrence; Ott, Christian; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration
2015-04-01
We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated truncated moment formalism for neutrino transport. The moment formalism is included as a new module in the SpEC code. We describe the implementation and tests of this new module, and its use to study the formation phase of an accretion disk after a black hole-neutron star merger. We discuss differences with simpler treatments of the neutrinos, the importance of relativistic effects, and the impact of the formation phase of the disk on its expected long-term evolution. We also show that a small amount of material is ejected in the polar region during the circularization of the disk and its interactions with fallback material, and discuss its effects on potential electromagnetic counterparts to the merger.
General relativistic viscous hydrodynamics of differentially rotating neutron stars
NASA Astrophysics Data System (ADS)
Shibata, Masaru; Kiuchi, Kenta; Sekiguchi, Yu-ichiro
2017-04-01
Employing a simplified version of the Israel-Stewart formalism for general-relativistic shear-viscous hydrodynamics, we perform axisymmetric general-relativistic simulations for a rotating neutron star surrounded by a massive torus, which can be formed from differentially rotating stars. We show that with our choice of a shear-viscous hydrodynamics formalism, the simulations can be stably performed for a long time scale. We also demonstrate that with a possibly high shear-viscous coefficient, not only viscous angular momentum transport works but also an outflow could be driven from a hot envelope around the neutron star for a time scale ≳100 ms with the ejecta mass ≳10-2 M⊙ , which is comparable to the typical mass for dynamical ejecta of binary neutron-star mergers. This suggests that massive neutron stars surrounded by a massive torus, which are typical outcomes formed after the merger of binary neutron stars, could be the dominant source for providing neutron-rich ejecta, if the effective shear viscosity is sufficiently high, i.e., if the viscous α parameter is ≳10-2. The present numerical result indicates the importance of a future high-resolution magnetohydrodynamics simulation that is the unique approach to clarify the viscous effect in the merger remnants of binary neutron stars by the first-principle manner.
The Fate of Merging Neutron Stars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-08-01
A rapidly spinning, highly magnetized neutron star is one possible outcome when two smaller neutron stars merge. [Casey Reed/Penn State University]When two neutron stars collide, the new object that they make can reveal information about the interior physics of neutron stars. New theoretical work explores what we should be seeing, and what it can teach us.Neutron Star or Black Hole?So far, the only systems from which weve detected gravitational waves are merging black holes. But other compact-object binaries exist and are expected to merge on observable timescales in particular, binary neutron stars. When two neutron stars merge, the resulting object falls into one of three categories:a stable neutron star,a black hole, ora supramassive neutron star, a large neutron star thats supported by its rotation but will eventually collapse to a black hole after it loses angular momentum.Histograms of the initial (left) and final (right) distributions of objects in the authors simulations, for five different equations of state. Most cases resulted primarily in the formation of neutron stars (NSs) or supramassive neutron stars (sNSs), not black holes (BHs). [Piro et al. 2017]Whether a binary-neutron-star merger results in another neutron star, a black hole, or a supramassive neutron star depends on the final mass of the remnant and what the correct equation of state is that describes the interiors of neutron stars a longstanding astrophysical puzzle.In a recent study, a team of scientists led by Anthony Piro (Carnegie Observatories) estimated which of these outcomes we should expect for mergers of binary neutron stars. The teams results along with future observations of binary neutron stars may help us to eventually pin down the equation of state for neutron stars.Merger OutcomesPiro and collaborators used relativistic calculations of spinning and non-spinning neutron stars to estimate the mass range that neutron stars would have for several different realistic equations of state. They then combined this information with Monte Carlo simulations based on the mass distribution of neutron-star binaries in our galaxy. From these simulations, Piro and collaborators could predict the distribution of fates expected for merging neutron-star binaries, given different equations of state.The authors found that the fate of the merger could vary greatly depending on the equation of state you assume. Intriguingly, all equations of state resulted in a surprisingly high fraction of systems that merged to form a neutron star or a supramassive neutron star in fact, four out of the five equations of state predicted that 80100% of systems would result in a neutron star or a supermassive neutron star.Lessons from ObservationsThe frequency bands covered by various current and planned gravitational wave observatories. Advanced LIGO has the right frequency coverage to be able to explore a neutron-star remnant if the signal is loud enough. [Christopher Moore, Robert Cole and Christopher Berry]These results have important implications for our future observations. The high predicted fraction of neutron stars resulting from these mergers tells us that its especially important for gravitational-wave observatories to probe 14 kHz emission. This frequency range will enable us to study the post-merger neutron-star or supramassive-neutron-star remnants.Even if we cant observe the remnants behavior after it forms, we can still compare the distribution of remnants that we observe in the future to the predictions made by Piro and collaborators. This will potentially allow us to constrain the neutron-star equation of state, revealing the physics of neutron-star interiors even without direct observations.CitationAnthony L. Piro et al 2017 ApJL 844 L19. doi:10.3847/2041-8213/aa7f2f
The possible existence of Pop III NS-BH binary and its detectability
NASA Astrophysics Data System (ADS)
Kinugawa, Tomoya; Nakamura, Takashi; Nakano, Hiroyuki
2017-02-01
In the population synthesis simulations of Pop III stars, many BH (black hole)-BH binaries with merger time less than the age of the Universe (τH) are formed, while NS (neutron star)-BH binaries are not. The reason is that Pop III stars have no metal so that no mass loss is expected. Then, in the final supernova explosion to NS, much mass is lost so that the semimajor axis becomes too large for Pop III NS-BH binaries to merge within τH . However it is almost established that the kick velocity of the order of 200 ‑500 km s‑1 exists for NS from the observation of the proper motion of the pulsar. Therefore, the semimajor axis of the half of NS-BH binaries can be smaller than that of the previous argument for Pop III NS-BH binaries to decrease the merging time. We perform population synthesis Monte Carlo simulations of Pop III NS-BH binaries including the kick of NS and find that the event rate of Pop III NS-BH merger rate is 1 Gpc‑3 yr‑1 . This suggests that there is a good chance of detecting Pop III NS-BH mergers in O2 (Observation run 2) of Advanced LIGO and Advanced Virgo from this autumn.
Evolution Models of Helium White Dwarf–Main-sequence Star Merger Remnants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xianfei; Bi, Shaolan; Hall, Philip D.
It is predicted that orbital decay by gravitational-wave radiation and tidal interaction will cause some close binary stars to merge within a Hubble time. The merger of a helium-core white dwarf with a main-sequence (MS) star can produce a red giant branch star that has a low-mass hydrogen envelope when helium is ignited and thus become a hot subdwarf. Because detailed calculations have not been made, we compute post-merger models with a stellar evolution code. We find the evolutionary paths available to merger remnants and find the pre-merger conditions that lead to the formation of hot subdwarfs. We find thatmore » some such mergers result in the formation of stars with intermediate helium-rich surfaces. These stars later develop helium-poor surfaces owing to diffusion. Combining our results with a model population and comparing to observed stars, we find that some observed intermediate helium-rich hot subdwarfs can be explained as the remnants of the mergers of helium-core white dwarfs with low-mass MS stars.« less
Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmese, A.; et al.
2017-11-09
We present a study of NGC 4993, the host galaxy of the GW170817 gravitational wave event, the GRB170817A short gamma-ray burst (sGRB) and the AT2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC4993 is a nearby (40 Mpc) early-type galaxy, withmore » $i$$-band S\\'ersic index $$n=4.0$ and low asymmetry ($$A=0.04\\pm 0.01$$). These properties are unusual for sGRB hosts. However, NGC4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no on-going star formation in either spatially-resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as $$R_{NSM}^{gal}= 5.7^{+0.57}_{-3.3} \\times 10^{-6} {\\rm yr}^{-1}$$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $$0.038^{+0.004}_{-0.022}$$, as opposed to $$\\sim 0.5$$ from all galaxy types. Hypothesizing that the binary system formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred $$t_{\\rm mer}\\lesssim 200~{\\rm Myr}$$ prior to the BNS coalescence.« less
Bovard, Luke; Martin, Dirk; Guercilena, Federico; ...
2017-12-05
Here, when binary systems of neutron stars merge, a very small fraction of their rest mass is ejected, either dynamically or secularly. This material is neutron-rich and its nucleosynthesis provides the astrophysical site for the production of heavy elements in the Universe, together with a kilonova signal confirming neutron-star mergers as the origin of short gamma-ray bursts. We perform full general-relativistic simulations of binary neutron-star mergers employing three different nuclear-physics equations of state (EOSs), considering both equal- and unequal-mass configurations, and adopting a leakage scheme to account for neutrino radiative losses. Using a combination of techniques, we carry out anmore » extensive and systematic study of the hydrodynamical, thermodynamical, and geometrical properties of the matter ejected dynamically, employing the WinNet nuclear-reaction network to recover the relative abundances of heavy elements produced by each configurations. Among the results obtained, three are particularly important. First, we find that, within the sample considered here, both the properties of the dynamical ejecta and the nucleosynthesis yields are robust against variations of the EOS and masses. Second, using a conservative but robust criterion for unbound matter, we find that the amount of ejected mass is ≲10 –3 M⊙, hence at least one order of magnitude smaller than what normally assumed in modelling kilonova signals. Finally, using a simplified and gray-opacity model we assess the observability of the infrared kilonova emission finding, that for all binaries the luminosity peaks around ~1/2 day in the H-band, reaching a maximum magnitude of –13, and decreasing rapidly after one day.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovard, Luke; Martin, Dirk; Guercilena, Federico
Here, when binary systems of neutron stars merge, a very small fraction of their rest mass is ejected, either dynamically or secularly. This material is neutron-rich and its nucleosynthesis provides the astrophysical site for the production of heavy elements in the Universe, together with a kilonova signal confirming neutron-star mergers as the origin of short gamma-ray bursts. We perform full general-relativistic simulations of binary neutron-star mergers employing three different nuclear-physics equations of state (EOSs), considering both equal- and unequal-mass configurations, and adopting a leakage scheme to account for neutrino radiative losses. Using a combination of techniques, we carry out anmore » extensive and systematic study of the hydrodynamical, thermodynamical, and geometrical properties of the matter ejected dynamically, employing the WinNet nuclear-reaction network to recover the relative abundances of heavy elements produced by each configurations. Among the results obtained, three are particularly important. First, we find that, within the sample considered here, both the properties of the dynamical ejecta and the nucleosynthesis yields are robust against variations of the EOS and masses. Second, using a conservative but robust criterion for unbound matter, we find that the amount of ejected mass is ≲10 –3 M⊙, hence at least one order of magnitude smaller than what normally assumed in modelling kilonova signals. Finally, using a simplified and gray-opacity model we assess the observability of the infrared kilonova emission finding, that for all binaries the luminosity peaks around ~1/2 day in the H-band, reaching a maximum magnitude of –13, and decreasing rapidly after one day.« less
NASA Astrophysics Data System (ADS)
Belczynski, Krzysztof; Holz, Daniel E.; Bulik, Tomasz; O'Shaughnessy, Richard
2016-06-01
The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors—massive, low-metallicity binary stars—with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.
NASA Astrophysics Data System (ADS)
Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.
2016-04-01
The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers in the local Universe will have originated in a globular cluster, but we also explore the sensitivity of this result to different assumptions for binary stellar evolution. If black holes were born with significant natal kicks, comparable to those of neutron stars, then the merger rate of binary black holes from globular clusters would be comparable to that from the field, with approximately 1 /2 of mergers originating in clusters. Finally we point out that population synthesis results for the field may also be modified by dynamical interactions of binaries taking place in dense star clusters which, unlike globular clusters, dissolved before the present day.
Constraints on binary neutron star merger product from short GRB observations
NASA Astrophysics Data System (ADS)
Gao, He; Zhang, Bing; Lü, Hou-Jun
2016-02-01
Binary neutron star (NS) mergers are strong gravitational-wave (GW) sources and the leading candidates to interpret short-duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers and that the x-ray plateau followed by a steep decay as observed in SGRB x-ray light curves marks the collapse of a supramassive neutron star to a black hole (BH), we use the statistical observational properties of Swift SGRBs and the mass distribution of Galactic double neutron star systems to place constraints on the neutron star equation of state (EoS) and the properties of the post-merger product. We show that current observations already impose the following interesting constraints. (1) A neutron star EoS with a maximum mass close to a parametrization of Mmax=2.37 M⊙(1 +1.58 ×10-10P-2.84) is favored. (2) The fractions for the several outcomes of NS-NS mergers are as follows: ˜40 % prompt BHs, ˜30 % supramassive NSs that collapse to BHs in a range of delay time scales, and ˜30 % stable NSs that never collapse. (3) The initial spin of the newly born supramassive NSs should be near the breakup limit (Pi˜1 ms ), which is consistent with the merger scenario. (4) The surface magnetic field of the merger products is typically ˜1015 G . (5) The ellipticity of the supramassive NSs is ɛ ˜(0.004 -0.007 ), so that strong GW radiation is released after the merger. (6) Even though the initial spin energy of the merger product is similar, the final energy output of the merger product that goes into the electromagnetic channel varies in a wide range from several 1049 to several 1052 erg , since a good fraction of the spin energy is either released in the form of GWs or falls into the black hole as the supramassive NS collapses.
NASA Astrophysics Data System (ADS)
Cheung, Chi C. Teddy; Hogan, Jason; Graham, Peter; Kasevich, Mark; Rajendran, Surjeet; Saif, Babak; Kerr, Matthew T.; Lovellette, Michael; Wood, Kent S.; Michelson, Peter; MAGIS Team
2018-01-01
We consider the scientific potential of gravitational wave (GW) observations in the ~30 mHz to 3 Hz frequency range with the Mid-band Atomic Gravitational-wave Interferometric Sensor (MAGIS). MAGIS is a probe-class space-mission concept, using an atom-based gravitational wave detector, that will provide all-sky strain sensitivities of ~10^-21 sqrt(Hz) and better (1-year) in the GW-frequency mid-band between the LISA/L3 detector (planned 2034 launch) and ground-based Advanced LIGO/Virgo interferometers. Primary gravitational wave astrophysics science in the mid-band include GW observations of the binary black hole population discovered by Advanced LIGO/Virgo at higher-frequencies, prior to their merger stage. For such systems, MAGIS will observe the binaries in their inspiral phase, where system parameters such as eccentricities are most easily constrained, and will provide advanced, degree-scale localizations that would enable electromagnetic observations of possible precursor emission 1-week to 1-month prior to their mergers as well as prompt post-merger transient emission. Joint GW-observations with MAGIS and Advanced LIGO/Virgo covering all stages of binary coalescence will further reduce uncertainties in the GW- localizations and distances, and will be powerful paired with galaxy catalogs, to enable unique galaxy counterpart identifications in the case black hole binary mergers are completely absent of detectable electromagnetic precursor or transient signals. These possibilities for MAGIS extend to neutron star binary systems (black hole - neutron star, neutron star - neutron star), and mid-band prospects for such systems will also be considered.The MAGIS team is a collaboration between institutes in the U.S. including Stanford, AOSense, Harvard, NASA/GSFC, NASA/JPL, NIST, NRL, and UC Berkeley, and international partners at Birmingham, Bordeaux, CNRS, Dusseldorf, Ecole Normale Superieure, Florence, Hannover, and Ulm University.
Testing the Merger Paradigm: X-ray Observations of Radio-Selected Sub-Galactic-Scale Binary AGNs
NASA Astrophysics Data System (ADS)
Fu, Hai
2016-09-01
Interactions play an important role in galaxy evolution. Strong gas inflows are expected in the process of gas-rich mergers, which may fuel intense black hole accretion and star formation. Sub-galactic-scale binary/dual AGNs thus offer elegant laboratories to study the merger-driven co-evolution phase. However, previous samples of kpc-scale binaries are small and heterogeneous. We have identified a flux-limited sample of kpc-scale binary AGNs uniformly from a wide-area high-resolution radio survey conducted by the VLA. Here we propose Chandra X-ray characterization of a subset of four radio-confirmed binary AGNs at z 0.1. Our goal is to compare their X-ray properties with those of matched control samples to test the merger-driven co-evolution paradigm.
Helicity coherence in binary neutron star mergers and nonlinear feedback
NASA Astrophysics Data System (ADS)
Chatelain, Amélie; Volpe, Cristina
2017-02-01
Neutrino flavor conversion studies based on astrophysical environments usually implement neutrino mixings, neutrino interactions with matter, and neutrino self-interactions. In anisotropic media, the most general mean-field treatment includes neutrino mass contributions as well, which introduce a coupling between neutrinos and antineutrinos termed helicity or spin coherence. We discuss resonance conditions for helicity coherence for Dirac and Majorana neutrinos. We explore the role of these mean-field contributions on flavor evolution in the context of a binary neutron star merger remnant. We find that resonance conditions can be satisfied in neutron star merger scenarios while adiabaticity is not sufficient for efficient flavor conversion. We analyze our numerical findings by discussing general conditions to have multiple Mikheyev-Smirnov-Wolfenstein-like resonances, in the presence of nonlinear feedback, in astrophysical environments.
Evolution of black holes in the galaxy
NASA Astrophysics Data System (ADS)
Brown, G. E.; Lee, C.-H.; Wijers, R. A. M. J.; Bethe, H. A.
2000-08-01
In this article we consider the formation and evolution of black holes, especially those in binary stars where radiation from the matter falling on them can be seen. We consider a number of effects introduced by some of us, which are not traditionally included in binary evolution of massive stars. These are (i) hypercritical accretion, which allows neutron stars to accrete enough matter to collapse to a black hole during their spiral-in into another star. (ii) The strong mass loss of helium stars, which causes their evolution to differ from that of the helium core of a massive star. (iii) The direct formation of low-mass black holes (M~2Msolar) from single stars, a consequence of a significant strange-matter content of the nuclear-matter equation of state at high density. We discuss these processes here, and then review how they affect various populations of binaries with black holes and neutron stars. We have found that hypercritical accretion changes the standard scenario for the evolution of binary neutron stars: it now usually gives a black-hole, neutron-star (BH-NS) binary, because the first-born neutron star collapses to a low-mass black hole in the course of the evolution. A less probable double helium star scenario has to be introduced in order to form neutron-star binaries. The result is that low-mass black-hole, neutron star (LBH-NS) binaries dominate the rate of detectable gravity-wave events, say, by LIGO, by a factor /~20 over the binary neutron stars. The formation of high-mass black holes is suppressed somewhat due to the influence of mass loss on the cores of massive stars, raising the minimum mass for a star to form a massive BH to perhaps 80Msolar. Still, inclusion of high-mass black-hole, neutron-star (HBH-NS) binaries increases the predicted LIGO detection rate by another /~30% lowering of the mass loss rates of Wolf-Rayet stars may lower the HBH mass limit, and thereby further increase the merger rate. We predict that /~33 mergers per year will be observed with LIGO once the advanced detectors planned to begin in 2004 are in place. Black holes are also considered as progenitors for gamma ray bursters (GRB). Due to their rapid spin, potentially high magnetic fields, and relatively clean environment, mergers of black-hole, neutron-star binaries may be especially suitable. Combined with their 10 times greater formation rate than binary neutron stars this makes them attractive candidates for GRB progenitors, although the strong concentration of GRBs towards host galaxies may favor massive star progenitors or helium-star, black-hole mergers. We also consider binaries with a low-mass companion, and study the evolution of the very large number of black-hole transients, consisting of a black hole of mass ~7Msolar accompanied by a K or M main-sequence star (except for two cases with a somewhat more massive subgiant donor). We show that common envelope evolution must take place in the supergiant stage of the massive progenitor of the black hole, giving an explanation of why the donor masses are so small. We predict that there are about 22 times more binaries than observed, in which the main-sequence star, somewhat more massive than a K- or M-star, sits quietly inside its Roche Lobe, and will only become an X-ray source when the companion evolves off the main sequence. We briefly discuss the evolution of low-mass X-ray binaries into millisecond pulsars. We point out that in the usual scenario for forming millisecond pulsars with He white-dwarf companions, the long period of stable mass transfer will usually lead to the collapse of the neutron star into a black hole. We then discuss Van den Heuvel's ``Hercules X-1 scenario'' for forming low-mass X-ray binaries, commenting on the differences in accretion onto the compact object by radiative or semiconvective donors, rather than the deeply convective donors used in the earlier part of our review. In Appendix /A we describe the evolution of Cyg X-3, finding the compact object to be a black hole of ~3Msolar, together with an ~10Msolar He star. In Appendix /B we do the accounting for gravitational mergers and in Appendix /C we show low-mass black-hole, neutron-star binaries to be good progenitors for gamma ray bursters.
FORMATION OF STABLE MAGNETARS FROM BINARY NEUTRON STAR MERGERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacomazzo, Bruno; Perna, Rosalba
2013-07-10
By performing fully general relativistic magnetohydrodynamic simulations of binary neutron star mergers, we investigate the possibility that the end result of the merger is a stable magnetar. In particular, we show that, for a binary composed of two equal-mass neutron stars (NSs) of gravitational mass M {approx} 1.2 M{sub Sun} and equation of state similar to Shen et al. at high densities, the merger product is a stable NS. Such NS is found to be differentially rotating and ultraspinning with spin parameter J/M{sup 2} {approx} 0.86, where J is its total angular momentum, and it is surrounded by a diskmore » of Almost-Equal-To 0.1 M{sub Sun }. While in our global simulations the magnetic field is amplified by about two orders of magnitude, local simulations have shown that hydrodynamic instabilities and the onset of the magnetorotational instability could further increase the magnetic field strength up to magnetar levels. This leads to the interesting possibility that, for some NS mergers, a stable and magnetized NS surrounded by an accretion disk could be formed. We discuss the impact of these new results for the emission of electromagnetic counterparts of gravitational wave signals and for the central engine of short gamma-ray bursts.« less
Detectable radio flares following gravitational waves from mergers of binary neutron stars.
Nakar, Ehud; Piran, Tsvi
2011-09-28
Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholl, M.; Berger, E.; Kasen, D.
2017-10-16
We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the \\textit{Hubble Space Telescope} at 5.5 days. Our data reveal a rapidly-fading blue component (more » $$T\\approx5500$$ K at 1.5 days) that quickly reddens; spectra later than $$\\gtrsim 4.5$$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $$\\sim 7900$$ \\AA\\ at $$t\\lesssim 4.5$$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $$A\\lesssim 140$$. This indicates a sight-line within $$\\theta_{\\rm obs}\\lesssim 45^{\\circ}$$ of the orbital axis. Comparison to models suggests $$\\sim0.03$$ M$$_\\odot$$ of blue ejecta, with a velocity of $$\\sim 0.3c$$. The required lanthanide fraction is $$\\sim 10^{-4}$$, but this drops to $$<10^{-5}$$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $$\\lesssim 12$$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.« less
Nicholl, Matt; Berger, E.; Kasen, D.; ...
2017-10-16
Here, we present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the Hubble Space Telescope at 5.5 days. Our data reveal a rapidly-fading blue component (more » $$T\\approx5500$$ K at 1.5 days) that quickly reddens; spectra later than $$\\gtrsim 4.5$$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $$\\sim 7900$$ Å at $$t\\lesssim 4.5$$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $$A\\lesssim 140$$. This indicates a sight-line within $$\\theta_{\\rm obs}\\lesssim 45^{\\circ}$$ of the orbital axis. Comparison to models suggests $$\\sim0.03$$ M$$_\\odot$$ of blue ejecta, with a velocity of $$\\sim 0.3c$$. The required lanthanide fraction is $$\\sim 10^{-4}$$, but this drops to $$<10^{-5}$$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $$\\lesssim 12$$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholl, Matt; Berger, E.; Kasen, D.
Here, we present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the Hubble Space Telescope at 5.5 days. Our data reveal a rapidly-fading blue component (more » $$T\\approx5500$$ K at 1.5 days) that quickly reddens; spectra later than $$\\gtrsim 4.5$$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $$\\sim 7900$$ Å at $$t\\lesssim 4.5$$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $$A\\lesssim 140$$. This indicates a sight-line within $$\\theta_{\\rm obs}\\lesssim 45^{\\circ}$$ of the orbital axis. Comparison to models suggests $$\\sim0.03$$ M$$_\\odot$$ of blue ejecta, with a velocity of $$\\sim 0.3c$$. The required lanthanide fraction is $$\\sim 10^{-4}$$, but this drops to $$<10^{-5}$$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $$\\lesssim 12$$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.« less
Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817
Abbott, B. P.; Abbott, R.; Abbott, T. D.; ...
2017-12-01
The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range betweenmore » $${M}_{\\mathrm{ej}}={10}^{-3}-{10}^{-2}\\,{M}_{\\odot }$$ for various equations of state, assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if ≳10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way.« less
Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, B. P.; Abbott, R.; Abbott, T. D.
The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range betweenmore » $${M}_{\\mathrm{ej}}={10}^{-3}-{10}^{-2}\\,{M}_{\\odot }$$ for various equations of state, assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if ≳10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way.« less
Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J
2018-03-02
The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude Ω_{GW}(f=25 Hz)=1.8_{-1.3}^{+2.7}×10^{-9} with 90% confidence, compared with Ω_{GW}(f=25 Hz)=1.1_{-0.7}^{+1.2}×10^{-9} from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
Inferring the post-merger gravitational wave emission from binary neutron star coalescences
NASA Astrophysics Data System (ADS)
Chatziioannou, Katerina; Clark, James Alexander; Bauswein, Andreas; Millhouse, Margaret; Littenberg, Tyson B.; Cornish, Neil
2017-12-01
We present a robust method to characterize the gravitational wave emission from the remnant of a neutron star coalescence. Our approach makes only minimal assumptions about the morphology of the signal and provides a full posterior probability distribution of the underlying waveform. We apply our method on simulated data from a network of advanced ground-based detectors and demonstrate the gravitational wave signal reconstruction. We study the reconstruction quality for different binary configurations and equations of state for the colliding neutron stars. We show how our method can be used to constrain the yet-uncertain equation of state of neutron star matter. The constraints on the equation of state we derive are complementary to measurements of the tidal deformation of the colliding neutron stars during the late inspiral phase. In the case of nondetection of a post-merger signal following a binary neutron star inspiral, we show that we can place upper limits on the energy emitted.
Gravitational wave spectroscopy of binary neutron star merger remnants with mode stacking
NASA Astrophysics Data System (ADS)
Yang, Huan; Paschalidis, Vasileios; Yagi, Kent; Lehner, Luis; Pretorius, Frans; Yunes, Nicolás
2018-01-01
A binary neutron star coalescence event has recently been observed for the first time in gravitational waves, and many more detections are expected once current ground-based detectors begin operating at design sensitivity. As in the case of binary black holes, gravitational waves generated by binary neutron stars consist of inspiral, merger, and postmerger components. Detecting the latter is important because it encodes information about the nuclear equation of state in a regime that cannot be probed prior to merger. The postmerger signal, however, can only be expected to be measurable by current detectors for events closer than roughly ten megaparsecs, which given merger rate estimates implies a low probability of observation within the expected lifetime of these detectors. We carry out Monte Carlo simulations showing that the dominant postmerger signal (the ℓ=m =2 mode) from individual binary neutron star mergers may not have a good chance of observation even with the most sensitive future ground-based gravitational wave detectors proposed so far (the Einstein Telescope and Cosmic Explorer, for certain equations of state, assuming a full year of operation, the latest merger rates, and a detection threshold corresponding to a signal-to-noise ratio of 5). For this reason, we propose two methods that stack the postmerger signal from multiple binary neutron star observations to boost the postmerger detection probability. The first method follows a commonly used practice of multiplying the Bayes factors of individual events. The second method relies on an assumption that the mode phase can be determined from the inspiral waveform, so that coherent mode stacking of the data from different events becomes possible. We find that both methods significantly improve the chances of detecting the dominant postmerger signal, making a detection very likely after a year of observation with Cosmic Explorer for certain equations of state. We also show that in terms of detection, coherent stacking is more efficient in accumulating confidence for the presence of postmerger oscillations in a signal than the first method. Moreover, assuming the postmerger signal is detected with Cosmic Explorer via stacking, we estimate through a Fisher analysis that the peak frequency can be measured to a statistical error of ˜4 - 20 Hz for certain equations of state. Such an error corresponds to a neutron star radius measurement to within ˜15 - 56 m , a fractional relative error ˜4 %, suggesting that systematic errors from theoretical modeling (≳100 m ) may dominate the error budget.
General Relativistic Simulations of Low-Mass Magnetized Binary Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Giacomazzo, Bruno
2017-01-01
We will present general relativistic magnetohydrodynamic (GRMHD) simulations of binary neutron star (BNS) systems that produce long-lived neutron stars (NSs) after merger. While the standard scenario for short gamma-ray bursts (SGRBs) requires the formation after merger of a spinning black hole surrounded by an accretion disk, other theoretical models, such as the time-reversal scenario, predict the formation of a long-lived magnetar. The formation of a long-lived magnetar could in particular explain the X-ray plateaus that have been observed in some SGRBs. Moreover, observations of NSs with masses of 2 solar masses indicate that the equation of state of NS matter should support masses larger than that. Therefore a significant fraction of BNS mergers will produce long-lived NSs. This has important consequences both on the emission of gravitational wave signals and on their electromagnetic counterparts. We will discuss GRMHD simulations of ``low-mass'' magnetized BNS systems with different equations of state and mass ratios. We will describe the properties of their post-merger remnants and of their gravitational and electromagnetic emission.
The cosmic merger rate of neutron stars and black holes
NASA Astrophysics Data System (ADS)
Mapelli, Michela; Giacobbo, Nicola
2018-06-01
Six gravitational wave detections have been reported so far, providing crucial insights on the merger rate of double compact objects. We investigate the cosmic merger rate of double neutron stars (DNSs), neutron star-black hole binaries (NSBHs) and black hole binaries (BHBs) by means of population-synthesis simulations coupled with the Illustris cosmological simulation. We have performed six different simulations, considering different assumptions for the efficiency of common envelope (CE) ejection and exploring two distributions for the supernova (SN) kicks. The current BHB merger rate derived from our simulations spans from ˜150 to ˜240 Gpc-3 yr-1 and is only mildly dependent on CE efficiency. In contrast, the current merger rates of DNSs (ranging from ˜20 to ˜600 Gpc-3 yr-1) and NSBHs (ranging from ˜10 to ˜100 Gpc-3 yr-1) strongly depend on the assumptions on CE and natal kicks. The merger rate of DNSs is consistent with the one inferred from the detection of GW170817 only if a high efficiency of CE ejection and low SN kicks (drawn from a Maxwellian distribution with one dimensional root mean square σ = 15 km s-1) are assumed.
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Bailes, M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Carullo, G.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dudi, R.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leon, E.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh, P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Molina, I.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morisaki, S.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Nagar, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, P.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-10-01
On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0 ×104 years . We infer the component masses of the binary to be between 0.86 and 2.26 M⊙ , in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17 - 1.60 M⊙ , with the total mass of the system 2.7 4-0.01+0.04M⊙ . The source was localized within a sky region of 28 deg2 (90% probability) and had a luminosity distance of 4 0-14+8 Mpc , the closest and most precisely localized gravitational-wave signal yet. The association with the γ -ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ -ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.
NASA Astrophysics Data System (ADS)
Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe
2014-07-01
In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.
Estimating gravitational radiation from super-emitting compact binary systems
NASA Astrophysics Data System (ADS)
Hanna, Chad; Johnson, Matthew C.; Lehner, Luis
2017-06-01
Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the premerger orbital energy and angular momentum. A nonvacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model may capture the merger of (low mass) neutron stars, but it may also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujibayashi, Sho; Sekiguchi, Yuichiro; Kiuchi, Kenta
We performed general relativistic, long-term, axisymmetric neutrino radiation hydrodynamics simulations for the remnant formed after a binary neutron star merger, which consists of a massive neutron star and a torus surrounding it. As an initial condition, we employ the result derived in a three-dimensional, numerical relativity simulation for the binary neutron star merger. We investigate the properties of neutrino-driven ejecta. Due to the pair-annihilation heating, the dynamics of the neutrino-driven ejecta are significantly modified. The kinetic energy of the ejecta is about two times larger than that in the absence of pair-annihilation heating. This suggests that the pair-annihilation heating playsmore » an important role in the evolution of merger remnants. The relativistic outflow, which is required for driving gamma-ray bursts, is not observed because the specific heating rate around the rotational axis is not sufficiently high, due to the baryon loading caused by the neutrino-driven ejecta from the massive neutron star. We discuss the condition for launching the relativistic outflow and the nucleosynthesis in the ejecta.« less
LFsGRB: Binary neutron star merger rate via the luminosity function of short gamma-ray bursts
NASA Astrophysics Data System (ADS)
Paul, Debdutta
2018-04-01
LFsGRB models the luminosity function (LF) of short Gamma Ray Bursts (sGRBs) by using the available catalog data of all short GRBs (sGRBs) detected till 2017 October, estimating the luminosities via pseudo-redshifts obtained from the Yonetoku correlation, and then assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. The data are fit well both by exponential cutoff powerlaw and broken powerlaw models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of short GRBs is derived. Assuming a short GRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present and future configurations of the GW detector networks.
υ-driven winds from the remnant of binary neutron star mergers
NASA Astrophysics Data System (ADS)
Perego, A.
2018-01-01
We present a 3D hydrodynamic study of the neutrino-driven winds that emerge from the remnant of a neutron star merger, represented by a thick accretion disc orbiting around a massive neutron star. This strong baryonic wind is blown out by neutrino absorption on free baryons inside the disc. It expands within a few tens of ms along the original binary rotation axis. If the central object survives for at least 200ms, the mass ejected in the wind can reach 5% of the initial mass of the accretion disc. Due to the intense neutrino irradiation, matter ejected in the wind increases its electron fraction between 0.3 and 0.4, producing weak r-process nucleosynthesis yields. We predict a distinct UV/optical transient associated with the wind ejecta that peaks from a few hours to a few days after the merger.
TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S.
NASA Astrophysics Data System (ADS)
Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; O'C. Drury, L.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Funk, S.; Füssling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Zywucka, N.; H. E. S. S. Collaboration
2017-12-01
We search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges between 270 {GeV} to 8.55 {TeV}. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.
The influence of massive black hole binaries on the morphology of merger remnants
NASA Astrophysics Data System (ADS)
Bortolas, E.; Gualandris, A.; Dotti, M.; Read, J. I.
2018-06-01
Massive black hole (MBH) binaries, formed as a result of galaxy mergers, are expected to harden by dynamical friction and three-body stellar scatterings, until emission of gravitational waves (GWs) leads to their final coalescence. According to recent simulations, MBH binaries can efficiently harden via stellar encounters only when the host geometry is triaxial, even if only modestly, as angular momentum diffusion allows an efficient repopulation of the binary loss cone. In this paper, we carry out a suite of N-body simulations of equal-mass galaxy collisions, varying the initial orbits and density profiles for the merging galaxies and running simulations both with and without central MBHs. We find that the presence of an MBH binary in the remnant makes the system nearly oblate, aligned with the galaxy merger plane, within a radius enclosing 100 MBH masses. We never find binary hosts to be prolate on any scale. The decaying MBHs slightly enhance the tangential anisotropy in the centre of the remnant due to angular momentum injection and the slingshot ejection of stars on nearly radial orbits. This latter effect results in about 1 per cent of the remnant stars being expelled from the galactic nucleus. Finally, we do not find any strong connection between the remnant morphology and the binary hardening rate, which depends only on the inner density slope of the remnant galaxy. Our results suggest that MBH binaries are able to coalesce within a few Gyr, even if the binary is found to partially erase the merger-induced triaxiality from the remnant.
Repeating and non-repeating fast radio bursts from binary neutron star mergers
NASA Astrophysics Data System (ADS)
Yamasaki, Shotaro; Totani, Tomonori; Kiuchi, Kenta
2018-04-01
Most fast radio bursts (FRB) do not show evidence of repetition, and such non-repeating FRBs may be produced at the time of a merger of binary neutron stars (BNS), provided that the BNS merger rate is close to the high end of the currently possible range. However, the merger environment is polluted by dynamical ejecta, which may prohibit the radio signal from propagating. We examine this by using a general-relativistic simulation of a BNS merger, and show that the ejecta appears about 1 ms after the rotation speed of the merged star becomes the maximum. Therefore there is a time window in which an FRB signal can reach outside, and the short duration of non-repeating FRBs can be explained by screening after ejecta formation. A fraction of BNS mergers may leave a rapidly rotating and stable neutron star, and such objects may be the origin of repeating FRBs like FRB 121102. We show that a merger remnant would appear as a repeating FRB on a time scale of ˜1-10 yr, and expected properties are consistent with the observations of FRB 121102. We construct an FRB rate evolution model that includes these two populations of repeating and non-repeating FRBs from BNS mergers, and show that the detection rate of repeating FRBs relative to non-repeating ones rapidly increases with improving search sensitivity. This may explain why only the repeating FRB 121102 was discovered by the most sensitive FRB search with Arecibo. Several predictions are made, including the appearance of a repeating FRB 1-10 yr after a BNS merger that is localized by gravitational waves and subsequent electromagnetic radiation.
Repeating and non-repeating fast radio bursts from binary neutron star mergers
NASA Astrophysics Data System (ADS)
Yamasaki, Shotaro; Totani, Tomonori; Kiuchi, Kenta
2018-06-01
Most fast radio bursts (FRB) do not show evidence of repetition, and such non-repeating FRBs may be produced at the time of a merger of binary neutron stars (BNS), provided that the BNS merger rate is close to the high end of the currently possible range. However, the merger environment is polluted by dynamical ejecta, which may prohibit the radio signal from propagating. We examine this by using a general-relativistic simulation of a BNS merger, and show that the ejecta appears about 1 ms after the rotation speed of the merged star becomes the maximum. Therefore there is a time window in which an FRB signal can reach outside, and the short duration of non-repeating FRBs can be explained by screening after ejecta formation. A fraction of BNS mergers may leave a rapidly rotating and stable neutron star, and such objects may be the origin of repeating FRBs like FRB 121102. We show that a merger remnant would appear as a repeating FRB on a time scale of ˜1-10 yr, and expected properties are consistent with the observations of FRB 121102. We construct an FRB rate evolution model that includes these two populations of repeating and non-repeating FRBs from BNS mergers, and show that the detection rate of repeating FRBs relative to non-repeating ones rapidly increases with improving search sensitivity. This may explain why only the repeating FRB 121102 was discovered by the most sensitive FRB search with Arecibo. Several predictions are made, including the appearance of a repeating FRB 1-10 yr after a BNS merger that is localized by gravitational waves and subsequent electromagnetic radiation.
The Firework of Electromagnetic Counterparts from GW170817
NASA Astrophysics Data System (ADS)
Siegel, Daniel
2018-01-01
The gravitational-wave signal of the binary neutron star merger GW170817 was followed by a firework of electromagnetic transients across the entire electromagnetic spectrum. The gamma-ray emission has provided strong evidence for the association of short gamma-ray bursts (SGRBs) with binary neutron star mergers and the ultraviolet, optical, and near-infrared emission is consistent with a kilonova indicative of the formation of heavy elements in the merger ejecta by the rapid neutron capture process (r-process). In this talk, I will discuss and review theoretical scenarios to interpret the gamma-ray, X-ray, and radio observations. I will present recent results from general-relativistic magnetohydrodynamic simulations and discuss possible scenarios and mass ejection mechanisms that can give rise to the observed kilonova features. In particular, I will argue that massive winds from neutrino-cooled post-merger accretion disks most likely synthesized the heavy r-process elements in GW170817.
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.
Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Bailes, M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Barthelmy, S D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bernuzzi, S; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Carullo, G; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Chatziioannou, K; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Dietrich, T; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dudi, R; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Ho, W C G; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Kastaun, W; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Larson, S L; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leon, E; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Liu, X; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Marsh, P; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Molina, I; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morisaki, S; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Nagar, A; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, P; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zimmerman, A B; Zucker, M E; Zweizig, J
2017-10-20
On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.
On the origin of the hypervelocity runaway star HD 271791
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2010-01-01
We discuss the origin of the early-B-type runaway star HD 271791 and show that its extremely high velocity (≃530 - 920km s-1) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD 271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard, massive binaries or through an exchange encounter between a hard, massive binary and a very massive star, formed through runaway mergers of ordinary massive stars in the dense core of a young massive star cluster.
The Fate of Neutron Star Binary Mergers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piro, Anthony L.; Giacomazzo, Bruno; Perna, Rosalba, E-mail: piro@carnegiescience.edu
Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the massmore » distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.« less
A mass transfer origin for blue stragglers in NGC 188 as revealed by half-solar-mass companions.
Geller, Aaron M; Mathieu, Robert D
2011-10-19
In open star clusters, where all members formed at about the same time, blue straggler stars are typically observed to be brighter and bluer than hydrogen-burning main-sequence stars, and therefore should already have evolved into giant stars and stellar remnants. Correlations between blue straggler frequency and cluster binary star fraction, core mass and radial position suggest that mass transfer or mergers in binary stars dominates the production of blue stragglers in open clusters. Analytic models, detailed observations and sophisticated N-body simulations, however, argue in favour of stellar collisions. Here we report that the blue stragglers in long-period binaries in the old (7 × 10(9)-year) open cluster NGC 188 have companions with masses of about half a solar mass, with a surprisingly narrow mass distribution. This conclusively rules out a collisional origin, as the collision hypothesis predicts a companion mass distribution with significantly higher masses. Mergers in hierarchical triple stars are marginally permitted by the data, but the observations do not favour this hypothesis. The data are highly consistent with a mass transfer origin for the long-period blue straggler binaries in NGC 188, in which the companions would be white dwarfs of about half a solar mass.
Gravitational waves from neutron stars and asteroseismology.
Ho, Wynn C G
2018-05-28
Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).
Gravitational waves from neutron stars and asteroseismology
NASA Astrophysics Data System (ADS)
Ho, Wynn C. G.
2018-05-01
Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.
ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Carl L.; Zevin, Michael; Pankow, Chris
The recent detections of the binary black hole mergers GW150914 and GW151226 have inaugurated the field of gravitational-wave astronomy. For the two main formation channels that have been proposed for these sources, isolated binary evolution in galactic fields and dynamical formation in dense star clusters, the predicted masses and merger rates overlap significantly, complicating any astrophysical claims that rely on measured masses alone. Here, we examine the distribution of spin–orbit misalignments expected for binaries from the field and from dense star clusters. Under standard assumptions for black hole natal kicks, we find that black hole binaries similar to GW150914 couldmore » be formed with significant spin–orbit misalignment only through dynamical processes. In particular, these heavy-black hole binaries can only form with a significant spin–orbit anti -alignment in the dynamical channel. Our results suggest that future detections of merging black hole binaries with measurable spins will allow us to identify the main formation channel for these systems.« less
PALFA Discovers Neutron Stars on a Collision Course
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-03-01
Got any plans in 46 million years? If not, you should keep an eye out for PSR J1946+2052 around that time this upcoming merger of two neutron stars promises to be an exciting show!Survey SuccessAverage profile for PSR J1946+2052 at 1.43 GHz from a 2 hr observation from the Arecibo Observatory. [Stovall et al. 2018]It seems like we just wrote about the dearth of known double-neutron-star systems, and about how new surveys are doing their best to find more of these compact binaries. Observing these systems improves our knowledge of how pairs of evolved stars behave before they eventually spiral in, merge, and emit gravitational waves that detectors like the Laser Interferometer Gravitational-wave Observatory might observe.Todays study, led by Kevin Stovall (National Radio Astronomy Observatory), goes to show that these surveys are doing a great job so far! Yet another double-neutron-star binary, PSR J1946+2052, has now been discovered as part of the Arecibo L-Band Feed Array pulsar (PALFA) survey. This one is especially unique due to the incredible speed with which these neutron stars orbit each other and their correspondingly (relatively!) short timescale for merger.An Extreme ExampleThe PALFA survey, conducted with the enormous 305-meter radio dish at Arecibo, has thus far resulted in the discovery of 180 pulsars including two double-neutron-star systems. The most recent discovery by Stovall and collaborators brings that number up to three, for a grand total of 16 binary-neutron-star systems (confirmed and unconfirmed) known to date.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The newest binary in this collection, PSR J1946+2052, exhibits a pulsar with a 17-millisecond spin period thatwhips around its compact companion at a terrifying rate: the binary period is just 1.88 hours. Follow-up observations with the Jansky Very Large Array and other telescopes allowed the team to identify the binarys location to high precision and establish additional parameters of the system.PSR J1946+2052 is a system of extremes. The binarys total mass is found to be 2.5 solar masses, placing it among the lightest binary-neutron-star systems known. Its orbital period is the shortest weve observed, and the two neutron stars are on track to merge in less time than any other known neutron-star binaries: in just 46 million years. When the two stars reach the final stages of their merger, the effects of the pulsars rapid spin on the gravitational-wave signal will be the largest of any such system discovered to date.More Tests of General RelativityWhat can PSR J1946+2052 do for us? This extreme system will be especially useful as a gravitational laboratory. Continued observations of PSR J1946+2052 will pin down with unprecedented precision parameters like the Einstein delay and the rate of decay of the binarys orbit due to the emission of gravitational waves, testing the predictions of general relativity to an order of magnitude higher precision than was possible before.As we expect there to be thousands of systems like PSR J1946+2052 in our galaxy alone, better understanding this binary and finding more like it continue to be important steps toward interpreting compact-object merger observations in the future.CitationK. Stovall et al 2018 ApJL 854 L22. doi:10.3847/2041-8213/aaad06
NASA Astrophysics Data System (ADS)
Hanauske, Matthias; Steinheimer, Jan; Bovard, Luke; Mukherjee, Ayon; Schramm, Stefan; Takami, Kentaro; Papenfort, Jens; Wechselberger, Natascha; Rezzolla, Luciano; Stöcker, Horst
2017-07-01
The underlying open questions in the fields of general relativistic astrophysics and elementary particle and nuclear physics are strongly connected and their results are interdependent. Although the physical systems are quite different, the 4D-simulation of a merger of a binary system of two neutron stars and the properties of the hot and dense matter created in high energy heavy ion collisions, strongly depend on the equation of state of fundamental elementary matter. Neutron star mergers represent optimal astrophysical laboratories to investigate the QCD phase structure using a spectrogram of the post-merger phase of the emitted gravitational waves. These studies can be supplemented by observations from heavy ion collisions to possibly reach a conclusive picture on the QCD phase structure at high density and temperature. As gravitational waves (GWs) emitted from merging neutron star binaries are on the verge of their first detection, it is important to understand the main characteristics of the underlying merging system in order to predict the expected GW signal. Based on numerical-relativity simulations of merging neutron star binaries, the emitted GW and the interior structure of the generated hypermassive neutron stars (HMNS) have been analyzed in detail. This article will focus on the internal and rotational HMNS properties and their connection with the emitted GW signal. Especially, the appearance of the hadon-quark phase transition in the interior region of the HMNS and its conjunction with the spectral properties of the emitted GW will be addressed and confronted with the simulation results of high energy heavy ion collisions.
Structure of stable binary neutron star merger remnants: Role of initial spin
NASA Astrophysics Data System (ADS)
Kastaun, W.; Ciolfi, R.; Endrizzi, A.; Giacomazzo, B.
2017-08-01
We present general relativistic numerical simulations of binary neutron star (BNS) mergers with different initial spin configurations. We focus on models with stars of mass 1.4 M⊙ each, which employ the equation of state (EOS) by Shen, Horowitz, and Teige, and which result in stable NSs as merger remnants. For comparison, we consider two irrotational equal mass (M =1.35 M⊙) and unequal mass (M =1.29 , 1.42 M⊙ ) BNS models using the APR4 EOS, which result in a supramassive merger remnant. We present visualizations of the fluid flow and temperature distribution and find a strong impact of the spin on vortex structure and nonaxisymmetric deformation. We compute the radial mass distribution and the rotation profile in the equatorial plane using recently developed measures independent of spatial gauge, revealing slowly rotating cores that can be well approximated by the cores of spherical stars. We also study the influence of the spin on the inspiral phase and the gravitational wave (GW) signal. Using a newly developed analysis method, we further show that gravitational waveforms from BNS mergers can exhibit one or more phase jumps after merger, which occur together with minima of the strain amplitude. We provide a natural explanation in terms of the remnant's quadrupole moment, and show that cancellation effects due to phase jumps can have a strong impact on the GW power spectrum. Finally, we discuss the impact of the spin on the amount of ejected matter.
NASA Astrophysics Data System (ADS)
Chornock, R.; Berger, E.; Kasen, D.; Cowperthwaite, P. S.; Nicholl, M.; Villar, V. A.; Alexander, K. D.; Blanchard, P. K.; Eftekhari, T.; Fong, W.; Margutti, R.; Williams, P. K. G.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Drout, M. R.; Farr, B.; Foley, R. J.; Frieman, J. A.; Fryer, C. L.; Herner, K.; Holz, D. E.; Kessler, R.; Matheson, T.; Metzger, B. D.; Quataert, E.; Rest, A.; Sako, M.; Scolnic, D. M.; Smith, N.; Soares-Santos, M.
2017-10-01
We present a near-infrared spectral sequence of the electromagnetic counterpart to the binary neutron star merger GW170817 detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo. Our data set comprises seven epochs of J+H spectra taken with FLAMINGOS-2 on Gemini-South between 1.5 and 10.5 days after the merger. In the initial epoch, the spectrum is dominated by a smooth blue continuum due to a high-velocity, lanthanide-poor blue kilonova component. Starting the following night, all of the subsequent spectra instead show features that are similar to those predicted in model spectra of material with a high concentration of lanthanides, including spectral peaks near 1.07 and 1.55 μm. Our fiducial model with 0.04 M ⊙ of ejecta, an ejection velocity of v = 0.1c, and a lanthanide concentration of X lan = 10-2 provides a good match to the spectra taken in the first five days, although it over-predicts the late-time fluxes. We also explore models with multiple fitting components, in each case finding that a significant abundance of lanthanide elements is necessary to match the broad spectral peaks that we observe starting at 2.5 days after the merger. These data provide direct evidence that binary neutron star mergers are significant production sites of even the heaviest r-process elements.
Chornock, R.; Berger, E.; Kasen, D.; ...
2017-10-16
Here, we present a near-infrared spectral sequence of the electromagnetic counterpart to the binary neutron star merger GW170817 detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo. Our data set comprises seven epochs of J+H spectra taken with FLAMINGOS-2 on Gemini-South between 1.5 and 10.5 days after the merger. In the initial epoch, the spectrum is dominated by a smooth blue continuum due to a high-velocity, lanthanide-poor blue kilonova component. Starting the following night, all of the subsequent spectra instead show features that are similar to those predicted in model spectra of material with a high concentration of lanthanides, including spectralmore » peaks near 1.07 and 1.55 μm. Our fiducial model with 0.04 M ⊙ of ejecta, an ejection velocity of v = 0.1c, and a lanthanide concentration of X lan = 10 –2 provides a good match to the spectra taken in the first five days, although it over-predicts the late-time fluxes. We also explore models with multiple fitting components, in each case finding that a significant abundance of lanthanide elements is necessary to match the broad spectral peaks that we observe starting at 2.5 days after the merger. These data provide direct evidence that binary neutron star mergers are significant production sites of even the heaviest r-process elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chornock, R.; Berger, E.; Cowperthwaite, P. S.
We present a near-infrared spectral sequence of the electromagnetic counterpart to the binary neutron star merger GW170817 detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo. Our data set comprises seven epochs of J + H spectra taken with FLAMINGOS-2 on Gemini-South between 1.5 and 10.5 days after the merger. In the initial epoch, the spectrum is dominated by a smooth blue continuum due to a high-velocity, lanthanide-poor blue kilonova component. Starting the following night, all of the subsequent spectra instead show features that are similar to those predicted in model spectra of material with a high concentration of lanthanides, includingmore » spectral peaks near 1.07 and 1.55 μ m. Our fiducial model with 0.04 M {sub ⊙} of ejecta, an ejection velocity of v = 0.1 c , and a lanthanide concentration of X {sub lan} = 10{sup −2} provides a good match to the spectra taken in the first five days, although it over-predicts the late-time fluxes. We also explore models with multiple fitting components, in each case finding that a significant abundance of lanthanide elements is necessary to match the broad spectral peaks that we observe starting at 2.5 days after the merger. These data provide direct evidence that binary neutron star mergers are significant production sites of even the heaviest r -process elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chornock, R.; Berger, E.; Kasen, D.
Here, we present a near-infrared spectral sequence of the electromagnetic counterpart to the binary neutron star merger GW170817 detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo. Our data set comprises seven epochs of J+H spectra taken with FLAMINGOS-2 on Gemini-South between 1.5 and 10.5 days after the merger. In the initial epoch, the spectrum is dominated by a smooth blue continuum due to a high-velocity, lanthanide-poor blue kilonova component. Starting the following night, all of the subsequent spectra instead show features that are similar to those predicted in model spectra of material with a high concentration of lanthanides, including spectralmore » peaks near 1.07 and 1.55 μm. Our fiducial model with 0.04 M ⊙ of ejecta, an ejection velocity of v = 0.1c, and a lanthanide concentration of X lan = 10 –2 provides a good match to the spectra taken in the first five days, although it over-predicts the late-time fluxes. We also explore models with multiple fitting components, in each case finding that a significant abundance of lanthanide elements is necessary to match the broad spectral peaks that we observe starting at 2.5 days after the merger. These data provide direct evidence that binary neutron star mergers are significant production sites of even the heaviest r-process elements.« less
Shapiro, Stuart L
2017-05-15
We have performed magnetohydrodynamic simulations in general relativity of binary neutron star and binary black hole-neutron star mergers, as well as the magnetorotational collapse of supermassive stars. In many cases the outcome is a spinnng black hole (BH) immersed in a magnetized disk, with a jet emanating from the poles of the BH. While their formation scenarios differ and their BH masses, as well as their disk masses, densities, and magnetic field strengths, vary by orders of magnitude, these features conspire to generate jet Poynting luminosities that all lie in the same, narrow range of ~10 52±1 erg s -1 . A similar result applies to their BH accretion rates upon jet launch, which is ~0.1-10 M ⊙ s -1 . We provide a simple model that explains these unanticipated findings. Interestingly, these luminosities reside in the same narrow range characterizing the observed luminosity distributions of over 400 short and long GRBs with distances inferred from spectroscopic redshifts or host galaxies. This result, together with the GRB lifetimes predicted by the model, supports the belief that a compact binary merger is the progenitor of an SGRB, while a massive, stellar magnetorotational collapse is the progenitor of an LGRB.
Shapiro, Stuart L.
2018-01-01
We have performed magnetohydrodynamic simulations in general relativity of binary neutron star and binary black hole-neutron star mergers, as well as the magnetorotational collapse of supermassive stars. In many cases the outcome is a spinnng black hole (BH) immersed in a magnetized disk, with a jet emanating from the poles of the BH. While their formation scenarios differ and their BH masses, as well as their disk masses, densities, and magnetic field strengths, vary by orders of magnitude, these features conspire to generate jet Poynting luminosities that all lie in the same, narrow range of ~1052±1 erg s−1. A similar result applies to their BH accretion rates upon jet launch, which is ~0.1–10 M⊙ s−1. We provide a simple model that explains these unanticipated findings. Interestingly, these luminosities reside in the same narrow range characterizing the observed luminosity distributions of over 400 short and long GRBs with distances inferred from spectroscopic redshifts or host galaxies. This result, together with the GRB lifetimes predicted by the model, supports the belief that a compact binary merger is the progenitor of an SGRB, while a massive, stellar magnetorotational collapse is the progenitor of an LGRB. PMID:29881790
Rapid formation of supermassive black hole binaries in galaxy mergers with gas.
Mayer, L; Kazantzidis, S; Madau, P; Colpi, M; Quinn, T; Wadsley, J
2007-06-29
Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars.
Implications of the Low Binary Black Hole Aligned Spins Observed by LIGO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hotokezaka, Kenta; Piran, Tsvi
We explore the implications of the low-spin components along the orbital axis observed in an Advanced LIGO O1 run on binary black hole (BBH) merger scenarios in which the merging BBHs have evolved from field binaries. The coalescence time determines the initial orbital separation of BBHs. This, in turn, determines whether the stars are synchronized before collapse, and hence determines their projected spins. Short coalescence times imply synchronization and large spins. Among known stellar objects, Wolf–Rayet (WR) stars seem to be the only progenitors consistent with the low aligned spins observed in LIGO’s O1, provided that the orbital axis maintainsmore » its direction during the collapse. We calculate the spin distribution of BBH mergers in the local universe, and its redshift evolution for WR progenitors. Assuming that the BBH formation rate peaks around a redshift of ∼2–3, we show that BBH mergers in the local universe are dominated by low-spin events. The high-spin population starts to dominate at a redshift of ∼0.5–1.5. WR stars are also progenitors of long gamma-ray bursts that take place at a comparable rate to BBH mergers. We discuss the possible connection between the two phenomena. Additionally, we show that hypothetical Population III star progenitors are also possible. Although WR and Population III progenitors are consistent with the current data, both models predict a non-vanishing fraction of high positive values of the BBHs’ aligned spin. If those are not detected within the coming LIGO/Virgo runs, it will be unlikely that the observed BBHs formed via field binaries.« less
Are merging black holes born from stellar collapse or previous mergers?
NASA Astrophysics Data System (ADS)
Gerosa, Davide; Berti, Emanuele
2017-06-01
Advanced LIGO detectors at Hanford and Livingston made two confirmed and one marginal detection of binary black holes during their first observing run. The first event, GW150914, was from the merger of two black holes much heavier that those whose masses have been estimated so far, indicating a formation scenario that might differ from "ordinary" stellar evolution. One possibility is that these heavy black holes resulted from a previous merger. When the progenitors of a black hole binary merger result from previous mergers, they should (on average) merge later, be more massive, and have spin magnitudes clustered around a dimensionless spin ˜0.7 . Here we ask the following question: can gravitational-wave observations determine whether merging black holes were born from the collapse of massive stars ("first generation"), rather than being the end product of earlier mergers ("second generation")? We construct simple, observationally motivated populations of black hole binaries, and we use Bayesian model selection to show that measurements of the masses, luminosity distance (or redshift), and "effective spin" of black hole binaries can indeed distinguish between these different formation scenarios.
Compact Binary Mergers and the Event Rate of Fast Radio Bursts
NASA Astrophysics Data System (ADS)
Cao, Xiao-Feng; Yu, Yun-Wei; Zhou, Xia
2018-05-01
Fast radio bursts (FRBs) are usually suggested to be associated with mergers of compact binaries consisting of white dwarfs (WDs), neutron stars (NSs), or black holes (BHs). We test these models by fitting the observational distributions in both redshift and isotropic energy of 22 Parkes FRBs, where, as usual, the rates of compact binary mergers (CBMs) are connected with cosmic star formation rates by a power-law distributed time delay. It is found that the observational distributions can well be produced by the CBM model with a characteristic delay time from several tens to several hundreds of megayears and an energy function index 1.2 ≲ γ ≲ 1.7, where a tentative fixed spectral index β = 0.8 is adopted for all FRBs. Correspondingly, the local event rate of FRBs is constrained to {(3{--}6)× {10}4{f}{{b}}-1({ \\mathcal T }/270{{s}})}-1{({ \\mathcal A }/2π )}-1 {Gpc}}-3 {yr}}-1 for an adopted minimum FRB energy of E min = 3 × 1039 erg, where f b is the beaming factor of the radiation, { \\mathcal T } is the duration of each pointing observation, and { \\mathcal A } is the sky area of the survey. This event rate, about an order of magnitude higher than the rates of NS–NS/NS–BH mergers, indicates that the most promising origin of FRBs in the CBM scenario could be mergers of WD–WD binaries. Here a massive WD could be produced since no FRB was found to be associated with an SN Ia. Alternatively, if all FRBs can repeat on a timescale much longer than the period of current observations, then they could also originate from a young active NS that forms from relatively rare NS–NS mergers and accretion-induced collapses of WD–WD binaries.
Numerical relativity simulations of precessing binary neutron star mergers
NASA Astrophysics Data System (ADS)
Dietrich, Tim; Bernuzzi, Sebastiano; Brügmann, Bernd; Ujevic, Maximiliano; Tichy, Wolfgang
2018-03-01
We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes ˜0.1 . They start at a gravitational-wave frequency of ˜392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.
Measuring neutron-star properties via gravitational waves from neutron-star mergers.
Bauswein, A; Janka, H-T
2012-01-06
We demonstrate by a large set of merger simulations for symmetric binary neutron stars (NSs) that there is a tight correlation between the frequency peak of the postmerger gravitational-wave (GW) emission and the physical properties of the nuclear equation of state (EoS), e.g., expressed by the radius of the maximum-mass Tolman-Oppenheimer-Volkhoff configuration. Therefore, a single measurement of the peak frequency of the postmerger GW signal will constrain the NS EoS significantly. For optimistic merger-rate estimates a corresponding detection with Advanced LIGO is expected to happen within an operation time of roughly a year.
The Fate of the Compact Remnant in Neutron Star Mergers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico
Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the coresmore » of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.« less
The Fate of the Compact Remnant in Neutron Star Mergers
Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; ...
2015-10-06
Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the coresmore » of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.« less
NASA Astrophysics Data System (ADS)
Zinnecker, H.
We start by discussing dense, young star-clusters, particularly the 30 Doradus cluster with its core R136. The question of mass segregation and core collapse of the massive stars is addressed. Analytical estimates of relaxation times and collision times predict that the central N=10 subsystem of massive stars in the R136 core will evolve dynamically in such a way and fast enough (i.e. within their main-sequence lifetime of a few Myr) that a dominant massive binary system is formed whose orbit will shrink to a point where merging of the components appears inevitable. The merger product will be spinning rapidly, and we put forward the idea that this rare and very massive object might be the perfect precursor of a gamma-ray burst (collapsar).
TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S.
Abdalla, H.; Abramowski, A.; Aharonian, F.; ...
2017-11-22
Here, we search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges betweenmore » $$270\\,\\mathrm{GeV}$$ to $$8.55\\,\\mathrm{TeV}$$. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.« less
TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdalla, H.; Abramowski, A.; Aharonian, F.
Here, we search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges betweenmore » $$270\\,\\mathrm{GeV}$$ to $$8.55\\,\\mathrm{TeV}$$. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.« less
Gravitational waves from relativistic neutron-star mergers with microphysical equations of state.
Oechslin, R; Janka, H-T
2007-09-21
The gravitational wave (GW) emission from a set of relativistic neutron-star (NS) merger simulations is analyzed and characteristic signal features are identified. The distinct peak in the GW energy spectrum that is associated with the formation of a hypermassive merger remnant has a frequency that depends strongly on the properties of the nuclear equation of state (EOS) and on the total mass of the binary system, whereas the mass ratio and the NS spins have a weak influence. If the total mass can be determined from the inspiral chirp signal, the peak frequency of the post-merger signal is a sensitive indicator of the EOS.
β-decay Rates for Exotic Nuclei and r-process Nucleosynthesis up to Thorium and Uranium
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Shibagaki, Shota; Yoshida, Takashi; Kajino, Toshitaka; Otsuka, Takaharu
2018-06-01
Beta-decay rates for exotic nuclei with neutron magic number of N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard finite-range-droplet model, are used to study r-process nucleosynthesis in core-collapse supernova (CCSN) explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. The position of the third peak is found to be shifted toward a higher mass region in both CCSN explosions and neutron star mergers. We find that thorium and uranium elements are produced more with the shorter shell-model half-lives and their abundances come close to the observed values in CCSN explosions. In the case of binary neutron star mergers, thorium and uranium are produced consistently with the observed values independent of the half-lives.
Binary neutron star mergers: a review of Einstein's richest laboratory.
Baiotti, Luca; Rezzolla, Luciano
2017-09-01
In a single process, the merger of binary neutron star systems combines extreme gravity, the copious emission of gravitational waves, complex microphysics and electromagnetic processes, which can lead to astrophysical signatures observable at the largest redshifts. We review here the recent progress in understanding what could be considered Einstein's richest laboratory, highlighting in particular the numerous significant advances of the last decade. Although special attention is paid to the status of models, techniques and results for fully general-relativistic dynamical simulations, a review is also offered on the initial data and advanced simulations with approximate treatments of gravity. Finally, we review the considerable amount of work carried out on the post-merger phase, including black-hole formation, torus accretion onto the merged compact object, the connection with gamma-ray burst engines, ejected material, and its nucleosynthesis.
Binary neutron star mergers: a review of Einstein’s richest laboratory
NASA Astrophysics Data System (ADS)
Baiotti, Luca; Rezzolla, Luciano
2017-09-01
In a single process, the merger of binary neutron star systems combines extreme gravity, the copious emission of gravitational waves, complex microphysics and electromagnetic processes, which can lead to astrophysical signatures observable at the largest redshifts. We review here the recent progress in understanding what could be considered Einstein’s richest laboratory, highlighting in particular the numerous significant advances of the last decade. Although special attention is paid to the status of models, techniques and results for fully general-relativistic dynamical simulations, a review is also offered on the initial data and advanced simulations with approximate treatments of gravity. Finally, we review the considerable amount of work carried out on the post-merger phase, including black-hole formation, torus accretion onto the merged compact object, the connection with gamma-ray burst engines, ejected material, and its nucleosynthesis.
The Evolution of Compact Binary Star Systems.
Postnov, Konstantin A; Yungelson, Lev R
2014-01-01
We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.
NUCLEOSYNTHESIS CONSTRAINTS ON THE NEUTRON STAR-BLACK HOLE MERGER RATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauswein, A.; Ardevol Pulpillo, R.; Janka, H.-T.
2014-11-01
We derive constraints on the time-averaged event rate of neutron star-black hole (NS-BH) mergers by using estimates of the population-integrated production of heavy rapid neutron-capture (r-process) elements with nuclear mass numbers A > 140 by such events in comparison to the Galactic repository of these chemical species. Our estimates are based on relativistic hydrodynamical simulations convolved with theoretical predictions of the binary population. This allows us to determine a strict upper limit of the average NS-BH merger rate of ∼6× 10{sup –5} per year. We quantify the uncertainties of this estimate to be within factors of a few mostly becausemore » of the unknown BH spin distribution of such systems, the uncertain equation of state of NS matter, and possible errors in the Galactic content of r-process material. Our approach implies a correlation between the merger rates of NS-BH binaries and of double NS systems. Predictions of the detection rate of gravitational-wave signals from such compact object binaries by Advanced LIGO and Advanced Virgo on the optimistic side are incompatible with the constraints set by our analysis.« less
NASA Astrophysics Data System (ADS)
Li, Xiang; Hu, Yi-Ming; Fan, Yi-Zhong; Wei, Da-Ming
2016-08-01
Short-duration gamma-ray bursts (SGRBs) are widely believed to be powered by the mergers of compact binaries, such as binary neutron stars or possibly neutron star-black hole binaries. Though the prospect of detecting SGRBs with gravitational wave (GW) signals by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/VIRGO network is promising, no known SGRB has been found within the expected advanced LIGO/VIRGO sensitivity range for binary neutron star systems. We find, however, that the two long-short GRBs (GRB 060505 and GRB 060614) may be within the horizon of advanced GW detectors. In the upcoming era of GW astronomy, the merger origin of some long-short GRBs, as favored by the macronova signature displayed in GRB 060614, can be unambiguously tested. The model-dependent time lags between the merger and the onset of the prompt emission of the GRB are estimated. The comparison of such time lags between model predictions and the real data expected in the era of the GW astronomy would be helpful in revealing the physical processes taking place at the central engine (including the launch of the relativistic outflow, the emergence of the outflow from the dense material ejected during the merger, and the radiation of gamma rays). We also show that the speed of GWs, with or without a simultaneous test of Einstein’s equivalence principle, can be directly measured to an accuracy of ˜ 3× {10}-8 {cm} {{{s}}}-1 or even better in the advanced LIGO/VIRGO era.
General-relativistic Large-eddy Simulations of Binary Neutron Star Mergers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radice, David, E-mail: dradice@astro.princeton.edu
The flow inside remnants of binary neutron star (NS) mergers is expected to be turbulent, because of magnetohydrodynamics instability activated at scales too small to be resolved in simulations. To study the large-scale impact of these instabilities, we develop a new formalism, based on the large-eddy simulation technique, for the modeling of subgrid-scale turbulent transport in general relativity. We apply it, for the first time, to the simulation of the late-inspiral and merger of two NSs. We find that turbulence can significantly affect the structure and survival time of the merger remnant, as well as its gravitational-wave (GW) and neutrinomore » emissions. The former will be relevant for GW observation of merging NSs. The latter will affect the composition of the outflow driven by the merger and might influence its nucleosynthetic yields. The accretion rate after black hole formation is also affected. Nevertheless, we find that, for the most likely values of the turbulence mixing efficiency, these effects are relatively small and the GW signal will be affected only weakly by the turbulence. Thus, our simulations provide a first validation of all existing post-merger GW models.« less
Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers
NASA Technical Reports Server (NTRS)
Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.;
2012-01-01
We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.
On the luminosity function, lifetimes, and origin of blue stragglers in globular clusters
NASA Technical Reports Server (NTRS)
Bailyn, Charles D.; Pinsonneault, Marc H.
1995-01-01
We compute theoretical evolutionary tracks of blue stragglers created by mergers. Two formation scenarios are considered: mergers of primordial binaries, and stellar collisions. These two scenarios predict strikingly different luminosity functions, which are potentially distinguishable observationally. Tabulated theoretical luminosity functions and lifetimes are presented for blue stragglers formed under a variety of input conditions. We compare our results with observations of the blue straggler sequences in 47 Tucanae and M3. In the case of 47 Tuc, the luminosity function and the formation rate are compatible with the hypothesis that the blue stragglers formed through the collision of single stars. Mergers of primordial binaries are only marginally cosistent with the data, and a significant enhancement of the collision cross section by binary-single-star encounters appears to be ruled out. In the case of M3, we find that the innermost blue stragglers have a luminosity function significantly different from that of the outer stragglers, thus confirming earlier suggestions that there are two distinct populations of blue stragglers in this cluster. The inner stragglers are preferentially brighter and bluer, as would be expected if they were made by collisions, but there are so many of them that the collision rate would need to be enhanced by interactions involving wide binaries. The luminosity function of the outer stragglers is almost identical to the predictions of mergers from primordial binaries and is inconsistent with the collision hypothesis.
The Properties of Short Gamma-Ray Burst Jets Triggered by Neutron Star Mergers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Montes, Gabriela
The most popular model for short gamma-ray bursts (sGRBs) involves the coalescence of binary neutron stars. Because the progenitor is actually hidden from view, we must consider under which circumstances such merging systems are capable of producing a successful sGRB. Soon after coalescence, winds are launched from the merger remnant. In this paper, we use realistic wind profiles derived from global merger simulations in order to investigate the interaction of sGRB jets with these winds using numerical simulations. We analyze the conditions for which these axisymmetric winds permit relativistic jets to break out and produce an sGRB. We find thatmore » jets with luminosities comparable to those observed in sGRBs are only successful when their half-opening angles are below ≈20°. This jet collimation mechanism leads to a simple physical interpretation of the luminosities and opening angles inferred for sGRBs. If wide, low-luminosity jets are observed, they might be indicative of a different progenitor avenue such as the merger of a neutron star with a black hole. We also use the observed durations of sGRB to place constraints on the lifetime of the wind phase, which is determined by the time it takes the jet to break out. In all cases we find that the derived limits argue against completely stable remnants for binary neutron star mergers that produce sGRBs.« less
Equation of State Effects on Binary Neutron Star and Neutron Star-Black Hole Merger Ejecta
NASA Astrophysics Data System (ADS)
Rizzo, Monica; Pankow, Chris; Kalogera, Vassiliki; Coughlin, Scott; Chase, Eve; Imperato, Sam
2018-01-01
Binary neutron stars (BNSs) and neutron star-black hole (NSBH) binaries are not only potential sources of gravitational waves (GWs), but also are thought to generate phenomena such as kilonova, which have proven to be difficult to catch with electromagnetic (EM) instruments. Kilonovae are believed to arise from the radioactive decay of nuclear matter ejected from NSBH and BNS mergers. As they spiral toward each other, neutron stars (NSs), composed of highly dense nuclear matter, are torn apart by their companion's gravity and eject matter. The amount of matter they eject depends sensitively on the composition of NSs, which is described by a nuclear equation of state (EOS). Using fit formulas for ejected mass from Kawaguchi et. al. (2016) and T. Dietrich and M. Ujevic (2016), for NSBH and BNS respectively, we calculate the amount of mass ejected given the initial parameters (masses, black hole spin, etc.) of NSBH and BNS systems. We then predict the distribution of ejected matter for populations of NSBH and BNS mergers, assuming a different EOS for each population. Using formulas derived from The Kilonova Handbook (Metzger, 2016), we can use the calculated ejected mass to generate light curves which, along with GW detections, can be used to place constraints on an EOS for NSs when GW detections are made. We find that the amount of ejected matter observed is distinct for most EOSs, though to draw any solid conclusions about NS composition, joint GW wave and EM counterpart detections are necessary.
Upper limits on the rates of BNS and NSBH mergers from Advanced LIGO's first observing run
NASA Astrophysics Data System (ADS)
Lackey, Benjamin; LIGO Collaboration
2017-01-01
Last year the Advanced LIGO detectors finished their first observing run and detected two binary black hole mergers with high significance but no binary neutron star (BNS) or neutron-star-black-hole (NSBH) mergers. We present upper limits on the rates of BNS and NSBH mergers in the universe based on their non-detection with two modeled searches. With zero detections, the upper limits depend on the choice of prior, but we find 90% upper limits using a conservative prior of 12 , 000 / Gpc3 / yr for BNS mergers and 1 , 000 - 3 , 000 / Gpc3 / yr for NSBH mergers depending on the black hole mass. Comparing these upper limits to several rates predictions in the literature, we find our upper limits are close to the more optimistic rates estimates. Further non-detections in the second and third observing runs should be able to rule out several rates predictions. Using the observed rate of short gamma ray bursts (GRBs), we can also place lower limits on the average beaming angle of short GRBs. Assuming all short GRBs come from BNS mergers, we find a 90% lower limit of 1-4 degrees on the GRB beaming angle, with the range coming from the uncertainty in short GRB rates.
The Formation and Gravitational-wave Detection of Massive Stellar Black Hole Binaries
NASA Astrophysics Data System (ADS)
Belczynski, Krzysztof; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman; Walczak, Marek
2014-07-01
If binaries consisting of two ~100 M ⊙ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ~ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several >~ 150 M ⊙ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.
Can We Distinguish Low-mass Black Holes in Neutron Star Binaries?
NASA Astrophysics Data System (ADS)
Yang, Huan; East, William E.; Lehner, Luis
2018-04-01
The detection of gravitational waves (GWs) from coalescing binary neutron stars (NS) represents another milestone in gravitational-wave astronomy. However, since LIGO is currently not as sensitive to the merger/ringdown part of the waveform, the possibility that such signals are produced by a black hole (BH)–NS binary can not be easily ruled out without appealing to assumptions about the underlying compact object populations. We review a few astrophysical channels that might produce BHs below 3 M ⊙ (roughly the upper bound on the maximum mass of an NS), as well as existing constraints for these channels. We show that, due to the uncertainty in the NS equation of state, it is difficult to distinguish GWs from a binary NS system from those of a BH–NS system with the same component masses, assuming Advanced LIGO sensitivity. This degeneracy can be broken by accumulating statistics from many events to better constrain the equation of state, or by third-generation detectors with higher sensitivity to the late-spiral to post-merger signal. We also discuss the possible differences in electromagnetic (EM) counterparts between binary NS and low-mass BH–NS mergers, arguing that it will be challenging to definitively distinguish the two without better understanding of the underlying astrophysical processes.
MERGER SIGNATURES IN THE DYNAMICS OF STAR-FORMING GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, Chao-Ling; Sanders, D. B.; Hayward, Christopher C.
2016-01-10
The recent advent of integral field spectrographs and millimeter interferometers has revealed the internal dynamics of many hundreds of star-forming galaxies. Spatially resolved kinematics have been used to determine the dynamical status of star-forming galaxies with ambiguous morphologies, and constrain the importance of galaxy interactions during the assembly of galaxies. However, measuring the importance of interactions or galaxy merger rates requires knowledge of the systematics in kinematic diagnostics and the visible time with merger indicators. We analyze the dynamics of star-forming gas in a set of binary merger hydrodynamic simulations with stellar mass ratios of 1:1 and 1:4. We findmore » that the evolution of kinematic asymmetries traced by star-forming gas mirrors morphological asymmetries derived from mock optical images, in which both merger indicators show the largest deviation from isolated disks during strong interaction phases. Based on a series of simulations with various initial disk orientations, orbital parameters, gas fractions, and mass ratios, we find that the merger signatures are visible for ∼0.2–0.4 Gyr with kinematic merger indicators but can be approximately twice as long for equal-mass mergers of massive gas-rich disk galaxies designed to be analogs of z ∼ 2–3 submillimeter galaxies. Merger signatures are most apparent after the second passage and before the black holes coalescence, but in some cases they persist up to several hundred Myr after coalescence. About 20%–60% of the simulated galaxies are not identified as mergers during the strong interaction phase, implying that galaxies undergoing violent merging process do not necessarily exhibit highly asymmetric kinematics in their star-forming gas. The lack of identifiable merger signatures in this population can lead to an underestimation of merger abundances in star-forming galaxies, and including them in samples of star-forming disks may bias the measurements of disk properties such as intrinsic velocity dispersion.« less
Mass ejection by strange star mergers and observational implications.
Bauswein, A; Janka, H-T; Oechslin, R; Pagliara, G; Sagert, I; Schaffner-Bielich, J; Hohle, M M; Neuhäuser, R
2009-07-03
We determine the Galactic production rate of strangelets as a canonical input to calculations of the measurable cosmic ray flux of strangelets by performing simulations of strange star mergers and combining the results with recent estimates of stellar binary populations. We find that the flux depends sensitively on the bag constant of the MIT bag model of QCD and disappears for high values of the bag constant and thus more compact strange stars. In the latter case, strange stars could coexist with ordinary neutron stars as they are not converted by the capture of cosmic ray strangelets. An unambiguous detection of an ordinary neutron star would then not rule out the strange matter hypothesis.
The Exciting World of Binary Stars: Not Just Eclipses Anymore (Abstract)
NASA Astrophysics Data System (ADS)
Pablo, B.
2018-06-01
(Abstract only) Binary stars have always been essential to astronomy. Their periodic eclipses are the most common and efficient method for determining precise masses and radii of stars. Binaries are known for their predictability and have been observed for hundreds if not thousands of years. As such, they are often ignored by observers as uninteresting, however, nothing could be farther from the truth. In the last ten years alone the importance of binary stars, as well of our knowledge of them, has changed significantly. In this talk, I will introduce you to this new frontier of heartbeats, mergers, and evolution, while hopefully motivating a change in the collective thinking of how this unique class of objects is viewed. Most importantly,
Electromagnetic evidence that SSS17a is the result of a binary neutron star merger
NASA Astrophysics Data System (ADS)
Kilpatrick, C. D.; Foley, R. J.; Kasen, D.; Murguia-Berthier, A.; Ramirez-Ruiz, E.; Coulter, D. A.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Boutsia, K.; Contreras, C.; Di Mille, F.; Madore, B. F.; Morrell, N.; Pan, Y.-C.; Prochaska, J. X.; Rest, A.; Rojas-Bravo, C.; Siebert, M. R.; Simon, J. D.; Ulloa, N.
2017-12-01
Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result.
Electromagnetic evidence that SSS17a is the result of a binary neutron star merger.
Kilpatrick, C D; Foley, R J; Kasen, D; Murguia-Berthier, A; Ramirez-Ruiz, E; Coulter, D A; Drout, M R; Piro, A L; Shappee, B J; Boutsia, K; Contreras, C; Di Mille, F; Madore, B F; Morrell, N; Pan, Y-C; Prochaska, J X; Rest, A; Rojas-Bravo, C; Siebert, M R; Simon, J D; Ulloa, N
2017-12-22
Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result. Copyright © 2017, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Fazeel Mahmood; Preto, Miguel; Berentzen, Ingo
Galaxy centers are residing places for supermassive black holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems, which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves (GWs) for the Laser Interferometer Space Antenna. In spherical galaxy models, SMBH binaries stall at a separation of approximately 1 pc, leading to the 'final parsec problem' (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on themore » so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is also able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the mass ratios of SMBHs for a wide range of mass ratios q. There is, however, an abrupt transition in the hardening rates for mergers with mass ratios somewhere between q {approx} 0.05 and 0.1, resulting from the monotonic decrease of merger-induced triaxiality with mass ratio q, as the secondary galaxy becomes too small and light to significantly perturb the primary, i.e., the more massive one. The hardening rates are significantly higher for galaxies having steep cusps in comparison with those having shallow cups at centers. The evolution of the binary SMBH leads to relatively shallower inner slopes at the centers of the merger remnants. The stellar mass displaced by the SMBH binary on its way to coalescence is {approx}1-5 times the combined mass of binary SMBHs. The coalescence timescales for SMBH binary with mass {approx}10{sup 6} M{sub Sun} are less than 1 Gyr and for those at the upper end of SMBH masses 10{sup 9} M{sub Sun} are 1-2 Gyr for less eccentric binaries whereas they are less than 1 Gyr for highly eccentric binaries. SMBH binaries are thus expected to be promising sources of GWs at low and high redshifts.« less
r -process nucleosynthesis from matter ejected in binary neutron star mergers
NASA Astrophysics Data System (ADS)
Bovard, Luke; Martin, Dirk; Guercilena, Federico; Arcones, Almudena; Rezzolla, Luciano; Korobkin, Oleg
2017-12-01
When binary systems of neutron stars merge, a very small fraction of their rest mass is ejected, either dynamically or secularly. This material is neutron-rich and its nucleosynthesis provides the astrophysical site for the production of heavy elements in the Universe, together with a kilonova signal confirming neutron-star mergers as the origin of short gamma-ray bursts. We perform full general-relativistic simulations of binary neutron-star mergers employing three different nuclear-physics equations of state (EOSs), considering both equal- and unequal-mass configurations, and adopting a leakage scheme to account for neutrino radiative losses. Using a combination of techniques, we carry out an extensive and systematic study of the hydrodynamical, thermodynamical, and geometrical properties of the matter ejected dynamically, employing the WinNet nuclear-reaction network to recover the relative abundances of heavy elements produced by each configurations. Among the results obtained, three are particularly important. First, we find that, within the sample considered here, both the properties of the dynamical ejecta and the nucleosynthesis yields are robust against variations of the EOS and masses. Second, using a conservative but robust criterion for unbound matter, we find that the amount of ejected mass is ≲10-3 M⊙, hence at least one order of magnitude smaller than what normally assumed in modelling kilonova signals. Finally, using a simplified and gray-opacity model we assess the observability of the infrared kilonova emission finding, that for all binaries the luminosity peaks around ˜1 /2 day in the H -band, reaching a maximum magnitude of -13 , and decreasing rapidly after one day.
Gravitational Waves from Binary Mergers of Subsolar Mass Dark Black Holes
NASA Astrophysics Data System (ADS)
Shandera, Sarah; Jeong, Donghui; Gebhardt, Henry S. Grasshorn
2018-06-01
We explore the possible spectrum of binary mergers of subsolar mass black holes formed out of dark matter particles interacting via a dark electromagnetism. We estimate the properties of these dark black holes by assuming that their formation process is parallel to Population-III star formation, except that dark molecular cooling can yield a smaller opacity limit. We estimate the binary coalescence rates for the Advanced LIGO and Einstein telescope, and find that scenarios compatible with all current constraints could produce dark black holes at rates high enough for detection by Advanced LIGO.
NASA Astrophysics Data System (ADS)
Siegel, Daniel M.; Ciolfi, Riccardo
2016-03-01
Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality thanks to the ground-based advanced LIGO/Virgo GW detector network. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission up to ˜107 s. Light curves and spectra are computed for a wide range of post-merger physical properties. We present X-ray afterglow light curves corresponding to the “standard” and the “time-reversal” scenario for SGRBs (prompt emission associated with the merger or with the collapse of the long-lived NS). The light curve morphologies include single and two-plateau features with timescales and luminosities that are in good agreement with Swift observations. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario, the detection of which would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient peaking in the X-ray band at ˜102-104 s after the BNS merger with luminosities of LX ˜ 1046-1048 erg s-1. This signal represents a very promising EM counterpart to the GW emission from BNS mergers.
Insight-HXMT observations of the first binary neutron star merger GW170817
NASA Astrophysics Data System (ADS)
Li, TiPei; Xiong, ShaoLin; Zhang, ShuangNan; Lu, FangJun; Song, LiMing; Cao, XueLei; Chang, Zhi; Chen, Gang; Chen, Li; Chen, TianXiang; Chen, Yong; Chen, YiBao; Chen, YuPeng; Cui, Wei; Cui, WeiWei; Deng, JingKang; Dong, YongWei; Du, YuanYuan; Fu, MinXue; Gao, GuanHua; Gao, He; Gao, Min; Ge, MingYu; Gu, YuDong; Guan, Ju; Guo, ChengCheng; Han, DaWei; Hu, Wei; Huang, Yue; Huo, Jia; Jia, ShuMei; Jiang, LuHua; Jiang, WeiChun; Jin, Jing; Jin, YongJie; Li, Bing; Li, ChengKui; Li, Gang; Li, MaoShun; Li, Wei; Li, Xian; Li, XiaoBo; Li, XuFang; Li, YanGuo; Li, ZiJian; Li, ZhengWei; Liang, XiaoHua; Liao, JinYuan; Liu, CongZhan; Liu, GuoQing; Liu, HongWei; Liu, ShaoZhen; Liu, XiaoJing; Liu, Yuan; Liu, YiNong; Lu, Bo; Lu, XueFeng; Luo, Tao; Ma, Xiang; Meng, Bin; Nang, Yi; Nie, JianYin; Ou, Ge; Qu, JinLu; Sai, Na; Sun, Liang; Tan, Yin; Tao, Lian; Tao, WenHui; Tuo, YouLi; Wang, GuoFeng; Wang, HuanYu; Wang, Juan; Wang, WenShuai; Wang, YuSa; Wen, XiangYang; Wu, BoBing; Wu, Mei; Xiao, GuangCheng; Xu, He; Xu, YuPeng; Yan, LinLi; Yang, JiaWei; Yang, Sheng; Yang, YanJi; Zhang, AiMei; Zhang, ChunLei; Zhang, ChengMo; Zhang, Fan; Zhang, HongMei; Zhang, Juan; Zhang, Qiang; Zhang, Shu; Zhang, Tong; Zhang, Wei; Zhang, WanChang; Zhang, WenZhao; Zhang, Yi; Zhang, Yue; Zhang, YiFei; Zhang, YongJie; Zhang, Zhao; Zhang, ZiLiang; Zhao, HaiSheng; Zhao, JianLing; Zhao, XiaoFan; Zheng, ShiJie; Zhu, Yue; Zhu, YuXuan; Zou, ChangLin
2018-03-01
Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard Insight-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area ( 1000 cm2) and microsecond time resolution in 0.2-5 MeV. In addition, Insight-HXMT quickly implemented a Target of Opportunity (ToO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, Insight-HXMT/HE provides one of the most stringent constraints ( 10‒7 to 10‒6 erg/cm2/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.
NASA Astrophysics Data System (ADS)
Ciolfi, Riccardo; Kastaun, Wolfgang; Giacomazzo, Bruno; Endrizzi, Andrea; Siegel, Daniel M.; Perna, Rosalba
2017-03-01
Merging binary neutron stars (BNSs) represent the ultimate targets for multimessenger astronomy, being among the most promising sources of gravitational waves (GWs), and, at the same time, likely accompanied by a variety of electromagnetic counterparts across the entire spectrum, possibly including short gamma-ray bursts (SGRBs) and kilonova/macronova transients. Numerical relativity simulations play a central role in the study of these events. In particular, given the importance of magnetic fields, various aspects of this investigation require general relativistic magnetohydrodynamics (GRMHD). So far, most GRMHD simulations focused the attention on BNS mergers leading to the formation of a hypermassive neutron star (NS), which, in turn, collapses within few tens of ms into a black hole surrounded by an accretion disk. However, recent observations suggest that a significant fraction of these systems could form a long-lived NS remnant, which will either collapse on much longer time scales or remain indefinitely stable. Despite the profound implications for the evolution and the emission properties of the system, a detailed investigation of this alternative evolution channel is still missing. Here, we follow this direction and present a first detailed GRMHD study of BNS mergers forming a long-lived NS. We consider magnetized binaries with different mass ratios and equations of state and analyze the structure of the NS remnants, the rotation profiles, the accretion disks, the evolution and amplification of magnetic fields, and the ejection of matter. Moreover, we discuss the connection with the central engine of SGRBs and provide order-of-magnitude estimates for the kilonova/macronova signal. Finally, we study the GW emission, with particular attention to the post-merger phase.
CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan
We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2})more » to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.« less
Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers
NASA Technical Reports Server (NTRS)
Teng, Stacy H.; Schwainski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.;
2012-01-01
We present the results from a Chandra pilot study of 12 massive mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10(sup 11) solar mass that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) less than or approximately 1.1 x 10(exp 22) per square centimeter) X-ray nuclei are relatively common (8/12), but the detections are too faint (less than 40 counts per nucleus; f(sub 2-10 keV) less than or approximately 1.2 x 10(exp -13) ergs per second per square centimeter) to separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.
Rotating and Binary Stars in General Relativit
NASA Astrophysics Data System (ADS)
Shapiro, Stuart
The inspiral and coalescence of compact binary stars is one of the most challenging problems in theoretical astrophysics. Only recently have advances in numerical relativity made it possible to explore this topic in full general relativity (GR). The mergers of compact binaries have important consequences for the detection of gravitational waves. In addition, the coalescence of binary neutron stars (NSNSs) and binary black-hole neutron stars (BHNSs) may hold the key for resolving other astrophysical puzzles, such as the origin of short-hard gamma-ray bursts (GRBs). While simulations of these systems in full GR are now possible, only the most idealized treatments have been performed to date. More detailed physics, including magnetic fields, black hole spin, a realistic hot, nuclear equation of state and neutrino transport must be incorporated. Only then will we be able to identify reliably future sources that may be detected simultaneously in gravitational waves and as GRBs. Likewise, the coalescence of binary black holes (BHBHs) is now a solved problem in GR, but only in vacuum. Simulating the coalescence of BHBHs in the gaseous environments likely to be found in nearby galaxy cores or in merging galaxies is crucial to identifying an electromagnetic signal that might accompany the gravitational waves produced during the merger. The coalescence of a binary white dwarf-neutron star (WDNS) has only recently been treated in GR, but GR is necessary to explore tidal disruption scenarios in which the capture of WD debris by the NS may lead to catastrophic collapse. Alternatively, the NS may survive and the merger might result in the formation of pulsar planets. The stability of rotating neutron stars in these and other systems has not been fully explored in GR, and the final fate of unstable stars has not been determined in many cases, especially in the presence of magnetic fields and differential rotation. These systems will be probed observationally by current NASA instruments, such as HST, CHANDRA, SWIFT and FERMI, and by future NASA detectors, such as NuStar, ASTRO-H, GEMS, JWST, and, possibly, GEN-X and SGO (a Space-Based Gravitational-Wave Observatory). Treating all of these phenomena theoretically requires the same computational machinery: a fully relativistic code that simultaneously solves Einstein s equations for the gravitational field, Maxwell s equations for the electromagnetic field and the equations of relativistic magnetohydrodynamics for the plasma, all in three spatial dimensions plus time. Recent advances we have made in constructing such a code now make it possible for us to solve these fundamental, closely related computational problems, some for the first time.
The formation and gravitational-wave detection of massive stellar black hole binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra
2014-07-10
If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by themore » recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.« less
NASA Astrophysics Data System (ADS)
Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W.
2016-05-01
Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.
Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W
2016-05-06
Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.
Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiktorowicz, G.; Drago, A.; Pagliara, G.
2017-09-10
Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. Accordingmore » to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.« less
Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena
NASA Astrophysics Data System (ADS)
Wiktorowicz, G.; Drago, A.; Pagliara, G.; Popov, S. B.
2017-09-01
Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.
Supernova and Prompt Gravitational-wave Precursors to LIGO Gravitational-wave Sources and Short GRBs
NASA Astrophysics Data System (ADS)
Michaely, Erez; Perets, Hagai B.
2018-03-01
Binary black holes (BBHs) and binary neutron stars (BNSs) mergers have been recently detected through their gravitational-wave (GW) emission. A post-merger electromagnetic counterpart for the first BNS merger has been detected from seconds up to weeks after the merger. While such post-merger electromagnetic counterparts had been anticipated theoretically, far fewer electromagnetic precursors to GW sources have been proposed, and non have been observed. Here we show that a fraction of a few ×10‑3 (for a standard model) GW sources and short gamma-ray bursts (GRBs) observed by the Laser Interferometer Gravitational-wave Observatory (LIGO) could have been preceded by supernova (SN) explosions from years up to decades before the mergers. The GW sources are produced following the preceding binary evolution, the supernovae involved in the final formation of the GW source progenitors, and the natal kicks that likely accompany them. Together, these determine the orbits of surviving binaries, and hence the delay-time between the birth of the compact binary and its final merger through GW emission. We use data from binary evolution population-synthesis models to show that the delay-time distribution has a non-negligible tail of ultra-short delay-times between 1 and 100 years, thereby giving rise to potentially observable supernovae precursors to GW sources. Moreover, future LISA/DECIGO GW space-detectors will enable the detection of GW inspirals in the pre-merger stage weeks to decades before the final merger. These sources could therefore produce a unique type of promptly appearing LISA/DECIGO GW sources accompanied by coincident supernovae. The archival (and/or direct) detection of precursor (coincident) SNe with GW and/or short GRBs will provide unprecedented characterizations of the merging binaries, and their prior evolution through supernovae and natal kicks, otherwise inaccessible through other means.
Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes
NASA Astrophysics Data System (ADS)
Andreoni, I.; Ackley, K.; Cooke, J.; Acharyya, A.; Allison, J. R.; Anderson, G. E.; Ashley, M. C. B.; Baade, D.; Bailes, M.; Bannister, K.; Beardsley, A.; Bessell, M. S.; Bian, F.; Bland, P. A.; Boer, M.; Booler, T.; Brandeker, A.; Brown, I. S.; Buckley, D. A. H.; Chang, S.-W.; Coward, D. M.; Crawford, S.; Crisp, H.; Crosse, B.; Cucchiara, A.; Cupák, M.; de Gois, J. S.; Deller, A.; Devillepoix, H. A. R.; Dobie, D.; Elmer, E.; Emrich, D.; Farah, W.; Farrell, T. J.; Franzen, T.; Gaensler, B. M.; Galloway, D. K.; Gendre, B.; Giblin, T.; Goobar, A.; Green, J.; Hancock, P. J.; Hartig, B. A. D.; Howell, E. J.; Horsley, L.; Hotan, A.; Howie, R. M.; Hu, L.; Hu, Y.; James, C. W.; Johnston, S.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasliwal, M.; Keane, E. F.; Kenney, D.; Klotz, A.; Lau, R.; Laugier, R.; Lenc, E.; Li, X.; Liang, E.; Lidman, C.; Luvaul, L. C.; Lynch, C.; Ma, B.; Macpherson, D.; Mao, J.; McClelland, D. E.; McCully, C.; Möller, A.; Morales, M. F.; Morris, D.; Murphy, T.; Noysena, K.; Onken, C. A.; Orange, N. B.; Osłowski, S.; Pallot, D.; Paxman, J.; Potter, S. B.; Pritchard, T.; Raja, W.; Ridden-Harper, R.; Romero-Colmenero, E.; Sadler, E. M.; Sansom, E. K.; Scalzo, R. A.; Schmidt, B. P.; Scott, S. M.; Seghouani, N.; Shang, Z.; Shannon, R. M.; Shao, L.; Shara, M. M.; Sharp, R.; Sokolowski, M.; Sollerman, J.; Staff, J.; Steele, K.; Sun, T.; Suntzeff, N. B.; Tao, C.; Tingay, S.; Towner, M. C.; Thierry, P.; Trott, C.; Tucker, B. E.; Väisänen, P.; Krishnan, V. Venkatraman; Walker, M.; Wang, L.; Wang, X.; Wayth, R.; Whiting, M.; Williams, A.; Williams, T.; Wolf, C.; Wu, C.; Wu, X.; Yang, J.; Yuan, X.; Zhang, H.; Zhou, J.; Zovaro, H.
2017-12-01
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement ( 2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
NASA Astrophysics Data System (ADS)
Hotokezaka, K.; Nissanke, S.; Hallinan, G.; Lazio, T. J. W.; Nakar, E.; Piran, T.
2016-11-01
Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation. We explore the detectability of these synchrotron-generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (I) sub-relativistic merger ejecta and (II) ultra-relativistic jets. The former produce radio remnants on timescales of a few years and the latter produce γ-ray bursts in the direction of the jet and orphan-radio afterglows extending over wider angles on timescales of weeks. Based on the derived light curves, we suggest an optimized survey at 1.4 GHz with five epochs separated by a logarithmic time interval. We estimate the detectability of the radio counterparts of simulated GW-merger events to be detected by advanced LIGO and Virgo by current and future radio facilities. The detectable distances for these GW merger events could be as high as 1 Gpc. Around 20%-60% of the long-lasting radio remnants will be detectable in the case of the moderate kinetic energy of 3\\cdot {10}50 erg and a circum-merger density of 0.1 {{cm}}-3 or larger, while 5%-20% of the orphan-radio afterglows with kinetic energy of 1048 erg will be detectable. The detection likelihood increases if one focuses on the well-localizable GW events. We discuss the background noise due to radio fluxes of host galaxies and false positives arising from extragalactic radio transients and variable active galactic nuclei, and we show that the quiet radio transient sky is of great advantage when searching for the radio counterparts.
Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers.
Alford, Mark G; Bovard, Luke; Hanauske, Matthias; Rezzolla, Luciano; Schwenzer, Kai
2018-01-26
Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.1 km or less. On the other hand, if direct-Urca processes remain suppressed, leaving modified-Urca processes to establish flavor equilibrium, then bulk viscous dissipation could provide significant damping to density oscillations right after merger. When comparing with data from state-of-the-art merger simulations, we find that the bulk viscosity takes values close to its resonant maximum in a typical merger, motivating a more careful assessment of the role of bulk viscous dissipation in the gravitational-wave signal from merging neutron stars.
Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers
NASA Astrophysics Data System (ADS)
Alford, Mark G.; Bovard, Luke; Hanauske, Matthias; Rezzolla, Luciano; Schwenzer, Kai
2018-01-01
Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.1 km or less. On the other hand, if direct-Urca processes remain suppressed, leaving modified-Urca processes to establish flavor equilibrium, then bulk viscous dissipation could provide significant damping to density oscillations right after merger. When comparing with data from state-of-the-art merger simulations, we find that the bulk viscosity takes values close to its resonant maximum in a typical merger, motivating a more careful assessment of the role of bulk viscous dissipation in the gravitational-wave signal from merging neutron stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mink, S. E. de; Belczynski, K., E-mail: S.E.deMink@uva.nl, E-mail: kbelczyn@astrouw.edu.pl
The initial mass function (IMF), binary fraction, and distributions of binary parameters (mass ratios, separations, and eccentricities) are indispensable inputs for simulations of stellar populations. It is often claimed that these are poorly constrained, significantly affecting evolutionary predictions. Recently, dedicated observing campaigns have provided new constraints on the initial conditions for massive stars. Findings include a larger close binary fraction and a stronger preference for very tight systems. We investigate the impact on the predicted merger rates of neutron stars and black holes. Despite the changes with previous assumptions, we only find an increase of less than a factor ofmore » 2 (insignificant compared with evolutionary uncertainties of typically a factor of 10–100). We further show that the uncertainties in the new initial binary properties do not significantly affect (within a factor of 2) our predictions of double compact object merger rates. An exception is the uncertainty in IMF (variations by a factor of 6 up and down). No significant changes in the distributions of final component masses, mass ratios, chirp masses, and delay times are found. We conclude that the predictions are, for practical purposes, robust against uncertainties in the initial conditions concerning binary parameters, with the exception of the IMF. This eliminates an important layer of the many uncertain assumptions affecting the predictions of merger detection rates with the gravitational wave detectors aLIGO/aVirgo.« less
A radio counterpart to a neutron star merger.
Hallinan, G; Corsi, A; Mooley, K P; Hotokezaka, K; Nakar, E; Kasliwal, M M; Kaplan, D L; Frail, D A; Myers, S T; Murphy, T; De, K; Dobie, D; Allison, J R; Bannister, K W; Bhalerao, V; Chandra, P; Clarke, T E; Giacintucci, S; Ho, A Y Q; Horesh, A; Kassim, N E; Kulkarni, S R; Lenc, E; Lockman, F J; Lynch, C; Nichols, D; Nissanke, S; Palliyaguru, N; Peters, W M; Piran, T; Rana, J; Sadler, E M; Singer, L P
2017-12-22
Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40 megaparsecs from Earth. We report the detection of a counterpart radio source that appears 16 days after the event, allowing us to diagnose the energetics and environment of the merger. The observed radio emission can be explained by either a collimated ultrarelativistic jet, viewed off-axis, or a cocoon of mildly relativistic ejecta. Within 100 days of the merger, the radio light curves will enable observers to distinguish between these models, and the angular velocity and geometry of the debris will be directly measurable by very long baseline interferometry. Copyright © 2017, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shangguan, Jinyi; Ho, Luis C.; Liu, Xin
Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W ( U -band) and F105W ( Y -band) images taken by the Wide Fieldmore » Camera 3 on board the Hubble Space Telescope . Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U − Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers.« less
The fate of close encounters between binary stars and binary supermassive black holes
NASA Astrophysics Data System (ADS)
Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba
2018-04-01
The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.
The subdwarf B star SB 290 - A fast rotator on the extreme horizontal branch
NASA Astrophysics Data System (ADS)
Geier, S.; Heber, U.; Heuser, C.; Classen, L.; O'Toole, S. J.; Edelmann, H.
2013-03-01
Hot subdwarf B stars (sdBs) are evolved core helium-burning stars with very thin hydrogen envelopes. To form an sdB, the progenitor has to lose almost all of its hydrogen envelope right at the tip of the red giant branch. In close binary systems, mass transfer to the companion provides the extraordinary mass loss required for their formation. However, apparently single sdBs exist as well, and their formation has been unclear for decades. The merger of helium white dwarfs leading to an ignition of core helium-burning or the merger of a helium core and a low-mass star during the common envelope phase have been proposed. Here we report the discovery of SB 290 as the first apparently single, fast-rotating sdB star located on the extreme horizontal branch, indicating that those stars may form from mergers. Appendix A is available in electronic form at http://www.aanda.org
Compact Binary Progenitors of Short Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide
2013-01-01
In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy epsilon(sub jet) = 10%, we find that most of the tori have masses smaller than 0.01 Solar M, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses approx >1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of approx. 0.9 or higher.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Anuradha; Arun, K. G.; Sathyaprakash, B. S., E-mail: axg645@psu.edu, E-mail: kgarun@cmi.ac.in, E-mail: bss25@psu.edu
We show that the inferred merger rate and chirp masses of binary black holes (BBHs) detected by advanced LIGO (aLIGO) can be used to constrain the rate of double neutron star (DNS) and neutron star–black hole (NSBH) mergers in the universe. We explicitly demonstrate this by considering a set of publicly available population synthesis models of Dominik et al. and show that if all the BBH mergers, GW150914, LVT151012, GW151226, and GW170104, observed by aLIGO arise from isolated binary evolution, the predicted DNS merger rate may be constrained to be 2.3–471.0 Gpc{sup −3} yr{sup −1} and that of NSBH mergersmore » will be constrained to 0.2–48.5 Gpc{sup −3} yr{sup −1}. The DNS merger rates are not constrained much, but the NSBH rates are tightened by a factor of ∼4 as compared to their previous rates. Note that these constrained DNS and NSBH rates are extremely model-dependent and are compared to the unconstrained values 2.3–472.5 Gpc{sup −3} yr{sup −1} and 0.2–218 Gpc{sup −3} yr{sup −1}, respectively, using the same models of Dominik et al. (2012a). These rate estimates may have implications for short Gamma Ray Burst progenitor models assuming they are powered (solely) by DNS or NSBH mergers. While these results are based on a set of open access population synthesis models, which may not necessarily be the representative ones, the proposed method is very general and can be applied to any number of models, thereby yielding more realistic constraints on the DNS and NSBH merger rates from the inferred BBH merger rate and chirp mass.« less
NASA Technical Reports Server (NTRS)
Dal Canton, Tito; Harry, Ian W.
2017-01-01
We describe the methodology and novel techniques used to construct a set of waveforms, or template bank, applicable to searches for compact binary coalescences in Advanced LIGO's second observing run. This template bank is suitable for observing systems composed of two neutron stars, two black holes, or a neutron star and a black hole. The Post-Newtonian formulation is used to model waveforms with total mass less than 4 Solar Mass and the most recent effective-one-body model, calibrated to numerical relativity to include the merger and ringdown, is used for total masses greater than 4 Solar Mass. The effects of spin precession, matter, orbital eccentricity and radiation modes beyond the quadrupole are neglected. In contrast to the template bank used to search for compact binary mergers in Advanced LIGO's first observing run, here we are including binary-black-hole systems with total mass up to several hundreds of solar masses, thereby improving the ability to observe such systems. We introduce a technique to vary the starting frequency of waveform filters so that our bank can simultaneously contain binary-neutron-star and high-mass binary-black hole waveforms. We also introduce a lower-bound on the filter waveform length, to exclude very short-duration, high-mass templates whose sensitivity is strongly reduced by the characteristics and performance of the interferometers.
Black Hole Mergers and Gravitational Waves: Opening the New Frontier
NASA Technical Reports Server (NTRS)
Centrella, Joan
2012-01-01
The final merger of two black holes produces a powerful burst of gravitational waves, emitting more energy than all the stars in the observable universe combined. Since these mergers take place in the regime of strong dynamical gravity, computing the gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For more than 30 years, scientists tried to simulate these mergers using the methods of numerical relativity. The resulting computer codes were plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. In the past several years, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will highlight these breakthroughs and the resulting 'gold rush' of new results that is revealing the dynamics of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
Modeling GW170817 based on numerical relativity and its implications
NASA Astrophysics Data System (ADS)
Shibata, Masaru; Fujibayashi, Sho; Hotokezaka, Kenta; Kiuchi, Kenta; Kyutoku, Koutarou; Sekiguchi, Yuichiro; Tanaka, Masaomi
2017-12-01
Gravitational-wave observation together with a large number of electromagnetic observations shows that the source of the latest gravitational-wave event, GW170817, detected primarily by advanced LIGO, is the merger of a binary neutron star. We attempt to interpret this observational event based on our results of numerical-relativity simulations performed so far, paying particular attention to the optical and infrared observations. We finally reach a conclusion that this event is described consistently by the presence of a long-lived hypermassive or supramassive neutron star as the merger remnant because (i) significant contamination by lanthanide elements along our line of sight to this source can be avoided by the strong neutrino irradiation from it and (ii) it could play a crucial role in producing an ejecta component of appreciable mass with fast motion in the postmerger phase. We also point out that (I) the neutron-star equation of state has to be sufficiently stiff (i.e., the maximum mass of cold spherical neutron stars, Mmax, has to be appreciably higher than 2 M⊙) in order for a long-lived massive neutron star to be formed as the merger remnant for the binary systems of GW170817, for which the initial total mass is ≳2.73 M⊙ , and (II) the absence of optical counterparts associated with relativistic ejecta suggests a not-extremely-high value of Mmax approximately as 2.15 - 2.25 M⊙ .
Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect
NASA Astrophysics Data System (ADS)
Hoang, Bao-Minh; Naoz, Smadar; Kocsis, Bence; Rasio, Frederic A.; Dosopoulou, Fani
2018-04-01
Nuclear star clusters around a central massive black hole (MBH) are expected to be abundant in stellar black hole (BH) remnants and BH–BH binaries. These binaries form a hierarchical triple system with the central MBH, and gravitational perturbations from the MBH can cause high-eccentricity excitation in the BH–BH binary orbit. During this process, the eccentricity may approach unity, and the pericenter distance may become sufficiently small so that gravitational-wave emission drives the BH–BH binary to merge. In this work, we construct a simple proof-of-concept model for this process, and specifically, we study the eccentric Kozai–Lidov mechanism in unequal-mass, soft BH–BH binaries. Our model is based on a set of Monte Carlo simulations for BH–BH binaries in galactic nuclei, taking into account quadrupole- and octupole-level secular perturbations, general relativistic precession, and gravitational-wave emission. For a typical steady-state number of BH–BH binaries, our model predicts a total merger rate of ∼1–3 {Gpc} ‑3 {yr} ‑1, depending on the assumed density profile in the nucleus. Thus, our mechanism could potentially compete with other dynamical formation processes for merging BH–BH binaries, such as the interactions of stellar BHs in globular clusters or in nuclear star clusters without an MBH.
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Chruslinska, Martyna; Corsi, Alessandra; Belczynski, Krzysztof
2018-07-01
Binary black holes (BBHs) are one of the endpoints of isolated binary evolution, and their mergers a leading channel for gravitational wave events. Here, using the evolutionary code STARTRACK, we study the statistical properties of the BBH population from isolated binary evolution for a range of progenitor star metallicities and BH natal kicks. We compute the mass function and the distribution of the primary BH spin a as a result of mass accretion during the binary evolution, and find that this is not an efficient process to spin-up BHs, producing an increase by at most a ˜ 0.2-0.3 for very low natal BH spins. We further compute the distribution of merger sites within the host galaxy, after tracking the motion of the binaries in the potentials of a massive spiral, a massive elliptical, and a dwarf galaxy. We find that a fraction of 70-90 per cent of mergers in massive galaxies and of 40-60 per cent in dwarfs (range mostly sensitive to the natal kicks) are expected to occur inside of their hosts. The number density distribution at the merger sites further allows us to estimate the broad-band luminosity distribution that BBH mergers would produce, if associated with a kinetic energy release in an outflow, which, as a reference, we assume at the level inferred for the Fermi GBM counterpart to GW150914, with the understanding that current limits from the O1 and O2 runs would require such emission to be produced within a jet of angular size within ≲50°.
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Chruslinska, Martyna; Corsi, Alessandra; Belczynski, Krzysztof
2018-03-01
Binary black holes (BBHs) are one of the endpoints of isolated binary evolution, and their mergers a leading channel for gravitational wave events. Here, using the evolutionary code STARTRACK, we study the statistical properties of the BBH population from isolated binary evolution for a range of progenitor star metallicities and BH natal kicks. We compute the mass function and the distribution of the primary BH spin a as a result of mass accretion during the binary evolution, and find that this is not an efficient process to spin up BHs, producing an increase by at most a ˜ 0.2-0.3 for very low natal BH spins. We further compute the distribution of merger sites within the host galaxy, after tracking the motion of the binaries in the potentials of a massive spiral, a massive elliptical, and a dwarf galaxy. We find that a fraction of 70-90% of mergers in massive galaxies and of 40-60% in dwarfs (range mostly sensitive to the natal kicks) is expected to occur inside of their hosts. The number density distribution at the merger sites further allows us to estimate the broadband luminosity distribution that BBH mergers would produce, if associated with a kinetic energy release in an outflow, which, as a reference, we assume at the level inferred for the Fermi GBM counterpart to GW150914, with the understanding that current limits from the O1 and O2 runs would require such emission to be produced within a jet of angular size within ≲ 50°.
A kilonova as the electromagnetic counterpart to a gravitational-wave source.
Smartt, S J; Chen, T-W; Jerkstrand, A; Coughlin, M; Kankare, E; Sim, S A; Fraser, M; Inserra, C; Maguire, K; Chambers, K C; Huber, M E; Krühler, T; Leloudas, G; Magee, M; Shingles, L J; Smith, K W; Young, D R; Tonry, J; Kotak, R; Gal-Yam, A; Lyman, J D; Homan, D S; Agliozzo, C; Anderson, J P; Angus, C R; Ashall, C; Barbarino, C; Bauer, F E; Berton, M; Botticella, M T; Bulla, M; Bulger, J; Cannizzaro, G; Cano, Z; Cartier, R; Cikota, A; Clark, P; De Cia, A; Della Valle, M; Denneau, L; Dennefeld, M; Dessart, L; Dimitriadis, G; Elias-Rosa, N; Firth, R E; Flewelling, H; Flörs, A; Franckowiak, A; Frohmaier, C; Galbany, L; González-Gaitán, S; Greiner, J; Gromadzki, M; Guelbenzu, A Nicuesa; Gutiérrez, C P; Hamanowicz, A; Hanlon, L; Harmanen, J; Heintz, K E; Heinze, A; Hernandez, M-S; Hodgkin, S T; Hook, I M; Izzo, L; James, P A; Jonker, P G; Kerzendorf, W E; Klose, S; Kostrzewa-Rutkowska, Z; Kowalski, M; Kromer, M; Kuncarayakti, H; Lawrence, A; Lowe, T B; Magnier, E A; Manulis, I; Martin-Carrillo, A; Mattila, S; McBrien, O; Müller, A; Nordin, J; O'Neill, D; Onori, F; Palmerio, J T; Pastorello, A; Patat, F; Pignata, G; Podsiadlowski, Ph; Pumo, M L; Prentice, S J; Rau, A; Razza, A; Rest, A; Reynolds, T; Roy, R; Ruiter, A J; Rybicki, K A; Salmon, L; Schady, P; Schultz, A S B; Schweyer, T; Seitenzahl, I R; Smith, M; Sollerman, J; Stalder, B; Stubbs, C W; Sullivan, M; Szegedi, H; Taddia, F; Taubenberger, S; Terreran, G; van Soelen, B; Vos, J; Wainscoat, R J; Walton, N A; Waters, C; Weiland, H; Willman, M; Wiseman, P; Wright, D E; Wyrzykowski, Ł; Yaron, O
2017-11-02
Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
A kilonova as the electromagnetic counterpart to a gravitational-wave source
NASA Astrophysics Data System (ADS)
Smartt, S. J.; Chen, T.-W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K. C.; Huber, M. E.; Krühler, T.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith, K. W.; Young, D. R.; Tonry, J.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan, D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.; Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla, M.; Bulger, J.; Cannizzaro, G.; Cano, Z.; Cartier, R.; Cikota, A.; Clark, P.; De Cia, A.; Della Valle, M.; Denneau, L.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.; Elias-Rosa, N.; Firth, R. E.; Flewelling, H.; Flörs, A.; Franckowiak, A.; Frohmaier, C.; Galbany, L.; González-Gaitán, S.; Greiner, J.; Gromadzki, M.; Guelbenzu, A. Nicuesa; Gutiérrez, C. P.; Hamanowicz, A.; Hanlon, L.; Harmanen, J.; Heintz, K. E.; Heinze, A.; Hernandez, M.-S.; Hodgkin, S. T.; Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.; Klose, S.; Kostrzewa-Rutkowska, Z.; Kowalski, M.; Kromer, M.; Kuncarayakti, H.; Lawrence, A.; Lowe, T. B.; Magnier, E. A.; Manulis, I.; Martin-Carrillo, A.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.; O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.; Pignata, G.; Podsiadlowski, Ph.; Pumo, M. L.; Prentice, S. J.; Rau, A.; Razza, A.; Rest, A.; Reynolds, T.; Roy, R.; Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Schady, P.; Schultz, A. S. B.; Schweyer, T.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Stalder, B.; Stubbs, C. W.; Sullivan, M.; Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; van Soelen, B.; Vos, J.; Wainscoat, R. J.; Walton, N. A.; Waters, C.; Weiland, H.; Willman, M.; Wiseman, P.; Wright, D. E.; Wyrzykowski, Ł.; Yaron, O.
2017-11-01
Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
Merger of a Neutron Star with a Newtonian Black Hole
NASA Technical Reports Server (NTRS)
Lee, William H.; Kluzniak, Wlodzimierz
1995-01-01
Newtonian smooth particle hydro simulations are presented of the merger of a 1.4 solar mass neutron star with a black hole of equal mass. The initial state of the system is modeled with a stiff polytrope orbiting a point mass. Dynamical instability sets in when the orbital separation is equal to about three stellar radii. The ensuing mass transfer occurs on the dynamical timescale. No accretion torus is formed. At the end of the computation a corona of large extent shrouds an apparently stable binary system of a 0.25 solar mass star orbiting a 2.3 solar mass black hole.
Astrophysical Implications of the Binary Black-hole Merger GW150914
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-02-01
The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}⊙ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.
Astrophysical Implications of the Binary Black Hole Merger GW150914
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.;
2016-01-01
The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.
NASA Astrophysics Data System (ADS)
Sesana, Alberto; Haardt, Francesco; Madau, Piero; Volonteri, Marta
2004-08-01
We compute the expected low-frequency gravitational wave signal from coalescing massive black hole (MBH) binaries at the center of galaxies in a hierarchical structure formation scenario in which seed holes of intermediate mass form far up in the dark halo ``merger tree.'' The merger history of dark matter halos and associated MBHs is followed via cosmological Monte Carlo realizations of the merger hierarchy from redshift z=20 to the present in a ΛCDM cosmology. MBHs get incorporated through halo mergers into larger and larger structures, sink to the center because of dynamical friction against the dark matter background, accrete cold material in the merger remnant, and form MBH binary systems. Stellar dynamical (three-body) interactions cause the hardening of the binary at large separations, while gravitational wave emission takes over at small radii and leads to the final coalescence of the pair. A simple scheme is applied in which the ``loss cone'' is constantly refilled and a constant stellar density core forms because of the ejection of stars by the shrinking binary. The integrated emission from inspiraling MBH binaries at all redshifts is computed in the quadrupole approximation and results in a gravitational wave background (GWB) with a well-defined shape that reflects the different mechanisms driving the late orbital evolution. The characteristic strain spectrum has the standard hc(f)~f-2/3 behavior only in the range f=10-9to10-6 Hz. At lower frequencies the orbital decay of MBH binaries is driven by the ejection of background stars (``gravitational slingshot''), and the strain amplitude increases with frequency, hc(f)~f. In this range the GWB is dominated by 109-1010 Msolar MBH pairs coalescing at 0<~z<~2. At higher frequencies, f>10-6Hz, the strain amplitude, as steep as hc(f)~f-1.3, is shaped by the convolution of last stable circular orbit emission by lighter binaries (102-107 Msolar) populating galaxy halos at all redshifts. We discuss the observability of inspiraling MBH binaries by a low-frequency gravitational wave experiment such as the planned Laser Interferometer Space Antenna (LISA). Over a 3 yr observing period LISA should resolve this GWB into discrete sources, detecting ~60 (~250) individual events above an S/N=5 (S/N=1) confidence level.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Flynn, E.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Phukon, K. S.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sarin, N.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Rana, J.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Sowell, E.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. D.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration
2017-12-01
The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (≲1 s) and intermediate-duration (≲500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1-4 kHz is {h}{rss}50 % =2.1× {10}-22 {{Hz}}-1/2 at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is {h}{rss}50 % =8.4× {10}-22 {{Hz}}-1/2 for a millisecond magnetar model, and {h}{rss}50 % =5.9× {10}-22 {{Hz}}-1/2 for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.
Hunt for infrared photons from the first binary neutron star merger
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi; Growth Collaboration [Global Relay Of Observatories Watching Transients
2017-10-01
Yesterday, within two seconds of 2017 August 17 12:41:04 GMT, both LIGO interferometers and the Fermi satellite detected gravitational waves from a neutron star merger and a short contemporaneous gamma ray burst! We now have a promising optical and infrared counterpart. This may very well be a historic moment in multi-messenger astronomy, and may even prove to be of the same league as neutrinos from SN,1987A. Here, we request the Spitzer Space Telescope to engage in the hunt for infrared photons.
Modeling mergers of known galactic systems of binary neutron stars
NASA Astrophysics Data System (ADS)
Feo, Alessandra; De Pietri, Roberto; Maione, Francesco; Löffler, Frank
2017-02-01
We present a study of the merger of six different known galactic systems of binary neutron stars (BNS) of unequal mass with a mass ratio between 0.75 and 0.99. Specifically, these systems are J1756-2251, J0737-3039A, J1906 + 0746, B1534 + 12, J0453 + 1559 and B1913 + 16. We follow the dynamics of the merger from the late stage of the inspiral process up to ∼20ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH), using a semi-realistic equation of state (EOS), namely the seven-segment piece-wise polytropic SLy with a thermal component. For the most extreme of these systems (q = 0.75, J0453 + 1559), we also investigate the effects of different EOSs: APR4, H4, and MS1. Our numerical simulations are performed using only publicly available open source code such as, the Einstein toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. We show results on the gravitational wave signals, spectrogram and frequencies of the BNS after the merger and the BH properties in the two cases in which the system collapses within the simulated time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonini, Fabio; Chatterjee, Sourav; Rodriguez, Carl L.
Hierarchical triple-star systems are expected to form frequently via close binary–binary encounters in the dense cores of globular clusters (GCs). In a sufficiently inclined triple, gravitational interactions between the inner and outer binary can cause large-amplitude oscillations in the eccentricity of the inner orbit (“Lidov–Kozai (LK) cycles”), which can lead to a collision and merger of the two inner components. In this paper we use Monte Carlo models of dense star clusters to identify all triple systems formed dynamically and we compute their evolution using a highly accurate three-body integrator which incorporates relativistic and tidal effects. We find that amore » large fraction of these triples evolve through a non-secular dynamical phase which can drive the inner binary to higher eccentricities than predicted by the standard secular perturbation theory (even including octupole-order terms). We place constraints on the importance of LK-induced mergers for producing: (i) gravitational wave sources detectable by Advanced LIGO (aLIGO), for triples with an inner pair of stellar black holes (BHs); and (ii) blue straggler stars, for triples with main-sequence-star components. We find a realistic aLIGO detection rate of BH mergers due to the LK mechanism of ∼1 yr{sup −1}, with about 20% of these having a finite eccentricity when they first chirp into the aLIGO frequency band. While rare, these events are likely to dominate among eccentric compact object inspirals that are potentially detectable by aLIGO. For blue stragglers, we find that the LK mechanism can contribute up to ∼10% of their total numbers in GCs.« less
Nonspinning black hole-neutron star mergers: A model for the amplitude of gravitational waveforms
NASA Astrophysics Data System (ADS)
Pannarale, Francesco; Berti, Emanuele; Kyutoku, Koutarou; Shibata, Masaru
2013-10-01
Black hole-neutron star binary mergers display a much richer phenomenology than black hole-black hole mergers, even in the relatively simple case—considered in this paper—in which both the black hole and the neutron star are nonspinning. When the neutron star is tidally disrupted, the gravitational wave emission is radically different from the black hole-black hole case and it can be broadly classified in two groups, depending on the spatial extent of the disrupted material. We present a phenomenological model for the gravitational waveform amplitude in the frequency domain that encompasses the three possible outcomes of the merger: no tidal disruption, “mild,” and “strong” tidal disruption. The model is calibrated to general relativistic numerical simulations using piecewise polytropic neutron star equations of state. It should prove useful to extract information on the nuclear equation of state from future gravitational-wave observations, and also to obtain more accurate estimates of black hole-neutron star merger event rates in second- and third-generation interferometric gravitational-wave detectors. We plan to extend and improve the model as longer and more accurate gravitational waveforms become available, and we will make it publicly available online as a Mathematica package. We also present in the Appendix analytical fits of the projected KAGRA noise spectral density, which should be useful in data analysis applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geier, S.; Classen, L.; Heber, U., E-mail: geier@sternwarte.uni-erlangen.de
Hot subdwarf B stars (sdBs) are evolved core helium-burning stars with very thin hydrogen envelopes. In order to form an sdB, the progenitor has to lose almost all of its hydrogen envelope right at the tip of the red-giant branch. In binary systems, mass transfer to the companion provides the extraordinary mass loss required for their formation. However, apparently single sdBs exist as well and their formation has been unclear for decades. The merger of helium white dwarfs (He-WDs) leading to an ignition of core helium burning or the merger of a helium core and a low-mass star during themore » common envelope phase have been proposed as processes leading to sdB formation. Here we report the discovery of EC 22081-1916 as a fast-rotating, single sdB star of low gravity. Its atmospheric parameters indicate that the hydrogen envelope must be unusually thick, which is at variance with the He-WD merger scenario, but consistent with a common envelope merger of a low-mass, possibly substellar object with a red-giant core.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegel, Daniel M.; Ciolfi, Riccardo, E-mail: daniel.siegel@aei.mpg.de, E-mail: riccardo.ciolfi@unitn.it
2016-03-01
Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality thanks to the ground-based advanced LIGO/Virgo GW detector network. Here we explore such EM signatures based on the model presented in amore » companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission up to ∼10{sup 7} s. Light curves and spectra are computed for a wide range of post-merger physical properties. We present X-ray afterglow light curves corresponding to the “standard” and the “time-reversal” scenario for SGRBs (prompt emission associated with the merger or with the collapse of the long-lived NS). The light curve morphologies include single and two-plateau features with timescales and luminosities that are in good agreement with Swift observations. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario, the detection of which would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient peaking in the X-ray band at ∼10{sup 2}–10{sup 4} s after the BNS merger with luminosities of L{sub X} ∼ 10{sup 46}–10{sup 48} erg s{sup −1}. This signal represents a very promising EM counterpart to the GW emission from BNS mergers.« less
DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz
2012-11-01
The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from population synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include updated wind mass-loss rates (allowing for stellar-mass black holes up to 80 M {sub Sun }), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2-3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed {sup m}ass gap{supmore » )}. Our findings include the following. (1) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (2) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (3) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (4) Certain combinations of parameters underpredict the Galactic NS-NS merger rate and can be ruled out. (5) Models incorporating delayed supernovae do not agree with the observed NS/BH 'mass gap', in accordance with our previous work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper, we will present the detection rates for gravitational-wave observatories, using up-to-date signal waveforms and sensitivity curves.« less
Orbital dynamics in galaxy mergers
NASA Astrophysics Data System (ADS)
Hoffman, Loren
In the favored vacuum energy + cold dark matter (ACDM) cosmology, galaxies form through a hierarchical merging process. Mergers between comparable-mass sys tems are qualitatively different from the ongoing accretion of small objects by much larger ones, in that they can radically transform the nature of the merging objects, e.g. through violent relaxation of the stars and dark matter, triggered starbursts, and quasar activity. This thesis covers two phenomena unique to major galaxy mergers: the formation of supermassive black hole (SMBH) binary and triple systems, and the transformation of the stellar orbit structure through violent relaxation, triggered gas inflow, and star formation. In a major merger, the SMBHs can spiral in and form a bound binary in less than a Hubble time. If the binary lifetime exceeds the typical time between mergers, then triple black hole (BH) systems may form. We study the statistics of close triple-SMBH encounters in galactic nuclei by computing a series of three-body orbits with physically-motivated initial conditions appropriate for giant elliptical galaxies. Our simulations include a smooth background potential consisting of a stellar bulge plus a dark matter halo, drag forces due to gravitational radiation and dynamical friction on the stars and dark matter, and a simple model of the time evolution of the inner density profile under heating and mass ejection by the SMBHs. We find that the binary pair coalesces as a result of repeated close encounters in ~85% of our runs. In about 40% of the runs the lightest BH is left wandering through the galactic halo or escapes the galaxy altogether. The triple systems typically scour out cores with mass deficits ~1-2 times their total mass. The high coalescence rate and prevalence of very high-eccentricity orbits could provide interesting signals for the future Laser Interferometer Space Antenna (LISA). Our study of remnant orbit structure involved 42 disk-disk mergers at various gas fractions, and 10 re-mergers of the 40% gas remnants. All simulations were run using a version of GADGET-2 [173] that included subresolution models of radiative cooling, star formation, and supernova and AGN feedback. The potential was frozen at the last snapshot of each simulation and the orbits of ~50,000 randomly chosen stars were integrated for ~100 dynamical times, and classified based on their Fourier spectra using the algorithm of [30]. The 40% gas remnants were found to be dominated by minor-axis tube orbits in their inner regions, whereas box orbits were the dominant orbit family in the inner parts of the dissipationless disk-disk and remnant-remnant systems. The phase space available to minor-axis tube orbits in even the 5% gas remnants was much larger than that in the dissipationless remnants, but the 5% gas remnants are not fast rotators because these orbits tend to be isotropically distributed at low gas fractions. Some of the remnants show significant minor axis rotation, due to large orientation twists in their outer parts (in the 40% gas remnants) and asymmetrically rotating major-axis tube orbits throughout the remnants (in the re-mergers).
Exploring properties of high-density matter through remnants of neutron-star mergers
NASA Astrophysics Data System (ADS)
Bauswein, Andreas; Stergioulas, Nikolaos; Janka, Hans-Thomas
2016-03-01
Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state for instance is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely to affect this method of constraining the high-density equation of state. We also summarize different possibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational consequences of a scenario of two families of compact stars including hadronic and quark matter stars. We find that this scenario leaves a distinctive imprint on the postmerger gravitational-wave signal. In particular, a strong discontinuity in the dominant postmerger frequency as function of the total mass will be a strong indication for two families of compact stars.
NASA Astrophysics Data System (ADS)
Cantiello, Michele; Jensen, J. B.; Blakeslee, J. P.; Berger, E.; Levan, A. J.; Tanvir, N. R.; Raimondo, G.; Brocato, E.; Alexander, K. D.; Blanchard, P. K.; Branchesi, M.; Cano, Z.; Chornock, R.; Covino, S.; Cowperthwaite, P. S.; D’Avanzo, P.; Eftekhari, T.; Fong, W.; Fruchter, A. S.; Grado, A.; Hjorth, J.; Holz, D. E.; Lyman, J. D.; Mandel, I.; Margutti, R.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.
2018-02-01
The joint detection of gravitational waves (GWs) and electromagnetic radiation from the binary neutron star (BNS) merger GW170817 has provided unprecedented insight into a wide range of physical processes: heavy element synthesis via the r-process; the production of relativistic ejecta; the equation of state of neutron stars and the nature of the merger remnant; the binary coalescence timescale; and a measurement of the Hubble constant via the “standard siren” technique. In detail, all of these results depend on the distance to the host galaxy of the merger event, NGC 4993. In this Letter we measure the surface brightness fluctuation (SBF) distance to NGC 4993 in the F110W and F160W passbands of the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Telescope (HST). For the preferred F110W passband we derive a distance modulus of (m-M) =33.05+/- 0.08+/- 0.10 mag, or a linear distance d = 40.7 ± 1.4 ± 1.9 Mpc (random and systematic errors, respectively); a virtually identical result is obtained from the F160W data. This is the most precise distance to NGC 4993 available to date. Combining our distance measurement with the corrected recession velocity of NGC 4993 implies a Hubble constant H 0 = 71.9 ± 7.1 km s‑1 Mpc‑1. A comparison of our result to the GW-inferred value of H 0 indicates a binary orbital inclination of i ≳ 137°. The SBF technique can be applied to early-type host galaxies of BNS mergers to ∼100 Mpc with HST and possibly as far as ∼300 Mpc with the James Webb Space Telescope, thereby helping to break the inherent distance-inclination degeneracy of the GW data at distances where many future BNS mergers are likely to be detected. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with Program #15329 (PI: E. Berger, #14771 (PI: N. Tanvir), and #14804 (PI: A. Levan).
Equation of state survey of black hole-neutron star mergers
NASA Astrophysics Data System (ADS)
Brege, Wyatt
2016-03-01
By varying across several realistic equations of state in the regime in which most neutron star masses are most likely to appear, we can study how important a role these EOS's play in the properties of the post-merger accretion disk in mixed binary systems. In each system considered, the black hole has a mass of MBH = 7M⊙ and a spin of a* = 0 . 9 , and the neutron star has a mass of 1.2 or 1.4 M⊙. The realistic EOS's chosen satisfy experimental and observational constraints, and explore a wide range of neutron star compactnesses. We will address remaining uncertainties in the NS high-density EOS's and, principally, examine differences in the dynamical ejecta and consider implications for nucleosynthesis.
Improvements in Gravitational-wave Sky Localization with Expanded Networks of Interferometers
NASA Astrophysics Data System (ADS)
Pankow, Chris; Chase, Eve A.; Coughlin, Scott; Zevin, Michael; Kalogera, Vassiliki
2018-02-01
A milestone of multi-messenger astronomy has been achieved with the detection of gravitational waves from a binary neutron star merger accompanied by observations of several associated electromagnetic counterparts. Joint observations can reveal details of the engines that drive the electromagnetic and gravitational-wave emission. However, locating and identifying an electromagnetic counterpart to a gravitational-wave event is heavily reliant on localization of the source through gravitational-wave information. We explore the sky localization of a simulated set of neutron star mergers as the worldwide network of gravitational-wave detectors evolves through the next decade, performing the first such study for neutron star–black hole binary sources. Currently, three detectors are observing with additional detectors in Japan and India expected to become operational in the coming years. With three detectors, we recover a median neutron star–black hole binary sky localization of 60 deg2 at the 90% credible level. As all five detectors become operational, sources can be localized to a median of 11 deg2 on the sky.
The triple-ring nebula around SN 1987A: fingerprint of a binary merger.
Morris, Thomas; Podsiadlowski, Philipp
2007-02-23
Supernova 1987A, the first naked-eye supernova observed since Kepler's supernova in 1604, defies a number of theoretical expectations. Its anomalies have long been attributed to a merger between two massive stars that occurred some 20,000 years before the explosion, but so far there has been no conclusive proof that this merger took place. Here, we present three-dimensional hydrodynamical simulations of the mass ejection associated with such a merger and the subsequent evolution of the ejecta, and we show that this accurately reproduces the properties of the triple-ring nebula surrounding the supernova.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clausen, Drew; Wade, Richard A., E-mail: dclausen@astro.psu.edu, E-mail: wade@astro.psu.edu
Many hot subdwarf B stars (sdBs) are in close binaries, and the favored formation channels for subdwarfs rely on mass transfer in a binary system to strip a core He-burning star of its envelope. However, these channels cannot account for sdBs that have been observed in long-period binaries nor the narrow mass distribution of isolated (or 'singleton') sdBs. We propose a new formation channel involving the merger of a helium white dwarf and a low-mass, hydrogen-burning star, which addresses these issues. Hierarchical triples whose inner binaries merge and form sdBs by this process could explain the observed long-period subdwarf+main-sequence binaries.more » This process would also naturally explain the observed slow rotational speeds of singleton sdBs. We also briefly discuss the implications of this formation channel for extreme horizontal branch morphology in globular clusters and the UV upturn in elliptical galaxies.« less
NASA Astrophysics Data System (ADS)
Shangguan, Jinyi; Liu, Xin; Ho, Luis C.; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.
2016-05-01
Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U - Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO 12363.
NASA Astrophysics Data System (ADS)
Gottlieb, Ore; Nakar, Ehud; Piran, Tsvi
2018-01-01
Short gamma-ray bursts are believed to arise from compact binary mergers (either neutron star-neutron star or black hole-neutron star). If so, their jets must penetrate outflows that are ejected during the merger. As a jet crosses the ejecta, it dissipates its energy, producing a hot cocoon that surrounds it. We present here 3D numerical simulations of jet propagation in mergers' outflows, and we calculate the resulting emission. This emission consists of two components: the cooling emission, the leakage of the thermal energy of the hot cocoon, and the cocoon macronova that arises from the radioactive decay of the cocoon's material. This emission gives a brief (∼1 h) blue, wide angle signal. While the parameters of the outflow and jet are uncertain, for the configurations we have considered, the signal is bright (∼-14 to -15 absolute magnitude) and outshines all other predicted ultraviolet-optical signals. The signal is brighter when the jet breakout time is longer, and its peak brightness does not depend strongly on the highly uncertain opacity. A rapid search for such a signal is a promising strategy to detect an electromagnetic merger counterpart. A detected candidate could be then followed by deep infrared searches for the longer but weaker macronova arising from the rest of the ejecta.
On the formation of runaway stars BN and x in the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Farias, J. P.; Tan, J. C.
2018-05-01
We explore scenarios for the dynamical ejection of stars BN and x from source I in the Kleinmann-Low nebula of the Orion Nebula Cluster (ONC), which is important because it is the closest region of massive star formation. This ejection would cause source I to become a close binary or a merger product of two stars. We thus consider binary-binary encounters as the mechanism to produce this event. By running a large suite of N-body simulations, we find that it is nearly impossible to match the observations when using the commonly adopted masses for the participants, especially a source I mass of 7 M⊙. The only way to recreate the event is if source I is more massive, that is, 20 M⊙. However, even in this case, the likelihood of reproducing the observed system is low. We discuss the implications of these results for understanding this important star-forming region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patricelli, B.; Razzano, M.; Fidecaro, F.
The detection of the events GW150914 and GW151226, both consistent with the merger of a binary black hole system (BBH), opened the era of gravitational wave (GW) astronomy. Besides BBHs, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binarymore » systems of neutron stars with Advanced Virgo and LIGO and with the Fermi gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016–2017 run; however, as the interferometers approach their final design sensitivities, the rate will increase by ∼ a factor of ten. Future joint observations will help to constrain the association between short GRBs and binary systems and to solve the puzzle of the progenitors of GWs. Comparison of the joint detection rate with the ones predicted in this paper will help to constrain the geometry of the GRB jet.« less
On the origin of high-velocity runaway stars
NASA Astrophysics Data System (ADS)
Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon
2009-06-01
We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.
Rates of short-GRB afterglows in association with binary neutron star mergers
NASA Astrophysics Data System (ADS)
Saleem, M.; Pai, Archana; Misra, Kuntal; Resmi, L.; Arun, K. G.
2018-03-01
Assuming all binary neutron star (BNS) mergers produce short gamma-ray bursts, we combine the merger rates of BNS from population synthesis studies, the sensitivities of advanced gravitational wave (GW) interferometer networks, and of the electromagnetic (EM) facilities in various wavebands, to compute the detection rate of associated afterglows in these bands. Using the inclination angle measured from GWs as a proxy for the viewing angle and assuming a uniform distribution of jet opening angle between 3° and 30°, we generate light curves of the counterparts using the open access afterglow hydrodynamics package BOXFIT for X-ray, optical, and radio bands. For different EM detectors, we obtain the fraction of EM counterparts detectable in these three bands by imposing appropriate detection thresholds. In association with BNS mergers detected by five (three) detector networks of advanced GW interferometers, assuming a BNS merger rate of 0.6-774 Gpc-3 yr-1 from population synthesis models, we find the afterglow detection rates (per year) to be 0.04-53 (0.02-27), 0.03-36 (0.01-19), and 0.04-47 (0.02-25) in the X-ray, optical, and radio bands, respectively. Our rates represent maximum possible detections for the given BNS rate since we ignore effects of cadence and field of view in EM follow-up observations.
Building an Unusual White-Dwarf Duo
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-09-01
A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three stars.The authors proposed formation scenario for H220+2146. In this picture, the inner binary merges to form a blue straggler. This star and the remaining main-sequence star then evolve independently into white dwarfs, forming the system observed today. [Andrews et al. 2016]An Early MergerIn the model the authors propose for HS 2220+2146, the binary system began as a hierarchical triple system of main-sequence stars. The innermost binary then merged to form a large star known as a blue straggler a star that, due to the merger, will evolve more slowly than its larger mass implies it should.The blue straggler and the remaining main-sequence star, still in a wide orbit, then continued to evolve independently of each other. The smaller star ended its main-sequence lifetime and became a white dwarf first, followed by the more massive but slowly evolving blue straggler thus forming the system we observe today.If the authors model is correct, then HS 2220+2146 would be the first binary double white dwarf known to have formed through this channel. ESAs Gaia mission, currently underway, is expected to discover up to a million new white dwarfs, many of which will likely be in wide binary systems. Among these, we may well find many other systems like HS 2220+2146 that formed in the same way.CitationJeff J. Andrews et al 2016 ApJ 828 38. doi:10.3847/0004-637X/828/1/38
Compact binary merger rates: Comparison with LIGO/Virgo upper limits
Belczynski, Krzysztof; Repetto, Serena; Holz, Daniel E.; ...
2016-03-03
Here, we compare evolutionary predictions of double compact object merger rate densities with initial and forthcoming LIGO/Virgo upper limits. We find that: (i) Due to the cosmological reach of advanced detectors, current conversion methods of population synthesis predictions into merger rate densities are insufficient. (ii) Our optimistic models are a factor of 18 below the initial LIGO/Virgo upper limits for BH–BH systems, indicating that a modest increase in observational sensitivity (by a factor of ~2.5) may bring the first detections or first gravitational wave constraints on binary evolution. (iii) Stellar-origin massive BH–BH mergers should dominate event rates in advanced LIGO/Virgo and can be detected out to redshift z sime 2 with templates including inspiral, merger, and ringdown. Normal stars (more » $$\\lt 150\\;{M}_{\\odot }$$) can produce such mergers with total redshifted mass up to $${M}_{{\\rm{tot,z}}}\\simeq 400\\;{M}_{\\odot }$$. (iv) High black hole (BH) natal kicks can severely limit the formation of massive BH–BH systems (both in isolated binary and in dynamical dense cluster evolution), and thus would eliminate detection of these systems even at full advanced LIGO/Virgo sensitivity. We find that low and high BH natal kicks are allowed by current observational electromagnetic constraints. (v) The majority of our models yield detections of all types of mergers (NS–NS, BH–NS, BH–BH) with advanced detectors. Numerous massive BH–BH merger detections will indicate small (if any) natal kicks for massive BHs.« less
The exotic remnants of compact object binary mergers
NASA Astrophysics Data System (ADS)
Duez, Matthew
2017-01-01
The collision and merger of a neutron star with a black hole or another neutron star is a strong source of gravitational waves and a promising setup for the creation of bright infrared (kilonova) and gamma ray (gamma ray burst) transients. These violent events can be modeled by numerical simulations incorporating general relativity, fluid dynamics, and nuclear physics. In this talk, I will explain the findings of some of these simulations. Depending on the properties of the binary, the merger leaves a black hole, a black hole accreting matter from a torus at an incredible rate, or a massive spinning neutron star. The latter two cases are characterized by the importance of differential rotation, magnetohydrodynamic processes, and neutrino radiation. To understand these systems, I will focus on what we know of their dynamical and thermal equilibrium structure, what we know of the dynamical instabilities to which they might be prone, and what we can tentatively say about their subsequent secular evolution from outflow, magnetic, radiative, and other effects. Computer simulations are becoming ever more impressive but remain unequal to the problem at hand, so I will address the challenges still posed by small-scale magnetohydrodynamic effects and by radiation transport. The author is a member of the SXS Collaboration and acknowledges support from NSF.
A NARROW SHORT-DURATION GRB JET FROM A WIDE CENTRAL ENGINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffell, Paul C.; Quataert, Eliot; MacFadyen, Andrew I., E-mail: duffell@berkeley.edu
2015-11-01
We use two-dimensional relativistic hydrodynamic numerical calculations to show that highly collimated relativistic jets can be produced in neutron star merger models of short-duration gamma-ray bursts (GRBs) without the need for a highly directed engine or a large net magnetic flux. Even a hydrodynamic engine generating a very wide sustained outflow on small scales can, in principle, produce a highly collimated relativistic jet, facilitated by a dense surrounding medium that provides a cocoon surrounding the jet core. An oblate geometry to the surrounding gas significantly enhances the collimation process. Previous numerical simulations have shown that the merger of two neutronmore » stars produces an oblate, expanding cloud of dynamical ejecta. We show that this gas can efficiently collimate the central engine power much like the surrounding star does in long-duration GRB models. For typical short-duration GRB central engine parameters, we find jets with opening angles of an order of 10° in which a large fraction of the total outflow power of the central engine resides in highly relativistic material. These results predict large differences in the opening angles of outflows from binary neutron star mergers versus neutron star–black hole mergers.« less
Characterizing the Hercules Thick Disk Cloud
2009-01-01
merger. Key Words: Astronomy , Hercules Thick Disk Cloud, Galaxy, Star Count, Color, Photometric Parallax 2 Contents Chapter 1... Astronomy : Structure and Kinematics, 2nd ed., New York: W. H. Freeman and Company, 1981, pp 4. 5 Henbest, Guide, pp 10. 6 Mihalas, Galactic, pp 209...studies of astronomy later in his life, he focused on binary star systems and concluded that not all stars have the same absolute magnitude, thus
NASA Astrophysics Data System (ADS)
Fraschetti, F.
2018-04-01
We propose a qualitative scenario to interpret the argued association between the direct measurement of the gravitational wave event GW150914 by Laser Interferometer Gravitational Wave Observatory (LIGO)-Virgo collaborations and the hard X-ray transient detected by Fermi-Gamma-ray Burst Monitor (GBM) 0.4 sec after. In a binary system of two gravitationally collapsing objects with a non-vanishing electric charge, the compenetration of the two magnetospheres occurring during the coalescence, through magnetic reconnection, produces a highly collimated relativistic outflow that becomes optically thin and shines in the GBM field of view. We propose that this process should be expected as a commonplace in the future joint gravitational/electromagnetic detections and, in case of neutron star-neutron star merger event, might lead to detectable X- or γ-ray precursors to, or transients associated with, the gravitational bursts.
Beta-Decay Rates for Exotic Nuclei and R-Process Nucleosynthesis up to Th and U
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Yoshida, Takashi; Shibagaki, Shota; Kajino, Toshitaka; Otsuka, Takaharu
Beta-decay rates for exotic nuclei with N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard FRDM, are used to study r-process nucleosynthesis in neutrino-driven winds and magneto-hydrodynamic jets of core-collapse supernova explosions as well as in binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. Thorium and uranium are found to be produced more with the shorter shell-model half-lives and their abundances come closer to the observed values in core-collapse supernova explosions, while in case of binary neutron star mergers they are produced as much as the observed values rather independent of the half-lives.
DESGW: Optical Follow-up of BBH LIGO-Virgo Events with DECam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Robert E.; Soares-Santos, M.; Annis, j.
2017-12-14
The DESGW program is a collaboration between members of the Dark Energy Survey, the wider astronomical community, and the LIGO-Virgo Collaboration to search for optical counterparts of gravitational wave events, such as those expected from binary neutron star mergers or neutron star-black hole mergers. While binary black hole (BBH) events are not expected to produce an electromagnetic (EM) signature, emission is certainly not impossible. The DESGW program has performed follow-up observations of four BBH events detected by LIGO in order to search for any possible EM counterpart. Failure to nd such counterparts is still relevant in that it produces limitsmore » on optical emission from such events. This is a review of follow-up results from O1 BBH events and a discussion of the status of ongoing uniform re-analysis of all BBH events that DESGW has followed up to date.« less
NASA Astrophysics Data System (ADS)
Vos, Joris; Zorotovic, Monica; Vučković, Maja; Schreiber, Matthias R.; Østensen, Roy
2018-06-01
We report the discovery of HE 0430-2457, the first extremely low-mass pre-white dwarf (ELM pre-WD) in a long period binary (P = 771 ± 3 d). The spectroscopic parameters of the primary are determined to be Teff = 26 200 ± 1500 K and log g = 5.40 ± 0.35, placing it in the region occupied by core He-burning hot subdwarf B stars. By comparing the spectroscopic parameters of the K-type companion to stellar models, and using the mass ratio, the mass of the hot primary is determined to be 0.23 M⊙. Given that this is too low for core He-burning, the primary in HE 0430-2457 is not an extreme horizontal branch (EHB) star but a pre-WD of the ELM type. As the lifetime of ELM pre-WDs in this region of the Hertzsprung Russel diagram populated by EHBs is thought to be very short, they are not considered to be part of the observed EHBs. However, the discovery of this system indicates that the percentage of ELM pre-WDs in the observed EHB population might be higher than previously thought. Binary evolution models indicate that HE 0430-2457 is likely formed by a merger of the inner binary in a hierarchical triple system.
The Lagrange Points in a Binary Black Hole System: Applications to Electromagnetic Signatures
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy
2010-01-01
We study the stability and evolution of the Lagrange points L_4 and L-5 in a black hole (BH) binary system, including gravitational radiation. We find that gas and stars can be shepherded in with the BH system until the final moments before merger, providing the fuel for a bright electromagnetic counterpart to a gravitational wave signal. Other astrophysical signatures include the ejection of hyper-velocity stars, gravitational collapse of globular clusters, and the periodic shift of narrow emission lines in AGN.
Evolving R Coronae Borealis Stars with MESA
NASA Astrophysics Data System (ADS)
Clayton, Geoffrey C.; Lauer, Amber; Chatzopoulos, Emmanouil; Frank, Juhan
2018-01-01
R Coronae Borealis (RCB) stars form a small class of cool, carbon-rich supergiants that have almost no hydrogen. They undergo extreme, irregular declines in brightness of up to 8 magnitudes due to the formation of thick clouds of carbon dust. Two scenarios have been proposed for the origin of an RCB star: the merger of a CO/He white dwarf (WD) binary and a final helium-shell flash. We are using a combination of 3D hydrodynamics codes and the 1D MESA (Modules for Experiments in Stellar Astrophysics) stellar evolution code including nucleosynthesis to construct post-merger spherical models based on realistic merger progenitor models and on our hydrodynamical simulations, and then following the evolution into the region of the HR diagram where RCB stars are located. We are investigating nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed.Our MESA modeling consists of two steps: first mimicking the WD merger event using two different techniques, (a) by choosing a very high mass accretion rate with appropriate abundances and (b) by applying "stellar engineering" to an initial CO WD model to account for the newly merged material by applying an entropy adjusting procedure. Second, we follow the post-merger evolution using a large nuclear reaction network including the effects of convective and rotational instabilities to the mixing of material in order to match the observed RCB abundances. MESA follows the evolution of the merger product as it expands and cools to become an RCB star. We then examine the surface abundances and compare them to the observed RCB abundances. We also investigate how long fusion continues in the He shell near the core and how this processed material is mixed up to the surface of the star. We then model the later evolution of RCB stars to determine their likely lifetimes and endpoints when they have returned to being a WD. Solving the mystery of how the RCB stars evolve will lead to a better understanding of other important types of stellar merger events such as Type Ia SNe.
The birth of a supermassive black hole binary
NASA Astrophysics Data System (ADS)
Pfister, Hugo; Lupi, Alessandro; Capelo, Pedro R.; Volonteri, Marta; Bellovary, Jillian M.; Dotti, Massimo
2017-11-01
We study the dynamical evolution of supermassive black holes, in the late stage of galaxy mergers, from kpc to pc scales. In particular, we capture the formation of the binary, a necessary step before the final coalescence, and trace back the main processes causing the decay of the orbit. We use hydrodynamical simulations of galaxy mergers with different resolutions, from 20 pc down to 1 pc, in order to study the effects of the resolution on our results, remove numerical effects, and assess that resolving the influence radius of the orbiting black hole is a minimum condition to fully capture the formation of the binary. Our simulations include the relevant physical processes, namely star formation, supernova feedback, accretion on to the black holes and the ensuing feedback. We find that, in these mergers, dynamical friction from the smooth stellar component of the nucleus is the main process that drives black holes from kpc to pc scales. Gas does not play a crucial role and even clumps do not induce scattering or perturb the orbits. We compare the time needed for the formation of the binary to analytical predictions and suggest how to apply such analytical formalism to obtain estimates of binary formation times in lower resolution simulations.
Evolution of the Black Hole Mass Function in Star Clusters from Multiple Mergers
NASA Astrophysics Data System (ADS)
Christian, Pierre; Mocz, Philip; Loeb, Abraham
2018-05-01
We investigate the effects of black hole (BH) mergers in star clusters on the black hole mass function (BHMF). As BHs are not produced in pair-instability supernovae, it is suggested that there is a dearth of high-mass stellar BHs. This dearth generates a gap in the upper end of the BHMF. Meanwhile, parameter fitting of X-ray binaries suggests the existence of a gap in the mass function under 5 solar masses. We show, through evolving a coagulation equation, that BH mergers can appreciably fill the upper mass gap, and that the lower mass gap generates potentially observable features at larger mass scales. We also explore the importance of ejections in such systems and whether dynamical clusters can be formation sites of intermediate-mass BH seeds.
DO R CORONAE BOREALIS STARS FORM FROM DOUBLE WHITE DWARF MERGERS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staff, Jan. E.; Clayton, Geoffrey C.; Tohline, Joel E.
2012-09-20
A leading formation scenario for R Coronae Borealis (RCB) stars invokes the merger of degenerate He and CO white dwarfs (WDs) in a binary. The observed ratio of {sup 16}O/{sup 18}O for RCB stars is in the range of 0.3-20 much smaller than the solar value of {approx}500. In this paper, we investigate whether such a low ratio can be obtained in simulations of the merger of a CO and a He WD. We present the results of five three-dimensional hydrodynamic simulations of the merger of a double WD system where the total mass is 0.9 M{sub Sun} and themore » initial mass ratio (q) varies between 0.5 and 0.99. We identify in simulations with q {approx}< 0.7 a feature around the merged stars where the temperatures and densities are suitable for forming {sup 18}O. However, more {sup 16}O is being dredged up from the C- and O-rich accretor during the merger than the amount of {sup 18}O that is produced. Therefore, on the dynamical timescale over which our hydrodynamics simulation runs, an {sup 16}O/{sup 18}O ratio of {approx}2000 in the 'best' case is found. If the conditions found in the hydrodynamic simulations persist for 10{sup 6} s the oxygen ratio drops to 16 in one case studied, while in a hundred years it drops to {approx}4 in another case studied, consistent with the observed values in RCB stars. Therefore, the merger of two WDs remains a strong candidate for the formation of these enigmatic stars.« less
Two distinct sequences of blue straggler stars in the globular cluster M 30.
Ferraro, F R; Beccari, G; Dalessandro, E; Lanzoni, B; Sills, A; Rood, R T; Pecci, F Fusi; Karakas, A I; Miocchi, P; Bovinelli, S
2009-12-24
Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxy's history. 'Blue stragglers' are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M 30. This globular cluster is thought to have undergone 'core collapse', during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences are a consequence of cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.
EVERY INTERACTING DOUBLE WHITE DWARF BINARY MAY MERGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Ken J.
2015-05-20
Interacting double white dwarf (WD) binaries can give rise to a wide variety of astrophysical outcomes ranging from faint thermonuclear and Type Ia supernovae to the formation of neutron stars and stably accreting AM Canum Venaticorum systems. One key factor affecting the final outcome is whether mass transfer remains dynamically stable or instead diverges, leading to the tidal disruption of the donor and the merger of the binary. It is typically thought that for low ratios of the donor mass to the accretor mass, mass transfer remains stable, especially if accretion occurs via a disk. In this Letter, we examinemore » low mass ratio double WD binaries and find that the initial phase of hydrogen-rich mass transfer leads to a classical nova-like outburst on the accretor. Dynamical friction within the expanding nova shell shrinks the orbit and causes the mass transfer rate to increase dramatically above the accretor's Eddington limit, possibly resulting in a binary merger. If the binary survives the first hydrogen-rich nova outbursts, dynamical friction within the subsequent helium-powered nova shells pushes the system even more strongly toward merger. While further calculations are necessary to confirm this outcome for the entire range of binaries previously thought to be dynamically stable, it appears likely that most, if not all, interacting double WD binaries will merge during the course of their evolution.« less
NASA Astrophysics Data System (ADS)
van de Voort, Freeke; Quataert, Eliot; Hopkins, Philip F.; Kereš, Dušan; Faucher-Giguère, Claude-André
2015-02-01
We quantify the stellar abundances of neutron-rich r-process nuclei in cosmological zoom-in simulations of a Milky Way-mass galaxy from the Feedback In Realistic Environments project. The galaxy is enriched with r-process elements by binary neutron star (NS) mergers and with iron and other metals by supernovae. These calculations include key hydrodynamic mixing processes not present in standard semi-analytic chemical evolution models, such as galactic winds and hydrodynamic flows associated with structure formation. We explore a range of models for the rate and delay time of NS mergers, intended to roughly bracket the wide range of models consistent with current observational constraints. We show that NS mergers can produce [r-process/Fe] abundance ratios and scatter that appear reasonably consistent with observational constraints. At low metallicity, [Fe/H] ≲ -2, we predict there is a wide range of stellar r-process abundance ratios, with both supersolar and subsolar abundances. Low-metallicity stars or stars that are outliers in their r-process abundance ratios are, on average, formed at high redshift and located at large galactocentric radius. Because NS mergers are rare, our results are not fully converged with respect to resolution, particularly at low metallicity. However, the uncertain rate and delay time distribution of NS mergers introduce an uncertainty in the r-process abundances comparable to that due to finite numerical resolution. Overall, our results are consistent with NS mergers being the source of most of the r-process nuclei in the Universe.
On the Unreasonable Effectiveness of post-Newtonian Theory in Gravitational-Wave Physics
Will, Clifford M.
2017-12-22
The first indirect detection of gravitational waves involved a binary system of neutron stars. In the future, the first direct detection may also involve binary systems -- inspiralling and merging binary neutron stars or black holes. This means that it is essential to understand in full detail the two-body system in general relativity, a notoriously difficult problem with a long history. Post-Newtonian approximation methods are thought to work only under slow motion and weak field conditions, while numerical solutions of Einstein's equations are thought to be limited to the final merger phase. Recent results have shown that post-Newtonian approximations seem to remain unreasonably valid well into the relativistic regime, while advances in numerical relativity now permit solutions for numerous orbits before merger. It is now possible to envision linking post-Newtonian theory and numerical relativity to obtain a complete "solution" of the general relativistic two-body problem. These solutions will play a central role in detecting and understanding gravitational wave signals received by interferometric observatories on Earth and in space.
Black Hole-Neutron Star Mergers as Central Engines of Gamma-Ray Bursts.
Janka; Eberl; Ruffert; Fryer
1999-12-10
Hydrodynamic simulations of the merger of stellar mass black hole-neutron star binaries are compared with mergers of binary neutron stars. The simulations are Newtonian but take into account the emission and back-reaction of gravitational waves. The use of a physical nuclear equation of state allows us to include the effects of neutrino emission. For low neutron star-to-black hole mass ratios, the neutron star transfers mass to the black hole during a few cycles of orbital decay and subsequent widening before finally being disrupted, whereas for ratios near unity the neutron star is destroyed during its first approach. A gas mass between approximately 0.3 and approximately 0.7 M middle dot in circle is left in an accretion torus around the black hole and radiates neutrinos at a luminosity of several times 1053 ergs s-1 during an estimated accretion timescale of about 0.1 s. The emitted neutrinos and antineutrinos annihilate into e+/- pairs with efficiencies of 1%-3% and rates of up to approximately 2x1052 ergs s-1, thus depositing an energy Enunu&d1; less, similar1051 ergs above the poles of the black hole in a region that contains less than 10-5 M middle dot in circle of baryonic matter. This could allow for relativistic expansion with Lorentz factors around 100 and is sufficient to explain apparent burst luminosities Lgamma approximately Enunu&d1;&solm0;&parl0;fOmegatgamma&parr0; up to several times 1053 ergs s-1 for burst durations tgamma approximately 0.1-1 s, if the gamma emission is collimated in two moderately focused jets in a fraction fOmega=2deltaOmega&solm0;&parl0;4pi&parr0; approximately 1&solm0;100-(1/10) of the sky.
THE DARK HALO-SPHEROID CONSPIRACY AND THE ORIGIN OF ELLIPTICAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remus, Rhea-Silvia; Burkert, Andreas; Dolag, Klaus
2013-04-01
Dynamical modeling and strong-lensing data indicate that the total density profiles of early-type galaxies are close to isothermal, i.e., {rho}{sub tot}{proportional_to}r {sup {gamma}} with {gamma} Almost-Equal-To -2. To understand the origin of this universal slope we study a set of simulated spheroids formed in isolated binary mergers as well as the formation within the cosmological framework. The total stellar plus dark matter density profiles can always be described by a power law with an index of {gamma} Almost-Equal-To -2.1 with a tendency toward steeper slopes for more compact, lower-mass ellipticals. In the binary mergers the amount of gas involved inmore » the merger determines the precise steepness of the slope. This agrees with results from the cosmological simulations where ellipticals with steeper slopes have a higher fraction of stars formed in situ. Each gas-poor merger event evolves the slope toward {gamma} {approx} -2, once this slope is reached further merger events do not change it anymore. All our ellipticals have flat intrinsic combined stellar and dark matter velocity dispersion profiles. We conclude that flat velocity dispersion profiles and total density distributions with a slope of {gamma} {approx} -2 for the combined system of stars and dark matter act as a natural attractor. The variety of complex formation histories as present in cosmological simulations, including major as well as minor merger events, is essential to generate the full range of observed density slopes seen for present-day elliptical galaxies.« less
NASA Astrophysics Data System (ADS)
Margutti, R.; Berger, E.; Fong, W.; Guidorzi, C.; Alexander, K. D.; Metzger, B. D.; Blanchard, P. K.; Cowperthwaite, P. S.; Chornock, R.; Eftekhari, T.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.; Annis, J.; Brown, D. A.; Chen, H.; Doctor, Z.; Frieman, J. A.; Holz, D. E.; Sako, M.; Soares-Santos, M.
2017-10-01
We report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory (CXO) at t≈ 2.3 days post-merger reveal no significant emission, with {L}x≲ 3.2× {10}38 {erg} {{{s}}}-1 (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching {L}x≈ 9× {10}38 {erg} {{{s}}}-1 at ≈ 15.1 days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy {E}k˜ {10}49-50 {erg}, viewed off-axis with {θ }{obs}˜ 20^\\circ {--}40^\\circ . Our models favor a circumbinary density n˜ {10}-4{--}{10}-2 {{cm}}-3, depending on the value of the microphysical parameter {ɛ }B={10}-4{--}{10}-2. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at t≳ 100 days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on {θ }{obs} are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.
Multi-messenger Observations of a Binary Neutron Star Merger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, B. P.; Abbott, R.; Abbott, T. D.
Here, on 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay ofmore » $$\\sim 1.7\\,{\\rm{s}}$$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg 2 at a luminosity distance of $${40}_{-8}^{+8}$$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $$\\,{M}_{\\odot }$$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $$\\sim 40\\,{\\rm{Mpc}}$$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position $$\\sim 9$$ and $$\\sim 16$$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.« less
Multi-messenger Observations of a Binary Neutron Star Merger
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Griswold, B.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh, P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, P.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Wilson-Hodge, C. A.; Bissaldi, E.; Blackburn, L.; Briggs, M. S.; Burns, E.; Cleveland, W. H.; Connaughton, V.; Gibby, M. H.; Giles, M. M.; Goldstein, A.; Hamburg, R.; Jenke, P.; Hui, C. M.; Kippen, R. M.; Kocevski, D.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.; Poolakkil, S.; Preece, R. D.; Racusin, J.; Roberts, O. J.; Stanbro, M.; Veres, P.; von Kienlin, A.; GBM, Fermi; Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T. J.-L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain, E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Martin-Carrillo, A.; Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques, J.-P.; Sunyaev, R.; Ubertini, P.; INTEGRAL; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration; Balasubramanian, A.; Mate, S.; Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Dewangan, G. C.; Rao, A. R.; Vadawale, S. V.; AstroSat Cadmium Zinc Telluride Imager Team; Svinkin, D. S.; Hurley, K.; Aptekar, R. L.; Frederiks, D. D.; Golenetskii, S. V.; Kozlova, A. V.; Lysenko, A. L.; Oleynik, Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Cline, T.; IPN Collaboration; Li, T. P.; Xiong, S. L.; Zhang, S. N.; Lu, F. J.; Song, L. M.; Cao, X. L.; Chang, Z.; Chen, G.; Chen, L.; Chen, T. X.; Chen, Y.; Chen, Y. B.; Chen, Y. P.; Cui, W.; Cui, W. W.; Deng, J. K.; Dong, Y. W.; Du, Y. Y.; Fu, M. X.; Gao, G. H.; Gao, H.; Gao, M.; Ge, M. Y.; Gu, Y. D.; Guan, J.; Guo, C. C.; Han, D. W.; Hu, W.; Huang, Y.; Huo, J.; Jia, S. M.; Jiang, L. H.; Jiang, W. C.; Jin, J.; Jin, Y. J.; Li, B.; Li, C. K.; Li, G.; Li, M. S.; Li, W.; Li, X.; Li, X. B.; Li, X. F.; Li, Y. G.; Li, Z. J.; Li, Z. W.; Liang, X. H.; Liao, J. Y.; Liu, C. Z.; Liu, G. Q.; Liu, H. W.; Liu, S. Z.; Liu, X. J.; Liu, Y.; Liu, Y. N.; Lu, B.; Lu, X. F.; Luo, T.; Ma, X.; Meng, B.; Nang, Y.; Nie, J. Y.; Ou, G.; Qu, J. L.; Sai, N.; Sun, L.; Tan, Y.; Tao, L.; Tao, W. H.; Tuo, Y. L.; Wang, G. F.; Wang, H. Y.; Wang, J.; Wang, W. S.; Wang, Y. S.; Wen, X. Y.; Wu, B. B.; Wu, M.; Xiao, G. C.; Xu, H.; Xu, Y. P.; Yan, L. L.; Yang, J. W.; Yang, S.; Yang, Y. J.; Zhang, A. M.; Zhang, C. L.; Zhang, C. M.; Zhang, F.; Zhang, H. M.; Zhang, J.; Zhang, Q.; Zhang, S.; Zhang, T.; Zhang, W.; Zhang, W. C.; Zhang, W. Z.; Zhang, Y.; Zhang, Y.; Zhang, Y. F.; Zhang, Y. J.; Zhang, Z.; Zhang, Z. L.; Zhao, H. S.; Zhao, J. L.; Zhao, X. F.; Zheng, S. J.; Zhu, Y.; Zhu, Y. X.; Zou, C. L.; The Insight-HXMT Collaboration; Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.-J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Ruiz, R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hössl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kiessling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Beardmore, A. P.; Breeveld, A. A.; Burrows, D. N.; Cenko, S. B.; Cusumano, G.; D'Aì, A.; de Pasquale, M.; Emery, S. W. K.; Evans, P. A.; Giommi, P.; Gronwall, C.; Kennea, J. A.; Krimm, H. A.; Kuin, N. P. M.; Lien, A.; Marshall, F. E.; Melandri, A.; Nousek, J. A.; Oates, S. R.; Osborne, J. P.; Pagani, C.; Page, K. L.; Palmer, D. M.; Perri, M.; Siegel, M. H.; Sbarufatti, B.; Tagliaferri, G.; Tohuvavohu, A.; The Swift Collaboration; Tavani, M.; Verrecchia, F.; Bulgarelli, A.; Evangelista, Y.; Pacciani, L.; Feroci, M.; Pittori, C.; Giuliani, A.; Del Monte, E.; Donnarumma, I.; Argan, A.; Trois, A.; Ursi, A.; Cardillo, M.; Piano, G.; Longo, F.; Lucarelli, F.; Munar-Adrover, P.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Minervini, G.; Fioretti, V.; Parmiggiani, N.; Gianotti, F.; Trifoglio, M.; Di Persio, G.; Antonelli, L. A.; Barbiellini, G.; Caraveo, P.; Cattaneo, P. W.; Costa, E.; Colafrancesco, S.; D'Amico, F.; Ferrari, A.; Morselli, A.; Paoletti, F.; Picozza, P.; Pilia, M.; Rappoldi, A.; Soffitta, P.; Vercellone, S.; AGILE Team; Foley, R. J.; Coulter, D. A.; Kilpatrick, C. D.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Kasen, D.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y.-C.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; The 1M2H Team; Berger, E.; Soares-Santos, M.; Annis, J.; Alexander, K. D.; Allam, S.; Balbinot, E.; Blanchard, P.; Brout, D.; Butler, R. E.; Chornock, R.; Cook, E. R.; Cowperthwaite, P.; Diehl, H. T.; Drlica-Wagner, A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong, W.; Frieman, J. A.; Fryer, C. L.; García-Bellido, J.; Gruendl, R. A.; Hartley, W.; Herner, K.; Kessler, R.; Lin, H.; Lopes, P. A. A.; Lourenço, A. C. C.; Margutti, R.; Marshall, J. L.; Matheson, T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Nugent, P.; Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako, M.; Sauseda, M.; Schlegel, D. J.; Scolnic, D.; Secco, L. F.; Smith, N.; Sobreira, F.; Villar, V. A.; Vivas, A. K.; Wester, W.; Williams, P. K. G.; Yanny, B.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Eifler, T. F.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, R. C.; Troxel, M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Carlin, J. L.; Gill, M. S. S.; Li, T. S.; Marriner, J.; Neilsen, E.; The Dark Energy Camera GW-EM Collaboration; the DES Collaboration; Haislip, J. B.; Kouprianov, V. V.; Reichart, D. E.; Sand, D. J.; Tartaglia, L.; Valenti, S.; Yang, S.; The DLT40 Collaboration; Benetti, S.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Ghirlanda, G.; Ghisellini, G.; Limatola, L.; Nicastro, L.; Palazzi, E.; Pian, E.; Piranomonte, S.; Possenti, A.; Rossi, A.; Salafia, O. S.; Tomasella, L.; Amati, L.; Antonelli, L. A.; Bernardini, M. G.; Bufano, F.; Capaccioli, M.; Casella, P.; Dadina, M.; De Cesare, G.; Di Paola, A.; Giuffrida, G.; Giunta, A.; Israel, G. L.; Lisi, M.; Maiorano, E.; Mapelli, M.; Masetti, N.; Pescalli, A.; Pulone, L.; Salvaterra, R.; Schipani, P.; Spera, M.; Stamerra, A.; Stella, L.; Testa, V.; Turatto, M.; Vergani, D.; Aresu, G.; Bachetti, M.; Buffa, F.; Burgay, M.; Buttu, M.; Caria, T.; Carretti, E.; Casasola, V.; Castangia, P.; Carboni, G.; Casu, S.; Concu, R.; Corongiu, A.; Deiana, G. L.; Egron, E.; Fara, A.; Gaudiomonte, F.; Gusai, V.; Ladu, A.; Loru, S.; Leurini, S.; Marongiu, L.; Melis, A.; Melis, G.; Migoni, Carlo; Milia, Sabrina; Navarrini, Alessandro; Orlati, A.; Ortu, P.; Palmas, S.; Pellizzoni, A.; Perrodin, D.; Pisanu, T.; Poppi, S.; Righini, S.; Saba, A.; Serra, G.; Serrau, M.; Stagni, M.; Surcis, G.; Vacca, V.; Vargiu, G. P.; Hunt, L. K.; Jin, Z. P.; Klose, S.; Kouveliotou, C.; Mazzali, P. A.; Møller, P.; Nava, L.; Piran, T.; Selsing, J.; Vergani, S. D.; Wiersema, K.; Toma, K.; Higgins, A. B.; Mundell, C. G.; di Serego Alighieri, S.; Gótz, D.; Gao, W.; Gomboc, A.; Kaper, L.; Kobayashi, S.; Kopac, D.; Mao, J.; Starling, R. L. C.; Steele, I.; van der Horst, A. J.; GRAWITA: GRAvitational Wave Inaf TeAm; Acero, F.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Berenji, B.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Buehler, R.; Buson, S.; Cameron, R. A.; Caputo, R.; Caraveo, P. A.; Cavazzuti, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costantin, D.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Dubois, R.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Green, D.; Grondin, M.-H.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei, S.; Kuss, M.; La Mura, G.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ojha, R.; Omodei, N.; Orienti, M.; Orlando, E.; Palatiello, M.; Paliya, V. S.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Rochester, L. S.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Suson, D. J.; Takahashi, M.; Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Torresi, E.; Troja, E.; Venters, T. M.; Vianello, G.; Zaharijas, G.; The Fermi Large Area Telescope Collaboration; Allison, J. R.; Bannister, K. W.; Dobie, D.; Kaplan, D. L.; Lenc, E.; Lynch, C.; Murphy, T.; Sadler, E. M.; Australia Telescope Compact Array, ATCA:; Hotan, A.; James, C. W.; Oslowski, S.; Raja, W.; Shannon, R. M.; Whiting, M.; Australian SKA Pathfinder, ASKAP:; Arcavi, I.; Howell, D. A.; McCully, C.; Hosseinzadeh, G.; Hiramatsu, D.; Poznanski, D.; Barnes, J.; Zaltzman, M.; Vasylyev, S.; Maoz, D.; Las Cumbres Observatory Group; Cooke, J.; Bailes, M.; Wolf, C.; Deller, A. T.; Lidman, C.; Wang, L.; Gendre, B.; Andreoni, I.; Ackley, K.; Pritchard, T. A.; Bessell, M. S.; Chang, S.-W.; Möller, A.; Onken, C. A.; Scalzo, R. A.; Ridden-Harper, R.; Sharp, R. G.; Tucker, B. E.; Farrell, T. J.; Elmer, E.; Johnston, S.; Venkatraman Krishnan, V.; Keane, E. F.; Green, J. A.; Jameson, A.; Hu, L.; Ma, B.; Sun, T.; Wu, X.; Wang, X.; Shang, Z.; Hu, Y.; Ashley, M. C. B.; Yuan, X.; Li, X.; Tao, C.; Zhu, Z.; Zhang, H.; Suntzeff, N. B.; Zhou, J.; Yang, J.; Orange, B.; Morris, D.; Cucchiara, A.; Giblin, T.; Klotz, A.; Staff, J.; Thierry, P.; Schmidt, B. P.; OzGrav; (Deeper, DWF; Wider; program, Faster; AST3; CAASTRO Collaborations; Tanvir, N. R.; Levan, A. J.; Cano, Z.; de Ugarte-Postigo, A.; González-Fernández, C.; Greiner, J.; Hjorth, J.; Irwin, M.; Krühler, T.; Mandel, I.; Milvang-Jensen, B.; O'Brien, P.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.; Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Bruun, S. H.; Cutter, R.; Figuera Jaimes, R.; Fujii, Y. I.; Fruchter, A. S.; Gompertz, B.; Jakobsson, P.; Hodosan, G.; Jèrgensen, U. G.; Kangas, T.; Kann, D. A.; Rabus, M.; Schrøder, S. L.; Stanway, E. R.; Wijers, R. A. M. J.; The VINROUGE Collaboration; Lipunov, V. M.; Gorbovskoy, E. S.; Kornilov, V. G.; Tyurina, N. V.; Balanutsa, P. V.; Kuznetsov, A. S.; Vlasenko, D. M.; Podesta, R. C.; Lopez, C.; Podesta, F.; Levato, H. O.; Saffe, C.; Mallamaci, C. C.; Budnev, N. M.; Gress, O. A.; Kuvshinov, D. A.; Gorbunov, I. A.; Vladimirov, V. V.; Zimnukhov, D. S.; Gabovich, A. V.; Yurkov, V. V.; Sergienko, Yu. P.; Rebolo, R.; Serra-Ricart, M.; Tlatov, A. G.; Ishmuhametova, Yu. V.; MASTER Collaboration; Abe, F.; Aoki, K.; Aoki, W.; Asakura, Y.; Baar, S.; Barway, S.; Bond, I. A.; Doi, M.; Finet, F.; Fujiyoshi, T.; Furusawa, H.; Honda, S.; Itoh, R.; Kanda, N.; Kawabata, K. S.; Kawabata, M.; Kim, J. H.; Koshida, S.; Kuroda, D.; Lee, C.-H.; Liu, W.; Matsubayashi, K.; Miyazaki, S.; Morihana, K.; Morokuma, T.; Motohara, K.; Murata, K. L.; Nagai, H.; Nagashima, H.; Nagayama, T.; Nakaoka, T.; Nakata, F.; Ohsawa, R.; Ohshima, T.; Ohta, K.; Okita, H.; Saito, T.; Saito, Y.; Sako, S.; Sekiguchi, Y.; Sumi, T.; Tajitsu, A.; Takahashi, J.; Takayama, M.; Tamura, Y.; Tanaka, I.; Tanaka, M.; Terai, T.; Tominaga, N.; Tristram, P. J.; Uemura, M.; Utsumi, Y.; Yamaguchi, M. S.; Yasuda, N.; Yoshida, M.; Zenko, T.; J-GEM; Adams, S. M.; Anupama, G. C.; Bally, J.; Barway, S.; Bellm, E.; Blagorodnova, N.; Cannella, C.; Chandra, P.; Chatterjee, D.; Clarke, T. E.; Cobb, B. E.; Cook, D. O.; Copperwheat, C.; De, K.; Emery, S. W. K.; Feindt, U.; Foster, K.; Fox, O. D.; Frail, D. A.; Fremling, C.; Frohmaier, C.; Garcia, J. A.; Ghosh, S.; Giacintucci, S.; Goobar, A.; Gottlieb, O.; Grefenstette, B. W.; Hallinan, G.; Harrison, F.; Heida, M.; Helou, G.; Ho, A. Y. Q.; Horesh, A.; Hotokezaka, K.; Ip, W.-H.; Itoh, R.; Jacobs, Bob; Jencson, J. E.; Kasen, D.; Kasliwal, M. M.; Kassim, N. E.; Kim, H.; Kiran, B. S.; Kuin, N. P. M.; Kulkarni, S. R.; Kupfer, T.; Lau, R. M.; Madsen, K.; Mazzali, P. A.; Miller, A. A.; Miyasaka, H.; Mooley, K.; Myers, S. T.; Nakar, E.; Ngeow, C.-C.; Nugent, P.; Ofek, E. O.; Palliyaguru, N.; Pavana, M.; Perley, D. A.; Peters, W. M.; Pike, S.; Piran, T.; Qi, H.; Quimby, R. M.; Rana, J.; Rosswog, S.; Rusu, F.; Sadler, E. M.; Van Sistine, A.; Sollerman, J.; Xu, Y.; Yan, L.; Yatsu, Y.; Yu, P.-C.; Zhang, C.; Zhao, W.; GROWTH; JAGWAR; Caltech-NRAO; TTU-NRAO; NuSTAR Collaborations; Chambers, K. C.; Huber, M. E.; Schultz, A. S. B.; Bulger, J.; Flewelling, H.; Magnier, E. A.; Lowe, T. B.; Wainscoat, R. J.; Waters, C.; Willman, M.; Pan-STARRS; Ebisawa, K.; Hanyu, C.; Harita, S.; Hashimoto, T.; Hidaka, K.; Hori, T.; Ishikawa, M.; Isobe, N.; Iwakiri, W.; Kawai, H.; Kawai, N.; Kawamuro, T.; Kawase, T.; Kitaoka, Y.; Makishima, K.; Matsuoka, M.; Mihara, T.; Morita, T.; Morita, K.; Nakahira, S.; Nakajima, M.; Nakamura, Y.; Negoro, H.; Oda, S.; Sakamaki, A.; Sasaki, R.; Serino, M.; Shidatsu, M.; Shimomukai, R.; Sugawara, Y.; Sugita, S.; Sugizaki, M.; Tachibana, Y.; Takao, Y.; Tanimoto, A.; Tomida, H.; Tsuboi, Y.; Tsunemi, H.; Ueda, Y.; Ueno, S.; Yamada, S.; Yamaoka, K.; Yamauchi, M.; Yatabe, F.; Yoneyama, T.; Yoshii, T.; The MAXI Team; Coward, D. M.; Crisp, H.; Macpherson, D.; Andreoni, I.; Laugier, R.; Noysena, K.; Klotz, A.; Gendre, B.; Thierry, P.; Turpin, D.; Consortium, TZAC; Im, M.; Choi, C.; Kim, J.; Yoon, Y.; Lim, G.; Lee, S.-K.; Lee, C.-U.; Kim, S.-L.; Ko, S.-W.; Joe, J.; Kwon, M.-K.; Kim, P.-J.; Lim, S.-K.; Choi, J.-S.; KU Collaboration; Fynbo, J. P. U.; Malesani, D.; Xu, D.; Optical Telescope, Nordic; Smartt, S. J.; Jerkstrand, A.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra, C.; Maguire, K.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith, K. W.; Young, D. R.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan, D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.; Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla, M.; Cannizzaro, G.; Cartier, R.; Cikota, A.; Clark, P.; De Cia, A.; Della Valle, M.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.; Elias-Rosa, N.; Firth, R. E.; Flörs, A.; Frohmaier, C.; Galbany, L.; González-Gaitán, S.; Gromadzki, M.; Gutiérrez, C. P.; Hamanowicz, A.; Harmanen, J.; Heintz, K. E.; Hernandez, M.-S.; Hodgkin, S. T.; Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.; Kostrzewa-Rutkowska, Z.; Kromer, M.; Kuncarayakti, H.; Lawrence, A.; Manulis, I.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.; O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.; Pignata, G.; Podsiadlowski, P.; Razza, A.; Reynolds, T.; Roy, R.; Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Pumo, M. L.; Prentice, S. J.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Sullivan, M.; Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; Van Soelen, B.; Vos, J.; Walton, N. A.; Wright, D. E.; Wyrzykowski, Ł.; Yaron, O.; pre="(">ePESSTO, 2017-10-01 On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ȯ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta. Any correspondence should be addressed to .
Multi-messenger Observations of a Binary Neutron Star Merger
Abbott, B. P.; Abbott, R.; Abbott, T. D.; ...
2017-10-16
Here, on 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay ofmore » $$\\sim 1.7\\,{\\rm{s}}$$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg 2 at a luminosity distance of $${40}_{-8}^{+8}$$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $$\\,{M}_{\\odot }$$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $$\\sim 40\\,{\\rm{Mpc}}$$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position $$\\sim 9$$ and $$\\sim 16$$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.« less
VizieR Online Data Catalog: Short GRBs with Fermi GBM and Swift BAT (Burns+, 2016)
NASA Astrophysics Data System (ADS)
Burns, E.; Connaughton, V.; Zhang, B.-B.; Lien, A.; Briggs, M. S.; Goldstein, A.; Pelassa, V.; Troja, E.
2018-01-01
Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. (4 data files).
Matter effects on binary neutron star waveforms
NASA Astrophysics Data System (ADS)
Read, Jocelyn S.; Baiotti, Luca; Creighton, Jolien D. E.; Friedman, John L.; Giacomazzo, Bruno; Kyutoku, Koutarou; Markakis, Charalampos; Rezzolla, Luciano; Shibata, Masaru; Taniguchi, Keisuke
2013-08-01
Using an extended set of equations of state and a multiple-group multiple-code collaborative effort to generate waveforms, we improve numerical-relativity-based data-analysis estimates of the measurability of matter effects in neutron-star binaries. We vary two parameters of a parametrized piecewise-polytropic equation of state (EOS) to analyze the measurability of EOS properties, via a parameter Λ that characterizes the quadrupole deformability of an isolated neutron star. We find that, to within the accuracy of the simulations, the departure of the waveform from point-particle (or spinless double black-hole binary) inspiral increases monotonically with Λ and changes in the EOS that did not change Λ are not measurable. We estimate with two methods the minimal and expected measurability of Λ in second- and third-generation gravitational-wave detectors. The first estimate using numerical waveforms alone shows that two EOSs which vary in radius by 1.3 km are distinguishable in mergers at 100 Mpc. The second estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral and estimates that the same EOSs are distinguishable in mergers at 300 Mpc. We calculate systematic errors arising from numerical uncertainties and hybrid construction, and we estimate the frequency at which such effects would interfere with template-based searches.
On the binary helium star DY Centauri: chemical composition and evolutionary state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Gajendra; Rao, N. Kameswara; Jeffery, C. Simon
2014-10-01
DY Cen has shown a steady fading of its visual light by about one magnitude in the last 40 yr, suggesting a secular increase in its effective temperature. We have conducted non-local thermodynamic equilibrium (LTE) and LTE abundance analyses to determine the star's effective temperature, surface gravity, and chemical composition using high-resolution spectra obtained over two decades. The derived stellar parameters for three epochs suggest that DY Cen has evolved at a constant luminosity and has become hotter by about 5000 K in 23 yr. We show that the derived abundances remain unchanged for the three epochs. The derived abundancesmore » of the key elements, including F and Ne, are as observed for the extreme helium stars resulting from a merger of a He white dwarf with a C-O white dwarf. Thus DY Cen by chemical composition appears to also be a product of a merger of two white dwarfs. This appearance seems to be at odds with the recent suggestion that DY Cen is a single-lined spectroscopic binary.« less
Merging Black Holes, Gravitational Waves, and Numerical Relativity
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2009-01-01
The final merger of two black holes will emit more energy than all the stars in the observable universe combined. This energy will come in the form of gravitational waves, which are a key prediction of Einstein's general relativity and a new tool for exploring the universe. Observing these mergers with gravitational wave detectors, such as the ground-based LIGO and the space-based LISA, requires knowledge of the radiation waveforms. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes were long plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and w aefo rms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
Blue supergiant progenitors from binary mergers for SN 1987A and other Type II-peculiar supernovae
NASA Astrophysics Data System (ADS)
Menon, Athira; Heger, Alexander
2017-11-01
We present results of a systematic and detailed stellar evolution study of binary mergers for blue supergiant (BSG) progenitors of Type II supernovae, particularly for SN 1987A. We are able to reproduce nearly all observational aspects of the progenitor of SN 1987A, Sk -69 °202, such as its position in the HR diagram, the enrichment of helium and nitrogen in the triple-ring nebula and its lifetime before its explosion. We build our evolutionary model based on the merger model of Podsiadlowski et al. (1992), Podsiadlowski et al. (2007) and empirically explore an initial parameter consisting of primary masses, secondary masses and different depths up to which the secondary penetrates the He core during the merger. The evolution of the post-merger star is continued until just before iron-core collapse. Of the 84 pre-supernova models (16 M⊙ - 23 M⊙) computed, the majority of the pre-supernova models are compact, hot BSGs with effective temperature >12 kK and 30 R⊙ - 70 R⊙ of which six match nearly all the observational properties of Sk -69 °202.
Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis.
Drout, M R; Piro, A L; Shappee, B J; Kilpatrick, C D; Simon, J D; Contreras, C; Coulter, D A; Foley, R J; Siebert, M R; Morrell, N; Boutsia, K; Di Mille, F; Holoien, T W-S; Kasen, D; Kollmeier, J A; Madore, B F; Monson, A J; Murguia-Berthier, A; Pan, Y-C; Prochaska, J X; Ramirez-Ruiz, E; Rest, A; Adams, C; Alatalo, K; Bañados, E; Baughman, J; Beers, T C; Bernstein, R A; Bitsakis, T; Campillay, A; Hansen, T T; Higgs, C R; Ji, A P; Maravelias, G; Marshall, J L; Bidin, C Moni; Prieto, J L; Rasmussen, K C; Rojas-Bravo, C; Strom, A L; Ulloa, N; Vargas-González, J; Wan, Z; Whitten, D D
2017-12-22
On 17 August 2017, gravitational waves (GWs) were detected from a binary neutron star merger, GW170817, along with a coincident short gamma-ray burst, GRB 170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a), was subsequently identified as the counterpart of this event. We present ultraviolet, optical, and infrared light curves of SSS17a extending from 10.9 hours to 18 days postmerger. We constrain the radioactively powered transient resulting from the ejection of neutron-rich material. The fast rise of the light curves, subsequent decay, and rapid color evolution are consistent with multiple ejecta components of differing lanthanide abundance. The late-time light curve indicates that SSS17a produced at least ~0.05 solar masses of heavy elements, demonstrating that neutron star mergers play a role in rapid neutron capture (r-process) nucleosynthesis in the universe. Copyright © 2017, American Association for the Advancement of Science.
Binary neutron star merger rate via the luminosity function of short gamma-ray bursts
NASA Astrophysics Data System (ADS)
Paul, Debdutta
2018-04-01
The luminosity function of short Gamma Ray Bursts (GRBs) is modelled by using the available catalogue data of all short GRBs (sGRBs) detected till October, 2017. The luminosities are estimated via the `pseudo-redshifts' obtained from the `Yonetoku correlation', assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. While the simple powerlaw is ruled out to high confidence, the data is fit well both by exponential cutoff powerlaw and broken powerlaw models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of short GRBs are derived. Assuming a short GRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present and future configurations of the GW detector networks. Stringent lower limits of 1.87yr-1 for the aLIGO-VIRGO, and 3.11yr-1 for the upcoming aLIGO-VIRGO-KAGRA-LIGO/India configurations are thus derived for the BNSM rate at 68% confidence. The BNSM rates calculated from this work and that independently inferred from the observation of the only confirmed BNSM observed till date, are shown to have a mild tension; however the scenario that all BNSMs produce sGRBs cannot be ruled out.
Binary neutron star merger rate via the luminosity function of short gamma-ray bursts
NASA Astrophysics Data System (ADS)
Paul, Debdutta
2018-07-01
The luminosity function of short gamma ray bursts (GRBs) is modelled by using the available catalogue data of all short GRBs (sGRBs) detected till 2017 October. The luminosities are estimated via the `pseudo-redshifts' obtained from the `Yonetoku correlation', assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. While the simple power law is ruled out to high confidence, the data is fit well both by exponential cutoff power law and broken power law models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of sGRBs is derived. Assuming a sGRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present, and future configurations of the GW detector networks. Stringent lower limits of 1.87 { yr^{-1}} for the aLIGO-VIRGO, and 3.11 { yr^{-1}} for the upcoming aLIGO-VIRGO-KAGRA-LIGO/India configurations are thus derived for the BNSM rate at 68 per cent confidence. The BNSM rates calculated from this work and that independently inferred from the observation of the only confirmed BNSM observed till date are shown to have a mild tension; however, the scenario that all BNSMs produce sGRBs cannot be ruled out.
Numerical relativity simulations of neutron star merger remnants using conservative mesh refinement
NASA Astrophysics Data System (ADS)
Dietrich, Tim; Bernuzzi, Sebastiano; Ujevic, Maximiliano; Brügmann, Bernd
2015-06-01
We study equal- and unequal-mass neutron star mergers by means of new numerical relativity simulations in which the general relativistic hydrodynamics solver employs an algorithm that guarantees mass conservation across the refinement levels of the computational mesh. We consider eight binary configurations with total mass M =2.7 M⊙, mass ratios q =1 and q =1.16 , four different equations of state (EOSs) and one configuration with a stiff EOS, M =2.5 M⊙ and q =1.5 , which is one of the largest mass ratios simulated in numerical relativity to date. We focus on the postmerger dynamics and study the merger remnant, the dynamical ejecta, and the postmerger gravitational wave spectrum. Although most of the merger remnants are a hypermassive neutron star collapsing to a black hole+disk system on dynamical time scales, stiff EOSs can eventually produce a stable massive neutron star. During the merger process and on very short time scales, about ˜10-3- 10-2M⊙ of material become unbound with kinetic energies ˜1050 erg . Ejecta are mostly emitted around the orbital plane and favored by large mass ratios and softer EOS. The postmerger wave spectrum is mainly characterized by the nonaxisymmetric oscillations of the remnant neutron star. The stiff EOS configuration consisting of a 1.5 M⊙ and a 1.0 M⊙ neutron star, simulated here for the first time, shows a rather peculiar dynamics. During merger the companion star is very deformed; about ˜0.03 M⊙ of the rest mass becomes unbound from the tidal tail due to the torque generated by the two-core inner structure. The merger remnant is a stable neutron star surrounded by a massive accretion disk of rest mass ˜0.3 M⊙. This and similar configurations might be particularly interesting for electromagnetic counterparts. Comparing results obtained with and without the conservative mesh refinement algorithm, we find that postmerger simulations can be affected by systematic errors if mass conservation is not enforced in the mesh refinement strategy. However, mass conservation also depends on grid details and on the artificial atmosphere setup; the latter are particularly significant in the computation of the dynamical ejecta.
Massive Binary Black Holes in the Cosmic Landscape
NASA Astrophysics Data System (ADS)
Colpi, Monica; Dotti, Massimo
2011-02-01
Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly, and can in principle be detected as powerful dual quasars. But, if the black holes reach coalescence, during their inspiral inside the galaxy remnant, then they become the loudest sources of gravitational waves ever in the universe. The Laser Interferometer Space Antenna is being developed to reveal these waves that carry information on the mass and spin of these binary black holes out to very large look-back times. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? After outlining key observational facts on dual/binary black holes, we review the progress made in tracing their dynamics in the habitat of a gas-rich merger down to the smallest scales ever probed with the help of powerful numerical simulations. N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view into the process of hierarchical clustering which is at the heart of the current paradigm of galaxy formation. They will also be exquisite probes for testing General Relativity, as the theory of gravity. The waveforms emitted during the inspiral, coalescence and ring-down phase carry in their shape the sign of a dynamically evolving space-time and the proof of the existence of an horizon.
The local nanohertz gravitational-wave landscape from supermassive black hole binaries
NASA Astrophysics Data System (ADS)
Mingarelli, Chiara M. F.; Lazio, T. Joseph W.; Sesana, Alberto; Greene, Jenny E.; Ellis, Justin A.; Ma, Chung-Pei; Croft, Steve; Burke-Spolaor, Sarah; Taylor, Stephen R.
2017-12-01
Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.
Tidal Deformability from GW170817 as a Direct Probe of the Neutron Star Radius
NASA Astrophysics Data System (ADS)
Raithel, Carolyn A.; Özel, Feryal; Psaltis, Dimitrios
2018-04-01
Gravitational waves from the coalescence of two neutron stars were recently detected for the first time by the LIGO–Virgo Collaboration, in event GW170817. This detection placed an upper limit on the effective tidal deformability of the two neutron stars and tightly constrained the chirp mass of the system. We report here on a new simplification that arises in the effective tidal deformability of the binary, when the chirp mass is specified. We find that, in this case, the effective tidal deformability of the binary is surprisingly independent of the component masses of the individual neutron stars, and instead depends primarily on the ratio of the chirp mass to the neutron star radius. Thus, a measurement of the effective tidal deformability can be used to directly measure the neutron star radius. We find that the upper limit on the effective tidal deformability from GW170817 implies that the radius cannot be larger than ∼13 km, at the 90% level, independent of the assumed masses for the component stars. The result can be applied generally, to probe the stellar radii in any neutron star–neutron star merger with a measured chirp mass. The approximate mass independence disappears for neutron star–black hole mergers. Finally, we discuss a Bayesian inference of the equation of state that uses the measured chirp mass and tidal deformability from GW170817 combined with nuclear and astrophysical priors and discuss possible statistical biases in this inference.
Neutron-Star Merger Detected By Many Eyes and Ears
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-10-01
Where were you on Thursday, 17 August 2017? I was in Idaho, getting ready for Monday mornings solar eclipse. What I didnt know was that, at the time, around 70 teams around the world were mobilizing to point their ground- and space-based telescopes at a single patch of sky suspected to host the first gravitational-wave-detected merger of two neutron stars.Sudden Leaps for ScienceThe masses for black holes detected through electromagnetic observations (purple), black holes measured by gravitational-wave observations (blue), neutron stars measured with electromagnetic observations (yellow), and the neutron stars that merged in GW170817 (orange). [LIGO-Virgo/Frank Elavsky/NorthwesternUniversity]The process of science is long and arduous, generally occurring at a slow plod as theorists make predictions, and observations are then used to chip away at these theories, gradually confirming or disproving them. It is rare that science progresses forward in a giant leap, with years upon years of theories confirmed in one fell swoop.14 September 2015 marked the day of one such leap, as the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected gravitational waves for the first time simultaneously verifying that black holes exist, that black-hole binaries exist, and that they can merge on observable timescales, emitting signals that directly confirm the predictions of general relativity.As it turns out, 17 August 2017 was another such day. On this day, LIGO observed a gravitational-wave signal unlike its previous black-hole detections. Instead, this was a signal consistent with the merger of two neutron stars.Artists illustrations of the stellar-merger model for short gamma-ray bursts. In the model, 1) two neutron stars inspiral, 2) they merge and produce a gamma-ray burst, 3) a small fraction of their mass is flung out and radiates as a kilonova, 4) a massive neutron star or black hole with a disk remains after the event. [NASA, ESA, and A. Feild (STScI)]What We PredictedTheoretical models describing the merger of two compact objects predict a chirping gravitational-wave signal as the objects spiral closer and closer. Unlike in a black-hole merger, however, the end of the chirp from merging neutron stars should coincide with a phenomenon known as a short gamma-ray burst: a powerful storm of energetic gamma rays produced as the objects finally collide.According to the models, these gravitational waves and gamma rays will be followed by a kilonova a transient source visible in infrared, optical, and ultraviolet which arises from radioactive decay of heavy elements formed in the collision. This source should gradually decay over a timescale of weeks.Lastly, the merger could create a powerful jet of high-energy particles, which could be visible to us in X-ray and radio wavelengths as it is emitted and interacts with its surrounding environment. We could also detect neutrinos from this outflow.What We Saw (and Didnt See)The localization of the gravitational-wave, gamma-ray, and optical signals of the neutron-star merger detected on 17 August, 2017. [Abbott et al. 2017]So what did we see on 17 August, 2017 and thereafter? Heres what was found by the army of collaborations searching in gravitational waves, electromagnetic signals across the spectrum, and neutrinos:Gravitational WavesThe gravitational-wave signature of a binary neutron-star merger was observed with all three gravitational-wave detectors currently operating as a part of the LIGO-Virgo collaboration. GW170817s signal was in the sensitivity band of these detectors for 100 seconds, arriving first at the Virgo detector in Italy, next at LIGO-Livingston in Louisiana 22 milliseconds later, and finally at LIGO-Hanford in Washington 3 milliseconds after that. These detections localized the source to a region of 31 square degrees at a relatively nearby distance of 130 million light-years, and they identified the binary components to be neutron stars.Gamma-Ray BurstThe Fermi Gamma-Ray Burst Monitor detected a short ( 2-second) gamma-ray burst, GRB170817A, which appears to have occurred 1.7 seconds after the merger indicated by the gravitational-wave signal. This source was later identified by the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) spacecraft as well.Locations of the many observatories that observed the neutron-star merger first detected on 17 August, 2017. [Abbott et al. 2017]Electromagnetic Counterpart and Host GalaxyThough they were initially foiled by the signals location (the localized region of GW170817 only became visible in Chile 10 hours after its detection), the One-Meter, Two-Hemisphere team used the Swope telescope at Las Campanas Observatory in Chile to discover an optical counterpart to the LIGO and Fermi detection, located in the early-type galaxy NGC 4993. Within an hour, five other teams had independently detected the optical source in NGC 4993, with more following after.In the subsequent hours, days, and weeks, observatories across the electromagnetic spectrum monitored the transient. The source soon faded from view in the ultraviolet and gradually reddened in the optical and infrared bands. Delayed X-ray emission was discovered 9 days after the LIGO signal, and a radio counterpart was discovered a week after that.No NeutrinosThough several neutrino observatories searched for high-energy neutrinos in the direction of NGC 4993 in the two-week period following the merger, none were detected.Summary and timeline of the observations of the neutron-star merger detected on 17 August, 2017 relative to the time tc of the gravitational-wave event. Click for a closer look. [Abbott et al. 2017]A Spectacular ConfirmationSo what do these observations tell us? Our model for neutron-star mergers appears to be remarkably successful! The associated detections of gravitational waves and electromagnetic counterparts have confirmed that merging neutron stars produce the expected gravitational-wave signal, that they are the source of gamma-ray bursts, that some of the heaviest elements in the universe are produced during the collision of these stars, and that jets of high-energy particles are created that subsequently interact with their environment.As with any interesting scientific discovery, new points of exploration have arisen we can now wonder why the gamma-ray burst was unusually weak given its close distance, for instance, or why we didnt detect any neutrinos from the outflow.In spite of our new questions, the combination of these recent discoveries provide a resounding verification of our understanding of how compact objects merge. The various signals that began on 17 August, 2017 have simultaneously confirmed a stack of carefully constructed theories that were crafted over decades to explain how seemingly unrelated electromagnetic signals might all tie together. Its a beautiful thing when science works out this well!For more information, check out the ApJL Focus Issue on this result here:Focus on The Electromagnetic Counterpart of the Neutron Star Binary Merger GW170817 CitationAbbott, B.P. et al 2017 ApJL 848 L12. doi:10.3847/2041-8213/aa91c9
NASA Astrophysics Data System (ADS)
Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter
2017-12-01
We discuss the electromagnetic radiation from newborn binary black holes (BBHs). As a consequence of the evolution of massive stellar binaries, a binary consisting of a primary black hole (BH) and a secondary Wolf–Rayet star is expected as a BBH progenitor system. We investigate optical transients from the birth of BBHs powered by the Bondi–Hoyle–Lyttleton accretion onto the primary BH, which occur ∼1–10 Gyr earlier than gravitational-wave signals at the BH–BH merger. When the secondary massive star collapses into a BH, it may eject a fraction of its outer material and may form a disk around the primary BH and induces a powerful disk wind. These primary-induced winds can lead to optical transients with a kinetic energy of ∼1047–3 × 1048 erg, an ejecta velocity of 108–109 cm s‑1, a duration of a few days, and an absolute magnitude ranging from about ‑11 to ‑14. The light curves and late-time spectra of these transients are distinctive from those of ordinary supernovae, and detection of this type of transient is possible by future optical transient surveys if the event rate of this transient is comparable to the merger rate of BBHs. This paper focuses on the emissions from disk-driven transients induced by the primary BH, different from Paper I, which focuses on wind-driven transients from the tidally locked secondary massive star.
Gravitational Wave Signals from the First Massive Black Hole Seeds
NASA Astrophysics Data System (ADS)
Hartwig, Tilman; Agarwal, Bhaskar; Regan, John A.
2018-05-01
Recent numerical simulations reveal that the isothermal collapse of pristine gas in atomic cooling haloes may result in stellar binaries of supermassive stars with M* ≳ 104M⊙. For the first time, we compute the in-situ merger rate for such massive black hole remnants by combining their abundance and multiplicity estimates. For black holes with initial masses in the range 104 - 6M⊙ merging at redshifts z ≳ 15 our optimistic model predicts that LISA should be able to detect 0.6 mergers per year. This rate of detection can be attributed, without confusion, to the in-situ mergers of seeds from the collapse of very massive stars. Equally, in the case where LISA observes no mergers from heavy seeds at z ≳ 15 we can constrain the combined number density, multiplicity, and coalesence times of these high-redshift systems. This letter proposes gravitational wave signatures as a means to constrain theoretical models and processes that govern the abundance of massive black hole seeds in the early Universe.
High-velocity runaway stars from three-body encounters
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.
2010-01-01
We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.
NASA Astrophysics Data System (ADS)
Yi, Shu-Xu; Cheng, K. S.; Taam, Ronald E.
2018-06-01
Among the four black hole (BH) binary merger events detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO), six progenitor BHs have masses greater than 20 M ⊙. The existence of such massive BHs suggests that extreme metal-poor stars are the progenitors. An alternative possibility, that a pair of stellar mass BHs each with mass ∼7 M ⊙ increases to >20 M ⊙ via accretion from a disk surrounding a supermassive BH (SMBH) in an active galactic nucleus (AGN), is considered. The growth of mass of the binary and the transfer of orbital angular momentum to the disk accelerates the merger. Based on the recent numerical work of Tang et al., it is found that, in the disk of a low-mass AGN with mass ∼106 M ⊙ and Eddington ratio >0.01, the mass of an individual BH in the binary can grow to >20 M ⊙ before coalescence, provided that accretion takes place at a rate more than 10 times the Eddington value. This mechanism predicts a new class of gravitational wave (GW) sources involving the merger of two extreme Kerr black holes associated with AGNs and a possible electromagnetic wave counterpart.
Can JWST Follow Up on Gravitational-Wave Detections?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-02-01
Bitten by the gravitational-wave bug? While we await Thursdays press conference, heres some food for thought: if LIGO were able to detect gravitational waves from compact-object mergers, how could we follow up on the detections? A new study investigates whether the upcoming James Webb Space Telescope (JWST) will be able to observe electromagnetic signatures of some compact-object mergers.Hunting for MergersStudying compact-object mergers (mergers of black holes and neutron stars) can help us understand a wealth of subjects, like high-energy physics, how matter behaves at nuclear densities, how stars evolve, and how heavy elements in the universe were created.The Laser Interferometer Gravitational-Wave Observatory (LIGO) is searching for the signature ripples in spacetime identifying these mergers, but gravitational waves are squirrelly: LIGO will only be able to localize wave sources to tens of square degrees. If we want to find out more about any mergers LIGO discovers in gravitational waves, well need a follow-up search for electromagnetic counterparts with other observatories.The Kilonova KeyOne possible electromagnetic counterpart is kilonovae, explosions that can be produced during a merger of a binary neutron star or a neutron starblack hole system. If the neutron star is disrupted during the merger, some of the hot mass is flung outward and shines brightly by radioactive decay.Kilonovae are especially promising as electromagnetic counterparts to gravitational waves for three reasons:They emit isotropically, so the number of observable mergers isnt limited by relativistic beaming.They shine for a week, giving follow-up observatories time to search for them.The source location can beeasily recovered.The only problem? We dont currently have any sensitive survey instruments in the near-infrared band (where kilonova emission peaks) that can provide coverage over tens of square degrees. Luckily, we will soon have just the thing: JWST, launching in 2018!JWSTs SearchIntegration time needed for JWSTs NIRCam to detect a kilonova at 200 Mpc, as a function of time since the merger. Different curves correspond to different NIRCam filters. Note that the total time for follow-up is overwhelmingly dominated by things like telescope slew time, rather than by this exposure time. [Bartos et al. 2016]In a recent study, a team of authors led by Imre Bartos (Columbia University) evaluatewhether JWST will be capable of catching these kilonovae if LIGO finds gravitational wave signals.Bartos and collaborators calculate that, given the sensitivity of the different filters on JWSTs Near-Infrared Camera, the instrument should easily be able to detect a kilonova 200 Mpc away (a typical distance at which LIGO might be able to find a neutron-star binary). But theres a catch: 10 deg2 is a really big sky area, and it would take JWST an unfeasible amount of time (days!) to fully cover it.The authors suggest insteadusing a targeted search. Since most mergers are expected to be in or near galaxies, JWST could specifically focus the follow-up search on known galaxies within the searcharea. This approach would bring the total search time down to 12.6 hours, which is within the realm of feasibility. And this time could be reduced even further by concentrating on galaxies most likely to host kilonovae, like those with high star-formation rates.The conclusion: if LIGO is able to detect gravitational waves, JWST will provide an excellent means to follow up on the detection in the attempt toidentify the source.CitationI. Bartos et al 2016 ApJ 816 61. doi:10.3847/0004-637X/816/2/61
A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817
NASA Astrophysics Data System (ADS)
Mooley, K. P.; Nakar, E.; Hotokezaka, K.; Hallinan, G.; Corsi, A.; Frail, D. A.; Horesh, A.; Murphy, T.; Lenc, E.; Kaplan, D. L.; de, K.; Dobie, D.; Chandra, P.; Deller, A.; Gottlieb, O.; Kasliwal, M. M.; Kulkarni, S. R.; Myers, S. T.; Nissanke, S.; Piran, T.; Lynch, C.; Bhalerao, V.; Bourke, S.; Bannister, K. W.; Singer, L. P.
2018-02-01
GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.
A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817.
Mooley, K P; Nakar, E; Hotokezaka, K; Hallinan, G; Corsi, A; Frail, D A; Horesh, A; Murphy, T; Lenc, E; Kaplan, D L; De, K; Dobie, D; Chandra, P; Deller, A; Gottlieb, O; Kasliwal, M M; Kulkarni, S R; Myers, S T; Nissanke, S; Piran, T; Lynch, C; Bhalerao, V; Bourke, S; Bannister, K W; Singer, L P
2018-02-08
GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.
Lightweight Double Neutron Star Found
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-02-01
More than forty years after the first discovery of a double neutron star, we still havent found many others but a new survey is working to change that.The Hunt for PairsThe observed shift in the Hulse-Taylor binarys orbital period over time as it loses energy to gravitational-wave emission. [Weisberg Taylor, 2004]In 1974, Russell Hulse and Joseph Taylor discovered the first double neutron star: two compact objects locked in a close orbit about each other. Hulse and Taylors measurements of this binarys decaying orbit over subsequent years led to a Nobel prize and the first clear evidence of gravitational waves carrying energy and angular momentum away from massive binaries.Forty years later, we have since confirmed the existence of gravitational waves directly with the Laser Interferometer Gravitational-Wave Observatory (LIGO). Nonetheless, finding and studying pre-merger neutron-star binaries remains a top priority. Observing such systems before they merge reveals crucial information about late-stage stellar evolution, binary interactions, and the types of gravitational-wave signals we expect to find with current and future observatories.Since the Hulse-Taylor binary, weve found a total of 16 additional double neutron-star systems which represents only a tiny fraction of the more than 2,600 pulsars currently known. Recently, however, a large number of pulsar surveys are turning their eyes toward the sky, with a focus on finding more double neutron stars and at least one of them has had success.The pulse profile for PSR J1411+2551 at 327 MHz. [Martinez et al. 2017]A Low-Mass DoubleConducted with the 1,000-foot Arecibo radio telescope in Puerto Rico, the Arecibo 327 MHz Drift Pulsar Survey has enabled the recent discovery of dozens of pulsars and transients. Among them, as reported by Jose Martinez (Max Planck Institute for Radio Astronomy) and coauthors in a recent publication, is PSR J1411+2551: a new double neutron star with one of the lowest masses ever measured for such a system.Through meticulous observations over the span of 2.5 years, Martinez and collaborators were able to obtain a number of useful measurements for the system, including the pulsars period (62 ms), the period of the binary (2.62 days), and the systems eccentricity (e = 0.17).In addition, the team measured the rate of advance of periastron of the system, allowing them to estimate the total mass of the system: M = 2.54 solar masses. This mass, combined with the eccentricity of the orbit, demonstrate that the companion of the pulsar in PSR J1411+2551 is almost certainly a neutron star and the system is one of the lightest known to date, even including the double neutron-star merger that was observed by LIGO in August this past year.Constraining Stellar PhysicsBased on its measured properties, PSR J1411+2551 is most likely a recycled pulsar in a double neutron-star system. [Martinez et al. 2017]The intriguing orbital properties and low mass of PSR J1411+2551 have already allowed the authors to explore a number of constraints to stellar evolution models, including narrowing the possible equations of state for neutron stars that could produce such a system. These constraints will be interesting to compare to constraints from LIGO and Virgo in the future, as more merging neutron-star systems are observed.Meanwhile, our best bet for obtaining further constraints is to continue searching for more pre-merger double neutron-star systems like the Hulse-Taylor binary and PSR J1411+2551. Let the hunt continue!CitationJ. G. Martinez et al 2017 ApJL 851 L29. doi:10.3847/2041-8213/aa9d87
NASA Astrophysics Data System (ADS)
Tanvir, Nial
2017-09-01
Merging compact binaries (NS-NS or NS-BH) offer the best prospects for detection of EM signals accompanying gravitational wave (GW) events. They may be seen as bright short-GRBs (SGRBs), but this is likely to be rare due to beaming. Alternatively, more isotropic near-IR emission is predicted to result from the 'kilonova' produced by radioactive decay of neutron star ejecta. However, recent XMM observations have shown unexplained excess X-ray emission several days post-burst in two low-z SGRBs. This may indicate ongoing engine activity which both enhances the nIR emission, and crucially provides a potential new isotropic X-ray signature of compact binary mergers. We propose a detailed study of a further z<0.35 SGRB, to explore this phenomenon and inform future searches for GW counterparts.
The Merger Rate of Binary White Dwarfs in the Galactic Disk
NASA Astrophysics Data System (ADS)
Badenes, Carles; Maoz, Dan
2012-04-01
We use multi-epoch spectroscopy of ~4000 white dwarfs in the Sloan Digital Sky Survey to constrain the properties of the Galactic population of binary white dwarf systems and calculate their merger rate. With a Monte Carlo code, we model the distribution of ΔRVmax, the maximum radial velocity shift between exposures of the same star, as a function of the binary fraction within 0.05 AU, f bin, and the power-law index in the separation distribution at the end of the common-envelope phase, α. Although there is some degeneracy between f bin and α, the 15 high-ΔRVmax systems that we find constrain the combination of these parameters, which determines a white dwarf merger rate per unit stellar mass of 1.4+3.4 -1.0 × 10-13 yr-1 M -1 ⊙ (1σ limits). This is remarkably similar to the measured rate of Type Ia supernovae (SNe Ia) per unit stellar mass in Milky-Way-like Sbc galaxies. The rate of super-Chandrasekhar mergers is only 1.0+1.6 -0.6 × 10-14 yr-1 M -1 ⊙. We conclude that there are not enough close binary white dwarf systems to reproduce the observed SN Ia rate in the "classic" double degenerate super-Chandrasekhar scenario. On the other hand, if sub-Chandrasekhar mergers can lead to SNe Ia, as has been recently suggested by some studies, they could make a major contribution to the overall SN Ia rate. Although unlikely, we cannot rule out contamination of our sample by M-dwarf binaries or non-Gaussian errors. These issues will be clarified in the near future by completing the follow-up of all 15 high-ΔRVmax systems.
Accuracy of inference on the physics of binary evolution from gravitational-wave observations
NASA Astrophysics Data System (ADS)
Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya
2018-04-01
The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.
Accuracy of inference on the physics of binary evolution from gravitational-wave observations
NASA Astrophysics Data System (ADS)
Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya
2018-07-01
The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.
The Post-starburst Evolution of Tidal Disruption Event Host Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, K. Decker; Zabludoff, Ann; Arcavi, Iair
We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10–1000 Myr ago, indicating that TDEs arise at different times in their hosts’ post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 inmore » most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%–10% for most hosts, not enough to explain the observed 30–200× boost in TDE rates, suggesting that the host’s core stellar concentration is more important. TDE hosts have stellar masses 10{sup 9.4}–10{sup 10.3} M {sub ☉}, consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10{sup 5.5}–10{sup 7.5} M {sub ☉}. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.« less
NASA Astrophysics Data System (ADS)
Marassi, S.; Schneider, R.; Corvino, G.; Ferrari, V.; Portegies Zwart, S.
2011-12-01
We compute the gravitational wave background (GWB) generated by a cosmological population of black hole-black hole (BH-BH) binaries using hybrid waveforms recently produced by numerical simulations of (BH-BH) coalescence, which include the inspiral, merger, and ring-down contributions. A large sample of binary systems is simulated using the population synthesis code SeBa, and we extract fundamental statistical information on (BH-BH) physical parameters (primary and secondary BH masses, orbital separations and eccentricities, formation, and merger time scales). We then derive the binary birth and merger rates using the theoretical cosmic star formation history obtained from a numerical study which reproduces the available observational data at redshifts z<8. We evaluate the contributions of the inspiral, merger, and ring-down signals to the GWB, and discuss how these depend on the parameters which critically affect the number of coalescing (BH-BH) systems. We find that Advanced LIGO/Virgo have a chance to detect the GWB signal from the inspiral phase with a (S/N)=10 only for the most optimistic model, which predicts the highest local merger rate of 0.85Mpc-3Myr-1. Third generation detectors, such as the Einstein Telescope (ET), could reveal the GWB from the inspiral phase predicted by any of the considered models. In addition, ET could sample the merger phase of the evolution at least for models which predict local merger rates between [0.053-0.85]Mpc-3Myr-1, which are more than a factor 2 lower than the upper limit inferred from the analysis of the LIGO S5 run [J. Abadie , Phys. Rev. DPRVDAQ1550-7998 83, 122005 (2011)10.1103/PhysRevD.83.122005]. The frequency dependence and amplitude of the GWB generated during the coalescence is very sensitive to the adopted core mass threshold for BH formation. This opens up the possibility to better understand the final stages of the evolution of massive stellar binaries using observational constraints on the associated gravitational wave emission.
NASA Astrophysics Data System (ADS)
Wu, Meng-Ru; Tamborra, Irene; Just, Oliver; Janka, Hans-Thomas
2017-12-01
The remnant of neutron star mergers is dense in neutrinos. By employing inputs from one hydrodynamical simulation of a binary neutron star merger remnant with a black hole of 3 M⊙ in the center, dimensionless spin parameter 0.8 and an accretion torus of 0.3 M⊙, the neutrino emission properties are investigated as the merger remnant evolves. Initially, the local number density of ν¯e is larger than that of νe everywhere above the remnant. Then, as the torus approaches self-regulated equilibrium, the local abundance of neutrinos overcomes that of antineutrinos in a funnel around the polar region. The region where the fast pairwise flavor conversions can occur shrinks accordingly as time evolves. Still, we find that fast flavor conversions do affect most of the neutrino-driven ejecta. Assuming that fast flavor conversions lead to flavor equilibration, a significant enhancement of nuclei with mass numbers A >130 is found as well as a change of the lanthanide mass fraction by more than a factor of a thousand. Our findings hint towards a potentially relevant role of neutrino flavor oscillations for the prediction of the kilonova (macronova) light curves and motivate further work in this direction.
Chemo-Dynamical Evolution of r-process Elements in the Local Group Galaxies
NASA Astrophysics Data System (ADS)
Hirai, Yutaka; Ishimaru, Yuhri; Saitoh, Takayuki R.; Fujii, Michiko S.; Hidaka, Jun; Kajino, Toshitaka
The astrophysical site(s) of r-process is not yet identified over half a century. Astronomical high dispersion observations have shown that extremely metal-poor (EMP) stars in the Milky Way (MW) halo have large star-to-star dispersions in the abundance of r-process elements. Binary neutron star mergers (NSMs) are one of the most promising sites of r-process. However, several studies suggested that it is difficult to reproduce the dispersions by NSMs due to their long merger times and low rates. In this study, we performed a series of N-body/smoothed particle hydrodynamic simulations of dwarf galaxies. We show that NSMs can explain the dispersions with long merger times (˜100 Myr). We find that the metallicity of our simulated galaxies does not correlate with time in their early phase due to slow chemical enrichment. This slow chemical enrichment produces [Eu/Fe] distribution which is consistent with the observation. Our results suggest that stars in the MW halo formed with a low star formation rate of less than 10 - 3M ⊙ yr-1, which is common for typical dwarf galaxies in the MW. Our simulations support the scenario that early enrichment of the MW halo occurred in the framework of hierarchical structure formation.
High-energy Neutrinos from Millisecond Magnetars Formed from the Merger of Binary Neutron Stars
NASA Astrophysics Data System (ADS)
Fang, Ke; Metzger, Brian D.
2017-11-01
The merger of a neutron star (NS) binary may result in the formation of a long-lived, or indefinitely stable, millisecond magnetar remnant surrounded by a low-mass ejecta shell. A portion of the magnetar’s prodigious rotational energy is deposited behind the ejecta in a pulsar wind nebula, powering luminous optical/X-ray emission for hours to days following the merger. Ions in the pulsar wind may also be accelerated to ultra-high energies, providing a coincident source of high-energy cosmic rays and neutrinos. At early times, the cosmic rays experience strong synchrotron losses; however, after a day or so, pion production through photomeson interaction with thermal photons in the nebula comes to dominate, leading to efficient production of high-energy neutrinos. After roughly a week, the density of background photons decreases sufficiently for cosmic rays to escape the source without secondary production. These competing effects result in a neutrino light curve that peaks on a few day timescale near an energy of ˜1018eV. This signal may be detectable for individual mergers out to ˜10 (100) Mpc by current (next generation) neutrino telescopes, providing clear evidence for a long-lived NS remnant, the presence of which may otherwise be challenging to identify from the gravitational waves alone. Under the optimistic assumption that a sizable fraction of NS mergers produce long-lived magnetars, the cumulative cosmological neutrino background is estimated to be ˜ {10}-9{--}{10}-8 {GeV} {{cm}}-2 {{{s}}}-1 {{sr}}-1 for an NS merger rate of {10}-7 {{Mpc}}-3 {{yr}}-1, overlapping with IceCube’s current sensitivity and within the reach of next-generation neutrino telescopes.
NASA Astrophysics Data System (ADS)
Maione, F.; De Pietri, R.; Feo, A.; Löffler, F.
2016-09-01
We present results from three-dimensional general relativistic simulations of binary neutron star coalescences and mergers using public codes. We considered equal mass models where the baryon mass of the two neutron stars is 1.4{M}⊙ , described by four different equations of state (EOS) for the cold nuclear matter (APR4, SLy, H4, and MS1; all parametrized as piecewise polytropes). We started the simulations from four different initial interbinary distances (40,44.3,50, and 60 km), including up to the last 16 orbits before merger. That allows us to show the effects on the gravitational wave (GW) phase evolution, radiated energy and angular momentum due to: the use of different EOS, the orbital eccentricity present in the initial data and the initial separation (in the simulation) between the two stars. Our results show that eccentricity has a major role in the discrepancy between numerical and analytical waveforms until the very last few orbits, where ‘tidal’ effects and missing high-order post-Newtonian coefficients also play a significant role. We test different methods for extrapolating the GW signal extracted at finite radii to null infinity. We show that an effective procedure for integrating the Newman-Penrose {\\psi }4 signal to obtain the GW strain h is to apply a simple high-pass digital filter to h after a time domain integration, where only the two physical motivated integration constants are introduced. That should be preferred to the more common procedures of introducing additional integration constants, integrating in the frequency domain or filtering {\\psi }4 before integration.
RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS DRIVEN BY NEWLY BORN NEUTRON STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yun-Wei; Li, Shao-Ze; Dai, Zi-Gao, E-mail: yuyw@mail.ccnu.edu.cn
2015-06-10
We provide a general analysis on the properties of the emitting material of some rapidly evolving and luminous transients discovered recently with the Pan-STARRS1 Medium Deep Survey. It was found that these transients are probably produced by a low-mass non-relativistic outflow that is continuously powered by a newly born, rapidly spinning, and highly magnetized neutron star (NS). Such a system could originate from an accretion-induced collapse of a white dwarf or a merger of an NS–NS binary. Therefore, observations of these transients would be helpful for constraining white dwarf and NS physics and/or for searching and identifying gravitational wave signals frommore » the mergers.« less
Margutti, Raffaella; Berger, E.; Fong, W.; ...
2017-10-16
Here, we report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory ( CXO) atmore » $$t\\approx 2.3$$ days post-merger reveal no significant emission, with $${L}_{x}\\lesssim 3.2\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching $${L}_{x}\\approx 9\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ at $$\\approx 15.1$$ days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy $${E}_{k}\\sim {10}^{49-50}\\,\\mathrm{erg}$$, viewed off-axis with $${\\theta }_{\\mathrm{obs}}\\sim 20^\\circ \\mbox{--}40^\\circ $$. Our models favor a circumbinary density $$n\\sim {10}^{-4}\\mbox{--}{10}^{-2}\\,{\\mathrm{cm}}^{-3}$$, depending on the value of the microphysical parameter $${\\epsilon }_{B}={10}^{-4}\\mbox{--}{10}^{-2}$$. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at $$t\\gtrsim 100$$ days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on $${\\theta }_{\\mathrm{obs}}$$ are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margutti, Raffaella; Berger, E.; Fong, W.
Here, we report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory ( CXO) atmore » $$t\\approx 2.3$$ days post-merger reveal no significant emission, with $${L}_{x}\\lesssim 3.2\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching $${L}_{x}\\approx 9\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ at $$\\approx 15.1$$ days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy $${E}_{k}\\sim {10}^{49-50}\\,\\mathrm{erg}$$, viewed off-axis with $${\\theta }_{\\mathrm{obs}}\\sim 20^\\circ \\mbox{--}40^\\circ $$. Our models favor a circumbinary density $$n\\sim {10}^{-4}\\mbox{--}{10}^{-2}\\,{\\mathrm{cm}}^{-3}$$, depending on the value of the microphysical parameter $${\\epsilon }_{B}={10}^{-4}\\mbox{--}{10}^{-2}$$. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at $$t\\gtrsim 100$$ days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on $${\\theta }_{\\mathrm{obs}}$$ are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.« less
Black hole mass function from gravitational wave measurements
NASA Astrophysics Data System (ADS)
Kovetz, Ely D.; Cholis, Ilias; Breysse, Patrick C.; Kamionkowski, Marc
2017-05-01
We examine how future gravitational-wave measurements from merging black holes (BHs) can be used to infer the shape of the black-hole mass function, with important implications for the study of star formation and evolution and the properties of binary BHs. We model the mass function as a power law, inherited from the stellar initial mass function, and introduce lower and upper mass cutoff parametrizations in order to probe the minimum and maximum BH masses allowed by stellar evolution, respectively. We initially focus on the heavier BH in each binary, to minimize model dependence. Taking into account the experimental noise, the mass measurement errors and the uncertainty in the redshift dependence of the merger rate, we show that the mass function parameters, as well as the total rate of merger events, can be measured to <10 % accuracy within a few years of advanced LIGO observations at its design sensitivity. This can be used to address important open questions such as the upper limit on the stellar mass which allows for BH formation and to confirm or refute the currently observed mass gap between neutron stars and BHs. In order to glean information on the progenitors of the merging BH binaries, we then advocate the study of the two-dimensional mass distribution to constrain parameters that describe the two-body system, such as the mass ratio between the two BHs, in addition to the merger rate and mass function parameters. We argue that several years of data collection can efficiently probe models of binary formation, and show, as an example, that the hypothesis that some gravitational-wave events may involve primordial black holes can be tested. Finally, we point out that in order to maximize the constraining power of the data, it may be worthwhile to lower the signal-to-noise threshold imposed on each candidate event and amass a larger statistical ensemble of BH mergers.
Formation of close binary black holes merging due to gravitational-wave radiation
NASA Astrophysics Data System (ADS)
Tutukov, A. V.; Cherepashchuk, A. M.
2017-10-01
The conditions for the formation of close-binary black-hole systems merging over the Hubble time due to gravitational-wave radiation are considered in the framework of current ideas about the evolution of massive close-binary systems. The original systems whose mergers were detected by LIGO consisted of main-sequence stars with masses of 30-100 M ⊙. The preservation of the compactness of a binary black hole during the evolution of its components requires either the formation of a common envelope, probably also with a low initial abundance of metals, or the presence of a "kick"—a velocity obtained during a supernova explosion accompanied by the formation of a black hole. In principle, such a kick can explain the relatively low frequency of mergers of the components of close-binary stellar black holes, if the characteristic speed of the kick exceeds the orbital velocities of the system components during the supernova explosion. Another opportunity for the components of close-binary systems to approach each other is related to their possible motion in a dense molecular cloud.
Neutron-Star Radius from a Population of Binary Neutron Star Mergers.
Bose, Sukanta; Chakravarti, Kabir; Rezzolla, Luciano; Sathyaprakash, B S; Takami, Kentaro
2018-01-19
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies, we utilize analytical fits to postmerger numerical relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasiuniversal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy. We also give error estimates for the Einstein Telescope.
Merger of a white dwarf-neutron star binary to 1029 carat diamonds: origin of the pulsar planets
NASA Astrophysics Data System (ADS)
Margalit, Ben; Metzger, Brian D.
2017-03-01
We show that the merger and tidal disruption of a carbon/oxygen (C/O) white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disc produced of the disrupted WD, we model its long-term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disc opacity. For plausible values of the disc viscosity α ∼ 10-3-10-2 and the RIAF mass-loss efficiency, we find that the disc mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Rapid rocky planet formation via gravitational instability of the solid carbon dominated disc is facilitated by the suppression of vertical shear instabilities due to the high solid-to-gas ratio. Additional evidence supporting a WD-NS merger scenario includes (1) the low observed occurrence rate of pulsar planets (≲1 per cent of NS birth), comparable to the expected WD-NS merger rate; (2) accretion by the NS during the RIAF phase is sufficient to spin PSR B1257+12 up to its observed 6 ms period; (3) similar models of 'low angular momentum' discs, such as those produced from supernova fallback, find insufficient mass reaching the planet formation radius. The unusually high space velocity of PSR B1257+12 of ≳326 km s-1 suggests a possible connection to the calcium-rich transients, dim supernovae which occur in the outskirts of their host galaxies and were proposed to result from mergers of WD-NS binaries receiving supernova kicks. The C/O disc composition implied by our model likely results in carbon-rich planets with diamond interiors.
GW170817 and the Prospect of Forming Supramassive Remnants in Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Ma, Peng-Xiong; Jiang, Jin-Liang; Wang, Hao; Jin, Zhi-Ping; Fan, Yi-Zhong; Wei, Da-Ming
2018-05-01
The gravitational wave data of GW170817 favor the equation of state (EoS) models that predict compact neutron stars (NSs), consistent with the radius constraints from X-ray observations. Motivated by such remarkable progress, we examine the fate of the remnants formed in NS mergers and focus on the roles of the angular momentum and the mass distribution of the binary NSs. In the mass-shedding limit (for which the dimensionless angular momentum equals the Keplerian value, i.e., j = j Kep), the adopted seven EoS models, except for H4 and ALF2, yield supramassive NSs in more than half of the mergers. However, for j ≲ 0.7 j Kep, the presence or absence of a non-negligible fraction of supramassive NSs formed in the mergers depends sensitively on both the EoS and the mass distribution of the binary systems. The NS mergers with a total gravitational mass ≤ 2.6 M ⊙ are found to be able to shed valuable light on both the EoS model and the angular momentum of the remnants if supramassive NSs are still absent. We have also discussed the uncertainty on estimating the maximum gravitational mass of nonrotating NSs (M max) due to the unknown j of the precollapse remnants. With the data of GW170817 and the assumption of the mass loss of 0.03 M ⊙, we have M max < (2.19, 2.32) M ⊙ (90% confidence level) for j = (1.0, 0.8) j Kep, respectively.
Fossil Merger of a Population II Star
NASA Astrophysics Data System (ADS)
Fuhrmann, Klaus; Chini, Rolf
2018-05-01
We report on a fossil stellar merger for the subgiant primary of the visual binary HR 3750. The subgiant leads to an age τ ≃ 3.2 Gyr for a mass M A = 1.39 ± 0.09 M ⊙, in contradiction with its low iron-to-magnesium abundance that classifies it as a Population II (thick-disk) star. Upon the assumption of an ancient source, and since there appears to be no inner Aa–Ab subsystem for HR 3750, the mass of the subgiant primary can only be understood in terms of a merger with a former tertiary component. In a mass conserving scenario, and with M Aa = 1.03 ± 0.03 M ⊙ as the likely progenitor mass of the primary, the mass of the accreted companion is suggestive of an M dwarf at M Ab = 0.36 ± 0.03 M ⊙.
NASA Astrophysics Data System (ADS)
Fujibayashi, Sho; Kiuchi, Kenta; Nishimura, Nobuya; Sekiguchi, Yuichiro; Shibata, Masaru
2018-06-01
We perform long-term general relativistic neutrino radiation hydrodynamics simulations (in axisymmetry) for a massive neutron star (MNS) surrounded by a torus, which is a canonical remnant formed after the binary neutron star merger. We take into account the effects of viscosity, which is likely to arise in the merger remnant due to magnetohydrodynamical turbulence. The viscous effect plays key roles for the mass ejection from the remnant in two phases of the evolution. In the first t ≲ 10 ms, a differential rotation state of the MNS is changed to a rigidly rotating state. A shock wave caused by the variation of its quasi-equilibrium state induces significant mass ejection of mass ∼(0.5–2.0) × {10}-2 {M}ȯ for the α-viscosity parameter of 0.01–0.04. For the longer-term evolution with ∼0.1–10 s, a significant fraction of the torus material is ejected. We find that the total mass of the viscosity-driven ejecta (≳ {10}-2 {M}ȯ ) could dominate over that of the dynamical ejecta (≲ {10}-2 {M}ȯ ). The electron fraction, Y e , of the ejecta is always high enough (Y e ≳ 0.25) that this post-merger ejecta is lanthanide-poor; hence, the opacity of the ejecta is likely to be ∼10–100 times lower than that of the dynamical ejecta. This indicates that the electromagnetic signal from the ejecta would be rapidly evolving, bright, and blue if it is observed from a small viewing angle (≲45°) for which the effect of the dynamical ejecta is minor.
NASA Astrophysics Data System (ADS)
Sekiguchi, Yuichiro; Kiuchi, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke
2016-06-01
We perform neutrino radiation-hydrodynamics simulations for the merger of asymmetric binary neutron stars in numerical relativity. Neutron stars are modeled by soft and moderately stiff finite-temperature equations of state (EOS). We find that the properties of the dynamical ejecta such as the total mass, neutron richness profile, and specific entropy profile depend on the mass ratio of the binary systems for a given EOS in a unique manner. For a soft EOS (SFHo), the total ejecta mass depends weakly on the mass ratio, but the average of electron number per baryon (Ye ) and specific entropy (s ) of the ejecta decreases significantly with the increase of the degree of mass asymmetry. For a stiff EOS (DD2), with the increase of the mass asymmetry degree, the total ejecta mass significantly increases while the average of Ye and s moderately decreases. We find again that only for the SFHo, the total ejecta mass exceeds 0.01 M⊙ irrespective of the mass ratio chosen in this paper. The ejecta have a variety of electron number per baryon with an average approximately between Ye˜0.2 and ˜0.3 irrespective of the EOS employed, which is well suited for the production of the rapid neutron capture process heavy elements (second and third peaks), although its averaged value decreases with the increase of the degree of mass asymmetry.
High-energy astrophysics and the search for sources of gravitational waves
NASA Astrophysics Data System (ADS)
O'Brien, P. T.; Evans, P.
2018-05-01
The dawn of the gravitational-wave (GW) era has sparked a greatly renewed interest into possible links between sources of high-energy radiation and GWs. The most luminous high-energy sources-gamma-ray bursts (GRBs)-have long been considered as very likely sources of GWs, particularly from short-duration GRBs, which are thought to originate from the merger of two compact objects such as binary neutron stars and a neutron star-black hole binary. In this paper, we discuss: (i) the high-energy emission from short-duration GRBs; (ii) what other sources of high-energy radiation may be observed from binary mergers; and (iii) how searches for high-energy electromagnetic counterparts to GW events are performed with current space facilities. While current high-energy facilities, such as Swift and Fermi, play a crucial role in the search for electromagnetic counterparts, new space missions will greatly enhance our capabilities for joint observations. We discuss why such facilities, which incorporate new technology that enables very wide-field X-ray imaging, are required if we are to truly exploit the multi-messenger era. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.
High-energy astrophysics and the search for sources of gravitational waves.
O'Brien, P T; Evans, P
2018-05-28
The dawn of the gravitational-wave (GW) era has sparked a greatly renewed interest into possible links between sources of high-energy radiation and GWs. The most luminous high-energy sources-gamma-ray bursts (GRBs)-have long been considered as very likely sources of GWs, particularly from short-duration GRBs, which are thought to originate from the merger of two compact objects such as binary neutron stars and a neutron star-black hole binary. In this paper, we discuss: (i) the high-energy emission from short-duration GRBs; (ii) what other sources of high-energy radiation may be observed from binary mergers; and (iii) how searches for high-energy electromagnetic counterparts to GW events are performed with current space facilities. While current high-energy facilities, such as Swift and Fermi, play a crucial role in the search for electromagnetic counterparts, new space missions will greatly enhance our capabilities for joint observations. We discuss why such facilities, which incorporate new technology that enables very wide-field X-ray imaging, are required if we are to truly exploit the multi-messenger era.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Lai, Xiao-Yu; Yu, Yun-Wei; Zhou, En-Ping; Li, Yun-Yang; Xu, Ren-Xin
2018-02-01
The state of supranuclear matter in compact stars remains puzzling, and it is argued that pulsars could be strangeon stars. What would happen if binary strangeon stars merge? This kind of merger could result in the formation of a hyper-massive strangeon star, accompanied by bursts of gravitational waves and electromagnetic radiation (and even a strangeon kilonova explained in the paper). The tidal polarizability of binary strangeon stars is different from that of binary neutron stars, because a strangeon star is self-bound on the surface by the fundamental strong force while a neutron star by the gravity, and their equations of state are different. Our calculation shows that the tidal polarizability of merging binary strangeon stars is favored by GW170817. Three kinds of kilonovae (i.e., of neutron, quark and strangeon) are discussed, and the light curve of the kilonova AT 2017 gfo following GW170817 could be explained by considering the decaying strangeon nuggets and remnant star spin-down. Additionally, the energy ejected to the fireball around the nascent remnant strangeon star, being manifested as a gamma-ray burst, is calculated. It is found that, after a prompt burst, an X-ray plateau could follow in a timescale of 102 ‑ 103 s. Certainly, the results could be tested also by further observational synergies between gravitational wave detectors (e.g., Advanced LIGO) and X-ray telescopes (e.g., the Chinese HXMT satellite and eXTP mission), and especially if the detected gravitational wave form is checked by peculiar equations of state provided by the numerical relativistical simulation.
An outburst powered by the merging of two stars inside the envelope of a giant
NASA Astrophysics Data System (ADS)
Hillel, Shlomi; Schreier, Ron; Soker, Noam
2017-11-01
We conduct 3D hydrodynamical simulations of energy deposition into the envelope of a red giant star as a result of the merger of two close main sequence stars or brown dwarfs, and show that the outcome is a highly non-spherical outflow. Such a violent interaction of a triple stellar system can explain the formation of `messy', I.e. lacking any kind of symmetry, planetary nebulae and similar nebulae around evolved stars. We do not simulate the merging process, but simply assume that after the tight binary system enters the envelope of the giant star the interaction with the envelope causes the two components, stars or brown dwarfs, to merge and liberate gravitational energy. We deposit the energy over a time period of about 9 h, which is about 1 per cent of the the orbital period of the merger product around the centre of the giant star. The ejection of the fast hot gas and its collision with previously ejected mass are very likely to lead to a transient event, I.e. an intermediate luminosity optical transient.
APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishin, Evgeni; Perets, Hagai B.
2016-04-01
One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded inmore » a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.« less
Wolf-Rayet stars, black holes and the first detected gravitational wave source
NASA Astrophysics Data System (ADS)
Bogomazov, A. I.; Cherepashchuk, A. M.; Lipunov, V. M.; Tutukov, A. V.
2018-01-01
The recently discovered burst of gravitational waves GW150914 provides a good new chance to verify the current view on the evolution of close binary stars. Modern population synthesis codes help to study this evolution from two main sequence stars up to the formation of two final remnant degenerate dwarfs, neutron stars or black holes (Masevich and Tutukov, 1988). To study the evolution of the GW150914 predecessor we use the ;Scenario Machine; code presented by Lipunov et al. (1996). The scenario modeling conducted in this study allowed to describe the evolution of systems for which the final stage is a massive BH+BH merger. We find that the initial mass of the primary component can be 100÷140M⊙ and the initial separation of the components can be 50÷350R⊙. Our calculations show the plausibility of modern evolutionary scenarios for binary stars and the population synthesis modeling based on it.
Dynamical Formation and Merger of Binary Black Holes
NASA Astrophysics Data System (ADS)
Stone, Nicholas
2017-01-01
The advent of gravitational wave (GW) astronomy began with Advanced LIGO's 2015 discovery of GWs from coalescing black hole (BH) binaries. GW astronomy holds great promise for testing general relativity, but also for investigating open astrophysical questions not amenable to traditional electromagnetic observations. One such question concerns the origin of stellar mass BH binaries in the universe: do these form primarily from evolution of isolated binaries of massive stars, or do they form through more exotic dynamical channels? The best studied dynamical formation channel involves multibody interactions of BHs and stars in dense globular cluster environments, but many other dynamical scenarios have recently been proposed, ranging from the Kozai effect in hierarchical triple systems to BH binary formation in the outskirts of Toomre-unstable accretion disks surrounding supermassive black holes. The BH binaries formed through these processes will have different distributions of observable parameters (e.g. mass ratios, spins) than BH binaries formed through the evolution of isolated binary stars. In my talk I will overview these and other dynamical formation scenarios, and summarize the key observational tests that will enable Advanced LIGO or other future detectors to determine what formation pathway creates the majority of binary BHs in the universe. NCS thanks NASA, which has funded his work through Einstein postdoctoral grant PF5-160145.
Constructing and Monitoring the Infrared SED of the First Known Recent Stellar Merger
NASA Astrophysics Data System (ADS)
McCollum, Bruce; Laine, Seppo; Bruhweiler, Frederick; Rottler, Lee
2012-12-01
Stellar mergers have long been thought to be astrophysically important to the evolution and global properties of dense stellar aggregates and even open clusters. However, the study of this phenomenon has until now been severely impeded by the lack of any definite, recent merger with which to compare models. It was recently realized that a 2008 nova was in fact a contact binary which erupted when the two stars finally merged. We have obtained post-merger infrared observations which show a large IR excess and a nonstellar SED which have changed subsantially over time, and near-IR emission lines from shocked material. This object is an important opportunity to learn about the nature and time evolution of recent merger products, and to assemble a unique data set which will be used for many years as a basis for modeling stellar mergers.
The GW170817/GRB 170817A/AT 2017gfo Association: Some Implications for Physics and Astrophysics
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhang, Fu-Wen; Wang, Yuan-Zhu; Shen, Zhao-Qiang; Liang, Yun-Feng; Li, Xiang; Liao, Neng-Hui; Jin, Zhi-Ping; Yuan, Qiang; Zou, Yuan-Chuan; Fan, Yi-Zhong; Wei, Da-Ming
2017-12-01
On 2017 August 17, a gravitational-wave event (GW170817) and an associated short gamma-ray burst (GRB 170817A) from a binary neutron star merger had been detected. The follow-up optical/infrared observations also identified the macronova/kilonova emission (AT 2017gfo). In this work, we discuss some implications of the remarkable GW170817/GRB 170817A/AT 2017gfo association. We show that the ∼1.7 s time delay between the gravitational-wave (GW) and GRB signals imposes very tight constraints on the superluminal movement of gravitational waves (i.e., the relative departure of GW velocity from the speed of light is ≤slant 4.3× {10}-16) or the possible violation of the weak equivalence principle (i.e., the difference of the gamma-ray and GW trajectories in the gravitational field of the galaxy and the local universe should be within a factor of ∼ 3.4× {10}-9). The so-called Dark Matter Emulators and a class of contender models for cosmic acceleration (“Covariant Galileon”) are ruled out as well. The successful identification of lanthanide elements in the macronova/kilonova spectrum also excludes the possibility that the progenitors of GRB 170817A are a binary strange star system. The high neutron star merger rate (inferred from both the local sGRB data and the gravitational-wave data) together with the significant ejected mass strongly suggest that such mergers are the prime sites of heavy r-process nucleosynthesis.
Recent searches for continuous gravitational waves
NASA Astrophysics Data System (ADS)
Riles, Keith
2017-12-01
Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst (GRB) and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein “clouds” surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches are discussed.
Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michał; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi; Robinet, Florent; Schmidt, Patricia; Smith, Rory; Veitch, John; Wade, Madeline; Aoudia, Sofiane; Bose, Sukanta; Calderon Bustillo, Juan; Canizares, Priscilla; Capano, Colin; Clark, James; Colla, Alberto; Cuoco, Elena; Da Silva Costa, Carlos; Dal Canton, Tito; Evangelista, Edgar; Goetz, Evan; Gupta, Anuradha; Hannam, Mark; Keitel, David; Lackey, Benjamin; Logue, Joshua; Mohapatra, Satyanarayan; Piergiovanni, Francesco; Privitera, Stephen; Prix, Reinhard; Pürrer, Michael; Re, Virginia; Serafinelli, Roberto; Wade, Leslie; Wen, Linqing; Wette, Karl; Whelan, John; Palomba, C; Prodi, G
The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.
NASA Technical Reports Server (NTRS)
Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michal; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi
2015-01-01
The Amaldi 10 Parallel Session C2 on gravitational wave(GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.
LIGO Discovers the Merger of Two Black Holes
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-02-01
Big news: the Laser Interferometer Gravitational-Wave Observatory (LIGO) has detected its first gravitational-wave signal! Not only is the detection of this signal a major technical accomplishment and an exciting confirmation of general relativity, but it also has huge implications for black-hole astrophysics.What did LIGO see?LIGO is designed to detect the ripples in space-time created by two massive objects orbiting each other. These waves can reach observable amplitudes when a binary system consisting of two especially massive objects i.e., black holes or neutron stars reach the end of their inspiral and merge.LIGO has been unsuccessfully searching for gravitational waves since its initial operations in 2002, but a recent upgrade in its design has significantly increased its sensitivity and observational range. The first official observing run of Advanced LIGO began 18 September 2015, but the instruments were up and running in engineering mode several weeks before that. And it was in this time frame before official observing even began! that LIGO spotted its first gravitational wave signal: GW150914.One of LIGOs two detection sites, located near Hanford in eastern Washington. [LIGO]The signal, detected on 14 September, 2015, provides astronomers with a remarkable amount of information about the merger that caused it. From the detection, the LIGO team has extracted the masses of the two black holes that merged, 36+5-4 and 29+4-4 solar masses, as well as the mass of the final black hole formed by the merger, ~62 solar masses. The team also determined that the merger happened roughly a billion light-years away (at a redshift of z~0.1), and the direction of the signal was localized to an area of ~600 square degrees (roughly 1% of the sky).Why is this detection a big deal?This is the firstdirect detection of gravitational waves, providing spectacular further confirmation of Einsteins theory of general relativity. But the implications of GW150914 go far beyond this confirmation. This detection is a huge deal for astrophysics because its the first direct evidence weve had that:Heavy stellar-mass black holes exist.Weve reliably measured black holes of masses up to 1020 solar masses in X-ray binaries (binary systems in which a single neutron star or black hole accretes matter from a donor star). But this is the first proof weve found that stellar-mass black holes of 25 solar masses can form in nature.Binaries consisting of two black holes can form in nature.As well discuss shortly, there are two theorized mechanisms for the formation of these black-hole binaries. Until now, however, there was no guarantee that either of those mechanisms worked!These black-hole binaries can inspiral and merge within the age of the universe.The formation of a black-hole binary is no guarantee that it will merge on a reasonable timescale: if the binary forms with enough separation, it could take longer than the age of the universe to merge. This detection proves that black-hole binaries can form with small enough separation to merge on observable timescales.What can we learn from GW150914?Expected increase in sensitivity for LIGO/Virgo detectors is shown as a function of total system mass (x-axis) and surveyed volume (y-axis). The red star indicates the mass of GW150914. [Abbott et al. 2016]For starters, we can throw out the lower estimates we had on merger rates. This event provides a new inferred binary-black-hole merger rate for the low-redshift universe of 2400 Gpc-3 yr-1.Another interesting conclusion about this binary system is that it probably formed in a low-metallicity environment (~ 1/2 solar metallicity). We infer this based on our current understanding of massive-star winds (which drive mass loss) and their dependence on metallicity: had the environment been high-metallicity, it is unlikely that such large black holes would have been able to form.What can we learn from future gravitational-wave detections?One of the key questions wed like to answer is: how do binary black holes form? Two primary mechanisms have been proposed:A binary star system contains two stars that are each massive enough to individually collapse into a black hole. If the binary isnt disrupted during the two collapse events, this forms an isolated black-hole binary.Single black holes form in dense cluster environments and then because they are the most massive objects sink to the center of the cluster. There they form pairs through dynamical interactions.Now that were able to observe black-hole binaries through gravitational-wave detections, one way we could distinguish between the two formation mechanisms is from spin measurements. If we discover a clear preference for the misalignment of the two black holes spins, this would favor formation in clusters, where theres no reason for the original spins to be aligned.The current, single detection is not enough to provide constraints, but if we can compile a large enough sample of events, we can start to present a statistical case favoring one channel over the other.What does GW150914 mean for the future of gravitational-wave detection?The fact that Advanced LIGO detected an event even before the start of its first official observing run is certainly promising! The LIGO team estimates that the volume the detectors can probe will still increase by at least a factor of ~10 as the observing runs become more sensitive and of longer duration.Aerial view of the Virgo interferometer near Pisa, Italy. [Virgo Collaboration]In addition, LIGO is not alone in the gravitational-wave game. LIGOs counterpart in Europe, Virgo, is also undergoing design upgrades to increase its sensitivity. Within this year, Virgo should be able to take data simultaneously with LIGO, allowing for better localization of sources. And the launch of (e)LISA, ESAs planned space-based interferometer, will grant us access to a new frequency range, opening a further window to the gravitational-wave sky.The detection of GW150914 marks the dawn of a new field: observational gravitational-wave astronomy. This detection alone confirms much that was purely theory before now and given that instrument upgrades are still underway, the future of gravitational-wave detection looks incredibly promising.BonusThis awesome video (produced by SXS lensing) shows an actual simulation of the black-hole merger GW150914. Time is slowed by a factor of 100, compared to the actual merger. The two black holes of29 and 36 solar masses warp the space-time around them, causing the distorted view.CitationB.P. Abbott et al. 2016 ApJL 818 L22. doi:10.3847/2041-8205/818/2/L22
A More Stringent Constraint on the Mass Ratio of Binary Neutron Star Merger GW170817
NASA Astrophysics Data System (ADS)
Gao, He; Cao, Zhoujian; Ai, Shunke; Zhang, Bing
2017-12-01
Recently, the LIGO–Virgo Collaborations reported their first detection of gravitational-wave (GW) signals from the low-mass compact binary merger GW170817, which is most likely due to a double neutron star (NS) merger. With the GW signals only, the chirp mass of the binary is precisely constrained to {1.188}-0.002+0.004 {M}ȯ , but the mass ratio is loosely constrained in the range 0.4–1, so that a very rough estimation of the individual NS masses (1.36 M ⊙ < M 1 < 2.26 M ⊙ and 0.86 M ⊙ < M 2 < 1.36 M ⊙) was obtained. Here, we propose that if one can constrain the dynamical ejecta mass through performing kilonova modeling of the optical/IR data, by utilizing an empirical relation between the dynamical ejecta mass and the mass ratio of NS binaries, one may place a more stringent constraint on the mass ratio of the system. For instance, considering that the red “kilonova” component is powered by the dynamical ejecta, we reach a tight constraint on the mass ratio in the range of 0.46–0.59. Alternatively, if the blue “kilonova” component is powered by the dynamical ejecta, the mass ratio would be constrained in the range of 0.53–0.67. Overall, such a multi-messenger approach could narrow down the mass ratio of GW170817 system to the range of 0.46–0.67, which gives a more precise estimation of the individual NS mass than pure GW signal analysis, i.e., 1.61 M ⊙ < M 1 < 2.11 M ⊙ and 0.90 M ⊙ < M 2 < 1.16 M ⊙.
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Mandel, Ilya; Ramirez-Ruiz, Enrico
2013-06-01
The detection of an electromagnetic transient which may originate from a binary neutron star merger can increase the probability that a given segment of data from the LIGO-Virgo ground-based gravitational-wave detector network contains a signal from a binary coalescence. Additional information contained in the electromagnetic signal, such as the sky location or distance to the source, can help rule out false alarms and thus lower the necessary threshold for a detection. Here, we develop a framework for determining how much sensitivity is added to a gravitational-wave search by triggering on an electromagnetic transient. We apply this framework to a variety of relevant electromagnetic transients, from short gamma-ray bursts (GRBs) to signatures of r-process heating to optical and radio orphan afterglows. We compute the expected rates of multimessenger observations in the advanced detector era and find that searches triggered on short GRBs—with current high-energy instruments, such as Fermi—and nucleosynthetic “kilonovae”—with future optical surveys, like the Large Synoptic Survey Telescope—can boost the number of multimessenger detections by 15% and 40%, respectively, for a binary neutron star progenitor model. Short GRB triggers offer precise merger timing but suffer from detection rates decreased by beaming and the high a priori probability that the source is outside the LIGO-Virgo sensitive volume. Isotropic kilonovae, on the other hand, could be commonly observed within the LIGO-Virgo sensitive volume with an instrument roughly an order of magnitude more sensitive than current optical surveys. We propose that the most productive strategy for making multimessenger gravitational-wave observations is using triggers from future deep, optical all-sky surveys, with characteristics comparable to the Large Synoptic Survey Telescope, which could make as many as ten such coincident observations a year.
Hayasaki, Kimitake; Loeb, Abraham
2016-10-21
Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.
Hayasaki, Kimitake; Loeb, Abraham
2016-01-01
Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade. PMID:27767188
Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger
NASA Astrophysics Data System (ADS)
Arcavi, Iair; Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis; Poznanski, Dovi; Kasen, Daniel; Barnes, Jennifer; Zaltzman, Michael; Vasylyev, Sergiy; Maoz, Dan; Valenti, Stefano
2017-11-01
The merger of two neutron stars has been predicted to produce an optical-infrared transient (lasting a few days) known as a ‘kilonova’, powered by the radioactive decay of neutron-rich species synthesized in the merger. Evidence that short γ-ray bursts also arise from neutron-star mergers has been accumulating. In models of such mergers, a small amount of mass (10-4-10-2 solar masses) with a low electron fraction is ejected at high velocities (0.1-0.3 times light speed) or carried out by winds from an accretion disk formed around the newly merged object. This mass is expected to undergo rapid neutron capture (r-process) nucleosynthesis, leading to the formation of radioactive elements that release energy as they decay, powering an electromagnetic transient. A large uncertainty in the composition of the newly synthesized material leads to various expected colours, durations and luminosities for such transients. Observational evidence for kilonovae has so far been inconclusive because it was based on cases of moderate excess emission detected in the afterglows of γ-ray bursts. Here we report optical to near-infrared observations of a transient coincident with the detection of the gravitational-wave signature of a binary neutron-star merger and with a low-luminosity short-duration γ-ray burst. Our observations, taken roughly every eight hours over a few days following the gravitational-wave trigger, reveal an initial blue excess, with fast optical fading and reddening. Using numerical models, we conclude that our data are broadly consistent with a light curve powered by a few hundredths of a solar mass of low-opacity material corresponding to lanthanide-poor (a fraction of 10-4.5 by mass) ejecta.
On the Afterglow and Progenitor of FRB 150418
NASA Astrophysics Data System (ADS)
Zhang, Bing
2016-05-01
Keane et al. recently detected a fading radio source following FRB 150418, leading to the identification of a putative host galaxy at z = 0.492 ± 0.008. Assuming that the fading source is the afterglow of FRB 150418, I model the afterglow and constrain the isotropic energy of the explosion to be a few 1050 erg, comparable to that of a short-duration gamma-ray burst (GRB). The outflow may have a jet opening angle of ˜0.22 rad, so that the beaming-corrected energy is below 1049 erg. The results rule out most fast radio burst (FRB) progenitor models for this FRB, but may be consistent with either of the following two scenarios. The first scenario invokes a merger of an NS-NS binary, which produced an undetected short GRB and a supra-massive neutron star, which subsequently collapsed into a black hole, probably hundreds of seconds after the short GRB. The second scenario invokes a merger of a compact star binary (BH-BH, NS-NS, or BH-NS) system whose pre-merger dynamical magnetospheric activities made the FRB, which is followed by an undetected short GRB-like transient. The gravitational-wave (GW) event GW 150914 would be a sister of FRB 150418 in this second scenario. In both cases, one expects an exciting prospect of GW/FRB/GRB associations.
Dual Active Galactic Nuclei in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Das, Mousumi; Rubinur, Khatun; Karb, Preeti; Varghese, Ashlin; Novakkuni, Navyasree; James, Atul
2018-04-01
Galaxy mergers play a crucial role in the formation of massive galaxies and the buildup of their bulges. An important aspect of the merging process is the in-spiral of the supermassive black-holes (SMBHs) to the centre of the merger remnant and the eventual formation of a SMBH binary. If both the SMBHs are accreting they will form a dual or binary active galactic nucleus (DAGN). The final merger remnant is usually very bright and shows enhanced star formation. In this paper we summarise the current sample of DAGN from previous studies and describe methods that can be used to identify strong DAGN candidates from optical and spectroscopic surveys. These methods depend on the Doppler separation of the double peaked AGN emission lines, the nuclear velocity dispersion of the galaxies and their optical/UV colours. We describe two high resolution, radio observations of DAGN candidates that have been selected based on their double peaked optical emission lines (DPAGN). We also examine whether DAGN host galaxies have higher star formation rates (SFRs) compared to merging galaxies that do not appear to have DAGN. We find that the SFR is not higher for DAGN host galaxies. This suggests that the SFRs in DAGN host galaxies is due to the merging process itself and not related to the presence of two AGN in the system.
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; de Rosa, R.; Debra, D.; Degallaix, J.; Del Prete, M.; Dergachev, V.; Derosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh–Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mowlowry, C.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer, J.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P. P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2010-11-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory’s S5 and Virgo’s VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M⊙. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7×10-3yr-1L10-1, 2.2×10-3yr-1L10-1, and 4.4×10-4yr-1L10-1, respectively, where L10 is 1010 times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.;
2010-01-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (UGO) and VSRI (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Solar Mass. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7 x 10(exp -3) / yr-1/L(sub 10) 2.2 x 10-3 yr-1L101, and 4.4 x 10(exp -4)3) / yr-1/L(sub 10) respectively, where L (sub 10) is 10(exp 10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
A progenitor model of SN 1987A based on the slow-merger scenario
NASA Astrophysics Data System (ADS)
Urushibata, Takaki; Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi
2018-01-01
Even after elaborate investigations spanning 30 years, it is still not understand how the progenitor of SN 1987A has evolved. In order to explain the unusual red-to-blue evolution, previous studies have suggested that in the red giant stage an increase either in the surface helium abundance or in the envelope mass was necessary. It is usually supposed that the helium enhancement is caused by rotational mixing, and that the mass increase is the result of a binary merger. We have thus investigated these scenarios thoroughly. We found that rotating single-star models do not satisfy all the observational constraints and that the enhancement of the envelope mass alone does not explain the observations. Here, we consider a slow-merger scenario in which both the helium abundance and the envelope mass enhancements are expected to occur. We show that most of the observational constraints, such as the red-to-blue evolution, lifetime, total mass and position in the Hertzsprung-Russell diagram at collapse, and the chemical anomalies are well reproduced by a merger model with 14 and 9 M⊙ stars. We also discuss the effects of the added envelope spin in the merger scenarios.
NASA Astrophysics Data System (ADS)
Lazzati, Davide; Deich, Alex; Morsony, Brian J.; Workman, Jared C.
2017-10-01
We present calculations of the wide angle emission of short-duration gamma-ray bursts from compact binary merger progenitors. Such events are expected to be localized by their gravitational wave emission, fairly irrespective of the orientation of the angular momentum vector of the system, along which the gamma-ray burst outflow is expected to propagate. We show that both the prompt and afterglow emission are dim and challenging to detect for observers lying outside the cone within which the relativistic outflow is propagating. If the jet initially propagates through a baryon contaminated region surrounding the merger site, however, a hot cocoon forms around it. The cocoon subsequently expands quasi-isotropically producing its own prompt emission and external shock powered afterglow. We show that the cocoon prompt emission is detectable by Swift BAT and Fermi GBM. We also show that the cocoon afterglow peaks a few hours to a few days after the burst and is detectable for up to a few weeks at all wavelengths. The timing and brightness of the transient are however uncertain due to their dependence on unknown quantities such as the density of the ambient medium surrounding the merger site, the cocoon energy and the cocoon Lorentz factor. For a significant fraction of the gravitationally detected neutron-star-binary mergers, the cocoon afterglow could possibly be the only identifiable electromagnetic counterpart, at least at radio and X-ray frequencies.
Implications for the Origin of GRB 051103 from LIGO Observations
NASA Technical Reports Server (NTRS)
Bizouard, M. A.; Dietz, A.; Guidi, G. M.; Was, M.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.; Blackburn, L.
2012-01-01
We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at the distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission with a jet semi-angle of 30. we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with > 99% confidence. If the event occurred in M81 our findings support the hypothesis that GRB 051103 was due to an SGR giant flare, making it the most distant extragalactic magnetar observed to date.
Implications for the Origin of GRB 051103 from LIGO Observations
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, T. D.; Abbott, R.; Abernathy, M.; Adams, C.; Adhikari, R.; Affeldt, C.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballmer, S.; Barker, D.; Barnum, S.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Behnke, B.; Bell, A. S.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bork, R.; Born, M.; Bose, S.; Boyle, M.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummitt, A.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Cao, J.; Capano, C.; Caride, S.; Caudill, S.; Cavaglia, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chua, S. S. Y.; Chung, S.; Chung, C. T. Y.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Costa, C. A.; Coughlin, M.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Culter, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; Danzmann, K.; Das, K.; Daudert, B.; Daveloza, H.; Davies, G.; Daw, E. J.; Dayanga, T.; DeBra, D.; Degallaix, J.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Palma, I.; Díaz, M.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drever, R. W. P.; Driggers, J. C.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Flanigan, M.; Foley, S.; Forsi, E.; Fotopoulos, N.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Garcia, J.; Garofoli, J. A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Graef, C.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, N.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Kuehn, G.; Kumar, R.; Kwee, P.; Landry, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Li, J.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Marandi, A.; Márka, S.; Márka, Z.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohanty, S. D.; Moraru, D.; Moreno, G.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Newton, G.; Nishizawa, A.; Nolting, D.; Nuttall, L.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pan, Y.; Pankow, C.; Papa, M. A.; Patel, P.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Phelps, M.; Pickenpack, M.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Podkaminer, J.; Pöld, J.; Postiglione, F.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Mohapatra, S. R. P.; Raymond, V.; Redwine, K.; Reed, C. M.; Reed, T.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rollins, J.; Romano, J. D.; Romie, J. H.; Röver, C.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Salit, M.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saraf, S.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shihan Weerathunga, T.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, R.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Stein, A. J.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stefszky, M.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C. I.; Traylor, G.; Trias, M.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vallisneri, M.; Van Den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Villar, A. E.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, K.; Yamamoto, H.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Collaboration; Bizouard, M. A.; Dietz, A.; Guidi, G. M.; Was, M.
2012-08-01
We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst (GRB) whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at a distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed γ-ray emission with a jet semi-angle of 30°, we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with >99% confidence. If the event occurred in M81, then our findings support the hypothesis that GRB 051103 was due to an SGR giant flare, making it one of the most distant extragalactic magnetars observed to date.
Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate
NASA Astrophysics Data System (ADS)
Kim, Chunglee; Perera, Benetge Bhakthi Pranama; McLaughlin, Maura A.
2015-03-01
The Double Pulsar (PSR J0737-3039) is the only neutron star-neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate R_g among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of 6. In this work, we carefully correct observational biases for the second-born, non-recycled pulsar (PSR J0737-0737B, or B) and estimate the contribution from the Double Pulsar on R_g using constraints available from both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (˜2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain R_g=21_{-14}^{+28} Myr-1 at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wave detectors is to be 8^{+10}_{-5} yr-1 at 95 per cent confidence. Within several years, gravitational-wave detections relevant to NS-NS inspirals will provide us useful information to improve pulsar population models.
NASA Astrophysics Data System (ADS)
Cowperthwaite, P. S.; Berger, E.; Villar, V. A.; Metzger, B. D.; Nicholl, M.; Chornock, R.; Blanchard, P. K.; Fong, W.; Margutti, R.; Soares-Santos, M.; Alexander, K. D.; Allam, S.; Annis, J.; Brout, D.; Brown, D. A.; Butler, R. E.; Chen, H.-Y.; Diehl, H. T.; Doctor, Z.; Drout, M. R.; Eftekhari, T.; Farr, B.; Finley, D. A.; Foley, R. J.; Frieman, J. A.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Guillochon, J.; Herner, K.; Holz, D. E.; Kasen, D.; Kessler, R.; Marriner, J.; Matheson, T.; Neilsen, E. H., Jr.; Quataert, E.; Palmese, A.; Rest, A.; Sako, M.; Scolnic, D. M.; Smith, N.; Tucker, D. L.; Williams, P. K. G.; Balbinot, E.; Carlin, J. L.; Cook, E. R.; Durret, F.; Li, T. S.; Lopes, P. A. A.; Lourenço, A. C. C.; Marshall, J. L.; Medina, G. E.; Muir, J.; Muñoz, R. R.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Vivas, A. K.; Wester, W.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Nuropatkin, N.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; March, M.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nichol, R. C.; Ogando, R. L. C.; Plazas, A. A.; Roe, N.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Thomas, R. C.; Troxel, M. A.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Yanny, B.; Zuntz, J.
2017-10-01
We present UV, optical, and near-infrared (NIR) photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart at 0.47-18.5 days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), and the Hubble Space Telescope (HST). The spectral energy distribution (SED) inferred from this photometry at 0.6 days is well described by a blackbody model with T≈ 8300 K, a radius of R≈ 4.5× {10}14 cm (corresponding to an expansion velocity of v≈ 0.3c), and a bolometric luminosity of {L}{bol}≈ 5× {10}41 erg s-1. At 1.5 days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/NIR colors. Modeling the entire data set, we find that models with heating from radioactive decay of 56Ni, or those with only a single component of opacity from r-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data; the resulting “blue” component has {M}{ej}{blue}≈ 0.01 {M}⊙ and {v}{ej}{blue}≈ 0.3 {{c}}, and the “red” component has {M}{ej}{red}≈ 0.04 {M}⊙ and {v}{ej}{red}≈ 0.1 {{c}}. These ejecta masses are broadly consistent with the estimated r-process production rate required to explain the Milky Way r-process abundances, providing the first evidence that binary neutron star (BNS) mergers can be a dominant site of r-process enrichment.
The Allowed Parameter Space of a Long-lived Neutron Star as the Merger Remnant of GW170817
NASA Astrophysics Data System (ADS)
Ai, Shunke; Gao, He; Dai, Zi-Gao; Wu, Xue-Feng; Li, Ang; Zhang, Bing; Li, Mu-Zi
2018-06-01
Due to the limited sensitivity of the current gravitational wave (GW) detectors, the central remnant of the binary neutron star (NS) merger associated with GW170817 remains an open question. In view of the relatively large total mass, it is generally proposed that the merger of GW170817 would lead to a short-lived hypermassive NS or directly produce a black hole (BH). There is no clear evidence to support or rule out a long-lived NS as the merger remnant. Here, we utilize the GW and electromagnetic (EM) signals to comprehensively investigate the parameter space that allows a long-lived NS to survive as the merger remnant of GW170817. We find that for some stiff equations of state, the merger of GW170817 could, in principle, lead to a massive NS, which has a millisecond spin period. The post-merger GW signal could hardly constrain the ellipticity of the NS. If the ellipticity reaches 10‑3, in order to be compatible with the multi-band EM observations, the dipole magnetic field of the NS (B p ) is constrained to the magnetar level of ∼1014 G. If the ellipticity is smaller than 10‑4, B p is constrained to the level of ∼109–1011 G. These conclusions weakly depend on the adoption of the NS equation of state.
Dynamical Processes Near the Super Massive Black Hole at the Galactic Center
NASA Astrophysics Data System (ADS)
Antonini, Fabio
2011-01-01
Observations of the stellar environment near the Galactic center provide the strongest empirical evidence for the existence of massive black holes in the Universe. Theoretical models of the Milky Way nuclear star cluster fail to explain numerous properties of such environment, including the presence of very young stars close to the super massive black hole (SMBH) and the more recent discovery of a parsec-scale core in the central distribution of the bright late-type (old) stars. In this thesis we present a theoretical study of dynamical processes near the Galactic center, strongly related to these issues. Using different numerical techniques we explore the close environment of a SMBH as catalyst for stellar collisions and mergers. We study binary stars that remain bound for several revolutions around the SMBH, finding that in the case of highly inclined binaries the Kozai resonance can lead to large periodic oscillations in the internal binary eccentricity and inclination. Collisions and mergers of the binary elements are found to increase significantly for multiple orbits around the SMBH. In collisions involving a low-mass and a high-mass star, the merger product acquires a high core hydrogen abundance from the smaller star, effectively resetting the nuclear evolution clock to a younger age. This process could serve as an important source of young stars at the Galactic center. We then show that a core in the old stars can be naturally explained in a scenario in which the Milky Way nuclear star cluster (NSC) is formed via repeated inspiral of globular clusters into the Galactic center. We present results from a set of N -body simulations of this process, which show that the fundamental properties of the NSC, including its mass, outer density profile and velocity structure, are also reproduced. Chandrasekhar's dynamical friction formula predicts no frictional force on a test body in a low-density core, regardless of its density, due to the absence of stars moving more slowly than the local circular velocity. We have tested this prediction using large-scale N -body experiments. The rate of orbital decay never drops precisely to zero, because stars moving faster than the test body also contribute to the frictional force. When the contribution from the fast-moving stars is included in the expression for the dynamical friction force, and the changes induced by the massive body on the stellar distribution are taken into account, Chandrasekhar's theory is found to reproduce the rate of orbital decay remarkably well. However, this rate is still substantially smaller than the rate predicted by Chandrasekhar's formula in its most widely-used forms, implying longer time scales for inspiral. Motivated by recent observations that suggest a parsec-scale core around the Galactic center SMBH, we investigated the evolution of a population of stellar-mass black holes (BHs) as they spiral in to the center of the Galaxy. After ˜ 10 Gyr, we find that the density of BHs can remain substantially less than the density in stars at all radii; we conclude that it would be unjustified to assume that the spatial distribution of BHs at the Galactic center is well described by steady-state models.
Swift and NuSTAR observations of GW170817: Detection of a blue kilonova
Evans, P. A.; Cenko, S. B.; Kennea, J. A.; ...
2017-10-16
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less
Swift and NuSTAR observations of GW170817: Detection of a blue kilonova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, P. A.; Cenko, S. B.; Kennea, J. A.
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less
NASA Astrophysics Data System (ADS)
Safarzadeh, Mohammadtaher; Scannapieco, Evan
2018-06-01
The history of r-process enrichment in our galaxy is modeled through a novel set of zoom cosmo- logical simulations on a MilkyWay type galaxy. r-process sources are assumed to be neutron star mergers with a distribution of natal kicks and merge time distribution. We model turbulent mixing to estimate the pristine gas fraction in each simulation cell which we use to determine the Pop III star formation with assigned Carbon rich ejecta when going off as SNe. We follow the formation of Carbon-Enhanced Metal-Poor (CEMP) stars and the statistics of different r-process enhanced class of stars. The simulation underpredict the frequency of CEMP/MP stars by a factor of 2-4. Likewise the MP-rI/MP and MP-rII/MP and CEMP-r/CEMP cumulative ratios are all under predicted by 1-2 orders of magnitude. Our results show that NS binaries by themselves fall too short to explain the observed frequency of r-process enhanced stars and other sources of r-process enrichment at high redshifts are needed to fill the gap.
The K2 M67 Study: A Curiously Young Star in an Eclipsing Binary in an Old Open Cluster
NASA Astrophysics Data System (ADS)
Sandquist, Eric L.; Mathieu, Robert D.; Quinn, Samuel N.; Pollack, Maxwell L.; Latham, David W.; Brown, Timothy M.; Esselstein, Rebecca; Aigrain, Suzanne; Parviainen, Hannu; Vanderburg, Andrew; Stello, Dennis; Somers, Garrett; Pinsonneault, Marc H.; Tayar, Jamie; Orosz, Jerome A.; Bedin, Luigi R.; Libralato, Mattia; Malavolta, Luca; Nardiello, Domenico
2018-04-01
We present an analysis of a slightly eccentric (e = 0.05), partially eclipsing, long-period (P = 69.73 days) main-sequence binary system (WOCS 12009, Sanders 1247) in the benchmark old open cluster M67. Using Kepler K2 and ground-based photometry, along with a large set of new and reanalyzed spectra, we derived highly precise masses (1.111 ± 0.015 and 0.748 ± 0.005 M ⊙) and radii (1.071 ± 0.008 ± 0.003 and 0.713 ± 0.019 ± 0.026 R ⊙, with statistical and systematic error estimates) for the stars. The radius of the secondary star is in agreement with theory. The primary, however, is approximately 15% smaller than reasonable isochrones for the cluster predict. Our best explanation is that the primary star was produced from the merger of two stars, as this can also account for the nondetection of photospheric lithium and its higher temperature relative to other cluster main-sequence stars at the same V magnitude. To understand the dynamical characteristics (low measured rotational line broadening of the primary star and low eccentricity of the current binary orbit), we believe that the most probable (but not the only) explanation is the tidal evolution of a close binary within a primordial triple system (possibly after a period of Kozai–Lidov oscillations), leading to merger approximately 1 Gyr ago. This star appears to be a future blue straggler that is being revealed as the cluster ages and the most massive main-sequence stars die out. Based on observations made at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation; with the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5 m Tillinghast telescope, located at the Smithsonian Astrophysical Observatory’s Fred L. Whipple Observatory on Mt. Hopkins in Arizona; the HARPS-N spectrograph on the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the INAF Fundacion Galileo Galilei (Spanish Observatory of Roque de los Muchachos of the IAC); and the Las Cumbres Observatory Global Telescope network.
Binary Black Holes and Gravitational Waves
NASA Technical Reports Server (NTRS)
Centrella, Joan
2007-01-01
The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns.
Evolutionary Processes in Multiple Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggleton, P P; Kisseleva-Eggleton, L
There are several ways in which triple stars can evolve in somewhat unusual ways. They discuss two situations where Case A Roche-lobe overflow, followed by a merger, can produce anomalous wide binaries such as {gamma} Per; and Kozai cycles in triples with non-parallel orbits, which can produce merged rapidly-rotating stars like AB Dor, and which can also lead to the delayed ejection of one component of a multiple, as may have been observed in T Tau in 1998.
The formation of stellar black holes
NASA Astrophysics Data System (ADS)
Mirabel, Félix
2017-08-01
It is believed that stellar black holes (BHs) can be formed in two different ways: Either a massive star collapses directly into a BH without a supernova (SN) explosion, or an explosion occurs in a proto-neutron star, but the energy is too low to completely unbind the stellar envelope, and a large fraction of it falls back onto the short-lived neutron star (NS), leading to the delayed formation of a BH. Theoretical models set progenitor masses for BH formation by implosion, namely, by complete or almost complete collapse, but observational evidences have been elusive. Here are reviewed the observational insights on BHs formed by implosion without large natal kicks from: (1) the kinematics in three dimensions of space of five Galactic BH X-ray binaries (BH-XRBs), (2) the diversity of optical and infrared observations of massive stars that collapse in the dark, with no luminous SN explosions, possibly leading to the formation of BHs, and (3) the sources of gravitational waves (GWs) produced by mergers of stellar BHs so far detected with LIGO. Multiple indications of BH formation without ejection of a significant amount of matter and with no natal kicks obtained from these different areas of observational astrophysics, and the recent observational confirmation of the expected dependence of BH formation on metallicity and redshift, are qualitatively consistent with the high merger rates of binary black holes (BBHs) inferred from the first detections with LIGO.
The binary progenitors of short and long GRBs and their gravitational-wave emission
NASA Astrophysics Data System (ADS)
Rueda, J. A.; Ruffini, R.; Rodriguez, J. F.; Muccino, M.; Aimuratov, Y.; Barres de Almeida, U.; Becerra, L.; Bianco, C. L.; Cherubini, C.; Filippi, S.; Kovacevic, M.; Moradi, R.; Pisani, G. B.; Wang, Y.
2018-01-01
We have sub-classified short and long-duration gamma-ray bursts (GRBs) into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS) or neutron star-black hole binaries (NS-BH). Long GRBs are produced via the induced gravitational collapse (IGC) scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore) and a NS companion. The COcore explodes as type Ic supernova (SN) leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1) the role of the NS structure and the nuclear equation of state; 2) the occurrence rates obtained from X and gamma-rays observations; 3) the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.
Numerical Simulations of Close and Contact Binary Systems Having Bipolytropic Equation of State
NASA Astrophysics Data System (ADS)
Kadam, Kundan; Clayton, Geoffrey C.; Motl, Patrick M.; Marcello, Dominic; Frank, Juhan
2017-01-01
I present the results of the numerical simulations of the mass transfer in close and contact binary systems with both stars having a bipolytropic (composite polytropic) equation of state. The initial binary systems are obtained by a modifying Hachisu’s self-consistent field technique. Both the stars have fully resolved cores with a molecular weight jump at the core-envelope interface. The initial properties of these simulations are chosen such that they satisfy the mass-radius relation, composition and period of a late W-type contact binary system. The simulations are carried out using two different Eulerian hydrocodes, Flow-ER with a fixed cylindrical grid, and Octo-tiger with an AMR capable cartesian grid. The detailed comparison of the simulations suggests an agreement between the results obtained from the two codes at different resolutions. The set of simulations can be treated as a benchmark, enabling us to reliably simulate mass transfer and merger scenarios of binary systems involving bipolytropic components.
NASA Astrophysics Data System (ADS)
Zapartas, E.; de Mink, S. E.; Van Dyk, S. D.; Fox, O. D.; Smith, N.; Bostroem, K. A.; de Koter, A.; Filippenko, A. V.; Izzard, R. G.; Kelly, P. L.; Neijssel, C. J.; Renzo, M.; Ryder, S.
2017-06-01
Many young, massive stars are found in close binaries. Using population synthesis simulations we predict the likelihood of a companion star being present when these massive stars end their lives as core-collapse supernovae (SNe). We focus on stripped-envelope SNe, whose progenitors have lost their outer hydrogen and possibly helium layers before explosion. We use these results to interpret new Hubble Space Telescope observations of the site of the broad-lined Type Ic SN 2002ap, 14 years post-explosion. For a subsolar metallicity consistent with SN 2002ap, we expect a main-sequence (MS) companion present in about two thirds of all stripped-envelope SNe and a compact companion (likely a stripped helium star or a white dwarf/neutron star/black hole) in about 5% of cases. About a quarter of progenitors are single at explosion (originating from initially single stars, mergers, or disrupted systems). All of the latter scenarios require a massive progenitor, inconsistent with earlier studies of SN 2002ap. Our new, deeper upper limits exclude the presence of an MS companion star >8-10 {M}⊙ , ruling out about 40% of all stripped-envelope SN channels. The most likely scenario for SN 2002ap includes nonconservative binary interaction of a primary star initially ≲ 23 {M}⊙ . Although unlikely (<1% of the scenarios), we also discuss the possibility of an exotic reverse merger channel for broad-lined Type Ic events. Finally, we explore how our results depend on the metallicity and the model assumptions and discuss how additional searches for companions can constrain the physics that govern the evolution of SN progenitors.
The positive binding energy envelopes of low-mass helium stars
NASA Astrophysics Data System (ADS)
Hall, Philip D.; Jeffery, C. Simon
2018-04-01
It has been hypothesized that stellar envelopes with positive binding energy may be ejected if the release of recombination energy can be triggered and the calculation of binding energy includes this contribution. The implications of this hypothesis for the evolution of normal hydrogen-rich stars have been investigated, but the implications for helium stars - which may represent mass-transfer or merger remnants in binary star systems - have not. Making a set of model helium stars, we find that those with masses between 0.9 and 2.4 M⊙ evolve to configurations with positive binding energy envelopes. We discuss consequences of the ejection hypothesis for such stars, and possible observational tests of these predictions.
The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanvir, N. R.; Levan, A. J.; González-Fernández, C.
Here, we report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a "kilonova/macronova" powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infraredmore » $${K}_{{\\rm{s}}}$$-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r-process peak (atomic masses $$A\\approx 195$$). This discovery thus confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major—if not the dominant—site of rapid neutron capture nucleosynthesis in the universe.« less
The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars
Tanvir, N. R.; Levan, A. J.; González-Fernández, C.; ...
2017-10-16
Here, we report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a "kilonova/macronova" powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infraredmore » $${K}_{{\\rm{s}}}$$-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r-process peak (atomic masses $$A\\approx 195$$). This discovery thus confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major—if not the dominant—site of rapid neutron capture nucleosynthesis in the universe.« less
Single progenitor model for GW150914 and GW170104
NASA Astrophysics Data System (ADS)
D'Orazio, Daniel J.; Loeb, Abraham
2018-04-01
The merger of stellar-mass black holes (BHs) is not expected to generate detectable electromagnetic (EM) emission. However, the gravitational wave (GW) events GW150914 and GW170104, detected by the Laser Interferometer Gravitational Wave Observatory to be the result of merging, ˜60 M⊙ binary black holes (BBHs), each have claimed coincident gamma-ray emission. Motivated by the intriguing possibility of an EM counterpart to BBH mergers, we construct a model that can reproduce the observed EM and GW signals for GW150914- and GW170104-like events, from a single-star progenitor. Following Loeb [Astrophys. J. Lett. 819, L21 (2016), 10.3847/2041-8205/819/2/L21], we envision a massive, rapidly rotating star within which a rotating-bar instability fractures the core into two overdensities that fragment into clumps which merge to form BHs in a tight binary with arbitrary spin-orbit alignment. Once formed, the BBH inspirals due to gas and gravitational-wave drag until tidal forces trigger strong feeding of the BHs with the surrounding stellar-density gas about 10 sec before merger. The resulting giga-Eddington accretion peak launches a jet that breaks out of the progenitor star and drives a powerful outflow that clears the gas from the orbit of the binary within 1 sec, preserving the vacuum GW waveform in the Laser Interferometer Gravitational Wave Observatory band. The single-progenitor scenario predicts the existence of variability of the gamma-ray burst, modulated at the ˜0.2 sec chirping period of the BBH due to relativistic Doppler boost. The jet breakout should be accompanied by a low-luminosity supernova. Finally, because the BBHs of the single-progenitor model do not exist at large separations, they will not be detectable in the low-frequency gravitational-wave band of the Laser Interferometer Space Antenna. Hence, the single-progenitor BBHs will be unambiguously discernible from BBHs formed through alternate, double-progenitor evolution scenarios.
NASA Astrophysics Data System (ADS)
Alexander, K. D.; Berger, E.; Fong, W.; Williams, P. K. G.; Guidorzi, C.; Margutti, R.; Metzger, B. D.; Annis, J.; Blanchard, P. K.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Chornock, R.; Cowperthwaite, P. S.; Drout, M.; Eftekhari, T.; Frieman, J.; Holz, D. E.; Nicholl, M.; Rest, A.; Sako, M.; Soares-Santos, M.; Villar, V. A.
2017-10-01
We present Very Large Array (VLA) and Atacama Large Millimeter/submillimeter Array (ALMA) radio observations of GW170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter (13.7 hr post-merger) and millimeter (2.41 days post-merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 days. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post-merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies ≳ {10}48 erg. For fiducial SGRB parameters, our limits require an observer viewer angle of ≳20°. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of ˜ {10}49{--}{10}50 erg that exploded in a uniform density environment with n˜ {10}-4{--}{10}-2 cm-3, viewed at an angle of ˜20°-40° from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of ˜5-10 years that will remain detectable for decades with next-generation radio facilities, making GW170817 a compelling target for long-term radio monitoring.
Alexander, K. D.; Berger, E.; Fong, W.; ...
2017-10-16
Here, we present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter (more » $13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $$\\gtrsim 10^{48}$$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $$\\gtrsim 20^{\\circ}$$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $$\\sim 10^{49}-10^{50}$$ erg that exploded in a uniform density environment with $$n\\sim 10^{-4}-10^{-2}$$ cm$$^{-3}$$, viewed at an angle of $$\\sim 20^{\\circ}-40^{\\circ}$$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $$\\sim 5-10$$ years that will remain detectable for decades with next-generation radio facilities, making GW\\,170817 a compelling target for long-term radio monitoring.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, K. D.; Berger, E.; Fong, W.
Here, we present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter (more » $13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $$\\gtrsim 10^{48}$$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $$\\gtrsim 20^{\\circ}$$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $$\\sim 10^{49}-10^{50}$$ erg that exploded in a uniform density environment with $$n\\sim 10^{-4}-10^{-2}$$ cm$$^{-3}$$, viewed at an angle of $$\\sim 20^{\\circ}-40^{\\circ}$$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $$\\sim 5-10$$ years that will remain detectable for decades with next-generation radio facilities, making GW\\,170817 a compelling target for long-term radio monitoring.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, K. D.; Berger, E.; Fong, W.
2017-10-16
We present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter (more » $13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $$\\gtrsim 10^{48}$$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $$\\gtrsim 20^{\\circ}$$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $$\\sim 10^{49}-10^{50}$$ erg that exploded in a uniform density environment with $$n\\sim 10^{-4}-10^{-2}$$ cm$$^{-3}$$, viewed at an angle of $$\\sim 20^{\\circ}-40^{\\circ}$$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $$\\sim 5-10$$ years that will remain detectable for decades with next-generation radio facilities, making GW\\,170817 a compelling target for long-term radio monitoring.« less
MASTER Optical Detection of the First LIGO/Virgo Neutron Star Binary Merger GW170817
NASA Astrophysics Data System (ADS)
Lipunov, V. M.; Gorbovskoy, E.; Kornilov, V. G.; . Tyurina, N.; Balanutsa, P.; Kuznetsov, A.; Vlasenko, D.; Kuvshinov, D.; Gorbunov, I.; Buckley, D. A. H.; Krylov, A. V.; Podesta, R.; Lopez, C.; Podesta, F.; Levato, H.; Saffe, C.; Mallamachi, C.; Potter, S.; Budnev, N. M.; Gress, O.; Ishmuhametova, Yu.; Vladimirov, V.; Zimnukhov, D.; Yurkov, V.; Sergienko, Yu.; Gabovich, A.; Rebolo, R.; Serra-Ricart, M.; Israelyan, G.; Chazov, V.; Wang, Xiaofeng; Tlatov, A.; Panchenko, M. I.
2017-11-01
Following the discovery of the gravitational-wave source GW170817 by three Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo antennae (Abbott et al., 2017a), the MASTER Global Robotic Net telescopes obtained the first image of the NGC 4993 host galaxy. An optical transient, MASTER OTJ130948.10-232253.3/SSS17a was later found, which appears to be a kilonova resulting from the merger of two neutron stars (NSs). Here we describe this independent detection and photometry of the kilonova made in white light, and in B, V, and R filters. We note that the luminosity of this kilonova in NGC 4993 is very close to those measured for other kilonovae possibly associated with gamma-ray burst (GRB) 130603 and GRB 080503.
NASA Astrophysics Data System (ADS)
Soares-Santos, M.; Holz, D. E.; Annis, J.; Chornock, R.; Herner, K.; Berger, E.; Brout, D.; Chen, H.-Y.; Kessler, R.; Sako, M.; Allam, S.; Tucker, D. L.; Butler, R. E.; Palmese, A.; Doctor, Z.; Diehl, H. T.; Frieman, J.; Yanny, B.; Lin, H.; Scolnic, D.; Cowperthwaite, P.; Neilsen, E.; Marriner, J.; Kuropatkin, N.; Hartley, W. G.; Paz-Chinchón, F.; Alexander, K. D.; Balbinot, E.; Blanchard, P.; Brown, D. A.; Carlin, J. L.; Conselice, C.; Cook, E. R.; Drlica-Wagner, A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Farr, B.; Finley, D. A.; Foley, R. J.; Fong, W.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Gruendl, R. A.; Hanna, C.; Kasen, D.; Li, T. S.; Lopes, P. A. A.; Lourenço, A. C. C.; Margutti, R.; Marshall, J. L.; Matheson, T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Quataert, E.; Rest, A.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Sobreira, F.; Stebbins, A.; Villar, V. A.; Vivas, K.; Walker, A. R.; Wester, W.; Williams, P. K. G.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Abdalla, F. B.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Ogando, R. L. C.; Petravick, D.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Thomas, R. C.; Troxel, M. A.; Vikram, V.; Wechsler, R. H.; Weller, J.; Dark Energy Survey; Dark Energy Camera GW-EM Collaboration
2017-10-01
We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the I and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient located 10\\buildrel{\\prime\\prime}\\over{.} 6 from the nucleus of NGC 4993 at redshift z = 0.0098, consistent (for {H}0=70 km s-1 Mpc-1) with the distance of 40 ± 8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of I=17.3 and z=17.4, and thus an absolute magnitude of {M}I=-15.7, in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.
Galaxy Rotation and Rapid Supermassive Binary Coalescence
NASA Astrophysics Data System (ADS)
Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood
2015-09-01
Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.
GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu
2015-09-10
Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolutionmore » in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.« less
Short-Duration Gamma-Ray Burst in the Multi-Messenger Era
NASA Astrophysics Data System (ADS)
Lazzati, Davide
2016-12-01
The detection of gravitational waves (GW) from binary black hole mergers has been an historical, transformative event in physics and astronomy, heralded by most as the beginning of multi-messenger astronomy. With the increase of sensitivity over the next few years, LIGO and Virgo are predicted to detect mergers from neutron-star (NS) binaries. These are expected to be the first true multi-messenger sources, being the progenitors of short-duration gamma-ray burst (SGRB). The simultaneous detection of a gravitational, electromagnetic, and possibly neutrino signals from the same source would dramatically enhance the scientific output of each individual detection. Important details of the connection between SGRBs and NS binary mergers are however poorly known. These include the nature of the merging compact objects, their equation of state, the physics of SGRB jets - such as their Lorentz factors and opening angles, and the possibility of small temporal delays among the GW, n! eutrino, and gamma-ray signals. In view of the expected increased sensitivity of LIGO during the upcoming observing period and beyond, there is urgent need of improving our understanding of the physics of SGRBs to support the detection of GWs (and possibly neutrinos) and to develop a context in which the expected multi-messenger signal can be properly interpreted and its potential fully exploited. To achieve such goals, we propose to carry out a comprehensive study of relativistic jets from compact binary mergers, exploiting the most recent advances in numerical techniques developed within this research group. The ansatz of this study will be that within a short time after a compact merger a relativistic jet is created. Subsequently, the jet interacts with the merger environment, imprinting a signature that can be detected in the temporal and spectral properties of the prompt radiation, both in its electromagnetic and neutrino components. Analogous dynamical effects have been observed and studied extensively for long-duration GRBs. Since different progenitors produce different environments and physical conditions, the properties of the gamma-ray and neutrino signals will be a proxy to the physics of the merger and, ultimately, to the expected GW signal. We will perform a combination of state-of-the-art numerical simulations covering all different phases of the event,! including the coalescence and merger of the progenitor compact binary system, the small to large scale jet dynamics, and the radiation transfer physics leading to electromagnetic and neutrino signals. Our products will include multi messenger predictions not only for on-axis bursts, those pointing directly at earth, but also for off-axis events, those with jets that point away from our detectors. Off-axis bursts are expected to have a dim electromagnetic signature but they constitute the dominant population of LIGO detected NS binary mergers.
Jet-driven and jet-less fireballs from compact binary mergers
NASA Astrophysics Data System (ADS)
Salafia, O. S.; Ghisellini, G.; Ghirlanda, G.
2018-02-01
During a compact binary merger involving at least one neutron star (NS), a small fraction of the gravitational energy could be liberated in such a way to accelerate a small fraction (˜10-6) of the NS mass in an isotropic or quasi-isotropic way. In presence of certain conditions, a pair-loaded fireball can form, which undergoes accelerated expansion reaching relativistic velocities. As in the standard fireball scenario, internal energy is partly transformed into kinetic energy. At the photospheric radius, the internal radiation can escape, giving rise to a pulse that lasts for a time equal to the delay time since the merger. The subsequent interaction with the interstellar medium can then convert part of the remaining kinetic energy back into radiation in a weak isotropic afterglow at all wavelengths. This scenario does not require the presence of a jet: the associated isotropic prompt and afterglow emission should be visible for all NS-NS and BH-NS mergers within 90 Mpc, independent of their inclination. The prompt emission is similar to that expected from an off-axis jet, either structured or much slower than usually assumed (Γ ˜ 10), or from the jet cocoon. The predicted afterglow emission properties can discriminate among these scenarios.
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2010-01-01
The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.
Jets from Merging Neutron Stars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-06-01
With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially radiated away in gravitational waves, the hypermassive neutron star loses its support and collapses to a black hole.Plasma velocities turn around (51.5 ms)Initially the plasma was falling inward, but as the disk of neutron-star debris is accreted onto the black hole, energy is released. This turns the plasma near the black hole poles around and flings it outward.Magnetic field forms a helical funnel (62.5 ms)The fields near the poles of the black hole amplify as they are wound around, creating a funnel that provides the wall of the jet.Jet outflow extends to heights greater than 445 km (64.5 ms)The disk is all accreted and, since the fuel is exhausted, the outflow shuts off (within 100ms)Neutron-Star SuccessPlot showing the gravitational wave signature for one of the authors simulations. The moments of merger of the neutron stars and collapse to a black hole are marked. [Adapted from Ruiz et al. 2016]These simulations show that no initial black hole is needed to launch outflows; a merger of two neutron stars can result in an sGRB-like jet. Another interesting result is that the magnetic field configuration doesnt affect the formation of a jet: neutron stars with magnetic fields confined to their interiors launch jets as effectively as those with pulsar-like magnetic fields. The accretion timescale for both cases is consistent with the duration of an sGRB.While this simulation models milliseconds of real time, its enormously computationally challenging and takes months to simulate. The successes of this simulation represent exciting advances in numerical relativity, as well as in our understanding of the electromagnetic counterparts that may accompany gravitational waves.BonusCheck out this awesome video of the authors simulations. The colors differentiate the plasma density and the white lines depict the pulsar-like magnetic field that initially threads the two merging neutron stars. Watch as the neutron stars evolve through the different stages outlined above, eventually forming a black hole and launching a powerful jet.[Simulations and visualization by M. Ruiz, R. Lang, V. Paschalidis, S. Shapiro and the Illinois Relativity Group REU team: S. Connelly, C. Fan, A. Khan, and P. Wongsutthikoson]CitationMilton Ruiz et al 2016 ApJ 824 L6. doi:10.3847/2041-8205/824/1/L6
Simulating a High-Spin Black Hole-Neutron Star Binary
NASA Astrophysics Data System (ADS)
Derby, John; Lovelace, Geoffrey; Duez, Matt; Foucart, Francois; Simulating Extreme Spacetimes (SXS) Collaboration
2017-01-01
During their first observing run (fall 2015) Advanced LIGO detected gravitational waves from merging black holes. In its future observations LIGO could detect black hole neutron star binaries (BHNS). It is important to have numerical simulations to predict these waves, to help find as many of these waves as possible and to estimate the sources properties, because at times near merger analytic approximations fail. Also, numerical models of the disk formed when the black hole tears apart the neutron star can help us learn about these systems' potential electromagnetic counterparts. One area of the parameter space for BHNS systems that is particularly challenging is simulations with high black hole spin. I will present results from a new BHNS simulation that has a black hole spin of 90% of the theoretical maximum. We are part of SXS but not all.
Close encounters of the third-body kind. [intruding bodies in binary star systems
NASA Technical Reports Server (NTRS)
Davies, M. B.; Benz, W.; Hills, J. G.
1994-01-01
We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi-major axes much larger than either those of the original binaries or those of binaries produced in clean exchanges. Coupled with their lower kick velocities, received from the encounters, their larger size will enhance their cross section, shortening the waiting time to a subsequent encounter with another single star.
A Neutron Star Binary Merger Model for GW170817/GRB 170817A/SSS17a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murguia-Berthier, A.; Ramirez-Ruiz, E.; Kilpatrick, C. D.
2017-10-20
The merging neutron star gravitational-wave event GW170817 has been observed throughout the entire electromagnetic spectrum from radio waves to γ -rays. The resulting energetics, variability, and light curves are shown to be consistent with GW170817 originating from the merger of two neutron stars, in all likelihood followed by the prompt gravitational collapse of the massive remnant. The available γ -ray, X-ray, and radio data provide a clear probe for the nature of the relativistic ejecta and the non-thermal processes occurring within, while the ultraviolet, optical, and infrared emission are shown to probe material torn during the merger and subsequently heatedmore » by the decay of freshly synthesized r -process material. The simplest hypothesis, that the non-thermal emission is due to a low-luminosity short γ -ray burst (sGRB), seems to agree with the present data. While low-luminosity sGRBs might be common, we show here that the collective prompt and multi-wavelength observations are also consistent with a typical, powerful sGRB seen off-axis. Detailed follow-up observations are thus essential before we can place stringent constraints on the nature of the relativistic ejecta in GW170817.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abadie, J.; Abbott, B. P.; Abbott, R.
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M{sub {center_dot}}. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7x10{sup -3} yr{sup -1} L{submore » 10}{sup -1}, 2.2x10{sup -3} yr{sup -1} L{sub 10}{sup -1}, and 4.4x10{sup -4} yr{sup -1} L{sub 10}{sup -1}, respectively, where L{sub 10} is 10{sup 10} times the blue solar luminosity. These upper limits are compared with astrophysical expectations.« less
NEUTRON-STAR MERGER EJECTA AS OBSTACLES TO NEUTRINO-POWERED JETS OF GAMMA-RAY BURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Just, O.; Janka, H.-T.; Schwarz, N.
2016-01-10
We present the first special relativistic, axisymmetric hydrodynamic simulations of black hole-torus systems (approximating general relativistic gravity) as remnants of binary-neutron star (NS–NS) and neutron star–black hole (NS–BH) mergers, in which the viscously driven evolution of the accretion torus is followed with self-consistent energy-dependent neutrino transport and the interaction with the cloud of dynamical ejecta expelled during the NS–NS merging is taken into account. The modeled torus masses, BH masses and spins, and the ejecta masses, velocities, and spatial distributions are adopted from relativistic merger simulations. We find that energy deposition by neutrino annihilation can accelerate outflows with initially highmore » Lorentz factors along polar low-density funnels, but only in mergers with extremely low baryon pollution in the polar regions. NS–BH mergers, where polar mass ejection during the merging phase is absent, provide sufficiently baryon-poor environments to enable neutrino-powered, ultrarelativistic jets with terminal Lorentz factors above 100 and considerable dynamical collimation, favoring short gamma-ray bursts (sGRBs), although their typical energies and durations might be too small to explain the majority of events. In the case of NS–NS mergers, however, neutrino emission of the accreting and viscously spreading torus is too short and too weak to yield enough energy for the outflows to break out from the surrounding ejecta shell as highly relativistic jets. We conclude that neutrino annihilation alone cannot power sGRBs from NS–NS mergers.« less
The Maximum Mass of Rotating Strange Stars
NASA Astrophysics Data System (ADS)
Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.
2012-12-01
Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.
Formation and Evolution of X-ray Binaries
NASA Astrophysics Data System (ADS)
Shao, Y.
2017-07-01
X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period-donor mass plane increases with the increasing neutron star mass. This may help to explain why some millisecond pulsars with orbital periods longer than ˜ 60 d seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution; (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with an anomalous magnetic braking; (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply, or there are other mechanisms/processes spinning down the neutron stars. In Chapter 4, angular momentum loss mechanisms in the cataclysmic variables below the period gap are presented. By considering several kinds of consequential angular momentum loss mechanisms, we find that neither isotropic wind from the white dwarf nor outflow from the L1 point can explain the extra angular momentum loss rate, while an ouflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ˜ 15%-45% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting a gravitational torque on the binary. In this case the mass loss fraction can be as low as ≲ 10-3. In Chapter 5 we present a study on the population of ultraluminous X-ray sources with an accreting neutron star. Most ULXs are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized neutron star. In this chapter we model the formation history of neutron star ULXs in an M82- or Milky Way-like galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birthrate is around 10-4 yr-1 for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass - orbital period plane. Our results suggest that, compared with black hole X-ray binaries, neutron star X-ray binaries may significantly contribute to the ULX population, and high/intermediate-mass X-ray binaries dominate the neutron star ULX population in M82/Milky Way-like galaxies, respectively. In Chapter 6, the population of intermediate- and low-mass X-ray binaries in the Galaxy is explored. We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs, and present their distribution in the initial donor mass vs. initial orbital period diagram. We then follow the evolution of I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries. The resultant BMSPs have orbital periods ranging from about 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ˜ 0.1-1 \\unit{d} is severely underestimated. Both imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss. Finally in Chapter 7 we summarize our results and give the prospects for the future work.
The role of neutron star mergers in the chemical evolution of the Galactic halo
NASA Astrophysics Data System (ADS)
Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.
2015-05-01
Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r-process production of Sr, Zr, and Ba by neutron star mergers - complemented by an s-process production by spinstars - provide results that are compatible with our previous findings based on other r-process sites. We critically discuss the weak and strong points of both neutron star merging and supernova scenarios for producing Eu and eventually suggest that the best solution is probably a mixed one in which both sources produce Eu. In fact, this scenario reproduces the scatter observed in all the studied elements better. Warning, no authors found for 2015A&A...577A.131.
Searching for gravitational waves from compact binaries with precessing spins
NASA Astrophysics Data System (ADS)
Harry, Ian; Privitera, Stephen; Bohé, Alejandro; Buonanno, Alessandra
2016-07-01
Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or antialigned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron star-black hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have roughly a factor of ten more templates than the aligned-spin banks, we find an overall improvement in signal recovery at a fixed false-alarm rate for systems with high-mass ratio and highly precessing spins. This gain in sensitivity comes at a small loss of sensitivity (≲4 %) for systems that are already well covered by aligned-spin templates. Since the observation of even a single binary merger with misaligned spins could provide unique astrophysical insights into the formation of these sources, we recommend that the method described here be developed further to mount a viable search for generic-spin binary mergers in LIGO/Virgo data.
Initial data for high-compactness black hole-neutron star binaries
NASA Astrophysics Data System (ADS)
Henriksson, Katherine; Foucart, François; Kidder, Lawrence E.; Teukolsky, Saul A.
2016-05-01
For highly compact neutron stars, constructing numerical initial data for black hole-neutron star binary evolutions is very difficult. We describe improvements to an earlier method that enable it to handle these more challenging cases. These improvements were found by invoking a general relaxation principle that may be helpful in improving robustness in other initial data solvers. We examine the case of a 6:1 mass ratio system in inspiral close to merger, where the star is governed by a polytropic {{Γ }}=2, an SLy, or an LS220 equation of state (EOS). In particular, we are able to obtain a solution with a realistic LS220 EOS for a star with compactness 0.26 and mass 1.98 M ⊙, which is representative of the highest reliably determined neutron star masses. For the SLy EOS, we can obtain solutions with a comparable compactness of 0.25, while for a family of polytropic equations of state, we obtain solutions with compactness up to 0.21, the largest compactness that is stable in this family. These compactness values are significantly higher than any previously published results.
NASA Astrophysics Data System (ADS)
Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.
2016-12-01
We consider r-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star-black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A < 130 nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of r-process elements in metal poor stars. Disc outflows reach the third peak (A ˜ 195) in most of our simulations, although the amounts produced depend sensitively on the disc viscosity, initial mass or entropy of the torus, and nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar system r-process distribution. The spike arises from convection in the disc and depends on the treatment of nuclear heating in the simulations. We conclude that disc outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.
Black hole binaries dynamically formed in globular clusters
NASA Astrophysics Data System (ADS)
Park, Dawoo; Kim, Chunglee; Lee, Hyung Mok; Bae, Yeong-Bok; Belczynski, Krzysztof
2017-08-01
We investigate properties of black hole (BH) binaries formed in globular clusters via dynamical processes, using directN-body simulations. We pay attention to effects of BH mass function on the total mass and mass ratio distributions of BH binaries ejected from clusters. First, we consider BH populations with two different masses in order to learn basic differences from models with single-mass BHs only. Secondly, we consider continuous BH mass functions adapted from recent studies on massive star evolution in a low metallicity environment, where globular clusters are formed. In this work, we consider only binaries that are formed by three-body processes and ignore stellar evolution and primordial binaries for simplicity. Our results imply that most BH binary mergers take place after they get ejected from the cluster. Also, mass ratios of dynamically formed binaries should be close to 1 or likely to be less than 2:1. Since the binary formation efficiency is larger for higher-mass BHs, it is likely that a BH mass function sampled by gravitational-wave observations would be weighed towards higher masses than the mass function of single BHs for a dynamically formed population. Applying conservative assumptions regarding globular cluster populations such as small BH mass fraction and no primordial binaries, the merger rate of BH binaries originated from globular clusters is estimated to be at least 6.5 yr-1 Gpc-3. Actual rate can be up to more than several times of our conservative estimate.
Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger.
Shappee, B J; Simon, J D; Drout, M R; Piro, A L; Morrell, N; Prieto, J L; Kasen, D; Holoien, T W-S; Kollmeier, J A; Kelson, D D; Coulter, D A; Foley, R J; Kilpatrick, C D; Siebert, M R; Madore, B F; Murguia-Berthier, A; Pan, Y-C; Prochaska, J X; Ramirez-Ruiz, E; Rest, A; Adams, C; Alatalo, K; Bañados, E; Baughman, J; Bernstein, R A; Bitsakis, T; Boutsia, K; Bravo, J R; Di Mille, F; Higgs, C R; Ji, A P; Maravelias, G; Marshall, J L; Placco, V M; Prieto, G; Wan, Z
2017-12-22
On 17 August 2017, Swope Supernova Survey 2017a (SSS17a) was discovered as the optical counterpart of the binary neutron star gravitational wave event GW170817. We report time-series spectroscopy of SSS17a from 11.75 hours until 8.5 days after the merger. Over the first hour of observations, the ejecta rapidly expanded and cooled. Applying blackbody fits to the spectra, we measured the photosphere cooling from [Formula: see text] to [Formula: see text] kelvin, and determined a photospheric velocity of roughly 30% of the speed of light. The spectra of SSS17a began displaying broad features after 1.46 days and evolved qualitatively over each subsequent day, with distinct blue (early-time) and red (late-time) components. The late-time component is consistent with theoretical models of r-process-enriched neutron star ejecta, whereas the blue component requires high-velocity, lanthanide-free material. Copyright © 2017, American Association for the Advancement of Science.
Gravitational Waves and Multi-Messenger Astronomy
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2010-01-01
Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.
NASA Astrophysics Data System (ADS)
Moriya, Takashi J.; Mazzali, Paolo A.; Tominaga, Nozomu; Hachinger, Stephan; Blinnikov, Sergei I.; Tauris, Thomas M.; Takahashi, Koh; Tanaka, Masaomi; Langer, Norbert; Podsiadlowski, Philipp
2017-04-01
We investigate light-curve and spectral properties of ultrastripped core-collapse supernovae. Ultrastripped supernovae are the explosions of heavily stripped massive stars that lost their envelopes via binary interactions with a compact companion star. They eject only ˜0.1 M⊙ and may be the main way to form double neutron-star systems that eventually merge emitting strong gravitational waves. We follow the evolution of an ultrastripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultrastripped supernovae using the nucleosynthesis results and present their expected properties. Ultrastripped supernovae synthesize ˜0.01 M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5-10 d. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultrastripped supernovae. If these supernovae are actually ultrastripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultrastripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultrastripped supernovae are actually a major contributor to the binary neutron-star population and provide constraints on binary stellar evolution.
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald P.
2017-02-01
The pioneering discovery of gravitational waves (GWs) by Advanced LIGO has ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observation, of which neutron star-black hole (NSBH) binaries form an important subset. GWs from NSBH sources carry signatures of (a) the tidal distortion of the neutron star by its companion black hole during inspiral, and (b) its potential tidal disruption near merger. In this paper, we present a Bayesian study of the measurability of neutron star tidal deformability ΛNS∝(R /M )NS5 using observation(s) of inspiral-merger GW signals from disruptive NSBH coalescences, taking into account the crucial effect of black hole spins. First, we find that if nontidal templates are used to estimate source parameters for an NSBH signal, the bias introduced in the estimation of nontidal physical parameters will only be significant for loud signals with signal-to-noise ratios greater than ≃30 . For similarly loud signals, we also find that we can begin to put interesting constraints on ΛNS (factor of 1-2) with individual observations. Next, we study how a population of realistic NSBH detections will improve our measurement of neutron star tidal deformability. For an astrophysically likely population of disruptive NSBH coalescences, we find that 20-35 events are sufficient to constrain ΛNS within ±25 %- 50 % , depending on the neutron star equation of state. For these calculations we assume that LIGO will detect black holes with masses within the astrophysical mass gap. In case the mass gap remains preserved in NSBHs detected by LIGO, we estimate that approximately 25% additional detections will furnish comparable ΛNS measurement accuracy. In both cases, we find that it is the loudest 5-10 events that provide most of the tidal information, and not the combination of tens of low-SNR events, thereby facilitating targeted numerical-GR follow-ups of NSBHs. We find these results encouraging, and recommend that an effort to measure ΛNS be planned for upcoming NSBH observations with the LIGO-Virgo instruments.
Black-hole binaries as relics of gamma-ray burst/hypernova explosions
NASA Astrophysics Data System (ADS)
Moreno Mendez, Enrique
The Collapsar model, in which a fast-spinning massive star collapses into a Kerr black hole, has become the standard model to explain long-soft gamma-ray bursts and hypernova explosions (GRB/HN). However, stars massive enough (those with ZAMS mass ≳ (18--20) M⊙ ) to produce these events evolve through a path that loses too much angular momentum to produce a central engine capable of delivering the necessary energy. In this work I suggest that the soft X-ray transient sources are the remnants of GRBs/HNe. Binaries in which the massive primary star evolves a carbon-oxygen burning core, then start to transfer material to the secondary star (Case C mass transfer), causing the orbit to decay until a common-envelope phase sets in. The secondary spirals in, further narrowing the orbit of the binary and removing the hydrogen envelope of the primary star. Eventually the primary star becomes tidally locked and spins up, acquiring enough rotational energy to power up a GRB/HN explosion. The central engine producing the GRB/HN event is the Kerr black hole acting through the Blandford-Znajek mechanism. This model can explain not only the long-soft GRBs, but also the subluminous bursts (which comprise ˜ 97% of the total), the long-soft bursts and the short-hard bursts (in a neutron star, black hole merger). Because of our binary evolution through Case C mass transfer, it turns out that for the subluminous and cosmological bursts, the angular momentum O is proportional to m3/2D , where mD is the mass of the donor (secondary star). This binary evolution model has a great advantage over the Woosley Collapsar model; one can "dial" the donor mass in order to obtain whatever angular momentum is needed to drive the explosion. Population syntheses show that there are enough binaries to account for the progenitors of all known classes of GRBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soares-Santos, M.; Holz, D. E.; Annis, J.
Here, we present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg 2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient locatedmore » $$10\\buildrel{\\prime\\prime}\\over{.} 6$$ from the nucleus of NGC 4993 at redshift z = 0.0098, consistent (for $${H}_{0}=70$$ km s –1 Mpc –1) with the distance of 40 ± 8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of $i=17.3$ and $z=17.4$, and thus an absolute magnitude of $${M}_{i}=-15.7$$, in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.« less
Soares-Santos, M.; Holz, D. E.; Annis, J.; ...
2017-10-16
Here, we present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg 2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient locatedmore » $$10\\buildrel{\\prime\\prime}\\over{.} 6$$ from the nucleus of NGC 4993 at redshift z = 0.0098, consistent (for $${H}_{0}=70$$ km s –1 Mpc –1) with the distance of 40 ± 8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of $i=17.3$ and $z=17.4$, and thus an absolute magnitude of $${M}_{i}=-15.7$$, in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.« less
Beta-Decay Rates for Exotic Nuclei and R-Process Nucleosynthesis
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Yoshida, Takashi; Wanajo, Shinya; Kajino, Toshitaka; Otsuka, Takaharu
Beta-decay rates for exotic nuclei at N = 126 relevant to r-process nucleosynthesis are studied by shell-model calculations. The half-lives obtained are used to study r-process nucleosynthesis in core-collapse supernova explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to uranium.
On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening
NASA Astrophysics Data System (ADS)
Leigh, N. W. C.; Geller, A. M.; McKernan, B.; Ford, K. E. S.; Mac Low, M.-M.; Bellovary, J.; Haiman, Z.; Lyra, W.; Samsing, J.; O'Dowd, M.; Kocsis, B.; Endlich, S.
2018-03-01
We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucleus with spherical and disc components hosting a super-massive black hole (SMBH). We determine the total number of encounters NGW needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disc components. Using a Monte Carlo approach, we refine our calculations for NGW to include gravitational wave emission between scattering events. For astrophysically plausible models, we find that typically NGW ≲ 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low-velocity dispersions, and no significant Keplerian component and (2) migration traps in discs around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disc. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because discs enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.
An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.
Gilfanov, Marat; Bogdán, Akos
2010-02-18
There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.
Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817
NASA Astrophysics Data System (ADS)
Margalit, Ben; Metzger, Brian D.
2017-12-01
We combine electromagnetic (EM) and gravitational-wave (GW) information on the binary neutron star (NS) merger GW170817 in order to constrain the radii {R}{ns} and maximum mass {M}\\max of NSs. GW170817 was followed by a range of EM counterparts, including a weak gamma-ray burst (GRB), kilonova (KN) emission from the radioactive decay of the merger ejecta, and X-ray/radio emission consistent with being the synchrotron afterglow of a more powerful off-axis jet. The type of compact remnant produced in the immediate merger aftermath, and its predicted EM signal, depend sensitively on the high-density NS equation of state (EOS). For a soft EOS that supports a low {M}\\max , the merger undergoes a prompt collapse accompanied by a small quantity of shock-heated or disk-wind ejecta, inconsistent with the large quantity ≳ {10}-2 {M}⊙ of lanthanide-free ejecta inferred from the KN. On the other hand, if {M}\\max is sufficiently large, then the merger product is a rapidly rotating supramassive NS (SMNS), which must spin down before collapsing into a black hole. A fraction of the enormous rotational energy necessarily released by the SMNS during this process is transferred to the ejecta, either into the GRB jet (energy {E}{GRB}) or the KN ejecta (energy {E}{ej}), also inconsistent with observations. By combining the total binary mass of GW170817 inferred from the GW signal with conservative upper limits on {E}{GRB} and {E}{ej} from EM observations, we constrain the likelihood probability of a wide range of previously allowed EOSs. These two constraints delineate an allowed region of the {M}\\max {--}{R}{ns} parameter space, which, once marginalized over NS radius, places an upper limit of {M}\\max ≲ 2.17 {M}⊙ (90%), which is tighter or arguably less model-dependent than other current constraints.
NASA Astrophysics Data System (ADS)
Centrella, Joan
2010-03-01
The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z > 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts. This research is supported in part by NASA grant 06-BEFS06-19 to Goddard Space Flight Center.
Galaxy simulations: Kinematics and mock observations
NASA Astrophysics Data System (ADS)
Moody, Christopher E.
2013-08-01
There are six topics to my thesis, which are: (1) slow rotator production in varied simulation schemes and kinematically decoupled cores and twists in those simulations, (2) the change in number of clumps in radiation pressure and no-radiation pressure simulations, (3) Sunrise experiments and failures including UVJ color-color dust experiments and UVbeta slopes, (4) the Sunrise image pipeline and algorithms. Cosmological simulations of have typically produced too many stars at early times. We find that the additional radiation pressure (RP) feedback suppresses star formation globally by a factor of ~ 3. Despite this reduction, the simulation still overproduces stars by a factor of ~ 2 with respect to the predictions provided by abundance matching methods. In simulations with RP the number of clumps falls dramatically. However, only clumps with masses Mclump/Mdisk ≤ 8% are impacted by the inclusion of RP, and clump counts above this range are comparable. Above this mass, the difference between and RP and no-RP contrast ratios diminishes. If we restrict our selection to galaxies hosting at least a single clump above this mass range then clump numbers, contrast ratios, survival fractions and total clump masses show little discrepancy between RP and no-RP simulations. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps. New kinematic observations from ATLAS3D have highlighted the need to understand the evolutionary mechanism leading to a spectrum of fast-rotator and slow-rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamic simulations sampling idealized galaxy merger formation scenarios constructed from model spiral galaxies. We recreate minor and major binary mergers, binary merger trees with multiple progenitors, and multiple sequential mergers. Within each of these categories of formation history, we correlate progenitor gas fraction, mass ratio, orbital pericenter, orbital ellipticity, spin, and kinematically decoupled cores with remnant kinematic properties. We find that binary mergers nearly always form fast rotators, but slow rotators can be formed from zero initial angular momentum configurations and gas-poor mergers. Remnants of binary merger trees are triaxial slow rotators. Sequential mergers form round slow rotators that most resemble the ATLAS3D rotators. We investigate the failure of ART and Sunrise simulation to reproduce the observed distribution of galaxies in the UVJ color-color diagram. No simulated galaxies achieve a color with V-J >1.0 while still being in the blue sequence. I systematically study the underlying sub grid models present in Sunrise to diagnose the source of the discrepancy. The experiments were largely unsuccessful in directly isolating the root of the J-band excess attenuation; however, they are instructive and can guide the intuition in terms of understanding the interplay of stellar emission and dust. These experiments were aimed at understanding the role of the underlying sub grid dust and radiation models, varying the dust geometry, and performing numerical studies of the radiation transfer calculation. Finally, I detail the data pipeline responsible for the creation of galaxy mock observations. The pipeline can be broken into the ART simulation raw data, the dark matter merger tree backbone, the format translation using yt, simulation the radiation transfer in Sunrise, and post-processed image treatments resulting. At every step, I detail the execution of the algorithms, the format of the data, and useful scripts for straightforward analysis.
Understanding the Progenitors of Short Gamma-Ray Bursts via their Host Galaxies: A Pilot Study
NASA Astrophysics Data System (ADS)
Cenko, S. Brad
2014-08-01
While massive star core-collapse is known to power long-duration gamma-ray bursts (GRBs), the origin of short GRBs remains unconfirmed. Studies of the host galaxies of short GRBs provide critical constraints on their progenitors, particularly if (as expected) short GRBs result from the neutron star mergers. Here we request deep Keck/LRIS imaging of short GRBs lacking securely identified hosts. By constraining the fraction of events that appear to have been 'kicked' out of their host galaxy in a more unbiased manner than past efforts, we aim to infer fundamental properties about the formation and evolution of binary neutron star systems.
Short gamma-ray bursts and gravitational-wave observations from eccentric compact binaries
NASA Astrophysics Data System (ADS)
Tan, Wei-Wei; Fan, Xi-Long; Wang, F. Y.
2018-03-01
Mergers of compact binaries, such as binary neutron stars (BNSs), neutron star-black hole binaries (NSBHs) and binary black holes (BBHs), are expected to be the best candidates for sources of gravitational waves (GWs) and the leading theoretical models for short gamma-ray bursts (SGRBs). Based on observations of SGRBs, we can derive the merger rates of these compact binaries and study stochastic GW backgrounds (SGWBs) or the co-detection rates of GWs associated with SGRBs (GW-SGRBs). Before that, however, the most important thing is to derive the GW spectrum from a single GW source. Usually, a GW spectrum from a circular-orbit binary is assumed. However, observations of the large spatial offsets of SGRBs from their host galaxies imply that SGRB progenitors may be formed by dynamical processes and will merge with residual eccentricities (er). The orbital eccentricity has an important effect on GW spectra and therefore on the SGWB and GW-SGRB co-detection rate. Our results show that the power spectra of SGWBs from eccentric compact binaries are greatly suppressed at low frequencies (e.g. f ≲ 1 Hz). In particular, SGWBs from binaries with high residual eccentricities (e.g. er ≳ 0.1 for BNSs) will be hard to detect (above the detection frequency of ˜ 100 Hz). Regarding the co-detection rates of GW-SGRB events, they could be ˜1.4 times higher than the circular case within some particular ranges of er (e.g. 0.01 ≲ er ≲ 0.1 for BBHs), but greatly reduced for high residual eccentricities (e.g. er > 0.1 for BNSs). In general, BBH progenitors produce 200 and 10 times higher GW-SGRB events than BNS and NSBH progenitors, respectively. Therefore, binaries with low residual eccentricities (e.g. 0.001 ≲ er ≲ 0.1) and high total masses will be easier to detect by Advanced LIGO (aLIGO). However, only a small fraction of BBHs can be SGRB progenitors (if they can produce SGRBs), because the predicted GW-SGRB event rate (60˜100 per year) is too high compared with recent observations, unless they merge with high residual eccentricities (e.g. er > 0.7).
Swift and NuSTAR observations of GW170817: Detection of a blue kilonova.
Evans, P A; Cenko, S B; Kennea, J A; Emery, S W K; Kuin, N P M; Korobkin, O; Wollaeger, R T; Fryer, C L; Madsen, K K; Harrison, F A; Xu, Y; Nakar, E; Hotokezaka, K; Lien, A; Campana, S; Oates, S R; Troja, E; Breeveld, A A; Marshall, F E; Barthelmy, S D; Beardmore, A P; Burrows, D N; Cusumano, G; D'Aì, A; D'Avanzo, P; D'Elia, V; de Pasquale, M; Even, W P; Fontes, C J; Forster, K; Garcia, J; Giommi, P; Grefenstette, B; Gronwall, C; Hartmann, D H; Heida, M; Hungerford, A L; Kasliwal, M M; Krimm, H A; Levan, A J; Malesani, D; Melandri, A; Miyasaka, H; Nousek, J A; O'Brien, P T; Osborne, J P; Pagani, C; Page, K L; Palmer, D M; Perri, M; Pike, S; Racusin, J L; Rosswog, S; Siegel, M H; Sakamoto, T; Sbarufatti, B; Tagliaferri, G; Tanvir, N R; Tohuvavohu, A
2017-12-22
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (≈0.03 solar masses) wind-driven outflow with moderate electron fraction ( Y e ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30° away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a γ-ray burst afterglow). Copyright © 2017, American Association for the Advancement of Science.
Post-merger evolution of a neutron star-black hole binary with neutrino transport
NASA Astrophysics Data System (ADS)
Foucart, Francois; O'Connor, Evan; Roberts, Luke; Duez, Matthew D.; Haas, Roland; Kidder, Lawrence E.; Ott, Christian D.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela
2015-06-01
We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general-relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of an accretion disk after a black hole-neutron star merger. We use as initial data an existing general-relativistic simulation of the merger of a neutron star of mass 1.4 M⊙ with a black hole of mass 7 M⊙ and dimensionless spin χBH=0.8 . Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron-to-proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that both the disk and the disk outflows are less neutron rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects, due to large velocities and curvature in the regions of strongest emission. Over the short time scale evolved, we do not observe purely neutrino-driven outflows. However, a small amount of material (3 ×10-4M⊙ ) is ejected in the polar region during the circularization of the disk. Most of that material is ejected early in the formation of the disk, and is fairly neutron rich (electron fraction Ye˜0.15 - 0.25 ). Through r-process nucleosynthesis, that material should produce high-opacity lanthanides in the polar region, and could thus affect the light curve of radioactively powered electromagnetic transients. We also show that by the end of the simulation, while the bulk of the disk remains neutron rich (Ye˜0.15 - 0.2 and decreasing), its outer layers have a higher electron fraction: 10% of the remaining mass has Ye>0.3 . As that material would be the first to be unbound by disk outflows on longer time scales, and as composition evolution is slower at later times, the changes in Ye experienced during the formation phase of the disk could have an impact on nucleosynthesis outputs from neutrino-driven and viscously driven outflows. Finally, we find that the effective viscosity due to momentum transport by neutrinos is unlikely to have a strong effect on the growth of the magnetorotational instability in the post-merger accretion disk.
Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event.
Kasen, Daniel; Metzger, Brian; Barnes, Jennifer; Quataert, Eliot; Ramirez-Ruiz, Enrico
2017-11-02
The cosmic origin of elements heavier than iron has long been uncertain. Theoretical modelling shows that the matter that is expelled in the violent merger of two neutron stars can assemble into heavy elements such as gold and platinum in a process known as rapid neutron capture (r-process) nucleosynthesis. The radioactive decay of isotopes of the heavy elements is predicted to power a distinctive thermal glow (a 'kilonova'). The discovery of an electromagnetic counterpart to the gravitational-wave source GW170817 represents the first opportunity to detect and scrutinize a sample of freshly synthesized r-process elements. Here we report models that predict the electromagnetic emission of kilonovae in detail and enable the mass, velocity and composition of ejecta to be derived from observations. We compare the models to the optical and infrared radiation associated with the GW170817 event to argue that the observed source is a kilonova. We infer the presence of two distinct components of ejecta, one composed primarily of light (atomic mass number less than 140) and one of heavy (atomic mass number greater than 140) r-process elements. The ejected mass and a merger rate inferred from GW170817 imply that such mergers are a dominant mode of r-process production in the Universe.
On the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics
Will, Clifford M.
2011-01-01
The post-Newtonian approximation is a method for solving Einstein’s field equations for physical systems in which motions are slow compared to the speed of light and where gravitational fields are weak. Yet it has proven to be remarkably effective in describing certain strong-field, fast-motion systems, including binary pulsars containing dense neutron stars and binary black hole systems inspiraling toward a final merger. The reasons for this effectiveness are largely unknown. When carried to high orders in the post-Newtonian sequence, predictions for the gravitational-wave signal from inspiraling compact binaries will play a key role in gravitational-wave detection by laser-interferometric observatories. PMID:21447714
Observational properties of massive black hole binary progenitors
NASA Astrophysics Data System (ADS)
Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.
2018-01-01
Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.
Common Envelope Light Curves. I. Grid-code Module Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galaviz, Pablo; Marco, Orsola De; Staff, Jan E.
The common envelope (CE) binary interaction occurs when a star transfers mass onto a companion that cannot fully accrete it. The interaction can lead to a merger of the two objects or to a close binary. The CE interaction is the gateway of all evolved compact binaries, all stellar mergers, and likely many of the stellar transients witnessed to date. CE simulations are needed to understand this interaction and to interpret stars and binaries thought to be the byproduct of this stage. At this time, simulations are unable to reproduce the few observational data available and several ideas have been putmore » forward to address their shortcomings. The need for more definitive simulation validation is pressing and is already being fulfilled by observations from time-domain surveys. In this article, we present an initial method and its implementation for post-processing grid-based CE simulations to produce the light curve so as to compare simulations with upcoming observations. Here we implemented a zeroth order method to calculate the light emitted from CE hydrodynamic simulations carried out with the 3D hydrodynamic code Enzo used in unigrid mode. The code implements an approach for the computation of luminosity in both optically thick and optically thin regimes and is tested using the first 135 days of the CE simulation of Passy et al., where a 0.8 M {sub ⊙} red giant branch star interacts with a 0.6 M {sub ⊙} companion. This code is used to highlight two large obstacles that need to be overcome before realistic light curves can be calculated. We explain the nature of these problems and the attempted solutions and approximations in full detail to enable the next step to be identified and implemented. We also discuss our simulation in relation to recent data of transients identified as CE interactions.« less
The Insignificance of Major Mergers in Driving Star Formation at z approximately equal to 2
NASA Technical Reports Server (NTRS)
Kaviraj, S.; Cohen, S.; Windhorst, R. A.; Silk, J.; O'Connell, R. W.; Dopita, M. A.; Dekel, A.; Hathi, N. P.; Straughn, A.; Rutkowski, M.
2012-01-01
We study the significance of major mergers in driving star formation in the early Universe, by quantifying the contribution of this process to the total star formation budget in 80 massive (M(*) > 10(exp 10) Solar M) galaxies at z approx = 2. Employing visually-classified morphologies from rest-frame V-band HST imaging, we find that 55(exp +/-14)% of the star formation budget is hosted by non-interacting late-types, with 27(exp +/-18% in major mergers and 18(exp +/- 6)% in spheroids. Given that a system undergoing a major merger continues to experience star formation driven by other processes at this epoch (e.g. cold accretion, minor mergers), approx 27% is a likely upper limit for the major-merger contribution to star formation activity at this epoch. The ratio of the average specific star formation rate in major mergers to that in the non-interacting late-types is approx 2.2:1, suggesting that the typical enhancement of star formation due to major merging is modest and that just under half the star formation in systems experiencing major mergers is unrelated to the merger itself. Taking this into account, we estimate that the actual major-merger contribution to the star formation budget may be as low as approx 15%. While our study does not preclude a major-merger-dominated. era in the very early Universe, if the major-merger contribution to star formation does not evolve significantly into larger look-back times, then this process has a relatively insignificant role in driving stellar mass assembly over cosmic time.
Yet Another Model for the Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Leonard, P. J. T.
2000-05-01
We consider whether a gamma-ray burst can result from a merger between a neutron star and a massive main-sequence star in a binary system following a supernova explosion. The scenario for how this can happen is outlined in Leonard, Hills & Dewey 1994, ApJ, 423, L19-L22. The initially more massive star in a massive binary system evolves and undergoes core collapse to produce a neutron star and supernova. Since the outer layers of the originally more massive star have been transferred to the other star, then the supernova may be hydrogen deficient. The newly-formed neutron star receives a random kick during the explosion. In a small fraction of the cases, the kick has the appropriate direction and amplitude to remove most of the orbital angular momentum of the post-supernova binary system. The result is an orbit with a pericenter smaller than the radius of the non-exploding star. The neutron star rather quickly becomes embedded in the other star, and sinks to its center, giving the envelope of the merged object a lot of rotational angular momentum in the process. Leonard, Hills & Dewey estimate the rate of this process in the Galaxy to be 0.06 per square kpc per Myr for secondaries more massive than 15 solar masses. The fate of the merged object has been the source of much speculation, and we shall assume that a collapsar-like scenario results. That is, the neutron star experiences runaway accretion, collapses into a black hole, which continues to accrete, and produces a pair of jets that bore their way out of the merged object. Observers who lie in the direction of either jet will see a gamma-ray burst. Roughly 1% of supernovae in massive binary systems result in neutron stars quickly becoming embedded in the secondaries, and of those which produce black holes, only 1% would be observable as gamma-ray bursts, if the jets are beamed into 1% of the sky.
The Diversity of Kilonova Emission in Short Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Gompertz, B. P.; Levan, A. J.; Tanvir, N. R.; Hjorth, J.; Covino, S.; Evans, P. A.; Fruchter, A. S.; González-Fernández, C.; Jin, Z. P.; Lyman, J. D.; Oates, S. R.; O’Brien, P. T.; Wiersema, K.
2018-06-01
The historic first joint detection of both gravitational-wave and electromagnetic emission from a binary neutron star merger cemented the association between short gamma-ray bursts (SGRBs) and compact object mergers, as well as providing a well-sampled multi-wavelength light curve of a radioactive kilonova (KN) for the first time. Here, we compare the optical and near-infrared light curves of this KN, AT 2017gfo, to the counterparts of a sample of nearby (z < 0.5) SGRBs to characterize their diversity in terms of their brightness distribution. Although at similar epochs AT 2017gfo appears fainter than every SGRB-associated KN claimed so far, we find three bursts (GRBs 050509B, 061201, and 080905A) where, if the reported redshifts are correct, deep upper limits rule out the presence of a KN similar to AT 2017gfo by several magnitudes. Combined with the properties of previously claimed KNe in SGRBs this suggests considerable diversity in the properties of KN drawn from compact object mergers, despite the similar physical conditions that are expected in many NS–NS mergers. We find that observer angle alone is not able to explain this diversity, which is likely a product of the merger type (NS–NS versus NS–BH) and the detailed properties of the binary (mass ratio, spins etc.). Ultimately disentangling these properties should be possible through observations of SGRBs and gravitational-wave sources, providing direct measurements of heavy element enrichment throughout the universe.
LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, B. P.; Abbott, R.; Abernathy, M. R.
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize themore » follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.« less
Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill, S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Allison, J.; Bannister, K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.; McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.; Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array Pathfinder (ASKAP Collaboration); Castro-Tirado, A. J.; Cunniffe, R.; Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y.-D.; Kubánek, P.; Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec, R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.; Konig, S.; Rendón, F.; Mateo Sanguino, T. de J.; Fernández-Muñoz, R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla, T.; Sabau-Graziati, L.; BOOTES Collaboration; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fong, W.-F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.; Kessler, R.; Kim, A. G.; Kind, M. C.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti, R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger, B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert, E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny, B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy Camera GW-EM Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.; Briggs, M. S.; Zhang, B.-B.; Hui, C. M.; Jenke, P.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.; Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres, P.; Yu, H.-F.; Blackburn, L.; Fermi GBM Collaboration; Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green, D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.; Zimmer, S.; Fermi LAT Collaboration; Brocato, E.; Cappellaro, E.; Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.; Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni, S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone, L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.; Yang, S.; GRAvitational Wave Inaf TeAm (GRAWITA); Bazzano, A.; Bozzo, E.; Brandt, S.; Courvoisier, T. J.-L.; Ferrigno, C.; Hanlon, L.; Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko, V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer, L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller, A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci, F.; Surace, J.; Rebbapragada, U.; Cook, D.; Van Sistine, A.; Sesar, B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.; Intermediate Palomar Transient Factory (iPTF Collaboration); Hurley, K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin, D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline, T.; Krimm, H.; InterPlanetary Network; Abe, F.; Doi, M.; Fujisawa, K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta, K.; Yanagisawa, K.; Yoshida, M.; J-GEM Collaboration; Baltay, C.; Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-QUEST Survey; Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.; Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali, P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.; Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.; Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.; Wijers, R. A. M. J.; Low Frequency Array (LOFAR Collaboration); Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian, G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.; Yurkov, V.; MASTER Collaboration; Kawai, N.; Serino, M.; Negoro, H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.; Matsuoka, M.; MAXI Collaboration; Croft, S.; Feng, L.; Franzen, T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison Wide-field Array (MWA Collaboration); Smartt, S. J.; Chambers, K. C.; Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.; Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.; Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.; Willman, M.; Pan-STARRS Collaboration; Olivares E., F.; Campbell, H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson, J. P.; Botticella, M. T.; Chen, T.-W.; Della Valle, M.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen, J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra, A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.; PESSTO Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela, R.; Zaremba, M.; Żarnecki, A. F.; Pi of Sky Collaboration; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; SkyMapper Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana, S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien, P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri, G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; TAROT Collaboration; Zadko Collaboration; Algerian National Observatory Collaboration; C2PU Collaboration; Beroiz, M.; Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares, M.; Marshall, J. L.; DePoy, D. L.; Padilla, N.; Pereyra, N. A.; Benacquista, M.; TOROS Collaboration; Tanvir, N. R.; Wiersema, K.; Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.; Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon, R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; VISTA Collaboration
2016-07-01
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran
2018-01-01
The study of stellar-remnant black holes (BH) in dense stellar clusters is now in the spotlight, especially due to their intrinsic ability to form binary black holes (BBH) through dynamical encounters, which potentially coalesce via gravitational-wave (GW) radiation. In this work, which is a continuation from a recent study (Paper I), additional models of compact stellar clusters with initial masses ≲ 105 M⊙ and also those with small fractions of primordial binaries (≲ 10 per cent) are evolved for long term, applying the direct N-body approach, assuming state-of-the-art stellar-wind and remnant-formation prescriptions. That way, a substantially broader range of computed models than that in Paper I is achieved. As in Paper I, the general-relativistic BBH mergers continue to be mostly mediated by triples that are bound to the clusters rather than happen among the ejected BBHs. In fact, the number of such in situ BBH mergers, per cluster, tends to increase significantly with the introduction of a small population of primordial binaries. Despite the presence of massive primordial binaries, the merging BBHs, especially the in situ ones, are found to be exclusively dynamically assembled and hence would be spin-orbit misaligned. The BBHs typically traverse through both the LISA's and the LIGO's detection bands, being audible to both instruments. The 'dynamical heating' of the BHs keeps the electron-capture-supernova (ECS) neutron stars (NS) from effectively mass segregating and participating in exchange interactions; the dynamically active BHs would also exchange into any NS binary within ≲1 Gyr. Such young massive and open clusters have the potential to contribute to the dynamical BBH merger detection rate to a similar extent as their more massive globular-cluster counterparts.
Constraining the Statistics of Population III Binaries
NASA Technical Reports Server (NTRS)
Stacy, Athena; Bromm, Volker
2012-01-01
We perform a cosmological simulation in order to model the growth and evolution of Population III (Pop III) stellar systems in a range of host minihalo environments. A Pop III multiple system forms in each of the ten minihaloes, and the overall mass function is top-heavy compared to the currently observed initial mass function in the Milky Way. Using a sink particle to represent each growing protostar, we examine the binary characteristics of the multiple systems, resolving orbits on scales as small as 20 AU. We find a binary fraction of approx. 36, with semi-major axes as large as 3000 AU. The distribution of orbital periods is slightly peaked at approx. < 900 yr, while the distribution of mass ratios is relatively flat. Of all sink particles formed within the ten minihaloes, approx. 50 are lost to mergers with larger sinks, and 50 of the remaining sinks are ejected from their star-forming disks. The large binary fraction may have important implications for Pop III evolution and nucleosynthesis, as well as the final fate of the first stars.
ON THE RARITY OF X-RAY BINARIES WITH NAKED HELIUM DONORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linden, T.; Valsecchi, F.; Kalogera, V.
The paucity of known high-mass X-ray binaries (HMXBs) with naked He donor stars (hereafter He star) in the Galaxy has been noted over the years as a surprising fact, given the significant number of Galactic HMXBs containing H-rich donors, which are expected to be their progenitors. This contrast has further sharpened in light of recent observations uncovering a preponderance of HMXBs hosting loosely bound Be donors orbiting neutron stars (NSs), which would be expected to naturally evolve into He-HMXBs through dynamical mass transfer onto the NS and a common-envelope (CE) phase. Hence, reconciling the large population of Be-HMXBs with themore » observation of only one He-HMXB can help constrain the dynamics of CE physics. Here, we use detailed stellar structure and evolution models and show that binary mergers of HMXBs during CE events must be common in order to resolve the tension between these observed populations. We find that, quantitatively, this scenario remains consistent with the typically adopted energy parameterization of CE evolution, yielding expected populations which are not at odds with current observations. However, future observations which better constrain the underlying population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE ejection.« less
Binary Black Holes and Gravitational Waves
NASA Technical Reports Server (NTRS)
Centrella, Joan
2007-01-01
The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This discussion examines these gravitational patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. The focus is on recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by the space-based gravitational wave detector LISA.
Binary Black Holes, Numerical Relativity, and Gravitational Waves
NASA Technical Reports Server (NTRS)
Centrella, Joan
2007-01-01
The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA
Cosmic Messengers: Binary Black Holes and Gravitational Waves
NASA Technical Reports Server (NTRS)
Centrella, Joan
2007-01-01
The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein s equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. . This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will. be observed by LISA.
Mass transfer in white dwarf-neutron star binaries
NASA Astrophysics Data System (ADS)
Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.
2017-05-01
We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.
NASA Astrophysics Data System (ADS)
Belloni, Diogo; Schreiber, Matthias R.; Zorotovic, Mónica; Iłkiewicz, Krystian; Hurley, Jarrod R.; Giersz, Mirek; Lagos, Felipe
2018-06-01
The predicted and observed space density of cataclysmic variables (CVs) have been for a long time discrepant by at least an order of magnitude. The standard model of CV evolution predicts that the vast majority of CVs should be period bouncers, whose space density has been recently measured to be ρ ≲ 2 × 10-5 pc-3. We performed population synthesis of CVs using an updated version of the Binary Stellar Evolution (BSE) code for single and binary star evolution. We find that the recently suggested empirical prescription of consequential angular momentum loss (CAML) brings into agreement predicted and observed space densities of CVs and period bouncers. To progress with our understanding of CV evolution it is crucial to understand the physical mechanism behind empirical CAML. Our changes to the BSE code are also provided in details, which will allow the community to accurately model mass transfer in interacting binaries in which degenerate objects accrete from low-mass main-sequence donor stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Jonathan H.; Fairbairn, Malcolm, E-mail: jonathan.davis@kcl.ac.uk, E-mail: malcolm.fairbairn@kcl.ac.uk
We make projections for measuring the black hole birth rate from the diffuse supernova neutrino background (DSNB) by future neutrino experiments, and constrain the black hole merger fraction ε, when combined with information on the black hole merger rate from gravitational wave experiments such as LIGO. The DSNB originates from neutrinos emitted by all the supernovae in the Universe, and is expected to be made up of two components: neutrinos from neutron-star-forming supernovae, and a sub-dominant component at higher energies from black-hole-forming 'unnovae'. We perform a Markov Chain Monte Carlo analysis of simulated data of the DSNB in an experimentmore » similar to Hyper-Kamiokande, focusing on this second component. Since all knowledge of the neutrino emission from unnovae comes from simulations of collapsing stars, we choose two sets of priors: one where the unnovae are well-understood and one where their neutrino emission is poorly known. By combining the black hole birth rate from the DSNB with projected measurements of the black hole merger rate from LIGO, we show that the fraction of black holes which lead to binary mergers observed today ε could be constrained to be within the range 2 ⋅ 10{sup −4} ≤ ε ≤ 3 ⋅ 10{sup −2} at 3 σ confidence, after ten years of running an experiment like Hyper-Kamiokande.« less
Nova Scorpii and Coalescing Low-Mass Black Hole Binaries as LIGO Sources
NASA Astrophysics Data System (ADS)
Sipior, Michael S.; Sigurdsson, Steinn
2002-06-01
Double neutron star (NS-NS) binaries, analogous to the well-known Hulse-Taylor pulsar PSR 1913+16 (documented by Hulse & Taylor in 1974), are guaranteed-to-exist sources of high-frequency gravitational radiation detectable by LIGO. There is considerable uncertainty in the estimated rate of coalescence of such systems (see the work of Phinney in 1991, Narayan and coworkers in 1991, and Kalogera and coworkers in 2001), with conservative estimates of ~1 per 106 yr per galaxy, and optimistic theoretical estimates 1 or more mag larger. Formation rates of low-mass black hole (BH)-neutron star binaries may be higher than those of NS-NS binaries and may dominate the detectable LIGO signal rate. Rate estimates for such binaries are plagued by severe model uncertainties. Recent estimates by Portegies Zwart & Yungelson in 1998 and De Donder & Vanbeveren in 1998 suggest that BH-BH binaries do not coalesce at significant rates despite being formed at high rates. We estimate the enhanced coalescence rate for BH-BH binaries due to weak asymmetric kicks during the formation of low-mass black holes like Nova Sco (see the work of Brandt, Podsiadlowski, & Sigurdsson in 1995) and find they may contribute significantly to the LIGO signal rate, possibly dominating the phase I detectable signals if the range of black hole masses for which there is significant kick is broad enough. For a standard Salpeter initial mass function, assuming mild natal kicks, we project that the R6 merger rate (the rate of mergers per 106 yr in a Milky Way-like galaxy) of BH-BH systems is ~0.5, smaller than that of NS-NS systems. However, the higher chirp mass of these systems produces a signal nearly 4 times greater, on average, with a commensurate increase in search volume, hence, our claim that BH-BH mergers (and, to a lesser extent, BH-NS coalescence) should comprise a significant fraction of the signal seen by LIGO. The BH-BH coalescence channel considered here also predicts that a substantial fraction of BH-BH systems should have at least one component with near-maximal spin (a/M~1). This is from the spin-up provided by the fallback material after a supernova. If no mass transfer occurs between the two supernovae, both components could be spinning rapidly. The waveforms produced by the coalescence of such a system should produce a clear spin signature, so this hypothesis could be directly tested by LIGO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D.; Perego, A.; Arcones, A.
2015-11-01
We present a comprehensive nucleosynthesis study of the neutrino-driven wind in the aftermath of a binary neutron star merger. Our focus is the initial remnant phase when a massive central neutron star is present. Using tracers from a recent hydrodynamical simulation, we determine total masses and integrated abundances to characterize the composition of unbound matter. We find that the nucleosynthetic yields depend sensitively on both the life time of the massive neutron star and the polar angle. Matter in excess of up to 9 × 10{sup −3} M{sub ⊙} becomes unbound until ∼200 ms. Due to electron fractions of Y{submore » e} ≈ 0.2–0.4, mainly nuclei with mass numbers A < 130 are synthesized, complementing the yields from the earlier dynamic ejecta. Mixing scenarios with these two types of ejecta can explain the abundance pattern in r-process enriched metal-poor stars. Additionally, we calculate heating rates for the decay of the freshly produced radioactive isotopes. The resulting light curve peaks in the blue band after about 4 hr. Furthermore, high opacities due to heavy r-process nuclei in the dynamic ejecta lead to a second peak in the infrared after 3–4 days.« less
Tidal Disruption Events Prefer Unusual Host Galaxies
NASA Astrophysics Data System (ADS)
Arcavi, Iair; French, K. Decker; Zabludoff, Ann I.
2016-06-01
A star passing close to a supermassive black hole (SMBH) can be torn apart in a Tidal Disruption Events (TDE). TDEs that are accompanied by observable flares are now being discovered in transient surveys and are revealing the presence and the properties of otherwise-quiescent SMBHs. Recently, it was discovered that TDEs show a strong preference for rare post-starburst galaxies, (i.e. galaxies that have undergone intense star formation but are no longer forming stars today). We quantify this preference and find that TDEs are approximately 30-200 times more likely to occur in post-starburst hosts (compared to the general SDSS galaxy population), with the enhancement factor depending on the star formation history of the galaxy. This surprising host-galaxy preference connects the until-now disparate TDE subclasses of UV/optical-dominated TDEs and X-ray-dominated TDEs, and serves as the basis for TDE-targeted transient surveys. Post-starburst galaxies may be post-mergers, with binary SMBH systems that are still spiraling in. Such systems could enhance the TDE rate, but it is not yet clear if models can quantitatively reproduce the observed enhancement. Alternative explanations for enhanced TDE rate in post-starbursts include non-spherical post-merger central potentials and enhanced rates of giant stars.
Metzger, Brian D
2017-01-01
The mergers of double neutron star (NS-NS) and black hole (BH)-NS binaries are promising gravitational wave (GW) sources for Advanced LIGO and future GW detectors. The neutron-rich ejecta from such merger events undergoes rapid neutron capture ( r -process) nucleosynthesis, enriching our Galaxy with rare heavy elements like gold and platinum. The radioactive decay of these unstable nuclei also powers a rapidly evolving, supernova-like transient known as a "kilonova" (also known as "macronova"). Kilonovae are an approximately isotropic electromagnetic counterpart to the GW signal, which also provides a unique and direct probe of an important, if not dominant, r -process site. I review the history and physics of kilonovae, leading to the current paradigm of week-long emission with a spectral peak at near-infrared wavelengths. Using a simple light curve model to illustrate the basic physics, I introduce potentially important variations on this canonical picture, including: [Formula: see text]day-long optical ("blue") emission from lanthanide-free components of the ejecta; [Formula: see text]hour-long precursor UV/blue emission, powered by the decay of free neutrons in the outermost ejecta layers; and enhanced emission due to energy input from a long-lived central engine, such as an accreting BH or millisecond magnetar. I assess the prospects of kilonova detection following future GW detections of NS-NS/BH-NS mergers in light of the recent follow-up campaign of the LIGO binary BH-BH mergers.
NASA Astrophysics Data System (ADS)
Metzger, Brian D.
2017-05-01
The mergers of double neutron star (NS-NS) and black hole (BH)-NS binaries are promising gravitational wave (GW) sources for Advanced LIGO and future GW detectors. The neutron-rich ejecta from such merger events undergoes rapid neutron capture ( r-process) nucleosynthesis, enriching our Galaxy with rare heavy elements like gold and platinum. The radioactive decay of these unstable nuclei also powers a rapidly evolving, supernova-like transient known as a "kilonova" (also known as "macronova"). Kilonovae are an approximately isotropic electromagnetic counterpart to the GW signal, which also provides a unique and direct probe of an important, if not dominant, r-process site. I review the history and physics of kilonovae, leading to the current paradigm of week-long emission with a spectral peak at near-infrared wavelengths. Using a simple light curve model to illustrate the basic physics, I introduce potentially important variations on this canonical picture, including: ˜ day-long optical ("blue") emission from lanthanide-free components of the ejecta; ˜ hour-long precursor UV/blue emission, powered by the decay of free neutrons in the outermost ejecta layers; and enhanced emission due to energy input from a long-lived central engine, such as an accreting BH or millisecond magnetar. I assess the prospects of kilonova detection following future GW detections of NS-NS/BH-NS mergers in light of the recent follow-up campaign of the LIGO binary BH-BH mergers.
Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.
Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A
2015-07-31
The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramante, Joseph; Linden, Tim
Recent observations of Reticulum II have uncovered an overabundance of r -process elements compared to similar ultra-faint dwarf spheroidal galaxies (UFDs). Because the metallicity and star formation history of Reticulum II appear consistent with all known UFDs, the high r -process abundance of Reticulum II suggests enrichment through a single, rare event, such as a double neutron star (NS) merger. However, we note that this scenario is extremely unlikely, as binary stellar evolution models require significant supernova natal kicks to produce NS–NS or NS–black hole (BH) mergers, and these kicks would efficiently remove compact binary systems from the weak gravitationalmore » potentials of UFDs. We examine alternative mechanisms for the production of r -process elements in UFDs, including a novel mechanism wherein NSs in regions of high dark matter (DM) density implode after accumulating a BH-forming mass of DM. We find that r -process proto-material ejection by tidal forces, when a single NS implodes into a BH, can occur at a rate matching the r -process abundance of both Reticulum II and the Milky Way. Remarkably, DM models which collapse a single NS in observed UFDs also solve the missing pulsar problem in the Milky Way Galactic Center. We propose tests specific to DM r -process production which may uncover or rule out this model.« less
A magnetically driven origin for the low luminosity GRB 170817A associated with GW170817
NASA Astrophysics Data System (ADS)
Tong, Hao; Yu, Cong; Huang, Lei
2018-06-01
The gamma-ray burst GR170817A associated with GW170817 is subluminous and subenergetic compared with other typical short gamma-ray bursts. It may be due to a relativistic jet viewed off-axis, or a structured jet or cocoon emission. Giant flares from magnetars may possibly be ruled out. However, the luminosity and energetics of GRB 170817A are coincident with those of magnetar giant flares. After the coalescence of a binary neutron star, a hypermassive neutron star may be formed. The hypermassive neutron star may have a magnetar-strength magnetic field. During the collapse of this hypermassive neutron star, magnetic field energy will also be released. This giant-flare-like event may explain the luminosity and energetics of GRB 170817A. Bursts with similar luminosity and energetics are expected in future neutron star-neutron star or neutron star-black hole mergers.
Bright Merger-nova Emission Powered by Magnetic Wind from a Newborn Black Hole
NASA Astrophysics Data System (ADS)
Ma, Shuai-Bing; Lei, Wei-Hua; Gao, He; Xie, Wei; Chen, Wei; Zhang, Bing; Wang, Ding-Xiong
2018-01-01
Mergers of neutron star–neutron star (NS–NS) or neutron star–black hole (NS–BH) binaries are candidate sources of gravitational waves (GWs). At least a fraction of the merger remnants should be a stellar mass BH with sub-relativistic ejecta. A collimated jet is launched via the Blandford–Znajek mechanism from the central BH to trigger a short gamma-ray burst (sGRB). At the same time, a near-isotropic wind may be driven by the Blandford–Payne mechanism (BP). In previous work, additional energy injection to the ejecta from the BP mechanism was ignored, and radioactive decay has long been thought to be the main source of the kilonova energy. In this Letter, we propose that the wind driven by the BP mechanism from the newborn BH’s disk can heat up and push the ejecta during the prompt emission phase or even at late times when there is fall-back accretion. Such a BP-powered merger-nova could be bright in the optical band even for a low-luminosity sGRB. The detection of a GW merger event with a BH clearly identified as a remnant, accompanied by a bright merger-nova, would provide robust confirmation of our model.
NASA Astrophysics Data System (ADS)
MacLeod, Morgan Elowe
This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope. Typical accretion efficiencies are in the range of 1 percent the Hoyle-Lyttleton accretion rate. This implies that compact objects embedded in common envelopes do not grow significantly during this phase, increasing their mass by at most a few percent. This thesis models the properties of a recent stellar-merger powered transient to derive constraints on this long-uncertain phase of binary star evolution.
Optimal Search for an Astrophysical Gravitational-Wave Background
NASA Astrophysics Data System (ADS)
Smith, Rory; Thrane, Eric
2018-04-01
Roughly every 2-10 min, a pair of stellar-mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest contribute to a stochastic background. We derive the statistically optimal search strategy (producing minimum credible intervals) for a background of unresolved binaries. Our method applies Bayesian parameter estimation to all available data. Using Monte Carlo simulations, we demonstrate that the search is both "safe" and effective: it is not fooled by instrumental artifacts such as glitches and it recovers simulated stochastic signals without bias. Given realistic assumptions, we estimate that the search can detect the binary black hole background with about 1 day of design sensitivity data versus ≈40 months using the traditional cross-correlation search. This framework independently constrains the merger rate and black hole mass distribution, breaking a degeneracy present in the cross-correlation approach. The search provides a unified framework for population studies of compact binaries, which is cast in terms of hyperparameter estimation. We discuss a number of extensions and generalizations, including application to other sources (such as binary neutron stars and continuous-wave sources), simultaneous estimation of a continuous Gaussian background, and applications to pulsar timing.
Constraints on interquark interaction parameters with GW170817 in a binary strange star scenario
NASA Astrophysics Data System (ADS)
Zhou, En-Ping; Zhou, Xia; Li, Ang
2018-04-01
The LIGO/VIRGO detection of the gravitational waves from a binary merger system, GW170817, has put a clean and strong constraint on the tidal deformability of the merging objects. From this constraint, deep insights can be obtained in compact star equation of states, which has been one of the most puzzling problems for nuclear physicists and astrophysicists. Employing one of the most widely used quark star EOS models, we characterize the star properties by the strange quark mass (ms ), an effective bag constant (Beff), the perturbative QCD correction (a4), as well as the gap parameter (Δ ) when considering quark pairing, and investigate the dependences of the tidal deformablity on them. We find that the tidal deformability is dominated by Beff and insensitive to ms, a4. We discuss the correlation between the tidal deformability and the maximum mass (MTOV) of a static quark star, which allows the model possibility to rule out the existence of quark stars with future gravitational wave observations and mass measurements. The current tidal deformability measurement implies MTOV≤2.18 M⊙ (2.32 M⊙ when pairing is considered) for quark stars. Combining with two-solar-mass pulsar observations, we also make constraints on the poorly known gap parameter Δ for color-flavor-locked quark matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, S. R.; Vallisneri, M.; Ellis, J. A.
2016-03-01
Decade-long timing observations of arrays of millisecond pulsars have placed highly constraining upper limits on the amplitude of the nanohertz gravitational-wave stochastic signal from the mergers of supermassive black hole binaries (∼10{sup −15} strain at f = 1 yr{sup −1}). These limits suggest that binary merger rates have been overestimated, or that environmental influences from nuclear gas or stars accelerate orbital decay, reducing the gravitational-wave signal at the lowest, most sensitive frequencies. This prompts the question whether nanohertz gravitational waves (GWs) are likely to be detected in the near future. In this Letter, we answer this question quantitatively using simple statistical estimates,more » deriving the range of true signal amplitudes that are compatible with current upper limits, and computing expected detection probabilities as a function of observation time. We conclude that small arrays consisting of the pulsars with the least timing noise, which yield the tightest upper limits, have discouraging prospects of making a detection in the next two decades. By contrast, we find large arrays are crucial to detection because the quadrupolar spatial correlations induced by GWs can be well sampled by many pulsar pairs. Indeed, timing programs that monitor a large and expanding set of pulsars have an ∼80% probability of detecting GWs within the next 10 years, under assumptions on merger rates and environmental influences ranging from optimistic to conservative. Even in the extreme case where 90% of binaries stall before merger and environmental coupling effects diminish low-frequency gravitational-wave power, detection is delayed by at most a few years.« less
NASA Astrophysics Data System (ADS)
Margutti, R.; Alexander, K. D.; Xie, X.; Sironi, L.; Metzger, B. D.; Kathirgamaraju, A.; Fong, W.; Blanchard, P. K.; Berger, E.; MacFadyen, A.; Giannios, D.; Guidorzi, C.; Hajela, A.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.; Zrake, J.
2018-03-01
We report deep Chandra X-ray Observatory (CXO), Hubble Space Telescope (HST), and Karl J. Jansky Very Large Array (VLA) observations of the binary neutron star event GW170817 at t < 160 days after merger. These observations show that GW170817 has been steadily brightening with time and might have now reached its peak, and constrain the emission process as non-thermal synchrotron emission where the cooling frequency ν c is above the X-ray band and the synchrotron frequency ν m is below the radio band. The very simple power-law spectrum extending for eight orders of magnitude in frequency enables the most precise measurement of the index p of the distribution of non-thermal relativistic electrons N(γ )\\propto {γ }-p accelerated by a shock launched by a neutron star (NS)–NS merger to date. We find p = 2.17 ± 0.01, which indicates that radiation from ejecta with Γ ∼ 3–10 dominates the observed emission. While constraining the nature of the emission process, these observations do not constrain the nature of the relativistic ejecta. We employ simulations of explosive outflows launched in NS ejecta clouds to show that the spectral and temporal evolution of the non-thermal emission from GW170817 is consistent with both emission from radially stratified quasi-spherical ejecta traveling at mildly relativistic speeds, and emission from off-axis collimated ejecta characterized by a narrow cone of ultra-relativistic material with slower wings extending to larger angles. In the latter scenario, GW170817 harbored a normal short gamma-ray burst (SGRB) directed away from our line of sight. Observations at t ≤ 200 days are unlikely to settle the debate, as in both scenarios the observed emission is effectively dominated by radiation from mildly relativistic material.
The cosmic merger rate of stellar black hole binaries from the Illustris simulation
NASA Astrophysics Data System (ADS)
Mapelli, Michela; Giacobbo, Nicola; Ripamonti, Emanuele; Spera, Mario
2017-12-01
The cosmic merger rate density of black hole binaries (BHBs) can give us an essential clue to constraining the formation channels of BHBs, in light of current and forthcoming gravitational wave detections. Following a Monte Carlo approach, we couple new population-synthesis models of BHBs with the Illustris cosmological simulation, to study the cosmic history of BHB mergers. We explore six population-synthesis models, varying the prescriptions for supernovae, common envelope and natal kicks. In most considered models, the cosmic BHB merger rate follows the same trend as the cosmic star formation rate. The normalization of the cosmic BHB merger rate strongly depends on the treatment of common envelope and on the distribution of natal kicks. We find that most BHBs merging within LIGO's instrumental horizon come from relatively metal-poor progenitors (<0.2 Z⊙). The total masses of merging BHBs span a large range of values, from ∼6 to ∼82 M⊙. In our fiducial model, merging BHBs consistent with GW150914, GW151226 and GW170104 represent ∼6, 3 and 12 per cent of all BHBs merging within the LIGO horizon, respectively. The heavy systems, like GW150914, come from metal-poor progenitors (<0.15 Z⊙). Most GW150914-like systems merging in the local Universe appear to have formed at high redshift, with a long delay time. In contrast, GW151226-like systems form and merge all the way through the cosmic history, from progenitors with a broad range of metallicities. Future detections will be crucial to put constraints on common envelope, on natal kicks, and on the BHB mass function.
NASA Astrophysics Data System (ADS)
Kim, S.; Schulze, S.; Resmi, L.; González-López, J.; Higgins, A. B.; Ishwara-Chandra, C. H.; Bauer, F. E.; de Gregorio-Monsalvo, I.; De Pasquale, M.; de Ugarte Postigo, A.; Kann, D. A.; Martín, S.; Oates, S. R.; Starling, R. L. C.; Tanvir, N. R.; Buchner, J.; Campana, S.; Cano, Z.; Covino, S.; Fruchter, A. S.; Fynbo, J. P. U.; Hartmann, D. H.; Hjorth, J.; Jakobsson, P.; Levan, A. J.; Malesani, D.; Michałowski, M. J.; Milvang-Jensen, B.; Misra, K.; O’Brien, P. T.; Sánchez-Ramírez, R.; Thöne, C. C.; Watson, D. J.; Wiersema, K.
2017-12-01
Binary neutron-star mergers (BNSMs) are among the most readily detectable gravitational-wave (GW) sources with the Laser Interferometer Gravitational-wave Observatory (LIGO). They are also thought to produce short γ-ray bursts (SGRBs) and kilonovae that are powered by r-process nuclei. Detecting these phenomena simultaneously would provide an unprecedented view of the physics during and after the merger of two compact objects. Such a Rosetta Stone event was detected by LIGO/Virgo on 2017 August 17 at a distance of ∼44 Mpc. We monitored the position of the BNSM with Atacama Large Millimeter/submillimeter Array (ALMA) at 338.5 GHz and the Giant Metrewave Radio Telescope (GMRT) at 1.4 GHz, from 1.4 to 44 days after the merger. Our observations rule out any afterglow more luminous than 3× {10}26 {erg} {{{s}}}-1 {{Hz}}-1 in these bands, probing >2–4 dex fainter than previous SGRB limits. We match these limits, in conjunction with public data announcing the appearance of X-ray and radio emission in the weeks after the GW event, to templates of off-axis afterglows. Our broadband modeling suggests that GW170817 was accompanied by an SGRB and that the γ-ray burst (GRB) jet, powered by {E}{AG,{iso}}∼ {10}50 erg, had a half-opening angle of ∼ 20^\\circ , and was misaligned by ∼ 41^\\circ from our line of sight. The data are also consistent with a more collimated jet: {E}{AG,{iso}}∼ {10}51 erg, {θ }1/2,{jet}∼ 5^\\circ ,{θ }{obs}∼ 17^\\circ . This is the most conclusive detection of an off-axis GRB afterglow and the first associated with a BNSM-GW event to date. We use the viewing angle estimates to infer the initial bulk Lorentz factor and true energy release of the burst.
Characterizing Black Hole Mergers
NASA Technical Reports Server (NTRS)
Baker, John; Boggs, William Darian; Kelly, Bernard
2010-01-01
Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.
NASA Astrophysics Data System (ADS)
Tanikawa, Ataru; Nakasato, Naohito; Sato, Yushi; Nomoto, Ken'ichi; Maeda, Keiichi; Hachisu, Izumi
2015-07-01
We perform smoothed particle hydrodynamics simulations for merging binary carbon-oxygen (CO) WDs with masses of 1.1 and 1.0 {M}⊙ , until the merger remnant reaches a dynamically steady state. Using these results, we assess whether the binary could induce a thermonuclear explosion, and whether the explosion could be observed as a type Ia supernova (SN Ia). We investigate three explosion mechanisms: a helium-ignition following the dynamical merger (“helium-ignited violent merger model”), a carbon-ignition (“carbon-ignited violent merger model”), and an explosion following the formation of the Chandrasekhar mass WD (“Chandrasekhar mass model”). An explosion of the helium-ignited violent merger model is possible, while we predict that the resulting SN ejecta are highly asymmetric since its companion star is fully intact at the time of the explosion. The carbon-ignited violent merger model can also lead to an explosion. However, the envelope of the exploding WD spreads out to ˜ 0.1 {R}⊙ ; it is much larger than that inferred for SN 2011fe (\\lt 0.1 {R}⊙ ) while much smaller than that for SN 2014J (˜ 1 {R}⊙ ). For the particular combination of the WD masses studied in this work, the Chandrasekhar mass model does not successfully lead to an SN Ia explosion. Besides these assessments, we investigate the evolution of unbound materials ejected through the merging process (“merger ejecta”), assuming a case where the SN Ia explosion is not triggered by the helium- or carbon-ignition during the merger. The merger ejecta interact with the surrounding interstellar medium and form a shell. The shell has a bolometric luminosity of more than 2× {10}35 {erg} {{{s}}}-1, lasting for ˜ 2× {10}4 years. If this is the case, the Milky Way should harbor about 10 such shells at any given time. The detection of the shell(s) can therefore rule out the helium-ignited and carbon-ignited violent merger models as major paths to SN Ia explosions.
The spatial extent and distribution of star formation in 3D-HST mergers at z ˜ 1.5
NASA Astrophysics Data System (ADS)
Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; van Dokkum, Pieter; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; Lundgren, Britt; Maseda, Michael V.; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van der Wel, Arjen; Whitaker, Katherine E.
2013-06-01
We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z > 1. Our sample, drawn from the 3D-HST survey, is flux limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems, with total stellar masses and star formation rates derived from multiwavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce Hα or [O III] emission line maps as proxies for star formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58 per cent) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass or star formation rate are found. A restricted set of hydrodynamical merger simulations between similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z ˜ 1.5 mergers typically occur between galaxies whose gas fractions, masses and/or star formation rates are distinctly different from one another.
The Spatial Extent and Distribution of Star Formation in 3D-HST Mergers at z is approximately 1.5
NASA Technical Reports Server (NTRS)
Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; Van Dokkum, Pieter; Foerster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik;
2013-01-01
We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z greater than 1. Our sample, drawn from the 3D-HST survey, is flux-limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems,with total stellar masses and star formation rates derived from multi-wavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce H or [OIII] emission line maps as proxies for star-formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58%) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass, or star formation rate are found. A restricted set of hydrodynamical merger simulationsbetween similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z is approximately 1.5 mergers typically occur between galaxies whose gas fractions, masses, andor star formation rates are distinctly different from one another.
Localization and broadband follow-up of the gravitational-wave transient GW150914
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, B. P.
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize themore » follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Furthermore, detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.« less
Localization and broadband follow-up of the gravitational-wave transient GW150914
Abbott, B. P.
2016-07-20
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize themore » follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Furthermore, detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.« less
NASA Astrophysics Data System (ADS)
Huerta, E. A.; Moore, C. J.; Kumar, Prayush; George, Daniel; Chua, Alvin J. K.; Haas, Roland; Wessel, Erik; Johnson, Daniel; Glennon, Derek; Rebei, Adam; Holgado, A. Miguel; Gair, Jonathan R.; Pfeiffer, Harald P.
2018-01-01
We present ENIGMA, a time domain, inspiral-merger-ringdown waveform model that describes nonspinning binary black holes systems that evolve on moderately eccentric orbits. The inspiral evolution is described using a consistent combination of post-Newtonian theory, self-force and black hole perturbation theory. Assuming eccentric binaries that circularize prior to coalescence, we smoothly match the eccentric inspiral with a stand-alone, quasicircular merger, which is constructed using machine learning algorithms that are trained with quasicircular numerical relativity waveforms. We show that ENIGMA reproduces with excellent accuracy the dynamics of quasicircular compact binaries. We validate ENIGMA using a set of Einstein Toolkit eccentric numerical relativity waveforms, which describe eccentric binary black hole mergers with mass-ratios between 1 ≤q ≤5.5 , and eccentricities e0≲0.2 ten orbits before merger. We use this model to explore in detail the physics that can be extracted with moderately eccentric, nonspinning binary black hole mergers. In particular, we use ENIGMA to show that the gravitational wave transients GW150914, GW151226, GW170104, GW170814 and GW170608 can be effectively recovered with spinning, quasicircular templates if the eccentricity of these events at a gravitational wave frequency of 10 Hz satisfies e0≤{0.175 ,0.125 ,0.175 ,0.175 ,0.125 }, respectively. We show that if these systems have eccentricities e0˜0.1 at a gravitational wave frequency of 10 Hz, they can be misclassified as quasicircular binaries due to parameter space degeneracies between eccentricity and spin corrections. Using our catalog of eccentric numerical relativity simulations, we discuss the importance of including higher-order waveform multipoles in gravitational wave searches of eccentric binary black hole mergers.
Contact Binaries on Their Way Towards Merging
NASA Astrophysics Data System (ADS)
Gazeas, K.
2015-07-01
Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.
IC 4663: The First Unambiguous [WN] Wolf-Rayet Central Star of a Planetary Nebula
NASA Astrophysics Data System (ADS)
Miszalski, B.; Crowther, P. A.; De Marco, O.; Köppen, J.; Moffat, A. F. J.; Acker, A.; Hillwig, T. C.
2013-01-01
Several [WC]-type central stars of planetary nebulae (PNe) are known to mimic the spectroscopic appearance of massive carbon-rich or WC-type Wolf-Rayet stars. In stark contrast, no [WN]-type central stars have yet been identified as clear-cut analogues of the common nitrogen-rich or WN-type Wolf-Rayet stars. We have identified the [WN3] central star of IC 4663 to be the first unambiguous example in PNe. The low luminosity nucleus and an asymptotic giant branch (AGB) halo surrounding the main nebula prove the bona-fide PN nature of IC 4663. Model atmosphere analysis reveals the [WN3] star to have an exotic chemical composition of helium (95%), hydrogen (<2%), nitrogen (0.8%), neon (0.2%) and oxygen (0.05%) by mass. Such an extreme helium-dominated composition cannot be predicted by current evolutionary scenarios for hydrogen deficient [WC]-type central stars. Only with the discovery of IC 4663 and its unusual composition can we now connect [WN] central stars to the O(He) central stars in a second H-deficient and He-rich evolutionary sequence, [WN]→O(He), that exists in parallel to the carbon-rich [WC]→PG1159 sequence. This suggests a simpler mechanism, perhaps a binary merger, can better explain H-deficiency in PNe and potentially other H-deficient/He-rich stars. In this respect IC 4663 is the best supported case for a possible merged binary central star of a PN.
NASA Astrophysics Data System (ADS)
Medling, Anne M.
2013-03-01
Gas-rich galaxies across cosmic time exhibit one or both of two phenomena: ongoing star formation and an active galactic nucleus indicating current black hole accretion. These two processes are important mechanisms through which galaxies evolve and grow, but their effects are difficult to disentangle. Both will use up some available gas, and both are capable of producing winds strong enough to eject remaining gas from the galaxy. One must look at high spatial resolutions in order to separate the dynamical effects of star formation going on near the nucleus of a galaxy from the black hole growth going on in the nucleus. We present high spatial resolution integral field spectroscopy of fifteen nearby luminous and ultra-luminous infrared galaxies. These systems are extremely bright in the infrared exactly because they host powerful starbursts and active nuclei, which in turn heat the surrounding dust. Our data provide resolved stellar and gaseous kinematics of the central kiloparsec of each of these systems by removing atmospheric blurring with adaptive optics, an observing technique that measures the turbulence in the Earth's atmosphere and then uses a deformable mirror to correct the resulting distortions. Our kinematic maps reveal nuclear disks of gas and stars with radii ˜ a few hundred parsecs surrounding the central black holes. Because the stellar and gas kinematics match well, we conclude that the stars are forming in situ from the gas in the disks. These disks may be the progenitors of kinematically decoupled cores seen in many isolated elliptical galaxies, and may have a significant effect on the merger rate of binary black holes. Additionally, these disks may be used to measure black hole masses which, when combined with host galaxy properties and placed on scaling relations, indicate that black holes grow as or more quickly than their host galaxies during a merger. This suggests that a sudden burst of black hole growth at in the final stages of the merger is not likely to be responsible for shutting off star formation in these systems, unless a time delay is also present.
The dynamic ejecta of compact object mergers and eccentric collisions.
Rosswog, Stephan
2013-06-13
Compact object mergers eject neutron-rich matter in a number of ways: by the dynamical ejection mediated by gravitational torques, as neutrino-driven winds, and probably also a good fraction of the resulting accretion disc finally becomes unbound by a combination of viscous and nuclear processes. If compact binary mergers indeed produce gamma-ray bursts, there should also be an interaction region where an ultra-relativistic outflow interacts with the neutrino-driven wind and produces moderately relativistic ejecta. Each type of ejecta has different physical properties, and therefore plays a different role for nucleosynthesis and for the electromagnetic (EM) transients that go along with compact object encounters. Here, we focus on the dynamic ejecta and present results for over 30 hydrodynamical simulations of both gravitational wave-driven mergers and parabolic encounters as they may occur in globular clusters. We find that mergers eject approximately 1 per cent of a Solar mass of extremely neutron-rich material. The exact amount, as well as the ejection velocity, depends on the involved masses with asymmetric systems ejecting more material at higher velocities. This material undergoes a robust r-process and both ejecta amount and abundance pattern are consistent with neutron star mergers being a major source of the 'heavy' (A>130) r-process isotopes. Parabolic collisions, especially those between neutron stars and black holes, eject substantially larger amounts of mass, and therefore cannot occur frequently without overproducing gala- ctic r-process matter. We also discuss the EM transients that are powered by radioactive decays within the ejecta ('macronovae'), and the radio flares that emerge when the ejecta dissipate their large kinetic energies in the ambient medium.
Multimessenger Observations of Neutron Star Mergers: Probing the Physics of High-Density Matter
NASA Astrophysics Data System (ADS)
Radice, David
2016-09-01
Neutron star mergers are Nature's ultimate hadron colliders. They are extremely violent events resulting in gravitational-waves and electromagnetic emissions that could be detected at distances of several hundred mega-parsecs. Imprinted in these signals are important clues on the properties of high-density matter, waiting to be harnessed by us. In this talk, I will review our current knowledge of neutron star mergers from the theoretical side. I will discuss the prospects of measuring neutron star radii and masses using gravitational-wave observations of the late-inspiral of merging neutron stars. Then, I will show how multimessenger observations of the merger and post-merger evolution of merging neutron stars could be used to place further constrains on the nuclear equation of state at very high densities. Finally, I will discuss the possible role of neutron star mergers in the creation of the r-process nuclei in the Universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radice, David; Bernuzzi, Sebastiano; Pozzo, Walter Del
We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in themore » GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.« less
How I Learned to Stop Worrying and Love Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Moe, Maxwell Cassady
Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby producing sinusoidal variations in perceived brightness as they orbit. These nascent eclipsing binaries are embedded in the hearts of star-forming emission nebulae, and therefore provide a unique snapshot into the formation and evolution of massive binaries and stellar nurseries. We next examine a large sample of B-type eclipsing binaries with intermediate orbital periods. To achieve such a task, we develop an automated pipeline to classify the eclipsing binaries, measure their physical properties from the observed light curves, and recover the intrinsic binary statistics by correcting for selection effects. We find the population of massive binaries at intermediate separations differ from those orbiting in close proximity. Close massive binaries favor small eccentricities and have correlated component masses, demonstrating they coevolved via competitive accretion during their formation in the circumbinary disk. Meanwhile, B-type binaries at slightly wider separations are born with large eccentricities and are weighted toward extreme mass ratios, indicating the components formed relatively independently and subsequently evolved to their current configurations via dynamical interactions. By using eclipsing binaries as accurate age indicators, we also reveal that the binary orbital eccentricities and the line-of-sight dust extinctions are anticorrelated with respect to time. These empirical relations provide robust constraints for tidal evolution in massive binaries and the evolution of the dust content in their surrounding environments. Finally, we compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, lucky imaging, high-contrast photometry, and common proper motion. We combine the samples from the various surveys and correct for their respective selection effects to determine a comprehensive nature of the intrinsic binary statistics of massive stars. We find the probability distributions of primary mass, secondary mass, orbital period, and orbital eccentricity are all interrelated. These updated multiplicity statistics imply a greater frequency of low-mass X-ray binaries, millisecond pulsars, and Type Ia supernovae than previously predicted.
Single and simultaneous binary mergers in Wright-Fisher genealogies.
Melfi, Andrew; Viswanath, Divakar
2018-05-01
The Kingman coalescent is a commonly used model in genetics, which is often justified with reference to the Wright-Fisher (WF) model. Current proofs of convergence of WF and other models to the Kingman coalescent assume a constant sample size. However, sample sizes have become quite large in human genetics. Therefore, we develop a convergence theory that allows the sample size to increase with population size. If the haploid population size is N and the sample size is N 1∕3-ϵ , ϵ>0, we prove that Wright-Fisher genealogies involve at most a single binary merger in each generation with probability converging to 1 in the limit of large N. Single binary merger or no merger in each generation of the genealogy implies that the Kingman partition distribution is obtained exactly. If the sample size is N 1∕2-ϵ , Wright-Fisher genealogies may involve simultaneous binary mergers in a single generation but do not involve triple mergers in the large N limit. The asymptotic theory is verified using numerical calculations. Variable population sizes are handled algorithmically. It is found that even distant bottlenecks can increase the probability of triple mergers as well as simultaneous binary mergers in WF genealogies. Copyright © 2018 Elsevier Inc. All rights reserved.
Collapse of magnetized hypermassive neutron stars in general relativity.
Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Shibata, Masaru; Stephens, Branson C
2006-01-27
Hypermassive neutron stars (HMNSs)--equilibrium configurations supported against collapse by rapid differential rotation--are possible transient remnants of binary neutron-star mergers. Using newly developed codes for magnetohydrodynamic simulations in dynamical spacetimes, we are able to track the evolution of a magnetized HMNS in full general relativity for the first time. We find that secular angular momentum transport due to magnetic braking and the magnetorotational instability results in the collapse of an HMNS to a rotating black hole, accompanied by a gravitational wave burst. The nascent black hole is surrounded by a hot, massive torus undergoing quasistationary accretion and a collimated magnetic field. This scenario suggests that HMNS collapse is a possible candidate for the central engine of short gamma-ray bursts.
The Interplay of Star formation and Accretion in the Local Universe
NASA Astrophysics Data System (ADS)
Green, Paul
2010-09-01
Galaxy evolution and supermassive black hole growth are closely linked, but the inter-relationships between active accretion and star formation, AGN outflows, and host morphological trends remain poorly understood. We propose to study an unprecedented sample of 615 low redshift SDSS galaxies and AGN detected in archival Chandra fields. We will measure diverse optical and X-ray spectroscopic properties spanning the artificial galaxy/AGN divide, and provide detailed results of our model fitting. We highlight tests of (1) an evolutionary sequence from star-forming through AGN to passive galaxy modes (2) narrow line Sy1 galaxies and new parallels between the accretion modes of AGN and stellar mass X-ray binaries and (3) the relationship of host morphology and mergers to accretion.
NASA Astrophysics Data System (ADS)
Hossein Nouri, Fatemeh; Duez, Matthew D.; Foucart, Francois; Deaton, M. Brett; Haas, Roland; Haddadi, Milad; Kidder, Lawrence E.; Ott, Christian D.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela
2018-04-01
Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the postmerger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically driven heating processes, so realistic models must include both effects. In this paper, we study the postmerger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial postmerger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20 ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged.
NASA Astrophysics Data System (ADS)
Hansen, C. J.; Jofré, P.; Koch, A.; McWilliam, A.; Sneden, C. S.
2017-02-01
Blue metal-poor (BMP) stars are main sequence stars that appear bluer and more luminous than normal turnoff stars. They were originally singled out by using B-V and U-B colour cuts.Early studies found that a larger fraction of field BMP stars were binaries compared to normal halo stars. Thus, BMP stars are ideal field blue straggler candidates for investigating internal stellar evolution processes and binary interaction. In particular, the presence or depletion in lithium in their spectra is a powerful indicator of their origin. They are either old, halo blue stragglers experiencing internal mixing processes or mass transfer (Li-depletion), or intermediate-age, single stars of possibly extragalactic origin (2.2 dex halo plateau Li). However, we note that internal mixing processes can lead to an increased level of Li. Hence, this study combines photometry and spectroscopy to unveil the origin of various BMP stars. We first show how to separate binaries from young blue stars using photometry, metallicity and lithium. Using a sample of 80 BMP stars (T > 6300 K), we find that 97% of the BMP binaries have V-Ks0 < 1.08 ± 0.03, while BMP stars that are not binaries lie above this cut in two thirds of the cases. This cut can help classify stars that lack radial velocities from follow-up observations. We then trace the origin of two BMP stars from the photometric sample by conducting a full chemical analysis using new high-resolution and high signal-to-noise spectra. Based on their radial velocities, Li, α and s- and r-process abundances we show that BPS CS22874-042 is a single star (A(Li) = 2.38 ± 0.10 dex) while with A(Li)= 2.23 ± 0.07 dex CD-48 2445 is a binary, contrary to earlier findings. Our analysis emphasises that field blue stragglers can be segregated from single metal-poor stars, using (V-Ks) colours with a fraction of single stars polluting the binary sample, but not vice versa. These two groups can only be properly separated by using information from stellar spectra, illustrating the need for accurate and precise stellar parameters and high-resolution, high-S/N spectra in order to fully understand and classify this intriguing class of stars. Our high-resolution spectrum analysis confirms the findings from the colour cuts and shows that CS 22874-042 is single, while CD -48 2445 is most likely a binary. Moreover, the stellar abundances show that both stars formed in situ; CS 22874-042 carries traces of massive star enrichment and CD -48 2445 shows indications of AGB mass transfer mixed with gases ejected possibly from neutron star mergers. Based on UVES archive data 077.B-0507 and 090.B-0605. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Full Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A54
Numerical Relativity Simulations of Compact Binary Populations in Dense Stellar Environments
NASA Astrophysics Data System (ADS)
Glennon, Derek Ray; Huerta, Eliu; Allen, Gabrielle; Haas, Roland; Seidel, Edward; NCSA Gravity Group
2018-01-01
We present a catalog of numerical relativity simulations that describe binary black hole mergers on eccentric orbits. These simulations have been obtained with the open source, Einstein Toolkit numerical relativity software, using the Blue Waters supercomputer. We use this catalog to quantify observables, such as the mass and spin of black holes formed by binary black hole mergers, as a function of eccentricity. This study is the first of its kind in the literature to quantify these astrophysical observables for binary black hole mergers with mass-ratios q<6, and eccentricities e<0.2. This study is an important step in understanding the properties of eccentric binary black hole mergers, and informs the use of gravitational wave observations to confirm or rule out the existence of compact binary populations in dense stellar environments.
Fermi GBM Observations During the Second Observing Run of LIGO/Virgo
NASA Astrophysics Data System (ADS)
Goldstein, Adam; Fermi-GBM
2018-01-01
The Fermi Gamma-ray Burst Monitor (GBM) is a prolific detector of gamma-ray bursts (GRBs) and detects more short duration GRBs than any other instrument currently in operation. Short GRBs are thought to be associated with the mergers of binary neutron star systems (or neutron star-black hole systems), and are therefore considered likely counterparts to gravitational-wave detections from LIGO/Virgo. We report on the GBM observations during the second observing run of LIGO/Virgo and detail the physical and astrophysical insights that might be gleaned from a joint detection of a short GRB and a gravitational-wave source.
NASA Astrophysics Data System (ADS)
Cheng, Quan; Zhang, Shuang-Nan; Zheng, Xiao-Ping
2017-04-01
Newly born massive magnetars are generally considered to be produced by binary neutron star (NS) mergers, which could give rise to short gamma-ray bursts (SGRBs). The strong magnetic fields and fast rotation of these magnetars make them promising sources for gravitational wave (GW) detection using ground based GW interferometers. Based on the observed masses of Galactic NS-NS binaries, by assuming different equations of state (EOSs) of dense matter, we investigate the stochastic gravitational wave background (SGWB) produced by an ensemble of newly born massive magnetars. The massive magnetar formation rate is estimated through: (i) the SGRB formation rate (hereafter entitled as MFR1); (ii) the NS-NS merger rate (hereafter entitled as MFR2). We find that for massive magnetars with masses M
NASA Astrophysics Data System (ADS)
Arca-Sedda, Manuel; Gualandris, Alessia
2018-07-01
We model the inspiral of globular clusters (GCs) towards a galactic nucleus harbouring a supermassive black hole (SMBH), a leading scenario for the formation of nuclear star clusters. We consider the case of GCs containing either an intermediate-mass black hole (IMBH) or a population of stellar-mass black holes (BHs), and study the formation of gravitational wave (GW) sources. We perform direct summation N-body simulations of the infall of GCs with different orbital eccentricities in the live background of a galaxy with either a shallow or steep density profile. We find that the GC acts as an efficient carrier for the IMBH, facilitating the formation of a bound pair. The hardening and evolution of the binary depends sensitively on the galaxy's density profile. If the host galaxy has a shallow profile, the hardening is too slow to allow for coalescence within a Hubble time, unless the initial cluster orbit is highly eccentric. If the galaxy hosts a nuclear star cluster, the hardening leads to coalescence by emission of GWs within 3-4 Gyr. In this case, we find an IMBH-SMBH merger rate of ΓIMBH-SMBH = 2.8 × 10-3 yr-1 Gpc3. If the GC hosts a population of stellar BHs, these are deposited close enough to the SMBH to form extreme mass ratio inspirals with a merger rate of ΓEMRI = 0.25 yr-1 Gpc3. Finally, the SMBH tidal field can boost the coalescence of stellar black hole binaries delivered from the infalling GCs. The merger rate for this merging channel is ΓBHB = 0.4-4 yr-1 Gpc3.
An Empirical Limit on the Kilonova Rate from the DLT40 One Day Cadence Supernova Survey
NASA Astrophysics Data System (ADS)
Yang, Sheng; Valenti, Stefano; Cappellaro, Enrico; Sand, David J.; Tartaglia, Leonardo; Corsi, Alessandra; Reichart, Daniel E.; Haislip, Joshua; Kouprianov, Vladimir
2017-12-01
Binary neutron star mergers are important in understanding stellar evolution, the chemical enrichment of the universe via the r-process, the physics of short gamma-ray bursts, gravitational waves, and pulsars. The rates at which these coalescences happen is uncertain, but it can be constrained in different ways. One of those is to search for the optical transients produced at the moment of the merging, called a kilonova, in ongoing supernova (SN) searches. However, until now, only theoretical models for a kilonova light curve were available to estimate their rates. The recent kilonova discovery of AT 2017gfo/DLT17ck gives us the opportunity to constrain the rate of kilonovae using the light curve of a real event. We constrain the rate of binary neutron star mergers using the DLT40 Supernova search and the native AT 2017gfo/DLT17ck light curve obtained with the same telescope and software system. Excluding AT 2017gfo/DLT17ck due to visibility issues, which was only discovered thanks to the aLIGO/aVirgo trigger, no other similar transients were detected during the 13 months of daily cadence observations of ∼2200 nearby (<40 Mpc) galaxies. We find that the rate of BNS mergers is lower than 0.47–0.55 kilonovae per 100 years per 1010 {L}{Bȯ } (depending on the adopted extinction distribution). In volume, this translates to < 0.99× {10}-4{}-0.15+0.19, {{Mpc}}-3 {{yr}}-1 (SNe Ia–like extinction distribution), consistent with previous BNS coalescence rates. Based on our rate limit, and the sensitivity of aLIGO/aVirgo during O2, it is very unlikely that kilonova events are lurking in old pointed galaxy SN search data sets.
Poynting-Flux-Driven Bubbles and Shocks Around Merging Neutron Star Binaries
NASA Astrophysics Data System (ADS)
Medvedev, M. V.; Loeb, A.
2013-04-01
Merging binaries of compact relativistic objects are thought to be progenitors of short gamma-ray bursts. Because of the strong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux. The steady injection of energy by the binary forms a bubble filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it, demonstrate that it exhibits finite time singularity and find the corresponding analytical solution. We predict that such binaries can be observed as radio sources a few hours before and after the merger.
Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.
Bartos, I; Haiman, Z; Marka, Z; Metzger, B D; Stone, N C; Marka, S
2017-10-10
The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.
RAPIDLY ROTATING, X-RAY BRIGHT STARS IN THE KEPLER FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, Steve B.; Mason, Elena; Boyd, Patricia
We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type F-K, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, which are evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a processmore » believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.« less
Rapidly Rotating, X-Ray Bright Stars in the Kepler Field
NASA Technical Reports Server (NTRS)
Howell, Steve B.; Mason, Elena; Boyd, Patricia; Smith, Krista Lynne; Gelino, Dawn M.
2016-01-01
We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type F-K, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, which are evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a process believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.
Exploring the cosmic evolution of habitability with galaxy merger trees
NASA Astrophysics Data System (ADS)
Stanway, E. R.; Hoskin, M. J.; Lane, M. A.; Brown, G. C.; Childs, H. J. T.; Greis, S. M. L.; Levan, A. J.
2018-04-01
We combine inferred galaxy properties from a semi-analytic galaxy evolution model incorporating dark matter halo merger trees with new estimates of supernova and gamma-ray burst rates as a function of metallicity from stellar population synthesis models incorporating binary interactions. We use these to explore the stellar-mass fraction of galaxies irradiated by energetic astrophysical transients and its evolution over cosmic time, and thus the fraction which is potentially habitable by life like our own. We find that 18 per cent of the stellar mass in the Universe is likely to have been irradiated within the last 260 Myr, with GRBs dominating that fraction. We do not see a strong dependence of irradiated stellar-mass fraction on stellar mass or richness of the galaxy environment. We consider a representative merger tree as a Local Group analogue, and find that there are galaxies at all masses which have retained a high habitable fraction (>40 per cent) over the last 6 Gyr, but also that there are galaxies at all masses where the merger history and associated star formation have rendered galaxies effectively uninhabitable. This illustrates the need to consider detailed merger trees when evaluating the cosmic evolution of habitability.
Making and Testing Hybrid Gravitational Waves from Colliding Black Holes and Neutron Stars
NASA Astrophysics Data System (ADS)
Garcia, Alyssa; Lovelace, Geoffrey; SXS Collaboration
2016-03-01
The Laser Interferometer Gravitational-wave Observatory (LIGO) is a detector that is currently working to observe gravitational waves (GW) from astronomical sources, such as colliding black holes and neutron stars, which are among LIGO's most promising sources. Observing as many waves as possible requires accurate predictions of what the waves look like, which are only possible with numerical simulations. In this poster, I will present results from new simulations of colliding black holes made using the Spectral Einstein Code (SpEC). In particular, I will present results for extending new and existing waveforms and using an open-source library. To construct a waveform that spans the frequency range where LIGO is most sensitive, we combine inexpensive, post-Newtonian approximate waveforms (valid far from merger) and numerical relativity waveforms (valid near the time of merger, when all approximations fail), making a hybrid GW. This work is one part of a new prototype framework for Numerical INJection Analysis with Matter (Matter NINJA). The complete Matter NINJA prototype will test GW search pipelines' abilities to find hybrid waveforms, from simulations containing matter (such as black hole-neutron star binaries), hidden in simulated detector noise.
NASA Astrophysics Data System (ADS)
Dálya, G.; Galgóczi, G.; Dobos, L.; Frei, Z.; Heng, I. S.; Macas, R.; Messenger, C.; Raffai, P.; de Souza, R. S.
2018-06-01
We introduce a value-added full-sky catalogue of galaxies, named as Galaxy List for the Advanced Detector Era, or GLADE. The purpose of this catalogue is to (i) help identifications of host candidates for gravitational-wave events, (ii) support target selections for electromagnetic follow-up observations of gravitational-wave candidates, (iii) provide input data on the matter distribution of the local universe for astrophysical or cosmological simulations, and (iv) help identifications of host candidates for poorly localised electromagnetic transients, such as gamma-ray bursts observed with the InterPlanetary Network. Both being potential hosts of astrophysical sources of gravitational waves, GLADE includes inactive and active galaxies as well. GLADE was constructed by cross-matching and combining data from five separate (but not independent) astronomical catalogues: GWGC, 2MPZ, 2MASS XSC, HyperLEDA and SDSS-DR12Q. GLADE is complete up to d_L=37^{+3}_{-4} Mpc in terms of the cumulative B-band luminosity of galaxies within luminosity distance dL, and contains all of the brightest galaxies giving half of the total B-band luminosity up to dL = 91 Mpc. As B-band luminosity is expected to be a tracer of binary neutron star mergers (currently the prime targets of joint GW+EM detections), our completeness measures can be used as estimations of completeness for containing all binary neutron star merger hosts in the local universe.
First light - II. Emission line extinction, population III stars, and X-ray binaries
NASA Astrophysics Data System (ADS)
Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; O'Shea, Brian W.; Norman, Michael L.; Xu, Hao
2018-02-01
We produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of their rate of occurrence are Ly α, the C IV λλ1548, 1551 doublet, H α, and the Ca II λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w - J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.
First Light II: Emission Line Extinction, Population III Stars, and X-ray Binaries
Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; ...
2017-11-17
Here, we produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of theirmore » rate of occurrence are Ly α, the C iv λλ1548, 1551 doublet, H α, and the Ca ii λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w – J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.« less
First Light II: Emission Line Extinction, Population III Stars, and X-ray Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin
Here, we produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of theirmore » rate of occurrence are Ly α, the C iv λλ1548, 1551 doublet, H α, and the Ca ii λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w – J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.« less
NASA Astrophysics Data System (ADS)
Metzger, Brian D.; Kaplan, David L.; Berger, Edo
2013-02-01
Identifying the electromagnetic counterparts of gravitational wave (GW) sources detected by upcoming networks of advanced ground-based interferometers will be challenging, due in part to the large number of unrelated astrophysical transients within the ~10-100 deg2 sky localizations. A potential way to greatly reduce the number of such false positives is to limit detailed follow-up to only those candidates near galaxies within the GW sensitivity range of ~200 Mpc for binary neutron star mergers. Such a strategy is currently hindered by the fact that galaxy catalogs are grossly incomplete within this volume. Here, we compare two methods for completing the local galaxy catalog: (1) a narrowband Hα imaging survey and (2) an H I emission line radio survey. Using Hα fluxes, stellar masses (M sstarf), and star formation rates (SFRs) from galaxies in the Sloan Digital Sky Survey (SDSS), combined with H I data from the GALEX Arecibo SDSS Survey and the Herschel Reference Survey, we estimate that an Hα survey with a luminosity sensitivity of L Hα = 1040 erg s-1 at 200 Mpc could achieve a completeness of f Hα SFR ≈ 75% with respect to total SFR, but only f_{M_{\\star }}^{Hα}≈ 33% with respect to M sstarf (due to lack of sensitivity to early-type galaxies). These numbers are significantly lower than those achieved by an idealized spectroscopic survey due to the loss of Hα flux resulting from resolving out nearby galaxies and the inability to correct for the underlying stellar continuum. An H I survey with sensitivity similar to the proposed WALLABY survey on ASKAP could achieve f_SFR^{H I}≈ 80% and f_{M_{\\star}}^{H I}≈ 50%, somewhat higher than that of the Hα survey. Finally, both Hα and H I surveys should achieve >~ 50% completeness with respect to the host galaxies of short-duration gamma-ray bursts, which may trace the population of binary neutron star mergers.
NASA Astrophysics Data System (ADS)
Indik, Nathaniel; Fehrmann, Henning; Harke, Franz; Krishnan, Badri; Nielsen, Alex B.
2018-06-01
Efficient multidimensional template placement is crucial in computationally intensive matched-filtering searches for gravitational waves (GWs). Here, we implement the neighboring cell algorithm (NCA) to improve the detection volume of an existing compact binary coalescence (CBC) template bank. This algorithm has already been successfully applied for a binary millisecond pulsar search in data from the Fermi satellite. It repositions templates from overdense regions to underdense regions and reduces the number of templates that would have been required by a stochastic method to achieve the same detection volume. Our method is readily generalizable to other CBC parameter spaces. Here we apply this method to the aligned-single-spin neutron star-black hole binary coalescence inspiral-merger-ringdown gravitational wave parameter space. We show that the template nudging algorithm can attain the equivalent effectualness of the stochastic method with 12% fewer templates.
Observing Mergers of Nonspinning Black Hole Binaries with LISA
NASA Technical Reports Server (NTRS)
McWilliams S.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly Bernard J.; Thorpe, J. Ira; vanMeter, James R.
2008-01-01
Recent advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black hole coalescence. We present the application of nonspinning numerical relativity waveforms to the search for and precision measurement of black hole binary coalescences using LISA. In particular, we focus on the advances made in moving beyond the equal mass, nonspinning case into other regions of parameter space, focusing on the case of nonspinning holes with ever-increasing mass ratios. We analyze the available unequal mass merger waveforms from numerical relativity, and compare them to two models, both of which use an effective one body treatment of the inspiral, but which use fundamentally different approaches to the treatment of the merger-ringdown. We confirm the expected mass ratio scaling of the merger, and investigate the changes in waveform behavior and their observational impact with changing mass ratio. Finally, we investigate the potential contribution from the merger portion of the waveform to measurement uncertainties of the binary's parameters for the unequal mass case.
Far-UV Spectroscopy of Two Extremely Hot, Helium-Rich White Dwarfs
NASA Technical Reports Server (NTRS)
Werner, K.; Rauch, T.; Kruk, J. W.
2017-01-01
A large proportion of hot post-asymptotic giant branch stars and white dwarfs (WDs) are hydrogen-deficient. Two distinct evolutionary sequences have been identified. One of them comprises stars of spectral type [WC] and PG1159, and it originates from a late helium-shell flash, creating helium-rich stellar atmospheres with significant admixtures of carbon (up to about 50, mass fraction). The other sequence comprises stars of spectral type O(He) and luminous subdwarf O stars which possibly are descendants of RCrB stars and extreme helium stars. Their carbon abundances are significantly lower (of the order of 1 or less) and it is thought that they originate from binary-star evolution (through merger or common-envelope evolution). Here we investigate two of the three hottest known helium-rich (DO) WDs (PG 1034+001 and PG 0038+199). They are the only ones for which spectra were recorded with the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope, allowing a comprehensive ultraviolet spectral analysis. We find effective temperatures of T(eff) =115000 +/- 5000 K and 125000 +/- 5000 K, respectively, and a surface gravity of log g = 7 +/-0.5. In both stars, nitrogen is strongly oversolar while C and O are significantly subsolar. For all other assessed metals (Ne, Si, P, S, Ar, Fe, and Ni) we find abundances close to solar. We conclude that these WDs are immediate descendants of O(He) stars and, hence, result from close-binary evolution.
Runaway Massive Stars from R136: VFTS 682 is Very Likely a "Slow Runaway"
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung
2012-02-01
We conduct a theoretical study on the ejection of runaway massive stars from R136—the central massive, starburst cluster in the 30 Doradus complex of the Large Magellanic Cloud. Specifically, we investigate the possibility of the very massive star (VMS) VFTS 682 being a runaway member of R136. Recent observations of the above VMS, by virtue of its isolated location and its moderate peculiar motion, have raised the fundamental question of whether isolated massive star formation is indeed possible. We perform the first realistic N-body computations of fully mass-segregated R136-type star clusters in which all the massive stars are in primordial binary systems. These calculations confirm that the dynamical ejection of a VMS from an R136-like cluster, with kinematic properties similar to those of VFTS 682, is common. Hence, the conjecture of isolated massive star formation is unnecessary to account for this VMS. Our results are also quite consistent with the ejection of 30 Dor 016, another suspected runaway VMS from R136. We further note that during the clusters' evolution, mergers of massive binaries produce a few single stars per cluster with masses significantly exceeding the canonical upper limit of 150 M ⊙. The observations of such single super-canonical stars in R136, therefore, do not imply an initial mass function with an upper limit greatly exceeding the accepted canonical 150 M ⊙ limit, as has been suggested recently, and they are consistent with the canonical upper limit.
NASA Astrophysics Data System (ADS)
Newton, William G.; Steiner, Andrew W.; Yagi, Kent
2018-03-01
Two low-mass (M < 1.4 M ⊙) neutron stars, J0737-3039B and the companion to J1756-2251, show strong evidence of being formed in an ultra-stripped supernova explosion (US-SN) with a ONeMg or Fe progenitor. Using systematically generated sets of equations of state we map out the relationship between the moment of inertia of J0737-3039A, a candidate for a moment of inertia measurement within a decade, and the binding energy of the two low-mass neutron stars. This relationship, similar to the I-Love-Q relations, is more robust than a previously explored correlation between the binding energy and the slope of the nuclear symmetry energy L. We find that, if either J0737-3039B or the J1756-2251 companion were formed in a US-SN, no more than 0.06 M ⊙ could have been lost from the progenitor core. Furthermore, a measurement of the moment of inertia of J0737-3039A to within 10% accuracy can discriminate between formation scenarios and, given current constraints on the predicted core mass loss, potentially rule them out. Advanced LIGO can potentially measure the neutron star tidal polarizability to equivalent accuracy which, using the I-Love-Q relations, would obtain similar constraints on the formation scenarios. Such information would help constrain important aspects of binary evolution used for population synthesis predictions of the rate of binary neutron star mergers and resulting electromagnetic and gravitational wave signals. Further progress needs to be made in modeling the core-collapse process that leads to low-mass neutron stars, particularly in making robust predictions for the mass loss from the progenitor core.
Search for gravitational waves from binary black hole inspiral, merger, and ringdown
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.; Aronsson, M.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; Derosa, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; Del Prete, M.; Dergachev, V.; de Rosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A. D.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2011-06-01
We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99M⊙ and total masses of 25-100M⊙. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M⊙≤m1, m2≤28M⊙ binary black-hole systems with negligible spin to be no more than 2.0Mpc-3Myr-1 at 90% confidence.
The Prospect of Neutrinos with Gravitational Waves
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-10-01
With the first detection of gravitational waves in 2015, scientists celebrated the opening of a new window to the universe. But multi-messenger astronomy astronomy based on detections of not just photons, but other signals as well was not a new idea at the time: we had already detected tiny, lightweight neutrinos emitted from astrophysical sources. Will we be able to combine observations of neutrinos and gravitational waves in the future to provide a deeper picture of astrophysical events?Signs of a MergerArtists impression of the first stage of a binary neutron star merger. [NASA, ESA, and A. Feild (STScI)]If the answer is yes, the key will probably be short gamma-ray bursts (SGRBs). Theory predicts that when a neutron star merges with another compact object (either another neutron star or a black hole), a number of signals may be observable. These include:gravitational waves as the binary spirals inward,a brief burst of gamma rays at merger (this is the SGRB),high-energy neutrino emission during the SGRB,optical and infrared emission after the merger in the form of a kilonova, andradio afterglows of the merger remnants.While weve observed the various electromagnetic components of this picture, the multi-messenger part is lacking: gravitational-wave detections havent been made in conjunction with electromagnetic counterparts thus far, and the only confirmed astrophysical sources of neutrinos are the Sun and Supernova 1987A.Pedicted neutrino fluxes during different stages of emission in an SGRB. [Kimura et al. 2017]Can we expect this to change in the future? A team of authors led by Shigeo Kimura (Pennsylvania State University) has now explored the likelihood that well be able to detect high-energy neutrinos in association with future gravitational-wave events.Detecting the SGRB NeutrinosKimura and collaborators first estimate the flux of high-energy neutrinos expected during various emission phases of an SGRB. They show that a period of late-time emission, known as the extended emission phase, may produce high-energy neutrinos more efficiently than the other phases. But would we be able to see these neutrinos?A comparison of IceCubes detection capabilities (top) to those of the planned IceCube-Gen2 (bottom), for different models of neutrino emission during an SGRB. [Kimura et al. 2017]To answer this, the authors calculate the probability of detection for neutrinos coming from a distance of 300 Mpc the predicted sensitivity range of advanced LIGO for gravitational-wave detection from a face-on neutron-star binary. They find that the IceCube Neutrino Observatory could detect neutrinos from around 10% of average extended-emission events or perhaps up to half in the most optimistic scenario. The planned next iteration of the detector, IceCube-Gen2, should do better, however: Kimura and collaborators estimate that a quarter of the extended emission events will be detectable in the general case, and up to three quarters of them may be seen in the optimistic case.The authors calculations suggest that within several years of operation of IceCube-Gen2, there is a good chance that well be able to simultaneously detect gamma rays, neutrinos, and gravitational waves from bright SGRBs. This will provide us with powerful tools for learning about the physics of these energetic events.CitationShigeo S. Kimura et al 2017 ApJL 848 L4. doi:10.3847/2041-8213/aa8d14
NASA Astrophysics Data System (ADS)
Siegel, Daniel M.; Metzger, Brian D.
2017-12-01
The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ -ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r -process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Ye≈0.1 . Over the 380-ms duration of the simulation, we find that a fraction ≈20 % of the initial torus mass is unbound in powerful outflows with asymptotic velocities v ≈0.1 c and electron fractions Ye≈0.1 - 0.25 . Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.
Siegel, Daniel M; Metzger, Brian D
2017-12-08
The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ-ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r-process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Y_{e}≈0.1. Over the 380-ms duration of the simulation, we find that a fraction ≈20% of the initial torus mass is unbound in powerful outflows with asymptotic velocities v≈0.1c and electron fractions Y_{e}≈0.1-0.25. Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.
Eccentric black hole mergers forming in globular clusters
NASA Astrophysics Data System (ADS)
Samsing, Johan
2018-05-01
We derive the probability for a newly formed binary black hole (BBH) to undergo an eccentric gravitational wave (GW) merger during binary-single interactions inside a stellar cluster. By integrating over the hardening interactions such a BBH must undergo before ejection, we find that the observable rate of BBH mergers with eccentricity >0.1 at 10 Hz relative to the rate of circular mergers can be as high as ˜5 % for a typical globular cluster (GC). This further suggests that BBH mergers forming through GW captures in binary-single interactions, eccentric or not, are likely to constitute ˜10 % of the total BBH merger rate from GCs. Such GW capture mergers can only be probed with an N -body code that includes general relativistic corrections, which explains why recent Newtonian cluster studies have not been able to resolve this population. Finally, we show that the relative rate of eccentric BBH mergers depends on the compactness of their host cluster, suggesting that an observed eccentricity distribution can be used to probe the origin of BBH mergers.
Techniques for Targeted Fermi-GBM Follow-Up of Gravitational-Wave Events
NASA Technical Reports Server (NTRS)
Blackburn, L.; Camp, J.; Briggs, M. S.; Connaughton, V.; Jenke, P.; Christensen, N.; Veitch, J.
2012-01-01
The Advanced LIGO and Advanced Virgo ground-based gravitational-wave (GW) detectors are projected to come online 2015 2016, reaching a final sensitivity sufficient to observe dozens of binary neutron star mergers per year by 2018. We present a fully-automated, targeted search strategy for prompt gamma-ray counterparts in offline Fermi-GBM data. The multi-detector method makes use of a detailed model response of the instrument, and benefits from time and sky location information derived from the gravitational-wave signal.
LIGO and the opening of a unique observational window on the universe.
Kalogera, Vassiliki; Lazzarini, Albert
2017-03-21
A unique window on the universe opened on September 14, 2015, with direct detection of gravitational waves by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors. This event culminated a half-century effort around the globe to develop terrestrial detectors of adequate sensitivity to achieve this goal. It also happened appropriately only a few months before the centennial of Einstein's final paper introducing the general theory of relativity. This detection provided the surprising discovery of a coalescing pair of "heavy" black holes (more massive than [Formula: see text] M[Formula: see text]) leading to the formation of a spinning [Formula: see text]62 solar mass black hole. One more binary black-hole detection and a significant candidate event demonstrated that a population of such merging binaries is formed in nature with a broad mass spectrum. This unique observational sample has already provided concrete measurements on the coalescence rates and has allowed us to test the theory of general relativity in the strong-field regime. As this nascent field of gravitational-wave astrophysics is emerging we are looking forward to the detection of binary mergers involving neutron stars and their electromagnetic counterparts, as well as continuous-wave sources, supernovae, a stochastic confusion background of compact-object mergers, known sources detected in unexpected ways, and completely unknown sources.
LIGO and the opening of a unique observational window on the universe
Kalogera, Vassiliki; Lazzarini, Albert
2017-01-01
A unique window on the universe opened on September 14, 2015, with direct detection of gravitational waves by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors. This event culminated a half-century effort around the globe to develop terrestrial detectors of adequate sensitivity to achieve this goal. It also happened appropriately only a few months before the centennial of Einstein’s final paper introducing the general theory of relativity. This detection provided the surprising discovery of a coalescing pair of “heavy” black holes (more massive than ≃25 M๏) leading to the formation of a spinning ≃62 solar mass black hole. One more binary black-hole detection and a significant candidate event demonstrated that a population of such merging binaries is formed in nature with a broad mass spectrum. This unique observational sample has already provided concrete measurements on the coalescence rates and has allowed us to test the theory of general relativity in the strong-field regime. As this nascent field of gravitational-wave astrophysics is emerging we are looking forward to the detection of binary mergers involving neutron stars and their electromagnetic counterparts, as well as continuous-wave sources, supernovae, a stochastic confusion background of compact-object mergers, known sources detected in unexpected ways, and completely unknown sources. PMID:28283663
NASA Astrophysics Data System (ADS)
Lee, Myung Gyoon; Kang, Jisu; Im, Myungshin
2018-05-01
NGC 4993 hosts a binary neutron star merger, GW170817/GRB 170817A, emitting gravitational waves and electromagnetic waves. The distance to this galaxy is not well established. We select the globular cluster candidates from the Hubble Space Telescope (HST)/ACS F606W images of NGC 4993 in the archive, using the structural parameters of the detected sources. The radial number density distribution of these candidates shows a significant central concentration around the galaxy center at the galactocentric distance r < 50″, showing that they are mostly the members of NGC 4993. Also, the luminosity function of these candidates is fit well by a Gaussian function. Therefore, the selected candidates at r < 50″ are mostly considered to be globular clusters in NGC 4993. We derive an extinction-corrected turnover Vega magnitude in the luminosity function of the globular clusters at 20″ < r < 50″, F606W (max)0 = 25.36 ± 0.08 (V 0 = 25.52 ± 0.11) mag. Adopting the calibration of the turnover magnitudes of the globular clusters, M V (max) = ‑7.58 ± 0.11, we derive a distance to NGC 4993, d = 41.65 ± 3.00 Mpc ({(m-M)}0 = 33.10+/- 0.16). The systematic error of this method can be as large as ±0.3 mag. This value is consistent with the previous distance estimates based on the fundamental plane relation and the gravitational wave method in the literature. The distance in this study can be used to constrain the values of the parameters including the inclination angle of the binary system in the models of gravitational wave analysis.
The nature of spherical collapse and a study of black hole dynamics
NASA Astrophysics Data System (ADS)
Nampalliwar, Sourabh
Gravitational waves and singularities are two of the most significant predictions of General Relativity. Binary systems are the most promising sources of gravitational waves that are expected to be detected with the current ground-based and upcoming space-based gravitational wave detectors. During the merger of binary compact objects, an important stage is the plunge. A small part of the gravitational waveform, it marks the end of early inspiral and determines the quasinormal ringing (QNR) of the final product of the merger. It is also the part of the waveform where most of the gravitational energy is released. But, unlike early inspiral and late ringdown, it is poorly understood in terms of phenomenology. This thesis introduces a novel approach combining the Fourier domain Green's function in the particle perturbation approximation and a simple model to understand this crucial stage. The resulting understanding is successful in explaining QNR for a Schwarzschild black hole and opens a new approach to understanding binary inspiral. It holds the promise of a much improved understanding, and improved efficiency in making astrophysical estimates of gravitational wave source strength. Singularities are known to be the ultimate fate of all massive stars undergoing gravitational collapse. The cosmic censorship hypothesis predicts that all these singularities are generically covered by event horizons, i.e., all collapsing stars, if they result in a singularity, end up as black holes. Although several theoretical examples of non-hidden (naked) singularities have been found, the question of the genericity of naked singularities is far from settled. This thesis presents a study of the causal structure of spherically symmetric models of dust collapse and its perturbations to investigate the genericity of naked singularities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander
We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M {sub ⊙} and a 0.52 M {sub ⊙} WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binarymore » merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.« less
Constraining the Orbits of the Supermassive Binary Blackhole Pair 0402+379
NASA Astrophysics Data System (ADS)
Holland, Ben; Peck, Alison B.; Taylor, Gregory B.; Zavala, Robert T.; Romani, Roger W.
2015-01-01
Galaxy mergers are a relatively common occurrence in the Universe. Given that most large galaxies harbor supermassive black holes in their centers, it should follow that two supermassive black holes could be found in the centers of galaxies that have recently undergone a merger event. Supermassive black hole binaries (SMBHB) with small separation (referred to as "tight binaries"), however, are quite rare, implying that the mergers happen less often than we think, or that the binary black hole merger happens much more quickly than expected from simulations. We present observations of one of the best candidates for a tight SMBHB, 0402+379, made in 2003, 2005, and 2009 using the VLBA at 3 frequencies, and report on their apparent relative component motions over this time frame. Additionally, these results are compared to earlier observations of 0402+379 which can help establish a long time baseline. This information, although still preliminary, can be used to provide constraints on the orbits of this binary system which in turn may yield insight as to why these binary systems are not significantly more commonly detected in, for example, ULIRGs in the late stages of merger.
NASA Astrophysics Data System (ADS)
Combes, F.
Active Galactic Nuclei are fueled from material (gas or stars) that are in general far away from the gravitational influence of the central black hole, the engine thought to be responsible for their activity. The required material has a lot of angular momentum that, a priori, is quite difficult to evacuate. The various dynamical mechanisms that may play a role in this game are reviewed, including m = 2 perturbations (bars and spirals), m = 1 perturbations (spirals, warps, lopsidedness), and tidal interactions between galaxies and mergers. In the latest stages of the merger, a binary black hole could be formed, and its influence on the dynamics and fueling is discussed. Starbursts are often associated with AGN, and the nature of their particular connection, and their role in the nuclear fueling is described. Evolution of the fueling efficiency with redshift is addressed.
NASA Astrophysics Data System (ADS)
Bromberg, O.; Tchekhovskoy, A.; Gottlieb, O.; Nakar, E.; Piran, T.
2018-04-01
We present the first relativistic magnetohydrodynamics numerical simulation of a magnetic jet that propagates through and emerges from the dynamical ejecta of a binary neutron star merger. Generated by the magnetized rotation of the merger remnant, the jet propagates through the ejecta and produces an energetic cocoon that expands at mildly relativistic velocities and breaks out of the ejecta. We show that if the ejecta has a low-mass (˜10-7 M⊙) high-velocity (v ˜ 0.85c) tail, the cocoon shock breakout will generate γ-ray emission that is comparable to the observed short GRB170817A that accompanied the recent gravitational wave event GW170817. Thus, we propose that this gamma-ray burst (GRB), which is quite different from all other short GRBs observed before, was produced by a different mechanism. We expect, however, that such events are numerous and many will be detected in coming LIGO-Virgo runs.
First detections of gravitational waves emitted from binary black hole mergers
NASA Astrophysics Data System (ADS)
Reitze, D. H.
2017-11-01
The LIGO Scientific Collaboration and the Virgo Collaboration carried out the inaugural ‘O1’ observing run from September 12, 2015 through January 19, 2016 using the newly commissioned Advanced LIGO interferometers located in Hanford,WAand Livingston, LA. During theO1 run and the O2 run currently underway, three definitive detections of gravitational waves have occurred, each produced during the mergers of binary stellar mass black holes. A fourth candidate gravitational-wave event was identified, also likely produced from a binary black hole merger. The detected gravitational waveforms allow for the inference of the intrinsic astrophysical parameters of the merging binary systems, as well as the resulting black hole produced by the mergers. The first detect detections of gravitational waves confirm the existence of binary black hole systems and have profound implications for astrophysics using gravitational waves as a new and powerful probe of the universe.
Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.
Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R
2015-12-04
Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52} erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.
Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae
NASA Astrophysics Data System (ADS)
Fryer, Chris L.; Oliveira, F. G.; Rueda, J. A.; Ruffini, R.
2015-12-01
Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso≳1052 erg ), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil
2016-09-20
The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO’s sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminositymore » distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.« less
NASA Technical Reports Server (NTRS)
Singer, Leo P.; Chen, Hsin-Yu; Holz, Daniel E.; Farr, Will M.; Price, Larry R.; Raymond, Vivien; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John K.; Kasliwal, Mansi M.;
2016-01-01
The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO's sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.
NASA Astrophysics Data System (ADS)
Kaplan, Jeffrey Daniel
2014-01-01
Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnetism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.
NASA Astrophysics Data System (ADS)
Duc, Pierre-Alain; Cuillandre, Jean-Charles; Serra, Paolo; Michel-Dansac, Leo; Ferriere, Etienne; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.
2011-10-01
The mass assembly of galaxies leaves imprints in their outskirts, such as shells and tidal tails. The frequency and properties of such fine structures depend on the main acting mechanisms - secular evolution, minor or major mergers - and on the age of the last substantial accretion event. We use this to constrain the mass assembly history of two apparently relaxed nearby early-type galaxies (ETGs) selected from the ATLAS3D sample, NGC 680 and 5557. Our ultra-deep optical images obtained with MegaCam on the Canada-France-Hawaii Telescope reach 29 mag arcsec-2 in the g band. They reveal very low surface brightness (LSB) filamentary structures around these ellipticals. Among them, a gigantic 160 kpc long, narrow, tail east of NGC 5557 hosts three gas-rich star-forming objects, previously detected in H I with the Westerbork Synthesis Radio Telescope and in UV with GALEX. NGC 680 exhibits two major diffuse plumes apparently connected to extended H I tails, as well as a series of arcs and shells. Comparing the outer stellar and gaseous morphology of the two ellipticals with that predicted from models of colliding galaxies, we argue that the LSB features are tidal debris and that each of these two ETGs was assembled during a relatively recent, major wet merger, which most likely occurred after the redshift z ≃ 0.5 epoch. Had these mergers been older, the tidal features should have already fallen back or be destroyed by more recent accretion events. However, the absence of molecular gas and of a prominent young stellar population in the core region of the galaxies indicates that the merger is at least 1-2 Gyr old: the memory of any merger-triggered nuclear starburst has indeed been lost. The star-forming objects found towards the collisional debris of NGC 5557 are then likely tidal dwarf galaxies. Such recycled galaxies here appear to be long-lived and continue to form stars while any star formation activity has stopped in their parent galaxy. The inner kinematics of NGC 680 is typical for fast rotators which make the bulk of nearby ETGs in the ATLAS3D sample. On the other hand, NGC 5557 belongs to the poorly populated class of massive, round, slow rotators that are predicted by semi-analytic models and cosmological simulations to be the end-product of a complex mass accretion history, involving ancient major mergers and more recent minor mergers. Our observations suggest that under specific circumstances a single binary merger may dominate the formation history of such objects and thus that at least some massive ETGs may form at relatively low redshift. Whether the two galaxies studied here are representative of their own sub-class of ETGs is still an open question that will be addressed by an on-going deep optical survey of ATLAS3D galaxies.
NASA Astrophysics Data System (ADS)
Johnson, Daniel; Huerta, E. A.; Haas, Roland
2018-01-01
Numerical simulations of Einstein’s field equations provide unique insights into the physics of compact objects moving at relativistic speeds, and which are driven by strong gravitational interactions. Numerical relativity has played a key role to firmly establish gravitational wave astrophysics as a new field of research, and it is now paving the way to establish whether gravitational wave radiation emitted from compact binary mergers is accompanied by electromagnetic and astro-particle counterparts. As numerical relativity continues to blend in with routine gravitational wave data analyses to validate the discovery of gravitational wave events, it is essential to develop open source tools to streamline these studies. Motivated by our own experience as users and developers of the open source, community software, the Einstein Toolkit, we present an open source, Python package that is ideally suited to monitor and post-process the data products of numerical relativity simulations, and compute the gravitational wave strain at future null infinity in high performance environments. We showcase the application of this new package to post-process a large numerical relativity catalog and extract higher-order waveform modes from numerical relativity simulations of eccentric binary black hole mergers and neutron star mergers. This new software fills a critical void in the arsenal of tools provided by the Einstein Toolkit consortium to the numerical relativity community.
The quest for blue supergiants : The evolution of the progenitor of SN 1987A
NASA Astrophysics Data System (ADS)
Menon, Athira; Heger, Alexander
2015-08-01
SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.
Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A
NASA Astrophysics Data System (ADS)
Menon, Athira
2015-08-01
SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.
Low-mass X-ray binaries from black hole retaining globular clusters
NASA Astrophysics Data System (ADS)
Giesler, Matthew; Clausen, Drew; Ott, Christian D.
2018-06-01
Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs, whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.
NASA Astrophysics Data System (ADS)
Tanikawa, A.
2013-10-01
We have performed N-body simulations of globular clusters (GCs) in order to estimate a detection rate of mergers of binary stellar mass black holes (BBHs) by means of gravitational wave (GW) observatories. For our estimate, we have only considered mergers of BBHs which escape from GCs (BBH escapers). BBH escapers merge more quickly than BBHs inside GCs because of their small semimajor axes. N-body simulation cannot deal with a GC with the number of stars N ˜ 106 due to its high calculation cost. We have simulated dynamical evolution of small N clusters (104 ≲ N ≲ 105), and have extrapolated our simulation results to large N clusters. From our simulation results, we have found the following dependence of BBH properties on N. BBHs escape from a cluster at each two-body relaxation time at a rate proportional to N. Semimajor axes of BBH escapers are inversely proportional to N, if initial mass densities of clusters are fixed. Eccentricities, primary masses and mass ratios of BBH escapers are independent of N. Using this dependence of BBH properties, we have artificially generated a population of BBH escapers from a GC with N ˜ 106, and have estimated a detection rate of mergers of BBH escapers by next-generation GW observatories. We have assumed that all the GCs are formed 10 or 12 Gyr ago with their initial numbers of stars Ni = 5 × 105-2 × 106 and their initial stellar mass densities inside their half-mass radii ρh,i = 6 × 103-106 M⊙ pc-3. Then, the detection rate of BBH escapers is 0.5-20 yr-1 for a BH retention fraction RBH = 0.5. A few BBH escapers are components of hierarchical triple systems, although we do not consider secular perturbation on such BBH escapers for our estimate. Our simulations have shown that BHs are still inside some of GCs at the present day. These BHs may marginally contribute to BBH detection.
NASA Astrophysics Data System (ADS)
Granot, Jonathan; Guetta, Dafne; Gill, Ramandeep
2017-12-01
The first, long-awaited, detection of a gravitational-wave (GW) signal from the merger of a binary neutron star (NS-NS) system was finally achieved (GW170817) and was also accompanied by an electromagnetic counterpart—the short-duration gamma-ray burst (GRB) 170817A. It occurred in the nearby (D≈ 40 Mpc) elliptical galaxy NGC 4993 and showed optical, IR, and UV emission from half a day up to weeks after the event, as well as late-time X-ray (at ≥slant 8.9 days) and radio (at ≥slant 16.4 days) emission. There was a delay of {{Δ }}t≈ 1.74 {{s}} between the GW merger chirp signal and the prompt GRB emission onset, and an upper limit of {θ }{obs}< 28^\\circ was set on the viewing angle w.r.t the jet’s symmetry axis from the GW signal. In this letter we examine some of the implications of these groundbreaking observations. The delay {{Δ }}t sets an upper limit on the prompt GRB emission radius, {R}γ ≲ 2c{{Δ }}t/{({θ }{obs}-{θ }0)}2, for a jet with sharp edges at an angle {θ }0< {θ }{obs}. GRB 170817A’s relatively low isotropic equivalent γ-ray energy output may suggest a viewing angle slightly outside the jet’s sharp edge, {θ }{obs}-{θ }0˜ {(0.05-0.1)({{Γ }}/100)}-1, but its peak ν {F}ν photon energy and afterglow emission suggest instead that the jet does not have sharp edges and the prompt emission was dominated by less energetic material along our line of sight, at {θ }{obs}≳ 2{θ }0. Finally, we consider the type of remnant that is produced by the NS-NS merger and find that a relatively long-lived (> 2 s) massive NS is strongly disfavored, while a hyper-massive NS of lifetime ˜ 1 {{s}} appears to be somewhat favored over the direct formation of a black hole.
Neutrino flavor evolution in neutron star mergers
NASA Astrophysics Data System (ADS)
Tian, James Y.; Patwardhan, Amol V.; Fuller, George M.
2017-08-01
We examine the flavor evolution of neutrinos emitted from the disklike remnant (hereafter called "neutrino disk") of a binary neutron star (BNS) merger. We specifically follow the neutrinos emitted from the center of the disk, along the polar axis perpendicular to the equatorial plane. We carried out two-flavor simulations using a variety of different possible initial neutrino luminosities and energy spectra and, for comparison, three-flavor simulations in specific cases. In all simulations, the normal neutrino mass hierarchy was used. The flavor evolution was found to be highly dependent on the initial neutrino luminosities and energy spectra; in particular, we found two broad classes of results depending on the sign of the initial net electron neutrino lepton number (i.e., the number of neutrinos minus the number of antineutrinos). In the antineutrino-dominated case, we found that the matter-neutrino resonance effect dominates, consistent with previous results, whereas in the neutrino-dominated case, a bipolar spectral swap develops. The neutrino-dominated conditions required for this latter result have been realized, e.g., in a BNS merger simulation that employs the "DD2" equation of state for neutron star matter [Phys. Rev. D 93, 044019 (2016), 10.1103/PhysRevD.93.044019]. For this case, in addition to the swap at low energies, a collective Mikheyev-Smirnov-Wolfenstein mechanism generates a high-energy electron neutrino tail. The enhanced population of high-energy electron neutrinos in this scenario could have implications for the prospects of r -process nucleosynthesis in the material ejected outside the plane of the neutrino disk.
Long-term Spectroscopic and Photometric Monitoring of Bright Interacting Algol-type Binary Stars
NASA Astrophysics Data System (ADS)
Reed, Phillip A.
2018-01-01
Binary stars have long been used as natural laboratories for studying such fundamental stellar properties as mass. Interacting binaries allow us to examine more complicated aspects such as mass flow between stars, accretion processes, magnetic fields, and stellar mergers. Algol-type interacting binary stars -- consisting of a cool giant or sub-giant donating mass to a much hotter, less evolved, and more massive main-sequence companion -- undergo steady mass transfer and have been used to measure mass transfer rates and to test stellar evolution theories. The method of back-projection Doppler tomography has also been applied to interacting Algols and has produced indirect velocity-space images of the accretion structures (gas streams, accretion disks, etc.) derived from spectroscopic observations of hydrogen and helium emission lines. The accretion structures in several Algol systems have actually been observed to change between disk-like states and stream-like states on timescales as short as several orbital cycles (Richards et al., 2014). Presented here are the first results from a project aimed at studying bright interacting Algol systems with simultaneous mid-resolution (11,000
Searching for dark matter with neutron star mergers and quiet kilonovae
NASA Astrophysics Data System (ADS)
Bramante, Joseph; Linden, Tim; Tsai, Yu-Dai
2018-03-01
We identify new astrophysical signatures of dark matter that implodes neutron stars (NSs), which could decisively test whether NS-imploding dark matter is responsible for missing pulsars in the Milky Way galactic center, the source of some r -process elements, and the origin of fast-radio bursts. First, NS-imploding dark matter forms ˜10-10 solar mass or smaller black holes inside neutron stars, which proceed to convert neutron stars into ˜1.5 solar mass black holes (BHs). This decreases the number of neutron star mergers seen by LIGO/Virgo (LV) and associated merger kilonovae seen by telescopes like DES, BlackGEM, and ZTF, instead producing a population of "black mergers" containing ˜1.5 solar mass black holes. Second, dark matter-induced neutron star implosions may create a new kind of kilonovae that lacks a detectable, accompanying gravitational signal, which we call "quiet kilonovae." Using DES data and the Milky Way's r-process abundance, we constrain quiet kilonovae. Third, the spatial distribution of neutron star merger kilonovae and quiet kilonovae in galaxies can be used to detect dark matter. NS-imploding dark matter destroys most neutron stars at the centers of disc galaxies, so that neutron star merger kilonovae would appear mostly in a donut at large radii. We find that as few as ten neutron star merger kilonova events, located to ˜1 kpc precision could validate or exclude dark matter-induced neutron star implosions at 2 σ confidence, exploring dark matter-nucleon cross-sections 4-10 orders of magnitude below current direct detection experimental limits. Similarly, NS-imploding dark matter as the source of fast radio bursts can be tested at 2 σ confidence once 20 bursts are located in host galaxies by radio arrays like CHIME and HIRAX.
PROSPECTS FOR JOINT GRAVITATIONAL WAVE AND SHORT GAMMA-RAY BURST OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, J.; Evans, H.; Fairhurst, S.
2015-08-10
We present a detailed evaluation of the expected rate of joint gravitational-wave (GW) and short gamma-ray burst (GRB) observations over the coming years. We begin by evaluating the improvement in distance sensitivity of the GW search that arises from using the GRB observation to restrict the time and sky location of the source. We argue that this gives a 25% increase in sensitivity when compared to an all-sky, all-time search, corresponding to more than double the number of detectable GW signals associated with GRBs. Using this, we present the expected rate of joint observations with the advanced LIGO and Virgomore » instruments, taking into account the expected evolution of the GW detector network. We show that in the early advanced GW detector observing runs, from 2015 to 2017, there is only a small chance of a joint observation. However, as the detectors approach their design sensitivities, there is a good chance of joint observations, provided wide field GRB satellites, such as Fermi and the Inter planetary Network, continue operation. The rate will also depend critically upon the nature of the progenitor, with neutron star-black hole systems observable to greater distances than double neutron star systems. The relative rate of binary mergers and GRBs will depend upon the jet opening angle of GRBs. Consequently, joint observations, as well as accurate measurement of both the GRB rate and binary merger rates, will allow for an improved estimation of the opening angle of GRBs.« less
General Relativity solutions in modified gravity
NASA Astrophysics Data System (ADS)
Motohashi, Hayato; Minamitsuji, Masato
2018-06-01
Recent gravitational wave observations of binary black hole mergers and a binary neutron star merger by LIGO and Virgo Collaborations associated with its optical counterpart constrain deviation from General Relativity (GR) both on strong-field regime and cosmological scales with high accuracy, and further strong constraints are expected by near-future observations. Thus, it is important to identify theories of modified gravity that intrinsically possess the same solutions as in GR among a huge number of theories. We clarify the three conditions for theories of modified gravity to allow GR solutions, i.e., solutions with the metric satisfying the Einstein equations in GR and the constant profile of the scalar fields. Our analysis is quite general, as it applies a wide class of single-/multi-field scalar-tensor theories of modified gravity in the presence of matter component, and any spacetime geometry including cosmological background as well as spacetime around black hole and neutron star, for the latter of which these conditions provide a necessary condition for no-hair theorem. The three conditions will be useful for further constraints on modified gravity theories as they classify general theories of modified gravity into three classes, each of which possesses i) unique GR solutions (i.e., no-hair cases), ii) only hairy solutions (except the cases that GR solutions are realized by cancellation between singular coupling functions in the Euler-Lagrange equations), and iii) both GR and hairy solutions, for the last of which one of the two solutions may be selected dynamically.
NASA Astrophysics Data System (ADS)
Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A.
2017-09-01
We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M ⊙ and a 0.52 M ⊙ WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ˜34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, and on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium.
The Outcome of Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Foucart, Francois
2014-10-01
Black hole-neutron star and neutron star-neutron star mergers are among the main sources of gravitational waves which will be detected in the coming years by the Advanced LIGO/VIRGO/KAGRA observatories. In some cases, these mergers can also power bright electromagnetic emissions: they are the most likely progenitors of short gamma-ray bursts, and the radioactive decay of neutron-rich material ejected by the merger can power optical/infrared transients days after the merger. Finally, they may provide important constraints on the equation of state of cold dense matter, and on the source of heavy elements in the universe. I will discuss the general relativistic simulations which are required to properly model these events, and what they have told us so far about the outcome of neutron star mergers. I will also discuss efforts to improve the physical realism of the simulations by improving the treatment of the most important effects beyond general relativistic hydrodynamics: magnetic fields, neutrinos, and the properties of nuclear matter.
MAJOR-MERGER GALAXY PAIRS IN THE COSMOS FIELD-MASS-DEPENDENT MERGER RATE EVOLUTION SINCE z = 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, C. Kevin; Zhao, Yinghe; Gao, Y.
2012-03-10
We present results of a statistical study of the cosmic evolution of the mass-dependent major-merger rate since z = 1. A stellar mass limited sample of close major-merger pairs (the CPAIR sample) was selected from the archive of the COSMOS survey. Pair fractions at different redshifts derived using the CPAIR sample and a local K-band-selected pair sample show no significant variations with stellar mass. The pair fraction exhibits moderately strong cosmic evolution, with the best-fitting function of f{sub pair} = 10{sup -1.88({+-}0.03)}(1 + z){sup 2.2({+-}0.2)}. The best-fitting function for the merger rate is R{sub mg} (Gyr{sup -1}) = 0.053 Multiplication-Signmore » (M{sub star}/10{sup 10.7} M{sub Sun} ){sup 0.3}(1 + z){sup 2.2}/(1 + z/8). This rate implies that galaxies of M{sub star} {approx} 10{sup 10}-10{sup 11.5} M{sub Sun} have undergone {approx}0.5-1.5 major mergers since z = 1. Our results show that, for massive galaxies (M{sub star} {>=} 10{sup 10.5} M{sub Sun }) at z {<=} 1, major mergers involving star-forming galaxies (i.e., wet and mixed mergers) can account for the formation of both ellipticals and red quiescent galaxies (RQGs). On the other hand, major mergers cannot be responsible for the formation of most low mass ellipticals and RQGs of M{sub star} {approx}< 10{sup 10.3} M{sub Sun }. Our quantitative estimates indicate that major mergers have significant impact on the stellar mass assembly of the most massive galaxies (M{sub star} {>=} 10{sup 11.3} M{sub Sun }), but for less massive galaxies the stellar mass assembly is dominated by the star formation. Comparison with the mass-dependent (ultra)luminous infrared galaxies ((U)LIRG) rates suggests that the frequency of major-merger events is comparable to or higher than that of (U)LIRGs.« less
RUNAWAY MASSIVE STARS FROM R136: VFTS 682 IS VERY LIKELY A 'SLOW RUNAWAY'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung, E-mail: sambaran@astro.uni-bonn.de, E-mail: pavel@astro.uni-bonn.de, E-mail: skoh@astro.uni-bonn.de
2012-02-10
We conduct a theoretical study on the ejection of runaway massive stars from R136-the central massive, starburst cluster in the 30 Doradus complex of the Large Magellanic Cloud. Specifically, we investigate the possibility of the very massive star (VMS) VFTS 682 being a runaway member of R136. Recent observations of the above VMS, by virtue of its isolated location and its moderate peculiar motion, have raised the fundamental question of whether isolated massive star formation is indeed possible. We perform the first realistic N-body computations of fully mass-segregated R136-type star clusters in which all the massive stars are in primordialmore » binary systems. These calculations confirm that the dynamical ejection of a VMS from an R136-like cluster, with kinematic properties similar to those of VFTS 682, is common. Hence, the conjecture of isolated massive star formation is unnecessary to account for this VMS. Our results are also quite consistent with the ejection of 30 Dor 016, another suspected runaway VMS from R136. We further note that during the clusters' evolution, mergers of massive binaries produce a few single stars per cluster with masses significantly exceeding the canonical upper limit of 150 M{sub Sun }. The observations of such single super-canonical stars in R136, therefore, do not imply an initial mass function with an upper limit greatly exceeding the accepted canonical 150 M{sub Sun} limit, as has been suggested recently, and they are consistent with the canonical upper limit.« less
Far-UV spectroscopy of two extremely hot, helium-rich white dwarfs
NASA Astrophysics Data System (ADS)
Werner, K.; Rauch, T.; Kruk, J. W.
2017-05-01
A large proportion of hot post-asymptotic giant branch stars and white dwarfs (WDs) are hydrogen-deficient. Two distinct evolutionary sequences have been identified. One of them comprises stars of spectral type [WC] and PG1159, and it originates from a late helium-shell flash, creating helium-rich stellar atmospheres with significant admixtures of carbon (up to about 50%, mass fraction). The other sequence comprises stars of spectral type O(He) and luminous subdwarf O stars which possibly are descendants of RCrB stars and extreme helium stars. Their carbon abundances are significantly lower (of the order of 1% or less) and it is thought that they originate from binary-star evolution (through merger or common-envelope evolution). Here we investigate two of the three hottest known helium-rich (DO) WDs (PG 1034+001 and PG 0038+199). They are the only ones for which spectra were recorded with the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope, allowing a comprehensive ultraviolet spectral analysis. We find effective temperatures of Teff = 115 000 ± 5000 K and 125 000 ± 5000 K, respectively, and a surface gravity of log g= 7 ± 0.5. In both stars, nitrogen is strongly oversolar while C and O are significantly subsolar. For all other assessed metals (Ne, Si, P, S, Ar, Fe, and Ni) we find abundances close to solar. We conclude that these WDs are immediate descendants of O(He) stars and, hence, result from close-binary evolution. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer.
Are LIGO's Black Holes Made From Smaller Black Holes?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-05-01
The recent successes of the Laser Interferometer Gravitational-Wave Observatory (LIGO) has raised hopes that several long-standing questions in black-hole physics will soon be answerable. Besides revealing how the black-hole binary pairs are built, could detections with LIGO also reveal how the black holes themselves form?Isolation or HierarchyThe first detection of gravitational waves, GW150914, was surprising for a number of reasons. One unexpected result was the mass of the two black holes that LIGO saw merging: they were a whopping 29 and 36 solar masses.On the left of this schematic, two first-generation (direct-collapse) black holes form a merging binary. The right illustrates a second-generation hierarchical merger: each black hole in the final merging binary was formed by the merger of two smaller black holes. [Adapted fromGerosa et al., a simultaneously published paper that also explores the problem of hierarchical mergers and reaches similar conclusions]How do black holes of this size form? One possibility is that they form in isolation from the collapse of a single massive star. In an alternative model, they are created through the hierarchical merger of smaller black holes, gradually building up to the size we observed.A team of scientists led by Maya Fishbach (University of Chicago) suggests that we may soon be able to tell whether or not black holes observed by LIGO formed hierarchically. Fishbach and collaborators argue that hierarchical formation leaves a distinctive signature on the spins of the final black holes and that as soon as we have enough merger detections from LIGO, we can use spin measurements to statistically determine if LIGO black holes were formed hierarchically.Spins from Major MergersWhen two black holes merge, both their original spins and the angular momentum of the pair contribute to the spin of the final black hole that results. Fishbach and collaborators calculate the expected distribution of these final spins assuming that all the hierarchical mergers are so-called major mergers i.e., the smaller black hole of the pair is at least 70% of the mass of the larger one.Distribution of spins for 4th-generation mergers, with two different mass ratios (q= 0.7 and q= 1) and initial first-generation spins (non-spinning and maximally spinning). [Fishbach et al. 2017]The authors find that hierarchical major mergers result in a distribution of spins with a distinctive shape, peaking at a spin of a 0.7 with relatively low contribution from spins below a 0.5. Intriguingly, this distribution is universal if you include several generations of mergers, the resulting spin distribution converges to the same shape every time. This is true regardless of the details of the hierarchical merger scenario, like the exact black hole mass ratio (as long as only major mergers occur) or the initial spin distributions.Testing the ModelWhat does this tell us? Since the hierarchical merger model predicts a very specific distribution of spins for the black holes detected by LIGO, we can compare future LIGO detections to see if theyre consistent with this model.The authors calculate the statistics to show that after order 100 LIGO detections, we should be able to tell whether these black holes are consistent with a hierarchical merger formation model or not. With luck, this could mean that we will have solved this mystery within a few years of advanced LIGO operations!CitationMaya Fishbach et al 2017 ApJL 840 L24. doi:10.3847/2041-8213/aa7045
Supermassive Black Holes and Galaxy Evolution
NASA Technical Reports Server (NTRS)
Merritt, D.
2004-01-01
Supermassive black holes appear to be generic components of galactic nuclei. The formation and growth of black holes is intimately connected with the evolution of galaxies on a wide range of scales. For instance, mergers between galaxies containing nuclear black holes would produce supermassive binaries which eventually coalesce via the emission of gravitational radiation. The formation and decay of these binaries is expected to produce a number of observable signatures in the stellar distribution. Black holes can also affect the large-scale structure of galaxies by perturbing the orbits of stars that pass through the nucleus. Large-scale N-body simulations are beginning to generate testable predictions about these processes which will allow us to draw inferences about the formation history of supermassive black holes.
The r-process nucleosynthesis and related challenges
NASA Astrophysics Data System (ADS)
Goriely, Stephane; Bauswein, Andreas; Janka, Hans-Thomas; Just, Oliver; Pllumbi, Else
2018-01-01
The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Recently, special attention has been paid to neutron star (NS) mergers following the confirmation by hydrodynamic simulations that a non-negligible amount of matter can be ejected and by nucleosynthesis calculations combined with the predicted astrophysical event rate that such a site can account for the majority of r-material in our Galaxy. We show here that the combined contribution of both the dynamical (prompt) ejecta expelled during binary NS or NS-black hole (BH) mergers and the neutrino and viscously driven outflows generated during the post-merger remnant evolution of relic BH-torus systems can lead to the production of r-process elements from mass number A ≳ 90 up to actinides. The corresponding abundance distribution is found to reproduce the solar distribution extremely well. It can also account for the elemental distributions observed in low-metallicity stars. However, major uncertainties still affect our understanding of the composition of the ejected matter. These concern (i) the β-interactions of electron (anti)neutrinos with free neutrons and protons, as well as their inverse reactions, which may affect the neutron-richness of the matter at the early phase of the ejection, and (ii) the nuclear physics of exotic neutron-rich nuclei, including nuclear structure as well as nuclear interaction properties, which impact the calculated abundance distribution. Both aspects are discussed in the light of recent hydrodynamical simulations of NS mergers and microscopic calculations of nuclear decay and reaction probabilities.
NASA Astrophysics Data System (ADS)
Samsing, Johan; Askar, Abbas; Giersz, Mirek
2018-03-01
We estimate the population of eccentric gravitational wave (GW) binary black hole (BBH) mergers forming during binary–single interactions in globular clusters (GCs), using ∼800 GC models that were evolved using the MOCCA code for star cluster simulations as part of the MOCCA-Survey Database I project. By re-simulating BH binary–single interactions extracted from this set of GC models using an N-body code that includes GW emission at the 2.5 post-Newtonian level, we find that ∼10% of all the BBHs assembled in our GC models that merge at present time form during chaotic binary–single interactions, and that about half of this sample have an eccentricity >0.1 at 10 Hz. We explicitly show that this derived rate of eccentric mergers is ∼100 times higher than one would find with a purely Newtonian N-body code. Furthermore, we demonstrate that the eccentric fraction can be accurately estimated using a simple analytical formalism when the interacting BHs are of similar mass, a result that serves as the first successful analytical description of eccentric GW mergers forming during three-body interactions in realistic GCs.
NASA Astrophysics Data System (ADS)
Roy, Soumen; Sengupta, Anand S.; Thakor, Nilay
2017-05-01
Astrophysical compact binary systems consisting of neutron stars and black holes are an important class of gravitational wave (GW) sources for advanced LIGO detectors. Accurate theoretical waveform models from the inspiral, merger, and ringdown phases of such systems are used to filter detector data under the template-based matched-filtering paradigm. An efficient grid over the parameter space at a fixed minimal match has a direct impact on the overall time taken by these searches. We present a new hybrid geometric-random template placement algorithm for signals described by parameters of two masses and one spin magnitude. Such template banks could potentially be used in GW searches from binary neutron stars and neutron star-black hole systems. The template placement is robust and is able to automatically accommodate curvature and boundary effects with no fine-tuning. We also compare these banks against vanilla stochastic template banks and show that while both are equally efficient in the fitting-factor sense, the bank sizes are ˜25 % larger in the stochastic method. Further, we show that the generation of the proposed hybrid banks can be sped up by nearly an order of magnitude over the stochastic bank. Generic issues related to optimal implementation are discussed in detail. These improvements are expected to directly reduce the computational cost of gravitational wave searches.
Studing the Post Merger Evolution of White Dwarf Mergers with FLASH
NASA Astrophysics Data System (ADS)
Jenks, Malia
2017-06-01
There is still uncertainty as to the progenitor systems of type Ia supernova (SN Ia). Both single and double degenerate systems have been suggested as progenitors. In a double degenerate system a merger between the two white dwarfs, with total mass at or exceeding the Chandrasekhar mass, leads to the supernova. If the explosion occurs during the merging process it is a violent merger. If an explosion doesn't occur while the stars merge the system becomes a white dwarf of unstable mass. For mergers of this type with differing starting masses it has been shown that during the viscous evolution carbon burning starts far from the center and stably converts the star to oxygen and neon. In this case the star will eventually collapse to a neutron star and not produce an SN Ia. The case of similar mass mergers has been much less explored. Using the results of a smooth particle hydrodynamic merger we simulate the viscous evolution of an equal mass model with FLASH. These simulations test if a similar mass merger can lead to an SN Ia.
On the rarity of X-ray binaries with Wolf-Rayet donors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linden, T.; Valsecchi, F.; Kalogera, V.
The paucity of High mass X-Ray binaries (HMXB) consisting of a neutron star (NS) accretor and Wolf-Rayet (WR) donor has long been at odds with expectations from population synthesis studies indicating that these systems should survive as the evolved offspring of the observed HMXB population. This tension is particularly troubling in light of recent observations uncovering a preponderance of HMXBs containing loosely bound Be donors which would be expected to naturally evolve into WR-HMXBs. Reconciling the unexpectedly large population of Be-HMXBs with the lack of observed WR-HMXB sources thus serves to isolate the dynamics of CE physics from other binarymore » evolution parameters. We find that binary mergers during CE events must be common in order to resolve tension between these observed populations. Furthermore, future observations which better constrain the background population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE removal.« less
Comparing numerical and analytic approximate gravitational waveforms
NASA Astrophysics Data System (ADS)
Afshari, Nousha; Lovelace, Geoffrey; SXS Collaboration
2016-03-01
A direct observation of gravitational waves will test Einstein's theory of general relativity under the most extreme conditions. The Laser Interferometer Gravitational-Wave Observatory, or LIGO, began searching for gravitational waves in September 2015 with three times the sensitivity of initial LIGO. To help Advanced LIGO detect as many gravitational waves as possible, a major research effort is underway to accurately predict the expected waves. In this poster, I will explore how the gravitational waveform produced by a long binary-black-hole inspiral, merger, and ringdown is affected by how fast the larger black hole spins. In particular, I will present results from simulations of merging black holes, completed using the Spectral Einstein Code (black-holes.org/SpEC.html), including some new, long simulations designed to mimic black hole-neutron star mergers. I will present comparisons of the numerical waveforms with analytic approximations.
Are LIGO's Black Holes Made from Smaller Black Holes?
NASA Astrophysics Data System (ADS)
Fishbach, Maya; Holz, Daniel; Farr, Ben; LIGO Collaboration
2017-01-01
We consider the hierarchical merger model for the formation of stellar mass black holes (such as the binary black holes observable by LIGO). In the hierarchical merger model, each black hole in a black hole binary is the result of a merger of two lesser black holes from a previous generation, and the previous generation's black holes may themselves be merger products of an even earlier generation. We apply the formulas of Hofmann, Barausse and Rezzolla (2016) to show that if black holes form in this hierarchical merger scenario, their spin magnitudes follow a certain probability distribution. We demonstrate how to compare this spin distribution to LIGO spin measurements in order to constrain the hierarchical merger scenario.
Current Topics in Gamma-Ray Astrophysics
Mathews, Grant J.; Maronetti, P.; Salmonson, Jay; Wilson, J. R.
2000-01-01
This paper reports on recent progress toward unraveling the origin of gamma-ray bursts. It is concluded that neutron-star binaries are one of the few remaining candidates. A model is proposed based upon general relativistic hydrodynamic studies which indicate a new physical process by which to power a gamma-ray burst. Relativistically driven compression, heating, and collapse of the individual neutron stars can occur many seconds before inspiral and merger. This compression may produce a neutrino burst of ∼1053 ergs lasting several seconds. The associated thermal neutrino emission produces an e+–e − pair plasma by vv¯ annihilation. We show first results of a simulated burst which produces ∼1051 erg in γ rays of the correct spectral and temporal properties. PMID:27551592
Current Topics in Gamma-Ray Astrophysics.
Mathews, G J; Maronetti, P; Salmonson, J; Wilson, J R
2000-01-01
This paper reports on recent progress toward unraveling the origin of gamma-ray bursts. It is concluded that neutron-star binaries are one of the few remaining candidates. A model is proposed based upon general relativistic hydrodynamic studies which indicate a new physical process by which to power a gamma-ray burst. Relativistically driven compression, heating, and collapse of the individual neutron stars can occur many seconds before inspiral and merger. This compression may produce a neutrino burst of ∼10(53) ergs lasting several seconds. The associated thermal neutrino emission produces an e (+)-e (-) pair plasma by [Formula: see text] annihilation. We show first results of a simulated burst which produces ∼10(51) erg in γ rays of the correct spectral and temporal properties.
Astrophysics of Red Supergiants
NASA Astrophysics Data System (ADS)
Levesque, Emily M.
2017-12-01
'Astrophysics of Red Supergiants' is the first book of its kind devoted to our current knowledge of red supergiant stars, a key evolutionary phase that is critical to our larger understanding of massive stars. It provides a comprehensive overview of the fundamental physical properties of red supergiants, their evolution, and their extragalactic and cosmological applications. It serves as a reference for researchers from a broad range of fields (including stellar astrophysics, supernovae, and high-redshift galaxies) who are interested in red supergiants as extreme stages of stellar evolution, dust producers, supernova progenitors, extragalactic metallicity indicators, members of massive binaries and mergers, or simply as compelling objects in their own right. The book is accessible to a range of experience levels, from graduate students up to senior researchers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablimit, Iminhaji; Maeda, Keiichi; Li, Xiang-Dong
Binary population synthesis (BPS) studies provide a comprehensive way to understand the evolution of binaries and their end products. Close white dwarf (WD) binaries have crucial characteristics for examining the influence of unresolved physical parameters on binary evolution. In this paper, we perform Monte Carlo BPS simulations, investigating the population of WD/main-sequence (WD/MS) binaries and double WD binaries using a publicly available binary star evolution code under 37 different assumptions for key physical processes and binary initial conditions. We considered different combinations of the binding energy parameter ( λ {sub g}: considering gravitational energy only; λ {sub b}: considering bothmore » gravitational energy and internal energy; and λ {sub e}: considering gravitational energy, internal energy, and entropy of the envelope, with values derived from the MESA code), CE efficiency, critical mass ratio, initial primary mass function, and metallicity. We find that a larger number of post-CE WD/MS binaries in tight orbits are formed when the binding energy parameters are set by λ {sub e} than in those cases where other prescriptions are adopted. We also determine the effects of the other input parameters on the orbital periods and mass distributions of post-CE WD/MS binaries. As they contain at least one CO WD, double WD systems that evolved from WD/MS binaries may explode as type Ia supernovae (SNe Ia) via merging. In this work, we also investigate the frequency of two WD mergers and compare it to the SNe Ia rate. The calculated Galactic SNe Ia rate with λ = λ {sub e} is comparable to the observed SNe Ia rate, ∼8.2 × 10{sup 5} yr{sup 1} – ∼4 × 10{sup 3} yr{sup 1} depending on the other BPS parameters, if a DD system does not require a mass ratio higher than ∼0.8 to become an SNe Ia. On the other hand, a violent merger scenario, which requires the combined mass of two CO WDs ≥ 1.6 M {sub ⊙} and a mass ratio >0.8, results in a much lower SNe Ia rate than is observed.« less
Calculating Gravitational Wave Signature from Binary Black Hole Mergers
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2003-01-01
Calculations of the final merger stage of binary black hole evolution can only be carried out using full scale numerical relativity simulations. We review the status of these calculations, highlighting recent progress and current challenges.
The Galactic Chemical Evolution of r-Process Elements by Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Komiya, Yutaka; Shigeyama, Toshikazu
Neutron star mergers (NSMs) are prime candidate sources of r-process elements in the universe but it have been said that NSMs cannot reproduce r-process elements on extremely metal-poor (EMP) stars. We revisit this problem using a new chemical evolution model with merger trees of galaxies. We consider (1) propagation of NSM ejecta of kilo-parsec scale due to its very large velocity and (2) star formation efficiency depending on the galaxy mass. In our model with these ingredients, NSMs can successfully reproduce the abundance distribution of EMP stars.
What can we learn about cosmic structure from gravitational waves?
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2003-01-01
Observations of low frequency gravitational waves by the space-based LISA mission will open a new observational window on the early universe and the emergence of structure. LISA will observe the dynamical coalescence of massive black hole binaries at high redshifts, giving an unprecedented look at the merger history of galaxies and the reionization epoch. LISA will also observe gravitational waves from the collapse of supermassive stars to form black holes, and will map the spacetime in the central regions of galaxy cusps at high precision.
Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico
We perform the first systematic study of how dynamical stellar tides and general relativistic (GR) effects affect the dynamics and outcomes of binary-single interactions. For this, we have constructed an N -body code that includes tides in the affine approximation, where stars are modeled as self-similar ellipsoidal polytropes, and GR corrections using the commonly used post-Newtonian formalism. Using this numerical formalism, we are able resolve the leading effect from tides and GR across several orders of magnitude in both stellar radius and initial target binary separation. We find that the main effect from tides is the formation of two-body tidalmore » captures that form during the chaotic and resonant evolution of the triple system. The two stars undergoing the capture spiral in and merge. The inclusion of tides can thus lead to an increase in the stellar coalescence rate. We also develop an analytical framework for calculating the cross section of tidal inspirals between any pair of objects with similar mass. From our analytical and numerical estimates, we find that the rate of tidal inspirals relative to collisions increases as the initial semimajor axis of the target binary increases and the radius of the interacting tidal objects decreases. The largest effect is therefore found for triple systems hosting white dwarfs and neutron stars (NSs). In this case, we find the rate of highly eccentric white dwarf—NS mergers to likely be dominated by tidal inspirals. While tidal inspirals occur rarely, we note that they can give rise to a plethora of thermonuclear transients, such as Ca-rich transients.« less
NASA Astrophysics Data System (ADS)
Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter
2017-12-01
We propose a new type of electromagnetic transient associated with the birth of binary black holes (BBHs), which may lead to merger events accompanied by gravitational waves in ∼ 0.1{--}1 {Gyr}. We consider the newborn BBHs formed through the evolution of isolated massive stellar binaries. For a close massive binary, consisting of a primary black hole (BH) and a secondary Wolf–Rayet (WR) star that are orbiting around each other, the spin period of the WR star can be tidally synchronized to its orbital period. Then the angular momentum of the outer material of the WR star is large enough to form an accretion disk around a newborn, secondary BH, following its core-collapse. This disk may produce an energetic outflow with a kinetic energy of ∼ {10}50{--}{10}52 {erg} and an outflow velocity of ∼ {10}10 {cm} {{{s}}}-1, resulting in an optical transient with an absolute magnitude from approximately ‑14 to approximatley ‑17 with a duration of around a day. This type of transient also produces detectable radio signals ∼ 1{--}10 years after the birth of BBHs, via synchrotron emission from nonthermal electrons accelerated at external shocks. The predicted optical transients have a shorter duration than ordinary core-collapse supernovae. Dedicated optical transient surveys can detect them and distinguish them from ordinary SNe using the different features of its light curve and late-time spectrum. In this paper (Paper I), we investigate disk-driven outflows from the secondary BH, whereas possible signals from the primary BH will be discussed in Paper II.
THE K2 M67 STUDY: AN EVOLVED BLUE STRAGGLER IN M67 FROM K2 MISSION ASTEROSEISMOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leiner, Emily; Mathieu, Robert D.; Stello, Dennis
Yellow straggler stars (YSSs) fall above the subgiant branch in optical color–magnitude diagrams (CMDs), between the blue stragglers and the red giants. YSSs may represent a population of evolved blue stragglers, but none have the direct and precise mass and radius measurements needed to determine their evolutionary states and formation histories. Here we report the first asteroseismic mass and radius measurements of such a star, the yellow straggler S1237 in the open cluster M67. We apply asteroseismic scaling relations to a frequency analysis of the Kepler K2 light curve and find a mass of 2.9 ± 0.2 M {sub ⊙}more » and a radius of 9.2 ± 0.2 R{sub ⊙}. This is more than twice the mass of the main-sequence turnoff in M67, suggesting that S1237 is indeed an evolved blue straggler. S1237 is the primary in a spectroscopic binary. We update the binary orbital solution and use spectral energy distribution fitting to constrain the CMD location of the secondary star. We find that the secondary is likely an upper main-sequence star near the turnoff, but a slightly hotter blue straggler companion is also possible. We then compare the asteroseismic mass of the primary to its mass from CMD fitting, finding that the photometry implies a mass and radius more than 2 σ below the asteroseismic measurement. Finally, we consider formation mechanisms for this star and suggest that S1237 may have formed from dynamical encounters resulting in stellar collisions or a binary merger.« less
Simulating Gravitational Radiation from Binary Black Holes Mergers as LISA Sources
NASA Technical Reports Server (NTRS)
Baker, John
2005-01-01
A viewgraph presentation on the simulation of gravitational waves from Binary Massive Black Holes with LISA observations is shown. The topics include: 1) Massive Black Holes (MBHs); 2) MBH Binaries; 3) Gravitational Wavws from MBH Binaries; 4) Observing with LISA; 5) How LISA sees MBH binary mergers; 6) MBH binary inspirals to LISA; 7) Numerical Relativity Simulations; 8) Numerical Relativity Challenges; 9) Recent Successes; 10) Goddard Team; 11) Binary Black Hole Simulations at Goddard; 12) Goddard Recent Advances; 13) Baker, et al.:GSFC; 13) Starting Farther Out; 14) Comparing Initial Separation; 15) Now with AMR; and 16) Conclusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xian; Amaro-Seoane, Pau, E-mail: xian.chen@pku.edu.cn, E-mail: pau@ice.cat
The formation of compact stellar-mass binaries is a difficult, but interesting problem in astrophysics. There are two main formation channels: in the field via binary star evolution, or in dense stellar systems via dynamical interactions. The Laser Interferometer Gravitational-wave Observatory (LIGO) has detected black hole binaries (BHBs) via their gravitational radiation. These detections provide us with information about the physical parameters of the system. It has been claimed that when the Laser Interferometer Space Antenna (LISA) is operating, the joint observation of these binaries with LIGO will allow us to derive the channels that lead to their formation. However, wemore » show that for BHBs in dense stellar systems dynamical interactions could lead to high eccentricities such that a fraction of the relativistic mergers are not audible to LISA. A non-detection by LISA puts a lower limit of about 0.005 on the eccentricity of a BHB entering the LIGO band. On the other hand, a deci-Hertz observatory, like DECIGO or Tian Qin, would significantly enhance the chances of a joint detection and shed light on the formation channels of these binaries.« less
A sparse representation of gravitational waves from precessing compact binaries
NASA Astrophysics Data System (ADS)
Blackman, Jonathan; Szilagyi, Bela; Galley, Chad; Tiglio, Manuel
2014-03-01
With the advanced generation of gravitational wave detectors coming online in the near future, there is a need for accurate models of gravitational waveforms emitted by binary neutron stars and/or black holes. Post-Newtonian approximations work well for the early inspiral and there are models covering the late inspiral as well as merger and ringdown for the non-precessing case. While numerical relativity simulations have no difficulty with precession and can now provide accurate waveforms for a broad range of parameters, covering the 7 dimensional precessing parameter space with ~107 simulations is not feasible. There is still hope, as reduced order modelling techniques have been highly successful in reducing the impact of the curse of dimensionality for lower dimensional cases. We construct a reduced basis of Post-Newtonian waveforms for the full parameter space with mass ratios up to 10 and spins up to 0 . 9 , and find that for the last 100 orbits only ~ 50 waveforms are needed. The huge compression relies heavily on a reparametrization which seeks to reduce the non-linearity of the waveforms. We also show that the addition of merger and ringdown only mildly increases the size of the basis.
NASA Astrophysics Data System (ADS)
Geier, S.; Heber, U.
2012-07-01
Subluminous B stars (sdBs) form the extremely hot end of the horizontal branch and are therefore related to the blue horizontal branch (BHB) stars. While the rotational properties of BHB stars have been investigated extensively, studies of sdB stars have concentrated on close binaries that are influenced by tidal interactions between their components. Here we present a study of 105 sdB stars, which are either single stars or in wide binaries where tidal effects become negligible. The projected rotational velocities have been determined by measuring the broadening of metal lines using high-resolution optical spectra. All stars in our sample are slow rotators (vrotsini < 10 km s-1). Furthermore, the vrotsini-distributions of single sdBs are similar to those of hot subdwarfs in wide binaries with main-sequence companions as well as close binary systems with unseen companions and periods exceeding ≃1.2 d. We show that blue horizontal and extreme horizontal branch stars are also related in terms of surface rotation and angular momentum. Hot BHB stars (Teff > 11 500 K) with diffusion-dominated atmospheres are slow rotators like the hot subdwarf stars located on the extreme horizontal branch, which lost more envelope and therefore angular momentum in the red-giant phase. The uniform rotation distributions of single and wide binary sdBs pose a challenge to our understanding of hot subdwarf formation. Especially the high fraction of helium white dwarf mergers predicted by theory seems to be inconsistent with the results presented here. Based on observations at the Paranal Observatory of the European Southern Observatory for programmes number 165.H-0588(A), 167.D-0407(A), 071.D-0380(A) and 072.D-0487(A). Based on observations at the La Silla Observatory of the European Southern Observatory for programmes number 073.D-0495(A), 074.B-0455(A), 076.D-0355(A), 077.D-0515(A) and 078.D-0098(A). Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). Some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on data obtained with the Hobby-Eberly Telescope (HET), which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.
Magnetized hypermassive neutron-star collapse: a central engine for short gamma-ray bursts.
Shibata, Masaru; Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Stephens, Branson C
2006-01-27
A hypermassive neutron star (HMNS) is a possible transient formed after the merger of a neutron-star binary. In the latest axisymmetric magnetohydrodynamic simulations in full general relativity, we find that a magnetized HMNS undergoes "delayed" collapse to a rotating black hole (BH) as a result of angular momentum transport via magnetic braking and the magnetorotational instability. The outcome is a BH surrounded by a massive, hot torus with a collimated magnetic field. The torus accretes onto the BH at a quasisteady accretion rate [FORMULA: SEE TEXT]; the lifetime of the torus is approximately 10 ms. The torus has a temperature [FORMULA: SEE TEXT], leading to copious ([FORMULA: SEE TEXT]) thermal radiation that could trigger a fireball. Therefore, the collapse of a HMNS is a promising scenario for generating short-duration gamma-ray bursts and an accompanying burst of gravitational waves and neutrinos.
Prompt emission from the counter jet of a short gamma-ray burst
NASA Astrophysics Data System (ADS)
Yamazaki, Ryo; Ioka, Kunihito; Nakamura, Takashi
2018-03-01
The counter jet of a short gamma-ray burst (sGRB) has not yet been observed, while recent discoveries of gravitational waves (GWs) from a binary neutron star merger GW170817 and the associated sGRB 170817A have demonstrated that off-axis sGRB jets are detectable. We calculate the prompt emission from the counter jet of an sGRB and show that it is typically 23-26 mag in the optical-infrared band 10-10^3 s after the GWs for an sGRB 170817A-like event, which is brighter than the early macronova (or kilonova) emission and detectable by LSST in the near future. We also propose a new method to constrain the unknown jet properties, such as the Lorentz factor, opening angle, emission radii, and jet launch time, by observing both the forward and counter jets. To scrutinize the counter jets, space GW detectors like DECIGO are powerful in forecasting the merger time (≲ 1 s) and position (≲ 1 arcmin) (˜ a week) before the merger.
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2010-01-01
The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past few years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed.
Neutron-powered precursors of kilonovae
NASA Astrophysics Data System (ADS)
Metzger, Brian D.; Bauswein, Andreas; Goriely, Stephane; Kasen, Daniel
2015-01-01
The merger of binary neutron stars (NSs) ejects a small quantity of neutron-rich matter, the radioactive decay of which powers a day to week long thermal transient known as a kilonova. Most of the ejecta remains sufficiently dense during its expansion that all neutrons are captured into nuclei during the r-process. However, recent general relativistic merger simulations by Bauswein and collaborators show that a small fraction of the ejected mass (a few per cent, or ˜10-4 M⊙) expands sufficiently rapidly for most neutrons to avoid capture. This matter originates from the shocked-heated interface between the merging NSs. Here, we show that the β-decay of these free neutrons in the outermost ejecta powers a `precursor' to the main kilonova emission, which peaks on a time-scale of ˜ few hours following merger at U-band magnitude ˜22 (for an assumed distance of 200 Mpc). The high luminosity and blue colours of the neutron precursor render it a potentially important counterpart to the gravitational wave source, that may encode valuable information on the properties of the merging binary (e.g. NS-NS versus NS-black hole) and the NS equation of state. Future work is necessary to assess the robustness of the fast-moving ejecta and the survival of free neutrons in the face of neutrino absorptions, although the precursor properties are robust to a moderate amount of leptonization. Our results provide additional motivation for short latency gravitational wave triggers and rapid follow-up searches with sensitive ground-based telescopes.
The Role of Shocks in the Appearance and Aftermath of Stellar Mergers and Type IIn Supernovae
NASA Astrophysics Data System (ADS)
Metzger, Brian
2017-08-01
HST has played a crucial role in elucidating the environments, progenitors, explosions, and late-time behavior of Type IIn supernovae (SNe) and binary star mergers (also known as common envelope events). Although shock interaction plays a dominant role in the dynamics and appearance of these events, the details of this process and the nature of the mass loss leading up to the core collapse or dynamical stage of the merger, remain poorly understood. Mounting evidence suggests that the pre-explosion mass loss geometry is a disk or equatorially-concentrated outflow. We will perform the first multi-dimensional radiation hydrodynamical simulations of the shock interaction between the fast ejecta from the SN explosion/dynamical merger and a slower equatorially-focused outflow representing the earlier phase of mass loss. Our calculations will quantify the geometry of the ejecta and make detailed predictions for the shock-powered emission. In combination with an analytic model to be developed in parallel, we will translate the light curves and spectral information on a large sample of IIn SNe and stellar mergers into probes of their mass loss history. We will address whether the combination of hydrogen recombination and shock-powered emission can explain the common double-peaked nature of the light curves of stellar mergers. By accounting self-consistently for the role of radiative shock compression on the ejecta density structure, and thus on the global geometry and microphysical properties of dust grains formed, we will also address the late-time appearance of IIn SNe and stellar mergers observed by HST and JWST.
The massive multiple system HD 64315
NASA Astrophysics Data System (ADS)
Lorenzo, J.; Simón-Díaz, S.; Negueruela, I.; Vilardell, F.; Garcia, M.; Evans, C. J.; Montes, D.
2017-10-01
Context. The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. Moreover, it has been identified as a spectroscopic binary, but existing data support contradictory values for its orbital period. Aims: We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. Methods: A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. We have developed our own program to fit four components to the combined line shapes. Once the four radial velocities were derived, we obtained a model to fit the radial-velocity curves using the Spectroscopic Binary Orbit Program (SBOP). We then implemented the radial velocities of the eclipsing binary and the light curves in the Wilson-Devinney code iteratively to derive stellar parameters for its components. We were also able to analyse the non-eclipsing binary, and to derive minimum masses for its components which dominate the system flux. Results: HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901 ± 0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569 ± 0.0000008 d. We derive masses of 14.6 ± 2.3 M⊙ for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M⊙ and 10.2 M⊙, and likely masses ≈ 30 M⊙. Conclusions: HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90M⊙, but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system. Based on observations obtained at the European Southern Observatory under programmes 078.D-0665(A), 082-D.0136 and 093.A-9001(A). Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
Binary Black Hole Mergers from Planet-like Migrations.
Gould; Rix
2000-03-20
If supermassive black holes (BHs) are generically present in galaxy centers, and if galaxies are built up through hierarchical merging, BH binaries are at least temporary features of most galactic bulges. Observations suggest, however, that binary BHs are rare, pointing toward a binary lifetime far shorter than the Hubble time. We show that, almost regardless of the detailed mechanism, all stellar dynamical processes are too slow in reducing the orbital separation once orbital velocities in the binary exceed the virial velocity of the system. We propose that a massive gas disk surrounding a BH binary can effect its merger rapidly, in a scenario analogous to the orbital decay of super-Jovian planets due to a proto-planetary disk. As in the case of planets, gas accretion onto the secondary (here a supermassive BH) is integrally connected with its inward migration. Such accretion would give rise to quasar activity. BH binary mergers could therefore be responsible for many or most quasars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsujimoto, Takuji; Shigeyama, Toshikazu, E-mail: taku.tsujimoto@nao.ac.jp
Growing interests in neutron star (NS) mergers as the origin of r-process elements have sprouted since the discovery of evidence for the ejection of these elements from a short-duration γ-ray burst. The hypothesis of a NS merger origin is reinforced by a theoretical update of nucleosynthesis in NS mergers successful in yielding r-process nuclides with A > 130. On the other hand, whether the origin of light r-process elements are associated with nucleosynthesis in NS merger events remains unclear. We find a signature of nucleosynthesis in NS mergers from peculiar chemical abundances of stars belonging to the Galactic globular cluster M15.more » This finding combined with the recent nucleosynthesis results implies a potential diversity of nucleosynthesis in NS mergers. Based on these considerations, we are successful in the interpretation of an observed correlation between [light r-process/Eu] and [Eu/Fe] among Galactic halo stars and accordingly narrow down the role of supernova nucleosynthesis in the r-process production site. We conclude that the tight correlation by a large fraction of halo stars is attributable to the fact that core-collapse supernovae produce light r-process elements while heavy r-process elements such as Eu and Ba are produced by NS mergers. On the other hand, stars in the outlier, composed of r-enhanced stars ([Eu/Fe] ≳ +1) such as CS22892-052, were exclusively enriched by matter ejected by a subclass of NS mergers that is inclined to be massive and consist of both light and heavy r-process nuclides.« less
Can galaxy growth be sustained through HI-rich minor mergers?
NASA Astrophysics Data System (ADS)
Lehnert, M. D.; van Driel, W.; Minchin, R.
2016-05-01
Local galaxies with specific star-formation rates (star-formation rate per unit mass; sSFR ~ 0.2-10 Gyr-1) that are as high as distant galaxies (z ≈ 1-3), are very rich in Hi. Those with low stellar masses, M⋆ = 108-9 M⊙, for example, have MHI/M⋆ ≈ 5-30. Using continuity arguments, whereby the specific merger rate is hypothesized to be proportional to the specific star-formation rate, along with Hi gas mass measurements for local galaxies with high sSFR, we estimate that moderate-mass galaxies, M⋆ = 109-10.5 M⊙, can acquire enough gas through minor mergers (stellar mass ratios ~4-100) to sustain their star formation rates at z ~ 2. The relative fraction of the gas accreted through minor mergers declines with increasing stellar mass, and for the most massive galaxies considered, M⋆ = 1010.5-11 M⊙, this accretion rate is insufficient to sustain their star formation. We checked our minor merger hypothesis at z = 0 using the same methodology, but now with relations for local normal galaxies, and find that minor mergers cannot account for their specific growth rates, in agreement with observations of Hi-rich satellites around nearby spirals. We discuss a number of attractive features, such as a natural downsizing effect, in using minor mergers with extended Hi disks to support star formation at high redshift. The answer to the question posed by the title, "Can galaxy growth be sustained through Hi-rich minor mergers?", is "maybe", but only for relatively low-mass galaxies and at high redshift.
Hybrid Stars in the Light of GW170817
NASA Astrophysics Data System (ADS)
Nandi, Rana; Char, Prasanta
2018-04-01
We have studied the effect of the tidal deformability constraint given by the binary neutron star merger event GW170817 on the equations of state (EOS) of hybrid stars. The EOS are constructed by matching the hadronic EOS described by the relativistic mean-field model and parameter sets NL3, TM1, and NL3ωρ with the quark matter EOS described by the modified MIT bag model, via a Gibbs construction. It is found that the tidal deformability constraints along with the lower bound on the maximum mass (M max = 2.01 ± 0.04 M ⊙) significantly limits the bag model parameter space ({B}eff}1/4, a 4). We also obtain upper limits on the radius of 1.4 M ⊙ and 1.6 M ⊙ stars as R 1.4 ≤ 13.2–13.5 km and R 1.6 ≤ 13.2–13.4 km, respectively, for the different hadronic EOS considered here.
LIGO Finds Lightest Black-Hole Binary
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-11-01
Wednesdayevening the Laser Interferometer Gravitational-wave Observatory (LIGO) collaboration quietly mentioned that theyd found gravitational waves from yet another black-hole binary back in June. This casual announcement reveals what is so far the lightest pair of black holes weve watched merge opening the door for comparisons to the black holes weve detected by electromagnetic means.A Routine DetectionThe chirp signal of GW170608 detected by LIGO Hanford and LIGO Livingston. [LIGO collaboration 2017]After the fanfare of the previous four black-hole-binary merger announcements over the past year and a half as well as the announcement of the one neutron-star binary merger in August GW170608 marks our entry into the era in which gravitational-wave detections are officially routine.GW170608, a gravitational-wave signal from the merger of two black holes roughly a billion light-years away, was detected in June of this year. This detection occurred after wed already found gravitational waves from several black-hole binaries with the two LIGO detectors in the U.S., but before the Virgo interferometer came online in Europe and increased the joint ability of the detectors to localize sources.Mass estimates for the two components of GW170608 using different models. [LIGO collaboration 2017]Overall, GW170608 is fairly unremarkable: it was detected by both LIGO Hanford and LIGO Livingston some 7 ms apart, and the signal looks not unlike those of the previous LIGO detections. But because were still in the early days of gravitational-wave astronomy, every discovery is still remarkable in some way! GW170608 stands out as being the lightest pair of black holes weve yet to see merge, with component masses before the merger estimated at 12 and 7 times the mass of the Sun.Why Size MattersWith the exception of GW151226, the gravitational-wave signal discovered on Boxing Day last year, all of the black holes that have been discovered by LIGO/Virgo have been quite large: the masses of the components have all been estimated at 20 solar masses or more. This has made it difficult to compare these black holes to those detected by electromagnetic means which are mostly under 10 solar masses in size.GW170608 is the lowest-mass of the LIGO/Virgo black-hole mergers shown in blue. The primary mass is comparable to the masses of black holes we have measured by electromagnetic means (purple detections). [LIGO-Virgo/Frank Elavsky/Northwestern]One type of electromagnetically detected black hole are those in low-mass X-ray binaries (LMXBs). LMXBs consist of a black hole and a non-compact companion: a low-mass donor star that overflows its Roche lobe, feeding material onto the black hole. It is thought that these black holes form without significant spin, and are later spun up as a result of the mass accretion. Before LIGO, however, we didnt have any non-accreting black holes of this size to observe for comparison.Now, detections like GW170608 and the Boxing Day event (which was also on the low end of the mass scale) are allowing us to start exploring spin distributions of non-accreting black holes to determine if were right in our understanding of black-hole spins. We dont yet have a large enough comparison sample to make a definitive statement, but GW170608 is indicative of a wealth of more discoveries we can hope to find in LIGOs next observing run, after a series of further design upgrades scheduled to conclude in 2018. The future of gravitational wave astronomy continues to look promising!CitationLIGO collaboration, submitted to ApJL. https://arxiv.org/abs/1711.05578
NASA Astrophysics Data System (ADS)
Kisaka, Shota; Ioka, Kunihito; Sakamoto, Takanori
2017-09-01
Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift/BAT and XRT data. The light curves are found to consist of two distinct components at >5σ with bimodal distributions of luminosity and duration, I.e., extended (with a timescale of ≲103 s) and plateau emission (with a timescale of ≳103 s), which are likely the central engine activities, but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has ˜0.01-1 times this energy. Half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET/HXM, INTEGRAL/SPI-ACS, Fermi/GBM, MAXI/GSC, Swift/BAT, XRT, the future ISS-Lobster/WFI, Einstein Probe/WXT, and eROSITA.
Detectability of compact binary merger macronovae
NASA Astrophysics Data System (ADS)
Rosswog, S.; Feindt, U.; Korobkin, O.; Wu, M.-R.; Sollerman, J.; Goobar, A.; Martinez-Pinedo, G.
2017-05-01
We study the optical and near-infrared luminosities and detectability of radioactively powered electromagnetic transients (‘macronovae’) occuring in the aftermath of binary neutron star and neutron star black hole mergers. We explore the transients that result from the dynamic ejecta and those from different types of wind outflows. Based on full nuclear network simulations we calculate the resulting light curves in different wavelength bands. We scrutinize the robustness of the results by comparing (a) two different nuclear reaction networks and (b) two macronova models. We explore in particular how sensitive the results are to the production of α-decaying trans-lead nuclei. We compare two frequently used mass models: the finite-range Droplet model (FRDM) and the nuclear mass model of Duflo and Zuker (DZ31). We find that the abundance of α-decaying trans-lead nuclei has a significant impact on the observability of the resulting macronovae. For example, the DZ31 model yields considerably larger abundances resulting in larger heating rates and thermalization efficiencies and therefore predicts substantially brighter macronova transients. We find that the dynamic ejecta from NSNS models can reach peak K-band magnitudes in excess of -15 while those from NSBH cases can reach beyond -16. Similar values can be reached by some of our wind models. Several of our models (both wind and dynamic ejecta) yield properties that are similar to the transient that was observed in the aftermath of the short GRB 130603B. We further explore the expected macronova detection frequencies for current and future instruments such as VISTA, ZTF and LSST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisaka, Shota; Sakamoto, Takanori; Ioka, Kunihito, E-mail: kisaka@phys.aoyama.ac.jp, E-mail: tsakamoto@phys.aoyama.ac.jp, E-mail: kunihito.ioka@yukawa.kyoto-u.ac.jp
Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift /BAT and XRT data. The light curves are found to consist of two distinct components at >5 σ with bimodal distributions of luminosity and duration, i.e., extended (with a timescale of ≲10{sup 3} s) and plateau emission (with a timescale of ≳10{sup 3} s),more » which are likely the central engine activities, but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has ∼0.01–1 times this energy. Half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET /HXM, INTEGRAL /SPI-ACS, Fermi /GBM, MAXI /GSC, Swift /BAT, XRT, the future ISS-Lobster /WFI, Einstein Probe /WXT, and eROSITA .« less
Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Sourav; Rodriguez, Carl L.; Kalogera, Vicky
2017-02-20
Using numerical models for star clusters spanning a wide range in ages and metallicities (Z) we study the masses of binary black holes (BBHs) produced dynamically and merging in the local universe ( z ≲ 0.2). After taking into account cosmological constraints on star formation rate and metallicity evolution, which realistically relate merger delay times obtained from models with merger redshifts, we show here for the first time that while old, metal-poor globular clusters can naturally produce merging BBHs with heavier components, as observed in GW150914, lower-mass BBHs like GW151226 are easily formed dynamically in younger, higher-metallicity clusters. More specifically,more » we show that the mass of GW151226 is well within 1 σ of the mass distribution obtained from our models for clusters with Z/Z{sub ⊙} ≳ 0.5. Indeed, dynamical formation of a system like GW151226 likely requires a cluster that is younger and has a higher metallicity than typical Galactic globular clusters. The LVT151012 system, if real, could have been created in any cluster with Z/Z{sub ⊙} ≲ 0.25. On the other hand, GW150914 is more massive (beyond 1 σ ) than typical BBHs from even the lowest-metallicity (Z/Z{sub ⊙} = 0.005) clusters we consider, but is within 2 σ of the intrinsic mass distribution from our cluster models with Z/Z{sub ⊙} ≲ 0.05; of course, detection biases also push the observed distributions toward higher masses.« less