Sample records for star clusters multiple

  1. Multiple stellar populations in Magellanic Cloud clusters - VI. A survey of multiple sequences and Be stars in young clusters

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Marino, A. F.; Di Criscienzo, M.; D'Antona, F.; Bedin, L. R.; Da Costa, G.; Piotto, G.; Tailo, M.; Dotter, A.; Angeloni, R.; Anderson, J.; Jerjen, H.; Li, C.; Dupree, A.; Granata, V.; Lagioia, E. P.; Mackey, A. D.; Nardiello, D.; Vesperini, E.

    2018-06-01

    The split main sequences (MSs) and extended MS turnoffs (eMSTOs) detected in a few young clusters have demonstrated that these stellar systems host multiple populations differing in a number of properties such as rotation and, possibly, age. We analyse Hubble Space Telescope photometry for 13 clusters with ages between ˜40 and ˜1000 Myr and of different masses. Our goal is to investigate for the first time the occurrence of multiple populations in a large sample of young clusters. We find that all the clusters exhibit the eMSTO phenomenon and that MS stars more massive than ˜1.6 M_{⊙} define a blue and a red MS, with the latter hosting the majority of MS stars. The comparison between the observations and isochrones suggests that the blue MSs are made of slow-rotating stars, while the red MSs host stars with rotational velocities close to the breakup value. About half of the bright MS stars in the youngest clusters are H α emitters. These Be stars populate the red MS and the reddest part of the eMSTO, thus supporting the idea that the red MS is made of fast rotators. We conclude that the split MS and the eMSTO are a common feature of young clusters in both Magellanic Clouds. The phenomena of a split MS and an eMSTO occur for stars that are more massive than a specific threshold, which is independent of the host-cluster mass. As a by-product, we report the serendipitous discovery of a young Small Magellanic Cloud cluster, GALFOR 1.

  2. Climbing the Ladder of Star Formation Feedback

    NASA Astrophysics Data System (ADS)

    Frank, Adam

    2012-10-01

    While much is understood about isolated star formation, the opposite is true for star formation in clusters of both low and high mass. In particular the mechanisms by which many coevally formed stars affect their parent cloud environment remains poorly characterized. Fundamental questions such as interplay between multiple outflows, ionization fronts and turbulence are just beginning to be fully articulated. Distinguishing between the nature of feedback in clusters of different mass is also critical. In high mass clusters O stars are expected to dominate energetics while in low mass clusters multiple collimated outflows may represent the dominant feedback mechanism. Thus the issue of feedback modalities in clusters of different masses represents one of the major challenges to the next generation of star formation studies. In this proposal we seek to carry forward a focused theoretical study of feedback in both low and high-mass cluster environments with direct connections to observations. Using a state-of-the-art Adaptive Mesh Refinement MHD multi-physics code {developed by our group} we propose two computational studies: {1} multiple, interacting outflows and their role in altering the properties of a parent low mass cluster {2} Poorly collimated outburst/outflows from massive star{s} and their effect on high mass cluster star forming environments. In both cases we will use initial conditions derived from high-resolution AMR MHD simulations of cloud/cluster formation. Synthetic observations derived from the simulations {in a variety of emission lines from ions to atoms to molecules} will allow for direct contact with HST and other star formation databases.

  3. Multiple stellar populations in Magellanic Cloud clusters - III. The first evidence of an extended main sequence turn-off in a young cluster: NGC 1856

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Bedin, L. R.; Piotto, G.; Marino, A. F.; Cassisi, S.; Bellini, A.; Jerjen, H.; Pietrinferni, A.; Aparicio, A.; Rich, R. M.

    2015-07-01

    Recent studies have shown that the extended main-sequence turn-off (eMSTO) is a common feature of intermediate-age star clusters in the Magellanic Clouds (MCs). The most simple explanation is that these stellar systems harbour multiple generations of stars with an age difference of a few hundred million years. However, while an eMSTO has been detected in a large number of clusters with ages between ˜1-2 Gyr, several studies of young clusters in both MCs and in nearby galaxies do not find any evidence for a prolonged star formation history, i. e. for multiple stellar generations. These results have suggested alternative interpretation of the eMSTOs observed in intermediate-age star clusters. The eMSTO could be due to stellar rotation mimicking an age spread or to interacting binaries. In these scenarios, intermediate-age MC clusters would be simple stellar populations, in close analogy with younger clusters. Here, we provide the first evidence for an eMSTO in a young stellar cluster. We exploit multiband Hubble Space Telescope photometry to study the ˜300-Myr old star cluster NGC 1856 in the Large Magellanic Cloud and detected a broadened MSTO that is consistent with a prolonged star formation which had a duration of about 150 Myr. Below the turn-off, the main sequence (MS) of NGC 1856 is split into a red and blue component, hosting 33 ± 5 and 67 ± 5 per cent of the total number of MS stars, respectively. We discuss these findings in the context of multiple-stellar-generation, stellar-rotation, and interacting-binary hypotheses.

  4. Formation of new stellar populations from gas accreted by massive young star clusters.

    PubMed

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  5. The search for multiple populations in Magellanic Cloud Clusters IV: Coeval multiple stellar populations in the young star cluster NGC 1978

    NASA Astrophysics Data System (ADS)

    Martocchia, S.; Niederhofer, F.; Dalessandro, E.; Bastian, N.; Kacharov, N.; Usher, C.; Cabrera-Ziri, I.; Lardo, C.; Cassisi, S.; Geisler, D.; Hilker, M.; Hollyhead, K.; Kozhurina-Platais, V.; Larsen, S.; Mackey, D.; Mucciarelli, A.; Platais, I.; Salaris, M.

    2018-04-01

    We have recently shown that the ˜2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the sub-giant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Due to its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star-formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star-formation epochs have occurred within NGC 1978. First, we use UV CMDs to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 ± 20 Myr between them. This is in tension with predictions from the AGB scenario for the origin of multiple populations. Second, we estimate the broadness of the main sequence turnoff (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of ˜65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extendend MSTO in intermediate age clusters, while it fully supports predictions from the stellar rotation model.

  6. The search for multiple populations in Magellanic Cloud clusters - IV. Coeval multiple stellar populations in the young star cluster NGC 1978

    NASA Astrophysics Data System (ADS)

    Martocchia, S.; Niederhofer, F.; Dalessandro, E.; Bastian, N.; Kacharov, N.; Usher, C.; Cabrera-Ziri, I.; Lardo, C.; Cassisi, S.; Geisler, D.; Hilker, M.; Hollyhead, K.; Kozhurina-Platais, V.; Larsen, S.; Mackey, D.; Mucciarelli, A.; Platais, I.; Salaris, M.

    2018-07-01

    We have recently shown that the ˜2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the subgiant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Because of its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star formation epochs have occurred within NGC 1978. First, we use ultraviolet colour-magnitude diagrams (CMDs) to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 ± 20 Myr between them. This is in tension with predictions from the asymptotic giant branch scenario for the origin of multiple populations. Second, we estimate the broadness of the main-sequence turn-off (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of ˜65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extended MSTO in intermediate-age clusters, while it fully supports predictions from the stellar rotation model.

  7. The dynamical origin of multiple populations in intermediate-age clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; de Grijs, Richard; Askar, Abbas; Berczik, Peter; Li, Chengyuan; Wang, Long; Deng, Licai; Kouwenhoven, M. B. N.; Giersz, Mirek; Spurzem, Rainer

    2017-11-01

    Numerical simulations were carried out to study the origin of multiple stellar populations in the intermediate-age clusters NGC 411 and NGC 1806 in the Magellanic Clouds. We performed NBODY6++ simulations based on two different formation scenarios, an ad hoc formation model where second-generation (SG) stars are formed inside a cluster of first-generation (FG) stars using the gas accumulated from the external intergalactic medium and a minor merger model of unequal mass (MSG/MFG ∼ 5-10 per cent) clusters with an age difference of a few hundred million years. We compared our results such as the radial profile of the SG-to-FG number ratio with observations on the assumption that the SG stars in the observations are composed of cluster members, and confirmed that both the ad hoc formation and merger scenarios reproduce the observed radial trend of the SG-to-FG number ratio, which shows less centrally concentrated SG than FG stars. It is difficult to constrain the formation scenario for the multiple populations by only using the spatial distribution of the SG stars. SG stars originating from the merger scenario show a significant velocity anisotropy and rotational features compared to those from the ad hoc formation scenario. Thus, observations aimed at kinematic properties like velocity anisotropy or rotational velocities for SG stars should be obtained to better understand the formation of the multiple populations in these clusters. This is, however, beyond current instrumentation capabilities.

  8. Multiplicity of Massive Stars

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans

    We review the multiplicity of massive stars by compiling the abstracts of the most relevant papers in the field. We start by discussing the massive stars in the Orion Trapezium Cluster and in other Galactic young clusters and OB associations, and end with the R136 cluster in the LMC. The multiplicity of field O-stars and runaway OB stars is also reviewed. The results of both visual and spectroscopic surveys are presented, as well as data for eclipsing systems. Among the latter, we find the most massive known binary system WR20a, with two ~,80M_⊙ components in a 3 day orbit. Some 80% of the wide visual binaries in stellar associations are in fact hierarchical triple systems, where typically the more massive of the binary components is itself a spectroscopic or even eclipsing binary pair. The multiplicity (number of companions) of massive star primaries is significantly higher than for low-mass solar-type primaries or for young low-mass T Tauri stars. There is also a striking preponderance of very close nearly equal mass binary systems (the origin of which has recently been explained in an accretion scenario). Finally, we offer a new idea as to the origin of massive Trapezium systems, frequently found in the centers of dense young clusters.

  9. Close Binaries in the Orion Nebula Cluster: On the Universality of Stellar Multiplicity and the Origin of Field Stars

    NASA Astrophysics Data System (ADS)

    Duchene, Gaspard; Lacour, Sylvestre; Moraux, Estelle; Bouvier, Jerome; Goodwin, Simon

    2018-01-01

    While stellar multiplicity is an ubiquitous outcome of star formation, there is a clear dichotomy between the multiplicity properties of young (~1 Myr-old) stellar clusters, like the ONC, which host a mostly field-like population of visual binaries, and those of equally young sparse populations, like the Taurus-Auriga region, which host twice as many stellar companions. Two distinct scenarios can account for this observation: one in which different star-forming regions form different number of stars, and one in which multiplicity properties are universal at birth but where internal cluster dynamics destroy many wide binaries. To solve this ambiguity, one must probe binaries that are sufficiently close so as not to be destroyed through interactions with other cluster members. To this end, we have conducted a survey for 10-100 au binaries in the ONC using the aperture masking technique with the VLT adaptive optics system. Among our sample of the 42 ONC members, we discovered 13 companions in this range of projected separations. This is consistent with the companion frequency observed in the Taurus population and twice as high as that observed among field stars. This survey thus strongly supports the idea that stellar multiplicity is characterized by near-universal initial properties that can later be dynamically altered. On the other hand, this exacerbates the question of the origin of field stars, since only clusters much denser than the ONC can effectively destroyed binaries closer than 100 au.

  10. Globular cluster chemistry in fast-rotating dwarf stars belonging to intermediate-age open clusters

    NASA Astrophysics Data System (ADS)

    Pancino, Elena

    2018-06-01

    The peculiar chemistry observed in multiple populations of Galactic globular clusters is not generally found in other systems such as dwarf galaxies and open clusters, and no model can currently fully explain it. Exploring the boundaries of the multiple-population phenomenon and the variation of its extent in the space of cluster mass, age, metallicity, and compactness has proven to be a fruitful line of investigation. In the framework of a larger project to search for multiple populations in open clusters that is based on literature and survey data, I found peculiar chemical abundance patterns in a sample of intermediate-age open clusters with publicly available data. More specifically, fast-rotating dwarf stars (v sin i ≥ 50 km s-1) that belong to four clusters (Pleiades, Ursa Major, Come Berenices, and Hyades) display a bimodality in either [Na/Fe] or [O/Fe], or both, with the low-Na and high-O peak more populated than the high-Na and low-O peak. Additionally, two clusters show a Na-O anti-correlation in the fast-rotating stars, and one cluster shows a large [Mg/Fe] variation in stars with high [Na/Fe], reaching the extreme Mg depletion observed in NGC 2808. Even considering that the sample sizes are small, these patterns call for attention in the light of a possible connection with the multiple population phenomenon of globular clusters. The specific chemistry observed in these fast-rotating dwarf stars is thought to be produced by a complex interplay of different diffusion and mixing mechanisms, such as rotational mixing and mass loss, which in turn are influenced by metallicity, binarity, mass, age, variability, and so on. However, with the sample in hand, it was not possible to identify which stellar parameters cause the observed Na and O bimodality and Na-O anti-correlation. This suggests that other stellar properties might be important in addition to stellar rotation. Stellar binarity might influence the rotational properties and enhance rotational mixing and mass loss of stars in a dense environment like that of clusters (especially globulars). In conclusion, rotation and binarity appear as a promising research avenue for better understanding multiple stellar populations in globular clusters; this is certainly worth exploring further.

  11. Gas expulsion vs gas retention in young stellar clusters II: effects of cooling and mass segregation

    NASA Astrophysics Data System (ADS)

    Silich, Sergiy; Tenorio-Tagle, Guillermo

    2018-05-01

    Gas expulsion or gas retention is a central issue in most of the models for multiple stellar populations and light element anti-correlations in globular clusters. The success of the residual matter expulsion or its retention within young stellar clusters has also a fundamental importance in order to understand how star formation proceeds in present-day and ancient star-forming galaxies and if proto-globular clusters with multiple stellar populations are formed in the present epoch. It is usually suggested that either the residual gas is rapidly ejected from star-forming clouds by stellar winds and supernova explosions, or that the enrichment of the residual gas and the formation of the second stellar generation occur so rapidly, that the negative stellar feedback is not significant. Here we continue our study of the early development of star clusters in the extreme environments and discuss the restrictions that strong radiative cooling and stellar mass segregation provide on the gas expulsion from dense star-forming clouds. A large range of physical initial conditions in star-forming clouds which include the star-forming cloud mass, compactness, gas metallicity, star formation efficiency and effects of massive stars segregation are discussed. It is shown that in sufficiently massive and compact clusters hot shocked winds around individual massive stars may cool before merging with their neighbors. This dramatically reduces the negative stellar feedback, prevents the development of the global star cluster wind and expulsion of the residual and the processed matter into the ambient interstellar medium. The critical lines which separate the gas expulsion and the gas retention regimes are obtained.

  12. Imprints of dynamical interactions on brown dwarf pairing statistics and kinematics

    NASA Astrophysics Data System (ADS)

    Sterzik, M. F.; Durisen, R. H.

    2003-03-01

    We present statistically robust predictions of brown dwarf properties arising from dynamical interactions during their early evolution in small clusters. Our conclusions are based on numerical calculations of the internal cluster dynamics as well as on Monte-Carlo models. Accounting for recent observational constraints on the sub-stellar mass function and initial properties in fragmenting star forming clumps, we derive multiplicity fractions, mass ratios, separation distributions, and velocity dispersions. We compare them with observations of brown dwarfs in the field and in young clusters. Observed brown dwarf companion fractions around 15 +/- 7% for very low-mass stars as reported recently by Close et al. (\\cite{CSFB03}) are consistent with certain dynamical decay models. A significantly smaller mean separation distribution for brown dwarf binaries than for binaries of late-type stars can be explained by similar specific energy at the time of cluster formation for all cluster masses. Due to their higher velocity dispersions, brown-dwarfs and low-mass single stars will undergo time-dependent spatial segregation from higher-mass stars and multiple systems. This will cause mass functions and binary statistics in star forming regions to vary with the age of the region and the volume sampled.

  13. Binaries at Birth: Stellar multiplicity in embedded clusters from radial velocity variations in the IN-SYNC survey

    NASA Astrophysics Data System (ADS)

    Oskar Jaehnig, Karl; Stassun, Keivan; Tan, Jonathan C.; Covey, Kevin R.; Da Rio, Nicola

    2016-01-01

    We study the nature of stellar multiplicity in young stellar systems using the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) survey, carried out in SDSS III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC2264, NGC1333 and IC348 have been carried out, yielding H-band spectra with R=22,500 for sources with H<12 mag. Radial velocity sensitivities ~0.3 km/s can be achieved, depending on the spectral type of the star. We search the IN-SYNC radial velocity catalog to identify sources with radial velocity variations indicative of spectroscopically undetected companions, analyze their spectral properties and discuss the implications for the overall multiplicity of stellar populations in young, embedded star clusters.

  14. Star cluster formation in a turbulent molecular cloud self-regulated by photoionization feedback

    NASA Astrophysics Data System (ADS)

    Gavagnin, Elena; Bleuler, Andreas; Rosdahl, Joakim; Teyssier, Romain

    2017-12-01

    Most stars in the Galaxy are believed to be formed within star clusters from collapsing molecular clouds. However, the complete process of star formation, from the parent cloud to a gas-free star cluster, is still poorly understood. We perform radiation-hydrodynamical simulations of the collapse of a turbulent molecular cloud using the RAMSES-RT code. Stars are modelled using sink particles, from which we self-consistently follow the propagation of the ionizing radiation. We study how different feedback models affect the gas expulsion from the cloud and how they shape the final properties of the emerging star cluster. We find that the star formation efficiency is lower for stronger feedback models. Feedback also changes the high-mass end of the stellar mass function. Stronger feedback also allows the establishment of a lower density star cluster, which can maintain a virial or sub-virial state. In the absence of feedback, the star formation efficiency is very high, as well as the final stellar density. As a result, high-energy close encounters make the cluster evaporate quickly. Other indicators, such as mass segregation, statistics of multiple systems and escaping stars confirm this picture. Observations of young star clusters are in best agreement with our strong feedback simulation.

  15. Not-so-simple stellar populations in nearby, resolved massive star clusters

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan

    2018-02-01

    Around the turn of the last century, star clusters of all kinds were considered ‘simple’ stellar populations. Over the past decade, this situation has changed dramatically. At the same time, star clusters are among the brightest stellar population components and, as such, they are visible out to much greater distances than individual stars, even the brightest, so that understanding the intricacies of star cluster composition and their evolution is imperative for understanding stellar populations and the evolution of galaxies as a whole. In this review of where the field has moved to in recent years, we place particular emphasis on the properties and importance of binary systems, the effects of rapid stellar rotation, and the presence of multiple populations in Magellanic Cloud star clusters across the full age range. Our most recent results imply a reverse paradigm shift, back to the old simple stellar population picture for at least some intermediate-age (˜1-3 Gyr old) star clusters, opening up exciting avenues for future research efforts.

  16. Globular cluster formation with multiple stellar populations from hierarchical star cluster complexes

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji

    2017-05-01

    Most old globular clusters (GCs) in the Galaxy are observed to have internal chemical abundance spreads in light elements. We discuss a new GC formation scenario based on hierarchical star formation within fractal molecular clouds. In the new scenario, a cluster of bound and unbound star clusters ('star cluster complex', SCC) that have a power-law cluster mass function with a slope (β) of 2 is first formed from a massive gas clump developed in a dwarf galaxy. Such cluster complexes and β = 2 are observed and expected from hierarchical star formation. The most massive star cluster ('main cluster'), which is the progenitor of a GC, can accrete gas ejected from asymptotic giant branch (AGB) stars initially in the cluster and other low-mass clusters before the clusters are tidally stripped or destroyed to become field stars in the dwarf. The SCC is initially embedded in a giant gas hole created by numerous supernovae of the SCC so that cold gas outside the hole can be accreted on to the main cluster later. New stars formed from the accreted gas have chemical abundances that are different from those of the original SCC. Using hydrodynamical simulations of GC formation based on this scenario, we show that the main cluster with the initial mass as large as [2-5] × 105 M⊙ can accrete more than 105 M⊙ gas from AGB stars of the SCC. We suggest that merging of hierarchical SSCs can play key roles in stellar halo formation around GCs and self-enrichment processes in the early phase of GC formation.

  17. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-12-10

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction inmore » Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.« less

  18. The origin of discrete multiple stellar populations in globular clusters

    NASA Astrophysics Data System (ADS)

    Bekki, K.; Jeřábková, T.; Kroupa, P.

    2017-10-01

    Recent observations have revealed that at least several old globular clusters (GCs) in the Galaxy have discrete distributions of stars along the Mg-Al anticorrelation. In order to discuss this recent observation, we construct a new one-zone GC formation model in which the maximum stellar mass (mmax) in the initial mass function of stars in a forming GC depends on the star formation rate, as deduced from independent observations. We investigate the star formation histories of forming GCs. The principal results are as follows. About 30 Myr after the formation of the first generation (1G) of stars within a particular GC, new stars can be formed from ejecta from asymptotic giant branch (AGB) stars of 1G. However, the formation of this second generation (2G) of stars can last only for [10-20] Myr because the most massive SNe of 2G expel all of the remaining gas. The third generation (3G) of stars are then formed from AGB ejecta ≈30 Myr after the truncation of 2G star formation. This cycle of star formation followed by its truncation by SNe can continue until all AGB ejecta is removed from the GC by some physical process. Thus, it is inevitable that GCs have discrete multiple stellar populations in the [Mg/Fe]-[Al/Fe] diagram. Our model predicts that low-mass GCs are unlikely to have discrete multiple stellar populations, and young massive clusters may not have massive OB stars owing to low mmax (<[20-30] M⊙) during the secondary star formation.

  19. Constraints on Helium Enhancement in the Globular Cluster M3 (NGC 5272): The Horizontal Branch Test

    NASA Technical Reports Server (NTRS)

    Catelan, M.; Grundahl, F.; Sweigart, A. V.; Valcarce, A. A. R.; Cortes, C.

    2007-01-01

    It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is a common feature among globular star clusters. In this scenario, such a helium enhancement would be particularly apparent in the enhanced luminosity of thc blue horizontal branch (HB) stars compared to the red HB stars. In this Letter, wc test this scenario in the case of the Galactic globular cluster M3 (NGC 5272), using high-precision Stromgren photometry and spectroscopic gravities for blue HB stars. We find that any helium enhancement among the cluster's blue HB stars must be significantly less than I%, thus ruling out the much higher helium enhancements that have been proposed in the literature.

  20. NGC 6362: THE LEAST MASSIVE GLOBULAR CLUSTER WITH CHEMICALLY DISTINCT MULTIPLE POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mucciarelli, Alessio; Dalessandro, Emanuele; Ferraro, Francesco R.

    2016-06-20

    We present the first measure of Fe and Na abundances in NGC 6362, a low-mass globular cluster (GC) where first- and second-generation stars are fully spatially mixed. A total of 160 member stars (along the red giant branch (RGB) and the red horizontal branch (RHB)) were observed with the multi-object spectrograph FLAMES at the Very Large Telescope. We find that the cluster has an iron abundance of [Fe/H] = −1.09 ± 0.01 dex, without evidence of intrinsic dispersion. On the other hand, the [Na/Fe] distribution turns out to be intrinsically broad and bimodal. The Na-poor and Na-rich stars populate, respectively,more » the bluest and the reddest RGBs detected in the color–magnitude diagrams including the U filter. The RGB is composed of a mixture of first- and second-generation stars in a similar proportion, while almost all the RHB stars belong to the first cluster generation. To date, NGC 6362 is the least massive GC where both the photometric and spectroscopic signatures of multiple populations have been detected.« less

  1. Dynamical evolution of stars and gas of young embedded stellar sub-clusters

    NASA Astrophysics Data System (ADS)

    Sills, Alison; Rieder, Steven; Scora, Jennifer; McCloskey, Jessica; Jaffa, Sarah

    2018-06-01

    We present simulations of the dynamical evolution of young embedded star clusters. Our initial conditions are directly derived from X-ray, infrared, and radio observations of local systems, and our models evolve both gas and stars simultaneously. Our regions begin with both clustered and extended distributions of stars, and a gas distribution that can include a filamentary structure in addition to gas surrounding the stellar sub-clusters. We find that the regions become spherical, monolithic, and smooth quite quickly, and that the dynamical evolution is dominated by the gravitational interactions between the stars. In the absence of stellar feedback, the gas moves gently out of the centre of our regions but does not have a significant impact on the motions of the stars at the earliest stages of cluster formation. Our models at later times are consistent with observations of similar regions in the local neighbourhood. We conclude that the evolution of young protostar clusters is relatively insensitive to reasonable choices of initial conditions. Models with more realism, such as an initial population of binary and multiple stars and ongoing star formation, are the next step needed to confirm these findings.

  2. Age as a major factor in the onset of multiple populations in stellar clusters

    NASA Astrophysics Data System (ADS)

    Martocchia, S.; Cabrera-Ziri, I.; Lardo, C.; Dalessandro, E.; Bastian, N.; Kozhurina-Platais, V.; Usher, C.; Niederhofer, F.; Cordero, M.; Geisler, D.; Hollyhead, K.; Kacharov, N.; Larsen, S.; Li, C.; Mackey, D.; Hilker, M.; Mucciarelli, A.; Platais, I.; Salaris, M.

    2018-01-01

    It is now well established that globular clusters (GCs) exhibit star-to-star light-element abundance variations (known as multiple populations, MPs). Such chemical anomalies have been found in (nearly) all the ancient GCs (more than 10 Gyr old) of our Galaxy and its close companions, but so far no model for the origin of MPs is able to reproduce all the relevant observations. To gain new insights into this phenomenon, we have undertaken a photometric Hubble Space Telescope survey to study clusters with masses comparable to that of old GCs, where MPs have been identified, but with significantly younger ages. Nine clusters in the Magellanic Clouds with ages between ∼1.5 and 11 Gyr have been targeted in this survey. We confirm the presence of MPs in all clusters older than 6 Gyr and we add NGC 1978 to the group of clusters for which MPs have been identified. With an age of ∼2 Gyr, NGC 1978 is the youngest cluster known to host chemical abundance spreads found to date. We do not detect evident star-to-star variations for slightly younger massive clusters (∼1.7 Gyr), thus pointing towards an unexpected age dependence for the onset of MPs. This discovery suggests that the formation of MPs is not restricted to the early Universe and that GCs and young massive clusters share common formation and evolutionary processes.

  3. Mass Modeling of Frontier Fields Cluster MACS J1149.5+2223 Using Strong and Weak Lensing

    NASA Astrophysics Data System (ADS)

    Finney, Emily Quinn; Bradač, Maruša; Huang, Kuang-Han; Hoag, Austin; Morishita, Takahiro; Schrabback, Tim; Treu, Tommaso; Borello Schmidt, Kasper; Lemaux, Brian C.; Wang, Xin; Mason, Charlotte

    2018-05-01

    We present a gravitational-lensing model of MACS J1149.5+2223 using ultra-deep Hubble Frontier Fields imaging data and spectroscopic redshifts from HST grism and Very Large Telescope (VLT)/MUSE spectroscopic data. We create total mass maps using 38 multiple images (13 sources) and 608 weak-lensing galaxies, as well as 100 multiple images of 31 star-forming regions in the galaxy that hosts supernova Refsdal. We find good agreement with a range of recent models within the HST field of view. We present a map of the ratio of projected stellar mass to total mass (f ⋆) and find that the stellar mass fraction for this cluster peaks on the primary BCG. Averaging within a radius of 0.3 Mpc, we obtain a value of < {f}\\star > ={0.012}-0.003+0.004, consistent with other recent results for this ratio in cluster environments, though with a large global error (up to δf ⋆ = 0.005) primarily due to the choice of IMF. We compare values of f ⋆ and measures of star formation efficiency for this cluster to other Hubble Frontier Fields clusters studied in the literature, finding that MACS1149 has a higher stellar mass fraction than these other clusters but a star formation efficiency typical of massive clusters.

  4. Mutiple Stellar Populations in Blanco DECam Bulge Survey Globular Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Doryan; Pilachowski, C. A.; Johnson, C. I.; Rich, R. Michael; Clarkson, William I.; Young, M.; Michael, S.

    2018-01-01

    Preliminary SDSS ugrizY photometric observations of globular cluster stars included in the Blanco DECam Bulge Survey (BDBS) were examined to determine the suitability of these data to characterize stellar populations within clusters. The BDBS fields include around two dozen globular clusters, including the iron-complex cluster M22 and the pulsar-rich cluster Terzan 5. Many globular clusters show evidence for multiple stellar populations as a spread in the u-g color of stars in a given phase of stellar evolution, and in some clusters, the populations have different radial distributions. BDBS clusters with low and/or non-variable reddening and long dynamical mixing time scales were selected for study, and photometry for RGB and main sequence stars within two half-light radii from the center of each cluster was extracted from the BDBS preliminary catalog. Field contamination was reduced in each candidate cluster by removing all stars more than a tenth of a magnitude from the best-fit fiducial curves following the g-r vs r color-magnitude diagram. The remaining stars were split into separate populations based on u-g color, and effective cumulative distribution functions vs. half-light radius were compared to identify differences in the populations’ radial distributions.

  5. Exploring the Dynamics of Exoplanetary Systems in a Young Stellar Cluster

    NASA Astrophysics Data System (ADS)

    Thornton, Jonathan Daniel; Glaser, Joseph Paul; Wall, Joshua Edward

    2018-01-01

    I describe a dynamical simulation of planetary systems in a young star cluster. One rather arbitrary aspect of cluster simulations is the choice of initial conditions. These are typically chosen from some standard model, such as Plummer or King, or from a “fractal” distribution to try to model young clumpy systems. Here I adopt the approach of realizing an initial cluster model directly from a detailed magnetohydrodynamical model of cluster formation from a 1000-solar-mass interstellar gas cloud, with magnetic fields and radiative and wind feedback from massive stars included self-consistently. The N-body simulation of the stars and planets starts once star formation is largely over and feedback has cleared much of the gas from the region where the newborn stars reside. It continues until the cluster dissolves in the galactic field. Of particular interest is what would happen to the free-floating planets created in the gas cloud simulation. Are they captured by a star or are they ejected from the cluster? This method of building a dynamical cluster simulation directly from the results of a cluster formation model allows us to better understand the evolution of young star clusters and enriches our understanding of extrasolar planet development in them. These simulations were performed within the AMUSE simulation framework, and combine N-body, multiples and background potential code.

  6. Stellar Content and Star Formation in Young Clusters Influenced by Massive Stars

    NASA Astrophysics Data System (ADS)

    Jose, J.

    2014-09-01

    Star Formation (SF) in extreme environment is always challenging and can be significantly different from that in quiet environments. This study presents the comprehensive multi-wavelength (optical, NIR, MIR and radio) observational analysis of three Galactic starforming regions associated with H II regions/young clusters and located at > 2 kpc, which are found to be evolving under the influence of massive stars within their vicinity. The candidate massive stars, young stellar objects, their mass, age, age spread, the form of K-band Luminosity Function (KLF), Initial Mass Function (IMF) and a possible formation history of each region are studied. The major results on Sh2-252, an extended H II region that appears to be undergoing multiple episodes of SF, are highlighted. Our analysis shows that all the regions are undergoing complex SF activity and the new generation of stars in each region seem to be an outcome of the influence by the presence of massive stars within them. SF process in these regions are likely to be multi-fold and the results suggest that multiple modes of triggering mechanism and hierarchial modes of SF are a common phenomena within young clusters.

  7. Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick L.; Diego, Jose M.; Rodney, Steven; Kaiser, Nick; Broadhurst, Tom; Zitrin, Adi; Treu, Tommaso; Pérez-González, Pablo G.; Morishita, Takahiro; Jauzac, Mathilde; Selsing, Jonatan; Oguri, Masamune; Pueyo, Laurent; Ross, Timothy W.; Filippenko, Alexei V.; Smith, Nathan; Hjorth, Jens; Cenko, S. Bradley; Wang, Xin; Howell, D. Andrew; Richard, Johan; Frye, Brenda L.; Jha, Saurabh W.; Foley, Ryan J.; Norman, Colin; Bradac, Marusa; Zheng, Weikang; Brammer, Gabriel; Benito, Alberto Molino; Cava, Antonio; Christensen, Lise; de Mink, Selma E.; Graur, Or; Grillo, Claudio; Kawamata, Ryota; Kneib, Jean-Paul; Matheson, Thomas; McCully, Curtis; Nonino, Mario; Pérez-Fournon, Ismael; Riess, Adam G.; Rosati, Piero; Schmidt, Kasper Borello; Sharon, Keren; Weiner, Benjamin J.

    2018-04-01

    Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of up to 50. Here we report an image of an individual star at redshift z = 1.49 (dubbed MACS J1149 Lensed Star 1) magnified by more than ×2,000. A separate image, detected briefly 0.26″ from Lensed Star 1, is probably a counterimage of the first star demagnified for multiple years by an object of ≳3 solar masses in the cluster. For reasonable assumptions about the lensing system, microlensing fluctuations in the stars' light curves can yield evidence about the mass function of intracluster stars and compact objects, including binary fractions and specific stellar evolution and supernova models. Dark-matter subhaloes or massive compact objects may help to account for the two images' long-term brightness ratio.

  8. A critical assessment of models for the origin of multiple populations in globular clusters

    NASA Astrophysics Data System (ADS)

    Bastian, Nate

    2017-03-01

    A number of scenarios have been put forward to explain the origin of the chemical anomalies (and resulting complex colour-magnitude diagrams) observed in globular clusters (GCs), namely the AGB, Fast Rotating Massive Star, Very Massive Star, and Early Disc Accretion scenarios. We compare the predictions of these scenarios with a range of observations (including young massive clusters (YMCs), chemical patterns, and GC population properties) and find that all models are inconsistent with observations. In particular, YMCs do not show evidence for multiple epochs of star-formation and appear to be gas free by an age of ~ 3 Myr. Also, the chemical patterns displayed in GCs vary from one to the next in such a way that cannot be reproduced by standard nucleosynthetic yields. Finally, we show that the ``mass budget problem'' for the scenarios cannot be solved by invoking heavy cluster mass loss (i.e. that clusters were 10-100 times more massive at birth) as this solution makes basic predictions about the GC population that are inconsistent with observations. We conclude that none of the proposed scenarios can explain the multiple population phenomenon, hence alternative theories are needed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalessandro, E.; Lapenna, E.; Mucciarelli, A.

    We used a combination of optical and near-UV Hubble Space Telescope photometry and FLAMES/ESO-VLT high-resolution spectroscopy to characterize the stellar content of the old and massive globular cluster (GC) NGC 121 in the Small Magellanic Cloud (SMC). We report on the detection of multiple stellar populations, the first case in the SMC stellar cluster system. This result enforces the emerging scenario in which the presence of multiple stellar populations is a distinctive-feature of old and massive GCs regardless of the environment, as far as the light-element distribution is concerned. We find that second-generation (SG) stars are more centrally concentrated thanmore » first-generation (FG) ones. More interestingly, at odds with what is typically observed in Galactic GCs, we find that NGC 121 is the only cluster so far to be dominated by FG stars that account for more than 65% of the total cluster mass. In the framework where GCs were born with 90%–95% of FG stars, this observational finding would suggest that either NGC 121 experienced a milder stellar mass-loss with respect to Galactic GCs or it formed a smaller fraction of SG stars.« less

  10. New insights on multiplicity and clustering in Taurus.

    NASA Astrophysics Data System (ADS)

    Joncour, Isabelle; Duchene, Gaspard; Moraux, Estelle; Mundy, Lee

    2018-01-01

    Multiplicity and clustering of young stars are critical clues to constraint star formation process. The Taurus molecular complex is the archetype of a quiescent star forming region that may retain primeval signature of star formation.Using statistical and clustering tools such as nearest neighbor statistics, correlation functions and the density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, this work reveals new spatial substructures in Taurus.We have identified unexpected ultra wide pairs (UWPs) candidates of high order multiplicity in Taurus in the 5-60 kAU separation range (Joncour et al 2017), beyond the separation assessed for wide pairs (Kraus & Hillenbrand 2009).Our work reveals 20 local stellar substructures, the Nested Elementary Structures (NESTs). These NESTs contain nearly half the stars of Taurus and 75% of the Class 0/I objects probing that they are the preferred sites of star formation (Joncour et al, sub.). The NESTs size ranges from few kAU up to 80 kAU making a length scale bridge between wide pairs and loose group (few hundreds kAU, Kirk & Myers, 2011). The NESTs mass ranges from 0.5-10 solar mass. The balance between Class I, II and III in NESTs suggests that they may be ordered as an evolutionary temporal scheme, some of them got infertile, while other shelter stars in infancy.The UWPs and the NESTs may be pristine imprints of their spatial configuration at birth. The UWPs population may result from a cascade fragmentation scenario of the natal molecular core. They could be the older counterparts, to the 0.5 Myr prestellar cores/Class 0 multiple objects observed at radio/millimeter wavelengths (Tobin et al 2010, 2016) and the precursors of the large number of UWPs (10–100 kAU) recently identified in older moving groups (Floriano-Alonso et al, 2015 ; Elliot et al 2016). The NESTs may result from the gravitational collapse of a gas clump that fragments to give a tight collection of stars within few millions years.This project has been partly supported by the StarFormMapper project funded by the European Union's Horizon 2020 Research and Innovation Action (RIA) program under grant agreement number 687528.

  11. The Not So Simple Globular Cluster ω Cen. I. Spatial Distribution of the Multiple Stellar Populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamida, A.; Saha, A.; Strampelli, G.

    2017-04-01

    We present a multi-band photometric catalog of ≈1.7 million cluster members for a field of view of ≈2° × 2° across ω Cen. Photometry is based on images collected with the Dark Energy Camera on the 4 m Blanco telescope and the Advanced Camera for Surveys on the Hubble Space Telescope . The unprecedented photometric accuracy and field coverage allowed us, for the first time, to investigate the spatial distribution of ω Cen multiple populations from the core to the tidal radius, confirming its very complex structure. We found that the frequency of blue main-sequence stars is increasing compared to red main-sequencemore » stars starting from a distance of ≈25′ from the cluster center. Blue main-sequence stars also show a clumpy spatial distribution, with an excess in the northeast quadrant of the cluster pointing toward the direction of the Galactic center. Stars belonging to the reddest and faintest red-giant branch also show a more extended spatial distribution in the outskirts of ω Cen, a region never explored before. Both these stellar sub-populations, according to spectroscopic measurements, are more metal-rich compared to the cluster main stellar population. These findings, once confirmed, make ω Cen the only stellar system currently known where metal-rich stars have a more extended spatial distribution compared to metal-poor stars. Kinematic and chemical abundance measurements are now needed for stars in the external regions of ω Cen to better characterize the properties of these sub-populations.« less

  12. Dynamical evolution and spatial mixing of multiple population globular clusters

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; McMillan, Stephen L. W.; D'Antona, Francesca; D'Ercole, Annibale

    2013-03-01

    Numerous spectroscopic and photometric observational studies have provided strong evidence for the widespread presence of multiple stellar populations in globular clusters. In this paper, we study the long-term dynamical evolution of multiple population clusters, focusing on the evolution of the spatial distributions of the first- (FG) and second-generation (SG) stars. In previous studies, we have suggested that SG stars formed from the ejecta of FG AGB stars are expected initially to be concentrated in the cluster inner regions. Here, by means of N-body simulations, we explore the time-scales and the dynamics of the spatial mixing of the FG and the SG populations and their dependence on the SG initial concentration. Our simulations show that, as the evolution proceeds, the radial profile of the SG/FG number ratio, NSG/NFG, is characterized by three regions: (1) a flat inner part; (2) a declining part in which FG stars are increasingly dominant and (3) an outer region where the NSG/NFG profile flattens again (the NSG/NFG profile may rise slightly again in the outermost cluster regions). Until mixing is complete and the NSG/NFG profile is flat over the entire cluster, the radial variation of NSG/NFG implies that the fraction of SG stars determined by observations covering a limited range of radial distances is not, in general, equal to the SG global fraction, (NSG/NFG)glob. The distance at which NSG/NFG equals (NSG/NFG)glob is approximately between 1 and 2 cluster half-mass radii. The time-scale for complete mixing depends on the SG initial concentration, but in all cases complete mixing is expected only for clusters in advanced evolutionary phases, having lost at least 60-70 per cent of their mass due to two-body relaxation (in addition to the early FG loss due to the cluster expansion triggered by SNII ejecta and gas expulsion).The results of our simulations suggest that in many Galactic globular clusters the SG should still be more spatially concentrated than the FG.

  13. Globular cluster formation with multiple stellar populations: self-enrichment in fractal massive molecular clouds

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji

    2017-08-01

    Internal chemical abundance spreads are one of fundamental properties of globular clusters (GCs) in the Galaxy. In order to understand the origin of such abundance spreads, we numerically investigate GC formation from massive molecular clouds (MCs) with fractal structures using our new hydrodynamical simulations with star formation and feedback effects of core-collapse supernovae (SNe) and asymptotic giant branch (AGB) stars. We particularly investigate star formation from gas chemically contaminated by SNe and AGB stars ('self-enrichment') in forming GCs within MCs with different initial conditions and environments. The principal results are as follows. GCs with multiple generations of stars can be formed from merging of hierarchical star cluster complexes that are developed from high-density regions of fractal MCs. Feedback effects of SNe and AGB stars can control the formation efficiencies of stars formed from original gas of MCs and from gas ejected from AGB stars. The simulated GCs have strong radial gradients of helium abundances within the central 3 pc. The original MC masses need to be as large as 107 M⊙ for a canonical initial stellar mass function (IMF) so that the final masses of stars formed from AGB ejecta can be ˜105 M⊙. Since star formation from AGB ejecta is rather prolonged (˜108 yr), their formation can be strongly suppressed by SNe of the stars themselves. This result implies that the so-called mass budget problem is much more severe than ever thought in the self-enrichment scenario of GC formation and thus that IMF for the second generation of stars should be 'top-light'.

  14. Applying Machine Learning to Star Cluster Classification

    NASA Astrophysics Data System (ADS)

    Fedorenko, Kristina; Grasha, Kathryn; Calzetti, Daniela; Mahadevan, Sridhar

    2016-01-01

    Catalogs describing populations of star clusters are essential in investigating a range of important issues, from star formation to galaxy evolution. Star cluster catalogs are typically created in a two-step process: in the first step, a catalog of sources is automatically produced; in the second step, each of the extracted sources is visually inspected by 3-to-5 human classifiers and assigned a category. Classification by humans is labor-intensive and time consuming, thus it creates a bottleneck, and substantially slows down progress in star cluster research.We seek to automate the process of labeling star clusters (the second step) through applying supervised machine learning techniques. This will provide a fast, objective, and reproducible classification. Our data is HST (WFC3 and ACS) images of galaxies in the distance range of 3.5-12 Mpc, with a few thousand star clusters already classified by humans as a part of the LEGUS (Legacy ExtraGalactic UV Survey) project. The classification is based on 4 labels (Class 1 - symmetric, compact cluster; Class 2 - concentrated object with some degree of asymmetry; Class 3 - multiple peak system, diffuse; and Class 4 - spurious detection). We start by looking at basic machine learning methods such as decision trees. We then proceed to evaluate performance of more advanced techniques, focusing on convolutional neural networks and other Deep Learning methods. We analyze the results, and suggest several directions for further improvement.

  15. Observing multiple populations in globular clusters with the ESO archive: NGC 6388 reloaded

    NASA Astrophysics Data System (ADS)

    Carretta, Eugenio; Bragaglia, Angela

    2018-06-01

    The metal-rich and old bulge globular cluster (GC) NGC 6388 is one of the most massive Galactic GCs (M 106 M⊙). However, the spectroscopic properties of its multiple stellar populations rested only on 32 red giants (only 7 of which observed with UVES, the others with GIRAFFE), given the difficulties in observing a rather distant cluster, heavily contaminated by bulge and disc field stars. We bypassed the problem using the resources of the largest telescope facility ever: the European Southern Observatory (ESO) archive. By selecting member stars identified by other programmes, we derive atmospheric parameters and the full set of abundances for 15 species from high-resolution UVES spectra of another 17 red giant branch stars in NGC 6388. We confirm that no metallicity dispersion is detectable in this GC. About 30% of the stars show the primordial composition of first-generation stars, about 20% present an extremely modified second-generation composition, and 50% have an intermediate composition. The stars are clearly distributed in the Al-O and Na-O planes in three discrete groups. We find substantial hints that more than a single class of polluters is required to reproduce the composition of the intermediate component in NGC 6388. In the heavily polluted component the sum Mg+Al increases as Al increases. The sum Mg+Al+Si is constant, and is the fossil record of hot H-burning at temperatures higher than about 70 MK in the first-generation polluters that contributed to form multiple populations in this cluster. Based on observations collected at ESO telescopes under programmes 073.D-0211 (propr ietary), and 073.D-0760, 381.D-0329, 095.D-0834 (archival).

  16. Are the gyro-ages of field stars underestimated?

    NASA Astrophysics Data System (ADS)

    Kovács, Géza

    2015-09-01

    By using the current photometric rotational data on eight galactic open clusters, we show that the evolutionary stellar model (isochrone) ages of these clusters are tightly correlated with the period shifts applied to the (B - V)0-Prot ridges that optimally align these ridges to the one defined by Praesepe and the Hyades. On the other hand, when the traditional Skumanich-type multiplicative transformation is used, the ridges become far less aligned due to the age-dependent slope change introduced by the period multiplication. Therefore, we employ our simple additive gyro-age calibration on various datasets of Galactic field stars to test its applicability. We show that, in the overall sense, the gyro-ages are systematically greater than the isochrone ages. The difference could exceed several giga years, depending on the stellar parameters. Although the age overlap between the open clusters used in the calibration and the field star samples is only partial, the systematic difference indicates the limitation of the currently available gyro-age methods and suggests that the rotation of field stars slows down with a considerably lower speed than we would expect from the simple extrapolation of the stellar rotation rates in open clusters.

  17. Not all stars form in clusters - measuring the kinematics of OB associations with Gaia

    NASA Astrophysics Data System (ADS)

    Ward, Jacob L.; Kruijssen, J. M. Diederik

    2018-04-01

    It is often stated that star clusters are the fundamental units of star formation and that most (if not all) stars form in dense stellar clusters. In this monolithic formation scenario, low-density OB associations are formed from the expansion of gravitationally bound clusters following gas expulsion due to stellar feedback. N-body simulations of this process show that OB associations formed this way retain signs of expansion and elevated radial anisotropy over tens of Myr. However, recent theoretical and observational studies suggest that star formation is a hierarchical process, following the fractal nature of natal molecular clouds and allowing the formation of large-scale associations in situ. We distinguish between these two scenarios by characterizing the kinematics of OB associations using the Tycho-Gaia Astrometric Solution catalogue. To this end, we quantify four key kinematic diagnostics: the number ratio of stars with positive radial velocities to those with negative radial velocities, the median radial velocity, the median radial velocity normalized by the tangential velocity, and the radial anisotropy parameter. Each quantity presents a useful diagnostic of whether the association was more compact in the past. We compare these diagnostics to models representing random motion and the expanding products of monolithic cluster formation. None of these diagnostics show evidence of expansion, either from a single cluster or multiple clusters, and the observed kinematics are better represented by a random velocity distribution. This result favours the hierarchical star formation model in which a minority of stars forms in bound clusters and large-scale, hierarchically structured associations are formed in situ.

  18. Hubble Revisits a Globular Cluster’s Age

    NASA Image and Video Library

    2014-08-13

    This new NASA/ESA Hubble Space Telescope image shows the globular cluster IC 4499. Globular clusters are big balls of old stars that orbit around their host galaxy. It has long been believed that all the stars within a globular cluster form at the about same time, a property which can be used to determine the cluster's age. For more massive globulars however, detailed observations have shown that this is not entirely true — there is evidence that they instead consist of multiple populations of stars born at different times. One of the driving forces behind this behavior is thought to be gravity: more massive globulars manage to grab more gas and dust, which can then be transformed into new stars. IC 4499 is a somewhat special case. Its mass lies somewhere between low-mass globulars, which show a single generation build-up, and the more complex and massive globulars which can contain more than one generation of stars. By studying objects like IC 4499 astronomers can therefore explore how mass affects a cluster's contents. Astronomers found no sign of multiple generations of stars in IC 4499 — supporting the idea that less massive clusters in general only consist of a single stellar generation. Hubble observations of IC 4499 have also helped to pinpoint the cluster's age: observations of this cluster from the 1990s suggested a puzzlingly young age when compared to other globular clusters within the Milky Way. However, since those first estimates new Hubble data have been obtained and it has been found to be much more likely that IC 4499 is actually roughly the same age as other Milky Way clusters at approximately 12 billion years old. Credit: ESA and NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Rapidly rotating second-generation progenitors for the 'blue hook' stars of ω Centauri.

    PubMed

    Tailo, Marco; D'Antona, Francesca; Vesperini, Enrico; Di Criscienzo, Marcella; Ventura, Paolo; Milone, Antonino P; Bellini, Andrea; Dotter, Aaron; Decressin, Thibaut; D'Ercole, Annibale; Caloi, Vittoria; Capuzzo-Dolcetta, Roberto

    2015-07-16

    Horizontal branch stars belong to an advanced stage in the evolution of the oldest stellar galactic population, occurring either as field halo stars or grouped in globular clusters. The discovery of multiple populations in clusters that were previously believed to have single populations gave rise to the currently accepted theory that the hottest horizontal branch members (the 'blue hook' stars, which had late helium-core flash ignition, followed by deep mixing) are the progeny of a helium-rich 'second generation' of stars. It is not known why such a supposedly rare event (a late flash followed by mixing) is so common that the blue hook of ω Centauri contains approximately 30 per cent of the horizontal branch stars in the cluster, or why the blue hook luminosity range in this massive cluster cannot be reproduced by models. Here we report that the presence of helium core masses up to about 0.04 solar masses larger than the core mass resulting from evolution is required to solve the luminosity range problem. We model this by taking into account the dispersion in rotation rates achieved by the progenitors, whose pre-main-sequence accretion disk suffered an early disruption in the dense environment of the cluster's central regions, where second-generation stars form. Rotation may also account for frequent late-flash-mixing events in massive globular clusters.

  20. Stellar age spreads in clusters as imprints of cluster-parent clump densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmentier, G.; Grebel, E. K.; Pfalzner, S.

    2014-08-20

    It has recently been suggested that high-density star clusters have stellar age distributions much narrower than that of the Orion Nebula Cluster, indicating a possible trend of narrower age distributions for denser clusters. We show this effect to likely arise from star formation being faster in gas with a higher density. We model the star formation history of molecular clumps in equilibrium by associating a star formation efficiency per free-fall time, ε{sub ff}, to their volume density profile. We focus on the case of isothermal spheres and we obtain the evolution with time of their star formation rate. Our modelmore » predicts a steady decline of the star formation rate, which we quantify with its half-life time, namely, the time needed for the star formation rate to drop to half its initial value. Given the uncertainties affecting the star formation efficiency per free-fall time, we consider two distinct values: ε{sub ff} = 0.1 and ε{sub ff} = 0.01. When ε{sub ff} = 0.1, the half-life time is of the order of the clump free-fall time, τ{sub ff}. As a result, the age distributions of stars formed in high-density clumps have smaller full-widths at half-maximum than those of stars formed in low-density clumps. When the star formation efficiency per free-fall time is 0.01, the half-life time is 10 times longer, i.e., 10 clump free-fall times. We explore what happens if the duration of star formation is shorter than 10τ{sub ff}, that is, if the half-life time of the star formation rate cannot be defined. There, we build on the invariance of the shape of the young cluster mass function to show that an anti-correlation between the clump density and the duration of star formation is expected. We therefore conclude that, regardless of whether the duration of star formation is longer than the star formation rate half-life time, denser molecular clumps yield narrower star age distributions in clusters. Published densities and stellar age spreads of young clusters and star-forming regions actually suggest that the timescale for star formation is of order 1-4τ{sub ff}. We also discuss how the age bin size and uncertainties in stellar ages affect our results. We conclude that there is no need to invoke the existence of multiple cluster formation mechanisms to explain the observed range of stellar age spreads in clusters.« less

  1. A Photometric Search for Planets in the Open Cluster NGC 7086

    NASA Astrophysics Data System (ADS)

    Rosvick, Joanne M.; Robb, Russell

    2006-12-01

    In an attempt to discover short-period, Jupiter-mass planets orbiting solar-type stars in open clusters, we searched for planetary transits in the populous and relatively unstudied open cluster NGC 7086. A color-magnitude diagram constructed from new B and V photometry is presented, along with revised estimates of the cluster's color excess, distance modulus, and age. Several turnoff stars were observed spectroscopically in order to determine a color excess of E(B-V)=0.83+/-0.02. Empirically fitting the main sequences of two young open clusters and the semiempirical zero-age main sequence of Vandenberg and Poll yielded a distance modulus of (V-MV)=13.4+/-0.3 mag. This corresponds to a true distance modulus of (m-M)0=10.8 mag or a distance of 1.5 kpc to NGC 7086. These values were used with isochrones from the Padova group to obtain a cluster age of 100 Myr. Eleven nights of R-band photometry were used to search for planetary transits. Differential magnitudes were constructed for each star in the cluster. Light curves for each star were produced on a night-to-night basis and inspected for variability. No planetary transits were apparent; however, some interesting variable stars were discovered: a pulsating variable that appears to be a member of the γ Dor class and four possible eclipsing binary stars, one of which actually may be a multiple system.

  2. Near-infrared variability study of the central 2.3 × 2.3 arcmin2 of the Galactic Centre - II. Identification of RR Lyrae stars in the Milky Way nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Rich, R. Michael; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-11-01

    Because of strong and spatially highly variable interstellar extinction and extreme source crowding, the faint (K ≥ 15) stellar population in the Milky Way's nuclear star cluster is still poorly studied. RR Lyrae stars provide us with a tool to estimate the mass of the oldest, relative dim stellar population. Recently, we analysed HST/WFC3/IR observations of the central 2.3 × 2.3 arcmin2 of the Milky Way and found 21 variable stars with periods between 0.2 and 1 d. Here, we present a further comprehensive analysis of these stars. The period-luminosity relationship of RR Lyrae is used to derive their extinctions and distances. Using multiple approaches, we classify our sample as 4 RRc stars, 4 RRab stars, 3 RRab candidates and 10 binaries. Especially, the four RRab stars show sawtooth light curves and fall exactly on to the Oosterhoff I division in the Bailey diagram. Compared to the RRab stars reported by Minniti et al., our new RRab stars have higher extinction (AK > 1.8) and should be closer to the Galactic Centre. The extinction and distance of one RRab stars match those for the Milky Way's nuclear star cluster given in previous works. We perform simulations and find that after correcting for incompleteness, there could be not more than 40 RRab stars within the Milky Way's nuclear star cluster and in our field of view. Through comparing with the known globular clusters of the Milky Way, we estimate that if there exists an old, metal-poor (-1.5 < [Fe/H] < -1) stellar population in the Milky Way nuclear star cluster on a scale of 5 × 5 pc, then it contributes at most 4.7 × 105 M⊙, I.e. ˜18 per cent of the stellar mass.

  3. New Asteroseismic Scaling Relations Based on the Hayashi Track Relation Applied to Red Giant Branch Stars in NGC 6791 and NGC 6819

    NASA Astrophysics Data System (ADS)

    Wu, T.; Li, Y.; Hekker, S.

    2014-01-01

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track (\\sqrt{T_eff} \\sim g^pR^q) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and νmax (frequency of maximum oscillation power). The Δν and νmax values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and νmax, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - νmax relation for red giant branch stars.

  4. Chemical Abundances of Two Stars in the Large Magellanic Cloud Globular Cluster NGC 1718

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; McWilliam, Andrew; Wallerstein, George

    2017-05-01

    Detailed chemical abundances of two stars in the intermediate-age Large Magellanic Cloud (LMC) globular cluster NGC 1718 are presented, based on high-resolution spectroscopic observations with the MIKE spectrograph. The detailed abundances confirm NGC 1718 to be a fairly metal-rich cluster, with an average [Fe/H] ˜ -0.55 ± 0.01. The two red giants appear to have primordial O, Na, Mg and Al abundances, with no convincing signs of a composition difference between the two stars - hence, based on these two stars, NGC 1718 shows no evidence for hosting multiple populations. The Mg abundance is lower than Milky Way field stars, but is similar to LMC field stars at the same metallicity. The previous claims of very low [Mg/Fe] in NGC 1718 are therefore not supported in this study. Other abundances (Si, Ca, Ti, V, Mn, Ni, Cu, Rb, Y, Zr, La and Eu) all follow the LMC field star trend, demonstrating yet again that (for most elements) globular clusters trace the abundances of their host galaxy's field stars. Similar to the field stars, NGC 1718 is found to be mildly deficient in explosive α-elements, but moderately to strongly deficient in O, Na, Mg, Al and Cu, elements that form during hydrostatic burning in massive stars. NGC 1718 is also enhanced in La, suggesting that it was enriched in ejecta from metal-poor asymptotic giant branch stars.

  5. Multiple Stellar Populations in Star Clusters

    NASA Astrophysics Data System (ADS)

    Piotto, G.

    2013-09-01

    For half a century it had been astronomical dogma that a globular cluster (GC) consists of stars born at the same time out of the same material, and this doctrine has borne rich fruits. In recent years, high resolution spectroscopy and high precision photometry (from space and ground-based observations) have shattered this paradigm, and the study of GC populations has acquired a new life that is now moving it in new directions. Evidence of multiple stellar populations have been identified in the color-magnitude diagrams of several Galactic and Magellanic Cloud GCs where they had never been imagined before.

  6. Variable Stars in M13. II.The Red Variables and the Globular Cluster Period-Luminosity Relation

    NASA Astrophysics Data System (ADS)

    Osborn, W.; Layden, A.; Kopacki, G.; Smith, H.; Anderson, M.; Kelly, A.; McBride, K.; Pritzl, B.

    2017-06-01

    New CCD observations have been combined with archival data to investigate the nature of the red variables in the globular cluster M13. Mean magnitudes, colors and variation ranges on the UBVIC system have been determined for the 17 cataloged red variables. 15 of the stars are irregular or semi-regular variables that lie at the top of the red giant branch in the color-magnitude diagram. Two stars are not, including one with a well-defined period and a light curve shape indicating it is an ellipsoidal or eclipsing variable. All stars redder than (V-IC)0=1.38 mag vary, with the amplitudes being larger with increased stellar luminosity and with bluer filter passband. Searches of the data for periodicities yielded typical variability cycle times ranging from 30 d up to 92 d for the most luminous star. Several stars have evidence of multiple periods. The stars' period-luminosity diagram compared to those from microlensing survey data shows that most M13 red variables are overtone pulsators. Comparison with the diagrams for other globular clusters shows a correlation between red variable luminosity and cluster metallicity.

  7. The HST Large Programme on ω Centauri. II. Internal Kinematics

    NASA Astrophysics Data System (ADS)

    Bellini, Andrea; Libralato, Mattia; Bedin, Luigi R.; Milone, Antonino P.; van der Marel, Roeland P.; Anderson, Jay; Apai, Dániel; Burgasser, Adam J.; Marino, Anna F.; Rees, Jon M.

    2018-01-01

    In this second installment of the series, we look at the internal kinematics of the multiple stellar populations of the globular cluster ω Centauri in one of the parallel Hubble Space Telescope (HST) fields, located at about 3.5 half-light radii from the center of the cluster. Thanks to the over 15 yr long baseline and the exquisite astrometric precision of the HST cameras, well-measured stars in our proper-motion catalog have errors as low as ∼10 μas yr‑1, and the catalog itself extends to near the hydrogen-burning limit of the cluster. We show that second-generation (2G) stars are significantly more radially anisotropic than first-generation (1G) stars. The latter are instead consistent with an isotropic velocity distribution. In addition, 1G stars have excess systemic rotation in the plane of the sky with respect to 2G stars. We show that the six populations below the main-sequence (MS) knee identified in our first paper are associated with the five main population groups recently isolated on the upper MS in the core of cluster. Furthermore, we find both 1G and 2G stars in the field to be far from being in energy equipartition, with {η }1{{G}}=-0.007+/- 0.026 for the former and {η }2{{G}}=0.074+/- 0.029 for the latter, where η is defined so that the velocity dispersion {σ }μ scales with stellar mass as {σ }μ \\propto {m}-η . The kinematical differences reported here can help constrain the formation mechanisms for the multiple stellar populations in ω Centauri and other globular clusters. We make our astro-photometric catalog publicly available.

  8. No Evidence of Chemical Abundance Variations in the Intermediate-age Cluster NGC 1783

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; de Grijs, Richard; Li, Chengyuan; Wu, Xiaohan

    2018-02-01

    We have analyzed multi-passband photometric observations, obtained with the Hubble Space Telescope, of the massive (1.8 × 105 M ⊙), intermediate-age (1.8 Gyr-old) Large Magellanic Cloud star cluster NGC 1783. The morphology of the cluster’s red giant branch does not exhibit a clear broadening beyond its intrinsic width; the observed width is consistent with that owing to photometric uncertainties alone and independent of the photometric selection boundaries we applied to obtain our sample of red giant stars. The color dispersion of the cluster’s red giant stars around the best-fitting ridgeline is 0.062 ± 0.009 mag, which is equivalent to the width of 0.080 ± 0.001 mag derived from artificial simple stellar population tests, that is, tests based on single-age, single-metallicity stellar populations. NGC 1783 is comparably as massive as other star clusters that show clear evidence of multiple stellar populations. After incorporating mass-loss recipes from its current age of 1.8 Gyr to an age of 6 Gyr, NGC 1783 is expected to remain as massive as some other clusters that host clear multiple populations at these intermediate ages. If we were to assume that mass is an important driver of multiple population formation, then NGC 1783 should have exhibited clear evidence of chemical abundance variations. However, our results support the absence of any chemical abundance variations in NGC 1783.

  9. Biases on Initial Mass Function Determinations. II. Real Multiple Systems and Chance Superpositions

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.

    2008-04-01

    When calculating stellar initial mass functions (IMFs) for young clusters, one has to take into account that (1) most massive stars are born in multiple systems, (2) most IMFs are derived from data that cannot resolve such systems, and (3) multiple chance superpositions between members are expected to happen if the cluster is too distant. In this article I use numerical experiments to model the consequences of those phenomena on the observed color-magnitude diagrams and the IMFs derived from them. Real multiple systems affect the observed or apparent massive-star MF slope little but can create a significant population of apparently ultramassive stars. Chance superpositions produce only small biases when the number of superimposed stars is low but, once a certain number threshold is reached, they can affect both the observed slope and the apparent stellar upper mass limit. I apply these experiments to two well known massive young clusters in the Local Group, NGC 3603 and R136. In both cases I show that the observed population of stars with masses above 120 M⊙ can be explained by the effects of unresolved objects, mostly real multiple systems for NGC 3603 and a combination of real and chance-alignment multiple systems for R136. Therefore, the case for the reality of a stellar upper mass limit at solar or near-solar metallicities is strengthened, with a possible value even lower than 150 M⊙. An IMF slope somewhat flatter than Salpeter or Kroupa with γ between -1.6 and -2.0 is derived for the central region of NGC 3603, with a significant contribution to the uncertainty arising from the imprecise knowledge of the distance to the cluster. The IMF at the very center of R136 cannot be measured with the currently available data but the situation could change with new HST observations. This article is partially based on observations made with the NASA/ESA Hubble Space Telescope (HST), some of them associated with GO program 10602 and the rest gathered from the archive, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  10. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. V. [Ne ii], MULTIPLE CLUSTERS, HIGH EFFICIENCY STAR FORMATION, AND BLUE FLOWS IN HE 2–10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Sara; Turner, Jean; Lacy, John

    2015-11-20

    We measured the 12.8 μm [Ne ii] line in the dwarf starburst galaxy He 2–10 with the high-resolution spectrometer TEXES on the NASA IRTF. The data cube has a diffraction-limited spatial resolution of ∼1″ and a total velocity resolution, including thermal broadening, of ∼5 km s{sup −1}. This makes it possible to compare the kinematics of individual star-forming clumps and molecular clouds in the three dimensions of space and velocity, and allows us to determine star formation efficiencies. The kinematics of the ionized gas confirm that the starburst contains multiple dense clusters. From the M/R of the clusters and themore » ≃30%–40% star formation efficiencies, the clusters are likely to be bound and long lived, like globulars. Non-gravitational features in the line profiles show how the ionized gas flows through the ambient molecular material, as well as a narrow velocity feature, which we identify with the interface of the H ii region and a cold dense clump. These data offer an unprecedented view of the interaction of embedded H ii regions with their environment.« less

  11. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed formore » inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.« less

  12. X-RAY BINARIES AND STAR CLUSTERS IN THE ANTENNAE: OPTICAL CLUSTER COUNTERPARTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangelov, Blagoy; Chandar, Rupali; Prestwich, Andrea

    2012-10-20

    We compare the locations of 82 X-ray binaries (XRBs) detected in the merging Antennae galaxies by Zezas et al., based on observations taken with the Chandra X-Ray Observatory, with a catalog of optically selected star clusters presented by Whitmore et al., based on observations taken with the Hubble Space Telescope. Within the 2{sigma} positional uncertainty of Almost-Equal-To 0.''8, we find 22 XRBs are coincident with star clusters, where only two to three chance coincidences are expected. The ages of the clusters were estimated by comparing their UBVI, H{alpha} colors with predictions from stellar evolutionary models. We find that 14 ofmore » the 22 coincident XRBs (64%) are hosted by star clusters with ages of Almost-Equal-To 6 Myr or less. All of the very young host clusters are fairly massive and have M {approx}> 3 Multiplication-Sign 10{sup 4} M {sub Sun }, with many having masses M Almost-Equal-To 10{sup 5} M {sub Sun }. Five of the XRBs are hosted by young clusters with ages {tau} Almost-Equal-To 10-100 Myr, while three are hosted by intermediate-age clusters with {tau} Almost-Equal-To 100-300 Myr. Based on the results from recent N-body simulations, which suggest that black holes are far more likely to be retained within their parent clusters than neutron stars, we suggest that our sample consists primarily of black hole binaries with different ages.« less

  13. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters - XII. The RGB bumps of multiple stellar populations

    NASA Astrophysics Data System (ADS)

    Lagioia, E. P.; Milone, A. P.; Marino, A. F.; Cassisi, S.; Aparicio, A. J.; Piotto, G.; Anderson, J.; Barbuy, B.; Bedin, L. R.; Bellini, A.; Brown, T.; D'Antona, F.; Nardiello, D.; Ortolani, S.; Pietrinferni, A.; Renzini, A.; Salaris, M.; Sarajedini, A.; van der Marel, R.; Vesperini, E.

    2018-04-01

    The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters is providing a major breakthrough in our knowledge of globular clusters (GCs) and their stellar populations. Among the main results, we discovered that all the studied GCs host two main discrete groups consisting of first generation (1G) and second generation (2G) stars. We exploit the multiwavelength photometry from this project to investigate, for the first time, the Red Giant Branch Bump (RGBB) of the two generations in a large sample of GCs. We identified, with high statistical significance, the RGBB of 1G and 2G stars in 26 GCs and found that their magnitude separation as a function of the filter wavelength follows comparable trends. The comparison of observations to synthetic spectra reveals that the RGBB luminosity depends on the stellar chemical composition and that the 2G RGBB is consistent with stars enhanced in He and N and depleted in C and O with respect to 1G stars. For metal-poor GCs the 1G and 2G RGBB relative luminosity in optical bands mostly depends on helium content, Y. We used the RGBB observations in F606W and F814W bands to infer the relative helium abundance of 1G and 2G stars in 18 GCs, finding an average helium enhancement ΔY = 0.011 ± 0.002 of 2G stars with respect to 1G stars. This is the first determination of the average difference in helium abundance of multiple populations in a large number of clusters and provides a lower limit to the maximum internal variation of helium in GCs.

  14. Formation of ultra-compact dwarf galaxies from supergiant molecular clouds

    NASA Astrophysics Data System (ADS)

    Goodman, Morgan; Bekki, Kenji

    2018-05-01

    The origin of ultra-compact dwarf galaxies (UCDs) is not yet clear. One possible formation path of UCDs is the threshing of a nucleated elliptical dwarf galaxy (dE, N), however, it remains unclear how such massive nuclear stellar systems were formed in dwarf galaxies. To better establish the early history of UCDs, we investigate the formation of UCD progenitor clusters from super giant molecular clouds (SGMCs), using hydrodynamical simulations. In this study we focus on SGMCs with masses 107 - 108 M_{\\odot } that can form massive star clusters that display physical properties similar to UCDs. We find that the clusters have extended star formation histories with two phases, producing multiple distinct stellar populations, and that the star formation rate is dependent on the feedback effects of SNe and AGB stars. The later generations of stars formed in these clusters are more compact, leading to a clearly nested structure, and these stars will be more He-rich than those of the first generation, leading to a slight colour gradient. The simulated clusters demonstrate scaling relations between Reff and M and σv and M consistent with those observed in UCDs and strongly consistent with those of the original SGMC. We discuss whether SGMCs such as these can be formed through merging of self-gravitating molecular clouds in galaxies at high-z.

  15. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additionalmore » targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.« less

  16. New asteroseismic scaling relations based on the Hayashi track relation applied to red giant branch stars in NGC 6791 and NGC 6819

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, T.; Li, Y.; Hekker, S., E-mail: wutao@ynao.ac.cn, E-mail: ly@ynao.ac.cn, E-mail: hekker@mps.mpg.de

    2014-01-20

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on amore » relation for stars on the Hayashi track (√(T{sub eff})∼g{sup p}R{sup q}) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and ν{sub max} (frequency of maximum oscillation power). The Δν and ν{sub max} values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and ν{sub max}, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - ν{sub max} relation for red giant branch stars.« less

  17. The Not So Simple Globular Cluster ω Cen. I. Spatial Distribution of the Multiple Stellar Populations

    NASA Astrophysics Data System (ADS)

    Calamida, A.; Strampelli, G.; Rest, A.; Bono, G.; Ferraro, I.; Saha, A.; Iannicola, G.; Scolnic, D.; James, D.; Smith, C.; Zenteno, A.

    2017-04-01

    We present a multi-band photometric catalog of ≈1.7 million cluster members for a field of view of ≈2° × 2° across ω Cen. Photometry is based on images collected with the Dark Energy Camera on the 4 m Blanco telescope and the Advanced Camera for Surveys on the Hubble Space Telescope. The unprecedented photometric accuracy and field coverage allowed us, for the first time, to investigate the spatial distribution of ω Cen multiple populations from the core to the tidal radius, confirming its very complex structure. We found that the frequency of blue main-sequence stars is increasing compared to red main-sequence stars starting from a distance of ≈25‧ from the cluster center. Blue main-sequence stars also show a clumpy spatial distribution, with an excess in the northeast quadrant of the cluster pointing toward the direction of the Galactic center. Stars belonging to the reddest and faintest red-giant branch also show a more extended spatial distribution in the outskirts of ω Cen, a region never explored before. Both these stellar sub-populations, according to spectroscopic measurements, are more metal-rich compared to the cluster main stellar population. These findings, once confirmed, make ω Cen the only stellar system currently known where metal-rich stars have a more extended spatial distribution compared to metal-poor stars. Kinematic and chemical abundance measurements are now needed for stars in the external regions of ω Cen to better characterize the properties of these sub-populations. Based on observations made with the Dark Energy Camera (DECam) on the 4 m Blanco telescope (NOAO) under programs 2014A-0327, 2015A-0151, 2016A-0189, PIs: A. Calamida, A. Rest, and on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  18. Multi-wavelength Morphological Study Of Star Forming Regions In Nearby Cluster-rich Lirgs

    NASA Astrophysics Data System (ADS)

    Vavilkin, Tatjana; Evans, A.; Mazzarella, J.; Surace, J.; Kim, D.; Howell, J.; Armus, L.; GOALS Team

    2009-05-01

    Luminous Infrared Galaxies (LIRGs) are believed to play an important role in star formation history of the universe. Many LIRGs undergo intense bursts of star formation as a result of interaction/merger process. Given the dusty nature of LIRGs, it is necessary to probe Luminous Infrared Galaxies at multiple wavelengths. The Great Observatories All-sky LIRG Survey (GOALS) combines data from NASA's Spitzer, Hubble, Chandra and GALEX observatories and offers a unique opportunity to gain insights into the physical processes in these highly dust enshrouded systems. We examine a sample of 11 nearby (z < 0.03) cluster-rich (> 200 clusters as seen in HST ACS images) LIRG systems at various interaction stages. The combined HST ACS optical imaging, Spitzer IRAC 8 micron channel and GALEX near-UV imaging allows us to access the properties of visible and obscured star forming regions. We study the spatial distribution of star forming regions at these wavelengths, correlate locations of young stellar clusters with PAH and UV emission regions and trace changes with merger stage.

  19. THE LOCATION, CLUSTERING, AND PROPAGATION OF MASSIVE STAR FORMATION IN GIANT MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochsendorf, Bram B.; Meixner, Margaret; Chastenet, Jérémy

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this work, we use data from several galaxy-wide surveys to build an unbiased data set of ∼600 massive young stellar objects, ∼200 giant molecular clouds (GMCs), and ∼100 young (<10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. We reveal that massive stars do not typically form at the highest column densities nor centers of their parentmore » GMCs at the ∼6 pc resolution of our observations. Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. We find that massive star formation is significantly boosted in clouds near SCs. However, whether a cloud is associated with an SC does not depend on either the cloud’s mass or global surface density. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. We compare our work with Galactic studies and discuss our findings in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.« less

  20. The Peculiar Radial Distribution of Multiple Populations in the Massive Globular Cluster M80

    NASA Astrophysics Data System (ADS)

    Dalessandro, E.; Cadelano, M.; Vesperini, E.; Salaris, M.; Ferraro, F. R.; Lanzoni, B.; Raso, S.; Hong, J.; Webb, J. J.; Zocchi, A.

    2018-05-01

    We present a detailed analysis of the radial distribution of light-element multiple populations (LE-MPs) in the massive and dense globular cluster M80, based on a combination of UV and optical Hubble Space Telescope data. Surprisingly, we find that first-generation (FG) stars (FG) are significantly more centrally concentrated than extreme second-generation (SG) stars out to ∼2.5r h from the cluster center. To understand the origin of such peculiar behavior, we used a set of N-body simulations following the long-term dynamical evolution of LE-MPs. We find that, given the advanced dynamical state of the cluster, the observed difference does not depend on the primordial relative distributions of FG and SG stars. On the contrary, a difference of ∼0.05–0.10 M ⊙ between the average masses of the two subpopulations is needed to account for the observed radial distributions. We argue that such a mass difference might be the result of the higher He abundance of SG stars (of the order of ΔY ∼ 0.05–0.06) with respect to FG stars. Interestingly, we find that a similar He variation is necessary to reproduce the horizontal branch morphology of M80. These results demonstrate that differences in mass among LE-MPs, due to different He content, should be properly taken into account for a correct interpretation of their radial distribution, at least in dynamically evolved systems.

  1. Chemical characterisation of the globular cluster NGC 5634 associated to the Sagittarius dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Bragaglia, A.; Lucatello, S.; D'Orazi, V.; Gratton, R. G.; Donati, P.; Sollima, A.; Sneden, C.

    2017-04-01

    As part of our on-going project on the homogeneous chemical characterisation of multiple stellar populations in globular clusters (GCs), we studied NGC 5634, associated to the Sagittarius dwarf spheroidal galaxy, using high-resolution spectroscopy of red giant stars collected with VLT/FLAMES. We present here the radial velocity distribution of the 45 observed stars, 43 of which are cluster members, the detailed chemical abundance of 22 species for the seven stars observed with UVES-FLAMES, and the abundance of six elements for stars observed with GIRAFFE. On our homogeneous UVES metallicity scale, we derived a low-metallicity [Fe/H] =-1.867 ± 0.019 ± 0.065 dex (±statistical ±systematic error) with σ = 0.050 dex (7 stars). We found the normal anticorrelations between light elements (Na and O, Mg and Al), a signature of multiple populations typical of massive and old GCs. We confirm the associations of NGC 5634 to the Sgr dSph, from which the cluster was lost a few Gyr ago, on the basis of its velocity and position, and the abundance ratios of α and neutron capture elements. Based on observations collected at ESO telescopes under programme 093.B-0583.Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A118

  2. High-resolution Spectroscopic Abundances of Red Giant Branch Stars in NGC 6584 and NGC 7099

    NASA Astrophysics Data System (ADS)

    O’Malley, Erin M.; Chaboyer, Brian

    2018-04-01

    We obtain high-resolution spectra of red giant branch stars in NGC 6584 and NGC 7099 to perform a detailed abundance analysis. We confirm cluster membership for these stars based on consistent radial velocities measured in this study and small pixel offsets between the observations of Sarajedini et al. and Piotto et al. We find mean metallicities of [Fe/H] = ‑1.53 ± 0.08 dex and [Fe/H] = ‑2.29 ± 0.07 dex for NGC 6584 and NGC 7099, respectively. We also find these clusters to be enhanced in their [α/Fe] ratios, consistent with what is expected for metal-poor globular clusters. Additionally, we find evidence of a statistically significant Na–O anti-correlation in both clusters. Finally, with the use of HST photometry, we compare the location of the enhanced and pristine populations in chromosome maps of the clusters to confirm previous photometric evidence of multiple stellar populations. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences, our results can be used to constrain pollution models.

  3. High-Resolution CCD Spectra of Stars in Globular Clusters. IX. The "Young" Clusters Ruprecht 106 and PAL 12

    NASA Astrophysics Data System (ADS)

    Brown, Jeffrey A.; Wallerstein, George; Zucker, Daniel

    1997-07-01

    We have performed a spectroscopic abundance analysis of two stars each in the anomalously young globular clusters Rup 106 and Pal 12. We find [Fe/H] =~ -1.45 for Rup 106 and -1.0 for Pal 12. The abundance ratios in both clusters are peculiar in comparison to other globulars: the alpha -elements are not enhanced over the solar ratio. We find that oxygen in Rup 106 is also relatively low, with [O/Fe] =~ 0.0 - +0.1. The similarity of the ratio of the alpha-elements to iron to the solar ratio shows that species contributed by supernovae of type Ia have ``caught up" with species produced by SN II's. The similar contributions of the alpha - and Fe-peak species to disk stars shows that age, not metallicity, is the determining factor in the ratio of SN II/SN Ia nucleosynthesis. Galactic enrichment models show that these abundance ratios can be understood as being the result of these two clusters coming from an environment with multiple discontinuous star formation events.

  4. The β Pictoris association low-mass members: Membership assessment, rotation period distribution, and dependence on multiplicity

    NASA Astrophysics Data System (ADS)

    Messina, S.; Lanzafame, A. C.; Malo, L.; Desidera, S.; Buccino, A.; Zhang, L.; Artemenko, S.; Millward, M.; Hambsch, F.-J.

    2017-10-01

    Context. Low-mass members of young loose stellar associations and open clusters exhibit a wide spread of rotation periods. Such a spread originates from the distributions of masses and initial rotation periods. However, multiplicity can also play a significant role. Aims: We aim to investigate the role played by physical companions in multiple systems in shortening the primordial disk lifetime, anticipating the rotation spin up with respect to single stars. Methods: We have compiled the most extensive list to date of low-mass bona fide and candidate members of the young 25-Myr β Pictoris association. We have measured from our own photometric time series or from archival time series the rotation periods of almost all members. In a few cases the rotation periods were retrieved from the literature. We used updated UVWXYZ components to assess the membership of the whole stellar sample. Thanks to the known basic properties of most members we built the rotation period distribution distinguishing between bona fide members and candidate members and according to their multiplicity status. Results: We find that single stars and components of multiple systems in wide orbits (>80 AU) have rotation periods that exhibit a well defined sequence arising from mass distribution with some level of spread likely arising from initial rotation period distribution. All components of multiple systems in close orbits (<80 AU) have rotation periods that are significantly shorter than their equal-mass single counterparts. For these close components of multiple systems a linear dependence of rotation rate on separation is only barely detected. A comparison with the younger 13 Myr h Per cluster and with the older 40-Myr open clusters and stellar associations NGC 2547, IC 2391, Argus, and IC 2602 and the 130-Myr Pleiades shows that whereas the evolution of F-G stars is well reproduced by angular momentum evolution models, this is not the case for the slow K and early-M stars. Finally, we find that the amplitude of their light curves is correlated neither with rotation nor with mass. Conclusions: Once single stars and wide components of multiple systems are separated from close components of multiple systems, the rotation period distributions exhibit a well defined dependence on mass that allows us to make a meaningful comparison with similar distributions of either younger or older associations and clusters. Such cleaned distributions allow us to use the stellar rotation period meaningfully as an age indicator for F and G type stars. Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A3

  5. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. IMPLICATIONS FROM THE NEARLY UNIVERSAL NATURE OF HORIZONTAL BRANCH DISCONTINUITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T. M.; Bellini, A.; Anderson, J.

    2016-05-01

    The UV-initiative Hubble Space Telescope Treasury survey of Galactic globular clusters provides a new window into the phenomena that shape the morphological features of the horizontal branch (HB). Using this large and homogeneous catalog of UV and blue photometry, we demonstrate that the HB exhibits discontinuities that are remarkably consistent in color (effective temperature). This consistency is apparent even among some of the most massive clusters hosting multiple distinct sub-populations (such as NGC 2808, ω Cen, and NGC 6715), demonstrating that these phenomena are primarily driven by atmospheric physics that is independent of the underlying population properties. However, inconsistencies arisemore » in the metal-rich clusters NGC 6388 and NGC 6441, where the discontinuity within the blue HB (BHB) distribution shifts ∼1000–2000 K hotter. We demonstrate that this shift is likely due to a large helium enhancement in the BHB stars of these clusters, which in turn affects the surface convection and evolution of such stars. Our survey also increases the number of Galactic globular clusters known to host blue-hook stars (also known as late hot flashers) from 6 to 23 clusters. These clusters are biased toward the bright end of the globular cluster luminosity function, confirming that blue-hook stars tend to form in the most massive clusters with significant self-enrichment.« less

  6. The Effects of Rotation on the Main-sequence Turnoff of Intermediate-age Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Yang, Wuming; Bi, Shaolan; Meng, Xiangcun; Liu, Zhie

    2013-10-01

    The double or extended main-sequence turnoffs (MSTOs) in the color-magnitude diagram (CMD) of intermediate-age massive star clusters in the Large Magellanic Cloud are generally interpreted as age spreads of a few hundred Myr. However, such age spreads do not exist in younger clusters (i.e., 40-300 Myr), which challenges this interpretation. The effects of rotation on the MSTOs of star clusters have been studied in previous works, but the results obtained are conflicting. Compared with previous works, we consider the effects of rotation on the main-sequence lifetime of stars. Our calculations show that rotating models have a fainter and redder MSTO with respect to non-rotating counterparts with ages between about 0.8 and 2.2 Gyr, but have a brighter and bluer MSTO when age is larger than 2.4 Gyr. The spread of the MSTO caused by a typical rotation rate is equivalent to the effect of an age spread of about 200 Myr. Rotation could lead to the double or extended MSTOs in the CMD of the star clusters with ages between about 0.8 and 2.2 Gyr. However, the extension is not significant, and it does not even exist in younger clusters. If the efficiency of the mixing were high enough, the effects of the mixing would counteract the effect of the centrifugal support in the late stage of evolution, and the rotationally induced extension would disappear in the old intermediate-age star clusters, but younger clusters would have an extended MSTO. Moreover, the effects of rotation might aid in understanding the formation of some "multiple populations" in globular clusters.

  7. Chemical analysis of eight giant stars of the globular cluster NGC 6366

    NASA Astrophysics Data System (ADS)

    Puls, Arthur A.; Alves-Brito, Alan; Campos, Fabíola; Dias, Bruno; Barbuy, Beatriz

    2018-05-01

    The metal-rich Galactic globular cluster NGC 6366 is the fifth closest to the Sun. Despite its interest, it has received scarce attention, and little is known about its internal structure. Its kinematics suggests a link to the halo, but its metallicity indicates otherwise. We present a detailed chemical analysis of eight giant stars of NGC 6366, using high-resolution and high-quality spectra (R > 40 000, S/N > 60) obtained at the VLT (8.2 m) and CFHT (3.6 m) telescopes. We attempted to characterize its chemistry and to search for evidence of multiple stellar populations. The atmospheric parameters were derived using the method of excitation and ionization equilibrium of Fe I and Fe II lines and from those atmospheric parameters we calculated the abundances for other elements and found that none of the elements measured presents star-to-star variation greater than the uncertainties. We compared the derived abundances with those of other globular clusters and field stars available in the literature. We determined a mean [Fe/H] = -0.60 ± 0.03 for NGC 6366 and found some similarity of this object with M 71, another inner halo globular cluster. The Na-O anticorrelation extension is short and no star-to-star variation in Al is found. The presence of second generation stars is not evident in NGC 6366.

  8. THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perets, Hagai B.; Subr, Ladislav

    2012-06-01

    Runaway stars are stars observed to have large peculiar velocities. Two mechanisms are thought to contribute to the ejection of runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario, a runaway star receives its velocity when its binary massive companion explodes as a supernova (SN). In the alternative dynamical ejection scenario, runaway stars are formed through gravitational interactions between stars and binaries in dense, compact clusters or cluster cores. Here we study the ejection scenario. We make use of extensive N-body simulations of massive clusters, as well as analytic arguments, in order to characterizemore » the expected ejection velocity distribution of runaway stars. We find that the ejection velocity distribution of the fastest runaways (v {approx}> 80 km s{sup -1}) depends on the binary distribution in the cluster, consistent with our analytic toy model, whereas the distribution of lower velocity runaways appears independent of the binaries' properties. For a realistic log constant distribution of binary separations, we find the velocity distribution to follow a simple power law: {Gamma}(v){proportional_to}v{sup -8/3} for the high-velocity runaways and v{sup -3/2} for the low-velocity ones. We calculate the total expected ejection rates of runaway stars from our simulated massive clusters and explore their mass function and their binarity. The mass function of runaway stars is biased toward high masses and strongly depends on their velocity. The binarity of runaways is a decreasing function of their ejection velocity, with no binaries expected to be ejected with v > 150 km s{sup -1}. We also find that hyper-runaways with velocities of hundreds of km s{sup -1} can be dynamically ejected from stellar clusters, but only at very low rates, which cannot account for a significant fraction of the observed population of hyper-velocity stars in the Galactic halo.« less

  9. A Study of the Multiple Populations in M10

    NASA Astrophysics Data System (ADS)

    Gerber, Jeffrey M.; Friel, Eileen D.; Vesperini, Enrico

    2017-06-01

    We present an analysis of CN and CH band strengths which allow the identification of multiple populations in red giant stars in the globular cluster M10. Our measurements come from low-resolution spectroscopy obtained for ~140 red and asymptotic giant branch stars over two observation runs using Hydra on the WIYN 3.5m telescope. We sort the stars into nitrogen normal and enhanced populations based on the distribution of CN band strength as a function of magnitude. Once the stars are sorted into first and second generation (CN normal and enhanced, respectively), we compare this analysis to other ways of determining multiple stellar populations such as with the light elements Na and O and photometric indicators, particularly the UV photometry from the Hubble Space Telescope. C and N abundances are determined by matching observed CN and CH band measurements with those produced by synthetic spectra created with the Synthetic Spectrum Generator (SSG). The large sample size also allows us to study characteristics like radial distribution, and evolutionary effects such as the depletion of carbon (and subsequent nitrogen enrichment) as a star climbs the red giant branch. We find a rate of carbon depletion as a function of time for both populations in M10 and compare our result to M13, a cluster similar in metallicity.

  10. LP 543-25: A Rare Low-mass Runaway Disk Star

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos

    2018-05-01

    LP 543-25 or PSS 544-7 is a high proper-motion star located 458 pc from the Sun in the constellation of Canis Minor; it has been argued that it could be a candidate cannonball star ejected by a star cluster. Here, we revisit the issue of the kinematics of this interesting star using Gaia DR2. The heliocentric Galactic velocity components are (U, V, W) = (206, -289, 30) km/s; the corresponding Galactocentric Galactic velocity components show that LP 543-25 is moving in the Galactic plane and away from the Galactic Center at a rate of nearly 200 km/s, which is compatible with an origin in one of the multiple star clusters that inhabit the inner regions of the Milky Way. LP 543-25 appears to be a member of an elusive class of stars, the low-mass runaway stars. It is perhaps one of the closest and less massive runaway stars identified so far.

  11. Evidence for feedback and stellar-dynamically regulated bursty star cluster formation: the case of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Kroupa, Pavel; Jeřábková, Tereza; Dinnbier, František; Beccari, Giacomo; Yan, Zhiqiang

    2018-04-01

    A scenario for the formation of multiple co-eval populations separated in age by about 1 Myr in very young clusters (VYCs, ages less than 10 Myr) and with masses in the range 600-20 000 M⊙ is outlined. It rests upon a converging inflow of molecular gas building up a first population of pre-main sequence stars. The associated just-formed O stars ionise the inflow and suppress star formation in the embedded cluster. However, they typically eject each other out of the embedded cluster within 106 yr, that is before the molecular cloud filament can be ionised entirely. The inflow of molecular gas can then resume forming a second population. This sequence of events can be repeated maximally over the life-time of the molecular cloud (about 10 Myr), but is not likely to be possible in VYCs with mass <300 M⊙, because such populations are not likely to contain an O star. Stellar populations heavier than about 2000 M⊙ are likely to have too many O stars for all of these to eject each other from the embedded cluster before they disperse their natal cloud. VYCs with masses in the range 600-2000 M⊙ are likely to have such multi-age populations, while VYCs with masses in the range 2000-20 000 M⊙ can also be composed solely of co-eval, mono-age populations. More massive VYCs are not likely to host sub-populations with age differences of about 1 Myr. This model is applied to the Orion Nebula Cluster (ONC), in which three well-separated pre-main sequences in the colour-magnitude diagram of the cluster have recently been discovered. The mass-inflow history is constrained using this model and the number of OB stars ejected from each population are estimated for verification using Gaia data. As a further consequence of the proposed model, the three runaway O star systems, AE Aur, μ Col and ι Ori, are considered as significant observational evidence for stellar-dynamical ejections of massive stars from the oldest population in the ONC. Evidence for stellar-dynamical ejections of massive stars in the currently forming population is also discussed.

  12. A High Angular Resolution Multiplicity Survey of the Open Clusters α Persei and Praesepe

    NASA Astrophysics Data System (ADS)

    Patience, J.; Ghez, A. M.; Reid, I. N.; Matthews, K.

    2002-03-01

    Two hundred forty-two members of the Praesepe and α Persei clusters have been surveyed with high angular resolution 2.2 μm speckle imaging on the 3 m Infrared Telescope Facility, the 5 m Hale, and the 10 m Keck telescopes, along with direct imaging using the near-infrared camera (NICMOS) aboard the Hubble Space Telescope. The observed stars range in spectral type from B (~5 Msolar) to early M (~0.5 Msolar), with the majority of the targets more massive than ~0.8 Msolar. The one quadruple and 39 binary systems detected encompass separations from 0.053" to 7.28" 28 of the systems are new detections, and there are nine candidate substellar companions. The results of the survey are used to test binary star formation and evolution scenarios and to investigate the effects of companion stars on X-ray emission and stellar rotation. The main results are as follows:1. Over the projected separation range of 26 to 581 AU and magnitude differences of ΔK<4.0 (comparable to mass ratios q=Msec/Mprim>0.25), the companion-star fraction (CSF) for α Per is 0.09+/-0.03, and that for Praesepe is 0.10+/-0.03. This fraction is consistent with the field G dwarf value, implying that there is not a systematic decline in multiplicity with age at these separations on timescales of a few times 107 yr. The combination of previous spectroscopic work and the current cluster survey results in a cluster binary separation distribution that peaks at 4+1-1.5 AU, a significantly smaller value than the peaks of both the field G dwarf and the nearby T Tauri distributions. If the field G dwarf distribution represents a superposition of distributions from the populations that contributed to the field, then the data imply that ~30% of field binaries formed in dark clouds like the nearby T Tauri stars and the remaining ~70% formed in denser regions.2. An exploration of the binary star properties reveals a cluster CSF that increases with decreasing target mass, and a cluster mass ratio distribution that rises more sharply for higher mass stars but is independent of binary separation. These observational trends are consistent with several models of capture in small clusters and simulations of accretion following fragmentation in a cluster environment. Other types of capture and fragmentation are either inconsistent with these data or currently lack testable predictions.3. Among the cluster A stars, there is a higher fraction of binaries in the subset with X-ray detections, consistent with the hypothesis that lower mass companions are the true source of X-ray emission.4. Finally, in the younger cluster α Per, the rotational velocities for solar-type binaries with separations less than 60 AU are significantly higher than those of wider systems. This suggests that companions may critically affect the rotational evolution of young stars.

  13. Astrostatistical Analysis in Solar and Stellar Physics

    NASA Astrophysics Data System (ADS)

    Stenning, David Craig

    This dissertation focuses on developing statistical models and methods to address data-analytic challenges in astrostatistics---a growing interdisciplinary field fostering collaborations between statisticians and astrophysicists. The astrostatistics projects we tackle can be divided into two main categories: modeling solar activity and Bayesian analysis of stellar evolution. These categories from Part I and Part II of this dissertation, respectively. The first line of research we pursue involves classification and modeling of evolving solar features. Advances in space-based observatories are increasing both the quality and quantity of solar data, primarily in the form of high-resolution images. To analyze massive streams of solar image data, we develop a science-driven dimension reduction methodology to extract scientifically meaningful features from images. This methodology utilizes mathematical morphology to produce a concise numerical summary of the magnetic flux distribution in solar "active regions'' that (i) is far easier to work with than the source images, (ii) encapsulates scientifically relevant information in a more informative manner than existing schemes (i.e., manual classification schemes), and (iii) is amenable to sophisticated statistical analyses. In a related line of research, we perform a Bayesian analysis of the solar cycle using multiple proxy variables, such as sunspot numbers. We take advantage of patterns and correlations among the proxy variables to model solar activity using data from proxies that have become available more recently, while also taking advantage of the long history of observations of sunspot numbers. This model is an extension of the Yu et al. (2012) Bayesian hierarchical model for the solar cycle that used the sunspot numbers alone. Since proxies have different temporal coverage, we devise a multiple imputation scheme to account for missing data. We find that incorporating multiple proxies reveals important features of the solar cycle that are missed when the model is fit using only the sunspot numbers. In Part II of this dissertation we focus on two related lines of research involving Bayesian analysis of stellar evolution. We first focus on modeling multiple stellar populations in star clusters. It has long been assumed that all star clusters are comprised of single stellar populations---stars that formed at roughly the same time from a common molecular cloud. However, recent studies have produced evidence that some clusters host multiple populations, which has far-reaching scientific implications. We develop a Bayesian hierarchical model for multiple-population star clusters, extending earlier statistical models of stellar evolution (e.g., van Dyk et al. 2009, Stein et al. 2013). We also devise an adaptive Markov chain Monte Carlo algorithm to explore the complex posterior distribution. We use numerical studies to demonstrate that our method can recover parameters of multiple-population clusters, and also show how model misspecification can be diagnosed. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We also explore statistical properties of the estimators and determine that the influence of the prior distribution does not diminish with larger sample sizes, leading to non-standard asymptotics. In a final line of research, we present the first-ever attempt to estimate the carbon fraction of white dwarfs. This quantity has important implications for both astrophysics and fundamental nuclear physics, but is currently unknown. We use a numerical study to demonstrate that assuming an incorrect value for the carbon fraction leads to incorrect white-dwarf ages of star clusters. Finally, we present our attempt to estimate the carbon fraction of the white dwarfs in the well-studied star cluster 47 Tucanae.

  14. CO J = 2-1 LINE EMISSION IN CLUSTER GALAXIES AT z {approx} 1: FUELING STAR FORMATION IN DENSE ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagg, Jeff; Pope, Alexandra; Alberts, Stacey

    We present observations of CO J = 2-1 line emission in infrared-luminous cluster galaxies at z {approx} 1 using the IRAM Plateau de Bure Interferometer. Our two primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie within 2 Mpc of the centers of two massive (>10{sup 14} M{sub Sun }) galaxy clusters. CO line emission is not detected in either DOG. We calculate 3{sigma} upper limits to the CO J = 2-1 line luminosities, L'{sub CO} < 6.08 Multiplication-Sign 10{sup 9} and <6.63 Multiplication-Sign 10{sup 9} K km s{sup -1} pc{sup 2}. Assuming a CO-to-H{sub 2} conversion factormore » derived for ultraluminous infrared galaxies in the local universe, this translates to limits on the cold molecular gas mass of M{sub H{sub 2}}< 4.86 Multiplication-Sign 10{sup 9} M{sub Sun} and M{sub H{sub 2}}< 5.30 Multiplication-Sign 10{sup 9} M{sub Sun }. Both DOGs exhibit mid-infrared continuum emission that follows a power law, suggesting that an active galactic nucleus (AGN) contributes to the dust heating. As such, estimates of the star formation efficiencies in these DOGs are uncertain. A third cluster member with an infrared luminosity, L{sub IR} < 7.4 Multiplication-Sign 10{sup 11} L{sub Sun }, is serendipitously detected in CO J = 2-1 line emission in the field of one of the DOGs located roughly two virial radii away from the cluster center. The optical spectrum of this object suggests that it is likely an obscured AGN, and the measured CO line luminosity is L'{sub CO} = (1.94 {+-} 0.35) Multiplication-Sign 10{sup 10} K km s{sup -1} pc{sup 2}, which leads to an estimated cold molecular gas mass M{sub H{sub 2}}= (1.55{+-}0.28) Multiplication-Sign 10{sup 10} M{sub Sun }. A significant reservoir of molecular gas in a z {approx} 1 galaxy located away from the cluster center demonstrates that the fuel can exist to drive an increase in star formation and AGN activity at the outskirts of high-redshift clusters.« less

  15. Stars caught in the braking stage in young Magellanic Cloud clusters

    NASA Astrophysics Data System (ADS)

    D'Antona, Francesca; Milone, Antonino P.; Tailo, Marco; Ventura, Paolo; Vesperini, Enrico; di Criscienzo, Marcella

    2017-08-01

    The colour-magnitude diagrams of many Magellanic Cloud clusters (with ages up to 2 billion years) display extended turnoff regions where the stars leave the main sequence, suggesting the presence of multiple stellar populations with ages that may differ even by hundreds of millions of years 1,2,3 . A strongly debated question is whether such an extended turnoff is instead due to populations with different stellar rotations3,4,5,6 . The recent discovery of a 'split' main sequence in some younger clusters (~80-400 Myr) added another piece to this puzzle. The blue side of the main sequence is consistent with slowly rotating stellar models, and the red side consistent with rapidly rotating models7,8,9,10. However, a complete theoretical characterization of the observed colour-magnitude diagram also seemed to require an age spread9. We show here that, in the three clusters so far analysed, if the blue main-sequence stars are interpreted with models in which the stars have always been slowly rotating, they must be ~30% younger than the rest of the cluster. If they are instead interpreted as stars that were initially rapidly rotating but have later slowed down, the age difference disappears, and this 'braking' also helps to explain the apparent age differences of the extended turnoff. The age spreads in Magellanic Cloud clusters are thus a manifestation of rotational stellar evolution. Observational tests are suggested.

  16. Merger driven star-formation activity in Cl J1449+0856 at z=1.99 as seen by ALMA and JVLA

    NASA Astrophysics Data System (ADS)

    Coogan, R. T.; Daddi, E.; Sargent, M. T.; Strazzullo, V.; Valentino, F.; Gobat, R.; Magdis, G.; Bethermin, M.; Pannella, M.; Onodera, M.; Liu, D.; Cimatti, A.; Dannerbauer, H.; Carollo, M.; Renzini, A.; Tremou, E.

    2018-06-01

    We use ALMA and JVLA observations of the galaxy cluster Cl J1449+0856 at z=1.99, in order to study how dust-obscured star-formation, ISM content and AGN activity are linked to environment and galaxy interactions during the crucial phase of high-z cluster assembly. We present detections of multiple transitions of 12CO, as well as dust continuum emission detections from 11 galaxies in the core of Cl J1449+0856. We measure the gas excitation properties, star-formation rates, gas consumption timescales and gas-to-stellar mass ratios for the galaxies. We find evidence for a large fraction of galaxies with highly-excited molecular gas, contributing >50% to the total SFR in the cluster core. We compare these results with expectations for field galaxies, and conclude that environmental influences have strongly enhanced the fraction of excited galaxies in this cluster. We find a dearth of molecular gas in the galaxies' gas reservoirs, implying a high star-formation efficiency (SFE) in the cluster core, and find short gas depletion timescales τdep<0.1-0.4 Gyrs for all galaxies. Interestingly, we do not see evidence for increased specific star-formation rates (sSFRs) in the cluster galaxies, despite their high SFEs and gas excitations. We find evidence for a large number of mergers in the cluster core, contributing a large fraction of the core's total star-formation compared with expectations in the field. We conclude that the environmental impact on the galaxy excitations is linked to the high rate of galaxy mergers, interactions and active galactic nuclei in the cluster core.

  17. First evidence of multiple populations along the AGB from Strömgren photometry

    NASA Astrophysics Data System (ADS)

    Gruyters, Pieter; Casagrande, Luca; Milone, Antonino P.; Hodgkin, Simon T.; Serenelli, Aldo; Feltzing, Sofia

    2017-07-01

    Spectroscopic studies have demonstrated that nearly all Galactic globular clusters (GCs) harbour multiple stellar populations with different chemical compositions. Moreover, colour-magnitude diagrams based exclusively on Strömgrem photometry have allowed us to identify and characterise multiple populations along the RGB of a large number of clusters. In this paper we show for the first time that Strömgren photometry is also very efficient at identifying multiple populations along the AGB, and demonstrate that the AGB of M 3, M 92, NGC 362, NGC 1851, and NGC 6752 are not consistent with a single stellar population. We also provide a catalogue of RGB and AGB stars photometrically identified in these clusters for further spectroscopic follow-up studies. We combined photometry and elemental abundances from the literature for RGB and AGB stars in NGC 6752 where the presence of multiple populations along the AGB has been widely debated. We find that, while the MS, SGB, and RGB host three stellar populations with different helium and light element abundances, only two populations of AGB stars are present in the cluster. These results are consistent with standard evolutionary theory. Based on observations made with the Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Full Tables B.1 and B.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A37

  18. No Evidence for Multiple Stellar Populations in the Low-mass Galactic Globular Cluster E 3

    NASA Astrophysics Data System (ADS)

    Salinas, Ricardo; Strader, Jay

    2015-08-01

    Multiple stellar populations are a widespread phenomenon among Galactic globular clusters. Even though the origin of the enriched material from which new generations of stars are produced remains unclear, it is likely that self-enrichment will be feasible only in clusters massive enough to retain this enriched material. We searched for multiple populations in the low mass (M˜ 1.4× {10}4 {M}⊙ ) globular cluster E3, analyzing SOAR/Goodman multi-object spectroscopy centered on the blue cyanogen (CN) absorption features of 23 red giant branch stars. We find that the CN abundance does not present the typical bimodal behavior seen in clusters hosting multistellar populations, but rather a unimodal distribution that indicates the presence of a genuine single stellar population, or a level of enrichment much lower than in clusters that show evidence for two populations from high-resolution spectroscopy. E3 would be the first bona fide Galactic old globular cluster where no sign of self-enrichment is found. Based on observations obtained at the Southern Astrophysical Research (SOAR) Telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  19. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters - XIV. Multiple stellar populations within M 15 and their radial distribution

    NASA Astrophysics Data System (ADS)

    Nardiello, D.; Milone, A. P.; Piotto, G.; Anderson, J.; Bedin, L. R.; Bellini, A.; Cassisi, S.; Libralato, M.; Marino, A. F.

    2018-06-01

    In the context of the Hubble Space Telescope UV Survey of Galactic globular clusters (GCs), we derived high-precision, multi-band photometry to investigate the multiple stellar populations in the massive and metal-poor GC M 15. By creating for red-giant branch (RGB) stars of the cluster a `chromosome map', which is a pseudo two-colour diagram made with appropriate combination of F275W, F336W, F438W, and F814W magnitudes, we revealed colour spreads around two of the three already known stellar populations. These spreads cannot be produced by photometric errors alone and could hide the existence of (two) additional populations. This discovery increases the complexity of the multiple-population phenomenon in M 15. Our analysis shows that M 15 exhibits a faint sub-giant branch (SGB), which is also detected in colour-magnitude diagrams (CMDs) made with optical magnitudes only. This poorly populated SGB includes about 5 per cent of the total number of SGB stars and evolves into a red RGB in the mF336W versus mF336W - mF814W CMD, suggesting that M 15 belongs to the class of Type II GCs. We measured the relative number of stars in each population at various radial distances from the cluster centre, showing that all of these populations share the same radial distribution within statistic uncertainties. These new findings are discussed in the context of the formation and evolution scenarios of the multiple populations.

  20. EVIDENCE OF AGB POLLUTION IN GALACTIC GLOBULAR CLUSTERS FROM THE Mg–Al ANTICORRELATIONS OBSERVED BY THE APOGEE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ventura, P.; Dell’Agli, F.; D’Antona, F.

    We study the formation of multiple populations in globular clusters (GCs), under the hypothesis that stars in the second generation formed from the winds of intermediate-mass stars, ejected during the asymptotic giant branch (AGB) phase, possibly diluted with pristine gas, sharing the same chemical composition of first-generation stars. To this aim, we use the recent Apache Point Observatory Galactic Evolution Experiment (APOGEE) data, which provide the surface chemistry of a large sample of giant stars, belonging to clusters that span a wide metallicity range. The APOGEE data set is particularly suitable to discriminate among the various pollution scenarios proposed somore » far, as it provides the surface abundances of Mg and Al, the two elements involved in a nuclear channel extremely sensitive to the temperature, hence to the metallicity of the polluters. The present analysis shows a remarkable agreement between the observations and the theoretical yields from massive AGB stars. In particular, the observed extension of the depletion of Mg and O and the increase in Al is well reproduced by the models and the trend with the metallicity is also fully accounted for. This study further supports the idea that AGB stars were the key players in the pollution of the intra-cluster medium, from which additional generations of stars formed in GCs.« less

  1. Hubble Hotbed of Vigorous Star Formation

    NASA Image and Video Library

    2017-12-08

    This galaxy is currently a hotbed of vigorous star formation. NGC 1569 is a starburst galaxy, meaning that — as the name suggests — it is bursting at the seams with stars, and is currently producing them at a rate far higher than that observed in most other galaxies. For almost 100 million years, NGC 1569 has pumped out stars more than 100 times faster than the Milky Way! As a result, this glittering galaxy is home to super star clusters, three of which are visible in this image — one of the two bright clusters is actually the superposition of two massive clusters. Each containing more than a million stars, these brilliant blue clusters reside within a large cavity of gas carved out by multiple supernovae, the energetic remnants of massive stars. In 2008, Hubble observed the galaxy's cluttered core and sparsely populated outer fringes. By pinpointing individual red giant stars, Hubble’s Advanced Camera for Surveys enabled astronomers to calculate a new — and much more precise — estimate for NGC 1569’s distance. This revealed that the galaxy is actually one and a half times farther away than previously thought, and a member of the IC 342 galaxy group. Astronomers suspect that the IC 342 cosmic congregation is responsible for the star-forming frenzy observed in NGC 1569. Gravitational interactions between this galactic group are believed to be compressing the gas within NGC 1569. As it is compressed, the gas collapses, heats up and forms new stars. Image credit: ESA/Hubble & NASA, Aloisi, Ford; Acknowledgement: Judy Schmidt

  2. Massive stars, disks, and clustered star formation

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas Barry

    The formation of an isolated massive star is inherently more complex than the relatively well-understood collapse of an isolated, low-mass star. The dense, clustered environment where massive stars are predominantly found further complicates the picture, and suggests that interactions with other stars may play an important role in the early life of these objects. In this thesis we present the results of numerical hydrodynamic experiments investigating interactions between a massive protostar and its lower-mass cluster siblings. We explore the impact of these interactions on the orientation of disks and outflows, which are potentially observable indications of encounters during the formation of a star. We show that these encounters efficiently form eccentric binary systems, and in clusters similar to Orion they occur frequently enough to contribute to the high multiplicity of massive stars. We suggest that the massive protostar in Cepheus A is currently undergoing a series of interactions, and present simulations tailored to that system. We also apply the numerical techniques used in the massive star investigations to a much lower-mass regime, the formation of planetary systems around Solar- mass stars. We perform a small number of illustrative planet-planet scattering experiments, which have been used to explain the eccentricity distribution of extrasolar planets. We add the complication of a remnant gas disk, and show that this feature has the potential to stabilize the system against strong encounters between planets. We present preliminary simulations of Bondi-Hoyle accretion onto a protoplanetary disk, and consider the impact of the flow on the disk properties as well as the impact of the disk on the accretion flow.

  3. On the missing second generation AGB stars in NGC 6752

    NASA Astrophysics Data System (ADS)

    Cassisi, Santi; Salaris, Maurizio; Pietrinferni, Adriano; Vink, Jorick S.; Monelli, Matteo

    2014-11-01

    In recent years the view of Galactic globular clusters as simple stellar populations has changed dramatically, it is now thought that basically all globular clusters host multiple stellar populations, each with its own chemical abundance pattern and colour-magnitude diagram sequence. Recent spectroscopic observations of asymptotic giant branch stars in the globular cluster NGC 6752 have disclosed a low [Na/Fe] abundance for the whole sample, suggesting that they are all first generation stars, and that all second generation stars fail to reach the AGB in this cluster. A scenario proposed to explain these observations invokes strong mass loss in second generation horizontal branch stars - all located at the hot side of the blue and extended horizontal branch of this cluster - possibly induced by the metal enhancement associated to radiative levitation. This enhanced mass loss would prevent second generation stars from reaching the asymptotic giant branch phase, thus explaining at the same time the low value of the ratio between horizontal branch and asymptotic giant branch stars (the R2 parameter) observed in NGC 6752. We have critically discussed this mass-loss scenario, finding that the required mass-loss rates are of the order of 10-9 M⊙ yr-1, significantly higher than current theoretical and empirical constraints. By making use of synthetic horizontal branch simulations, we demonstrate that our modelling correctly predicts the R2 parameter for NGC 6752, without the need to invoke very efficient mass loss during the core He-burning stage. As a test of our stellar models we show that we can reproduce the observed value of R2 for both M 3, a cluster of approximately the same metallicity and with a redder horizontal branch morphology, and M 13, a cluster with a horizontal branch very similar to NGC 6752. However, our simulations for the NGC 6752 horizontal branch predict however the presence of a significant fraction of second generation stars (about 50%) along the cluster asymptotic giant branch. We conclude that there is no simple explanation for the lack of second generation stars in the spectroscopically surveyed sample, although the interplay between mass loss (with low rates) and radiative levitation may play a role in explaining this puzzle.

  4. High energy neutrinos and gamma-ray emission from supernovae in compact star clusters

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Ellison, D. C.; Gladilin, P. E.; Osipov, S. M.

    2017-01-01

    Compact clusters of young massive stars are observed in the Milky Way and in starburst galaxies. The compact clusters with multiple powerful winds of young massive stars and supernova shocks are favorable sites for high-energy particle acceleration. We argue that expanding young supernova (SN) shells in compact stellar clusters can be very efficient PeV CR accelerators. At a stage when a supernova shock is colliding with collective fast winds from massive stars in a compact cluster the Fermi mechanism allows particle acceleration to energies well above the standard limits of diffusive shock acceleration in an isolated SNR. The energy spectrum of protons in such an accelerator is a hard power-law with a broad spectral upturn above TeV before a break at multi-PeV energies, providing a large energy flux in the high-energy end of the spectrum. The acceleration stage in the colliding shock flow lasts for a few hundred years after the supernova explosion producing high-energy CRs that escape the accelerator and diffuse through the ambient matter producing γ-rays and neutrinos in inelastic nuclear collisions. In starburst galaxies a sizeable fraction of core collapse supernovae is expected to occur in compact star clusters and therefore their high energy gamma-ray and neutrino spectra in the PeV energy regime may differ strongly from that of our Galaxy. To test the model with individual sources we briefly discuss the recent H.E.S.S. detections of gamma-rays from two potential candidate sources, Westerlund 1 and HESS J1806-204 in the Milky Way. We argue that this model of compact star clusters, with typical parameters, could produce a neutrino flux sufficient to explain a fraction of the recently detected IceCube South Pole Observatory neutrinos.

  5. Fluorine Variations in the Globular Cluster NGC 6656 (M22): Implications for Internal Enrichment Timescales

    NASA Astrophysics Data System (ADS)

    D'Orazi, Valentina; Lucatello, Sara; Lugaro, Maria; Gratton, Raffaele G.; Angelou, George; Bragaglia, Angela; Carretta, Eugenio; Alves-Brito, Alan; Ivans, Inese I.; Masseron, Thomas; Mucciarelli, Alessio

    2013-01-01

    Observed chemical (anti)correlations in proton-capture elements among globular cluster stars are presently recognized as the signature of self-enrichment from now extinct, previous generations of stars. This defines the multiple population scenario. Since fluorine is also affected by proton captures, determining its abundance in globular clusters provides new and complementary clues regarding the nature of these previous generations and supplies strong observational constraints to the chemical enrichment timescales. In this paper, we present our results on near-infrared CRIRES spectroscopic observations of six cool giant stars in NGC 6656 (M22): the main objective is to derive the F content and its internal variation in this peculiar cluster, which exhibits significant changes in both light- and heavy-element abundances. Across our sample, we detected F variations beyond the measurement uncertainties and found that the F abundances are positively correlated with O and anticorrelated with Na, as expected according to the multiple population framework. Furthermore, our observations reveal an increase in the F content between the two different sub-groups, s-process rich and s-process poor, hosted within M22. The comparison with theoretical models suggests that asymptotic giant stars with masses between 4 and 5 M ⊙ are responsible for the observed chemical pattern, confirming evidence from previous works: the difference in age between the two sub-components in M22 must be not larger than a few hundred Myr. Based on observations taken with ESO telescopes under program 087.0319(A).

  6. RUBIDIUM ABUNDANCES IN THE GLOBULAR CLUSTERS NGC 6752, NGC 1904, AND NGC 104 (47 Tuc)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Orazi, Valentina; Lugaro, Maria; Campbell, Simon W.

    2013-10-10

    Large star-to-star variations of the abundances of proton-capture elements, such as Na and O, in globular clusters (GCs) are interpreted as the effect of internal pollution resulting from the presence of multiple stellar populations. To better constrain this scenario, we investigate the abundance distribution of the heavy element rubidium (Rb) in NGC 6752, NGC 1904, and NGC 104 (47 Tuc). Combining the results from our sample with those in the literature, we found that Rb exhibits no star-to-star variations, regardless of cluster metallicity, with the possible intriguing, although very uncertain, exception of the metal-rich bulge cluster NGC 6388. If nomore » star-to-star variations can be confirmed for all GCs, this finding implies that the stellar source of the proton-capture element variations must not have produced significant amounts of Rb. This element is observed to be enhanced at extremely high levels in intermediate-mass asymptotic giant branch (IM-AGB) stars in the Magellanic Clouds (i.e., at a metallicity similar to 47 Tuc and NGC 6388). This fact may present a challenge to this popular candidate polluter, unless the mass range of the observed IM-AGB stars does not participate in the formation of the second-generation stars in GCs. A number of possible solutions are available to resolve this conundrum, including the fact that the Magellanic Cloud observations are very uncertain and may need to be revised. The fast rotating massive stars scenario would not face this potential problem as the slow mechanical winds of these stars during their main-sequence phase do not carry any Rb enhancements; however, these candidates face even bigger issues such as the production of Li and the close overlap with core-collapse supernova timescales. Observations of Sr, Rb, and Zr in metal-rich clusters such as NGC 6388 and NGC 6441 are sorely needed to clarify the situation.« less

  7. Is stellar multiplicity universal? Tight stellar binaries in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Duchêne, Gaspard; Lacour, S.; Moraux, E.; Goodwin, S.; Bouvier, J.

    2018-05-01

    We present a survey for the tightest visual binaries among 0.3-2 M⊙ members the Orion Nebula Cluster (ONC). Among 42 targets, we discovered 13 new 0{^''.}025-0{^''.}15 companions. Accounting for the Branch bias, we find a companion star fraction (CSF) in the 10-60 au range of 21^{+8}_{-5}%, consistent with that observed in other star-forming regions (SFRs) and twice as high as among field stars; this excess is found with a high level of confidence. Since our sample is dominated by disk-bearing targets, this indicates that disk disruption by close binaries is inefficient, or has not yet taken place, in the ONC. The resulting separation distribution in the ONC drops sharply outside 60 au. These findings are consistent with a scenario in which the initial multiplicity properties, set by the star formation process itself, are identical in the ONC and in other SFRs and subsequently altered by the cluster's dynamical evolution. This implies that the fragmentation process does not depend on the global properties of a molecular cloud, but on the local properties of prestellar cores, and that the latter are self-regulated to be nearly identical in a wide range of environments. These results, however, raise anew the question of the origin of field stars as the tight binaries we have discovered will not be destroyed as the ONC dissolves into the galactic field. It thus appears that most field stars formed in regions that differ from well-studied SFRs in the Solar neighborhood, possibly due to changes in core fragmentation on Gyr timescales.

  8. Kron 3: a fourth intermediate age cluster in the SMC with evidence of multiple populations

    NASA Astrophysics Data System (ADS)

    Hollyhead, K.; Lardo, C.; Kacharov, N.; Bastian, N.; Hilker, M.; Rejkuba, M.; Koch, A.; Grebel, E. K.; Georgiev, I.

    2018-05-01

    We present the results of a spectroscopic study of the intermediate age (≈6.5 Gyr) massive cluster Kron 3 in the Small Magellanic Cloud. We measure CN and CH band strengths (at ≃3839 and 4300 Å, respectively) using VLT FORS2 spectra of 16 cluster members and find a sub-population of five stars enriched in nitrogen. We conclude that this is evidence for multiple populations in Kron 3, the fourth intermediate age cluster, after Lindsay 1, NGC 416 and NGC 339 (ages 6-8 Gyr), to display this phenomenon originally thought to be a unique characteristic of old globular clusters. At ≈6.5 Gyr this is one of the youngest clusters with multiple populations, indicating that the mechanism responsible for their onset must operate until a redshift of at least 0.75, much later than the peak of globular cluster formation at redshift ˜3.

  9. Time-Series Photometry of Variable Stars in the Globular Cluster NGC 288

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Joo; Koo, Jae-Rim; Hong, Kyeongsoo; Kim, Seung-Lee; Lee, Jae Woo; Lee, Chung-Uk; Jeon, Young-Beom; Kim, Yun-Hak; Lim, Beomdu; Ryu, Yoon-Hyun; Cha, Sang-Mok; Lee, Yongseok; Kim, Dong-Jin; Park, Byeong-Gon; Kim, Chun-Hwey

    2016-12-01

    We present the results of BV time-series photometry of the globular cluster NGC 288. Observations were carried out to search for variable stars using the Korea Microlensing Telescope Network (KMTNet) 1.6-m telescopes and a 4k pre-science CCD camera during a test observation from August to December, 2014. We found a new SX Phe star and confirmed twelve previously known variable stars in NGC 288. For the semi-regular variable star V1, we newly determined a period of 37.3 days from light curves spanning 137 days. The light-curve solution of the eclipsing binary V10 indicates that the system is probably a detached system. The pulsation properties of nine SX Phe stars were examined by applying multiple frequency analysis to their light curves. We derived a new Period-Luminosity (P-L) relation, < M_{V} rangle = -2.476(±0.300) log P - 0.354(±0.385), from six SX Phe stars showing the fundamental mode. Additionally, the period ratios of three SX Phe stars that probably have a double-radial mode were investigated; P_{FO}/P_{F} = 0.779 for V5, P_{TO}/P_{FO} = 0.685 for V9, P_{SO}/P_{FO} = 0.811 for V11. This paper is the first contribution in a series assessing the detections and properties of variable stars in six southern globular clusters with the KMTNet system.

  10. Formation of the First Star Clusters and Massive Star Binaries by Fragmentation of Filamentary Primordial Gas Clouds

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Yoshida, Naoki; Sakurai, Yuya; Fujii, Michiko S.

    2018-03-01

    We perform a set of cosmological simulations of early structure formation incorporating baryonic streaming motions. We present a case where a significantly elongated gas cloud with ∼104 solar mass (M ⊙) is formed in a pre-galactic (∼107 M ⊙) dark halo. The gas streaming into the halo compresses and heats the massive filamentary cloud to a temperature of ∼10,000 Kelvin. The gas cloud cools rapidly by atomic hydrogen cooling, and then by molecular hydrogen cooling down to ∼400 Kelvin. The rapid decrease of the temperature and hence of the Jeans mass triggers fragmentation of the filament to yield multiple gas clumps with a few hundred solar masses. We estimate the mass of the primordial star formed in each fragment by adopting an analytic model based on a large set of radiation hydrodynamics simulations of protostellar evolution. The resulting stellar masses are in the range of ∼50–120 M ⊙. The massive stars gravitationally attract each other and form a compact star cluster. We follow the dynamics of the star cluster using a hybrid N-body simulation. We show that massive star binaries are formed in a few million years through multi-body interactions at the cluster center. The eventual formation of the remnant black holes will leave a massive black hole binary, which can be a progenitor of strong gravitational wave sources similar to those recently detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

  11. Massive Binaries in the R 136 Cluster

    NASA Astrophysics Data System (ADS)

    Morrell, N. I.; Massey, P.; Degioia-Eastwood, K.; Penny, L. R.; Gies, D. R.; Tsitkin, Y.; Darnell, E.

    2008-08-01

    As part of a large project aimed to the discovery and follow up of massive eclipsing systems in young clusters and stellar associations, we have obtained V-band CCD imaging of the R136 cluster in 30 Doradus, and high resolution spectroscopy of several among the variable stars we found there. Here we summarize our preliminary analysis of light and radial velocity variations for 4 massive multiple systems in the R136 cluster.

  12. Variable Circumstellar Disks of Classical Be Stars in Clusters

    NASA Astrophysics Data System (ADS)

    Gerhartz, C.; Bjorkman, K. S.; Bjorkman, J. E.; Wisniewski, J. P.

    2016-11-01

    Circumstellar disks are common among many stars, at most spectral types, and at different stages of their lifetimes. Among the near-main-sequence classical Be stars, there is growing evidence that these disks form, dissipate, and reform on timescales that differ from star to star. Using data obtained with the Large Monolithic Imager (LMI) at the Lowell Observatory Discovery Channel Telescope (DCT), along with additional complementary data obtained at the University of Toledo Ritter Observatory (RO), we have begun a long-term monitoring project of a well-studied set of galactic star clusters that are known to contain Be stars. Our goal is to develop a statistically significant sample of variable circumstellar disk systems over multiple timescales. With a robust multi-epoch study we can determine the relative fraction of Be stars that exhibit disk-loss or disk-renewal phases, and investigate the range of timescales over which these events occur. A larger sample will improve our understanding of the prevalence and nature of the disk variability, and may provide insight about underlying physical mechanisms.

  13. REVERSED TREND OF RADIAL DISTRIBUTION OF SUBPOPULATIONS IN THE GLOBULAR CLUSTERS NGC 362 AND NGC 6723

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Dongwook; Lee, Young-Wook; Pasquato, Mario

    2016-12-01

    Most globular clusters (GCs) are now known to host multiple stellar populations with different abundances of light elements. Here we use narrow-band photometry and low-resolution spectroscopy for NGC 362 and NGC 6723 to investigate their chemical properties and radial distributions of subpopulations. We confirm that NGC 362 and NGC 6723 are among the GCs with multiple populations showing bimodal CN distribution and CN–CH anticorrelation without a significant spread in calcium abundance. These two GCs show more centrally concentrated CN-weak, earlier generation stars compared to the CN-strong, later generation stars. These trends are reversed with respect to those found in previous studies for many othermore » GCs. Our findings, therefore, seem contradictory to the current scenario for the formation of multiple stellar populations, but mass segregation acting on the two subpopulations might be a possible solution to explain this reversed radial trend.« less

  14. A MASSIF Effort To Determine The Mass-Luminosity Relation for Stars of Various Ages, Metallicities, and Evolution States

    NASA Technical Reports Server (NTRS)

    Henry, Todd J.; Beedict, G. Fritz; Gies, Douglas R.; Golimowski, David A.; Ianna, Philip A.; Mason, Brian; McArthur, Barbara; Nelan, Edmund; Torres, Guillermo

    2004-01-01

    The MASSIF (Masses and Stellar Systems with Interferometry) Team will use SIM to investigate the mass content of the Galaxy - from huge stars to barely glimmering brown dwarfs, and from hot white dwarfs to exotic black holes. We will target various samples of the Galactic population to determine and relate the fundamental characteristics of mass, luminosity, age, composition, and multiplicity - attributes that together yield an extensive understanding of the stars. Our samples will include distant clusters that span a factor of 5000 in age, and commonplace stars and substellar objects that lurk near the Sun. The principal goals of the MASSIF Key Project are to (1) define the mass-luminosity relation for main sequence stars in five fundamental clusters so that effects of age and metallicity can be mapped (Trapezium, TW Hydrae, Pleiades, Hyades, and M67), and (2) determine accurate masses for representative examples of nearly every type of star, stellar descendant or brown dwarf in the Galaxy.

  15. Blue Stragglers and Other Stars of Mass Consumption in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Panurach, Teresa; Leigh, Nathan

    2018-01-01

    Simulations of globular clusters suggest that collisions between main-sequence (MS) stars happen frequently. Stellar evolution models show that these collision products can be photometrically identified, appearing off the MS locus. These collision products can appear brighter and bluer than the MS turnoff, called “blue stragglers,” or even less massive and redder than the MS. We use proper motion-cleaned photometry from the Hubble Space Telescope of 38 globular clusters to identify candidate collision products. We compare the spectral energy distributions of our candidates to theoretical templates for single and multiple star systems, to constrain the possible presence of a binary companion and test consistency with theoretical stellar evolution models for collision products. For the BSs, we also compare the observed velocities from the proper motion catalog along with mass estimates derived from isochrone-fitting to theoretical predictions for both the collision and binary mass transfer models and find better agreement with the former.

  16. NGC 6535: the lowest mass Milky Way globular cluster with a Na-O anti-correlation? Cluster mass and age in the multiple population context

    NASA Astrophysics Data System (ADS)

    Bragaglia, A.; Carretta, E.; D'Orazi, V.; Sollima, A.; Donati, P.; Gratton, R. G.; Lucatello, S.

    2017-11-01

    To understand globular clusters (GCs) we need to comprehend how their formation process was able to produce their abundance distribution of light elements. In particular, we seek to figure out which stars imprinted the peculiar chemical signature of GCs. One of the best ways is to study the light-element anti-correlations in a large sample of GCs that are analysed homogeneously. As part of our spectroscopic survey of GCs with FLAMES, we present here the results of our study of about 30 red giant member stars in the low-mass, low-metallicity Milky Way cluster NGC 6535. We measured the metallicity (finding [Fe/H] =-1.95, rms = 0.04 dex in our homogeneous scale) and other elements of the cluster and, in particular, we concentrate here on O and Na abundances. These elements define the normal Na-O anti-correlation of classical GCs, making NGC 6535 perhaps the lowest mass cluster with a confirmed presence of multiple populations. We updated the census of Galactic and extragalactic GCs for which a statement on the presence or absence of multiple populations can be made on the basis of high-resolution spectroscopy preferentially, or photometry and low-resolution spectroscopy otherwise; we also discuss the importance of mass and age of the clusters as factors for multiple populations. Based on observations collected at ESO telescopes under programme 093.B-0583.Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A44

  17. Brown Dwarf Companion Frequencies and Dynamical Interactions

    NASA Astrophysics Data System (ADS)

    Sterzik, Michael F.; Durisen, Richard H.

    2003-06-01

    Numerical simulations are used to explore how gravitational interactions within young multiple star systems may determine the binary properties of brown dwarfs. We compare different scenarios for cluster formation and decay and find that brown dwarf binaries, although possible, generally have a low frequency. We also discuss the frequencies of brown dwarf companions to normal stars expected from these models.

  18. A photometric study of globular clusters observed by the APOGEE survey

    NASA Astrophysics Data System (ADS)

    Mészáros, Szabolcs; García-Hernández, D. A.; Cassisi, Santi; Monelli, Matteo; Szigeti, László; Dell'Agli, Flavia; Derekas, Alíz; Masseron, Thomas; Shetrone, Matthew; Stetson, Peter; Zamora, Olga

    2018-04-01

    In this paper, we describe the photometric and spectroscopic properties of multiple populations in seven northern globular clusters. In this study, we employ precise ground-based photometry from the private collection of Stetson, space photometry from the Hubble Space Telescope (HST), literature abundances of Na and O, and Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey abundances for Mg, Al, C, and N. Multiple populations are identified by their position in the CU, B, I -Vpseudo colour-magnitude diagram (pseudo-CMD) and confirmed with their chemical composition determined using abundances. We confirm the expectation from previous studies that the red giant branches (RGBs) in all seven clusters are split and the different branches have different chemical compositions. The Mg-Al anticorrelations were well explored by the APOGEE and Gaia-ESO surveys for most globular clusters, some clusters showing bimodal distributions, while others continuous distributions. Even though the structure (i.e. bimodal versus continuous) of Mg-Al can greatly vary, the Al-rich and Al-poor populations do not seem to have very different photometric properties, agreeing with theoretical calculations. There is no one-to-one correspondence between the Mg-Al anticorrelation shape (bimodal versus continuous) and the structure of the RGB seen in the HST pseudo-CMDs, with the HST photometric information usually implying more complex formation/evolution histories than the spectroscopic ones. We report on finding two second-generation horizontal branch (HB) stars in M5, and five second-generation asymptotic giant branch (AGB) stars in M92, which is the most metal-poor cluster to date in which second-generation AGB stars have been observed.

  19. How do binary separations depend on cloud initial conditions?

    NASA Astrophysics Data System (ADS)

    Sterzik, M. F.; Durisen, R. H.; Zinnecker, H.

    2003-11-01

    We explore the consequences of a star formation scenario in which the isothermal collapse of a rotating, star-forming core is followed by prompt fragmentation into a cluster containing a small number (N <~ 10) of protostars and/or substellar objects. The subsequent evolution of the cluster is assumed to be dominated by dynamical interactions among cluster members, and this establishes the final properties of the binary and multiple systems. The characteristic scale of the fragmenting core is determined by the cloud initial conditions (such as temperature, angular momentum and mass), and we are able to relate the separation distributions of the final binary population to the properties of the star-forming core. Because the fragmentation scale immediately after the isothermal collapse is typically a factor of 3-10 too large, we conjecture that fragmentation into small clusters followed by dynamical evolution is required to account for the observed binary separation distributions. Differences in the environmental properties of the cores are expected to imprint differences on the characteristic dimensions of the binary systems they form. Recent observations of hierarchical systems, differences in binary characteristics among star forming regions and systematic variations in binary properties with primary mass can be interpreted in the context of this scenario.

  20. Explaining the luminosity spread in young clusters: proto and pre-main sequence stellar evolution in a molecular cloud environment

    NASA Astrophysics Data System (ADS)

    Jensen, Sigurd S.; Haugbølle, Troels

    2018-02-01

    Hertzsprung-Russell diagrams of star-forming regions show a large luminosity spread. This is incompatible with well-defined isochrones based on classic non-accreting protostellar evolution models. Protostars do not evolve in isolation of their environment, but grow through accretion of gas. In addition, while an age can be defined for a star-forming region, the ages of individual stars in the region will vary. We show how the combined effect of a protostellar age spread, a consequence of sustained star formation in the molecular cloud, and time-varying protostellar accretion for individual protostars can explain the observed luminosity spread. We use a global magnetohydrodynamic simulation including a sub-scale sink particle model of a star-forming region to follow the accretion process of each star. The accretion profiles are used to compute stellar evolution models for each star, incorporating a model of how the accretion energy is distributed to the disc, radiated away at the accretion shock, or incorporated into the outer layers of the protostar. Using a modelled cluster age of 5 Myr, we naturally reproduce the luminosity spread and find good agreement with observations of the Collinder 69 cluster, and the Orion Nebular Cluster. It is shown how stars in binary and multiple systems can be externally forced creating recurrent episodic accretion events. We find that in a realistic global molecular cloud model massive stars build up mass over relatively long time-scales. This leads to an important conceptual change compared to the classic picture of non-accreting stellar evolution segmented into low-mass Hayashi tracks and high-mass Henyey tracks.

  1. Bursting at the seams

    NASA Image and Video Library

    2016-06-27

    This NASA/ESA Hubble Space Telescope image reveals the iridescent interior of one of the most active galaxies in our local neighbourhood — NGC 1569, a small galaxy located about eleven million light-years away in the constellation of Camelopardalis (The Giraffe). This galaxy is currently a hotbed of vigorous star formation. NGC 1569 is a starburst galaxy, meaning that — as the name suggests — it is bursting at the seams with stars, and is currently producing them at a rate far higher than that observed in most other galaxies. For almost 100 million years, NGC 1569 has pumped out stars over 100 times faster than the Milky Way! As a result, this glittering galaxy is home to super star clusters, three of which are visible in this image — one of the two bright clusters is actually  the superposition of two massive clusters. Each containing more than a million stars, these brilliant blue clusters reside within a large cavity of gas carved out by multiple supernovae, the energetic remnants of massive stars. In 2008, Hubble observed the galaxy's cluttered core and sparsely populated outer fringes. By pinpointing individual red giant stars, Hubble’s Advanced Camera for Surveys enabled astronomers to calculate a new — and much more precise — estimate for NGC 1569’s distance. This revealed that the galaxy is actually one and a half times further away than previously thought, and a member of the IC 342 galaxy group. Astronomers suspect that the IC 342 cosmic congregation is responsible for the star-forming frenzy observed in NGC 1569. Gravitational interactions between this galactic group are believed to be compressing the gas within NGC 1569. As it is compressed, the gas collapses, heats up and forms new stars.

  2. The Origin of Dwarf Ellipticals in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Boissier, S.; Cortese, L.; Gavazzi, G.

    2008-02-01

    We study the evolution of dwarf (LH < 109.6 LH⊙) star-forming and quiescent galaxies in the Virgo Cluster by comparing their UV to radio centimetric properties to the predictions of multizone chemospectrophotometric models of galaxy evolution especially tuned to take into account the perturbations induced by the interaction with the cluster intergalactic medium. Our models simulate one or multiple ram pressure stripping events and galaxy starvation. Models predict that all star-forming dwarf galaxies entering the cluster for the first time loose most, if not all, of their atomic gas content, quenching on short timescales (<=150 Myr) their activity of star formation. These dwarf galaxies soon become red and quiescent, gas metal-rich objects with spectrophotometric and structural properties similar to those of dwarf ellipticals. Young, low-luminosity, high surface brightness star-forming galaxies such as late-type spirals and BCDs are probably the progenitors of relatively massive dwarf ellipticals, while it is likely that low surface brightness Magellanic irregulars evolve into very low surface brightness quiescent objects hardly detectable in ground-based imaging surveys. The small number of dwarf galaxies with physical properties intermediate between those of star-forming and quiescent systems is consistent with a rapid (<1 Gyr) transitional phase between the two dwarf galaxy populations. These results, combined with statistical considerations, are consistent with the idea that most of the dwarf ellipticals dominating the faint end of the Virgo luminosity function were initially star-forming systems, accreted by the cluster and stripped of their gas by one or subsequent ram pressure stripping events.

  3. Multiplicity Among Young Brown Dwarfs and Very Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Ahmic, Mirza; Jayawardhana, R.; Brandeker, A.; Scholz, A.; van Kerkwijk, M. H.; Delgado-Donate, E.; Froebrich, D.

    2007-05-01

    Characterizing multiplicity in the very low mass (VLM) domain is a topic of much current interest and fundamental importance. Here we report on a near-infrared adaptive optics imaging survey of 28 young brown dwarfs and VLM stars, 26 of which are in the Chamaeleon I star-forming region, using the ESO Very Large Telescope. Our findings in Cha I -- the low multiplicity frequency of 8%, the preference for equal mass pairs, and the lack of wide binaries -- are strikingly similar to what has previously been reported for VLM objects in the field and in open clusters. Thus, we argue that there is no significant evolution of multiplicity with age among brown dwarfs and VLM stars between a few Myr to several Gyr. Instead, the observations to date suggest that VLM objects are either less likely to be born in wide multiple systems than solar mass stars or such systems are disrupted very early (within the first couple of Myr). Our results also imply that systems like 2MASSW J1207334-393254 and Oph 162225-240515, with planetary mass companions at wide separations, are rare. This research was supported by an NSERC grant, University of Toronto research funds and the Ontario Graduate Scholarship.

  4. Very Massive Stars and the upper end of the IMF

    NASA Astrophysics Data System (ADS)

    Crowther, P.

    2013-06-01

    I discuss theoretical and observational evidence regarding the existence of Very Massive Stars (VMS) with initial masses significantly in excess of 100~Mo. Theoretical evidence includes consideration of the (classical) Eddington limit, while observational evidence involves efforts to interpret photometric and spectroscopic observations of the brightest stars in young, high mass clusters (R136a, Arches, NGC 3603), including new VLT/SINFONI and HST/STIS spectroscopy plus consideration of multiplicity (binaries and higher order systems).

  5. TYCHO: Simulating Exoplanets Within Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Glaser, Joseph Paul; Thornton, Jonathan; Geller, Aaron M.; McMillan, Stephen

    2018-01-01

    Recent surveys exploring nearby open clusters have yielded noticeable differences in the planetary population from that seen in the Field. This is surprising, as the two should be indistinguishable given currently accepted theories on how a majority of stars form within the Galaxy. Currently, the existence of this apparent deficit is not fully understood. While detection bias in previous observational surveys certainly contributes to this issue, the dynamical effects of star-star scattering must also be taken into account. However, this effect can only be investigated via computational simulations and current solutions of the multi-scale N-body problem are limited and drastically simplified.To remedy this, we aim to create a physically complete computational solution to explore the role of stellar close encounters and interplanetary interactions in producing the observed exoplanet populations for both open cluster stars and Field stars. To achieve this, TYCHO employs a variety of different computational techniques, including: multiple n-body integration methods; close-encounter handling; Monte Carlo scattering experiments; and a variety of observationally-backed initial condition generators. Herein, we discuss the current state of the code's implantation within the AMUSE framework and its applications towards present exoplanet surveys.

  6. Star clusters and K2

    NASA Astrophysics Data System (ADS)

    Dotson, Jessie; Barentsen, Geert; Cody, Ann Marie

    2018-01-01

    The K2 survey has expanded the Kepler legacy by using the repurposed spacecraft to observe over 20 star clusters. The sample includes open and globular clusters at all ages, including very young (1-10 Myr, e.g. Taurus, Upper Sco, NGC 6530), moderately young (0.1-1 Gyr, e.g. M35, M44, Pleiades, Hyades), middle-aged (e.g. M67, Ruprecht 147, NGC 2158), and old globular clusters (e.g. M9, M19, Terzan 5). K2 observations of stellar clusters are exploring the rotation period-mass relationship to significantly lower masses than was previously possible, shedding light on the angular momentum budget and its dependence on mass and circumstellar disk properties, and illuminating the role of multiplicity in stellar angular momentum. Exoplanets discovered by K2 in stellar clusters provides planetary systems ripe for modeling given the extensive information available about their ages and environment. I will review the star clusters sampled by K2 across 16 fields so far, highlighting several characteristics, caveats, and unexplored uses of the public data set along the way. With fuel expected to run out in 2018, I will discuss the closing Campaigns, highlight the final target selection opportunities, and explain the data archive and TESS-compatible software tools the K2 mission intends to leave behind for posterity.

  7. The signatures of the parental cluster on field planetary systems

    NASA Astrophysics Data System (ADS)

    Cai, Maxwell Xu; Portegies Zwart, Simon; van Elteren, Arjen

    2018-03-01

    Due to the high stellar densities in young clusters, planetary systems formed in these environments are likely to have experienced perturbations from encounters with other stars. We carry out direct N-body simulations of multiplanet systems in star clusters to study the combined effects of stellar encounters and internal planetary dynamics. These planetary systems eventually become part of the Galactic field population as the parental cluster dissolves, which is where most presently known exoplanets are observed. We show that perturbations induced by stellar encounters lead to distinct signatures in the field planetary systems, most prominently, the excited orbital inclinations and eccentricities. Planetary systems that form within the cluster's half-mass radius are more prone to such perturbations. The orbital elements are most strongly excited in the outermost orbit, but the effect propagates to the entire planetary system through secular evolution. Planet ejections may occur long after a stellar encounter. The surviving planets in these reduced systems tend to have, on average, higher inclinations and larger eccentricities compared to systems that were perturbed less strongly. As soon as the parental star cluster dissolves, external perturbations stop affecting the escaped planetary systems, and further evolution proceeds on a relaxation time-scale. The outer regions of these ejected planetary systems tend to relax so slowly that their state carries the memory of their last strong encounter in the star cluster. Regardless of the stellar density, we observe a robust anticorrelation between multiplicity and mean inclination/eccentricity. We speculate that the `Kepler dichotomy' observed in field planetary systems is a natural consequence of their early evolution in the parental cluster.

  8. Intrinsic Variability in Multiple Systems and Clusters: Open Questions

    NASA Astrophysics Data System (ADS)

    Lampens, P.

    2006-04-01

    It is most interesting and rewarding to probe the stellar structure of stars which belong to a system originating from the same parent cloud as this provides additional and more accurate constraints for the models. New results on pulsating components in multiple systems and clusters are beginning to emerge regularly. Based on concrete studies, I will present still unsolved problems and discuss some of the issues which may affect our understanding of the pulsation physics in such systems but also in general.

  9. The influence of environment on the properties of galaxies

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yasuhiro

    1999-11-01

    I will present the result of the evaluation of the environmental influences on three important galactic properties; morphology, star formation rate, and interaction in the local universe. I have used a very large and homogeneous sample of 15749 galaxies drawn from the Las Campanas Redshift Survey (Shectman et al. 1996). This data set consists of galaxies inhabiting the entire range of galactic environments, from the sparsest field to the densest clusters, thus allowing me to study environmental variations without combing multiple data sets with inhomogeneous characteristics. Furthermore, I can also extend the research to a ``general'' environmental investigation by, for the first time, decoupling the very local environment, as characterized by local galaxy density, from the effects of larger-scale environments, such as membership in a cluster. The star formation rate is characterized by the strength of EW(OII), while the galactic morphology is characterized by the automatically-measured concentration index (e.g. Okamura, Kodaira, & Watanabe 1984), which is more closely related to the bulge-to-disk ratio of galaxies than Hubble type, and is therefore expected to behave more independently on star formation activity in a galaxy. On the other hand, the first systematic quantitative investigation of the environmental influence on the interaction of galaxies is made by using two automatically-determined objective measures; the asymmetry index and existence of companions. The principal conclusions of this work are: (1)The concentration of the galactic light profile (characterized by the concentration index) is predominantly correlated with the relatively small-scale environment which is characterized by the local galaxy density. (2)The star formation rate of galaxies (characterized by the EW(OII)) is correlated both with the small-scale environment (the local galaxy density) and the larger scale environment which is characterized by the cluster membership. For weakly star forming galaxies, the star formation rate is correlated both with the local galaxy density and rich cluster membership. It also shows a correlation with poor cluster membership. For strongly star forming galaxies, the star formation rate is correlated with the local density and the poor cluster membership. (3)Interacting galaxies (characterized by the asymmetry index and/or the existence of apparent companions) show no correlation with rich cluster membership, but show a fair to strong correlation with the poor cluster membership.

  10. The Grism Lens-amplified Survey from Space (GLASS). IV. Mass Reconstruction of the Lensing Cluster Abell 2744 from Frontier Field Imaging and GLASS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Jones, T. A.; Ryan, R. E., Jr.; Amorín, R.; Castellano, M.; Fontana, A.; Merlin, E.; Trenti, M.

    2015-09-01

    We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometric redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.

  11. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). IV. MASS RECONSTRUCTION OF THE LENSING CLUSTER ABELL 2744 FROM FRONTIER FIELD IMAGING AND GLASS SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.; Schmidt, K. B.; Jones, T. A.

    2015-09-20

    We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometricmore » redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.« less

  12. VizieR Online Data Catalog: Massive stars in 30 Dor (Schneider+, 2018)

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Sana, H.; Evans, C. J.; Bestenlehner, J. M.; Castro, N.; Fossati, L.; Grafener, G.; Langer, N.; Ramirez-Agudelo, O. H.; Sabin-Sanjulian, C.; Simon-Diaz, S.; Tramper, F.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dufton, P. L.; Garcia, M.; Gieles, M.; Henault-Brunet, V.; Herrero, A.; Izzard, R. G.; Kalari, V.; Lennon, D. J.; Apellaniz, J. M.; Markova, N.; Najarro, F.; Podsiadlowski, P.; Puls, J.; Taylor, W. D.; van Loon, J. T.; Vink, J. S.; Norman, C.

    2018-02-01

    Through the use of the Fibre Large Array Multi Element Spectrograph (FLAMES) on the Very Large Telescope (VLT), the VLT-FLAMES Tarantula Survey (VFTS) has obtained optical spectra of ~800 massive stars in 30 Dor, avoiding the core region of the dense star cluster R136 because of difficulties with crowding. Repeated observations at multiple epochs allow determination of the orbital motion of potentially binary objects. For a sample of 452 apparently single stars, robust stellar parameters-such as effective temperatures, luminosities, surface gravities, and projected rotational velocities-are determined by modeling the observed spectra. Composite spectra of visual multiple systems and spectroscopic binaries are not considered here because their parameters cannot be reliably inferred from the VFTS data. To match the derived atmospheric parameters of the apparently single VFTS stars to stellar evolutionary models, we use the Bayesian code Bonnsai. (2 data files).

  13. Looking for Photometric Signatures of Fast Rotation in Intermediate-Age Star Clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    2017-08-01

    Recently, deep color-magnitude diagrams from HST data revealed that several massive intermediate-age star clusters in the Magellanic Clouds exhibit extended main-sequence turn-offs (eMSTOs). This discovery posed serious questions regarding the mechanisms responsible for the formation of massive globular clusters and their well-known multiple stellar populations. The nature of eMSTOs is a hotly debated topic of study. Several studies argued that the eMSTOs are caused by an age range of up to a few hundred Myr, while other studies indicate that eMSTOs can instead be caused by a coeval population in which the stars span a range of rotation velocities. Formal evidence to (dis-)prove either scenario still remains at large, in part because stellar tracks that incorporate the effects of rotation have so far only been available for masses > 1.7 Msun whereas the stars in the known eMSTOs of intermediate-age star clusters are less massive. In this proposal we aim to look for photometric signatures of fast rotators in eMSTO clusters that have been observed by HST in three passbands including (at least) F336W and F814W. We will study spreads in different stellar colors, testing against those predicted with the aid of von Zeipel's geometric study for a population of rotating stars with a significant spread in their inclination. Importantly, this spread due to the presence of rotation is predicted to occur along well-defined lines in color-color diagrams, in directions that are distinct from those in color-magnitude diagrams and distinct from the spread predicted for the age range scenario.

  14. VizieR Online Data Catalog: Structure of young stellar clusters. II. (Kuhn+, 2015)

    NASA Astrophysics Data System (ADS)

    Kuhn, M. A.; Getman, K. V.; Feigelson, E. D.

    2015-07-01

    We investigate the intrinsic stellar populations (estimated total numbers of OB and pre-main-sequence stars down to 0.1Mȯ) that are present in 17 massive star-forming regions (MSFRs) surveyed by the MYStIX project. The study is based on the catalog of >31000 MYStIX Probable Complex Members with both disk-bearing and disk-free populations, compensating for extinction, nebulosity, and crowding effects. Correction for observational sensitivities is made using the X-ray luminosity function and the near-infrared initial mass function --a correction that is often not made by infrared surveys of young stars. The resulting maps of the projected structure of the young stellar populations, in units of intrinsic stellar surface density, allow direct comparison between different regions. Several regions have multiple dense clumps, similar in size and density to the Orion Nebula Cluster. The highest projected density of ~34000 stars/pc2 is found in the core of the RCW 38 cluster. Histograms of surface density show different ranges of values in different regions, supporting the conclusion of Bressert et al. (B10; 2010MNRAS.409L..54B) that no universal surface-density threshold can distinguish between clustered and distributed star formation. However, a large component of the young stellar population of MSFRs resides in dense environments of 200-10000 stars/pc2 (including within the nearby Orion molecular clouds), and we find that there is no evidence for the B10 conclusion that such dense regions form an extreme "tail" of the distribution. Tables of intrinsic populations for these regions are used in our companion study of young cluster properties and evolution. (3 data files).

  15. THE EFFECT OF SECOND-GENERATION POPULATIONS ON THE INTEGRATED COLORS OF METAL-RICH GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul; Lee, Sang-Yoon; Yoon, Suk-Jin

    2013-05-20

    The mean color of globular clusters (GCs) in early-type galaxies is in general bluer than the integrated color of halo field stars in host galaxies. Metal-rich GCs often appear more associated with field stars than metal-poor GCs, yet show bluer colors than their host galaxy light. Motivated by the discovery of multiple stellar populations in Milky Way GCs, we present a new scenario in which the presence of second-generation (SG) stars in GCs is responsible for the color discrepancy between metal-rich GCs and field stars. The model assumes that the SG populations have an enhanced helium abundance as evidenced bymore » observations, and it gives a good explanation of the bluer optical colors of metal-rich GCs than field stars as well as strong Balmer lines and blue UV colors of metal-rich GCs. Ours may be complementary to the recent scenario suggesting the difference in stellar mass functions (MFs) as an origin for the GC-to-star color offset. A quantitative comparison is given between the SG and MF models.« less

  16. Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram

    NASA Astrophysics Data System (ADS)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2016-08-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims: We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. Methods: We completed a grid of 330 stellar evolution models for globular cluster low-mass stars computed with different initial chemical compositions corresponding to the predictions of the original FRMS scenario for [Fe/H] = -1.75. Starting from the initial helium-sodium relation that allows reproducing the currently observed distribution of sodium in NGC 6752, we deduce the helium distribution expected in that cluster at ages equal to 9 and 13 Gyr. We distinguish the stars that are moderately enriched in helium from those that are very helium-rich (initial helium mass fraction below and above 0.4, respectively), and compare the predictions of the FRMS framework with other scenarios for globular cluster enrichment. Results: The effect of helium enrichment on the stellar lifetime and evolution reduces the total number of very helium-rich stars that remain in the cluster at 9 and 13 Gyr to only 12% and 10%, respectively, from an initial fraction of 21%. Within this age range, most of the stars still burn their hydrogen in their core, which widens the MS band significantly in effective temperature. The fraction of very helium-rich stars drops in the more advanced evolution phases, where the associated spread in effective temperature strongly decreases. These stars even disappear from the horizontal branch and the asymptotic giant branch at 13 Gyr. Conclusions: The helium constraint is no suitable criterion for clearly distinguishing between the scenarios for GC self-enrichment because only few very helium-rich stars are predicted in the investigated framework and because it is difficult to derive the helium content of GC stars observationally. However, the helium constraint indicates some difficulties of the original FRMS scenario that require the exploration of alternatives. The files containing the relevant evolution characteristics of the complete grid of models from the pre-main sequence up to the end of the stellar life (see Appendix of Chantereau et al. 2015) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A111 As in Chantereau et al. (2015), we also provide all the tables on the website http://obswww.unige.ch/Recherche/evol/starevol/Globular.php

  17. THE PREVALENCE AND IMPACT OF WOLF–RAYET STARS IN EMERGING MASSIVE STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy

    We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point inmore » the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.{sup 4} We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ∼50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.« less

  18. Spectroscopy and Photometry of Multiple Populations along the Asymptotic Giant Branch of NGC 2808 and NGC 6121 (M4)

    NASA Astrophysics Data System (ADS)

    Marino, A. F.; Milone, A. P.; Yong, D.; Da Costa, G.; Asplund, M.; Bedin, L. R.; Jerjen, H.; Nardiello, D.; Piotto, G.; Renzini, A.; Shetrone, M.

    2017-07-01

    We present a photometric and spectroscopic study of multiple populations along the asymptotic giant branch (AGB) of the intermediate-metallicity globular clusters (GCs) NGC 2808 and NGC 6121 (M4). Chemical abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe, Co, Ni, Zn, Y, and Ce in AGB stars from high-resolution FLAMES+UVES@VLT spectra are reported for both clusters. Our spectroscopic results have been combined with multiwavelength photometry from the Hubble Space Telescope UV survey of Galactic GCs and ground-based photometry, as well as proper motions derived by combining stellar positions from ground-based images and Gaia DR1. Our analysis reveals that the AGBs of both clusters host multiple populations with different chemical compositions. In M4, we have identified two main populations of stars with different Na/O content lying on distinct AGBs in the {m}{{F}438{{W}}} versus {C}{{F}275{{W}},{{F}}336{{W}},{{F}}438{{W}}} and the V versus {C}{{U},{{B}},{{I}}} pseudo-color-magnitude diagrams. In the more massive and complex GC NGC 2808, three groups of stars with different chemical abundances occupy different locations on the so-called “chromosome map” photometric diagram constructed for AGB stars. The spectroscopic + photometric comparison of stellar populations along the AGB and the red giants of this GC suggests that the AGB hosts stellar populations with a range in helium abundances from primordial to high contents of Y˜ 0.32. By contrast, from our data set, there is no evidence for stars with extreme helium abundance (Y˜ 0.38) on the AGB, suggesting that the most He-rich stars of NGC 2808 do not reach this phase. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 093.D-0789 and 094.D-0455 and on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  19. A Multiplicity Census of Young Stars in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Lafrenière, David; Jayawardhana, Ray; Brandeker, Alexis; Ahmic, Mirza; van Kerkwijk, Marten H.

    2008-08-01

    We present the results of a multiplicity survey of 126 stars spanning ~0.1-3 M⊙ in the ~2 Myr old Chamaeleon I star-forming region, based on adaptive optics imaging with the ESO Very Large Telescope. Our observations have revealed 30 binaries and six triples, of which 19 and four, respectively, are new discoveries. The overall multiplicity fraction we find for Cha I (~30%) is similar to those reported for other dispersed young associations, but significantly higher than seen in denser clusters and the field, for comparable samples. Both the frequency and the maximum separation of Cha I binaries decline with decreasing mass, while the mass ratios approach unity; conversely, tighter pairs are more likely to be equal mass. We confirm that brown dwarf companions to stars are rare, even at young ages at wide separations. Based on follow-up spectroscopy of two low-mass substellar companion candidates, we conclude that both are likely background stars. The overall multiplicity fraction in Cha I is in rough agreement with numerical simulations of cloud collapse and fragmentation, but its observed mass dependence is less steep than predicted. The paucity of higher order multiples, in particular, provides a stringent constraint on the simulations, and seems to indicate a low level of turbulence in the prestellar cores in Cha I.

  20. Bayesian Analysis and Characterization of Multiple Populations in Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, Rachel A.; Stenning, David; Sarajedini, Ata; von Hippel, Ted; van Dyk, David A.; Robinson, Elliot; Stein, Nathan; Jefferys, William H.; BASE-9, HST UVIS Globular Cluster Treasury Program

    2017-01-01

    Globular clusters have long been important tools to unlock the early history of galaxies. Thus, it is crucial we understand the formation and characteristics of the globular clusters (GCs) themselves. Historically, GCs were thought to be simple and largely homogeneous populations, formed via collapse of a single molecular cloud. However, this classical view has been overwhelmingly invalidated by recent work. It is now clear that the vast majority of globular clusters in our Galaxy host two or more chemically distinct populations of stars, with variations in helium and light elements at discrete abundance levels. No coherent story has arisen that is able to fully explain the formation of multiple populations in globular clusters nor the mechanisms that drive stochastic variations from cluster to cluster.We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of 30 Galactic Globular Clusters to characterize two distinct stellar populations. A sophisticated Bayesian technique is employed to simultaneously sample the joint posterior distribution of age, distance, and extinction for each cluster, as well as unique helium values for two populations within each cluster and the relative proportion of those populations. We find the helium differences among the two populations in the clusters fall in the range of 0.04 to 0.11. Because adequate models varying in CNO are not presently available, we view these spreads as upper limits and present them with statistical rather than observational uncertainties. Evidence supports previous studies suggesting an increase in helium content concurrent with increasing mass of the cluster. We also find that the proportion of the first population of stars increases with mass. Our results are examined in the context of proposed globular cluster formation scenarios.

  1. Enhanced momentum feedback from clustered supernovae

    NASA Astrophysics Data System (ADS)

    Gentry, Eric S.; Krumholz, Mark R.; Dekel, Avishai; Madau, Piero

    2017-02-01

    Young stars typically form in star clusters, so the supernovae (SNe) they produce are clustered in space and time. This clustering of SNe may alter the momentum per SN deposited in the interstellar medium (ISM) by affecting the local ISM density, which in turn affects the cooling rate. We study the effect of multiple SNe using idealized 1D hydrodynamic simulations which explore a large parameter space of the number of SNe, and the background gas density and metallicity. The results are provided as a table and an analytic fitting formula. We find that for clusters with up to ˜100 SNe, the asymptotic momentum scales superlinearly with the number of SNe, resulting in a momentum per SN which can be an order of magnitude larger than for a single SN, with a maximum efficiency for clusters with 10-100 SNe. We argue that additional physical processes not included in our simulations - self-gravity, breakout from a galactic disc, and galactic shear - can slightly reduce the momentum enhancement from clustering, but the average momentum per SN still remains a factor of 4 larger than the isolated SN value when averaged over a realistic cluster mass function for a star-forming galaxy. We conclude with a discussion of the possible role of mixing between hot and cold gas, induced by multidimensional instabilities or pre-existing density variations, as a limiting factor in the build-up of momentum by clustered SNe, and suggest future numerical experiments to explore these effects.

  2. Blue straggler formation at core collapse

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran

    Among the most striking feature of blue straggler stars (BSS) in globular clusters is the presence of multiple sequences of BSSs in the colour-magnitude diagrams (CMDs) of several globular clusters. It is often envisaged that such a multiple BSS sequence would arise due a recent core collapse of the host cluster, triggering a number of stellar collisions and binary mass transfers simultaneously over a brief episode of time. Here we examine this scenario using direct N-body computations of moderately-massive star clusters (of order 104 {M⊙). As a preliminary attempt, these models are initiated with ≈8-10 Gyr old stellar population and King profiles of high concentrations, being ``tuned'' to undergo core collapse quickly. BSSs are indeed found to form in a ``burst'' at the onset of the core collapse and several of such BS-bursts occur during the post-core-collapse phase. In those models that include a few percent primordial binaries, both collisional and binary BSSs form after the onset of the (near) core-collapse. However, there is as such no clear discrimination between the two types of BSSs in the corresponding computed CMDs. We note that this may be due to the less number of BSSs formed in these less massive models than that in actual globular clusters.

  3. Hα Monitoring of Early-Type Emission Line Stars

    NASA Astrophysics Data System (ADS)

    Souza, Steven P.; Boettcher, E.; Wilson, S.; Hosek, M.

    2011-05-01

    We have begun a narrowband imaging program to monitor Hα emission in early-type stars in young open clusters and associations. A minority of early-type stars, particularly Be stars, show Hα in emission due to extended atmospheres and non-equilibrium conditions. Emission features commonly vary irregularly over a range of timescales (Porter, J.M. & Rivinus, T., P.A.S.P. 115:1153-1170, 2003). Some of the brightest such stars, e.g. γ Cas, have been spectroscopically monitored for Hα variability to help constrain models of the unstable disk, but there is relatively little ongoing monitoring in samples including fainter stars (Peters, G., Be Star Newsletter 39:3, 2009). Our program uses matched 5nm-wide on-band (656nm) and off-band (645nm) filters, in conjunction with the Hopkins Observatory 0.6-m telescope and CCD camera. Aperture photometry is done on all early-type stars in each frame, and results expressed as on-band to off-band ratios. Though wavelength-dependent information is lost compared with spectroscopy, imaging allows us to observe much fainter (and therefore many more) objects. Observing young clusters, rather than individual target stars, allows us to record multiple known and candidate emission line stars per frame, and provides multiple "normal" reference stars of similar spectral type. Observations began in the summer of 2010. This project has the potential to produce significant amounts of raw data, so a semi-automated data reduction process has been developed, including astrometric and photometric tasks. Early results, including some preliminary light curves and recovery of known Be stars at least as faint as R=13.9, are presented. We gratefully acknowledge support for student research through an REU grant to the Keck Northeast Astronomy Consortium from the National Science Foundation, and from the Division III Research Funding Committee of Williams College.

  4. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; Timmes, F. X.; Wyithe, J. Stuart B.; Alpaslan, Mehmet; Andrews, Stephen K.; Coe, Daniel; Diego, Jose M.; Dijkstra, Mark; Driver, Simon P.; Kelly, Patrick L.; Kim, Duho

    2018-02-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z ≃ 7–17. Theoretical predictions and recent near-infrared power spectra provide tighter constraints on their sky signal. We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z≳ 7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be μ ≃ {10}4{--}{10}5, with rise times of hours and decline times of ≲ 1 year for cluster transverse velocities of {v}T≲ 1000 km s‑1. Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3–30 lensing clusters to {AB}≲ 29 mag over a decade.

  5. A view of the H-band light-element chemical patterns in globular clusters under the AGB self-enrichment scenario

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; García-Hernández, D. A.; Ventura, P.; Mészáros, Sz; Masseron, T.; Fernández-Trincado, J. G.; Tang, B.; Shetrone, M.; Zamora, O.; Lucatello, S.

    2018-04-01

    We discuss the self-enrichment scenario by asymptotic giant branch (AGB) stars for the formation of multiple populations in globular clusters (GCs) by analysing data set of giant stars observed in nine Galactic GCs, covering a wide range of metallicities and for which the simultaneous measurements of C, N, O, Mg, Al, and Si are available. To this aim, we calculated six sets of AGB models, with the same chemical composition as the stars belonging to the first generation of each GC. We find that the AGB yields can reproduce the set of observations available, not only in terms of the degree of contamination shown by stars in each GC but, more important, also the observed trend with metallicity, which agrees well with the predictions from AGB evolution modelling. While further observational evidences are required to definitively fix the main actors in the pollution of the interstellar medium from which new generation of stars formed in GCs, the present results confirm that the gas ejected by stars of mass in the range 4 M_{⊙} ≤ M ≤ 8 M_{⊙} during the AGB phase share the same chemical patterns traced by stars in GCs.

  6. Evolution of the Black Hole Mass Function in Star Clusters from Multiple Mergers

    NASA Astrophysics Data System (ADS)

    Christian, Pierre; Mocz, Philip; Loeb, Abraham

    2018-05-01

    We investigate the effects of black hole (BH) mergers in star clusters on the black hole mass function (BHMF). As BHs are not produced in pair-instability supernovae, it is suggested that there is a dearth of high-mass stellar BHs. This dearth generates a gap in the upper end of the BHMF. Meanwhile, parameter fitting of X-ray binaries suggests the existence of a gap in the mass function under 5 solar masses. We show, through evolving a coagulation equation, that BH mergers can appreciably fill the upper mass gap, and that the lower mass gap generates potentially observable features at larger mass scales. We also explore the importance of ejections in such systems and whether dynamical clusters can be formation sites of intermediate-mass BH seeds.

  7. A clustered origin for isolated massive stars

    NASA Astrophysics Data System (ADS)

    Lucas, William E.; Rybak, Matus; Bonnell, Ian A.; Gieles, Mark

    2018-03-01

    High-mass stars are commonly found in stellar clusters promoting the idea that their formation occurs due to the physical processes linked with a young stellar cluster. It has recently been reported that isolated high-mass stars are present in the Large Magellanic Cloud. Due to their low velocities, it has been argued that these are high-mass stars which formed without a surrounding stellar cluster. In this paper, we present an alternative explanation for the origin of these stars in which they formed in a cluster environment but are subsequently dispersed into the field as their natal cluster is tidally disrupted in a merger with a higher mass cluster. They escape the merged cluster with relatively low velocities typical of the cluster interaction and thus of the larger scale velocity dispersion, similarly to the observed stars. N-body simulations of cluster mergers predict a sizeable population of low-velocity (≤20 km s-1), high-mass stars at distances of >20 pc from the cluster. High-mass clusters in which gas poor mergers are frequent would be expected to commonly have haloes of young stars, including high-mass stars, which were actually formed in a cluster environment.

  8. Star Clusters within FIRE

    NASA Astrophysics Data System (ADS)

    Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.

    2017-01-01

    In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.

  9. The Star Cluster System in the Local Group Starburst Galaxy IC 10

    NASA Astrophysics Data System (ADS)

    Lim, Sungsoon; Lee, Myung Gyoon

    2015-05-01

    We present a survey of star clusters in the halo of IC 10, a starburst galaxy in the Local Group, based on Subaru R-band images and NOAO Local Group Survey UBVRI images. We find five new star clusters. All of these star clusters are located far from the center of IC 10, while previously known star clusters are mostly located in the main body. Interestingly, the distribution of these star clusters shows an asymmetrical structure elongated along the east and southwest directions. We derive UBVRI photometry of 66 star clusters, including these new star clusters, as well as previously known star clusters. Ages of the star clusters are estimated from a comparison of their UBVRI spectral energy distribution with the simple stellar population models. We find that the star clusters in the halo are all older than 1 Gyr, while those in the main body have various ages, from very young (several Myr) to old (\\gt 1 Gyr). The young clusters (\\lt 10 Myr) are mostly located in the Hα emission regions and are concentrated on a small region at 2\\prime\\prime in the southeast direction from the galaxy center, while the old clusters are distributed in a wider area than the disk. Intermediate-age clusters (∼100 Myr) are found in two groups. One is close to the location of the young clusters and the other is at ∼ 4\\prime\\prime from the location of the young clusters. The latter may be related to past mergers or tidal interaction.

  10. Ultraviolet studies of O and B stars in the LMC cluster NGC 2100, the SMC cluster NGC 330 and the Galactic cluster NGC 6530

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.; Hodge, P.

    1984-01-01

    High-resolution and low-resolution IUE spectra of O and B stars in the LMC cluster NGC 2100, the SMC cluster NGC 330, and the young Galactic cluster NGC 6530 are investigated. Temperatures and luminosities are determined. In the LMC and SMC clusters, the most luminous stars are evolved stars on the horizontal supergiant branch, while in NGC 6530 the stars are all still on the main sequence. Extinction laws were determined. They confirm the known differences between LMC and Galactic extinctions. No mass loss was detected for the evolved B stars in the LMC and SMC clusters, while the high-luminosity stars in NGC 6530 show P Cygni profiles.

  11. Stellar Variability at the Main-sequence Turnoff of the Intermediate-age LMC Cluster NGC 1846

    NASA Astrophysics Data System (ADS)

    Salinas, R.; Pajkos, M. A.; Vivas, A. K.; Strader, J.; Contreras Ramos, R.

    2018-04-01

    Intermediate-age (IA) star clusters in the Large Magellanic Cloud (LMC) present extended main-sequence turn-offs (MSTO) that have been attributed to either multiple stellar populations or an effect of stellar rotation. Recently it has been proposed that these extended main sequences can also be produced by ill-characterized stellar variability. Here we present Gemini-S/Gemini Multi-Object Spectrometer (GMOS) time series observations of the IA cluster NGC 1846. Using differential image analysis, we identified 73 new variable stars, with 55 of those being of the Delta Scuti type, that is, pulsating variables close the MSTO for the cluster age. Considering completeness and background contamination effects, we estimate the number of δ Sct belonging to the cluster between 40 and 60 members, although this number is based on the detection of a single δ Sct within the cluster half-light radius. This amount of variable stars at the MSTO level will not produce significant broadening of the MSTO, albeit higher-resolution imaging will be needed to rule out variable stars as a major contributor to the extended MSTO phenomenon. Though modest, this amount of δ Sct makes NGC 1846 the star cluster with the highest number of these variables ever discovered. Lastly, our results present a cautionary tale about the adequacy of shallow variability surveys in the LMC (like OGLE) to derive properties of its δ Sct population. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  12. A Chemical Composition Survey of the Iron-complex Globular Cluster NGC 6273 (M19)

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Mateo, Mario; Bailey, John I., III; Clarkson, William I.; Olszewski, Edward W.; Walker, Matthew G.

    2017-02-01

    Recent observations have shown that a growing number of the most massive Galactic globular clusters contain multiple populations of stars with different [Fe/H] and neutron-capture element abundances. NGC 6273 has only recently been recognized as a member of this “iron-complex” cluster class, and we provide here a chemical and kinematic analysis of >300 red giant branch and asymptotic giant branch member stars using high-resolution spectra obtained with the Magellan-M2FS and VLT-FLAMES instruments. Multiple lines of evidence indicate that NGC 6273 possesses an intrinsic metallicity spread that ranges from about [Fe/H] = -2 to -1 dex, and may include at least three populations with different [Fe/H] values. The three populations identified here contain separate first (Na/Al-poor) and second (Na/Al-rich) generation stars, but a Mg-Al anti-correlation may only be present in stars with [Fe/H] ≳ -1.65. The strong correlation between [La/Eu] and [Fe/H] suggests that the s-process must have dominated the heavy element enrichment at higher metallicities. A small group of stars with low [α/Fe] is identified and may have been accreted from a former surrounding field star population. The cluster’s large abundance variations are coupled with a complex, extended, and multimodal blue horizontal branch (HB). The HB morphology and chemical abundances suggest that NGC 6273 may have an origin that is similar to ω Cen and M54. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14197. This paper includes data gathered with the 6.5 m Magellan Telescopes located as Las Campanas Observatory, Chile.

  13. Star Cluster Formation in Cosmological Simulations. I. Properties of Young Clusters

    NASA Astrophysics Data System (ADS)

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; Meng, Xi; Semenov, Vadim A.; Kravtsov, Andrey V.

    2017-01-01

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is α ≈ 1.8{--}2, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. Comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.

  14. The Multiple Stellar Populations in the Ancient LMC Globular Clusters Hodge 11 and NGC 2210

    NASA Astrophysics Data System (ADS)

    Chaboyer, Brian; Gilligan, Christina; Wagner-Kaiser, Rachel; Mackey, Dougal; Sarajedini, Ata; Cummings, Jeffrey; Grocholski, Aaron; Geisler, Doug; Cohen, Roger; Villanova, Sandro; Yang, Soung-Chul; Parisi, Celeste

    2018-01-01

    Hubble Space telescope images of the ancient LMC globular clusters Hodge 11 and NGC 2210 in the F336W, F606W and F814W filters were obtained between June 2016 and April 2017. These deep images has been analyzed with the Dolphot software package. High quality photometry has been obtained from three magnitudes brighter than the horizontal branch, to about four magnitudes fainter than the main sequence turn-off. Both clusters show an excess of red main sequence stars in the F336W filter, indicating that multiple stellar populations exist in both clusters. Hodge 11 shows irregularities in its horizontal branch morphology, which is indicative of the presence of an approximately 0.1 dex internal helium abundance spread.

  15. STELLAR POPULATIONS IN COMPACT GALAXY GROUPS: A MULTI-WAVELENGTH STUDY OF HCGs 16, 22, AND 42, THEIR STAR CLUSTERS, AND DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.

    2013-06-20

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy. We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to bemore » double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 ''associates'' (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.« less

  16. THE ROLE OF THERMOHALINE MIXING IN INTERMEDIATE- AND LOW-METALLICITY GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelou, George C.; Stancliffe, Richard J.; Church, Ross P.

    It is now widely accepted that globular cluster red giant branch (RGB) stars owe their strange abundance patterns to a combination of pollution from progenitor stars and in situ extra mixing. In this hybrid theory a first generation of stars imprints abundance patterns into the gas from which a second generation forms. The hybrid theory suggests that extra mixing is operating in both populations and we use the variation of [C/Fe] with luminosity to examine how efficient this mixing is. We investigate the observed RGBs of M3, M13, M92, M15, and NGC 5466 as a means to test a theorymore » of thermohaline mixing. The second parameter pair M3 and M13 are of intermediate metallicity and our models are able to account for the evolution of carbon along the RGB in both clusters, although in order to fit the most carbon-depleted main-sequence stars in M13 we require a model whose initial [C/Fe] abundance leads to a carbon abundance lower than is observed. Furthermore, our results suggest that stars in M13 formed with some primary nitrogen (higher C+N+O than stars in M3). In the metal-poor regime only NGC 5466 can be tentatively explained by thermohaline mixing operating in multiple populations. We find thermohaline mixing unable to model the depletion of [C/Fe] with magnitude in M92 and M15. It appears as if extra mixing is occurring before the luminosity function bump in these clusters. To reconcile the data with the models would require first dredge-up to be deeper than found in extant models.« less

  17. Stellar Populations in Compact Galaxy Groups: a Multi-wavelength Study of HCGs 16, 22, and 42, Their Star Clusters, and Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Fedotov, K.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Desjardins, T. D.; Gallagher, S. C.; Walker, L. M.; hide

    2013-01-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy.We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 "associates" (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  18. Properties of the Open Cluster Tombaugh 1 from High-resolution Spectroscopy and uvbyCaHβ Photometry

    NASA Astrophysics Data System (ADS)

    Sales Silva, João V.; Carraro, Giovanni; Anthony-Twarog, Barbara J.; Moni Bidin, Christian; Costa, Edgardo; Twarog, Bruce A.

    2016-01-01

    Open clusters can be the key to deepening our knowledge on various issues involving the structure and evolution of the Galactic disk and details of stellar evolution because a cluster’s properties are applicable to all its members. However, the number of open clusters with detailed analysis from high-resolution spectroscopy or precision photometry imposes severe limitations on studies of these objects. To expand the number of open clusters with well-defined chemical abundances and fundamental parameters, we investigate the poorly studied, anticenter open cluster Tombaugh 1. Using precision uvbyCaHβ photometry and high-resolution spectroscopy, we derive the cluster’s reddening, obtain photometric metallicity estimates, and, for the first time, present a detailed abundance analysis of 10 potential cluster stars (nine clump stars and one Cepheid). Using the radial position from the cluster center and multiple color indices, we have isolated a sample of unevolved, probable single-star members of Tombaugh 1. From 51 stars, the cluster reddening is found to be E(b-y) = 0.221 ± 0.006 or E(B-V) = 0.303 ± 0.008, where the errors refer to the internal standard errors of the mean. The weighted photometric metallicity from m1 and hk is [Fe/H] = -0.10 ± 0.02, while a match to the Victoria-Regina Strömgren isochrones leads to an age of 0.95 ± 0.10 Gyr and an apparent modulus of (m-M) = 13.10 ± 0.10. Radial velocities identify six giants as probable cluster members, and the elemental abundances of Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Y, Ba, Ce, and Nd have been derived for both the cluster and the field stars. Tombaugh 1 appears to be a typical inner thin disk, intermediate-age open cluster of slightly subsolar metallicity, located just beyond the solar circle, with solar elemental abundance ratios except for the heavy s-process elements, which are a factor of two above solar. Its metallicity is consistent with a steep metallicity gradient in the galactocentric region between 9.5 and 12 kpc. Our study also shows that Cepheid XZ CMa is not a member of Tombaugh 1 and reveals that this Cepheid presents signs of barium enrichment, making it a probable binary star. Based on observations carried out at Las Campanas Observatory (program ID: CN2009B-042) and Cerro Tololo Inter-American Observatory.

  19. Search for Carbon-Rich Asymptotic Giant Branch Stars in Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Indahl, Briana; Pessev, P.

    2014-01-01

    From our current understanding of stellar evolution, it would not be expected to find carbon rich asymptotic giant branch (AGB) stars in Milky Way globular clusters. Due to the low metallicity of the population II stars making up the globular clusters and their age, stars large enough to fuse carbon should have already evolved off of the asymptotic giant branch. Recently, however, there have been serendipitous discoveries of these types of stars. Matsunaga et al. (2006) discovered a Mira variable in the globular cluster Lynga 7. It was later confirmed by Feast et al. (2012) that the star is a member of the cluster and must be a product of a stellar merger. In the same year, Sharina et al. (2012) discovered a carbon star in the low metallicity globular cluster NGC6426 and reports it to be a CH star. Five more of these types of stars have been made as serendipitous discoveries and have been reported by Harding (1962), Dickens (1972), Cote et al. (1997), and Van Loon (2007). The abundance of these types of carbon stars in Milky Way globular clusters has been unknown because the discovery of these types of objects has only ever been a serendipitous discovery. These stars could have been easily overlooked in the past as they are outside the typical parameter space of galactic globular clusters. Also advances in near-infrared instruments and observing techniques have made it possible to detect the fainter carbon stars in binary systems. Having an understanding of the abundances of carbon stars in galactic globular clusters will aid in the modeling of globular cluster and galaxy formation leading to a better understanding of these processes. To get an understanding of the abundances of these stars we conducted the first comprehensive search for AGB carbon stars into all Milky Way globular clusters listed in the Harris Catalog (expect for Pyxis). I have found 128 carbon star candidates using methods of comparing color magnitude diagrams of the clusters with the carbon stars of the Large Magellenic Clouds and picking out very red stars in the red giant branch range. Observations will need to be done of these candidates to further confirm if they are carbon stars and are members of their respective globular cluster.

  20. Very massive runaway stars from three-body encounters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  1. ACTION-SPACE CLUSTERING OF TIDAL STREAMS TO INFER THE GALACTIC POTENTIAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, Robyn E.; Helmi, Amina; Hogg, David W., E-mail: robyn@astro.columbia.edu

    2015-03-10

    We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires three-dimensional positions and velocities for all stars to be fit, but does not require identification of any specific stream or determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered when the potential used to calculate the actions is closest to the true potential. Clustering is quantified with the Kullback-Leibler Divergence (KLD), which also provides conditional uncertainties for our parameter estimates. We show, for toy Gaia-like datamore » in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the input potential. The precision depends on the observational errors and number of streams; using K III giants as tracers, we measure the enclosed mass at the average radius of the sample stars accurate to 3% and precise to 20%-40%. Recovery of the scale radius is precise to 25%, biased 50% high by the small galactocentric distance range of stars in our mock sample (1-25 kpc, or about three scale radii, with mean 6.5 kpc). 20-25 streams with at least 100 stars each are required for a stable confidence interval. With radial velocities (RVs) to 100 kpc, all parameters are determined with ∼10% accuracy and 20% precision (1.3% accuracy for the enclosed mass), underlining the need to complete the RV catalog for faint halo stars observed by Gaia.« less

  2. From Head to Sword: The Clustering Properties of Stars in Orion

    NASA Astrophysics Data System (ADS)

    Gomez, Mercedes; Lada, Charles J.

    1998-04-01

    We investigate the structure in the spatial distributions of optically selected samples of young stars in the Head (lambda Orionis) and in the Sword (Orion A) regions of the constellation of Orion with the aid of stellar surface density maps and the two-point angular correlation function. The distributions of young stars in both regions are found to be nonrandom and highly clustered. Stellar surface density maps reveal three distinct clusters in the lambda Ori region. The two-point correlation function displays significant features at angular scales that correspond to the radii and separations of the three clusters identified in the surface density maps. Most young stars in the lambda Ori region (~80%) are presently found within these three clusters, consistent with the idea that the majority of young stars in this region were formed in dense protostellar clusters that have significantly expanded since their formation. Over a scale of ~0.05d-0.5d the correlation function is well described by a single power law that increases smoothly with decreasing angular scale. This suggests that, within the clusters, the stars either are themselves hierarchically clustered or have a volume density distribution that falls steeply with radius. The relative lack of Hα emission-line stars in the one cluster in this region that contains OB stars suggests a timescale for emission-line activity of less than 4 Myr around late-type stars in the cluster and may indicate that the lifetimes of protoplanetary disks around young stellar objects are reduced in clusters containing O stars. The spatial distribution of young stars in the Orion A region is considerably more complex. The angular correlation function of the OB stars (which are mostly foreground to the Orion A molecular cloud) is very similar to that of the Hα stars (which are located mostly within the molecular cloud) and significantly different from that of the young stars in the lambda Ori region. This suggests that, although spatially separated, both populations in the Orion A region may have originated from a similar fragmentation process. Stellar surface density maps and modeling of the angular correlation function suggest that somewhat less than half of the OB and Hα stars in the Orion A cloud are presently within well-defined stellar clusters. Although all the OB stars could have originated in rich clusters, a significant fraction of the Hα stars appear to have formed outside such clusters in a more spatially dispersed manner. The close similarity of the angular correlation functions of the OB and Hα stars toward the molecular cloud, in conjunction with the earlier indications of a relatively high star formation rate and high gas pressure in this cloud, is consistent with the idea that older, foreground OB stars triggered the current episode of star formation in the Orion A cloud. One of the OB clusters (Upper Sword) that is foreground to the cloud does not appear to be associated with any of the clusterings of emission-line stars, again suggesting a timescale (<4 Myr) for emission-line activity and disk lifetimes around late-type stars born in OB clusters.

  3. Star cluster formation in cosmological simulations. I. Properties of young clusters

    DOE PAGES

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; ...

    2017-01-03

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less

  4. Star cluster formation in cosmological simulations. I. Properties of young clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less

  5. The Gaia-ESO Survey: Structural and dynamical properties of the young cluster Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Sacco, G. G.; Spina, L.; Randich, S.; Palla, F.; Parker, R. J.; Jeffries, R. D.; Jackson, R.; Meyer, M. R.; Mapelli, M.; Lanzafame, A. C.; Bonito, R.; Damiani, F.; Franciosini, E.; Frasca, A.; Klutsch, A.; Prisinzano, L.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.; Alfaro, E. J.; Micela, G.; Prusti, T.; Barrado, D.; Biazzo, K.; Bouy, H.; Bravi, L.; Lopez-Santiago, J.; Wright, N. J.; Bayo, A.; Gilmore, G.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Pancino, E.; Casey, A. R.; Costado, M. T.; Donati, P.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Investigating the physical mechanisms driving the dynamical evolution of young star clusters is fundamental to our understanding of the star formation process and the properties of the Galactic field stars. The young ( 2 Myr) and partially embedded cluster Chamaeleon I is one of the closest laboratories for the study of the early stages of star cluster dynamics in a low-density environment. The aim of this work is to study the structural and kinematical properties of this cluster combining parameters from the high-resolution spectroscopic observations of the Gaia-ESO Survey with data from the literature. Our main result is the evidence of a large discrepancy between the velocity dispersion (σstars = 1.14 ± 0.35 km s-1) of the stellar population and the dispersion of the pre-stellar cores ( 0.3 km s-1) derived from submillimeter observations. The origin of this discrepancy, which has been observed in other young star clusters, is not clear. It has been suggested that it may be due to either the effect of the magnetic field on the protostars and the filaments or to the dynamical evolution of stars driven by two-body interactions. Furthermore, the analysis of the kinematic properties of the stellar population puts in evidence a significant velocity shift ( 1 km s-1) between the two subclusters located around the north and south main clouds of the cluster. This result further supports a scenario where clusters form from the evolution of multiple substructures rather than from a monolithic collapse. Using three independent spectroscopic indicators (the gravity indicator γ, the equivalent width of the Li line at 6708 Å, and the Hα 10% width), we performed a new membership selection. We found six new cluster members all located in the outer region of the cluster, proving that Chamaeleon I is probably more extended than previously thought. Starting from the positions and masses of the cluster members, we derived the level of substructure Q, the surface density Σ, and the level of mass segregation ΛMSR of the cluster. The comparison between these structural properties and the results of N-body simulations suggests that the cluster formed in a low-density environment, in virial equilibrium or a supervirial state, and highly substructured. This work is one of the last ones carried out with the help and support of our friend and colleague Francesco Palla, who passed away on 26 January 2016.Full Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A97Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey).

  6. M13 multiple stellar populations seen with the eyes of Strömgren photometry

    NASA Astrophysics Data System (ADS)

    Savino, A.; Massari, D.; Bragaglia, A.; Dalessandro, E.; Tolstoy, E.

    2018-03-01

    We present a photometric study of M13 multiple stellar populations over a wide field of view, covering approximately 6.5 half-light radii, using archival Isaac Newton Telescope observations to build an accurate multiband Strömgren catalogue. The use of the Strömgren index cy permits us to separate the multiple populations of M13 on the basis of their position on the red giant branch. The comparison with medium and high resolution spectroscopic analysis confirms the robustness of our selection criterion. To determine the radial distribution of stars in M13, we complemented our data set with Hubble Space Telescope observations of the cluster core, to compensate for the effect of incompleteness affecting the most crowded regions. From the analysis of the radial distributions, we do not find any significant evidence of spatial segregation. Some residuals may be present in the external regions where we observe only a small number of stars. This finding is compatible with the short dynamical time-scale of M13 and represents, to date, one of the few examples of fully spatially mixed multiple populations in a massive globular cluster.

  7. ON POTASSIUM AND OTHER ABUNDANCE ANOMALIES OF RED GIANTS IN NGC 2419

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliadis, C.; Karakas, A. I.; Prantzos, N.

    2016-02-10

    Globular clusters are of paramount importance for testing theories of stellar evolution and early galaxy formation. Strong evidence for multiple populations of stars in globular clusters derives from observed abundance anomalies. A puzzling example is the recently detected Mg–K anticorrelation in NGC 2419. We perform Monte Carlo nuclear reaction network calculations to constrain the temperature–density conditions that gave rise to the elemental abundances observed in this elusive cluster. We find a correlation between stellar temperature and density values that provide a satisfactory match between simulated and observed abundances in NGC 2419 for all relevant elements (Mg, Si, K, Ca, Sc,more » Ti, and V). Except at the highest densities (ρ ≳ 10{sup 8} g cm{sup −3}), the acceptable conditions range from ≈100 MK at ≈10{sup 8} g cm{sup −3} to ≈200 MK at ≈10{sup −4} g cm{sup −3}. This result accounts for uncertainties in nuclear reaction rates and variations in the assumed initial composition. We review hydrogen-burning sites and find that low-mass stars, asymptotic giant branch (AGB) stars, massive stars, or supermassive stars cannot account for the observed abundance anomalies in NGC 2419. Super-AGB stars could be viable candidates for the polluter stars if stellar model parameters can be fine-tuned to produce higher temperatures. Novae, involving either CO or ONe white dwarfs, could be interesting polluter candidates, but a current lack of low-metallicity nova models precludes firmer conclusions. We also discuss whether additional constraints for the first-generation polluters can be obtained by future measurements of oxygen, or by evolving models of second-generation low-mass stars with a non-canonical initial composition.« less

  8. ClassLess: A Comprehensive Database of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne; Baliber, Nairn

    2015-01-01

    We have designed and constructed a database housing published measurements of Young Stellar Objects (YSOs) within ~1 kpc of the Sun. ClassLess, so called because it includes YSOs in all stages of evolution, is a relational database in which user interaction is conducted via HTML web browsers, queries are performed in scientific language, and all data are linked to the sources of publication. Each star is associated with a cluster (or clusters), and both spatially resolved and unresolved measurements are stored, allowing proper use of data from multiple star systems. With this fully searchable tool, myriad ground- and space-based instruments and surveys across wavelength regimes can be exploited. In addition to primary measurements, the database self consistently calculates and serves higher level data products such as extinction, luminosity, and mass. As a result, searches for young stars with specific physical characteristics can be completed with just a few mouse clicks.

  9. W49A: A Massive Molecular Cloud Forming a Massive Star Cluster in the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Galvan-Madrid, Roberto; Liu, Hauyu Baobab; Pineda, Jaime E.; Zhang, Zhi-Yu; Ginsburg, Adam; Roman-Zuñiga, Carlos; Peters, Thomas

    2015-08-01

    I summarize our current results of the MUSCLE survey of W49A, the most luminous star formation region in the Milky Way. Our approach emphasizes multi-scale, multi-resolution imaging in dust, ionized-, and molecular gas, to trace the multiple gas components from <0.1 pc (core scale) all the way up to the scale of the entire giant molecular cloud (GMC), ˜100 pc. The 106 M⊙ GMC is structured in a radial network of filaments that converges toward the central 'hub' with ˜2x105 M⊙, which contains within a few pc a deeply embedded young massive cluster (YMC) of stellar mass ~5x104 M⊙. We also discuss the dynamics of the filamentary network, the role of turbulence in the formation of this YMC, and how objects like W49A can link Milky Way and extragalactic star formation relations.

  10. Star Clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Gallagher, J. S., III

    2014-09-01

    The Magellanic Clouds (MC) are prime locations for studies of star clusters covering a full range in age and mass. This contribution briefly reviews selected properties of Magellanic star clusters, by focusing first on young systems that show evidence for hierarchical star formation. The structures and chemical abundance patterns of older intermediate age star clusters in the Small Magellanic Cloud (SMC) are a second topic. These suggest a complex history has affected the chemical enrichment in the SMC and that low tidal stresses in the SMC foster star cluster survival.

  11. Not-so-simple stellar populations in the intermediate-age Large Magellanic Cloud star clusters NGC 1831 and NGC 1868

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chengyuan; De Grijs, Richard; Deng, Licai, E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn

    2014-04-01

    Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of themore » clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.« less

  12. ALE OF TWO CLUSTERS YIELDS SECRETS OF STAR BIRTH IN THE EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope (HST) image shows rich detail, previously only seen in neighboring star birth regions, in a pair of star clusters 166,000 light-years away in the Large Magellanic Cloud (LMC), in the southern constellation Doradus. The field of view is 130 light-years across and was taken with the Wide Field Planetary Camera 2. HST's unique capabilities -- ultraviolet sensitivity, ability to see faint stars, and high resolution -- have been utilized fully to identify three separate populations in this concentration of nearly 10,000 stars down to the 25th magnitude (more that twice as many as can be seen over the entire sky with the naked eye on a clear night on Earth). The field of view is only 130 light-years across. Previous observations with ground-based telescopes resolve less than 1,000 stars in the same region. About 60 percent of the stars belong to the dominant yellow cluster called NGC 1850, which is estimated to be 50 million years old. A scattering of white stars in the image are massive stars that are only about 4 million years old and represent about 20 percent of the stars in the image. (The remainder are field stars in the LMC.) Besides being much younger, the white stars are much more loosely distributed than the yellow cluster. The significant difference between the two cluster ages suggests these are two separate star groups that lie along the same line of sight. The younger, more open cluster probably lies 200 light-years beyond the older cluster. If it were in the foreground, then dust contained in the white cluster would obscure stars in the older yellow cluster. To observe two well-defined star populations separated by such a small gap of space is unusual. This juxtaposition suggests that supernova explosions in the older cluster might have triggered the birth of the younger cluster. This color composite image is assembled from exposures taken in ultraviolet, visible, and near-infrared light. Yellow stars correspond to Main Sequence stars (like our Sun) with average surface temperatures of 6000 Kelvin; red stars are cool giants and supergiants (3500 K); white stars are hot young stars (25,000 K or more) that are bright in ultraviolet. Credit: R. Gilmozzi, Space Telescope Science Institute/European Space Agency; Shawn Ewald, JPL; and NASA

  13. The Spots and Activity of Stars in the Beehive Cluster Observed by the Kepler Space Telescope (K2)

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.; Kalinicheva, E. S.; Dmitrienko, E. S.

    2018-05-01

    The spottedness parameters S (the fraction of the visible surface of the star occupied by spots) characterizing the activity of 674 stars in the Beehive Cluster (age 650 Myr) are estimated, together with variations of this parameter as a function of the rotation period, Rossby number Ro and other characteristics of the stars. The activity of the stars in this cluster is lower than the activity of stars in the younger Pleiades (125 Myr). The average S value for the Beehive Cluster stars is 0.014, while Pleiades stars have the much higher average value 0.052. The activity parameters of 61 solar-type stars in the Beehive Cluster, similar Hyades stars (of about the same age), and stars in the younger Pleiades are compared. The average S value of such objects in the Beehive Cluster is 0.014± 0.008, nearly coincident with the estimate obtained for solar-type Hyades stars. The rotation periods of these objects are 9.1 ± 3.4 day, on average, in agreement with the average rotation period of the Hyades stars (8.6 d ). Stars with periods exceeding 3-4 d are more numerous in the Beehive Cluster than in the Pleiades, and their periods have a larger range, 3-30 d . The characteristic dependence with a kink at Ro (saturation) = 0.13 is not observed in the S-Rossby number diagram for the Beehive and Hyades stars, only a clump of objects with Rossby numbers Ro > 0.7. The spottedness data for the Beehive Cluster and Hyades stars are in good agreement with the S values for dwarfs with ages of 600-700 Myr. This provides evidence for the reliability of the results of gyrochronological calibrations. The data for the Beehive and Pleiades stars are used to analyze variations in the spot-forming activity for a large number of stars of the same age that are members of a single cluster. A joint consideration of the data for two clusters can be used to draw conclusions about the time evolution of the activity of stars of different masses (over a time interval of the order of 500 Myr).

  14. Formation and Assembly of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    McMillan, Stephen

    The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing open access to state-of- the-art simulation techniques within a modern, modular software environment. We will follow the gravitational collapse of 0.1-10 million-solar mass gas clouds through star formation and coalescence into a star cluster, modeling in detail the coupling of the gas and the newborn stars. We will study the effects of star formation by detecting accreting regions of gas in self-gravitating, turbulent, MHD, FLASH models that we will translate into collisional dynamical systems of stars modeled with an N-body code, coupled together in the AMUSE framework. Our FLASH models will include treatments of radiative transfer from the newly formed stars, including heating and radiative acceleration of the surrounding gas. Specific questions to be addressed are: (1) How efficiently does the gas in a star forming region form stars, how does this depend on mass, metallicity, and other parameters, and what terminates star formation? What observational predictions can be made to constrain our models? (2) How important are different mechanisms for driving turbulence and removing gas from a cluster: accretion, radiative feedback, and mechanical feedback? (3) How does the infant mortality rate of young clusters depend on the initial properties of the parent cloud? (4) What are the characteristic formation timescales of massive star clusters, and what observable imprints does the assembly process leave on their structure at an age of 10-20 Myr, when formation is essentially complete and many clusters can be observed? These studies are directly relevant to NASA missions at many electromagnetic wavelengths, including Chandra, GALEX, Hubble, and Spitzer. Each traces different aspects of cluster formation and evolution: X-rays trace supernovae, ultraviolet traces young stars, visible colors can distinguish between young blue stars and older red stars, and the infrared directly shows young embedded star clusters.

  15. The real population of star clusters in the bar of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2017-09-01

    We report results on star clusters located in the south-eastern half of the Large Magellanic (LMC) bar from Washington CT1 photometry. Using appropriate kernel density estimators, we detected 73 star cluster candidates, three of which do not show any detectable trace of star cluster sequences in their colour-magnitude diagrams (CMDs). We did not detect the other 38 previously catalogued clusters, which could not be recognized when visually inspecting the C and T1 images either; the distribution of stars in their respective fields do not resemble that of a stellar aggregate. They represent 33 per cent of all catalogued objects located within the analysed LMC bar field. From matching theoretical isochrones to the cluster CMDs cleaned from field star contamination, we derived ages in the range 7.2 < log(t yr-1) < 10.1. As far as we are aware, this is the first time that homogeneous age estimates based on resolved stellar photometry are obtained for most of the studied clusters. We built the cluster frequency (CF) for the surveyed area, and found that the main star cluster formation activity has taken place during the period log(t yr-1) 8.0-9.0. Since 100 Myr ago, clusters have been formed during a few bursting formation episodes. When comparing the observed CF to that recovered from the star formation rate, we found noticeable differences, which suggests that field star and star cluster formation histories could have been significantly different. Photometric catalogues of the studied star clusters are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A21

  16. The SUNBIRD survey: characterizing the super star cluster populations of intensely star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Randriamanakoto, Zara; Väisänen, Petri

    2017-03-01

    Super star clusters (SSCs) represent the youngest and most massive form of known gravitationally bound star clusters in the Universe. They are born abundantly in environments that trigger strong and violent star formation. We investigate the properties of these massive SSCs in a sample of 42 nearby starbursts and luminous infrared galaxies. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared (NIR) K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments. Results from i) the fitted power-laws to the SSC K-band luminosity functions, ii) the NIR brightest star cluster magnitude - star formation rate (SFR) relation and iii) the star cluster age and mass distributions have shown the importance of studying SSC host galaxies with high SFR levels to determine the role of the galactic environments in the star cluster formation, evolution and disruption mechanisms.

  17. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    NASA Technical Reports Server (NTRS)

    Moffat, Anthony F. J.; Shara, Michael M.; Potter, Michael

    1991-01-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss.

  18. The Formation and Early Evolution of Embedded Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A measurement of the local star formation rate per gas mass surface density in the Milky Way, as well as examining arm versus interarm dependencies. Methods and Techniques: We will primarily use archival cryogenic-Spitzer, WISE, and Herschel data, and support this with existing data from ground- and space-based facilities, to conduct a comprehensive assay of critical metrics (as above) and provide observational calibration of theoretical models over the entire massive star formation process. The mm-wave molecular maps of 303 dense gas clumps in multiple species, comprising all the gas above a column density limit of 100 Msun/pc^2, are already inhand. We have also surveyed the embedded stellar content of these clumps, down to subsolar masses, in the near-infrared J, H, and K bands and with deep Warm Spitzer data. Relevance to NASA programs: Analysis to date of the space- and ground-based data has yielded several new insights into evolutionary timescales and the chemical & energy evolution of clumps during the cluster formation process. Investigations as described in this proposal will yield new demographic insights on how the properties and evolution of molecular clouds relate to the properties of massive stars and clusters that form within them, and significantly enhance the science return from these spacecraft missions. The large number of resulting data products are already being made publicly available to the astronomical community, providing crucial information for future NASA science targets. This research will be performed within the framework of a broad international collaboration spanning four continents. This ambitious but practical program will therefore maximise the science payoff from these archival data sets, provide enhanced legacy data for more advanced studies with the next generation of ground- and space-based instruments such as JWST, and open up several new windows into the discovery space of Galactic star formation & interstellar medium studies.

  19. The Primordial Binary Fraction in Trumpler 14: Frequency and Multiplicity Parameters

    NASA Astrophysics Data System (ADS)

    Sabbi, Elena

    2017-08-01

    This is an astrometric proposal designed to identify and characterize the properties of medium- and long-period (orbital periods ranging from 1.8 to 100 years) visual binaries in the mass range between 4 and 20 Mo in the young compact cluster Trumpler 14 in the Carina Nebula. We aim to probe the virtually unexplored population of intermediate- and high-mass binaries that will experience a Roche-lobe overflow during their post-main-sequence evolution. These binaries are of particular interest because they are expected to be the progenitors of supernovae Type Ia, b, and c, X-ray binaries, double neutron stars and double black holes. Multiplicity properties of young stars can be further used to constrain the outcome of the star-formation process and hence distinguish between various formation scenarios. The medium- and long-period binaries (P> 0.5 yr) are hard to detect and expensive to characterize with traditional ground-based spectroscopy. Knowledge of their orbital properties is however crucial to properly estimate the overall fraction of OB stars whose evolution is affected by binary interaction and to predict the outcome of such interaction. Because of the well characterized PSF of WFC3/UVIS and its temporal stability, HST is the only facility able to characterize the properties of OB-type medium-period binaries in Tr14, and Tr14 is the only nearby high-density OB-type young cluster.

  20. A Sparkling Spray of Stars

    NASA Astrophysics Data System (ADS)

    2008-12-01

    The festive season has arrived for astronomers at the European Southern Observatory (ESO) in the form of this dramatic new image. It shows the swirling gas around the region known as NGC 2264 -- an area of sky that includes the sparkling blue baubles of the Christmas Tree star cluster. Omega Centauri ESO PR Photo 48/08 NGC 2264 and the Christmas Tree cluster NGC 2264 lies about 2600 light-years from Earth in the obscure constellation of Monoceros, the Unicorn, not far from the more familiar figure of Orion, the Hunter. The image shows a region of space about 30 light-years across. William Herschel discovered this fascinating object during his great sky surveys in the late 18th century. He first noticed the bright cluster in January 1784 and the brightest part of the visually more elusive smudge of the glowing gas clouds at Christmas nearly two years later. The cluster is very bright and can easily be seen with binoculars. With a small telescope (whose lenses will turn the view upside down) the stars resemble the glittering lights on a Christmas tree. The dazzling star at the top is even bright enough to be seen with the unaided eye. It is a massive multiple star system that only emerged from the dust and gas a few million years ago. As well as the cluster there are many interesting and curious structures in the gas and dust. At the bottom of the frame, the dark triangular feature is the evocative Cone Nebula, a region of molecular gas flooded by the harsh light of the brightest cluster members. The region to the right of the brightest star has a curious, fur-like texture that has led to the name Fox Fur Nebula. Much of the image appears red because the huge gas clouds are glowing under the intense ultra-violet light coming from the energetic hot young stars. The stars themselves appear blue as they are hotter, younger and more massive than our own Sun. Some of this blue light is scattered by dust, as can be seen occurring in the upper part of the image. This intriguing region is an ideal laboratory for studying how stars form. The entire area shown here is just a small part of a vast cloud of molecular gas that is in the process of forming the next generation of stars. Besides the feast of objects in this picture there are many interesting objects hidden behind the murk of the nebulosity. In the region between the tip of the Cone Nebula and the brightest star at the top of the picture there are several stellar birthing grounds where young stars are forming. There is even evidence of the intense stellar winds from these youthful embryos blasting out from the hidden stars in the making. This picture of NGC 2264, including the Christmas Tree Cluster, was created from images taken with the Wide Field Imager (WFI), a specialised astronomical camera attached to the 2.2-metre Max-Planck Society/ESO telescope at the La Silla observatory in Chile. Located nearly 2400 m above sea level, in the mountains of the Atacama Desert, ESO's La Silla enjoys some of the clearest and darkest skies on the whole planet, making the site ideally suited for studying the farthest depths of the Universe. To make this image, the WFI stared at the cluster for more than ten hours through a series of specialist filters to build up a full colour image of the billowing clouds of fluorescing hydrogen gas.

  1. RR Lyrae stars in and around NGC 6441: signatures of dissolving cluster stars

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea

    2018-06-01

    Detailed elemental abundance patterns of metal-poor ([Fe/H]~ -1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of globular clusters. Here an attempt is made to identify such presumptive destroyed stars originating from the massive, inner Galaxy globular cluster NGC~6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of forty RRLs centered on the globular cluster NGC~6441. All of the 13 RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 +- 5~km/s and a star-to-star scatter of 11~km/s. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC~6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster's orbit. Therefore, either the tidal radius of NGC~6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC~6441 that are building up the old spheroidal bulge. Both the mean velocity of the cluster as well as the underlying field population is consistent with belonging to an old spheroidal bulge with low rotation and high velocity dispersion that formed before the bar.

  2. Uncovering the Protostars in Serpens South with ALMA: Continuum Sources and Their Outflow Activity

    NASA Astrophysics Data System (ADS)

    Plunkett, Adele; Arce, H.; Corder, S.; Dunham, M.

    2017-06-01

    Serpens South is an appealing protostellar cluster to study due the combination of several factors: (1) a high protostar fraction that shows evidence for very recent and ongoing star formation; (2) iconic clustered star formation along a filamentary structure; (3) its relative proximity within a few hundred parsecs. An effective study requires the sensitivity, angular and spectral resolution, and mapping capabilities recently provided with ALMA. Here we present a multi-faceted data set acquired from Cycles 1 through 3 with ALMA, including maps of continuum sources and molecular outflows throughout the region, as well as a more focused kinematical study of the protostar that is the strongest continuum source at the cluster center. Together these data span spatial scales over several orders of magnitude, allowing us to investigate the outflow-driving sources and the impact of the outflows on the cluster environment. Currently, we focus on the census of protostars in the cluster center, numbering about 20, including low-flux, low-mass sources never before detected in mm-wavelengths and evidence for multiplicity that was previously unresolved.

  3. Coordinated Cluster/Double Star observations of dayside flux transfer events on 6 April 2004

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Pu, ZuYin; Zhou, XuZhi; Zhang, XianGuo; Dunlop, Malcolm; Fu, SuiYan; Xie, Lun; Zong, QiuGang; Xiao, ChiJie; Wang, XiaoGang; Liu, ZhenXing

    2008-10-01

    With the Double Star Program TC1 in the equatorial orbit and Cluster tetrahedron in the high latitude polar orbit, a conjunct observation of FTEs on the dayside magnetopause (MP) on April 6, 2004 is presented in this study. The FTEs observed by TC1 at low latitudes are characterized to be generated in the subsolar region and the obtained flux tube axes orientate along the predicted low latitude component magnetic reconnection X-line, indicating that these FTEs were more likely to be generated through multiple X-line reconnection or single X-line bursty reconnection. During the same period, Cluster also encountered a series of magnetosheath FTEs with their axes pointing roughly along the interplanetary magnetic field. At last, the global FTE configuration is obtained from observations in different locations, which is in good agreement with the "elbow shape" model.

  4. Clustered star formation and the origin of stellar masses.

    PubMed

    Pudritz, Ralph E

    2002-01-04

    Star clusters are ubiquitous in galaxies of all types and at all stages of their evolution. We also observe them to be forming in a wide variety of environments, ranging from nearby giant molecular clouds to the supergiant molecular clouds found in starburst and merging galaxies. The typical star in our galaxy and probably in others formed as a member of a star cluster, so star formation is an intrinsically clustered and not an isolated phenomenon. The greatest challenge regarding clustered star formation is to understand why stars have a mass spectrum that appears to be universal. This review examines the observations and models that have been proposed to explain these fundamental issues in stellar formation.

  5. Yellow supergiants in open clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, J.R.

    1986-01-01

    Superluminous giant stars (SLGs) have been reported in young globular clusters in the Large Magellanic Cloud (LMC). These stars appear to be in the post-asymptotic-giant-branch phase of evolution. This program was an investigation of galactic SLG candidates in open clusters, which are more like the LMC young globular clusters. These were chosen because luminosity, mass, and age determinations can be made for members since cluster distances and interstellar reddenings are known. Color magnitude diagrams were searched for candidates, using the same selection criteria as for SLGs in the LMC. Classification spectra were obtained of 115 program stars from McGraw-Hill Observatorymore » and of 68 stars from Cerro Tololo Inter-American Observatory Chile. These stars were visually classified on the MK system using spectral scans of standard stars taken at the respective observations. Published information was combined with this program's data for 83 stars in 30 clusters. Membership probabilities were assigned to these stars, and the clusters were analyzed according to age. It was seen that the intrinsically brightest supergiants are found in the youngest clusters. With increasing cluster age, the absolute luminosities attained by the supergiants decline. Also, it appears that the evolutionary tracks of luminosity class II stars are more similar to those of class I than of class III.« less

  6. The same frequency of planets inside and outside open clusters of stars.

    PubMed

    Meibom, Søren; Torres, Guillermo; Fressin, Francois; Latham, David W; Rowe, Jason F; Ciardi, David R; Bryson, Steven T; Rogers, Leslie A; Henze, Christopher E; Janes, Kenneth; Barnes, Sydney A; Marcy, Geoffrey W; Isaacson, Howard; Fischer, Debra A; Howell, Steve B; Horch, Elliott P; Jenkins, Jon M; Schuler, Simon C; Crepp, Justin

    2013-07-04

    Most stars and their planets form in open clusters. Over 95 per cent of such clusters have stellar densities too low (less than a hundred stars per cubic parsec) to withstand internal and external dynamical stresses and fall apart within a few hundred million years. Older open clusters have survived by virtue of being richer and denser in stars (1,000 to 10,000 per cubic parsec) when they formed. Such clusters represent a stellar environment very different from the birthplace of the Sun and other planet-hosting field stars. So far more than 800 planets have been found around Sun-like stars in the field. The field planets are usually the size of Neptune or smaller. In contrast, only four planets have been found orbiting stars in open clusters, all with masses similar to or greater than that of Jupiter. Here we report observations of the transits of two Sun-like stars by planets smaller than Neptune in the billion-year-old open cluster NGC6811. This demonstrates that small planets can form and survive in a dense cluster environment, and implies that the frequency and properties of planets in open clusters are consistent with those of planets around field stars in the Galaxy.

  7. The Connection Between X-ray Binaries and Star Clusters in the Antennae

    NASA Astrophysics Data System (ADS)

    Rangelov, Blagoy; Chandar, R.; Prestwich, A.

    2011-05-01

    High Mass X-ray Binaries (HMXBs) are believed to form in massive, compact star clusters. However the correlation between these young binary star systems and properties of their parent clusters are still poorly known. We compare the locations of 82 X-ray binaries detected in the merging Antennae galaxies by Zezas et al. (2006) based on observations taken with the Chandra Space Telescope, with a catalog of optically selected star clusters presented recently by Whitmore et al. (2010) based on observations taken with the Hubble Space Telescope. We find 22 X-ray binaries coincident or nearly coincident with star clusters. The ages of the clusters were estimated by comparing their UBVIHα colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident sources (64%) are hosted by star clusters with ages of 6 Myr or less. At these very young ages, only stars initially more massive than M ≥ 30 Msun have evolved into compact remnants, almost certainly black holes. Therefore, these 14 sources are likely to be black hole binaries. Five of the XRBs are hosted by young clusters with ages τ 30-50 Myr, while three are hosted by intermediate age clusters with τ 100-300 Myr. We suggest that these older X-ray binaries likely have neutron stars as the compact object. We conclude that precision age-dating of star clusters, which are spatially coincident with XRBs in nearby star forming galaxies, is a powerful method of constraining the nature of the XRBs.

  8. Deriving physical parameters of unresolved star clusters. V. M 31 PHAT star clusters

    NASA Astrophysics Data System (ADS)

    de Meulenaer, P.; Stonkutė, R.; Vansevičius, V.

    2017-06-01

    Context. This study is the fifth of a series that investigates the degeneracy and stochasticity problems present in the determination of physical parameters such as age, mass, extinction, and metallicity of partially resolved or unresolved star cluster populations in external galaxies when using HST broad-band photometry. Aims: In this work we aim to derive parameters of star clusters using models with fixed and free metallicity based on the HST WFC3+ACS photometric system. The method is applied to derive parameters of a subsample of 1363 star clusters in the Andromeda galaxy observed with the HST. Methods: Following Paper III, we derive the star cluster parameters using a large grid of stochastic models that are compared to the six observed integrated broad-band WFC3+ACS magnitudes of star clusters. Results: We show that the age, mass, and extinction of the M 31 star clusters, derived assuming fixed solar metallicity, are in agreement with previous studies. We also demonstrate the ability of the WFC3+ACS photometric system to derive metallicity of star clusters older than 1 Gyr. We show that the metallicity derived using broad-band photometry of 36 massive M 31 star clusters is in good agreement with the metallicity derived using spectroscopy. Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A112

  9. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Elmegreen, B. G.; Calzetti, D.; Adamo, A.; Aloisi, A.; Bright, S. N.; Cook, D. O.; Dale, D. A.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grebel, E. K.; Kahre, L.; Kim, H.; Krumholz, M. R.; Lee, J. C.; Messa, M.; Ryon, J. E.; Ubeda, L.

    2017-06-01

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25-0.6 power, and that the maximum size over which star formation is physically correlated ranges from ˜200 pc to ˜1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  10. Evolution of Late-type Galaxies in a Cluster Environment: Effects of High-speed Multiple Encounters with Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Hwang, Jeong-Sun; Park, Changbom; Banerjee, Arunima; Hwang, Ho Seong

    2018-04-01

    Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way–like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15–65 h ‑1 kpc at the relative velocities of 1500–1600 km s‑1. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy–cluster interactions, we claim that the role of the galaxy–galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy–cluster interactions, depending on the dynamical history.

  11. Probing Massive Star Cluster Formation with ALMA

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2015-08-01

    Observationally constraining the physical conditions that give rise to massive star clusters has been a long-standing challenge. Now with the ALMA Observatory coming on-line, we can finally begin to probe the birth environments of massive clusters in a variety of galaxies with sufficient angular resolution. In this talk I will give an overview of ALMA observations of galaxies in which candidate proto-super star cluster molecular clouds have been identified. These new data probe the physical conditions that give rise to super star clusters, providing information on their densities, pressures, and temperatures. In particular, the observations indicate that these clouds may be subject to external pressures of P/k > 108 K cm-3, which is consistent with the prevalence of optically observed adolescent super star clusters in interacting galaxy systems and other high pressure environments. ALMA observations also enable an assessement of the molecular cloud chemical abundances in the regions surrounding super star clusters. Molecular clouds associated with existing super star clusters are strongly correlated with HCO+ emission, but appear to have relatively low ratio of CO/HCO+ emission compared to other clouds, indicating that the super star clusters are impacting the molecular abundances in their vicinity.

  12. Globular cluster formation and evolution in the context of cosmological galaxy assembly: open questions

    NASA Astrophysics Data System (ADS)

    Forbes, Duncan A.; Bastian, Nate; Gieles, Mark; Crain, Robert A.; Kruijssen, J. M. Diederik; Larsen, Søren S.; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M. N.; Pfeffer, Joel; Gnedin, Oleg Y.

    2018-02-01

    We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z˜6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ˜2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.

  13. Globular cluster formation and evolution in the context of cosmological galaxy assembly: open questions.

    PubMed

    Forbes, Duncan A; Bastian, Nate; Gieles, Mark; Crain, Robert A; Kruijssen, J M Diederik; Larsen, Søren S; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M N; Pfeffer, Joel; Gnedin, Oleg Y

    2018-02-01

    We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z ∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.

  14. Globular cluster formation and evolution in the context of cosmological galaxy assembly: open questions

    PubMed Central

    Bastian, Nate; Gieles, Mark; Crain, Robert A.; Kruijssen, J. M. Diederik; Larsen, Søren S.; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M. N.; Pfeffer, Joel; Gnedin, Oleg Y.

    2018-01-01

    We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations. PMID:29507511

  15. MOCCA-SURVEY Database I: Is NGC 6535 a dark star cluster harbouring an IMBH?

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Bianchini, Paolo; de Vita, Ruggero; Giersz, Mirek; Hypki, Arkadiusz; Kamann, Sebastian

    2017-01-01

    We describe the dynamical evolution of a unique type of dark star cluster model in which the majority of the cluster mass at Hubble time is dominated by an intermediate-mass black hole (IMBH). We analysed results from about 2000 star cluster models (Survey Database I) simulated using the Monte Carlo code MOnte Carlo Cluster simulAtor and identified these dark star cluster models. Taking one of these models, we apply the method of simulating realistic `mock observations' by utilizing the Cluster simulatiOn Comparison with ObservAtions (COCOA) and Simulating Stellar Cluster Observation (SISCO) codes to obtain the photometric and kinematic observational properties of the dark star cluster model at 12 Gyr. We find that the perplexing Galactic globular cluster NGC 6535 closely matches the observational photometric and kinematic properties of the dark star cluster model presented in this paper. Based on our analysis and currently observed properties of NGC 6535, we suggest that this globular cluster could potentially harbour an IMBH. If it exists, the presence of this IMBH can be detected robustly with proposed kinematic observations of NGC 6535.

  16. The Structure of the Young Star Cluster NGC 6231. II. Structure, Formation, and Fate

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.; Getman, Konstantin V.; Feigelson, Eric D.; Sills, Alison; Gromadzki, Mariusz; Medina, Nicolás; Borissova, Jordanka; Kurtev, Radostin

    2017-12-01

    The young cluster NGC 6231 (stellar ages ˜2-7 Myr) is observed shortly after star formation activity has ceased. Using the catalog of 2148 probable cluster members obtained from Chandra, VVV, and optical surveys (Paper I), we examine the cluster’s spatial structure and dynamical state. The spatial distribution of stars is remarkably well fit by an isothermal sphere with moderate elongation, while other commonly used models like Plummer spheres, multivariate normal distributions, or power-law models are poor fits. The cluster has a core radius of 1.2 ± 0.1 pc and a central density of ˜200 stars pc-3. The distribution of stars is mildly mass segregated. However, there is no radial stratification of the stars by age. Although most of the stars belong to a single cluster, a small subcluster of stars is found superimposed on the main cluster, and there are clumpy non-isotropic distributions of stars outside ˜4 core radii. When the size, mass, and age of NGC 6231 are compared to other young star clusters and subclusters in nearby active star-forming regions, it lies at the high-mass end of the distribution but along the same trend line. This could result from similar formation processes, possibly hierarchical cluster assembly. We argue that NGC 6231 has expanded from its initial size but that it remains gravitationally bound.

  17. ULTRA-COMPACT DWARFS IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiboucas, Kristin; Tully, R. Brent; Marzke, R. O.

    2011-08-20

    We have undertaken a spectroscopic search for ultra-compact dwarf galaxies (UCDs) in the dense core of the dynamically evolved, massive Coma cluster as part of the Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) Coma Cluster Treasury Survey. UCD candidates were initially chosen based on color, magnitude, degree of resolution within the ACS images, and the known properties of Fornax and Virgo UCDs. Follow-up spectroscopy with Keck/Low-Resolution Imaging Spectrometer confirmed 27 candidates as members of the Coma cluster, a success rate >60% for targeted objects brighter than M{sub R} = -12. Another 14 candidates may also prove to be Coma members,more » but low signal-to-noise spectra prevent definitive conclusions. An investigation of the properties and distribution of the Coma UCDs finds these objects to be very similar to UCDs discovered in other environments. The Coma UCDs tend to be clustered around giant galaxies in the cluster core and have colors/metallicity that correlate with the host galaxy. With properties and a distribution similar to that of the Coma cluster globular cluster population, we find strong support for a star cluster origin for the majority of the Coma UCDs. However, a few UCDs appear to have stellar population or structural properties which differentiate them from the old star cluster populations found in the Coma cluster, perhaps indicating that UCDs may form through multiple formation channels.« less

  18. NGC 346: Looking in the Cradle of a Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these two parameters with a considerable scatter. The fraction of stellar over the total (gas plus young stars) mass is found to be systematically higher within the central 15 pc (where the young massive cluster is located) than outside, which suggests variations in the star formation efficiency within the same star-forming complex. This trend possibly reflects a change of star formation efficiency in N66 between clustered and non-clustered star formation. Our findings suggest that the formation of NGC 346 is the combined result of star formation regulated by turbulence and of early dynamical evolution induced by the gravitational potential of the dense interstellar medium.

  19. Ages of Extragalactic Intermediate-Age Star Clusters

    NASA Technical Reports Server (NTRS)

    Flower, P. J.

    1983-01-01

    A dating technique for faint, distant star clusters observable in the local group of galaxies with the space telescope is discussed. Color-magnitude diagrams of Magellanic Cloud clusters are mentioned along with the metallicity of star clusters.

  20. The Evolutionary Status of Be Stars: Results from a Photometric Study of Southern Open Clusters

    NASA Astrophysics Data System (ADS)

    McSwain, M. Virginia; Gies, Douglas R.

    2005-11-01

    Be stars are a class of rapidly rotating B stars with circumstellar disks that cause Balmer and other line emission. There are three possible reasons for the rapid rotation of Be stars: they may have been born as rapid rotators, spun up by binary mass transfer, or spun up during the main-sequence (MS) evolution of B stars. To test the various formation scenarios, we have conducted a photometric survey of 55 open clusters in the southern sky. Of these, five clusters are probably not physically associated groups and our results for two other clusters are not reliable, but we identify 52 definite Be stars and an additional 129 Be candidates in the remaining clusters. We use our results to examine the age and evolutionary dependence of the Be phenomenon. We find an overall increase in the fraction of Be stars with age until 100 Myr, and Be stars are most common among the brightest, most massive B-type stars above the zero-age main sequence (ZAMS). We show that a spin-up phase at the terminal-age main sequence (TAMS) cannot produce the observed distribution of Be stars, but up to 73% of the Be stars detected may have been spun-up by binary mass transfer. Most of the remaining Be stars were likely rapid rotators at birth. Previous studies have suggested that low metallicity and high cluster density may also favor Be star formation. Our results indicate a possible increase in the fraction of Be stars with increasing cluster distance from the Galactic center (in environments of decreasing metallicity). However, the trend is not significant and could be ruled out due to the intrinsic scatter in our data. We also find no relationship between the fraction of Be stars and cluster density.

  1. INTER- AND INTRA-CLUSTER AGE GRADIENTS IN MASSIVE STAR FORMING REGIONS AND INDIVIDUAL NEARBY STELLAR CLUSTERS REVEALED BY MYStIX

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Feigelson, Eric; Kuhn, Michael A.; Broos, Patrick S; Townsley, Leisa K.; Naylor, Tim; Povich, Matthew S.; Luhman, Kevin; Garmire, Gordon

    2014-08-01

    The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project seeks to characterize 20 OB-dominated young star forming regions (SFRs) at distances <4 kpc using photometric catalogs from the Chandra X-ray Observatory, Spitzer Space Telescope, UKIRT and 2MASS surveys. As part of the MYStIX project, we developed a new stellar chronometer that employs near-infrared and X-ray photometry data, AgeJX. Computing AgeJX averaged over MYStIX (sub)clusters reveals previously unknown age gradients across most of the MYStIX regions as well as within some individual rich clusters. Within the SFRs, the inferred AgeJX ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed stellar populations. Noticeable intra-cluster gradients are seen in the NGC 2024 (Flame Nebula) star cluster and the Orion Nebula Cluster (ONC): stars in cluster cores appear younger and thus were formed later than stars in cluster halos. The latter result has two important implications for the formation of young stellar clusters. Clusters likely form slowly: they do not arise from a single nearly-instantaneous burst of star formation. The simple models where clusters form inside-out are likely incorrect, and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  2. Reconstructing the Initial Relaxation Time of Young Star Clusters in the Large Magellanic Cloud: The Evolution of Star Clusters

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.; Chen, H.-C.

    2008-06-01

    We reconstruct the initial two-body relaxation time at the half mass radius for a sample of young ⪉ 300 Myr star clusters in the Large Magellanic cloud. We achieve this by simulating star clusters with 12288 to 131072 stars using direct N-body integration. The equations of motion of all stars are calculated with high precision direct N-body simulations which include the effects of the evolution of single stars and binaries. We find that the initial relaxation times of the sample of observed clusters in the Large Magellanic Cloud ranges from about 200 Myr to about 2 Gyr. The reconstructed initial half-mass relaxation times for these clusters have a much narrower distribution than the currently observed distribution, which ranges over more than two orders of magnitude.

  3. Photometry of Standard Stars and Open Star Clusters

    NASA Astrophysics Data System (ADS)

    Jefferies, Amanda; Frinchaboy, Peter

    2010-10-01

    Photometric CCD observations of open star clusters and standard stars were carried out at the McDonald Observatory in Fort Davis, Texas. This data was analyzed using aperture photometry algorithms (DAOPHOT II and ALLSTAR) and the IRAF software package. Color-magnitude diagrams of these clusters were produced, showing the evolution of each cluster along the main sequence.

  4. Primordial black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1993-01-01

    It has recently been recognized that significant numbers of medium-mass back holes (of order 10 solar masses) should form in globular clusters during the early stages of their evolution. Here we explore the dynamical and observational consequences of the presence of such a primordial black-hole population in a globular cluster. The holes initially segregate to the cluster cores, where they form binary and multiple black-hole systems. The subsequent dynamical evolution of the black-hole population ejects most of the holes on a relatively short timescale: a typical cluster will retain between zero and four black holes in its core, and possibly a few black holes in its halo. The presence of binary, triple, and quadruple black-hole systems in cluster cores will disrupt main-sequence and giant stellar binaries; this may account for the observed anomalies in the distribution of binaries in globular clusters. Furthermore, tidal interactions between a multiple black-hole system and a red giant star can remove much of the red giant's stellar envelope, which may explain the puzzling absence of larger red giants in the cores of some very dense clusters.

  5. Close Encounters of the Stellar Kind

    NASA Astrophysics Data System (ADS)

    2003-07-01

    NASA's Chandra X-ray Observatory has confirmed that close encounters between stars form X-ray emitting, double-star systems in dense globular star clusters. These X-ray binaries have a different birth process than their cousins outside globular clusters, and should have a profound influence on the cluster's evolution. A team of scientists led by David Pooley of the Massachusetts Institute of Technology in Cambridge took advantage of Chandra's unique ability to precisely locate and resolve individual sources to determine the number of X-ray sources in 12 globular clusters in our Galaxy. Most of the sources are binary systems containing a collapsed star such as a neutron star or a white dwarf star that is pulling matter off a normal, Sun-like companion star. "We found that the number of X-ray binaries is closely correlated with the rate of encounters between stars in the clusters," said Pooley. "Our conclusion is that the binaries are formed as a consequence of these encounters. It is a case of nurture not nature." A similar study led by Craig Heinke of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. confirmed this conclusion, and showed that roughly 10 percent of these X-ray binary systems contain neutron stars. Most of these neutron stars are usually quiet, spending less than 10% of their time actively feeding from their companion. NGC 7099 NGC 7099 A globular cluster is a spherical collection of hundreds of thousands or even millions of stars buzzing around each other in a gravitationally-bound stellar beehive that is about a hundred light years in diameter. The stars in a globular cluster are often only about a tenth of a light year apart. For comparison, the nearest star to the Sun, Proxima Centauri, is 4.2 light years away. With so many stars moving so close together, interactions between stars occur frequently in globular clusters. The stars, while rarely colliding, do get close enough to form binary star systems or cause binary stars to exchange partners in intricate dances. The data suggest that X-ray binary systems are formed in dense clusters known as globular clusters about once a day somewhere in the universe. Observations by NASA's Uhuru X-ray satellite in the 1970's showed that globular clusters seemed to contain a disproportionately large number of X-ray binary sources compared to the Galaxy as a whole. Normally only one in a billion stars is a member of an X-ray binary system containing a neutron star, whereas in globular clusters, the fraction is more like one in a million. The present research confirms earlier suggestions that the chance of forming an X-ray binary system is dramatically increased by the congestion in a globular cluster. Under these conditions two processes, known as three-star exchange collisions, and tidal captures, can lead to a thousandfold increase in the number of X-ray sources in globular clusters. 47 Tucanae 47 Tucanae In an exchange collision, a lone neutron star encounters a pair of ordinary stars. The intense gravity of the neutron star can induce the most massive ordinary star to "change partners," and pair up with the neutron star while ejecting the lighter star. A neutron star could also make a grazing collision with a single normal star, and the intense gravity of the neutron star could distort the gravity of the normal star in the process. The energy lost in the distortion, could prevent the normal star from escaping from the neutron star, leading to what is called tidal capture. "In addition to solving a long-standing mystery, Chandra data offer an opportunity for a deeper understanding of globular cluster evolution," said Heinke. "For example, the energy released in the formation of close binary systems could keep the central parts of the cluster from collapsing to form a massive black hole." NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. The image and additional information are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  6. Einstein Observatory survey of X-ray emission from solar-type stars - The late F and G dwarf stars

    NASA Technical Reports Server (NTRS)

    Maggio, A.; Sciortino, S.; Vaiana, G. S.; Majer, P.; Bookbinder, J.

    1987-01-01

    Results of a volume-limited X-ray survey of stars of luminosity classes IV and V in the spectral range F7-G9 observed with the Einstein Observatory are presented. Using survival analysis techniques, the stellar X-ray luminosity function in the 0.15-4.0 keV energy band for both single and multiple sources. It is shown that the difference in X-ray luminosity between these two classes of sources is consistent with the superposition of individual components in multiple-component systems, whose X-ray properties are similar to those of the single-component sources. The X-ray emission of the stars in our sample is well correlated with their chromospheric CA II H-K line emission and with their projected equatorial rotational velocity. Comparison of the X-ray luminosity function constructed for the sample of the dG stars of the local population with the corresponding functions derived elsewhere for the Hyades, the Pleiades, and the Orion Ic open cluster confirms that the level of X-ray emission decreases with stellar age.

  7. ClassLess: A Comprehensive Database of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne A.; baliber, nairn

    2015-08-01

    We have designed and constructed a database intended to house catalog and literature-published measurements of Young Stellar Objects (YSOs) within ~1 kpc of the Sun. ClassLess, so called because it includes YSOs in all stages of evolution, is a relational database in which user interaction is conducted via HTML web browsers, queries are performed in scientific language, and all data are linked to the sources of publication. Each star is associated with a cluster (or clusters), and both spatially resolved and unresolved measurements are stored, allowing proper use of data from multiple star systems. With this fully searchable tool, myriad ground- and space-based instruments and surveys across wavelength regimes can be exploited. In addition to primary measurements, the database self consistently calculates and serves higher level data products such as extinction, luminosity, and mass. As a result, searches for young stars with specific physical characteristics can be completed with just a few mouse clicks. We are in the database population phase now, and are eager to engage with interested experts worldwide on local galactic star formation and young stellar populations.

  8. Red but not dead: unveiling the star-forming far-infrared spectral energy distribution of SpARCS brightest cluster galaxies at 0 < z < 1.8

    NASA Astrophysics Data System (ADS)

    Bonaventura, N. R.; Webb, T. M. A.; Muzzin, A.; Noble, A.; Lidman, C.; Wilson, G.; Yee, H. K. C.; Geach, J.; Hezaveh, Y.; Shupe, D.; Surace, J.

    2017-08-01

    We present the results of a Spitzer/Herschel infrared photometric analysis of the largest (716) and the highest-redshift (z = 1.8) sample of brightest cluster galaxies (BCGs), those from the Spitzer Adaptation of the Red-Sequence Cluster Survey Given the tension that exists between model predictions and recent observations of BCGs at z < 2, we aim to uncover the dominant physical mechanism(s) guiding the stellar mass buildup of this special class of galaxies, the most massive in the Universe and uniquely residing at the centres of galaxy clusters. Through a comparison of their stacked, broad-band, infrared spectral energy distributions (SEDs) to a variety of model templates in the literature, we identify the major sources of their infrared energy output, in multiple redshift bins between 0 < z < 1.8. We derive estimates of various BCG physical parameters from the stacked νLν SEDs, from which we infer a star-forming, as opposed to a 'red and dead' population of galaxies, producing tens to hundreds of solar masses per year down to z = 0.5. This discovery challenges the accepted belief that BCGs should only passively evolve through a series of gas-poor, minor mergers since z ˜ 4, but agrees with an improved semi-analytic model of hierarchical structure formation that predicts star-forming BCGs throughout the epoch considered. We attribute the star formation inferred from the stacked infrared SEDs to both major and minor 'wet' (gas-rich) mergers, based on a lack of key signatures (to date) of cooling-flow-induced star formation, as well as a number of observational and simulation-based studies that support this scenario.

  9. Uncovering the secrets of the Quintuplet Cluster

    NASA Image and Video Library

    2015-07-13

    Although this cluster of stars gained its name due to its five brightest stars, it is home to hundreds more. The huge number of massive young stars in the cluster is clearly captured in this NASA/ESA Hubble Space Telescope image. The cluster is located close to the Arches Cluster and is just 100 light-years from the centre of our galaxy. The cluster’s proximity to the dust at the centre of the galaxy means that much of its visible light is blocked, which helped to keep the cluster unknown until its discovery in 1990, when it was revealed by observations in the infrared. Infrared images of the cluster, like the one shown here, allow us to see through the obscuring dust to the hot stars in the cluster. The Quintuplet Cluster hosts two extremely rare luminous blue variable stars: the Pistol Star and the lesser known V4650 Sgr. If you were to draw a line horizontally through the centre of this image from left to right, you could see the Pistol Star hovering just above the line about one third of the way along it. The Pistol Star is one of the most luminous known stars in the Milky Way and takes its name from the shape of the Pistol Nebula that it illuminates, but which is not visible in this infrared image. The exact age and future of the Pistol Star are uncertain, but it is expected to end in a supernova or even a hypernova in one to three million years. The cluster also contains a number of red supergiants. These stars are among the largest in the galaxy and are burning their fuel at an incredible speed, meaning they will have a very short lifetime. Their presence suggests an average cluster age of nearly four million years. At the moment these stars are on the verge of exploding as supernovae. During their spectacular deaths they will release vast amounts of energy which, in turn, will heat the material — dust and gas — between the other stars. This observation shows the Quintuplet Cluster in the infrared and demonstrates the leap in Hubble’s performance sinc

  10. Open clusters. III. Fundamental parameters of B stars in NGC 6087, NGC 6250, NGC 6383, and NGC 6530 B-type stars with circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.

    2018-02-01

    Context. Stellar physical properties of star clusters are poorly known and the cluster parameters are often very uncertain. Methods: Our goals are to perform a spectrophotometric study of the B star population in open clusters to derive accurate stellar parameters, search for the presence of circumstellar envelopes, and discuss the characteristics of these stars. The BCD spectrophotometric system is a powerful method to obtain stellar fundamental parameters from direct measurements of the Balmer discontinuity. To this end, we wrote the interactive code MIDE3700. The BCD parameters can also be used to infer the main properties of open clusters: distance modulus, color excess, and age. Furthermore, we inspected the Balmer discontinuity to provide evidence for the presence of circumstellar disks and identify Be star candidates. We used an additional set of high-resolution spectra in the Hα region to confirm the Be nature of these stars. Results: We provide Teff, log g, Mv, Mbol, and spectral types for a sample of 68 stars in the field of the open clusters NGC 6087, NGC 6250, NGC 6383, and NGC 6530, as well as the cluster distances, ages, and reddening. Then, based on a sample of 230 B stars in the direction of the 11 open clusters studied along this series of three papers, we report 6 new Be stars, 4 blue straggler candidates, and 15 B-type stars (called Bdd) with a double Balmer discontinuity, which indicates the presence of circumstellar envelopes. We discuss the distribution of the fraction of B, Be, and Bdd star cluster members per spectral subtype. The majority of the Be stars are dwarfs and present a maximum at the spectral type B2-B4 in young and intermediate-age open clusters (<40 Myr). Another maximum of Be stars is observed at the spectral type B6-B8 in open clusters older than 40 Myr, where the population of Bdd stars also becomes relevant. The Bdd stars seem to be in a passive emission phase. Conclusions: Our results support previous statements that the Be phenomenon is present along the whole main sequence band and occurs in very different evolutionary states. We find clear evidence of an increase of stars with circumstellar envelopes with cluster age. The Be phenomenon reaches its maximum in clusters of intermediate age (10-40 Myr) and the number of B stars with circumstellar envelopes (Be plus Bdd stars) is also high for the older clusters (40-100 Myr). Observations taken at CASLEO, operating under agreement of CONICET and the Universities of La Plata, Córdoba, and San Juan, Argentina.Tables 1, 2, 9-16 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A30

  11. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.

    PubMed

    Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H

    2015-03-19

    Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.

  12. CHEMICAL DIAGNOSTICS OF THE MASSIVE STAR CLUSTER-FORMING CLOUD G33.92+0.11. I. {sup 13}CS, CH{sub 3}OH, CH{sub 3}N, OCS, H{sub 2}S, SO{sub 2}, and SiO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minh, Young Chol; Liu, Hauyu Baobab; Galvań-Madrid, Roberto

    2016-06-20

    Large chemical diversity was found in the gas clumps associated with the massive star cluster-forming G33.92+0.11 region with sub-arcsecond angular resolution (0.″6–0.″8) observations with ALMA. The most prominent gas clumps are associated with the dust emission peaks A1, A2, and A5. The close correlation between CH{sub 3}OH and OCS in the emission distributions strongly suggests that these species share a common origin of hot core grain mantle evaporation. The latest generation of star clusters are forming in the A5 clump, as indicated by multiple SiO outflows and its rich hot core chemistry. We also found a narrow SiO emission associatedmore » with the outflows, which may trace a cooled component of the outflows. Part of the chemical complexity may have resulted from the accreting gas from the ambient clouds, especially in the northern part of A1 and the southern part of A2. The chemical diversity found in this region is believed to mainly result from the different chemical evolutionary timescales of massive star formation. In particular, the abundance ratio between CH{sub 3}OH and CH{sub 3}CN may be a good chemical clock for the early phase of star formation.« less

  13. A Missing Link in Galaxy Evolution: The Mysteries of Dissolving Star Clusters

    NASA Astrophysics Data System (ADS)

    Pellerin, Anne; Meyer, Martin; Harris, Jason; Calzetti, Daniela

    2007-05-01

    Star-forming events in starbursts and normal galaxies have a direct impact on the global stellar content of galaxies. These events create numerous compact clusters where stars are produced in great number. These stars eventually end up in the star field background where they are smoothly distributed. However, due to instrumental limitations such as spatial resolution and sensitivity, the processes involved during the transition phase from the compact clusters to the star field background as well as the impact of the environment (spiral waves, bars, starburst) on the lifetime of clusters are still poorly constrained observationally. I will present our latest results on the physical properties of dissolving clusters directly detected in HST/ACS archival images of the three nearby galaxies IC 2574, NGC 1313, and IC 10 (D < 5 Mpc). The ACS has the capability to detect and spatially resolve individual stars in nearby galaxies within a large field-of-view. For all ACS images obtained in three filters (F435W, F555W or F606W, and F814W), we performed PSF stellar photometry in crowded field. Color-magnitude diagrams (CMD) allow us to identify the most massive stars more likely to be part of dissolving clusters (A-type and earlier), and to isolate them from the star field background. We then adapt and use a clustering algorithm on the selected stars to find groups of stars to reveal and quantify the properties of all star clusters (compactness, size, age, mass). With this algorithm, even the less compact clusters are revealed while they are being destroyed. Our sample of three galaxies covers an interesting range in gravitational potential well and explores a variety of galaxy morphological types, which allows us to discuss the dissolving cluster properties as a function of the host galaxy characteristics. The properties of the star field background will also be discussed.

  14. Stellar Wind Retention and Expulsion in Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.

    2018-05-01

    Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).

  15. Gas expulsion in highly substructured embedded star clusters

    NASA Astrophysics Data System (ADS)

    Farias, J. P.; Fellhauer, M.; Smith, R.; Domínguez, R.; Dabringhausen, J.

    2018-06-01

    We investigate the response of initially substructured, young, embedded star clusters to instantaneous gas expulsion of their natal gas. We introduce primordial substructure to the stars and the gas by simplistically modelling the star formation process so as to obtain a variety of substructure distributed within our modelled star-forming regions. We show that, by measuring the virial ratio of the stars alone (disregarding the gas completely), we can estimate how much mass a star cluster will retain after gas expulsion to within 10 per cent accuracy, no matter how complex the background structure of the gas is, and we present a simple analytical recipe describing this behaviour. We show that the evolution of the star cluster while still embedded in the natal gas, and the behaviour of the gas before being expelled, is crucial process that affect the time-scale on which the cluster can evolve into a virialized spherical system. Embedded star clusters that have high levels of substructure are subvirial for longer times, enabling them to survive gas expulsion better than a virialized and spherical system. By using a more realistic treatment for the background gas than our previous studies, we find it very difficult to destroy the young clusters with instantaneous gas expulsion. We conclude that gas removal may not be the main culprit for the dissolution of young star clusters.

  16. Discovery of a loose star cluster in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2016-06-01

    We present results for an up-to-date uncatalogued star cluster projected towards the Eastern side of the Large Magellanic Cloud (LMC) outer disc. The new object was discovered from a search of loose star cluster in the Magellanic Clouds' (MCs) outskirts using kernel density estimators on Washington CT1 deep images. Contrarily to what would be commonly expected, the star cluster resulted to be a young object (log(t yr-1) = 8.45) with a slightly subsolar metal content (Z = 0.013) and a total mass of 650 M⊙. Its core, half-mass and tidal radii also are within the frequent values of LMC star clusters. However, the new star cluster is placed at the Small Magellanic Cloud distance and at 11.3 kpc from the LMC centre. We speculate with the possibility that it was born in the inner body of the LMC and soon after expelled into the intergalactic space during the recent Milky Way/MCs interaction. Nevertheless, radial velocity and chemical abundance measurements are needed to further understand its origin, as well as extensive search for loose star clusters in order to constrain the effectiveness of star cluster scattering during galaxy interactions.

  17. The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster NGC 6362

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Thompson, I. B.; Rozyczka, M.; Pych, W.; Narloch, W.

    2014-12-01

    The field of the globular cluster NGC 6362 was monitored between 1995 and 2009 in a search for variable stars. BV light curves were obtained for 69 periodic variable stars including 34 known RR Lyr stars, 10 known objects of other types and 25 newly detected variable stars. Among the latter we identified 18 proper-motion members of the cluster: seven detached eclipsing binaries (DEBs), six SX Phe stars, two W UMa binaries, two spotted red giants, and a very interesting eclipsing binary composed of two red giants - the first example of such a system found in a globular cluster. Five of the DEBs are located at the turnoff region, and the remaining two are redward of the lower main sequence. Eighty-four objects from the central 9×9 arcmin2 of the cluster were found in the region of cluster blue stragglers. Of these 70 are proper motion (PM) members of NGC 6362 (including all SX Phe and two W UMa stars), and five are field stars. The remaining nine objects lacking PM information are located at the very core of the cluster, and as such they are likely genuine blue stragglers.

  18. Zodiacal Exoplanets in Time: Searching for Young Stars in K2

    NASA Astrophysics Data System (ADS)

    Morris, Nathan Ryan; Mann, Andrew; Rizzuto, Aaron

    2018-01-01

    Observations of planetary systems around young stars provide insight into the early stages of planetary system formation. Nearby young open clusters such as the Hyades, Pleiades, and Praesepe provide important benchmarks for the properties of stellar systems in general. These clusters are all known to be less than 1 Gyr old, making them ideal targets for a survey of young planetary systems. Few transiting planets have been detected around clusters stars, however, so this alone is too small of a sample. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in clusters and elsewhere in the K2 field. This provides us with the opportunity to extend the sample of young systems to field stars while calibrating with cluster stars. We compute rotational periods from starspot patterns for ~36,000 K2 targets and use gyrochronological relationships derived from cluster stars to determine their ages. From there, we have begun searching for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve in their early, most formative years.

  19. Hubble Catches Stellar Exodus in Action

    NASA Image and Video Library

    2015-05-14

    Using NASA’s Hubble Space Telescope, astronomers have captured for the first time snapshots of fledging white dwarf stars beginning their slow-paced, 40-million-year migration from the crowded center of an ancient star cluster to the less populated suburbs. White dwarfs are the burned-out relics of stars that rapidly lose mass, cool down and shut off their nuclear furnaces. As these glowing carcasses age and shed weight, their orbits begin to expand outward from the star cluster’s packed downtown. This migration is caused by a gravitational tussle among stars inside the cluster. Globular star clusters sort out stars according to their mass, governed by a gravitational billiard ball game where lower mass stars rob momentum from more massive stars. The result is that heavier stars slow down and sink to the cluster's core, while lighter stars pick up speed and move across the cluster to the edge. This process is known as "mass segregation." Until these Hubble observations, astronomers had never definitively seen the dynamical conveyor belt in action. Astronomers used Hubble to watch the white-dwarf exodus in the globular star cluster 47 Tucanae, a dense swarm of hundreds of thousands of stars in our Milky Way galaxy. The cluster resides 16,700 light-years away in the southern constellation Tucana. Credits: NASA, ESA, and H. Richer and J. Heyl (University of British Columbia, Vancouver, Canada); acknowledgement: J. Mack (STScI) and G. Piotto (University of Padova, Italy)

  20. A CCD Search for Variable Stars of Spectral Type B in the Northern Hemisphere Open Clusters. IX. NGC 457

    NASA Astrophysics Data System (ADS)

    Moździerski, D.; Pigulski, A.; Kopacki, G.; Kołaczkowski, Z.; Stęślicki, M.

    2014-06-01

    We present results of a BVIC variability survey in the young open cluster NGC 457 based on observations obtained during three separate runs spanning almost 20 years. In total, we found 79 variable stars, of which 66 are new. The BVIC photometry was transformed to the standard system and used to derive cluster parameters by means of isochrone fitting. The cluster is about 20 Myr old, the mean reddening amounts to about 0.48 mag in terms of the color excess E(B-V). Depending on the metallicity, the isochrone fitting yields a distance between 2.3 kpc and 2.9 kpc, which locates the cluster in the Perseus arm of the Galaxy. Using the complementary Hα photometry carried out in two seasons separated by over 10 years, we find that the cluster is very rich in Be stars. In total, 15 stars in the observed field of which 14 are cluster members showed Hα in emission either during our observations or in the past. Most of the Be stars vary in brightness on different time scales including short-period variability related most likely to g-mode pulsations. A single-epoch spectrum of NGC 457-6 shows that this Be star is presently in the shell phase. The inventory of variable stars in the observed field consists of a single β Cep-type star, NGC 457-8, 13 Be stars, 21 slowly pulsating B stars, seven δ Sct stars, one γ Dor star, 16 unclassified periodic stars, 8 eclipsing systems and a dozen of stars with irregular variability, of which six are also B-type stars. As many as 45 variable stars are of spectral type B which is the largest number in all open clusters presented in this series of papers. The most interesting is the discovery of a large group of slowly pulsating B stars which occupy the cluster main sequence in the range between V=11 mag and 14.5 mag, corresponding to spectral types B3 to B8. They all have very low amplitudes and about half show pulsations with frequencies higher than 3 d-1. We argue that these are most likely fast-rotating slowly pulsating B stars, observed also in other open clusters.

  1. WFPC2 Observations of Star Clusters in the Magellanic Clouds. Report 2; The Oldest Star Clusters in the Small Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Mighell, Kenneth J.; Sarajedini, Ata; French, Rica S.

    1998-01-01

    We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F45OW ( approximately B) and F555W (approximately V) of the intermediate-age populous star clusters NGC 121, NGC 339, NGC 361, NGC 416, and Kron 3 in the Small Magellanic Cloud. We use published photometry of two other SMC populous star clusters, Lindsay 1 and Lindsay 113, to investigate the age sequence of these seven populous star clusters in order to improve our understanding of the formation chronology of the SMC. We analyzed the V vs B-V and M(sub V) vs (B-V)(sub 0) color-magnitude diagrams of these populous Small Magellanic Cloud star clusters using a variety of techniques and determined their ages, metallicities, and reddenings. These new data enable us to improve the age-metallicity relation of star clusters in the Small Magellanic Cloud. In particular, we find that a closed-box continuous star-formation model does not reproduce the age-metallicity relation adequately. However, a theoretical model punctuated by bursts of star formation is in better agreement with the observational data presented herein.

  2. Differences in the rotational properties of multiple stellar populations in M13: a faster rotation for the `extreme' chemical subpopulation

    NASA Astrophysics Data System (ADS)

    Cordero, M. J.; Hénault-Brunet, V.; Pilachowski, C. A.; Balbinot, E.; Johnson, C. I.; Varri, A. L.

    2017-03-01

    We use radial velocities from spectra of giants obtained with the WIYN telescope, coupled with existing chemical abundance measurements of Na and O for the same stars, to probe the presence of kinematic differences among the multiple populations of the globular cluster (GC) M13. To characterize the kinematics of various chemical subsamples, we introduce a method using Bayesian inference along with a Markov chain Monte Carlo algorithm to fit a six-parameter kinematic model (including rotation) to these subsamples. We find that the so-called extreme population (Na-enhanced and extremely O-depleted) exhibits faster rotation around the centre of the cluster than the other cluster stars, in particular, when compared with the dominant `intermediate' population (moderately Na-enhanced and O-depleted). The most likely difference between the rotational amplitude of this extreme population and that of the intermediate population is found to be ˜4 km s-1 , with a 98.4 per cent probability that the rotational amplitude of the extreme population is larger than that of the intermediate population. We argue that the observed difference in rotational amplitudes, obtained when splitting subsamples according to their chemistry, is not a product of the long-term dynamical evolution of the cluster, but more likely a surviving feature imprinted early in the formation history of this GC and its multiple populations. We also find an agreement (within uncertainties) in the inferred position angle of the rotation axis of the different subpopulations considered. We discuss the constraints that these results may place on various formation scenarios.

  3. The impact of galaxy geometry and mass evolution on the survival of star clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrid, Juan P.; Hurley, Jarrod R.; Martig, Marie

    2014-04-01

    Direct N-body simulations of globular clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6 to determine the impact of the host galaxy disk mass and geometry on the survival of star clusters. A relation between disk mass and star-cluster dissolution timescale is derived. These N-body models show that doubling the mass of the disk from 5 × 10{sup 10} M {sub ☉} to 10 × 10{sup 10} M {sub ☉} halves the dissolution time of a satellite star cluster orbiting the host galaxy at 6 kpc from the galactic center. Different geometries in a disk ofmore » identical mass can determine either the survival or dissolution of a star cluster orbiting within the inner 6 kpc of the galactic center. Furthermore, disk geometry has measurable effects on the mass loss of star clusters up to 15 kpc from the galactic center. N-body simulations performed with a fine output time step show that at each disk crossing the outer layers of star clusters experiences an increase in velocity dispersion of ∼5% of the average velocity dispersion in the outer section of star clusters. This leads to an enhancement of mass loss—a clearly discernable effect of disk shocking. By running models with different inclinations, we determine that star clusters with an orbit that is perpendicular to the Galactic plane have larger mass loss rates than do clusters that evolve in the Galactic plane or in an inclined orbit.« less

  4. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasha, K.; Calzetti, D.; Elmegreen, B. G.

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are closemore » to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.« less

  5. Do All O Stars Form in Star Clusters?

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  6. Clear Evidence for the Presence of Second-generation Asymptotic Giant Branch Stars in Metal-poor Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Mészáros, Sz.; Monelli, M.; Cassisi, S.; Stetson, P. B.; Zamora, O.; Shetrone, M.; Lucatello, S.

    2015-12-01

    Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation (FG) with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch (RGB)). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M13, M5, M3, and M2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the Apache Point Observatory Galactic Evolution Experiment survey with ground-based optical photometry, we identify SG Al-rich AGB stars in these four GCs and show that Al-rich RGB/AGB GC stars should be Na-rich. Our observations provide strong support for present, standard stellar models, i.e., without including a strong mass-loss efficiency, for low-mass HB stars. In fact, current empirical evidence is in agreement with the predicted distribution of FG and SG stars during the He-burning stages based on these standard stellar models.

  7. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2001-09-06

    Scientists using NASA's Hubble Space Telescope (HST) are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings. One such galaxy, Galaxy NGC 3310, a hotbed of star formation showcased in this HST photograph, is forming clusters of stars at a prodigious rate. The image shows several hundred star clusters, visible as the bright blue diffuse objects tracing the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young stars can be seen throughout the galaxy. The star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show their ages range between about one million and more that one hundred million years. This suggests the starburst "turned on" more than 100 million years ago.

  8. ON THE BIRTH MASSES OF THE ANCIENT GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Charlie; Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA

    All globular clusters (GCs) studied to date show evidence for internal (star-to-star) variation in their light-element abundances (including Li, C, N, O, F, Na, Mg, Al, and probably He). These variations have been interpreted as evidence for multiple star formation episodes within GCs, with secondary episodes fueled, at least in part, by the ejecta of asymptotic giant branch (AGB) stars from a first generation of stars. A major puzzle emerging from this otherwise plausible scenario is that the fraction of stars associated with the second episode of star formation is observed to be much larger than expected for a standardmore » initial mass function. The present work investigates this tension by modeling the observed anti-correlation between [Na/Fe] and [O/Fe] for 20 Galactic GCs. If the abundance pattern of the retained AGB ejecta does not depend on GC mass at fixed [Fe/H], then a strong correlation is found between the fraction of current GC stellar mass composed of pure AGB ejecta, f{sub p} , and GC mass. This fraction varies from 0.20 at low masses (10{sup 4.5} M{sub Sun }) to 0.45 at high masses (10{sup 6.5} M{sub Sun }). The fraction of mass associated with pure AGB ejecta is directly related to the total mass of the cluster at birth; the ratio between the initial and present mass in stars can therefore be derived. Assuming a star formation efficiency of 50%, the observed Na-O anti-correlations imply that GCs were at least 10-20 times more massive at birth, a conclusion that is in qualitative agreement with previous work. These factors are lower limits because any mass-loss mechanism that removes first- and second-generation stars equally will leave f{sub p} unchanged. The mass dependence of f{sub p} probably arises because lower mass GCs are unable to retain all of the AGB ejecta from the first stellar generation. Recent observations of elemental abundances in intermediate-age Large Magellanic Cloud clusters are re-interpreted and shown to be consistent with this basic scenario. The small scatter in f{sub p} at fixed GC mass argues strongly that the process responsible for the large mass loss is internal to GCs. A satisfactory explanation of these trends is currently lacking.« less

  9. Hidden Milky Way star clusters hosting Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Kurtev, R.; Borissova, J.; Ivanov, V. D.; Georgiev, L.

    2009-05-01

    A noticeable fraction of the hidden young star clusters contain WR and O stars providing us with unique laboratories to study the evolution of these rare objects and their maternity places. We are reporting the reddening, the distance and age of two new members of the family of massive young Galactic clusters, hosting WR stars - Glimpse 23 and Glimpse 30.

  10. Young Star Clusters: Keys to Understanding Massive Stars

    NASA Astrophysics Data System (ADS)

    Davies, B.

    2012-12-01

    Young, coeval clusters of stars provide the perfect laboratory in which to test our understanding of how massive stars evolve. Early optical observations limited us to a handful of low-mass clusters within 1kpc. However, thanks to the recent progress in infrared astronomy, the Milky Way's population of young massive star clusters is now beginning to be revealed. Here, I will review the recent progress made in this field, what it has told us about the evolution of massive stars to supernova and beyond, the prospects for this field, and some issues that should be taken into account when interpreting the results.

  11. MASGOMAS project: building a bona-fide catalog of massive star cluster candidates

    NASA Astrophysics Data System (ADS)

    Herrero, Artemio; Rübke, Klaus; Ramírez Alegría, Sebastián; Garcia, Miriam; Marín-Franch, Antonio

    2017-11-01

    MASGOMAS (MAssive Stars in Galactic Obscured MAssive clusterS) is a project aiming at discovering OB stars in Galactic, dust enshrouded, star-forming massive clusters (Marín-Franch et al. 2009, A&A 502, 559). The project has gone through different phases of increasing automatization, that have allowed us to discover massive clusters like MASGOMAS-1 (Ramírez Alegría et al. 2012, A&A 541, A75) (with M~20,000 M⊙).

  12. New Evidence for the Dynamical Decay of a Multiple System in the Orion Kleinmann–Low Nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luhman, K. L.; Robberto, M.; Gabellini, M. Giulia Ubeira

    We have measured astrometry for members of the Orion Nebula Cluster with images obtained in 2015 with the Wide Field Camera 3 on board the Hubble Space Telescope . By comparing those data to previous measurements with the Near-Infrared Camera and Multi-Object Spectrometer on Hubble in 1998, we have discovered that a star in the Kleinmann–Low Nebula, source x from Lonsdale et al., is moving with an unusually high proper motion of 29 mas yr{sup −1}, which corresponds to 55 km s{sup −1} at the distance of Orion. Previous radio observations have found that three other stars in the Kleinmann–Lowmore » Nebula (the Becklin–Neugebauer object and sources I and n) have high proper motions (5–14 mas yr{sup −1}) and were near a single location ∼540 years ago, and thus may have been members of a multiple system that dynamically decayed. The proper motion of source x is consistent with ejection from that same location 540 years ago, which provides strong evidence that the dynamical decay did occur and that the runaway star BN originated in the Kleinmann–Low Nebula rather than the nearby Trapezium cluster. However, our constraint on the motion of source n is significantly smaller than the most recent radio measurement, which indicates that it did not participate in the event that ejected the other three stars.« less

  13. New Evidence for the Dynamical Decay of a Multiple System in the Orion Kleinmann-Low Nebula

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Robberto, M.; Tan, J. C.; Andersen, M.; Giulia Ubeira Gabellini, M.; Manara, C. F.; Platais, I.; Ubeda, L.

    2017-03-01

    We have measured astrometry for members of the Orion Nebula Cluster with images obtained in 2015 with the Wide Field Camera 3 on board the Hubble Space Telescope. By comparing those data to previous measurements with the Near-Infrared Camera and Multi-Object Spectrometer on Hubble in 1998, we have discovered that a star in the Kleinmann-Low Nebula, source x from Lonsdale et al., is moving with an unusually high proper motion of 29 mas yr-1, which corresponds to 55 km s-1 at the distance of Orion. Previous radio observations have found that three other stars in the Kleinmann-Low Nebula (the Becklin-Neugebauer object and sources I and n) have high proper motions (5-14 mas yr-1) and were near a single location ˜540 years ago, and thus may have been members of a multiple system that dynamically decayed. The proper motion of source x is consistent with ejection from that same location 540 years ago, which provides strong evidence that the dynamical decay did occur and that the runaway star BN originated in the Kleinmann-Low Nebula rather than the nearby Trapezium cluster. However, our constraint on the motion of source n is significantly smaller than the most recent radio measurement, which indicates that it did not participate in the event that ejected the other three stars. Based on observations made with the NASA/ESA Hubble Space Telescope and the NASA Infrared Telescope Facility.

  14. Multiwavelength Studies of Young OB Associations

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.

    We discuss how contemporary multiwavelength observations of young OB-dominated clusters address long-standing astrophysical questions: Do clusters form rapidly or slowly with an age spread? When do clusters expand and disperse to constitute the field star population? Do rich clusters form by amalgamation of smaller subclusters? What is the pattern and duration of cluster formation in massive star forming regions (MSFRs)? Past observational difficulties in obtaining good stellar censuses of MSFRs have been alleviated in recent studies that combine X-ray and infrared surveys to obtain rich, though still incomplete, censuses of young stars in MSFRs. We describe here one of these efforts, the MYStIX project, that produced a catalog of 31,784 probable members of 20 MSFRs. We find that age spread within clusters is real in the sense that the stars in the core formed after the cluster halo. This is consistent with some recent astrophysical models involving merging star-forming filaments. Cluster expansion is seen in the ensemble of (sub)clusters, and older dispersing populations are found across MSFRs. Long-lived, asynchronous star formation is pervasive across MSFRs.

  15. NEW NEUTRON-CAPTURE MEASUREMENTS IN 23 OPEN CLUSTERS. I. THE r -PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overbeek, Jamie C.; Friel, Eileen D.; Jacobson, Heather R., E-mail: joverbee@indiana.edu

    2016-06-20

    Neutron-capture elements, those with Z > 35, are the least well understood in terms of nucleosynthesis and formation environments. The rapid neutron-capture, or r -process, elements are formed in the environments and/or remnants of massive stars, while the slow neutron-capture, or s -process, elements are primarily formed in low-mass AGB stars. These elements can provide much information about Galactic star formation and enrichment, but observational data are limited. We have assembled a sample of 68 stars in 23 open clusters that we use to probe abundance trends for six neutron-capture elements (Eu, Gd, Dy, Mo, Pr, and Nd) with clustermore » age and location in the disk of the Galaxy. In order to keep our analysis as homogeneous as possible, we use an automated synthesis fitting program, which also enables us to measure multiple (3–10) lines for each element. We find that the pure r -process elements (Eu, Gd, and Dy) have positive trends with increasing cluster age, while the mixed r - and s -process elements (Mo, Pr, and Nd) have insignificant trends consistent with zero. Pr, Nd, Eu, Gd, and Dy have similar, slight (although mostly statistically significant) gradients of ∼0.04 dex kpc{sup −1}. The mixed elements also appear to have nonlinear relationships with R {sub GC}.« less

  16. Legacy ExtraGalactic UV Survey (LEGUS): The HST View of Star Formation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Lee, J. C.; Adamo, A.; Aloisi, A.; Andrews, J. E.; Brown, T. M.; Chandar, R.; Christian, C. A.; Cignoni, M.; Clayton, G. C.; Da Silva, R. L.; de Mink, S. E.; Dobbs, C.; Elmegreen, B.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S.; Gouliermis, D.; Grebel, E.; Herrero-Davo`, A.; Hilbert, B.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R.; Kim, H.; Krumholz, M. R.; Lennon, D. J.; Martin, C. D.; Nair, P.; Nota, A.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Schaerer, D.; Schiminovich, D.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Van Dyk, S. D.; Walterbos, R. A.; Whitmore, B. C.; Wofford, A.

    2014-01-01

    The Treasury program LEGUS (HST/GO-13364) is the first HST UV Atlas of nearby galaxies, and is aimed at the thorough investigation of star formation and its relation with galaxy environment, from the scales of individual stars to those of ~kpc clustered structures. The 154-orbits program is obtaining NUV,U,B,V,I images of 50 star-forming galaxies in the distance range 4-12 Mpc, covering the full range of morphology, star formation rate (SFR), mass, metallicity, internal structure, and interaction state found in the local Universe. The imaging survey will yield accurate recent (<50 Myr) star formation histories (SFHs) from resolved massive stars, and the extinction-corrected ages and masses of star clusters and associations. These extensive inventories of massive stars, clustered systems, and SFHs will be used to: (1) quantify how the clustering of star formation evolves both in space and in time; (2) discriminate among models of star cluster evolution; (3) investigate the effects of SFH on the UV SFR calibrations; (4) explore the impact of environment on star formation and cluster evolution across the full range of galactic and ISM properties. LEGUS observations will inform theories of star formation and galaxy evolution, and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of the clumpy star formation at high redshift. LEGUS will generate the most homogeneous high-resolution, wide-field UV dataset to date, building and expanding on the GALEX legacy. Data products that will be delivered to the community include: catalogs of massive stars and star clusters, catalogs of star cluster properties (ages, masses, extinction), and a one-stop shop for all the ancillary data available for this well-studied galaxy sample. LEGUS will provide the reference survey and the foundation for future observations with JWST and with ALMA. This abstract accompanies another one from the same project, and presents the status of the project, its structure, and the data products that will be delivered to the community; the other abstract presents the science goals of LEGUS and how these will be addressed by the HST observations.

  17. Highlights of Commission 37 Science Results

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; de Grijs, Richard; Elmegreen, Bruce; Stetson, Peter; Anthony-Twarog, Barbara; Goodwin, Simon; Geisler, Douglas; Minniti, Dante

    2016-04-01

    It is widely accepted that stars do not form in isolation but result from the fragmentation of molecular clouds, which in turn leads to star cluster formation. Over time, clusters dissolve or are destroyed by interactions with molecular clouds or tidal stripping, and their members become part of the general field population. Star clusters are thus among the basic building blocks of galaxies. In turn, star cluster populations, from young associations and open clusters to old globulars, are powerful tracers of the formation, assembly, and evolutionary history of their parent galaxies. Although their importance (e.g., in mapping out the Milky Way) had been recognised for decades, major progress in this area has only become possible in recent years, both for Galactic and extragalactic cluster populations. Star clusters are the observational foundation for stellar astrophysics and evolution, provide essential tracers of galactic structure, and are unique stellar dynamical environments. Star formation, stellar structure, stellar evolution, and stellar nucleosynthesis continue to benefit and improve tremendously from the study of these systems. Additionally, fundamental quantities such as the initial mass function can be successfully derived from modelling either the Hertzsprung-Russell diagrams or the integrated velocity structures of, respectively, resolved and unresolved clusters and cluster populations. Star cluster studies thus span the fields of Galactic and extragalactic astrophysics, while heavily affecting our detailed understanding of the process of star formation in dense environments. This report highlights science results of the last decade in the major fields covered by IAU Commission 37: Star clusters and associations. Instead of focusing on the business meeting - the out-going president presentation can be found here: http://www.sc.eso.org/gcarraro/splinter2015.pdf - this legacy report contains highlights of the most important scientific achievements in the Commission science area, compiled by 5 well expert members.

  18. Radiation hydrodynamics of super star cluster formation

    NASA Astrophysics Data System (ADS)

    Tsang, Benny Tsz Ho; Milos Milosavljevic

    2018-01-01

    Throughout the history of the Universe, the nuclei of super star clusters represent the most active sites for star formation. The high densities of massive stars within the clusters produce intense radiation that imparts both energy and momentum on the surrounding star-forming gas. Theoretical claims based on idealized geometries have claimed the dominant role of radiation pressure in controlling the star formation activity within the clusters. In order for cluster formation simulations to be reliable, numerical schemes have to be able to model accurately the radiation flows through the gas clumps at the cluster nuclei with high density contrasts. With a hybrid Monte Carlo radiation transport module we developed, we performed 3D radiation hydrodynamical simulations of super star cluster formation in turbulent clouds. Furthermore, our Monte Carlo radiation treatment provides a native capability to produce synthetic observations, which allows us to predict observational indicators and to inform future observations. We found that radiation pressure has definite, but minor effects on limiting the gas supply for star formation, and the final mass of the most massive cluster is about one million solar masses. The ineffective forcing was due to the density variations inside the clusters, i.e. radiation takes the paths of low densities and avoids forcing on dense clumps. Compared to a radiation-free control run, we further found that the presence of radiation amplifies the density variations. The core of the resulting cluster has a high stellar density, about the threshold required for stellar collisions and merging. The very massive star that form from the stellar merging could continue to gain mass from the surrounding gas reservoir that is gravitationally confined by the deep potential of the cluster, seeding the potential formation of a massive black hole.

  19. Core Collapse: The Race Between Stellar Evolution and Binary Heating

    NASA Astrophysics Data System (ADS)

    Converse, Joseph M.; Chandar, R.

    2012-01-01

    The dynamical formation of binary stars can dramatically affect the evolution of their host star clusters. In relatively small clusters (M < 6000 Msun) the most massive stars rapidly form binaries, heating the cluster and preventing any significant contraction of the core. The situation in much larger globular clusters (M 105 Msun) is quite different, with many showing collapsed cores, implying that binary formation did not affect them as severely as lower mass clusters. More massive clusters, however, should take longer to form their binaries, allowing stellar evolution more time to prevent the heating by causing the larger stars to die off. Here, we simulate the evolution of clusters between those of open and globular clusters in order to find at what size a star cluster is able to experience true core collapse. Our simulations make use of a new GPU-based computing cluster recently purchased at the University of Toledo. We also present some benchmarks of this new computational resource.

  20. The astrophysics of crowded places.

    PubMed

    Davies, Melvyn

    2002-12-15

    Today the Sun is in a relatively uncrowded place. The distance between it and the nearest other star is relatively large (about 200,000 times the Earth-Sun distance!). This is beneficial to life on Earth; a close encounter with another star is extremely unlikely. Such encounters would either remove the Earth from its orbit around the Sun or leave it on an eccentric orbit similar to a comet's. But the Sun was not formed in isolation. It was born within a more-crowded cluster of perhaps a few hundred stars. As the surrounding gas evaporated away, the cluster itself evaporated too, dispersing its stars into the Galaxy. Virtually all stars in the Galaxy share this history, and here I will describe the role of 'clusterness' in a star's life. Stars are often formed in larger stellar clusters (known as open and globular clusters), some of which are still around today. I will focus on stars in globular clusters and describe how the interactions between stars in these clusters may explain the zoo of stellar exotica which have recently been observed with instruments such as the Hubble Space Telescope and the X-ray telescopes XMM-Newton and Chandra. In recent years, myriad planets orbiting stars other than the Sun--the so-called 'extrasolar' planets--have been discovered. I will describe how a crowded environment will affect such planetary systems and may in fact explain some of their mysterious properties.

  1. Star Formation in Merging Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Mansheim, Alison Seiler

    This thesis straddles two areas of cosmology, each of which are active, rich and plagued by controversy in their own right: merging clusters and the environmental dependence of galaxy evolution. While the greater context of this thesis is major cluster mergers, our individual subjects are galaxies, and we apply techniques traditionally used to study the differential evolution of galaxies with environment. The body of this thesis is drawn from two papers: Mansheim et al. 2016a and Mansheim et al. 2016b, one on each system. Both projects benefited from exquisite data sets assembled as part of the Merging Cluster Collaboration (MC2), and Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey, allowing us to scrutinize the evolutionary states of galaxy populations in multiple lights. Multi-band optical and near-infrared imaging was available for both systems, allowing us to calculate photometric redshifts for completeness corrections, colors (red vs. blue) and stellar masses to view the ensemble properties of the populations in and around each merger. High-resolution spectroscopy was also available for both systems, allowing us to confirm cluster members by measuring spectroscopic redshifts, which are unparalleled in accuracy, and gauge star formation rates and histories by measuring the strengths of certain spectral features. We had the luxury of HST imaging for Musket Ball, allowing us to use galaxy morphology as an additional diagnostic. For Cl J0910, 24 mum imaging allowed us to defeat a most pernicious source of uncertainty. Details on the acquisition and reduction of multi-wavelength data for each system are found within each respective chapter. It is important to note that the research presented in Chapter 3 is based on a letter which had significant space restrictions, so much of the observational details are outsourced to papers written by ORELSE collaboration members. Below is a free-standing summary of each project, drawn from the abstracts of each paper. The Chapter 1 contains an introduction to the topic and motivation to fill a vacuum in knowledge using our hypothesis. Chapter 4, following the meat of the thesis in Chapters 2 and 3, gives closure and looks to the future. In Chapter 2, we investigate star formation in DLSCL J0916.2+2953, a dissociative merger of two clusters at z = 0.53 that has progressed 1.1 +1.3-0.4 Gyr since first pass-through. We attempt to reveal the effects a collision may have had on the evolution of the cluster galaxies by tracing their star formation history. We probe current and recent activity to identify a possible star formation event at the time of the merger using EW(Hdelta), EW(OII) and Dn(4000) measured from the composite spectra of 64 cluster and 153 coeval field galaxies. We supplement Keck DEIMOS spectra with DLS and HST imaging to determine the color, stellar mass, and morphology of each galaxy and conduct a comprehensive study of the populations in this complex structure. Spectral results indicate the average cluster and cluster red sequence galaxies experienced no enhanced star formation relative to the surrounding field during the merger, ruling out a predominantly merger-quenched population. We find that the average blue galaxy in the North cluster is currently active and in the South cluster is currently post-starburst having undergone a recent star formation event. While the North activity could be latent or long-term merger effects, a young blue stellar population and irregular geometry suggest the cluster was still forming prior the collision. While the South activity coincides with the time of the merger, the blue early-type population could be a result of secular cluster processes. The evidence suggests that the dearth or surfeit of activity is indiscernible from normal cluster galaxy evolution. In Chapter 3, we examine the effects of an impending cluster merger on galaxies in the large scale structure (LSS) RX Cl J0910 at z =1.105. Using multi-wavelength data, including 102 spectral members drawn from the ORELSE survey and precise photometric redshifts, we calculate extinction-corrected star formation rates and map the specific star formation rate density of the LSS galaxies. These analyses along with an investigation of the color-magnitude properties of LSS galaxies indicate lower levels of star formation activity in the region between the merging clusters relative to the outskirts of the system. We suggest gravitational tidal forces due to the potential of merging halos may be the physical mechanisms responsible for the observed suppression of star formation in galaxies caught between the merging clusters. (Abstract shortened by ProQuest.).

  2. Dust-enshrouded super star-clusters

    NASA Astrophysics Data System (ADS)

    Sauvage, Marc; Plante, Stéphanie

    2003-04-01

    With the advent of either sensitive space-born infrared cameras, or their high-resolution ground-based siblings, we are uncovering a new category of star clusters: the dust-enshrouded super-star clusters. These manifest themselves only beyond a few microns, as their shroud of dust is able to block all light emitted by the stars themselves. Here we present our results on the spectacular cluster in SBS 0335-052, a very metal-poor galaxy. We also point to the growing number of galaxy analogs to SBS 0335-052, revealing the possibility that these clusters signal a major mode of star formation in starbursts. We conclude by listing a number of open points these clusters raise, in particular with respect to high-redshift counterparts.

  3. Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Kalirai, Jason S.

    2014-12-10

    We present a color-magnitude diagram analysis of deep Hubble Space Telescope imaging of a mass-limited sample of 18 intermediate-age (1-2 Gyr old) star clusters in the Magellanic Clouds, including eight clusters for which new data were obtained. We find that all star clusters in our sample feature extended main-sequence turnoff (eMSTO) regions that are wider than can be accounted for by a simple stellar population (including unresolved binary stars). FWHM widths of the MSTOs indicate age spreads of 200-550 Myr. We evaluate the dynamical evolution of clusters with and without initial mass segregation. Our main results are (1) the fractionmore » of red clump (RC) stars in secondary RCs in eMSTO clusters scales with the fraction of MSTO stars having pseudo-ages of ≲1.35 Gyr; (2) the width of the pseudo-age distributions of eMSTO clusters is correlated with their central escape velocity v {sub esc}, both currently and at an age of 10 Myr. We find that these two results are unlikely to be reproduced by the effects of interactive binary stars or a range of stellar rotation velocities. We therefore argue that the eMSTO phenomenon is mainly caused by extended star formation within the clusters; and (3) we find that v {sub esc} ≥ 15 km s{sup –1} out to ages of at least 100 Myr for all clusters featuring eMSTOs, and v {sub esc} ≤ 12 km s{sup –1} at all ages for two lower-mass clusters in the same age range that do not show eMSTOs. We argue that eMSTOs only occur for clusters whose early escape velocities are higher than the wind velocities of stars that provide material from which second-generation stars can form. The threshold of 12-15 km s{sup –1} is consistent with wind velocities of intermediate-mass asymptotic giant branch stars and massive binary stars in the literature.« less

  4. LoCuSS: THE SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES AND THE NEED FOR PRE-PROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, C. P.; Pereira, M. J.; Egami, E.

    2015-06-10

    We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15 < z < 0.30, combining wide-field Spitzer 24 μm and GALEX near-ultraviolet imaging with highly complete spectroscopy of cluster members. The fraction (f{sub SF}) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r{sub 200}, but remains well below field values even at 3r{sub 200}. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r{sub 200} of the cluster,more » but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing f{sub SF}-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ∼15× from the core to 2r{sub 200}. This requires star formation to survive within recently accreted spirals for 2–3 Gyr to build up the apparent over-density of star-forming galaxies within clusters. The velocity dispersion profile of the star-forming galaxy population shows a sharp peak of 1.44 σ{sub ν} at 0.3r{sub 500}, and is 10%–35% higher than that of the inactive cluster members at all cluster-centric radii, while their velocity distribution shows a flat, top-hat profile within r{sub 500}. All of these results are consistent with star-forming cluster galaxies being an infalling population, but one that must also survive ∼0.5–2 Gyr beyond passing within r{sub 200}. By comparing the observed distribution of star-forming galaxies in the stacked caustic diagram with predictions from the Millennium simulation, we obtain a best-fit model in which star formation rates decline exponentially on quenching timescales of 1.73 ± 0.25 Gyr upon accretion into the cluster.« less

  5. OGLE Collection of Star Clusters. New Objects in the Outskirts of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sitek, M.; Szymański, M. K.; Skowron, D. M.; Udalski, A.; Kostrzewa-Rutkowska, Z.; Skowron, J.; Karczmarek, P.; Cieślar, M.; Wyrzykowski, Ł.; Kozłowski, S.; Pietrukowicz, P.; Soszyński, I.; Mróz, P.; Pawlak, M.; Poleski, R.; Ulaczyk, K.

    2016-09-01

    The Magellanic System (MS), consisting of the Large Magellanic Cloud (LMC), the Small Magellanic Cloud (SMC) and the Magellanic Bridge (MBR), contains diverse sample of star clusters. Their spatial distribution, ages and chemical abundances may provide important information about the history of formation of the whole System. We use deep photometric maps derived from the images collected during the fourth phase of the Optical Gravitational Lensing Experiment (OGLE-IV) to construct the most complete catalog of star clusters in the Large Magellanic Cloud using the homogeneous photometric data. In this paper we present the collection of star clusters found in the area of about 225 square degrees in the outer regions of the LMC. Our sample contains 679 visually identified star cluster candidates, 226 of which were not listed in any of the previously published catalogs. The new clusters are mainly young small open clusters or clusters similar to associations.

  6. Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?

    NASA Astrophysics Data System (ADS)

    Rosen, Anna

    2013-10-01

    Very early in its operation, the Hubble Space Telescope {HST} opened an entirely new frontier: study of the demographics and properties of star clusters far beyond the Milky Way. However, interpretation of HST's observations has proven difficult, and has led to the development of two conflicting models. One view is that most massive star clusters are disrupted during their infancy by feedback from newly formed stars {i.e., "infant mortality"}, independent of cluster mass or environment. The other model is that most star clusters survive their infancy and are disrupted later by mass-dependent dynamical processes. Since observations at present have failed to discriminate between these views, we propose a theoretical investigation to provide new insight. We will perform radiation-hydrodynamic simulations of the formation of massive star clusters, including for the first time a realistic treatment of the most important stellar feedback processes. These simulations will elucidate the physics of stellar feedback, and allow us to determine whether cluster disruption is mass-dependent or -independent. We will also use our simulations to search for observational diagnostics that can distinguish bound from unbound clusters, and to predict how cluster disruption affects the cluster luminosity function in a variety of galactic environments.

  7. Stellar family in crowded, violent neighbourhood proves to be surprisingly normal

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Using ESO's Very Large Telescope, astronomers have obtained one of the sharpest views ever of the Arches Cluster -- an extraordinary dense cluster of young stars near the supermassive black hole at the heart of the Milky Way. Despite the extreme conditions astronomers were surprised to find the same proportions of low- and high-mass young stars in the cluster as are found in more tranquil locations in our Milky Way. ESO PR Photo 21a/09 The Arches Cluster ESO PR Photo 21b/09 The Centre of the Milky Way ESO PR Photo 21c/09 Around the Arches Cluster ESO PR Video 21a/09 A voyage to the heart of the Milky Way The massive Arches Cluster is a rather peculiar star cluster. It is located 25 000 light-years away towards the constellation of Sagittarius (the Archer), and contains about a thousand young, massive stars, less than 2.5 million years old [1]. It is an ideal laboratory to study how massive stars are born in extreme conditions as it is close to the centre of our Milky Way, where it experiences huge opposing forces from the stars, gas and the supermassive black hole that reside there. The Arches Cluster is ten times heavier than typical young star clusters scattered throughout our Milky Way and is enriched with chemical elements heavier than helium. Using the NACO adaptive optics instrument on ESO's Very Large Telescope, located in Chile, astronomers scrutinised the cluster in detail. Thanks to adaptive optics, astronomers can remove most of the blurring effect of the atmosphere, and so the new NACO images of the Arches Cluster are even crisper than those obtained with telescopes in space. Observing the Arches Cluster is very challenging because of the huge quantities of absorbing dust between Earth and the Galactic Centre, which visible light cannot penetrate. This is why NACO was used to observe the region in near-infrared light. The new study confirms the Arches Cluster to be the densest cluster of massive young stars known. It is about three light-years across with more than a thousand stars packed into each cubic light-year -- an extreme density a million times greater than in the Sun's neighbourhood. Astronomers studying clusters of stars have found that higher mass stars are rarer than their less massive brethren, and their relative numbers are the same everywhere, following a universal law. For many years, the Arches Cluster seemed to be a striking exception. "With the extreme conditions in the Arches Cluster, one might indeed imagine that stars won't form in the same way as in our quiet solar neighbourhood," says Pablo Espinoza, the lead author of the paper reporting the new results. "However, our new observations showed that the masses of stars in this cluster actually do follow the same universal law". In this image the astronomers could also study the brightest stars in the cluster. "The most massive star we found has a mass of about 120 times that of the Sun," says co-author Fernando Selman. "We conclude from this that if stars more massive than 130 solar masses exist, they must live for less than 2.5 million years and end their lives without exploding as supernovae, as massive stars usually do." The total mass of the cluster seems to be about 30 000 times that of the Sun, much more than was previously thought. "That we can see so much more is due to the exquisite NACO images," says co-author Jorge Melnick. Note [1] The name "Arches" does not come from the constellation the cluster is located in (Sagittarius, i.e., the Archer), but because it is located next to arched filaments detected in radio maps of the centre of the Milky Way.

  8. The star-forming history of the young cluster NGC 2264

    NASA Technical Reports Server (NTRS)

    Adams, M. T.; Strom, K. M.; Strom, S. E.

    1983-01-01

    UBVRI H-alpha photographic photometry was obtained for a sample of low-mass stars in the young open cluster NGC 2264 in order to investigate the star-forming history of this region. A theoretical H-R diagram was constructed for the sample of probable cluster members. Isochrones and evolutionary tracks were adopted from Cohen and Kuhi (1979). Evidence for a significant age spread in the cluster was found amounting to over ten million yr. In addition, the derived star formation rate as a function of stellar mass suggests that the principal star-forming mass range in NGC 2264 has proceeded sequentially in time from the lowest to the highest masses. The low-mass cluster stars were the first cluster members to form in significant numbers, although their present birth rate is much lower now than it was about ten million yr ago. The star-formation rate has risen to a peak at successively higher masses and then declined.

  9. Unveiling hidden properties of young star clusters: differential reddening, star-formation spread, and binary fraction

    NASA Astrophysics Data System (ADS)

    Bonatto, C.; Lima, E. F.; Bica, E.

    2012-04-01

    Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the simulated Hess diagrams. Conclusions: Even for low-mass star clusters, ASAmin is sensitive to the values of cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and to a lesser degree, binary fraction. Compared with simpler approaches, including binaries, a decaying star-formation rate, and a normally distributed differential reddening appears to yield more constrained parameters, especially the mass, age, and distance from the Sun. A robust determination of cluster parameters may have a positive impact on many fields. For instance, age, mass, and binary fraction are important for establishing the dynamical state of a cluster or for deriving a more precise star-formation rate in the Galaxy.

  10. Formation of Very Young Massive Clusters and Implications for Globular Clusters

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    How Very Young Massive star Clusters (VYMCs; also known as "starburst" clusters), which typically are of ≳ 104 M ⊙ and are a few Myr old, form out of Giant Molecular Clouds is still largely an open question. Increasingly detailed observations of young star clusters and star-forming molecular clouds and computational studies provide clues about their formation scenarios and the underlying physical processes involved. This chapter is focused on reviewing the decade-long studies that attempt to computationally reproduce the well-observed nearby VYMCs, such as the Orion Nebula Cluster, R136 and NGC 3603 young cluster, thereby shedding light on birth conditions of massive star clusters, in general. On this regard, focus is given on direct N-body modelling of real-sized massive star clusters, with a monolithic structure and undergoing residual gas expulsion, which have consistently reproduced the observed characteristics of several VYMCs and also of young star clusters, in general. The connection of these relatively simplified model calculations with the structural richness of dense molecular clouds and the complexity of hydrodynamic calculations of star cluster formation is presented in detail. Furthermore, the connections of such VYMCs with globular clusters, which are nearly as old as our Universe, is discussed. The chapter is concluded by addressing long-term deeply gas-embedded (at least apparently) and substructured systems like W3 Main. While most of the results are quoted from existing and up-to-date literature, in an integrated fashion, several new insights and discussions are provided.

  11. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.

    2017-05-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Michael; Bautz, Marshall W.; Benson, Bradford

    We present Hubble Space Telescope Wide Field Camera 3 observations of the core of the Phoenix cluster (SPT-CLJ2344-4243) in five broadband filters spanning rest-frame 1000-5500 A. These observations reveal complex, filamentary blue emission, extending for >40 kpc from the brightest cluster galaxy. We observe an underlying, diffuse population of old stars, following an r {sup 1/4} distribution, confirming that this system is somewhat relaxed. The spectral energy distribution in the inner part of the galaxy, as well as along the extended filaments, is a smooth continuum and is consistent with that of a star-forming galaxy, suggesting that the extended, filamentarymore » emission is not due to the central active galactic nucleus, either from a large-scale ionized outflow or scattered polarized UV emission, but rather a massive population of young stars. We estimate an extinction-corrected star formation rate of 798 {+-} 42 M{sub Sun} yr{sup -1}, consistent with our earlier work based on low spatial resolution ultraviolet, optical, and infrared imaging. The lack of tidal features and multiple bulges, combine with the need for an exceptionally massive (>10{sup 11} M{sub Sun }) cold gas reservoir, suggest that this star formation is not the result of a merger of gas-rich galaxies. Instead, we propose that the high X-ray cooling rate of {approx}2700 M{sub Sun} yr{sup -1} is the origin of the cold gas reservoir. The combination of such a high cooling rate and the relatively weak radio source in the cluster core suggests that feedback has been unable to halt cooling in this system, leading to this tremendous burst of star formation.« less

  13. Radiation pressure in super star cluster formation

    NASA Astrophysics Data System (ADS)

    Tsang, Benny T.-H.; Milosavljević, Miloš

    2018-05-01

    The physics of star formation at its extreme, in the nuclei of the densest and the most massive star clusters in the universe—potential massive black hole nurseries—has for decades eluded scrutiny. Spectroscopy of these systems has been scarce, whereas theoretical arguments suggest that radiation pressure on dust grains somehow inhibits star formation. Here, we harness an accelerated Monte Carlo radiation transport scheme to report a radiation hydrodynamical simulation of super star cluster formation in turbulent clouds. We find that radiation pressure reduces the global star formation efficiency by 30-35%, and the star formation rate by 15-50%, both relative to a radiation-free control run. Overall, radiation pressure does not terminate the gas supply for star formation and the final stellar mass of the most massive cluster is ˜1.3 × 106 M⊙. The limited impact as compared to in idealized theoretical models is attributed to a radiation-matter anti-correlation in the supersonically turbulent, gravitationally collapsing medium. In isolated regions outside massive clusters, where the gas distribution is less disturbed, radiation pressure is more effective in limiting star formation. The resulting stellar density at the cluster core is ≥108 M⊙ pc-3, with stellar velocity dispersion ≳ 70 km s-1. We conclude that the super star cluster nucleus is propitious to the formation of very massive stars via dynamical core collapse and stellar merging. We speculate that the very massive star may avoid the claimed catastrophic mass loss by continuing to accrete dense gas condensing from a gravitationally-confined ionized phase.

  14. A home for old stars

    NASA Image and Video Library

    2015-12-14

    This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the globular cluster Terzan 1. Lying around 20 000 light-years from us in the constellation of Scorpius (The Scorpion), it is one of about 150 globular clusters belonging to our galaxy, the Milky Way. Typical globular clusters are collections of around a hundred thousand stars, held together by their mutual gravitational attraction in a spherical shape a few hundred light-years across. It is thought that every galaxy has a population of globular clusters. Some, like the Milky Way, have a few hundred, while giant elliptical galaxies can have several thousand. They contain some of the oldest stars in a galaxy, hence the reddish colours of the stars in this image — the bright blue ones are foreground stars, not part of the cluster. The ages of the stars in the globular cluster tell us that they were formed during the early stages of galaxy formation! Studying them can also help us to understand how galaxies formed. Terzan 1, like many globular clusters, is a source of X-rays. It is likely that these X-rays come from binary star systems that contain a dense neutron star and a normal star. The neutron star drags material from the companion star, causing a burst of X-ray emission. The system then enters a quiescent phase in which the neutron star cools, giving off X-ray emission with different characteristics, before enough material from the companion builds up to trigger another outburst.

  15. Hypervelocity stars from young stellar clusters in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  16. A perfect starburst cluster made in one go: The NGC 3603 young cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Sambaran; Kroupa, Pavel

    2014-06-01

    Understanding how distinct, near-spherical gas-free clusters of very young, massive stars shape out of vast, complex clouds of molecular hydrogen is one of the biggest challenges in astrophysics. A popular thought dictates that a single gas cloud fragments into many newborn stars which, in turn, energize and rapidly expel the residual gas to form a gas-free cluster. This study demonstrates that the above classical paradigm remarkably reproduces the well-observed central, young cluster (HD 97950) of the Galactic NGC 3603 star-forming region, in particular, its shape, internal motion, and mass distribution of stars naturally and consistently follow from a single modelmore » calculation. Remarkably, the same parameters (star formation efficiency, gas expulsion timescale, and delay) reproduce HD 97950, as were found to reproduce the Orion Nebula Cluster, Pleiades, and R136. The present results therefore provide intriguing evidence of formation of star clusters through single-starburst events followed by significant residual gas expulsion.« less

  17. Rotation in young massive star clusters

    NASA Astrophysics Data System (ADS)

    Mapelli, Michela

    2017-05-01

    Hydrodynamical simulations of turbulent molecular clouds show that star clusters form from the hierarchical merger of several sub-clumps. We run smoothed-particle hydrodynamics simulations of turbulence-supported molecular clouds with mass ranging from 1700 to 43 000 M⊙. We study the kinematic evolution of the main cluster that forms in each cloud. We find that the parent gas acquires significant rotation, because of large-scale torques during the process of hierarchical assembly. The stellar component of the embedded star cluster inherits the rotation signature from the parent gas. Only star clusters with final mass < few × 100 M⊙ do not show any clear indication of rotation. Our simulated star clusters have high ellipticity (˜0.4-0.5 at t = 4 Myr) and are subvirial (Qvir ≲ 0.4). The signature of rotation is stronger than radial motions due to subvirial collapse. Our results suggest that rotation is common in embedded massive (≳1000 M⊙) star clusters. This might provide a key observational test for the hierarchical assembly scenario.

  18. A spectroscopic survey of the youngest field stars in the solar neighborhood . II. The optically faint sample

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Guillout, P.; Klutsch, A.; Ferrero, R. Freire; Marilli, E.; Biazzo, K.; Gandolfi, D.; Montes, D.

    2018-05-01

    Context. Star formation in the solar neighborhood is mainly traced by young stars in open clusters, associations, and in the field, which can be identified, for example, by their X-ray emission. The determination of stellar parameters for the optical counterparts of X-ray sources is crucial for a full characterization of these stars. Aims: This work extends the spectroscopic study of the RasTyc sample, obtained by the cross-correlation of the Tycho and ROSAT All-Sky Survey catalogs, to stars fainter than V = 9.5 mag and aims to identify sparse populations of young stars in the solar neighborhood. Methods: We acquired 625 high-resolution spectra for 443 presumably young stars with four different instruments in the northern hemisphere. The radial and rotational velocity (vsini) of our targets were measured by means of the cross-correlation technique, which is also helpful to discover single-lined (SB1), double-lined spectroscopic binaries (SB2), and multiple systems. We used the code ROTFIT to perform an MK spectral classification and to determine the atmospheric parameters (Teff, logg, [Fe/H]) and vsini of the single stars and SB1 systems. For these objects, we used the spectral subtraction of slowly rotating templates to measure the equivalent widths of the Hα and Li I 6708 Å lines, which enabled us to derive their chromospheric activity level and lithium abundance. We made use of Gaia DR1 parallaxes and proper motions to locate the targets in the Hertzsprung-Russell (HR) diagram and to compute the space velocity components of the youngest objects. Results: We find a remarkable percentage (at least 35%) of binaries and multiple systems. On the basis of the lithium abundance, the sample of single stars and SB1 systems appears to be mostly ( 60%) composed of stars younger than the members of the UMa cluster. The remaining sources are in the age range between the UMa and Hyades clusters ( 20%) or older ( 20%). In total, we identify 42 very young (PMS-like) stars, which lie above or very close to the Pleiades upper envelope of the lithium abundance. A significant percentage ( 12%) of evolved stars (giants and subgiants) is also present in our sample. Some of these stars ( 36%) are also lithium rich (A(Li) > 1.4). Based on observations collected at the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundacion Galileo Galilei - INAF (Canary Islands, Spain), at the Observatoire de Haute Provence (OHP, France), and the Osservatorio Astrofisico di Catania (OAC, Italy)Tables A.1-A.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/12/A96Rubens Freire Ferrero passed away on September 10, 2015.

  19. INTERRUPTED STELLAR ENCOUNTERS IN STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Aaron M.; Leigh, Nathan W. C., E-mail: a-geller@northwestern.edu, E-mail: nleigh@amnh.org

    Strong encounters between single stars and binaries play a pivotal role in the evolution of star clusters. Such encounters can also dramatically modify the orbital parameters of binaries, exchange partners in and out of binaries, and are a primary contributor to the rate of physical stellar collisions in star clusters. Often, these encounters are studied under the approximation that they happen quickly enough and within a small enough volume to be considered isolated from the rest of the cluster. In this paper, we study the validity of this assumption through the analysis of a large grid of single–binary and binary–binarymore » scattering experiments. For each encounter we evaluate the encounter duration, and compare this with the expected time until another single or binary star will join the encounter. We find that for lower-mass clusters, similar to typical open clusters in our Galaxy, the percent of encounters that will be “interrupted” by an interloping star or binary may be 20%–40% (or higher) in the core, though for typical globular clusters we expect ≲1% of encounters to be interrupted. Thus, the assumption that strong encounters occur in relative isolation breaks down for certain clusters. Instead, many strong encounters develop into more complex “mini-clusters,” which must be accounted for in studying, for example, the internal dynamics of star clusters, and the physical stellar collision rate.« less

  20. Pulsar-irradiated stars in dense globular clusters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  1. The Cluster Environment of Two High-mass Protostars

    NASA Astrophysics Data System (ADS)

    Montes, Virginie; Hofner, Peter

    2017-06-01

    Characterizing the environment and stellar population in which high-mass stars form is an important step to decide between the main massive star formation theories. In the monolithic collapse model, the mass of the core will determine the final stellar mass (e.g., McKee & Tan 2003). In contrast, in the competitive accretion model (e.g., Bonnell & Bate 2006), the mass of the high-mass star is related to the properties of the cluster. As dynamical processes substantially affect the appearance of a cluster, we study early stages of high-mass star formation. These regions often show extended emission from hot dust at infrared wavelengths, which can cause difficulties to define the cluster. We use a multi-wavelength technique to study nearby high-mass star clusters, based on X-ray observations with the Chandra X-Ray Telescope, in conjunction with infrared data and VLA data. The technique relies on the fact that YSOs are particularly bright in X-ray and that contamination is relatively small. X-ray observations allow us to determine the cluster size. The cluster membership and YSOs classification is established using infrared identification of the X-ray sources, and color-color and color-magnitude diagrams.In this talk, I will present our findings on the cluster study of two high-mass star forming regions: IRAS 20126+4104 and IRAS 16562-3959. While most massive stars appear to be formed in rich a cluster environment, those two sources are candidates for the formation of massive stars in a relatively poor cluster. In contrast to what was found in previous studies (Qiu et al. 2008), the dominant B0-type protostar in IRAS 20126+4104 is associated with a small cluster of low-mass stars. I will also show our current work on IRAS 16562-3959, which contains one of the most luminous O-type protostars in the Galaxy. In the vicinity of this particularly interesting region there is a multitude of small clusters, for which I will present how their stellar population differ from the high-mass star-forming cluster IRAS 16562-3959.

  2. Classification of stellar populations in globular clusters

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Zhao, Gang; Li, Hai-Ning

    2017-04-01

    Possessing multiple stellar populations has been accepted as a common feature of globular clusters (GCs). Different stellar populations manifest themselves with different chemical features, e.g. the well-known O-Na anti-correlation. Generally, the first (primordial) population has O and Na abundances consistent with those of field stars with similar metallicity; while the second (polluted) population is identified by their Na overabundance and O deficiency. The fraction of the populations is an important constraint on the GC formation scenario. Several methods have been proposed for the classification of GC populations. Here we examine a criterion derived based on the distribution of Galactic field stars, which relies on Na abundance as a function of [Fe/H], to distinguish first and second stellar populations in GCs. By comparing the first population fractions of 17 GCs estimated by the field star criterion with those in the literature derived by methods related to individual GCs, we find that the field star criterion tends to overestimate the first population fractions. The population separation methods, which are related to an individual GC sample, are recommended because the diversity of GCs can be taken into consideration. Currently, more caution should be exercised if one wants to regard field stars as a reference for the identification of a GC population. However, further study on the connection between field stars and GCs populations is still needed.

  3. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular shells typical of luminous blue variable and late WN-type Wolf-Rayet stars.

  4. The Exoplanet Migration Timescale from K2 Young Clusters

    NASA Astrophysics Data System (ADS)

    Rizzuto, Aaron

    A significant fraction of exoplanets orbit within 0.1 AU of their host star, with periods of <20 days. The discovery of these close-in planets has defied conventional models of planet formation and evolution based on our own solar system. It is widely accepted that these close-in planets did not form in such close proximity to their host stars (both rocky planets and hot Jupiters), but rather that dynamical or interactive processes caused them to migrate inwards from larger orbital semimajor axes and periods. There are multiple planet migration scenarios proposed in the literature, though it is unclear how much of the known planet population is attributable to each mechanism. Planetary migration models can be loosely divided into two categories: disk-driven migration and dynamical migration. Disk migration occurs over the lifetime of the protoplanetary disk (<5 Myr), while migration involving dynamical multi-body interactions operates on timescales of 100 Myr to 1Gyr, a lengthier process than disk migration. The K2 mission has measured planet formation timescales and migration pathways by sampling groups of stars at key ages. Over the past 10 campaigns, multiple groups of young stars have been observed by K2, ranging from the 10 Myr Upper Scorpius OB association, through the <120 Myr Pleiades cluster, to the ,600-800 Myr Hyades and Praesepe clusters. Upcoming data from more recent campaigns include the 2Myr Taurus region and significantly more Upper Scorpius members in C13 and 15. The frequency, orbital properties, and compositions of the exoplanet population in these samples of different age, with careful treatment of detection completeness, distinguish these scenarios of exoplanet migration as their host stars are settling onto the main sequence. We have pioneered efforts to identify transiting exoplanets in the K2 data for young clusters and moving groups, and have developed a new, highly complete, detrending algorithm for rotational induced variability that is commonly seen in the light curves of young, active stars (Rizzuto et al. in prep). We have identified 11 candidate planets in Praesepe, Hyades, Upper Sco, and the Pleiades using these methods, the first of which has now been published with follow-up (Mann et al. 2016abc; Gaidos et al. 2016). This sample of detected planet candidates gives a promising first indication of the timescale over which planet migration occurs, favoring dynamical multi-body processes. However, because rotational activity in young stars makes detection of exoplanet transits more difficult for the younger clusters (e.g, Upper Sco, Pleiades), to robustly prove that these frequencies are true representations of the short-period planet occurrence rate at different PMS ages will require robust determination of detection limits in these highly variable young-star lightcurves. We propose to address the question of planet migration with a uniform injection-recovery test of young cluster members, to robustly measure the detectability of planets of differing size and orbit. This will involve detrending the light curve data of instrumental and rotational systematics, injecting a synthetic transit signature from a grid of planetary and orbital parameters, reversing the detrending, and then executing our transit search pipeline (which is tuned for highly active young stars) and mapping the recovery rate as a function of planet parameters for every individual light curve. With this map of detectability as a function of planet properties for each light curve and a full program of detected exoplanet follow-up, we can then directly confirm any change in the occurrence rates of close-in (P<20 day) planets with cluster age and identify the most significant migration mechanism.

  5. Impact of a star formation efficiency profile on the evolution of open clusters

    NASA Astrophysics Data System (ADS)

    Shukirgaliyev, B.; Parmentier, G.; Berczik, P.; Just, A.

    2017-09-01

    Aims: We study the effect of the instantaneous expulsion of residual star-forming gas on star clusters in which the residual gas has a density profile that is shallower than that of the embedded cluster. This configuration is expected if star formation proceeds with a given star-formation efficiency per free-fall time in a centrally concentrated molecular gas clump. Methods: We performed direct N-body simulations whose initial conditions were generated by the program "mkhalo" from the package "falcON", adapted for our models. Our model clusters initially had a Plummer profile and are in virial equilibrium with the gravitational potential of the cluster-forming clump. The residual gas contribution was computed based on a local-density driven clustered star formation model. Our simulations included mass loss by stellar evolution and the tidal field of a host galaxy. Results: We find that a star cluster with a minimum global star formation efficiency (SFE) of 15 percent is able to survive instantaneous gas expulsion and to produce a bound cluster. Its violent relaxation lasts no longer than 20 Myr, independently of its global SFE and initial stellar mass. At the end of violent relaxation, the bound fractions of the surviving clusters with the same global SFEs are similar, regardless of their initial stellar mass. Their subsequent lifetime in the gravitational field of the Galaxy depends on their bound stellar masses. Conclusions: We therefore conclude that the critical SFE needed to produce a bound cluster is 15 percent, which is roughly half the earlier estimates of 33 percent. Thus we have improved the survival likelihood of young clusters after instantaneous gas expulsion. Young clusters can now survive instantaneous gas expulsion with a global SFEs as low as the SFEs observed for embedded clusters in the solar neighborhood (15-30 percent). The reason is that the star cluster density profile is steeper than that of the residual gas. However, in terms of the effective SFE, measured by the virial ratio of the cluster at gas expulsion, our results are in agreement with previous studies.

  6. The Last Gasp of Gas Giant Planet Formation: A Spitzer Study of the 5 Myr Old Cluster NGC 2362

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Lada, Charles J.; Plavchan, Peter; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.

    2009-06-01

    Expanding upon the Infrared Array Camera (IRAC) survey from Dahm & Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ >= 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical "transition disks") and "homologously depleted" disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these "evolved primordial disks" greatly outnumber primordial disks, our results undermine standard arguments in favor of a lsim105 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 105 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ≈10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (gsim1.4 M sun) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer have SEDs that indicate their disks may be actively leaving the primordial disk phase. Thus, gas giant planet formation may also occur by ~5 Myr around solar/subsolar-mass stars as well.

  7. LoCuSS: THE STEADY DECLINE AND SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES OVER THE LAST FOUR BILLION YEARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, C. P.; Pereira, M. J.; Egami, E.

    2013-10-01

    We present an analysis of the levels and evolution of star formation activity in a representative sample of 30 massive galaxy clusters at 0.15 < z < 0.30 from the Local Cluster Substructure Survey, combining wide-field Spitzer/MIPS 24 μm data with extensive spectroscopy of cluster members. The specific SFRs of massive (M > or approx. 10{sup 10} M{sub ☉}) star-forming cluster galaxies within r{sub 200} are found to be systematically ∼28% lower than their counterparts in the field at fixed stellar mass and redshift, a difference significant at the 8.7σ level. This is the unambiguous signature of star formation inmore » most (and possibly all) massive star-forming galaxies being slowly quenched upon accretion into massive clusters, their star formation rates (SFRs) declining exponentially on quenching timescales in the range 0.7-2.0 Gyr. We measure the mid-infrared Butcher-Oemler effect over the redshift range 0.0-0.4, finding rapid evolution in the fraction (f{sub SF}) of massive (M{sub K} < – 23.1) cluster galaxies within r{sub 200} with SFRs > 3 M{sub ☉} yr{sup –1}, of the form f{sub SF}∝(1 + z){sup 7.6±1.1}. We dissect the origins of the Butcher-Oemler effect, revealing it to be due to the combination of a ∼3 × decline in the mean specific SFRs of star-forming cluster galaxies since z ∼ 0.3 with a ∼1.5 × decrease in number density. Two-thirds of this reduction in the specific SFRs of star-forming cluster galaxies is due to the steady cosmic decline in the specific SFRs among those field galaxies accreted into the clusters. The remaining one-third reflects an accelerated decline in the star formation activity of galaxies within clusters. The slow quenching of star formation in cluster galaxies is consistent with a gradual shut down of star formation in infalling spiral galaxies as they interact with the intracluster medium via ram-pressure stripping or starvation mechanisms. The observed sharp decline in star formation activity among cluster galaxies since z ∼ 0.4 likely reflects the increased susceptibility of low-redshift spiral galaxies to gas removal mechanisms as their gas surface densities decrease with time. We find no evidence for the build-up of cluster S0 bulges via major nuclear starburst episodes.« less

  8. Multiplicity At Early Stages Of Star Formation, Small Clusters. Observations Overview

    NASA Astrophysics Data System (ADS)

    Saito, Masao

    2017-07-01

    The SOLA (Soul of Lupus with ALMA) project is conducting comprehensive studies of the Lupus Molecular Clouds and their star formation processes covering 10-10^4 AU scale. Our goal is to exploit ALMA and other facilities over a wide wavelength range to establish a prototypical low-mass star forming scenario based on the Lupus region. In the presentation, we will focus on angular momentum in dense cores in a filament, molecular outflows from young stars, and Class 0/I binary survey in Lupus as well as overview of our projects. Our binary survey was conducted in ALMA cycle 2 and achieved at 0.2-0.3 arcsec resolution discovering new binary systems in Lupus. At the same time, we obtained EX Lup, EXor type burst source, data in ALMA Cycle 3.

  9. Multiplicity at Early Stages of Star Formation, Small Clusters. Observations Overview

    NASA Astrophysics Data System (ADS)

    Saito, Masao

    2017-06-01

    The SOLA (Soul of Lupus with ALMA) project is conducting comprehensive studies of the Lupus Molecular Clouds and their star formation processes covering 10-10^4 AU scale. Our goal is to exploit ALMA and other facilities over a wide wavelength range to establish a prototypical low-mass star forming scenario based on the Lupus region. In the presentation, we will focus on angular momentum in dense cores in a filament, molecular outflows from young stars, and Class 0/I binary survey in Lupus as well as overview of our projects. Our binary survey was conducted in ALMA cycle 2 and achieved at 0.2-0.3 arcsec resolution discovering new binary systems in Lupus. At the same time, we obtained EX Lup, EXor type burst source, data in ALMA Cycle 3.

  10. Building the Galactic halo from globular clusters: evidence from chemically unusual red giants

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smolinski, J. P.; Beers, T. C.; Grebel, E. K.

    2011-10-01

    We present a spectroscopic search for halo field stars that originally formed in globular clusters. Using moderate-resolution SDSS-III/SEGUE-2 spectra of 561 red giants with typical halo metallicities (-1.8 ≤ [Fe/H] ≤ -1.0), we identify 16 stars, 3% of the sample, with CN and CH bandstrength behavior indicating depleted carbon and enhanced nitrogen abundances relative to the rest of the data set. Since globular clusters are the only environment known in which stars form with this pattern of atypical light-element abundances, we claim that these stars are second-generation globular cluster stars that have been lost to the halo field via normal cluster mass-loss processes. Extrapolating from theoretical models of two-generation globular cluster formation, this result suggests that globular clusters contributed significant numbers of stars to the construction of the Galactic halo: we calculate that a minimum of 17% of the present-day mass of the stellar halo was originally formed in globular clusters. The ratio of CN-strong to CN-normal stars drops with Galactocentric distance, suggesting that the inner-halo population may be the primary repository of these stars. Full Tables 1 and 3 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A136

  11. The most crowded place in the Milky Way

    NASA Image and Video Library

    2015-01-08

    This new NASA/ESA Hubble Space Telescope image presents the Arches Cluster, the densest known star cluster in the Milky Way. It is located about 25 000 light-years from Earth in the constellation of Sagittarius (The Archer), close to the heart of our galaxy, the Milky Way. It is, like its neighbour the Quintuplet Cluster, a fairly young astronomical object at between two and four million years old. The Arches cluster is so dense that in a region with a radius equal to the distance between the Sun and its nearest star there would be over 100 000 stars! At least 150 stars within the cluster are among the brightest ever discovered in the the Milky Way. These stars are so bright and massive, that they will burn their fuel within a short time, on a cosmological scale, just a few million years, and die in spectacular supernova explosions. Due to the short lifetime of the stars in the cluster, the gas between the stars contains an unusually high amount of heavier elements, which were produced by earlier generations of stars. Despite its brightness the Arches Cluster cannot be seen with the naked eye. The visible light from the cluster is completely obscured by gigantic clouds of dust in this region. To make the cluster visible astronomers have to use detectors which can collect light from the X-ray, infrared, and radio bands, as these wavelengths can pass through the dust clouds. This observation shows the Arches Cluster in the infrared and demonstrates the leap in Hubble’s performance since its 1999 image of same object.

  12. Identifying Multiple Populations in M71 using CN

    NASA Astrophysics Data System (ADS)

    Gerber, Jeffrey M.; Friel, Eileen D.; Vesperini, Enrico

    2018-01-01

    It is now well established that globular clusters (GCs) host multiple stellar populations characterized by differences in several light elements. While these populations have been found in nearly all GCs, we still lack an entirely successful model to explain their formation. A key constraint to these models is the detailed pattern of light element abundances seen among the populations; different techniques for identifying these populations probe different elements and do not always yield the same results. We study a large sample of stars in the GC M71 for light elements C and N, using the CN and CH band strength to identify multiple populations. Our measurements come from low-resolution spectroscopy obtained with the WIYN-3.5m telescope for ~150 stars from the tip of the red-giant branch down to the main-sequence turn-off. The large number of stars and broad spatial coverage of our sample (out to ~3.5 half-light radii) allows us to carry out a comprehensive characterization of the multiple populations in M71. We use a combination of the various spectroscopic and photometric indicators to draw a more complete picture of the properties of the populations and to investigate the consistency of classifications using different techniques.

  13. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasha, K.; Calzetti, D.; Adamo, A.

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. Themore » strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.« less

  14. New detections of embedded clusters in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bica, E.; Bonatto, C.

    2016-09-01

    Context. Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane (~ 5 kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. Aims: This work aims to clarify whether our previous detection of star clusters far away from the disc represents just an episodic event or whether star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs each with an unusually high latitude and distance from the Galactic disc midplane. Methods: The analysis is based on 2MASS and WISE colour-magnitude diagrams (CMDs), and stellar radial density profiles (RDPs). The CMDs are built by applying a field-star decontamination procedure, which uncovers the cluster's intrinsic CMD morphology. Results: All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of ~3 kpc, C 1099 with ~ 2 kpc, and C 1101 with ~1.8 kpc. Conclusions: According to the derived parameters ECs located below and above the disc occur, which gives evidence of widespread star cluster formation throughout the Galactic halo. This study therefore represents a paradigm shift, by demonstrating that a sterile halo must now be understood as a host for ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountains or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought. Furthermore, since most ECs do not survive the infant mortality, stars may be raining from the halo into the disc, and/or the halo may be harbouring generations of stars formed in clusters like those detected in our survey.

  15. Accurate age determinations of several nearby open clusters containing magnetic Ap stars

    NASA Astrophysics Data System (ADS)

    Silaj, J.; Landstreet, J. D.

    2014-06-01

    Context. To study the time evolution of magnetic fields, chemical abundance peculiarities, and other characteristics of magnetic Ap and Bp stars during their main sequence lives, a sample of these stars in open clusters has been obtained, as such stars can be assumed to have the same ages as the clusters to which they belong. However, in exploring age determinations in the literature, we find a large dispersion among different age determinations, even for bright, nearby clusters. Aims: Our aim is to obtain ages that are as accurate as possible for the seven nearby open clusters α Per, Coma Ber, IC 2602, NGC 2232, NGC 2451A, NGC 2516, and NGC 6475, each of which contains at least one magnetic Ap or Bp star. Simultaneously, we test the current calibrations of Te and luminosity for the Ap/Bp star members, and identify clearly blue stragglers in the clusters studied. Methods: We explore the possibility that isochrone fitting in the theoretical Hertzsprung-Russell diagram (i.e. log (L/L⊙) vs. log Te), rather than in the conventional colour-magnitude diagram, can provide more precise and accurate cluster ages, with well-defined uncertainties. Results: Well-defined ages are found for all the clusters studied. For the nearby clusters studied, the derived ages are not very sensitive to the small uncertainties in distance, reddening, membership, metallicity, or choice of isochrones. Our age determinations are all within the range of previously determined values, but the associated uncertainties are considerably smaller than the spread in recent age determinations from the literature. Furthermore, examination of proper motions and HR diagrams confirms that the Ap stars identified in these clusters are members, and that the presently accepted temperature scale and bolometric corrections for Ap stars are approximately correct. We show that in these theoretical HR diagrams blue stragglers are particularly easy to identify. Conclusions: Constructing the theoretical HR diagram of a nearby open cluster makes possible an accurate age determination, with well defined uncertainty. This diagnostic of a cluster also provides a useful tool for studying unusual stars such as Ap stars and blue stragglers. Table 3 is available in electronic form at http://www.aanda.org

  16. Probing Globular Cluster Formation in Low Metallicity Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey E.; Hunt, Leslie K.; Reines, Amy E.

    2008-12-01

    The ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.

  17. uvbyβ photometry of early type open cluster and field stars

    NASA Astrophysics Data System (ADS)

    Handler, G.

    2011-04-01

    Context. The β Cephei stars and slowly pulsating B (SPB) stars are massive main sequence variables. The strength of their pulsational driving strongly depends on the opacity of iron-group elements. As many of those stars naturally occur in young open clusters, whose metallicities can be determined in several fundamental ways, it is logical to study the incidence of pulsation in several young open clusters. Aims: To provide the foundation for such an investigation, Strömgren-Crawford uvbyβ photometry of open cluster target stars was carried out to determine effective temperatures, luminosities, and therefore cluster memberships. Methods: In the course of three observing runs, uvbyβ photometry for 168 target stars was acquired and transformed into the standard system by measurements of 117 standard stars. The list of target stars also included some known cluster and field β Cephei stars, as well as β Cephei and SPB candidates that are targets of the asteroseismic part of the Kepler satellite mission. Results: The uvbyβ photometric results are presented. The data are shown to be on the standard system, and the properties of the target stars are discussed: 140 of these are indeed OB stars, a total of 101 targets lie within the β Cephei and/or SPB star instability strips, and each investigated cluster contains such potential pulsators. Conclusions: These measurements will be taken advantage of in a number of subsequent publications. Based on measurements obtained at McDonald Observatory of the University of Texas at Austin.Tables 3-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A148

  18. Hubble Uncovering the Secrets of the Quintuplet Cluster

    NASA Image and Video Library

    2017-12-08

    Although this cluster of stars gained its name due to its five brightest stars, it is home to hundreds more. The huge number of massive young stars in the cluster is clearly captured in this NASA/ESA Hubble Space Telescope image. The cluster is located close to the Arches Cluster and is just 100 light-years from the center of our galaxy. The cluster’s proximity to the dust at the center of the galaxy means that much of its visible light is blocked, which helped to keep the cluster unknown until its discovery in 1990, when it was revealed by infrared observations. Infrared images of the cluster, like the one shown here, allow us to see through the obscuring dust to the hot stars in the cluster. The Quintuplet Cluster hosts two extremely rare luminous blue variable stars: the Pistol Star and the lesser known V4650 Sgr. If you were to draw a line horizontally through the center of this image from left to right, you could see the Pistol Star hovering just above the line about one third of the way along it. The Pistol Star is one of the most luminous known stars in the Milky Way and takes its name from the shape of the Pistol Nebula that it illuminates, but which is not visible in this infrared image. The exact age and future of the Pistol Star are uncertain, but it is expected to end in a supernova or even a hypernova in one to three million years. The cluster also contains a number of red supergiants. These stars are among the largest in the galaxy and are burning their fuel at an incredible speed, meaning they will have a very short lifetime. Their presence suggests an average cluster age of nearly four million years. At the moment these stars are on the verge of exploding as supernovae. During their spectacular deaths they will release vast amounts of energy which, in turn, will heat the material — dust and gas — between the other stars. This observation shows the Quintuplet Cluster in the infrared and demonstrates the leap in Hubble’s performance since its 1999 image of same object. Credit: ESA/NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Stellar Clusters in the NGC 6334 Star-Forming Complex

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.; Martin, Amanda L.; McNeill, Collin J.; Broos, Patrick S.; Garmire, Gordon P.

    2009-07-01

    The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, has not been well sampled in past studies. We analyze here a mosaic of two Chandra X-ray Observatory images of the region using sensitive data analysis methods, giving a list of 1607 faint X-ray sources with arcsecond positions and approximate line-of-sight absorption. About 95% of these are expected to be cluster members, most lower mass pre-main-sequence stars. Extrapolating to low X-ray levels, the total stellar population is estimated to be 20,000-30,000 pre-main-sequence stars. The X-ray sources show a complicated spatial pattern with ~10 distinct star clusters. The heavily obscured clusters are mostly associated with previously known far-infrared sources and radio H II regions. The lightly obscured clusters are mostly newly identified in the X-ray images. Dozens of likely OB stars are found, both in clusters and dispersed throughout the region, suggesting that star formation in the complex has proceeded over millions of years. A number of extraordinarily heavily absorbed X-ray sources are associated with the active regions of star formation.

  20. Blue Stragglers in Clusters and Integrated Spectral Properties of Stellar Populations

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Deng, Licai

    Blue straggler stars are the most prominent bright objects in the colour-magnitude diagram of a star cluster that challenges the theory of stellar evolution. Star clusters are the closest counterparts of the theoretical concept of simple stellar populations (SSPs) in the Universe. SSPs are widely used as the basic building blocks to interpret stellar contents in galaxies. The concept of an SSP is a group of coeval stars which follows a given distribution in mass, and has the same chemical property and age. In practice, SSPs are more conveniently made by the latest stellar evolutionary models of single stars. In reality, however, stars can be more complicated than just single either at birth time or during the course of evolution in a typical environment. Observations of star clusters show that there are always exotic objects which do not follow the predictions of standard theory of stellar evolution. Blue straggler stars (BSSs), as discussed intensively in this book both observationally and theoretically, are very important in our context when considering the integrated spectral properties of a cluster, or a simple stellar population. In this chapter, we are going to describe how important the contribution of BSSs is to the total light of a cluster.

  1. High-resolution spectroscopic observations of binary stars and yellow stragglers in three open clusters: NGC 2360, NGC 3680, and NGC 5822

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales Silva, J. V.; Peña Suárez, V. J.; Katime Santrich, O. J.

    2014-11-01

    Binary stars in open clusters are very useful targets in constraining the nucleosynthesis process. The luminosities of the stars are known because the distances of the clusters are also known, so chemical peculiarities can be linked directly to the evolutionary status of a star. In addition, binary stars offer the opportunity to verify a relationship between them and the straggler population in both globular and open clusters. We carried out a detailed spectroscopic analysis to derive the atmospheric parameters for 16 red giants in binary systems and the chemical composition of 11 of them in the open clusters NGC 2360,more » NGC 3680, and NGC 5822. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employ the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that the stars NGC 2360-92 and 96, NGC 3680-34, and NGC 5822-4 and 312 are yellow straggler stars. We show that the spectra of NGC 5822-4 and 312 present evidence of contamination by an A-type star as a secondary star. For the other yellow stragglers, evidence of contamination is given by the broad wings of the Hα. Detection of yellow straggler stars is important because the observed number can be compared with the number predicted by simulations of binary stellar evolution in open clusters. We also found that the other binary stars are not s-process enriched, which may suggest that in these binaries the secondary star is probably a faint main-sequence object. The lack of any s-process enrichment is very useful in setting constraints for the number of white dwarfs in the open cluster, a subject that is related to the birthrate of these kinds of stars in open clusters and also to the age of a cluster. Finally, rotational velocities were also determined and their values were compared with those already determined for field giant stars.« less

  2. Observing Globular Cluster RR Lyrae Variables with the BYU West Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Jeffery, E. J.; Joner, M. D.

    2016-06-01

    We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on six northern hemisphere globular clusters. Here we present representative observations of RR Lyrae stars located in these clusters, including light curves. We compare light curves produced using both DAOPHOT and ISIS software packages. Light curve fitting is done with FITLC. We find that for well-separated stars, DAOPHOT and ISIS provide comparable results. However, for stars within the cluster core, ISIS provides superior results. These improved techniques will allow us to better measure the properties of cluster variable stars.

  3. A Database of Young Star Clusters for Five Hundred Galaxies

    NASA Astrophysics Data System (ADS)

    Whitmore, Brad

    2009-07-01

    We propose to use the source lists developed as part of the Hubble Legacy Archive {HLA: Data Release 1 - February 8, 2008} to obtain a large {N 50 galaxies for multi-wavelength, N 500 galaxies for ACS F814W}, uniform {ACS + WFPC2 + NICMOS: DAOphot used for object detection} database of super star clusters in nearby star-forming galaxies in order to address two fundamental astronomical questions: 1} To what degree is the cluster luminosity {and mass} function of star clusters universal ? 2} What fraction of super star clusters are "missing" in optical studies {i.e., are hidden by dust}? This database will also support comparisons with new Monte-Carlo simulations that have independently been developed in the past few years by co-I Larsen and PI Whitmore, and will be used to test the Whitmore, Chandar, Fall {2007} framework designed to understand the demographics of star clusters in all star forming galaxies. The catalogs will increase the number of galaxies with measured mass and luminosity functions by an order of magnitude, and will provide a powerful new tool for comparative studies, both ours and the community's.

  4. Analysis of Spectral-type A/B Stars in Five Open Clusters

    NASA Astrophysics Data System (ADS)

    Wilhelm, Ronald J.; Rafuil Islam, M.

    2014-01-01

    We have obtained low resolution (R = 1000) spectroscopy of N=68, spectral-type A/B stars in five nearby open star clusters using the McDonald Observatory, 2.1m telescope. The sample of blue stars in various clusters were selected to test our new technique for determining interstellar reddening and distances in areas where interstellar reddening is high. We use a Bayesian approach to find the posterior distribution for Teff, Logg and [Fe/H] from a combination of reddened, photometric colors and spectroscopic line strengths. We will present calibration results for this technique using open cluster star data with known reddening and distances. Preliminary results suggest our technique can produce both reddening and distance determinations to within 10% of cluster values. Our technique opens the possibility of determining distances for blue stars at low Galactic latitudes where extinction can be large and differential. We will also compare our stellar parameter determinations to previously reported MK spectral classifications and discuss the probability that some of our stars are not members of their reported clusters.

  5. Formation of intermediate-mass black holes through runaway collisions in the first star clusters

    NASA Astrophysics Data System (ADS)

    Sakurai, Yuya; Yoshida, Naoki; Fujii, Michiko S.; Hirano, Shingo

    2017-12-01

    We study the formation of massive black holes in the first star clusters. We first locate star-forming gas clouds in protogalactic haloes of ≳107 M⊙ in cosmological hydrodynamics simulations and use them to generate the initial conditions for star clusters with masses of ∼105 M⊙. We then perform a series of direct-tree hybrid N-body simulations to follow runaway stellar collisions in the dense star clusters. In all the cluster models except one, runaway collisions occur within a few million years, and the mass of the central, most massive star reaches ∼400-1900 M⊙. Such very massive stars collapse to leave intermediate-mass black holes (IMBHs). The diversity of the final masses may be attributed to the differences in a few basic properties of the host haloes such as mass, central gas velocity dispersion and mean gas density of the central core. Finally, we derive the IMBH mass to cluster mass ratios, and compare them with the observed black hole to bulge mass ratios in the present-day Universe.

  6. Star formation and galaxy evolution in different environments, from the field to massive clusters

    NASA Astrophysics Data System (ADS)

    Tyler, Krystal

    This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass-SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray underluminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the distribution of star-forming galaxies with respect to stellar mass varies from cluster to cluster, echoing what we found for Coma and A2029. In other words, while some preprocessing occurs in groups, the cluster environment still contributes to the quenching of star formation.

  7. Intracluster age gradients in numerous young stellar clusters

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Bate, M. R.; Broos, P. S.; Garmire, G. P.

    2018-05-01

    The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyse the spatial distribution of ages within 19 young (median t ≲ 3 Myr on the Siess et al. time-scale), morphologically simple, isolated, and relatively rich stellar clusters. Our analysis is based on young stellar object (YSO) samples from the Massive Young Star-Forming Complex Study in Infrared and X-ray and Star Formation in Nearby Clouds surveys, and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX, derived from X-ray and near-infrared photometric data. Median cluster ages are computed within four annular subregions of the clusters. We confirm and extend the earlier result of Getman et al. (2014): 80 per cent of the clusters show age trends where stars in cluster cores are younger than in outer regions. Our cluster stacking analyses establish the existence of an age gradient to high statistical significance in several ways. Time-scales vary with the choice of PMS evolutionary model; the inferred median age gradient across the studied clusters ranges from 0.75 to 1.5 Myr pc-1. The empirical finding reported in the present study - late or continuing formation of stars in the cores of star clusters with older stars dispersed in the outer regions - has a strong foundation with other observational studies and with the astrophysical models like the global hierarchical collapse model of Vázquez-Semadeni et al.

  8. Starburst clusters in the Galactic center

    NASA Astrophysics Data System (ADS)

    Habibi, Maryam

    2014-09-01

    The central region of the Galaxy is the most active site of star formation in the Milky Way, where massive stars have formed very recently and are still forming today. The rich population of massive stars in the Galactic center provide a unique opportunity to study massive stars in their birth environment and probe their initial mass function, which is the spectrum of stellar masses at their birth. The Arches cluster is the youngest among the three massive clusters in the Galactic center, providing a collection of high-mass stars and a very dense core which makes this cluster an excellent site to address questions about massive star formation, the stellar mass function and the dynamical evolution of massive clusters in the Galactic center. In this thesis, I perform an observational study of the Arches cluster using K_{s}-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/Cisco J-band data to gain a full understanding of the cluster mass distribution out to its tidal radius for the first time. Since the light from the Galactic center reaches us through the Galactic disc, the extinction correction is crucial when studying this region. I use a Bayesian method to construct a realistic extinction map of the cluster. It is shown in this study that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, I show that the difference can reach up to 30% for individually derived stellar masses and Δ A_{Ks}˜ 1 magnitude in acquired K_{s}-band extinction, while the present-day mass function slope changes by ˜ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law, which suggests a steeper wavelength dependence for the infrared extinction law, reveals an overpopulation of massive stars in the core (r<0.2 pc) with a flat slope of α_{Nishi}=-1.50 ±0.35 in comparison to the Salpeter slope of α=-2.3. The slope of the mass function increases to α_{Nishi}=-2.21 ±0.27 in the intermediate annulus (0.2

  9. The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations

    NASA Astrophysics Data System (ADS)

    Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate

    2018-04-01

    We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome this shortcoming.

  10. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  11. A Constraint on the Formation Timescale of the Young Open Cluster NGC 2264: Lithium Abundance of Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Lim, Beomdu; Sung, Hwankyung; Kim, Jinyoung S.; Bessell, Michael S.; Hwang, Narae; Park, Byeong-Gon

    2016-11-01

    The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500\\lt {T}{eff}[{{K}}]≤slant 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A({Li})=3.2+/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.

  12. Spots and the Activity of Stars in the Hyades Cluster from Observations with the Kepler Space Telescope (K2)

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.; Dmitrienko, E. S.

    2018-03-01

    Observations of the K2 mission (continuing the program of the Kepler Space Telescope) are used to estimate the spot coverage S (the fractional area of spots on the surface of an active star) for stars of the Hyades cluster. The analysis is based on data on the photometric variations of 47 confirmed single cluster members, together with their atmospheric parameters, masses, and rotation periods. The resulting values of S for these Hyades objects are lower than those stars of the Pleiades cluster (on average, by Δ S 0.05-0.06). A comparison of the results of studies of cool, low-mass dwarfs in the Hyades and Pleiades clusters, as well as the results of a study of 1570 M stars from the main field observed in the Kepler SpaceMission, indicates that the Hyades stars are more evolved than the Pleiades stars, and demonstrate lower activity. The activity of seven solar-type Hyades stars ( S = 0.013 ± 0.006) almost approaches the activity level of the present-day Sun, and is lower than the activity of solar-mass stars in the Pleiades ( S = 0.031 ± 0.003). Solar-type stars in the Hyades rotate faster than the Sun (< P> = 8.6 d ), but slower than similar Pleiades stars.

  13. A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster.

    PubMed

    Meibom, Søren; Barnes, Sydney A; Platais, Imants; Gilliland, Ronald L; Latham, David W; Mathieu, Robert D

    2015-01-29

    The ages of the most common stars--low-mass (cool) stars like the Sun, and smaller--are difficult to derive because traditional dating methods use stellar properties that either change little as the stars age or are hard to measure. The rotation rates of all cool stars decrease substantially with time as the stars steadily lose their angular momenta. If properly calibrated, rotation therefore can act as a reliable determinant of their ages based on the method of gyrochronology. To calibrate gyrochronology, the relationship between rotation period and age must be determined for cool stars of different masses, which is best accomplished with rotation period measurements for stars in clusters with well-known ages. Hitherto, such measurements have been possible only in clusters with ages of less than about one billion years, and gyrochronology ages for older stars have been inferred from model predictions. Here we report rotation period measurements for 30 cool stars in the 2.5-billion-year-old cluster NGC 6819. The periods reveal a well-defined relationship between rotation period and stellar mass at the cluster age, suggesting that ages with a precision of order 10 per cent can be derived for large numbers of cool Galactic field stars.

  14. SEARCH FOR RED DWARF STARS IN GLOBULAR CLUSTER NGC 6397

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a small region (1.4 light-years across) in the globular star cluster NGC 6397. Simulated stars (diamonds) have been added to this view of the same region of the cluster to illustrate what astronomers would have expected to see if faint red dwarf stars were abundant in the Milky Way Galaxy. The field would then contain 500 stars, according to theoretical calculations. Right The unmodified HST image shows far fewer stars than would be expected, according to popular theories of star formation. HST resolves about 200 stars. The stellar density is so low that HST can literally see right through the cluster and resolve far more distant background galaxies. From this observation, scientists have identified the surprising cutoff point below which nature apparently doesn't make many stars smaller that 1/5 the mass of our Sun. These HST findings provide new insights into star formation in our Galaxy. Technical detail:The globular cluster NGC 6397, one of the nearest and densest agglomerations of stars, is located 7,200 light-years away in the southern constellation Ara. This visible-light picture was taken on March 3, 1994 with the Wide Field Planetary Camera 2, as part the HST parallel observing program. Credit: F. Paresce, ST ScI and ESA and NASA

  15. VizieR Online Data Catalog: Shape parameters for 154 Galactic open clusters (Zhai+, 2017)

    NASA Astrophysics Data System (ADS)

    Zhai, M.; Abt, H.; Zhao, G.; Li, C.

    2017-06-01

    The data used are from database WEBDA (http://www.univie.ac.at/webda/). We have found 946 open clusters with equatorial coordinates for each cluster member. Since cluster members are easily contaminated by field stars, we have only adopted stars with membership probabilities higher than 70% as cluster members. It is rarely possible to determine a cluster's shape with a small number of members, so we have only considered relatively richer clusters, which host more than 20 of the most probable member stars. After these selections, there are 154 clusters left. (1 data file).

  16. A comprehensive HST BVI catalogue of star clusters in five Hickson compact groups of galaxies

    NASA Astrophysics Data System (ADS)

    Fedotov, K.; Gallagher, S. C.; Durrell, P. R.; Bastian, N.; Konstantopoulos, I. S.; Charlton, J.; Johnson, K. E.; Chandar, R.

    2015-05-01

    We present a photometric catalogue of star cluster candidates in Hickson compact groups (HCGs) 7, 31, 42, 59, and 92, based on observations with the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope. The catalogue contains precise cluster positions (right ascension and declination), magnitudes, and colours in the BVI filters. The number of detected sources ranges from 2200 to 5600 per group, from which we construct the high-confidence sample by applying a number of criteria designed to reduce foreground and background contaminants. Furthermore, the high-confidence cluster candidates for each of the 16 galaxies in our sample are split into two subpopulations: one that may contain young star clusters and one that is dominated by globular older clusters. The ratio of young star cluster to globular cluster candidates varies from group to group, from equal numbers to the extreme of HCG 31 which has a ratio of 8 to 1, due to a recent starburst induced by interactions in the group. We find that the number of blue clusters with MV < -9 correlates well with the current star formation rate in an individual galaxy, while the number of globular cluster candidates with MV < -7.8 correlates well (though with large scatter) with the stellar mass. Analyses of the high-confidence sample presented in this paper show that star clusters can be successfully used to infer the gross star formation history of the host groups and therefore determine their placement in a proposed evolutionary sequence for compact galaxy groups.

  17. A youthful cluster

    NASA Image and Video Library

    2015-08-24

    Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope, is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic Cloud, a satellite galaxy of our own galaxy, the Milky Way, in the southern hemisphere constellation of Dorado. First observed by John Herschel in 1835, NGC 1783 is nearly 160 000 light-years from Earth, and has a mass around 170 000 times that of the Sun. Globular clusters are dense collections of stars held together by their own gravity, which orbit around galaxies like satellites. The image clearly shows the symmetrical shape of NGC 1783 and the concentration of stars towards the centre, both typical features of globular clusters. By measuring the colour and brightness of individual stars, astronomers can deduce an overall age for a cluster and a picture of its star formation history. NGC 1783 is thought to be under one and a half billion years old — which is very young for globular clusters, which are typically several billion years old. During that time, it is thought to have undergone at least two periods of star formation, separated by 50 to 100 million years. This ebb and flow of star-forming activity is an indicator of how much gas is available for star formation at any one time. When the most massive stars created in the first burst of formation explode as supernovae they blow away the gas needed to form further stars, but the gas reservoir can later be replenished by less massive stars which last longer and shed their gas less violently. After this gas flows to the dense central regions of the star cluster, a second phase of star formation can take place and once again the short-lived massive stars blow away any leftover gas. This cycle can continue a few times, at which time the remaining gas reservoir is thought to be too small to form any new stars. A version of this image was entered into the Hubble's Hidden Treasures image pr

  18. Supergiants and their shells in young globular clusters

    NASA Astrophysics Data System (ADS)

    Szécsi, Dorottya; Mackey, Jonathan; Langer, Norbert

    2018-04-01

    Context. Anomalous surface abundances are observed in a fraction of the low-mass stars of Galactic globular clusters, that may originate from hot-hydrogen-burning products ejected by a previous generation of massive stars. Aims: We aim to present and investigate a scenario in which the second generation of polluted low-mass stars can form in shells around cool supergiant stars within a young globular cluster. Methods: Simulations of low-metallicity massive stars (Mi 150-600 M⊙) show that both core-hydrogen-burning cool supergiants and hot ionizing stellar sources are expected to be present simulaneously in young globular clusters. Under these conditions, photoionization-confined shells form around the supergiants. We have simulated such a shell, investigated its stability and analysed its composition. Results: We find that the shell is gravitationally unstable on a timescale that is shorter than the lifetime of the supergiant, and the Bonnor-Ebert mass of the overdense regions is low enough to allow star formation. Since the low-mass stellar generation formed in this shell is made up of the material lost from the supergiant, its composition necessarily reflects the composition of the supergiant wind. We show that the wind contains hot-hydrogen-burning products, and that the shell-stars therefore have very similar abundance anomalies that are observed in the second generation stars of globular clusters. Considering the mass-budget required for the second generation star-formation, we offer two solutions. Either a top-heavy initial mass function is needed with an index of -1.71 to -2.07. Alternatively, we suggest the shell-stars to have a truncated mass distribution, and solve the mass budget problem by justifiably accounting for only a fraction of the first generation. Conclusions: Star-forming shells around cool supergiants could form the second generation of low-mass stars in Galactic globular clusters. Even without forming a photoionizaton-confined shell, the cool supergiant stars predicted at low-metallicity could contribute to the pollution of the interstellar medium of the cluster from which the second generation was born. Thus, the cool supergiant stars should be regarded as important contributors to the evolution of globular clusters.

  19. The Evolution of Dusty Star formation in Galaxy Clusters to z = 1: Spitzer Infrared Observations of the First Red-Sequence Cluster Survey

    NASA Astrophysics Data System (ADS)

    Webb, T. M. A.; O'Donnell, D.; Yee, H. K. C.; Gilbank, David; Coppin, Kristen; Ellingson, Erica; Faloon, Ashley; Geach, James E.; Gladders, Mike; Noble, Allison; Muzzin, Adam; Wilson, Gillian; Yan, Renbin

    2013-10-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 1014-15 M ⊙. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 1011 M ⊙, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z)5.1 ± 1.9 over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M cluster). The evolution is similar, with ΣSFR/M cluster ~ (1 + z)5.4 ± 1.9. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M cluster (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M_{cluster} \\sim M_{cluster}^{-1.5+/- 0.4}) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ~5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR-bright galaxies per unit optical galaxy in the cluster cores, confirming star formation continues to avoid the highest density regions of the universe at z ~ 0.75 (the average redshift of the high-redshift clusters). While several previous studies appear to show enhanced star formation in high-redshift clusters relative to the field we note that these papers have not accounted for the overall increase in galaxy or dark matter density at the location of clusters. Once this is done, clusters at z ~ 0.75 have the same or less star formation per unit mass or galaxy as the field.

  20. An Observational Study of Blended Young Stellar Clusters in the Galactic Plane - Do Massive Stars form First?

    NASA Astrophysics Data System (ADS)

    Martínez-Galarza, Rafael; Protopapas, Pavlos; Smith, Howard A.; Morales, Esteban

    2018-01-01

    From an observational point of view, the early life of massive stars is difficult to understand partly because star formation occurs in crowded clusters where individual stars often appear blended together in the beams of infrared telescopes. This renders the characterization of the physical properties of young embedded clusters via spectral energy distribution (SED) fitting a challenging task. Of particular relevance for the testing of star formation models is the question of whether the claimed universality of the IMF (references) is reflected in an equally universal integrated galactic initial mass function (IGIMF) of stars. In other words, is the set of all stellar masses in the galaxy sampled from a single universal IMF, or does the distribution of masses depend on the environment, making the IGIMF different from the canonical IMF? If the latter is true, how different are the two? We present a infrared SED analysis of ~70 Spitzer-selected, low mass ($<100~\\rm{M}_{\\odot}$), galactic blended clusters. For all of the clusters we obtain the most probable individual SED of each member and derive their physical properties, effectively deblending the confused emission from individual YSOs. Our algorithm incorporates a combined probabilistic model of the blended SEDs and the unresolved images in the long-wavelength end. We find that our results are compatible with competitive accretion in the central regions of young clusters, with the most massive stars forming early on in the process and less massive stars forming about 1Myr later. We also find evidence for a relationship between the total stellar mass of the cluster and the mass of the most massive member that favors optimal sampling in the cluster and disfavors random sampling for the canonical IMF, implying that star formation is self-regulated, and that the mass of the most massive star in a cluster depends on the available resources. The method presented here is easily adapted to future observations of clustered regions of star formation with JWST and other high resolution facilities.

  1. Formation of massive black holes through runaway collisions in dense young star clusters.

    PubMed

    Zwart, Simon F Portegies; Baumgardt, Holger; Hut, Piet; Makino, Junichiro; McMillan, Stephen L W

    2004-04-15

    A luminous X-ray source is associated with MGG 11--a cluster of young stars approximately 200 pc from the centre of the starburst galaxy M 82 (refs 1, 2). The properties of this source are best explained by invoking a black hole with a mass of at least 350 solar masses (350 M(o)), which is intermediate between stellar-mass and supermassive black holes. A nearby but somewhat more massive cluster (MGG 9) shows no evidence of such an intermediate-mass black hole, raising the issue of just what physical characteristics of the clusters can account for this difference. Here we report numerical simulations of the evolution and motion of stars within the clusters, where stars are allowed to merge with each other. We find that for MGG 11 dynamical friction leads to the massive stars sinking rapidly to the centre of the cluster, where they participate in a runaway collision. This produces a star of 800-3,000 M(o) which ultimately collapses to a black hole of intermediate mass. No such runaway occurs in the cluster MGG 9, because the larger cluster radius leads to a mass segregation timescale a factor of five longer than for MGG 11.

  2. Star Formation in Nearby Clusters (SFiNCs)

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin

    Most stars form in clusters that rapidly disperse, yet we have a poor understanding of the processes of cluster formation and early evolution. Do clusters form `top-down', rapidly in a dense molecular cloud core? Or, since clouds are turbulent, do clusters form `bottomup' by merging subclusters produced in small kinematically-distinct molecular structures? Do clusters principally form in elongated molecular structures such as Infrared Dark Clouds and Herschel filaments? One of the central reasons for slow progress in resolving these questions is the lack of homogeneous and reliable census of stellar members (both disk-bearing and disk-free) for a wide range of star forming environments. To address these issues we are now completing our major effort, called MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray). It combines the Chandra archive with UKIRT+2MASS near-infrared and Spitzer mid-infrared surveys to identify young stellar objects in a wide range of evolutionary stages, from protostars to disk-free pre-main sequence stars, in 20 star forming regions at distances from 0.4 to 3.6 kpc. Each MYStIX region was chosen to have a rich OB-dominated cluster. Started in 2009 with NASA/ADAP and NSF funding, MYStIX has emerged with 8 technical/catalog and the first 4 of a series of science papers (http://astro.psu.edu/mystix). Early MYStIX results include: demonstration of diverse morphologies of young clusters from simple ellipsoids to elongated, clumpy substructures; demonstration of spatio-age gradients across star formation regions; the discovery of core-halo age gradients within two rich nearby MYStIX clusters; and the discovery of important astrophysically empirical correlations among different subcluster properties such as age, absorption, core radius, central stellar density, and total intrinsic population. The early MYStIX result provide new observational evidence for subcluster merging and cluster expansion following gas dissipation. We propose here to extend the MYStIX effort to an archive study of 19 nearer and smaller star forming regions where the stellar clusters are dominated by a single late-OB star rather than numerous O stars as in the MYStIX fields. We call this project `Star Formation in Nearby Clusters' or SFiNCs (homophonic with `sphinx'). With a homogeneous analysis of the Chandra, 2MASS, Spitzer and Herschel archives, we expect to identify and characterize over 50 SFiNCs subclusters. The inferred empirical correlations among different cluster properties for nearly 200 SFiNCs+MYStIX subclusters with 30-3000 detected stars on scales of 0.1-20 pc will allow, for the first time, direct comparison with the results of theoretical simulations of cluster formation to seek deeper answers to the fundamental questions posed above. It is possible, for example, that smaller molecular clouds have less turbulence and thus produce small clusters in a single event rather than through subcluster mergers. Models based on meteoritic isotopes suggest that our Solar System formed in a complex of SFiNCs/MYStIX-like clusters (Gounelle & Meynet 2012, A&A, 545, 4). This project addresses NASA SMD Strategic Subgoals 3C (Advance scientific knowledge of the origin and history of the solar system) and 3D.3 (Understand how individual stars form and how those processes ultimately affect the formation of planetary systems). It lies in the `Star formation and pre-main sequence stars' Research Area of the Astrophysics Data Analysis program.

  3. Primordial binary populations in low-density star clusters as seen by Chandra: globular clusters versus old open clusters

    NASA Astrophysics Data System (ADS)

    van den Berg, Maureen C.

    2015-08-01

    The binaries in the core of a star cluster are the energy source that prevents the cluster from experiencing core collapse. To model the dynamical evolution of a cluster, it is important to have constraints on the primordial binary content. X-ray observations of old star clusters are very efficient in detecting the close interacting binaries among the cluster members. The X-ray sources in star clusters are a mix of binaries that were dynamically formed and primordial binaries. In massive, dense star clusters, dynamical encounters play an important role in shaping the properties and numbers of the binaries. In contrast, in the low-density clusters the impact of dynamical encounters is presumed to be very small, and the close binaries detected in X-rays represent a primordial population. The lowest density globular clusters have current masses and central densities similar to those of the oldest open clusters in our Milky Way. I will discuss the results of studies with the Chandra X-ray Observatory that have nevertheless revealed a clear dichotomy: far fewer (if any at all) X-ray sources are detected in the central regions of the low-density globular clusters compared to the number of secure cluster members that have been detected in old open clusters (above a limiting X-ray luminosity of typically 4e30 erg/s). The low stellar encounter rates imply that dynamical destruction of binaries can be ignored at present, therefore an explanation must be sought elsewhere. I will discuss several factors that can shed light on the implied differences between the primordial close binary populations in the two types of star clusters.

  4. Radiative Feedback of Forming Star Clusters on Their GMC Environments: Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Howard, C. S.; Pudritz, R. E.; Harris, W. E.

    2013-07-01

    Star clusters form from dense clumps within a molecular cloud. Radiation from these newly formed clusters feeds back on their natal molecular cloud through heating and ionization which ultimately stops gas accretion into the cluster. Recent studies suggest that radiative feedback effects from a single cluster may be sufficient to disrupt an entire cloud over a short timescale. Simulating cluster formation on a large scale, however, is computationally demanding due to the high number of stars involved. For this reason, we present a model for representing the radiative output of an entire cluster which involves randomly sampling an initial mass function (IMF) as the cluster accretes mass. We show that this model is able to reproduce the star formation histories of observed clusters. To examine the degree to which radiative feedback shapes the evolution of a molecular cloud, we use the FLASH adaptive-mesh refinement hydrodynamics code to simulate cluster formation in a turbulent cloud. Unlike previous studies, sink particles are used to represent a forming cluster rather than individual stars. Our cluster model is then coupled with a raytracing scheme to treat radiative transfer as the clusters grow in mass. This poster will outline the details of our model and present preliminary results from our 3D hydrodynamical simulations.

  5. Zodiacal Exoplanets in Time (ZEIT). V. A Uniform Search for Transiting Planets in Young Clusters Observed by K2

    NASA Astrophysics Data System (ADS)

    Rizzuto, Aaron C.; Mann, Andrew W.; Vanderburg, Andrew; Kraus, Adam L.; Covey, Kevin R.

    2017-12-01

    Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators ({P}{rot}< 2 days) we model the variability using a linear combination of observed rotations of each star. To maximally exploit our new pipeline, we update the membership for four stellar populations observed by K2 (Upper Scorpius, Pleiades, Hyades, Praesepe) and conduct a uniform search of the members. We identify all known transiting exoplanets in the clusters, 17 eclipsing binaries, one transiting planet candidate orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R ⊕, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ˜4 R ⊕ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible.

  6. White Dwarfs in Star Clusters: The Initial-Final Mass Relation for Stars from 0.85 to 8 M$_\\odot$

    NASA Astrophysics Data System (ADS)

    Cummings, Jeffrey; Kalirai, Jason; Tremblay, P.-E.; Ramírez-Ruiz, Enrico

    2018-01-01

    The spectroscopic study of white dwarfs provides both their mass, cooling age, and intrinsic photometric properties. For white dwarfs in the field of well-studied star clusters, this intrinsic photometry can be used to determine if they are members of that star cluster. Comparison of a member white dwarf's cooling age to its total cluster's age provides the evolutionary timescale of its progenitor star, and hence the mass. This is the initial-final mass relation (IFMR) for stars, which gives critical information on how a progenitor star evolves and loses mass throughout its lifetime, and how this changes with progenitor mass. Our work, for the first time, presents a uniform analysis of 85 white dwarf cluster members spanning from progenitor masses of 0.85 to 8 M$_\\odot$. Comparison of our work to theoretical IFMRs shows remarkable consistency in their shape but differences remain. We will discuss possible explanations for these differences, including the effects of stellar rotation.

  7. The G305 star-forming complex: the central star clusters Danks 1 and Danks 2

    NASA Astrophysics Data System (ADS)

    Davies, Ben; Clark, J. S.; Trombley, Christine; Figer, Donald F.; Najarro, Francisco; Crowther, Paul A.; Kudritzki, Rolf-Peter; Thompson, Mark; Urquhart, James S.; Hindson, Luke

    2012-01-01

    The G305 H II complex (G305.4+0.1) is one of the most massive star-forming structures yet identified within the Galaxy. It is host to many massive stars at all stages of formation and evolution, from embedded molecular cores to post-main-sequence stars. Here, we present a detailed near-infrared analysis of the two central star clusters Danks 1 and Danks 2, using Hubble Space Telescope+NICMOS imaging and Very Large Telescope+ISAAC spectroscopy. We find that the spectrophotometric distance to the clusters is consistent with the kinematic distance to the G305 complex, an average of all measurements giving a distance of 3.8 ± 0.6 kpc. From analysis of the stellar populations and the pre-main-sequence stars, we find that Danks 2 is the elder of the two clusters, with an age of 3+3- 1 Myr. Danks 1 is clearly younger with an age of 1.5+1.5- 0.5 Myr, and is dominated by three very luminous H-rich Wolf-Rayet stars which may have masses ≳100 M⊙. The two clusters have mass functions consistent with the Salpeter slope, and total cluster masses of 8000 ± 1500 and 3000 ± 800 M⊙ for Danks 1 and Danks 2, respectively. Danks 1 is significantly the more compact cluster of the two, and is one of the densest clusters in the Galaxy with log (ρ/M⊙ pc-3) = 5.5+0.5- 0.4. In addition to the clusters, there is a population of apparently isolated Wolf-Rayet stars within the molecular cloud's cavity. Our results suggest that the star-forming history of G305 began with the formation of Danks 2, and subsequently Danks 1, with the origin of the diffuse evolved population currently uncertain. Together, the massive stars at the centre of the G305 region appear to be clearing away what is left of the natal cloud, triggering a further generation of star formation at the cloud's periphery.

  8. ALMA reveals sunburn: CO dissociation around AGB stars in the globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.; Lagadec, E.; Sloan, G. C.; Boyer, M. L.; Matsuura, M.; Smith, R. J.; Smith, C. L.; Yates, J. A.; van Loon, J. Th.; Jones, O. C.; Ramstedt, S.; Avison, A.; Justtanont, K.; Olofsson, H.; Blommaert, J. A. D. L.; Goldman, S. R.; Groenewegen, M. A. T.

    2015-11-01

    Atacama Large Millimetre Array observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be ˜1.2-3.5 × 10-7 M⊙ yr-1. We would naïvely expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude that CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3-2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars.

  9. Uncovering multiple populations in NGC 7099 (M 30) using Washington photometry

    NASA Astrophysics Data System (ADS)

    Frelijj, H.; Geisler, D.; Cummings, J.; Cohen, R. E.; Mauro, F.; Munoz, C.; Villanova, S.; Tang, B.

    2017-12-01

    Over the last decade, the classical definition of globular clusters (GCs) as simple stellar populations was revolutionized due to the discovery of 'multiple populations' (MPs). However, our knowledge of this phenomenon and its characteristics is still lacking greatly observationally, and there is currently no scenario which adequately explains its origin. It is therefore important to study as many GCs as possible to characterize whether or not they have MPs, and determine their detailed behaviour to enlighten formation scenarios, using a wide range of techniques. The Washington photometric system has proved to be useful to find MPs, thanks mainly to the ultraviolet (UV)-sensitivity and high efficiency of the C filter. We search for MPs in the Galactic GC NGC 7099 (M30), the second GC being searched for MPs using this system. We obtained photometric data using the Swope 1-m telescope at Las Campanas Observatory, as well as the 4-m SOAR facility. Our reduction procedure included Addstar experiments to properly assess photometric errors. We find a clear signal of MPs based on an intrinsically wide colour spread on the RGB, in particular due to a relatively small fraction of stars significantly bluer than the main RGB locus. These stars should correspond to so-called first-generation stars, which we estimate to be roughly 15 per cent of the total. However, we find these first-generation stars to be more spatially concentrated than their second-generation counterparts, which is the opposite to the general trend found in other clusters. We briefly discuss possible explanations for this phenomenon.

  10. The Origin of IRS 16: Dynamically Driven In-Spiral of a Dense Star Cluster to the Galactic Center?

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon F.; McMillan, Stephen L. W.; Gerhard, Ortwin

    2003-08-01

    We use direct N-body simulations to study the in-spiral and internal evolution of dense star clusters near the Galactic center. These clusters sink toward the center owing to dynamical friction with the stellar background and may go into core collapse before being disrupted by the Galactic tidal field. If a cluster reaches core collapse before disruption, its dense core, which has become rich in massive stars, survives to reach close to the Galactic center. When it eventually dissolves, the cluster deposits a disproportionate number of massive stars in the innermost parsec of the Galactic nucleus. Comparing the spatial distribution and kinematics of the massive stars with observations of IRS 16, a group of young He I stars near the Galactic center, we argue that this association may have formed in this way.

  11. The Initial Mass Function of the Arches Cluster

    NASA Astrophysics Data System (ADS)

    Hosek, Matthew; Lu, Jessica; Anderson, Jay; Ghez, Andrea; Morris, Mark; Do, Tuan; Clarkson, William; Albers, Saundra; Weisz, Daniel

    2018-01-01

    The Arches star cluster is only 26 pc (in projection) from Sgr A*, the supermassive black hole at the Galactic Center. This young massive cluster allows us to examine the impact of the extreme Galactic Center environment on the stellar Initial Mass Function (IMF). However, measuring the IMF of the Arches is challenging due to the highly variable extinction along the line of sight, which makes it difficult to separate cluster members from the field stars. We use high-precision proper motion and photometric measurements obtained with the Hubble Space Telescope to calculate cluster membership probabilities for stars down to ~2 M_sun out to the outskirts of the cluster (3 pc). In addition, we measure the effective temperatures of a small sample of cluster members in order to calibrate the mass-luminosity relationship using using Keck OSIRS K-band spectroscopy. We forward model these observations to simultaneously constrain the cluster IMF, age, distance, and extinction. We obtain an IMF that is shallower than what is observed locally, with a higher fraction of high-mass stars to low mass stars (i.e., “top-heavy”). We will compare the IMF of the Arches to similar clusters in the Galactic disk and quantify the effect of the GC environment on the star formation process.

  12. Chemodynamical Clustering Applied to APOGEE Data: Rediscovering Globular Clusters

    NASA Astrophysics Data System (ADS)

    Chen, Boquan; D’Onghia, Elena; Pardy, Stephen A.; Pasquali, Anna; Bertelli Motta, Clio; Hanlon, Bret; Grebel, Eva K.

    2018-06-01

    We have developed a novel technique based on a clustering algorithm that searches for kinematically and chemically clustered stars in the APOGEE DR12 Cannon data. As compared to classical chemical tagging, the kinematic information included in our methodology allows us to identify stars that are members of known globular clusters with greater confidence. We apply our algorithm to the entire APOGEE catalog of 150,615 stars whose chemical abundances are derived by the Cannon. Our methodology found anticorrelations between the elements Al and Mg, Na and O, and C and N previously identified in the optical spectra in globular clusters, even though we omit these elements in our algorithm. Our algorithm identifies globular clusters without a priori knowledge of their locations in the sky. Thus, not only does this technique promise to discover new globular clusters, but it also allows us to identify candidate streams of kinematically and chemically clustered stars in the Milky Way.

  13. New atlas of open star clusters

    NASA Astrophysics Data System (ADS)

    Seleznev, Anton F.; Avvakumova, Ekaterina; Kulesh, Maxim; Filina, Julia; Tsaregorodtseva, Polina; Kvashnina, Alvira

    2017-11-01

    Due to numerous new discoveries of open star clusters in the last two decades, astronomers need an easy-touse resource to get visual information on the relative position of clusters in the sky. Therefore we propose a new atlas of open star clusters. It is based on a table compiled from the largest modern cluster catalogues. The atlas shows the positions and sizes of 3291 clusters and associations, and consists of two parts. The first contains 108 maps of 12 by 12 degrees with an overlapping of 2 degrees in three strips along the Galactic equator. The second one is an online web application, which shows a square field of an arbitrary size, either in equatorial coordinates or in galactic coordinates by request. The atlas is proposed for the sampling of clusters and cluster stars for further investigation. Another use is the identification of clusters among overdensities in stellar density maps or among stellar groups in images of the sky.

  14. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara, E-mail: petri@saao.ac.za

    2014-12-20

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-lawmore » distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems.« less

  15. Robo-AO Discovery and Basic Characterization of Wide Multiple Star Systems in the Pleiades, Praesepe, and NGC 2264 Clusters

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne A.; Zhang, Celia; Riddle, Reed L.; Baranec, Christoph; Ziegler, Carl; Law, Nicholas M.; Stauffer, John

    2018-02-01

    We identify and roughly characterize 66 candidate binary star systems in the Pleiades, Praesepe, and NGC 2264 star clusters, based on robotic adaptive optics imaging data obtained using Robo-AO at the Palomar 60″ telescope. Only ∼10% of our imaged pairs were previously known. We detect companions at red optical wavelengths, with physical separations ranging from a few tens to a few thousands of au. A three-sigma contrast curve generated for each final image provides upper limits to the brightness ratios for any undetected putative companions. The observations are sensitive to companions with a maximum contrast of ∼6m at larger separations. At smaller separations, the mean (best) raw contrast at 2″ is 3.ͫ8 (6m), at 1″ is 3.ͫ0 (4.ͫ5), and at 0.″5 is 1.ͫ9 (3m). Point-spread function subtraction can recover nearly the full contrast in the closer separations. For detected candidate binary pairs, we report separations, position angles, and relative magnitudes. Theoretical isochrones appropriate to the Pleiades and Praesepe clusters are then used to determine the corresponding binary mass ratios, which range from 0.2 to 0.9 in q={m}2/{m}1. For our sample of roughly solar-mass (FGK type) stars in NGC 2264 and sub-solar-mass (K and early M-type) primaries in the Pleiades and Praesepe, the overall binary frequency is measured at ∼15.5% ± 2%. However, this value should be considered a lower limit to the true binary fraction within the specified separation and mass ratio ranges in these clusters, given that complex and uncertain corrections for sensitivity and completeness have not been applied.

  16. Multiple mechanisms quench passive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ < 1 × 1010 M⊙) passive spiral galaxies are located in the rich Virgo cluster. This is in contrast to low-mass spiral galaxies with star formation, which inhabit a range of environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  17. Star-Formation in Free-Floating Evaporating Gaseous Globules

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    2017-08-01

    We propose to study the stellar embryos in select members of a newly recognized class of Free-floating Evaporating Gaseous Globules (frEGGS) embedded in HII regions and having head-tail shapes. We discovered two of these in the Cygnus massive star-forming region (MSFR) with HST, including one of the most prominent members of this class (IRAS20324). Subsequent archival searches of Spitzer imaging of MSFRs has allowed us to build a statistical sample of frEGGs. Our molecular-line observations show the presence of dense molecular cores with total gas masses of (0.5-few) Msun in these objects, and our radio continuum images and Halpha images (from the IPHAS survey) reveal bright photo-ionized peripheries around these objects. We hypothesize that frEGGs are density concentrations originating in giant molecular clouds, that, when subject to the sculpting and compression by strong winds and UV radiation from massive stars, become active star-forming cores. For the 4 frEGGs with HST or near-IR AO images showing young stars and bipolar cavities produced by their jets or collimated outflows, the symmetry axis points roughly toward the external ionizing star or star cluster - exciting new evidence for our overpressure-induced star formation hypothesis. We propose to test this hypothesis by imaging 24 frEGGs in two nearby MSFRs that represent different radiation-dominated environments. Using ACS imaging with filters F606W, F814W, & F658N (Ha+[NII]), we will search for jets and outflow-excavated cavities, investigate the stellar nurseries inside frEGGs, and determine whether the globules are generally forming multiple star systems or small clusters, as in IRAS20324.

  18. Advances in stellar evolution; Proceedings of the Workshop on Stellar Ecology, Marciana Marina, Italy, June 23-29, 1996

    NASA Astrophysics Data System (ADS)

    Rood, R. T.; Renzini, A.

    1997-01-01

    The present volume on stellar evolution discusses fundamentals of stellar evolution and star clusters, variable stars, AGB stars and planetary nebulae, white dwarfs, binary star evolution, and stars in galaxies. Attention is given to the stellar population in the Galactic bulge, a photometric study of NGC 458, and HST observations of high-density globular clusters. Other topics addressed include the Cepheid instability strip in external galaxies, Hyades cluster white dwarfs and the initial-final mass relation, element diffusion in novae, mass function of the stars in the solar neighborhood, synthetic spectral indices for elliptical galaxies, and stars at the Galactic center.

  19. Zodiacal Exoplanets in Time: Searching for Young Stars in K2

    NASA Astrophysics Data System (ADS)

    Morris, Nathan; Mann, Andrew W.

    2017-06-01

    Nearby young, open clusters such as the Hyades, Pleiades, and Praesepe provide an important reference point for the properties of stellar systems in general. In each cluster, all stars are of the same known age. As such, observations of planetary systems around these stars can be used to gain insight into the early stages of planetary system formation. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in the and elsewhere in the K2 field. We aim to compute rotational periods from sunspot patterns for all K2 target stars and use gyrochronometric relationships derived from cluster stars to determine their ages. From there, we will search for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve with time.

  20. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    In this thesis we present chemical abundances for bright stars in the intermediate metallicity globular cluster (GC) M5, and the relatively metal-rich GCs M71 and 47 Tuc with the goal of improving the understanding of chemical evolution in the metallicity regime sampled by these three GCs. The first chapter presents a brief historical overview in light element abundance variations in globular clusters. In the second chapter we present the results obtained for 47 Tuc, the most-metal rich cluster of my sample. 47 Tuc is an ideal target to study chemical evolution and GC formation in massive more metal-rich GCs since it is the closest massive GC. Chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu were determined for 164 red giant branch (RGB) stars in 47 Tuc using spectra obtained with both the Hydra multi-fiber spectrograph at the Blanco 4-m telescope and the FLAMES multi-object spectrograph at the ESO Very Large Telescope. The average [Fe/H]= --0.79+/-0.09 dex is consistent with literature values, as well as over-abundances of alpha-elements ([alpha/Fe] ~ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r-process dominated ([Eu/La]=+0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anti-correlation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ~ --0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A KS-test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of AGB nucleosynthesis yields. Aluminum is the heaviest light element displaying large star-to-star variations in Galactic GCs. This element may provide additional insight into the origin of the multiple populations and the nature of the first-generation stars responsible for chemical inhomogeneities. We found that, unlike more metal-poor GCs, 47 Tuc did not exhibit a strong Na-Al correlation, which motivates a careful study of the similar metallicity but less massive GC M71. In chapter 3, we present chemical abundances of O, Na, Al, and Fe for 33 giants in M71 using spectra obtained with the WIYN-Hydra spectrograph. Our spectroscopic analysis finds that, similar to 47 Tuc and in contrast with more metal-poor GCs, M71 stars do not exhibit a strong Na-Al correlation and span a relatively narrow range in [Al/Fe]. Furthermore, these data suggest that only a small fraction of stars (29%) have an [Na/Fe] ratio similar to halo stars at this metallicity, which is a characteristic reproduced by GC formation and evolution models. In the fourth chapter we present chemical abundances for a sample of 61 red giants in the intermediate-metallicity GC M5. The data were obtained using the Hydra multi-fiber positioner and bench spectrograph on the WIYN telescope. We find that our abundance ratios for Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu agree with published values for this cluster. The scatter seen in Fe-peak, alpha, and neutron-capture elements is consistent with typical spectroscopic errors. However, we identified a star modestly enhanced in La by performing a careful comparison of stellar spectra with similar atmospheric parameters. La-enhanced stars are rare in GCs. For instance, we have found only one such star in each of M5 and 47 Tuc. M5 red giants exhibit a strong Na-Al correlation, which is absent in M71 and 47 Tuc. Furthermore, M5 is at the metallicity regime where GCs seem to transition from small to large [Al/Fe] scatter. Interestingly, this metallicity regime also separates metal-poor from metal-rich Galactic GCs. In the fifth chapter we present radial distributions, population fractions, detailed examination of behavior of Al in more metal-rich GCs in the context of cluster chemical evolution, and, finally, a kinematical study of the GC M13 using spectra acquired with the WIYN-Hydra spectrograph. We find a rotational signal and a kinematical difference between the intermediate and extreme generations. Specifically, we find that the extreme O-depleted population, which is also more centrally concentrated than the primordial and intermediate populations, has the highest rotational amplitude. (Abstract shortened by UMI.)

  1. The Nature and Origin of UCDs in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Chiboucas, Kristin; Tully, R. Brent; Madrid, Juan; Phillipps, Steven; Carter, David; Peng, Eric

    2018-01-01

    UCDs are super massive star clusters found largely in dense regions but have also been found around individual galaxies and in smaller groups. Their origin is still under debate but currently favored scenarios include formation as giant star clusters, either as the brightest globular clusters or through mergers of super star clusters, themselves formed during major galaxy mergers, or as remnant nuclei from tidal stripping of nucleated dwarf ellipticals. Establishing the nature of these enigmatic objects has important implications for our understanding of star formation, star cluster formation, the missing satellite problem, and galaxy evolution. We are attempting to disentangle these competing formation scenarios with a large survey of UCDs in the Coma cluster. Using ACS two-passband imaging from the HST/ACS Coma Cluster Treasury Survey, we are using colors and sizes to identify the UCD cluster members. With a large size limited sample of the UCD population within the core region of the Coma cluster, we are investigating the population size, properties, and spatial distribution, and comparing that with the Coma globular cluster and nuclear star cluster populations to discriminate between the threshing and globular cluster scenarios. In previous work, we had found a possible correlation of UCD colors with host galaxy and a possible excess of UCDs around a non-central giant galaxy with an unusually large globular cluster population, both suggestive of a globular cluster origin. With a larger sample size and additional imaging fields that encompass the regions around these giant galaxies, we have found that the color correlation with host persists and the giant galaxy with unusually large globular cluster population does appear to host a large UCD population as well. We present the current status of the survey.

  2. Hubble Catches Stellar Exodus in Action

    NASA Image and Video Library

    2015-05-14

    Using NASA’s Hubble Space Telescope, astronomers have captured for the first time snapshots of fledging white dwarf stars beginning their slow-paced, 40-million-year migration from the crowded center of an ancient star cluster to the less populated suburbs. White dwarfs are the burned-out relics of stars that rapidly lose mass, cool down and shut off their nuclear furnaces. As these glowing carcasses age and shed weight, their orbits begin to expand outward from the star cluster’s packed downtown. This migration is caused by a gravitational tussle among stars inside the cluster. Globular star clusters sort out stars according to their mass, governed by a gravitational billiard ball game where lower mass stars rob momentum from more massive stars. The result is that heavier stars slow down and sink to the cluster's core, while lighter stars pick up speed and move across the cluster to the edge. This process is known as "mass segregation." Until these Hubble observations, astronomers had never definitively seen the dynamical conveyor belt in action. Astronomers used Hubble to watch the white-dwarf exodus in the globular star cluster 47 Tucanae, a dense swarm of hundreds of thousands of stars in our Milky Way galaxy. The cluster resides 16,700 light-years away in the southern constellation Tucana. Read more: www.nasa.gov/feature/goddard/hubble-catches-stellar-exodu... Credits: NASA, ESA, and H. Richer and J. Heyl (University of British Columbia, Vancouver, Canada); acknowledgement: J. Mack (STScI) and G. Piotto (University of Padova, Italy) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations

    DOE PAGES

    Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; ...

    2017-11-23

    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. Here, we find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 10 5–6 M ⊙ collectively to high density, at which point it rapidly turns into stars beforemore » stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ~420 Myr till the end of the simulation. Finally, because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.« less

  4. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.

    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. Here, we find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 10 5–6 M ⊙ collectively to high density, at which point it rapidly turns into stars beforemore » stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ~420 Myr till the end of the simulation. Finally, because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.« less

  5. STAR CLUSTER FORMATION WITH STELLAR FEEDBACK AND LARGE-SCALE INFLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Christopher D.; Jumper, Peter H., E-mail: matzner@astro.utoronto.ca

    2015-12-10

    During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when itsmore » column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South and with the dust temperatures observed in regions of massive star formation. Comparing observations of massive cluster-forming regions against our model parameter space, and against our expectations for accretion-driven evolution, we infer that massive-star feedback is a likely cause of gas disruption in regions with velocity dispersions less than a few kilometers per second, but that more massive and more turbulent regions are too strongly bound for stellar feedback to be disruptive.« less

  6. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; Hopkins, Philip F.; Hayward, Christopher C.; Wetzel, Andrew; Faucher-Giguère, Claude-André; Kereš, Dušan; Garrison-Kimmel, Shea; Murray, Norman

    2018-03-01

    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. We find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 105-6 M⊙ collectively to high density, at which point it rapidly turns into stars before stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ˜420 Myr till the end of the simulation. Because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.

  7. Collisions in Compact Star Clusters.

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.

    The high stellar densities in young compact star clusters, such as the star cluster R136 in the 30 Doradus region, may lead to a large number of stellar collisions. Such collisions were recently found to be much more frequent than previous estimates. The number of collisions scales with the number of stars for clusters with the same initial relaxation time. These collisions take place in a few million years. The collision products may finally collapse into massive black holes. The fraction of the total mass in the star cluster which ends up in a single massive object scales with the total mass of the cluster and its relaxation time. This mass fraction is rather constant, within a factor two or so. Wild extrapolation from the relatively small masses of the studied systems to the cores of galactic nuclei may indicate that the massive black holes in these systems have formed in a similar way.

  8. A Search for Variable Stars in Ruprecht 134 (Abstract)

    NASA Astrophysics Data System (ADS)

    El Hamri, R.; Blake, M.

    2018-06-01

    (Abstract only) Contact binary stars have been found in many old open clusters. These stars are useful for obtaining the distances to these star clusters and for understanding the stellar populations and evolution of the old clusters. Ruprecht 134 is a relatively neglected, old open cluster with an age of about 1 Gyr. We have obtained observations of Ruprecht 134 using the 1-meter telescope at Cerro Tololo Interamerican Observatory for the purpose of identifying candidate contact binaries. We present the preliminary results of this search and discuss future observations.

  9. Photometry Using Kepler "Superstamps" of Open Clusters NGC 6791 & NGC 6819

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Drury, Jason A.; Bellamy, Beau R.; Stello, Dennis; Bedding, Timothy R.; Reed, Mike; Quick, Breanna

    2015-09-01

    The Kepler space telescope has proven to be a gold mine for the study of variable stars. Usually, Kepler only reads out a handful of pixels around each pre-selected target star, omitting a large number of stars in the Kepler field. Fortunately, for the open clusters NGC 6791 and NGC 6819, Kepler also read out larger "superstamps" which contained complete images of the central region of each cluster. These cluster images can be used to study additional stars in the open clusters that were not originally on Kepler's target list. We discuss our work on using two photometric techniques to analyze these superstamps and present sample results from this project to demonstrate the value of this technique for a wide variety of variable stars.

  10. Two massive stars possibly ejected from NGC 3603 via a three-body encounter

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Chené, A.-N.; Schnurr, O.

    2013-03-01

    We report the discovery of a bow-shock-producing star in the vicinity of the young massive star cluster NGC 3603 using archival data of the Spitzer Space Telescope. Follow-up optical spectroscopy of this star with Gemini-South led to its classification as O6 V. The orientation of the bow shock and the distance to the star (based on its spectral type) suggest that the star was expelled from the cluster, while the young age of the cluster (˜2 Myr) implies that the ejection was caused by a dynamical few-body encounter in the cluster's core. The relative position on the sky of the O6 V star and a recently discovered O2 If*/WN6 star (located on the opposite side of NGC 3603) allows us to propose that both objects were ejected from the cluster via the same dynamical event - a three-body encounter between a single (O6 V) star and a massive binary (now the O2 If*/WN6 star). If our proposal is correct, then one can `weigh' the O2 If*/WN6 star using the conservation of the linear momentum. Given a mass of the O6 V star of ≈30 M⊙, we found that at the moment of ejection the mass of the O2 If*/WN6 star was ≈175 M⊙. Moreover, the observed X-ray luminosity of the O2 If*/WN6 star (typical of a single star) suggests that the components of this originally binary system have merged (e.g., because of encounter hardening).

  11. On the determination of age and mass functions of stars in young open star clusters from the analysis of their luminosity functions

    NASA Astrophysics Data System (ADS)

    Piskunov, A. E.; Belikov, A. N.; Kharchenko, N. V.; Sagar, R.; Subramaniam, A.

    2004-04-01

    We construct the observed luminosity functions of the remote young open clusters NGC 2383, 2384, 4103, 4755, 7510 and Hogg 15 from CCD observations of them. The observed LFs are corrected for field star contamination determined with the help of a Galactic star count model. In the case of Hogg 15 and NGC 2383 we also consider the additional contamination from neighbouring clusters NGC 4609 and 2384, respectively. These corrections provide a realistic pattern of cluster LF in the vicinity of the main-sequence (MS) turn-on point and at fainter magnitudes reveal the so-called H-feature arising as a result of the transition of the pre-MS phase to the MS, which is dependent on the cluster age. The theoretical LFs are constructed representing a cluster population model with continuous star formation for a short time-scale and a power-law initial mass function (IMF), and these are fitted to the observed LF. As a result, we are able to determine for each cluster a set of parameters describing the cluster population (the age, duration of star formation, IMF slope and percentage of field star contamination). It is found that in spite of the non-monotonic behaviour of observed LFs, cluster IMFs can be described as power-law functions with slopes similar to Salpeter's value. The present main-sequence turn-on cluster ages are several times lower than those derived from the fitting of theoretical isochrones to the turn-off region of the upper main sequences.

  12. Understanding Galaxy Cluster MKW10

    NASA Astrophysics Data System (ADS)

    Sanders, Tim; Henry, Swain; Coble, Kimberly A.; Rosenberg, Jessica L.; Koopmann, Rebecca A.

    2015-01-01

    As part of the Undergraduate ALFALFA Team (UAT), we are studying the galaxy cluster MKW 10 (RA = 175.454, Dec = 10.306, z ~ 0.02), a poor cluster with a compact core in which tidal interactions have occurred. This cluster has been observed in HI and Hα. We used SDSS and NED to search for optical counterparts. By comparing data at multiple wavelengths, we hope to understand the structure, environment, and star formation history of this cluster. Following the techniques of others involved in the groups project and using the program TOPCAT to manipulate the data, we explored both the spatial and velocity distributions to determine cluster membership. We have determined that this cluster consists of 11 galaxies, mostly spiral in shape. Chicago State University is new the UAT and we began our work after taking part in the winter workshop at Arecibo.This work was supported by: Undergraduate ALFALFA Team NSF Grant AST-1211005 and the Illinois Space Grant Consortium.

  13. Spectral Types and Wind Velocities for Massive Stars in R136

    NASA Astrophysics Data System (ADS)

    Bostroem, K. A.; Maíz Apellániz, J.; Caballero-Nieves, S. M.; Walborn, N. R.; Crowther, P. A.

    2014-01-01

    We analyze spatially resolved, long-slit ultraviolet (UV) and optical stellar spectra of the compact starburst cluster R136 at the core of 30 Doradus. R136 is young and massive, making it an ideal place to study the upper end of the initial mass function. These spectra, taken with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, cover over 100 stars in the inner 4 arcseconds (1 parsec) of R136, a region which cannot be resolved with ground-based spectroscopy. In this poster we present both the UV and optical of over 20 of the brightest stars in R136, extracted with MULTISPEC, a tool written specifically for multiple objects in crowded fields. For each star we present an optical spectral type and a terminal wind velocity derived from the UV data

  14. Extended Star Formation or a Range of Stellar Rotation Velocities? The Nature of Extended Main Sequence Turnoffs in Intermediate-Age Star Clusters

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    2016-10-01

    Recently, deep color-magnitude diagrams (CMDs) from HST data revealed that several massive intermediate-age star clusters in the Magellanic Clouds exhibit extended main-sequence turn-offs (eMSTOs), and in some cases also dual red clumps. This poses serious questions regarding the mechanisms responsible for the formation of massive star clusters and their well-known light-element abundance variations. The nature of eMSTOs is currently a hotly debated topic of study. Several recent studies indicate that the eMSTOs are caused by an age spread of about 100-500 Myr among cluster stars, while other studies indicate that eMSTOs can be caused by a coeval population in which the relevant stars span a range of rotation velocities. Formal evidence to (dis-)prove either scenario still remains at large, mainly because the available stellar tracks that incorporate the effects of rotation are only available for masses > 1.7 Msun whereas the stars in the known eMSTOs of intermediate-age clusters are less massive. To circumvent this issue, we identified a massive star cluster in the Large Magellanic Cloud (LMC) that has the right dynamical properties to host an eMSTO along with an age at which the effects of age spreads to CMD morphology are substantially different from those of spreads of rotation rates: the 600 Myr old cluster NGC 1831. We propose to obtain deep WFC3/UVIS imaging with filters F336W and F814W to analyze the morphologies of the MSTO and upper MS regions of NGC 1831 at high precision and compare with model predictions. This will have a lasting impact on our understanding of the eMSTO phenomenon and of star cluster formation in general.

  15. MYStIX: Dynamical evolution of young clusters

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.

    2014-08-01

    The spatial structure of young stellar clusters in Galactic star-forming regions provides insight into these clusters’ dynamical evolution---a topic with implications for open questions in star-formation and cluster survival. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) provides a sample of >30,000 young stars in star-forming regions (d<3.6 kpc) that contain at least one O-type star. We use the finite mixture model analysis to identify subclusters of stars and determine their properties: including subcluster radii, intrinsic numbers of stars, central density, ellipticity, obscuration, and age. In 17 MYStIX regions we find 142 subclusters, with a diverse radii and densities and age spreads of up to ~1 Myr in a region. There is a strong negative correlation between subcluster radius and density, which indicates that embedded subclusters expand but also gain stars as they age. Subcluster expansion is also shown by a positive radius--age correlation, which indicates that subclusters are expanding at <1 km/s. The subcluster ellipticity distribution and number--density relation show signs of a hierarchical merger scenario, whereby young stellar clusters are built up through mergers of smaller clumps, causing evolution from a clumpy spatial distribution of stars (seen in some regions) to a simpler distribution of stars (seen in other regions). Many of the simple young stellar clusters show signs of dynamically relaxation, even though they are not old enough for this to have occurred through two-body interactions. However, this apparent contradiction might be explained if small subcluster, which have shorter dynamical relaxation times, can produce dynamically relaxed clusters through hierarchical mergers.

  16. Field O stars: formed in situ or as runaways?

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.

    2012-08-01

    A significant fraction of massive stars in the Milky Way and other galaxies are located far from star clusters and star-forming regions. It is known that some of these stars are runaways, i.e. possess high space velocities (determined through the proper motion and/or radial velocity measurements), and therefore most likely were formed in embedded clusters and then ejected into the field because of dynamical few-body interactions or binary-supernova explosions. However, there exists a group of field O stars whose runaway status is difficult to prove via direct proper motion measurements (e.g. in the Magellanic Clouds) or whose (measured) low space velocities and/or young ages appear to be incompatible with their large separation from known star clusters. The existence of this group led some authors to believe that field O stars can form in situ. Since the question of whether or not O stars can form in isolation is of crucial importance for star formation theory, it is important to thoroughly test candidates of such stars in order to improve the theory. In this paper, we examine the runaway status of the best candidates for isolated formation of massive stars in the Milky Way and the Magellanic Clouds by searching for bow shocks around them, by using the new reduction of the Hipparcos data, and by searching for stellar systems from which they could originate within their lifetimes. We show that most of the known O stars thought to have formed in isolation are instead very likely runaways. We show also that the field must contain a population of O stars whose low space velocities and/or young ages are in apparent contradiction to the large separation of these stars from their parent clusters and/or the ages of these clusters. These stars (the descendants of runaway massive binaries) cannot be traced back to their parent clusters and therefore can be mistakenly considered as having formed in situ. We argue also that some field O stars could be detected in optical wavelengths only because they are runaways, while their cousins residing in the deeply embedded parent clusters might still remain totally obscured. The main conclusion of our study is that there is no significant evidence whatsoever in support of the in situ proposal on the origin of massive stars.

  17. Gone with the Wind: Watching Galaxy Transformation in Abell 2125

    NASA Astrophysics Data System (ADS)

    Keel, W.; Owen, F.; Ledlow, M.; Wang, D.

    2003-12-01

    Dense environments clearly foster the transformation of galaxies, but it has proven difficult to untangle the roles of various processes in cluster environments. We have found a uniquely strong case for ongoing stripping of gas from the galaxy C153 in Abell 2125. The cluster, at z=0.25, includes merging subsystems with a relative line-of-sight velocity near 2000 km/s. C153, identified using the VLA as a strong radio source powered by star formation, is the brightest cluster member with activity of this kind, and part of the less populous blueshifted grouping. Several lines of evidence indicate that it is being swept by a stripping event. (1) A tail of ionized gas is seen in [O II] emission, which extends at least 70 kpc toward the cluster core, coinciding with a soft X-ray feature seen in the Chandra observations reported by Wang et al. (2) HST WFPC2 images reveal disturbed and clumpy morphology, including luminous star-forming complexes and chaotic dust features. (3) The spectral energy distribution and Gemini GMOS absorption-line spectrum indicate a massive burst of star formation ≈ 108 years ago superimposed on an older and much fainter population. (4) The stellar and gas kinematics are decoupled, with multiple gas velocity systems including counter-rotating components. The large velocity difference between the galaxy and (most of the) intracluster medium may contribute to the signatures being more prominent than hitherto seen. The starburst age is consistent with estimates of the time since the closest encounter of the major subsystems during the cluster-level merger. We continue to explore whether a starburst outflow or tidal damage has added to the role of stripping by the ICM, and how star formation has proceeded in the gas after leaving the galaxy disk. This work was supported by NASA through HST grant GO-07279.01-96A, and by the NSF through facilities at NRAO, Kitt Peak, and Gemini-North.

  18. A preliminary comparison of photometric (MWSC) and trigonometric (TGAS) distances of open cluster stars

    NASA Astrophysics Data System (ADS)

    Kovaleva, Dana; Piskunov, Anatoly; Kharchenko, Nina; Scholz, Ralf-Dieter

    2017-12-01

    The goal of this researchwas to compare the open cluster photometric distance scale of the global survey of star clusters in the MilkyWay (MWSC) with the distances derived fromtrigonometric parallaxes fromthe Gaia DR1/TGAS catalogue and to investigate towhich degree and extent both scales agree.We compared the parallax-based and photometrybased distances of 5743 cluster stars selected as members of 1118 clusters based on their kinematic and photometric MWSC membership probabilities. We found good overall agreement between trigonometric and photometric distances of open cluster stars. The residuals between them were small and unbiased up to log(d, [pc]) ≈ 2.8. If we considered only the most populated clusters and used cluster distances obtained from the mean trigonometric parallax of their MWSC members, the good agreement of the distance scales continued up to log(d, [pc]) ≈ 3.3.

  19. The dependence of stellar properties on initial cloud density

    NASA Astrophysics Data System (ADS)

    Jones, Michael O.; Bate, Matthew R.

    2018-05-01

    We investigate the dependence of stellar properties on the initial mean density of the molecular cloud in which stellar clusters form using radiation hydrodynamical simulations that resolve the opacity limit for fragmentation. We have simulated the formation of three star clusters from the gravitational collapse of molecular clouds whose densities vary by a factor of a hundred. As with previous calculations including radiative feedback, we find that the dependence of the characteristic stellar mass, Mc, on the initial mean density of the cloud, ρ, is weaker than the dependence of the thermal Jeans mass. However, unlike previous calculations, which found no statistically significant variation in the median mass with density, we find a weak dependence approximately of the form Mc∝ρ-1/5. The distributions of properties of multiple systems do not vary significantly between the calculations. We compare our results to the result of observational surveys of star-forming regions, and suggest that the similarities between the properties of our lowest density calculation and the nearby Taurus-Auriga region indicate that the apparent excess of solar-type stars observed may be due to the region's low density.

  20. Rotation periods of open-cluster stars, 2

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Shetrone, Matthew D.; Marilli, Ettore; Catalano, Santo; Williams, Scott D.; Backman, Dana E.; Laaksonen, Bentley D.; Adige, Vikram; Marschall, Laurence A.; Stauffer, John R.

    1993-01-01

    We present the results from a photometric monitoring program of 21 stars observed during 1992 in the Pleiades and Alpha Persei open clusters. Period determinations for 16 stars are given, 13 of which are the first periods reported for these stars. Brightness variations for an additional five cluster stars are also given. One K dwarf member of the alpha Per cluster is observed to have a period of rotation of only 4.39 hr. perhaps the shortest period currently known among BY Draconis variables. The individual photometric measurements have been deposited with the NSSDC. Combining current X-ray flux determinations with known photometric periods, we illustrate the X-ray activity/rotation relation among Pleiades K dwarfs based on available data.

  1. The Structure of the Young Star Cluster NGC 6231. I. Stellar Population

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.; Medina, Nicolás; Getman, Konstantin V.; Feigelson, Eric D.; Gromadzki, Mariusz; Borissova, Jordanka; Kurtev, Radostin

    2017-09-01

    NGC 6231 is a young cluster (age ˜2-7 Myr) dominating the Sco OB1 association (distance ˜1.59 kpc) with ˜100 O and B stars and a large pre-main-sequence stellar population. We combine a reanalysis of archival Chandra X-ray data with multiepoch near-infrared (NIR) photometry from the VISTA Variables in the Vía Lactéa (VVV) survey and published optical catalogs to obtain a catalog of 2148 probable cluster members. This catalog is 70% larger than previous censuses of probable cluster members in NGC 6231. It includes many low-mass stars detected in the NIR but not in the optical and some B stars without previously noted X-ray counterparts. In addition, we identify 295 NIR variables, about half of which are expected to be pre-main-sequence stars. With the more complete sample, we estimate a total population in the Chandra field of 5700-7500 cluster members down to 0.08 {M}⊙ (assuming a universal initial mass function) with a completeness limit at 0.5 {M}⊙ . A decrease in stellar X-ray luminosities is noted relative to other younger clusters. However, within the cluster, there is little variation in the distribution of X-ray luminosities for ages less than 5 Myr. The X-ray spectral hardness for B stars may be useful for distinguishing between early-B stars with X-rays generated in stellar winds and B-star systems with X-rays from a pre-main-sequence companion (>35% of B stars). A small fraction of catalog members have unusually high X-ray median energies or reddened NIR colors, which might be explained by absorption from thick or edge-on disks or being background field stars.

  2. The Effects of Single and Close Binary Evolution on the Stellar Mass Function

    NASA Astrophysics Data System (ADS)

    Schneider, R. N. F.; Izzard, G. R.; de Mink, S.; Langer, N., Stolte, A., de Koter, A.; Gvaramadze, V. V.; Hussmann, B.; Liermann, A.; Sana, H.

    2013-06-01

    Massive stars are almost exclusively born in star clusters, where stars in a cluster are expected to be born quasi-simultaneously and with the same chemical composition. The distribution of their birth masses favors lower over higher stellar masses, such that the most massive stars are rare, and the existence of an stellar upper mass limit is still debated. The majority of massive stars are born as members of close binary systems and most of them will exchange mass with a close companion during their lifetime. We explore the influence of single and binary star evolution on the high mass end of the stellar mass function using a rapid binary evolution code. We apply our results to two massive Galactic star clusters and show how the shape of their mass functions can be used to determine cluster ages and comment on the stellar upper mass limit in view of our new findings.

  3. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; Wyithe, Stuart; Alpaslan, Mehmet; Timmes, F. X.; Andrews, Stephen K.; Kim, Duho; Kelly, Patrick; Coe, Dan A.; Diego, Jose M.; Driver, Simon P.; Dijkstra, Mark

    2018-06-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-IR surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z=7-17.We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z>7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions.We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be 10^4-10^5x, with rise times of hours and decline times of z~<1 year for cluster transverse velocities of v_T<~1000 km/s.Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3-30 lensing clusters to AB<29 mag over a decade (see Windhorst et al. 2018, ApJS, 234, 41; astro-ph/1801.03584).This work was supported by NASA JWST Interdisciplinary Scientist grants NAG5-12460, NX14AN10G, and 80NSSC18K0200, NASA Theoretical and Computational Astrophysics Networks grant NNX14AB53G, NSF Software Infrastructure for Sustained Innovation grant 1339600, NSF Physics Frontier Center JINA-CEE grant PHY-1430152, Australian Research Council projects AYA2015-64508-P, AYA2012-39475-C02-01, and Ministerio de Economia y Competitividad of Spain Consolider Project CSD2010-00064.

  4. AN ASTEROSEISMIC MEMBERSHIP STUDY OF THE RED GIANTS IN THREE OPEN CLUSTERS OBSERVED BY KEPLER: NGC 6791, NGC 6819, AND NGC 6811

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stello, Dennis; Huber, Daniel; Bedding, Timothy R.

    Studying star clusters offers significant advances in stellar astrophysics due to the combined power of having many stars with essentially the same distance, age, and initial composition. This makes clusters excellent test benches for verification of stellar evolution theory. To fully exploit this potential, it is vital that the star sample is uncontaminated by stars that are not members of the cluster. Techniques for determining cluster membership therefore play a key role in the investigation of clusters. We present results on three clusters in the Kepler field of view based on a newly established technique that uses asteroseismology to identifymore » fore- or background stars in the field, which demonstrates advantages over classical methods such as kinematic and photometry measurements. Four previously identified seismic non-members in NGC 6819 are confirmed in this study, and three additional non-members are found-two in NGC 6819 and one in NGC 6791. We further highlight which stars are, or might be, affected by blending, which needs to be taken into account when analyzing these Kepler data.« less

  5. Radial Velocities of RR Lyrae Stars in and around NGC 6441

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea; Mills, Arthur; Edgecomb, Joseph; Thomas, Mathew; Schilter, Levi; Boyle, Craig; Parker, Stephen; Bellevue, Gordon; Rich, R. Michael; Koch, Andreas; Johnson, Christian I.; Nataf, David M.

    2018-04-01

    Detailed elemental abundance patterns of metal-poor ([Fe/H] ∼ ‑1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of GCs. Here, an attempt is made to identify such presumptive stripped stars originating from the massive, inner Galaxy GC NGC 6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of 40 RRLs centered on the GC NGC 6441. All 13 of the RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 ± 5 km s‑1 and a star-to-star scatter of 11 km s‑1. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC 6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster’s orbit. Therefore, either the tidal radius of NGC 6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC 6441 that are building up the old spheroidal bulge.

  6. Hubble Checks out a Home for Old Stars

    NASA Image and Video Library

    2017-12-08

    This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the globular cluster Terzan 1. Lying around 20,000 light-years from us in the constellation of Scorpius (The Scorpion), it is one of about 150 globular clusters belonging to our galaxy, the Milky Way. Typical globular clusters are collections of around a hundred thousand stars, held together by their mutual gravitational attraction in a spherical shape a few hundred light-years across. It is thought that every galaxy has a population of globular clusters. Some, like the Milky Way, have a few hundred, while giant elliptical galaxies can have several thousand. They contain some of the oldest stars in a galaxy, hence the reddish colors of the stars in this image — the bright blue ones are foreground stars, not part of the cluster. The ages of the stars in the globular cluster tell us that they were formed during the early stages of galaxy formation! Studying them can also help us to understand how galaxies formed. Terzan 1, like many globular clusters, is a source of X-rays. It is likely that these X-rays come from binary star systems that contain a dense neutron star and a normal star. The neutron star drags material from the companion star, causing a burst of X-ray emission. The system then enters a quiescent phase in which the neutron star cools, giving off X-ray emission with different characteristics, before enough material from the companion builds up to trigger another outburst. Image credit: NASA & ESA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Chemical Abundances of Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Gratton, Raffaele G.; Bragaglia, Angela; Carretta, Eugenio; D'Orazi, Valentina; Lucatello, Sara

    A large fraction of stars form in clusters. According to a widespread paradigma, stellar clusters are prototypes of single stellar populations. According to this concept, they formed on a very short time scale, and all their stars share the same chemical composition. Recently it has been understood that massive stellar clusters (the globular clusters) rather host various stellar populations, characterized by different chemical composition: these stellar populations have also slightly different ages, stars of the second generations being formed from the ejecta of part of those of an earlier one. Furthermore, it is becoming clear that the efficiency of the process is quite low: many more stars formed within this process than currently present in the clusters. This implies that a significant, perhaps even dominant fraction of the ancient population of galaxies formed within the episodes that lead to formation the globular clusters.

  8. Color gradients in cooling flow cluster central galaxies and the ionization of cluster emission line systems

    NASA Technical Reports Server (NTRS)

    Romanishin, W.

    1988-01-01

    Preliminary results are given for a program to measure color gradients in the central galaxies in clusters with a variety of cooling flow rates. The objectives are to search for extended blue continuum regions indicative of star formation, to study the spatial distribution of star formation, and to make a quantitative measure of the amount of light from young stars, which can lead to a measure of the star formation rate (for an assumed initial mass function). Four clusters with large masses and large cluster H-alpha emission fluxes are found to have an excess of blue light concentrated to the centers of the cluster central galaxy. Assumption of a disk IMF leads to the conclusion that the starlight might play a major role in ionizing the emission line gas in these clusters.

  9. Core-halo age gradients and star formation in the Orion Nebula and NGS 2024 young stellar clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.

    2014-06-01

    We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, Age{sub JX} , derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024more » cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on Age{sub JX} estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.« less

  10. Horizontal branch stars, and galactic and magellanic cloud globular clusters

    NASA Technical Reports Server (NTRS)

    Deboer, K. S.

    1981-01-01

    Seven blue horizontal branch stars in the field were observed and a few HB stars were isolated in globular clusters. Energy distributions are compared to assess possible differences and also used in comparison with model atmospheres. Observed energy distributions of HB stars in NGC 6397 are used to estimate the total number of HB stars which produced the integrated fluxes as observed by ANS. Preliminary results are given for colors of globular clusters observed in the Magellanic Clouds and for their extent, based on the Washburn IUE extraction.

  11. Probing the formation history of the nuclear star cluster at the Galactic Centre with millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Abbate, F.; Mastrobuono-Battisti, A.; Colpi, M.; Possenti, A.; Sippel, A. C.; Dotti, M.

    2018-01-01

    The origin of the nuclear star cluster in the centre of our Galaxy is still unknown. One possibility is that it formed after the disruption of stellar clusters that spiralled into the Galactic Centre due to dynamical friction. We trace the formation of the nuclear star cluster around the central black hole, using state-of-the-art N-body simulations, and follow the dynamics of the neutron stars born in the clusters. We then estimate the number of millisecond pulsars (MSPs) that are released in the nuclear star cluster during its formation. The assembly and tidal dismemberment of globular clusters lead to a population of MSPs distributed over a radius of about 20 pc, with a peak near 3 pc. No clustering is found on the subparsec scale. We simulate the detectability of this population with future radio telescopes like the MeerKAT radio telescope and SKA1, and find that about an order of 10 MSPs can be observed over this large volume, with a paucity of MSPs within the central parsec. This helps discriminating this scenario from the in situ formation model for the nuclear star cluster that would predict an overabundance of MSPs closer to the black hole. We then discuss the potential contribution of our MSP population to the gamma-ray excess at the Galactic Centre.

  12. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2002-12-18

    At a distance of 6,000 light years from Earth, the star cluster RCW 38 is a relatively close star-forming region. This area is about 5 light years across, and contains thousands of hot, very young stars formed less than a million years ago, 190 of which exposed x-rays to Chandra. Enveloping the star cluster, the diffused cloud of x-rays shows an excess of high energy x-rays, which indicates that the x-rays come from trillion-volt electrons moving in a magnetic field. Such particles are typically produced by exploding stars, or in the strong magnetic fields around neutron stars or black holes, none of which are evident in RCW 38. One possible origin for the particles, could be an undetected supernova that occurred in the cluster, possibly thousands of years ago, producing a shock wave that is interacting with the young stars. Regardless of the origin of these energetic electrons, their presence could change the chemistry of the disks that will eventually form planets around the stars in the cluster.

  13. Lithium Abundances in the Young Open Cluster IC 2602

    NASA Technical Reports Server (NTRS)

    Randich, S.; Aharpour, N.; Pallavicini, R.; Prosser, C. F.; Stauffer, J. R.

    1997-01-01

    We have obtained high-resolution spectra for 28 candidate late-type stars in the 30 Myr old cluster IC 2602. NLTE Li abundances have been derived from measured equivalent widths. The log n(Li) - T(sub eff) and log n(Li) - mass distributions for our sample stars have been compared with those of the Pleiades and alpha Persei. Our data show that F stars in the three clusters have the same lithium content, which corresponds to the initial content for Pop. I stars. G and early-K IC 2602 stars are, on average, somewhat more Li-rich than their counterparts in the two slightly older clusters. Finally, the latest-type IC 2602 stars are heavily Li depleted, with their Li content being as low as the lowest measured among the Pleiades. As in the Pleiades and alpha Per, a star-to-star scatter in lithium is observed among 30 Myr old late-K/early-K dwarfs in IC 2602, indicating that this spread develops in the pre-main sequence phases.

  14. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, L. Clifton; Sandstrom, Karin; Seth, Anil C.

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studiedmore » galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (Σ{sub SFR}). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time ( τ {sub dep}) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H{sub 2}-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high Σ{sub SFR} starburst systems are well-explained by τ {sub dep}-dependent fiducial Γ models.« less

  15. Young and Exotic Stellar Zoo

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Summary Super star clusters are groups of hundreds of thousands of very young stars packed into an unbelievably small volume. They represent the most extreme environments in which stars and planets can form. Until now, super star clusters were only known to exist very far away, mostly in pairs or groups of interacting galaxies. Now, however, a team of European astronomers [1] have used ESO's telescopes to uncover such a monster object within our own Galaxy, the Milky Way, almost, but not quite, in our own backyard! The newly found massive structure is hidden behind a large cloud of dust and gas and this is why it took so long to unveil its true nature. It is known as "Westerlund 1" and is a thousand times closer than any other super star cluster known so far. It is close enough that astronomers may now probe its structure in some detail. Westerlund 1 contains hundreds of very massive stars, some shining with a brilliance of almost one million suns and some two-thousand times larger than the Sun (as large as the orbit of Saturn)! Indeed, if the Sun were located at the heart of this remarkable cluster, our sky would be full of hundreds of stars as bright as the full Moon. Westerlund 1 is a most unique natural laboratory for the study of extreme stellar physics, helping astronomers to find out how the most massive stars in our Galaxy live and die. From their observations, the astronomers conclude that this extreme cluster most probably contains no less than 100,000 times the mass of the Sun, and all of its stars are located within a region less than 6 light-years across. Westerlund 1 thus appears to be the most massive compact young cluster yet identified in the Milky Way Galaxy. PR Photo 09a/05: The Super Star Cluster Westerlund 1 (2.2m MPG/ESO + WFI) PR Photo 09b/05: Properties of Young Massive Clusters Super Star Clusters Stars are generally born in small groups, mostly in so-called "open clusters" that typically contain a few hundred stars. From a wide range of observations, astronomers infer that the Sun itself was born in one such cluster, some 4,500 million years ago. In some active ("starburst") galaxies, scientists have observed violent episodes of star formation (see, for example, ESO Press Photo 31/04), leading to the development of super star clusters, each containing several million stars. Such events were obviously common during the Milky Way's childhood, more than 12,000 million years ago: the many galactic globular clusters - which are nearly as old as our Galaxy (e.g. ESO PR 20/04) - are indeed thought to be the remnants of early super star clusters. All super star clusters so far observed in starburst galaxies are very distant. It is not possible to distinguish their individual stars, even with the most advanced technology. This dramatically complicates their study and astronomers have therefore long been eager to find such clusters in our neighbourhood in order to probe their structure in much more detail. Now, a team of European astronomers [1] has finally succeeded in doing so, using several of ESO's telescopes at the La Silla observatory (Chile). Westerlund 1 ESO PR Photo 09a/05 ESO PR Photo 09a/05 The Super Star Cluster Westerlund 1 (2.2m MPG/ESO + WFI) [Preview - JPEG: 400 x 472 pix - 58k] [Normal - JPEG: 800 x 943 pix - 986k] [Full Res - JPEG: 1261 x 1486 pix - 2.4M] Caption: ESO PR Photo 09a/05 is a composite image of the super star cluster "Westerlund 1" from 2.2-m MPG/ESO Wide-Field Imager (WFI) observations. The image covers a 5 x 5 arcmin sky region and is based on observations made in the V-band (550 nm, 2 min exposure time, associated to the blue channel), R-band (650nm, 1 min, green channel) and I-band (784nm, 18 sec, red channel). Only the central CCD of WFI was used, as the entire cluster fits comfortably inside it. The foreground stars appear blue, while the hot massive members of the cluster look orange, and the cool massive ones come out red. The open cluster Westerlund 1 is located in the Southern constellation Ara (the Altar). It was discovered in 1961 from Australia by Swedish astronomer Bengt Westerlund, who later moved from there to become ESO Director in Chile (1970 - 74). This cluster is behind a huge interstellar cloud of gas and dust, which blocks most of its visible light. The dimming factor is more than 100,000 - and this is why it has taken so long to uncover the true nature of this particular cluster. In 2001, the team of astronomers identified more than a dozen extremely hot and peculiar massive stars in the cluster, so-called "Wolf-Rayet" stars. They have since studied Westerlund 1 extensively with various ESO telescopes. They used images from the Wide Field Imager (WFI) attached to the 2.2-m ESO/MPG as well as from the SUperb Seeing Imager 2 (SuSI2) camera on the ESO 3.5-m New Technology Telescope (NTT). From these observations, they were able to identify about 200 cluster member stars. To establish the true nature of these stars, the astronomers then performed spectroscopic observations of about one quarter of them. For this, they used the Boller & Chivens spectrograph on the ESO 1.52-m telescope and the ESO Multi-Mode Instrument (EMMI) on the NTT. An Exotic Zoo These observations have revealed a large population of very bright and massive, quite extreme stars. Some would fill the solar system space within the orbit of Saturn (about 2,000 times larger than the Sun!), others are as bright as a million Suns. Westerlund 1 is obviously a fantastic stellar zoo, with a most exotic population and a true astronomical bonanza. All stars identified are evolved and very massive, spanning the full range of stellar oddities from Wolf-Rayet stars, OB supergiants, Yellow Hypergiants (nearly as bright as a million Suns) and Luminous Blue Variables (similar to the exceptional Eta Carinae object - see ESO PR 31/03). All stars so far analysed in Westerlund 1 weigh at least 30-40 times more than the Sun. Because such stars have a rather short life - astronomically speaking - Westerlund 1 must be very young. The astronomers determine an age somewhere between 3.5 and 5 million years. So, Westerlund 1 is clearly a "newborn" cluster in our Galaxy! The Most Massive Cluster ESO PR Photo 09b/05 ESO PR Photo 09b/05 Properties of Young Massive Clusters [Preview - JPEG: 400 x 511 pix - 20k] [Normal - JPEG: 800 x 1021 pix - 122k] Caption: ESO PR Photo 09b/05 shows the properties of young massive clusters in our Galaxy and in the Large Magellanic Clouds, as well as of Super Star Clusters in star-forming galaxies. The diagram shows the mass and radius of these clusters and also the position of Westerlund 1 (indicated Wd 1). Westerlund 1 is incredibly rich in monster stars - just as one example, it contains as many Yellow Hypergiants as were hitherto known in the entire Milky Way! "If the Sun were located at the heart of Westerlund 1, the sky would be full of stars, many of them brighter than the full Moon", comments Ignacio Negueruela of the Universidad de Alicante in Spain and member of the team. The large quantity of very massive stars implies that Westerlund 1 must contain a huge number of stars. "In our Galaxy, explains Simon Clark of the University College London (UK) and one of the authors of this study, "there are more than 100 solar-like stars for every star weighing 10 times as much as the Sun. The fact that we see hundreds of massive stars in Westerlund 1 means that it probably contains close to half a million stars, but most of these are not bright enough to peer through the obscuring cloud of gas and dust". This is ten times more than any other known young clusterin the Milky Way. Westerlund 1 is presumably much more massive than the dense clusters of heavy stars present in the central region of our Galaxy, like the Arches and Quintuplet clusters. Further deep infrared observations will be required to confirm this. This super star cluster now provides astronomers with a unique perspective towards one of the most extreme environments in the Universe. Westerlund 1 will certainly provide new opportunities in the long-standing quest for more and finer details about how stars, and especially massive ones, do form. ... and the Most Dense The large number of stars in Westerlund 1 was not the only surprise awaiting Clark and his colleagues. From their observations, the team members also found that all these stars are packed into an amazingly small volume of space, indeed less than 6 light-years across. In fact, this is more or less comparable to the 4 light-year distance to the star nearest to the Sun, Proxima Centauri! It is incredible: the concentration in Westerlund 1 is so high that the mean separation between stars is quite similar to the extent of the Solar System. "With so many stars in such a small volume, some of them may collide", envisages Simon Clark. "This could lead to the formation of an intermediate-mass black hole more massive than 100 solar masses. It may well be that such a monster has already formed at the core of Westerlund 1." The huge population of massive stars in Westerlund 1 suggests that it will have a very significant impact on its surroundings. The cluster contains so many massive stars that in a time span of less than 40 million years, it will be the site of more than 1,500 supernovae. A gigantic firework that may drive a fountain of galactic material! Because Westerlund 1 is at a distance of only about 10,000 light-years, high-resolution cameras such as NAOS/CONICA on ESO's Very Large Telescope can resolve its individual stars. Such observations are now starting to reveal smaller stars in Westerlund 1, including some that are less massive than the Sun. Astronomers will thus soon be able to study this exotic galactic zoo in great depth. More information The research presented in this ESO Press Release will soon appear in the leading research journal Astronomy and Astrophysics ("On the massive stellar population of the Super Star Cluster Westerlund 1" by J.S. Clark and colleagues). The PDF file is available at the A&A web site. A second paper ("Further Wolf-Rayet stars in the starburst cluster Westerlund 1", by Ignacio Negueruela and Simon Clark) will also soon be published in Astronomy and Astrophysics. It is available as astro-ph/0503303. A Spanish press release issued by Universidad de Alicante is available on the web site of Ignacio Negueruela.

  16. The Hyades cluster-supercluster connection - Evidence for a local concentration of dark matter

    NASA Technical Reports Server (NTRS)

    Casertano, Stefano; Iben, Icko, Jr.; Shiels, Aaron

    1993-01-01

    Stars that evaporate from the Hyades cluster will remain within a few hundred parsecs of the cluster only if they are dynamically bound to a much more massive entity containing the cluster. A local mass enhancement of at least (5-10) x 10 exp 5 solar masses, with a radius of about 100 pc, can trap stars with an origin related to that of the Hyades cluster and explains the excess of stars with velocities near the Hyades velocity that constitutes the Hyades supercluster. Part of this mass enhancement can be in visible stars, but a substantial fraction is likely to be in the form of dark matter.

  17. Stellar Vampires Unmasked

    NASA Astrophysics Data System (ADS)

    2006-10-01

    Astronomers have found possible proofs of stellar vampirism in the globular cluster 47 Tucanae. Using ESO's Very Large Telescope, they found that some hot, bright, and apparently young stars in the cluster present less carbon and oxygen than the majority of their sisters. This indicates that these few stars likely formed by taking their material from another star. "This is the first detection of a chemical signature clearly pointing to a specific scenario to form so-called 'Blue straggler stars' in a globular cluster", said Francesco Ferraro, from the Astronomy Department of Bologna University (Italy) and lead-author of the paper presenting the results. Blue stragglers are unexpectedly young-looking stars found in stellar aggregates, such as globular clusters, which are known to be made up of old stars. These enigmatic objects are thought to be created in either direct stellar collisions or through the evolution and coalescence of a binary star system in which one star 'sucks' material off the other, rejuvenating itself. As such, they provide interesting constraints on both binary stellar evolution and star cluster dynamics. To date, the unambiguous signatures of either stellar traffic accidents or stellar vampirism have not been observed, and the formation mechanisms of Blue stragglers are still a mystery. The astronomers used ESO's Very Large Telescope to measure the abundance of chemical elements at the surface of 43 Blue straggler stars in the globular cluster 47 Tucanae [1]. They discovered that six of these Blue straggler stars contain less carbon and oxygen than the majority of these peculiar objects. Such an anomaly indicates that the material at the surface of the blue stragglers comes from the deep interiors of a parent star [2]. Such deep material can reach the surface of the blue straggler only during the mass transfer process occurring between two stars in a binary system. Numerical simulations indeed show that the coalescence of stars should not result in anomalous abundances. ESO PR Photo 37/06 ESO PR Photo 37/06 Abundances in Blue Straggler Stars In the core of a globular cluster, stars are packed extremely close to each other: more than 4000 stars are found in the innermost light-year-sized cube of 47 Tucanae. Thus, stellar collisions are thought to be very frequent and the collision channel for the formation of blue stragglers should be extremely efficient. The chemical signature detected by these observations demonstrates that also the binary mass-transfer scenario is fully active even in a high-density cluster like 47 Tuc. "Our discovery is therefore a fundamental step toward the solution of the long-standing mystery of blue straggler formation in globular clusters," said Ferraro. Measurements of so many faint stars are only possible since the advent of 8-m class telescopes equipped with multiplexing capability spectrographs. In this case, the astronomers used the FLAMES/Giraffe instrument that allows the simultaneous observation of up to 130 targets at a time, making it ideally suited for surveying individual stars in closely populated fields.

  18. Spectroscopy of Hot Horizontal Branch Stars in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Moni-Bidin, C. M.

    2006-06-01

    We will present our latest results on spectroscopy of hot horizontal branch stars in globular clusters. This class of stars still presents many puzzling features, and many aspects of their formation and evolution are still unclear. Extreme Horizontal Branch (EHB) stars, also known as Subdwarf B (sdB) stars, are post-He flash stars with a He-burning core and high effective temperature (T_{eff} ≥ 20000 K). They originate from stars of low initial mass that during their evolution have lost great part of their external envelope. Many channel for the formation of these stars have been studied in literature. The scenarios involving dynamical interactions inside close binary systems, deeply investigated by Han et al. (2003, MNRAS, 341, 669), have been recently preferred, since between field sdB stars many close binary systems have been detected. (Morales-Rueda et al. 2003, MNRAS, 338, 752). Maxted et al. (2001, MNRAS, 326, 1391) estimated that 69+/-9% of field sdB stars are close binary systems. Latest results indicates that also this scenario presents some problems (Lisker et al. 2005, A&A, 430, 223), and Napiwotzki et al. (2004) found a lower fraction of binaries among their sample (42%). Moni Bidin et al. (2005, A&A, submitted) recently showed that in globular cluster NGC6752 the binary fraction among EHB stars is sensibly lower than what observed among field sdBs, estimating an upper limit of 20%. This difference between field and cluster sdBs is quite surprising. We are performing further investigation of these stars extending our search for close binary systems to other two clusters with a rich population of EHB stars. This will allow us to tell if the results on NGC6752 indicate a pecular cluster or the lack of binaries is a common trend of EHB stars in globular clusters. Moreover, with a larger sample we will be able to better estimate the binary fraction, or an upper limit for it. With our contribution we are going to show our results on this investigation that at the moment is still a work in progress.

  19. Some Characteristics of Current Star Formation in the 30 Doradus Nebula Revealed by HST/NICMOS

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan R.; Barbá, Rodolfo H.; Brandner, Wolfgang; Rubio, Mónica; Grebel, Eva K.; Probst, Ronald G.

    1999-01-01

    The extensive ``second generation'' of star formation within the 30 Doradus Nebula, evidently triggered by the R136 central cluster around its periphery, has been imaged with the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope. Many new IR sources, including multiple systems, clusters, and nebular structures, are found in these images. Six of the NICMOS fields are described here, in comparison with the WFPC2 images of the same fields. Knots 1-3 of Walborn & Blades (early O stars embedded in dense nebular knots) are all found to be compact multiple systems. Knot 1 is shown to reside at the top of a massive dust pillar oriented directly toward R136, whose summit has just been removed, exposing the newborn stellar system. Knots 1 and 3 are also near the brightest IR sources in the region, while parsec-scale jet structures are discovered in association with Knots 2 and 3. The Knot 2 structures consist of detached, nonstellar IR sources aligned on either side of the stellar system, which are interpreted as impact points of a highly collimated, possibly rotating bipolar jet on the surrounding dark clouds; the H_2O maser found by Whiteoak et al. is also in this field. These outflows from young massive stars in 30 Dor are the first extragalactic examples of the phenomenon. In the field of the pillars south of R136, recently discussed in comparison with the M16 pillars by Scowen et al., a new luminous stellar IR source has been discovered. These results establish the 30 Doradus Nebula as a prime region in which to investigate the formation and very early evolution of massive stars and multiple systems. The theme of triggered formation within the heads of extensive dust pillars oriented toward R136 is strong. In addition, these results provide further insights into the global structure and evolution of 30 Doradus, which are significant in view of its status as the best resolved extragalactic starburst. This paper is dedicated to W. W. Morgan, who taught me the power of morphology to uncover new phenomena in astronomy.-N. R. W.

  20. MASS OUTFLOW FROM RED GIANT STARS IN M13, M15, AND M92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meszaros, Sz.; Avrett, E. H.; Dupree, A. K.

    Chromospheric model calculations of the H{alpha} line for selected red giant branch and asymptotic giant branch (AGB) stars in the globular clusters M13, M15, and M92 are constructed to derive mass loss rates (MLRs). The model spectra are compared to the observations obtained with the Hectochelle on the MMT telescope. These stars show strong H{alpha} emissions and blueshifted H{alpha} cores signaling that mass outflow is present in all stars. Outflow velocities of 3-19 km s{sup -1}, larger than indicated by H{alpha} profiles, are needed in the upper chromosphere to achieve good agreement between the model spectra and the observations. Themore » resulting MLRs range from 0.6 x 10{sup -9} to 5 x 10{sup -9} M {sub sun} yr{sup -1}, which are about an order of magnitude lower than predicted from 'Reimers' law' or inferred from the infrared excess of similar stars. The MLR increases slightly with luminosity and with decreasing effective temperature. Stars in the more metal-rich M13 have higher MLRs by a factor of {approx}2 than in the metal-poor clusters M15 and M92. A fit to the MLRs is given by M-dot (M {sub sun} yr{sup -1}) = 0.092 xL {sup 0.16} x T {sup -2.02} {sub eff} x A {sup 0.37}, where A=10{sup [Fe/H]}. Multiple observations of stars revealed one object in M15, K757, in which the mass outflow increased by a factor of 6 between two observations separated by 18 months. Other stars showed changes in MLR by a factor of 1.5 or less.« less

  1. HST-WFPC2 Observations of the Star Clusters in the Giant H II Regions of M33

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Park, Hong Soo; Kim, Sang Chul; Waller, William H.; Parker, Joel Wm.; Malumuth, Eliot M.; Hodge, Paul W.

    We present a photometric study of the stars in ionizing star clusters embedded in several giant H II regions of M33 (CC93, IC 142, NGC 595, MA2, NGC 604 and NGC 588). Our photometry is based on the HST-WFPC2 images of these clusters. Color-magnitude diagrams and color-color diagrams of these clusters are obtained and are used for estimating the reddenings and ages of the clusters. The luminosity functions (LFs) and initial mass functions (IMFs) of the massive stars in these clusters are also derived. The slopes of the IMFs range from Γ = -0.5 to -2.1. Interestingly, it is found that the IMFs get steeper with increasing galactocentric distance and with decreasing [O/H] abundance.

  2. Peculiarities in velocity dispersion and surface density profiles of star clusters

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Kroupa, Pavel; Baumgardt, Holger; Heggie, Douglas C.

    2010-10-01

    Based on our recent work on tidal tails of star clusters we investigate star clusters of a few 104Msolar by means of velocity dispersion profiles and surface density profiles. We use a comprehensive set of N-body computations of star clusters on various orbits within a realistic tidal field to study the evolution of these profiles with time, and ongoing cluster dissolution. From the velocity dispersion profiles we find that the population of potential escapers, i.e. energetically unbound stars inside the Jacobi radius, dominates clusters at radii above about 50 per cent of the Jacobi radius. Beyond 70 per cent of the Jacobi radius nearly all stars are energetically unbound. The velocity dispersion therefore significantly deviates from the predictions of simple equilibrium models in this regime. We furthermore argue that for this reason this part of a cluster cannot be used to detect a dark matter halo or deviations from the Newtonian gravity. By fitting templates to about 104 computed surface density profiles we estimate the accuracy which can be achieved in reconstructing the Jacobi radius of a cluster in this way. We find that the template of King works well for extended clusters on nearly circular orbits, but shows significant flaws in the case of eccentric cluster orbits. This we fix by extending this template with three more free parameters. Our template can reconstruct the tidal radius over all fitted ranges with an accuracy of about 10 per cent, and is especially useful in the case of cluster data with a wide radial coverage and for clusters showing significant extra-tidal stellar populations. No other template that we have tried can yield comparable results over this range of cluster conditions. All templates fail to reconstruct tidal parameters of concentrated clusters, however. Moreover, we find that the bulk of a cluster adjusts to the mean tidal field which it experiences and not to the tidal field at perigalacticon as has often been assumed in other investigations, i.e. a fitted tidal radius is a cluster's time average mean tidal radius and not its perigalactic one. Furthermore, we study the tidal debris in the vicinity of the clusters and find it to be well represented by a power law with a slope of -4 to -5. This steep slope we ascribe to the epicyclic motion of escaped stars in the tidal tails. Star clusters close to apogalacticon show a significantly shallower slope of up to -1, however. We suggest that clusters at apogalacticon can be identified by measuring this slope.

  3. A Binary System in the Hyades Cluster Hosting a Neptune-Sized Planet

    NASA Astrophysics Data System (ADS)

    Feinstein, Adina; Ciardi, David; Crossfield, Ian; Schlieder, Joshua; Petigura, Erik; David, Trevor J.; Bristow, Makennah; Patel, Rahul; Arnold, Lauren; Benneke, Björn; Christiansen, Jessie; Dressing, Courtney; Fulton, Benjamin; Howard, Andrew; Isaacson, Howard; Sinukoff, Evan; Thackeray, Beverly

    2018-01-01

    We report the discovery of a Neptune-size planet (Rp = 3.0Rearth) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 AU. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hours. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. The planet is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625-750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set contraints on the formation and evolution of planetary systems.

  4. Dynamical Mass Segregation Versus Disruption of Binary Stars in Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, C.; Deng, L.

    2013-01-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses due to gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr-old Large Magellanic Cloud cluster NGC 1818 is characterized by an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 solar masses) with increasing distance from the cluster center. This offers unprecedented support of the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems (with relatively low binding energies compared to the kinetic energy of their stellar members) in star clusters, which we could unravel by virtue of the cluster's unique combination of youth and high stellar density.

  5. Probing Gas Stripping with Resolved Star-Formation Maps of Virgo Filament Galaxies

    NASA Astrophysics Data System (ADS)

    Collova, Natasha

    2018-01-01

    We are conducting a multi-wavelength study of the gas in galaxies at a variety of positions in the cosmic web surrounding the Virgo cluster, one of the best studied regions of high density in the Universe. Galaxies are very likely pre-processed in filaments before falling into clusters, and our goal is to understand how galaxies are altered as they move through the cosmic web and enter the densest regions. We present spatially-resolved H-alpha imaging results from the KPNO 0.9-m and INT 2.54-m telescopes for a preliminary sample of 30 galaxies. We will combine the star-formation maps with observations of molecular and atomic gas to calculate gas consumption timescales, characterize multiple phases of the galactic gas, and look for signatures of environmentally-driven depletion. This work is supported in part by NSF grant AST-1716657.

  6. MOCCA code for star cluster simulation: comparison with optical observations using COCOA

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz

    2016-02-01

    We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyr of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observational methods and techniques to obtain cluster parameters. The results show that the similarity of cluster parameters obtained through numerical simulations and observations depends significantly on the quality of observational data and photometric accuracy.

  7. Proper motions of five OB stars with candidate dusty bow shocks in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Kiminki, Megan M.; Smith, Nathan; Reiter, Megan; Bally, John

    2017-06-01

    We constrain the proper motions of five OB stars associated with candidate stellar wind bow shocks in the Carina Nebula using Hubble Space Telescope ACS imaging over 9-10 yr baselines. These proper motions allow us to directly compare each star's motion to the orientation of its candidate bow shock. Although these stars are saturated in our imaging, we assess their motion by the shifts required to minimize residuals in their airy rings. The results limit the direction of each star's motion to sectors less than 90° wide. None of the five stars are moving away from the Carina Nebula's central clusters as runaway stars would be, confirming that a candidate bow shock is not necessarily indicative of a runaway star. Two of the five stars are moving tangentially relative to the orientation of their candidate bow shocks, both of which point at the OB cluster Trumpler 14. In these cases, the large-scale flow of the interstellar medium, powered by feedback from the cluster, appears to dominate over the motion of the star in producing the observed candidate bow shock. The remaining three stars all have some component of motion towards the central clusters, meaning that we cannot distinguish whether their candidate bow shocks are indicators of stellar motion, of the flow of ambient gas or of density gradients in their surroundings. In addition, these stars' lack of outward motion hints that the distributed massive-star population in Carina's South Pillars region formed in place, rather than migrating out from the association's central clusters.

  8. Sizing the star cluster population of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2018-04-01

    The number of star clusters that populate the Large Magellanic Cloud (LMC) at deprojected distances <4 deg has been recently found to be nearly double the known size of the system. Because of the unprecedented consequences of this outcome in our knowledge of the LMC cluster formation and dissolution histories, we closely revisited such a compilation of objects and found that only ˜35 per cent of the previously known catalogued clusters have been included. The remaining entries are likely related to stellar overdensities of the LMC composite star field, because there is a remarkable enhancement of objects with assigned ages older than log(t yr-1) ˜ 9.4, which contrasts with the existence of the LMC cluster age gap; the assumption of a cluster formation rate similar to that of the LMC star field does not help to conciliate so large amount of clusters either; and nearly 50 per cent of them come from cluster search procedures known to produce more than 90 per cent of false detections. The lack of further analyses to confirm the physical reality as genuine star clusters of the identified overdensities also glooms those results. We support that the actual size of the LMC main body cluster population is close to that previously known.

  9. Truncation of the Binary Distribution Function in Globular Cluster Formation

    NASA Astrophysics Data System (ADS)

    Vesperini, E.; Chernoff, David F.

    1996-02-01

    We investigate a population of primordial binaries during the initial stage of evolution of a star cluster. For our calculations we assume that equal-mass stars form rapidly in a tidally truncated gas cloud, that ˜10% of the stars are in binaries, and that the resulting star cluster undergoes an epoch of violent relaxation. We study the collisional interaction of the binaries and single stars, in particular, the ionization of the binaries and the energy exchange between binaries and single stars. We find that for large N systems (N > 1000), even the most violent beginning leaves the binary distribution function largely intact. Hence, the binding energy originally tied up in the cloud's protostellar pairs is preserved during the relaxation process, and the binaries are available to interact at later times within the virialized cluster.

  10. The Clusters AgeS Experiment (CASE). Variable stars in the field of the globular cluster NGC 362

    NASA Astrophysics Data System (ADS)

    Rozyczka, M.; Thompson, I. B.; Narloch, W.; Pych, W.; Schwarzenberg-Czerny, A.

    2016-09-01

    The field of the globular cluster NGC 362 was monitored between 1997 and 2015 in a search for variable stars. BV light curves were obtained for 151 periodic or likely periodic variable stars, over a hundred of which are new detections. Twelve newly detected variable stars are proper-motion members of the cluster: two SX Phe and two RR Lyr pulsators, one contact binary, three detached or semi-detached eclipsing binaries, and four spotted variable stars. The most interesting objects among these are the binary blue straggler V20 with an asymmetric light curve, and the 8.1 d semidetached binary V24 located on the red giant branch of NGC 362, which is a Chandra X-ray source. We also provide substantial new data for 24 previously known variable stars.

  11. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y. P.; Han, Z. W.; Zhang, X. B.

    2012-02-10

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found {delta} Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three {gamma} Dor star candidates. We found that allmore » these stars (18 SPB and 3 {gamma} Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the {gamma} Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.« less

  12. Photometric search for variable stars in the young open cluster Berkeley 59

    NASA Astrophysics Data System (ADS)

    Lata, Sneh; Pandey, A. K.; Maheswar, G.; Mondal, Soumen; Kumar, Brijesh

    2011-12-01

    We present the time series photometry of stars located in the extremely young open cluster Berkeley 59. Using the 1.04-m telescope at Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, we have identified 42 variables in a field of ˜13 × 13 arcmin2 around the cluster. The probable members of the cluster have been identified using a (V, V-I) colour-magnitude diagram and a (J-H, H-K) colour-colour diagram. 31 variables have been found to be pre-main-sequence stars associated with the cluster. The ages and masses of the pre-main-sequence stars have been derived from the colour-magnitude diagram by fitting theoretical models to the observed data points. The ages of the majority of the probable pre-main-sequence variable candidates range from 1 to 5 Myr. The masses of these pre-main-sequence variable stars have been found to be in the range of ˜0.3 to ˜3.5 M⊙, and these could be T Tauri stars. The present statistics reveal that about 90 per cent T Tauri stars have period <15 d. The classical T Tauri stars are found to have a larger amplitude than the weak-line T Tauri stars. There is an indication that the amplitude decreases with an increase in mass, which could be due to the dispersal of the discs of relatively massive stars.

  13. Be Stars in M31

    NASA Astrophysics Data System (ADS)

    Peters, Matthew L.; Wisniewski, John; Choi, Yumi; Williams, Ben; Lomax, Jamie; Bjorkman, Karen; Durbin, Meredith; Johnson, Lent Cliff; Lewis, Alexia; Lutz, Julie; Sigut, Aaron; Wallach, Aislynn; Dalcanton, Julianne

    2018-01-01

    We identify Be candidate stars in M31 using two-epoch F625W + F658N photometry from HST/ACS+WFC3 combined with the Panchromatic Hubble Andromeda Treasury (PHAT) Catalog. Using the PHAT catalog allows us to extract stellar parameters such as surface temperature and gravity, thereby allowing us to identify the main sequence B type stars in the field of view. Be candidate stars are identified by comparing their HST narrow-band Hα excess magnitudes with that predicted by Kurucz spectra. We find 314 Be candidate stars out of 5699 B + Be candidate stars (5.51%) in our first epoch and 301 Be candidate stars out of 5769 B + Be candidate stars (5.22%) in our second epoch. Our Be fraction, while lower than that of the SMC, LMC, and MW, is possibly consistent with the fact the M31 has a higher metallicity than the other galaxies because Be fraction varies inversely with metallicity. We note that earlier spectral types have the largest Be fraction, and that the Be fraction strictly declines as the spectral type increases to later types. We then match our Be candidate stars with clusters, establishing that 39 of 314 are cluster stars in epoch one and 36 of 301 stars are cluster stars in epoch two. We assign ages, using the cluster age to characterize cluster Be candidate stars and star formation histories to characterize field Be candidate stars. Finally, we determine which Be candidate stars exhibited disk loss or disk growth between epochs, finding that, of the Be stars that did not show source confusion or low SNR in one of the epochs, 65 / 265 (24.5%) showed disk loss or renewal, while 200 / 265 (75.5%) showed only small changes in Hα excess. Our research provides context for the parameters of candidate Be stars in M31, which will be useful in further determining the nature of Be stars. This paper was supported by a grant from STScI via GO-13857.

  14. A census of variability in globular cluster M 68 (NGC 4590)

    NASA Astrophysics Data System (ADS)

    Kains, N.; Arellano Ferro, A.; Figuera Jaimes, R.; Bramich, D. M.; Skottfelt, J.; Jørgensen, U. G.; Tsapras, Y.; Street, R. A.; Browne, P.; Dominik, M.; Horne, K.; Hundertmark, M.; Ipatov, S.; Snodgrass, C.; Steele, I. A.; Lcogt/Robonet Consortium; Alsubai, K. A.; Bozza, V.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Galianni, P.; Gu, S.-H.; Harpsøe, K.; Hinse, T. C.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Southworth, J.; Surdej, J.; Vilela, C.; Wang, X.-B.; Wertz, O.; Mindstep Consortium

    2015-06-01

    Aims: We analyse 20 nights of CCD observations in the V and I bands of the globular cluster M 68 (NGC 4590) and use them to detect variable objects. We also obtained electron-multiplying CCD (EMCCD) observations for this cluster in order to explore its core with unprecedented spatial resolution from the ground. Methods: We reduced our data using difference image analysis to achieve the best possible photometry in the crowded field of the cluster. In doing so, we show that when dealing with identical networked telescopes, a reference image from any telescope may be used to reduce data from any other telescope, which facilitates the analysis significantly. We then used our light curves to estimate the properties of the RR Lyrae (RRL) stars in M 68 through Fourier decomposition and empirical relations. The variable star properties then allowed us to derive the cluster's metallicity and distance. Results: M 68 had 45 previously confirmed variables, including 42 RRL and 2 SX Phoenicis (SX Phe) stars. In this paper we determine new periods and search for new variables, especially in the core of the cluster where our method performs particularly well. We detect 4 additional SX Phe stars and confirm the variability of another star, bringing the total number of confirmed variable stars in this cluster to 50. We also used archival data stretching back to 1951 to derive period changes for some of the single-mode RRL stars, and analyse the significant number of double-mode RRL stars in M 68. Furthermore, we find evidence for double-mode pulsation in one of the SX Phe stars in this cluster. Using the different classes of variables, we derived values for the metallicity of the cluster of [Fe/H] = -2.07 ± 0.06 on the ZW scale, or -2.20 ± 0.10 on the UVES scale, and found true distance moduli μ0 = 15.00 ± 0.11 mag (using RR0 stars), 15.00 ± 0.05 mag (using RR1 stars), 14.97 ± 0.11 mag (using SX Phe stars), and 15.00 ± 0.07 mag (using the MV -[Fe/H] relation for RRL stars), corresponding to physical distances of 10.00 ± 0.49, 9.99 ± 0.21, 9.84 ± 0.50, and 10.00 ± 0.30 kpc, respectively. Thanks to the first use of difference image analysis on time-series observations of M 68, we are now confident that we have a complete census of the RRL stars in this cluster. The full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A128

  15. The end of the White Dwarf Cooling Sequence of NGC 6752

    NASA Astrophysics Data System (ADS)

    Bedin, Luigi

    2017-08-01

    We propose to study the last HST-accessible white dwarf (WD) cooling sequence (CS) for a nearby globular cluster (GC), the chemically complex, extreme blue horizontal branch cluster NGC 6752. Over 97% of stars end their lives as WDs, and the WD CS provides constraints not only on the age, but also potentially the star formation history of a GC. The CS of WDs also lies in the least-explored region of the color-magnitude diagram of old stellar populations. Recent deep imaging with HST has successfully reached the end of the WD CS in only three classical old GCs, M4, NGC 6397 and 47 Tuc, and reveals an unexpectedly complex, and double-peaked, WD CS in the metal rich old open cluster NGC 6791. One more investigation is in progress on the massive globular Omega Centauri, where over 14 sub-populations are known to exist.While almost every cluster is known to host multiple populations, every single cluster is unique. NGC 6752 is a bridge between the relatively simple globular clusters, and Omega Cen, the most complex globular cluster known. NGC 6752 has an extended blue horizontal branch, a collapsed core and 3 chemically distinct populations. It is our last chance to add diversity to our very limited sample of WD CS, so far containing only 3 globular clusters, one old open cluster, and the complex Omega Cen system. We need to undertake this investigation while HST is still operational, as there is no foreseeable opportunity in the post-HST era to have one extra WD CS in the homogeneus optical photometric system of HST.

  16. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. Wemore » find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M {sub ☉}.« less

  17. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.

  18. Hubble Peers into the Most Crowded Place in the Milky Way

    NASA Image and Video Library

    2015-05-29

    This NASA/ESA Hubble Space Telescope image presents the Arches Cluster, the densest known star cluster in the Milky Way. It is located about 25,000 light-years from Earth in the constellation of Sagittarius (The Archer), close to the heart of our galaxy, the Milky Way. It is, like its neighbor the Quintuplet Cluster, a fairly young astronomical object at between two and four million years old. The Arches cluster is so dense that in a region with a radius equal to the distance between the sun and its nearest star there would be over 100,000 stars! At least 150 stars within the cluster are among the brightest ever discovered in the Milky Way. These stars are so bright and massive that they will burn their fuel within a short time (on a cosmological scale that means just a few million years). Then they will die in spectacular supernova explosions. Due to the short lifetime of the stars in the cluster the gas between the stars contains an unusually high amount of heavier elements, which were produced by earlier generations of stars. Despite its brightness the Arches Cluster cannot be seen with the naked eye. The visible light from the cluster is completely obscured by gigantic clouds of dust in this region. To make the cluster visible astronomers have to use detectors which can collect light from the X-ray, infrared, and radio bands, as these wavelengths can pass through the dust clouds. This observation shows the Arches Cluster in the infrared and demonstrates the leap in Hubble’s performance since its 1999 image of same object. Credit: NASA/ESA NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. The GALAH survey: chemical tagging of star clusters and new members in the Pleiades

    NASA Astrophysics Data System (ADS)

    Kos, Janez; Bland-Hawthorn, Joss; Freeman, Ken; Buder, Sven; Traven, Gregor; De Silva, Gayandhi M.; Sharma, Sanjib; Asplund, Martin; Duong, Ly; Lin, Jane; Lind, Karin; Martell, Sarah; Simpson, Jeffrey D.; Stello, Dennis; Zucker, Daniel B.; Zwitter, Tomaž; Anguiano, Borja; Da Costa, Gary; D'Orazi, Valentina; Horner, Jonathan; Kafle, Prajwal R.; Lewis, Geraint; Munari, Ulisse; Nataf, David M.; Ness, Melissa; Reid, Warren; Schlesinger, Katie; Ting, Yuan-Sen; Wyse, Rosemary

    2018-02-01

    The technique of chemical tagging uses the elemental abundances of stellar atmospheres to 'reconstruct' chemically homogeneous star clusters that have long since dispersed. The GALAH spectroscopic survey - which aims to observe one million stars using the Anglo-Australian Telescope - allows us to measure up to 30 elements or dimensions in the stellar chemical abundance space, many of which are not independent. How to find clustering reliably in a noisy high-dimensional space is a difficult problem that remains largely unsolved. Here, we explore t-distributed stochastic neighbour embedding (t-SNE) - which identifies an optimal mapping of a high-dimensional space into fewer dimensions - whilst conserving the original clustering information. Typically, the projection is made to a 2D space to aid recognition of clusters by eye. We show that this method is a reliable tool for chemical tagging because it can: (i) resolve clustering in chemical space alone, (ii) recover known open and globular clusters with high efficiency and low contamination, and (iii) relate field stars to known clusters. t-SNE also provides a useful visualization of a high-dimensional space. We demonstrate the method on a data set of 13 abundances measured in the spectra of 187 000 stars by the GALAH survey. We recover seven of the nine observed clusters (six globular and three open clusters) in chemical space with minimal contamination from field stars and low numbers of outliers. With chemical tagging, we also identify two Pleiades supercluster members (which we confirm kinematically), one as far as 6° - one tidal radius away from the cluster centre.

  20. Star formation in the cluster merger DLSCL J0916.2+2953

    DOE PAGES

    Mansheim, A. S.; Lemaux, B. C.; Dawson, W. A.; ...

    2017-01-13

    We investigate star formation in DLSCL J0916.2+2953, a dissociative merger of two clusters at z=0.53 that has progressed 1:1 +1.3 -0.4 Gyr since rst pass-through. We attempt to reveal the effects a collision may have had on the evolution of the cluster galaxies by tracing their star formation history. We probe current and recent activity to identify a possible star formation event at the time of the merger using EW(Hδ), EW([OII]), and Dn(4000) measured from the composite spectra of 64 cluster and 153 coeval eld galaxies. We supplement Keck DEIMOS spectra with DLS and HST imaging to determine the color,more » stellar mass, and morphology of each galaxy and conduct a comprehensive study of the populations in this complex structure. Spectral results indicate the average cluster and cluster red sequence galaxies experienced no enhanced star formation relative to the surrounding eld during the merger, ruling out a predominantly merger-quenched population. We nd that the average blue galaxy in the North cluster is currently active and in the South cluster is currently post-starburst having undergone a recent star formation event. While the North activity could be latent or long- term merger effects, a young blue stellar population and irregular geometry suggest the cluster was still forming prior the collision. While the South activity coincides with the time of the merger, the blue early-type population could be a result of secular cluster processes. The evidence suggests that the dearth or surfeit of activity is indiscernible from normal cluster galaxy evolution.« less

  1. Photometrically-derived properties of massive-star clusters obtained with different massive-star evolution tracks and deterministic models

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Charlot, Stéphane; Eldridge, John

    2015-08-01

    We compute libraries of stellar + nebular spectra of populations of coeval stars with ages of <100 Myr and metallicities of Z=0.001 to 0.040, using different sets of massive-star evolution tracks, i.e., new Padova tracks for single non-rotating stars, the Geneva tracks for single non-rotating and rotating stars, and the Auckland tracks for single non-rotating and binary stars. For the stellar component, we use population synthesis codes galaxev, starburst99, and BPASS, depending on the set of tracks. For the nebular component we use photoionization code cloudy. From these spectra, we obtain magnitudes in filters F275W, F336W, F438W, F547M, F555W, F657N, and F814W of the Hubble Space Telescope (HST) Wide Field Camera Three. We use i) our computed magnitudes, ii) new multi-band photometry of massive-star clusters in nearby (<11 Mpc) galaxies spanning the metallicity range 12+log(O/H)=7.2-9.2, observed as part of HST programs 13364 (PI Calzetti) and 13773 (PI Chandar), and iii) Bayesian inference to a) establish how well the different models are able to constrain the metallicities, extinctions, ages, and masses of the star clusters, b) quantify differences in the cluster properties obtained with the different models, and c) assess how properties of lower-mass clusters are affected by the stochastic sampling of the IMF. In our models, the stellar evolution tracks, stellar atmospheres, and nebulae have similar chemical compositions. Different metallicities are available with different sets of tracks and we compare results from models of similar metallicities. Our results have implications for studies of the formation and evolution of star clusters, the cluster age and mass functions, and the star formation histories of galaxies.

  2. A black hole in a globular cluster.

    PubMed

    Maccarone, Thomas J; Kundu, Arunav; Zepf, Stephen E; Rhode, Katherine L

    2007-01-11

    Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of approximately 1,000 solar masses. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 x 10(39) erg s(-1), which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed.

  3. OGLE Collection of Star Clusters. New Objects in the Magellanic Bridge and the Outskirts of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sitek, M.; Szymański, M. K.; Udalski, A.; Skowron, D. M.; Kostrzewa-Rutkowska, Z.; Skowron, J.; Karczmarek, P.; Cieślar, M.; Wyrzykowski, Ł.; Kozłowski, S.; Pietrukowicz, P.; Soszyński, I.; Mróz, P.; Pawlak, M.; Poleski, R.; Ulaczyk, K.

    2017-12-01

    The Magellanic System (MS) encompasses the nearest neighbors of the Milky Way, the Large (LMC) and Small (SMC) Magellanic Clouds, and the Magellanic Bridge (MBR). This system contains a diverse sample of star clusters. Their parameters, such as the spatial distribution, chemical composition and age distribution yield important information about the formation scenario of the whole Magellanic System. Using deep photometric maps compiled in the fourth phase of the Optical Gravitational Lensing Experiment (OGLE-IV) we present the most complete catalog of star clusters in the Magellanic System ever constructed from homogeneous, long time-scale photometric data. In this second paper of the series, we show the collection of star clusters found in the area of about 360 square degrees in the MBR and in the outer regions of the SMC. Our sample contains 198 visually identified star cluster candidates, 75 of which were not listed in any of the previously published catalogs. The new discoveries are mainly young small open clusters or clusters similar to associations.

  4. Integrated light chemical tagging analyses of seven M31 outer halo globular clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim A.; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron; Ferguson, Annette M. N.; Huxor, Avon

    2015-04-01

    Detailed chemical abundances are presented for seven M31 outer halo globular clusters (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated light spectra taken with the Hobby-Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS) - this paper presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less α-enhanced than Milky Way stars at the 1σ level), and show signs of star-to-star Na and Mg variations. The other three globular clusters (H10, H23, and PA17) are more metal rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way globular clusters, and other M31 clusters, H10 and PA17, have moderately low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud. None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW cloud, and PA53 and PA56 may be associated with the eastern cloud.

  5. Photometric Determination of Binary Mass Ratios in the WIYN Open Cluster Study (WOCS) Using Theoretical Isochrones

    NASA Astrophysics Data System (ADS)

    Cai, K.; Durisen, R. H.; Deliyannis, C. P.

    2003-05-01

    Binary stars in Galactic open clusters are difficult to detect without spectroscopic observations. However, from theoretical isochrones, we find that binary stars with different primary masses M1 and mass ratios q = M2/M1 have measurably different behaviors in various UBVRI color-magnitude and color-color diagrams. By using appropriate Yonsei-Yale Isochrones, in the best cases we can evaluate M1 and q to within about +/- 0.1Msun and +/- 0.1, respectively, for individual proper-motion members that have multiple WOCS UBVRI measurements of high quality. The cluster metallicity, reddening, and distance modulus and best-fit isochrones are determined self-consistently from the same WOCS data. This technique allows us to detect binaries and determine their mass ratios in open clusters without time-consuming spectrocopy, which is only sensitive to a limited range of binary separations. We will report results from this photometric technique for WOCS cluster M35 for M1 in the range of 1 to 4 Msun. For the lower main sequence, we used the empirical colors to reduce the error introduced by the problematic color transformations of Y2 Isochrones. In addition to other sources of uncertainty, we have considered effects of rapid rotation and pulsational instability. We plan to apply our method to other WOCS clusters in the future and explore differences in binary fractions and/or mass ratio distributions as a function of cluster age, metallicity, and other parameters.

  6. GLASS: The Grism Lens-Amplified Survey From Space. HST Grism Spectroscopy of the Frontier Fields.

    NASA Astrophysics Data System (ADS)

    Borello Schmidt, Kasper

    2015-08-01

    The Grism Lens-Amplified Survey From Space (GLASS) is a 140 orbit spectroscopic survey of 10 massive galaxy clusters, including the six Hubble Frontier Fields. GLASS has observed the cluster cores in the HST-WFC3 G102 and G141 grisms providing a wide wavelength coverage in the near-infrared from roughly 0.8 - 1.7 μm. The parallel fields were observed through the optical ACS G800L grism. Taking advantage of the lensing magnification of the clusters, GLASS reaches excellent spectroscopic limits of ˜10-18 erg/s/cm2 and improved spatial resolution for lensed sources behind the clusters. These features are particularly useful for the three main science drivers of GLASS, which are: I) Use the hundreds of spectra of galaxies at z>6 to shed light on the epoch of reionization, the role galaxies play in reionizing the universe, and the Lyα escape fraction at the cosmic dawn. II) Study gas accretion, star formation, and outflows by spatially mapping resolved star formation and determine metallicity gradients from emission lines at z˜2. III) Explore the environmental dependence of galaxy evolution using the first comprehensive census of spatially resolved star formation in dense environments, i.e., the cluster cores as well as the cluster infall regions. The former two benefit highly from the improved depth and increased resolution provided by the cluster lensing. Apart from the main science drivers, a slew of ancillary science has been enabled by the survey. One particularly interesting example is the search for supernovae in the more than 40 GLASS visits, which resulted in the detection of the first multiple imaged supernova, SN Refsdal. I will present the survey, give an update on the current science results, in particular on the GLASS galaxies at the epoch of reionization, and provide a status report on the GLASS data releases, which are continuously being made available to the community.

  7. A catalogue of masses, structural parameters and velocity dispersion profiles of 112 Milky Way globular clusters

    NASA Astrophysics Data System (ADS)

    Baumgardt, H.; Hilker, M.

    2018-05-01

    We have determined masses, stellar mass functions and structural parameters of 112 Milky Way globular clusters by fitting a large set of N-body simulations to their velocity dispersion and surface density profiles. The velocity dispersion profiles were calculated based on a combination of more than 15,000 high-precision radial velocities which we derived from archival ESO/VLT and Keck spectra together with ˜20, 000 published radial velocities from the literature. Our fits also include the stellar mass functions of the globular clusters, which are available for 47 clusters in our sample, allowing us to self-consistently take the effects of mass segregation and ongoing cluster dissolution into account. We confirm the strong correlation between the global mass functions of globular clusters and their relaxation times recently found by Sollima & Baumgardt (2017). We also find a correlation of the escape velocity from the centre of a globular cluster and the fraction of first generation stars (FG) in the cluster recently derived for 57 globular clusters by Milone et al. (2017), but no correlation between the FG star fraction and the global mass function of a globular cluster. This could indicate that the ability of a globular cluster to keep the wind ejecta from the polluting star(s) is the crucial parameter determining the presence and fraction of second generation stars and not its later dynamical mass loss.

  8. Star clusters in evolving galaxies

    NASA Astrophysics Data System (ADS)

    Renaud, Florent

    2018-04-01

    Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.

  9. Ruprecht 3: An old star cluster remnant?

    NASA Astrophysics Data System (ADS)

    Pavani, D. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2003-02-01

    2MASS J and H photometry and integrated spectroscopy are employed to study the nature of the poorly populated compact concentration of stars Ruprecht 3, which was previously catalogued as an open cluster. The integrated spectrum remarkably resembles that of a moderately metal-rich globular cluster. The distribution of the object stars in the colour-magnitude diagram is compatible with that of a 1.5 +/- 0.5 Gyr open cluster or older, depending on whether the bluer stars are interpreted as turnoff stars or blue stragglers, respectively. We derive for the object a distance from the Sun dsun = 0.72 +0.04-0.03 kpc and a colour excess E(B-V) = 0.04. Although a globular cluster remnant cannot be ruled out, the integrated spectrum resemblance to that of a globular cluster probably reflects a stochastic effect owing to the few brighter stars. The structural and photometric properties of Ruprecht 3 are compatible with what would be expected for an intermediate-age open cluster remnant. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  10. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

    NASA Astrophysics Data System (ADS)

    Yu, Jincheng; Puzia, Thomas H.; Lin, Congping; Zhang, Yiwei

    2017-05-01

    We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.

  11. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jincheng; Puzia, Thomas H.; Lin, Congping

    2017-05-10

    We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregationmore » in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.« less

  12. CCD photometry of NGC 6101 - Another globular cluster with blue straggler stars

    NASA Technical Reports Server (NTRS)

    Sarajedini, Ata; Da Costa, G. S.

    1991-01-01

    Results are presented on CCD photometric observations of a large sample of stars in the southern globular cluster NGC 6101, and the procedures used to derive the color-magnitude (C-M) diagram of the cluster are described. No indication was found of any difference in age, at the less than 2 Gyr level, between NGC 6101 cluster and other clusters of similar abundance, such as M92. The C-M diagram revealed a significant blue straggler population. It was found that, in NGC 6101, these stars are more centrally concentrated than the cluster subgiants of similar magnitude, indicating that the blue stragglers have larger masses. Results on the magnitude and luminosity function of the sample are consistent with the bianry mass transfer or merger hypotheses for the origin of blue straggler stars.

  13. The kinematics of the Scorpius-Centaurus OB association from Gaia DR1

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas J.; Mamajek, Eric E.

    2018-05-01

    We present a kinematic study of the Scorpius-Centaurus (Sco-Cen) OB association (Sco OB2) using Gaia DR1 parallaxes and proper motions. Our goal is to test the classical theory that OB associations are the expanded remnants of dense and compact star clusters disrupted by processes such as residual gas expulsion. Gaia astrometry is available for 258 out of 433 members of the association, with revised Hipparcos astrometry used for the remainder. We use these data to confirm that the three subgroups of Sco-Cen are gravitationally unbound and have non-isotropic velocity dispersions, suggesting that they have not had time to dynamically relax. We also explore the internal kinematics of the subgroups to search for evidence of expansion. We test Blaauw's classical linear model of expansion, search for velocity trends along the Galactic axes, compare the expanding and non-expanding convergence points, perform traceback analysis assuming both linear trajectories and using an epicycle approximation, and assess the evidence for expansion in proper motions corrected for virtual expansion/contraction. None of these methods provide coherent evidence for expansion of the subgroups, with no evidence to suggest that the subgroups had a more compact configuration in the past. We find evidence for kinematic substructure within the subgroups that supports the view that they were not formed by the disruption of individual star clusters. We conclude that Sco-Cen was likely to have been born highly substructured, with multiple small-scale star formation events contributing to the overall OB association, and not as single, monolithic burst of clustered star formation.

  14. The formation and evolution of M33 as revealed by its star clusters

    NASA Astrophysics Data System (ADS)

    San Roman, Izaskun

    2012-03-01

    Numerical simulations based on the Lambda-Cold Dark Matter (Λ-CDM) model predict a scenario consistent with observational evidence in terms of the build-up of Milky Way-like halos. Under this scenario, large disk galaxies derive from the merger and accretion of many smaller subsystems. However, it is less clear how low-mass spiral galaxies fit into this picture. The best way to answer this question is to study the nearest example of a dwarf spiral galaxy, M33. We will use star clusters to understand the structure, kinematics and stellar populations of this galaxy. Star clusters provide a unique and powerful tool for studying the star formation histories of galaxies. In particular, the ages and metallicities of star clusters bear the imprint of the galaxy formation process. We have made use of the star clusters to uncover the formation and evolution of M33. In this dissertation, we have carried out a comprehensive study of the M33 star cluster system, including deep photometry as well as high signal-to-noise spectroscopy. In order to mitigate the significant incompleteness presents in previous catalogs, we have conducted ground-based and space-based photometric surveys of M33 star clusters. Using archival images, we have analyzed 12 fields using the Advanced Camera for Surveys Wide Field Channel onboard the Hubble Space Telescope (ACS/HST) along the major axis of the galaxy. We present integrated photometry and color-magnitude diagrams for 161 star clusters in M33, of which 115 were previously uncataloged. This survey extends the depth of the existing M33 cluster catalogs by ˜ 1 mag. We have expanded our search through a photometric survey in a 1° x 1° area centered on M33 using the MegaCam camera on the 3.6m Canada-France-Hawaii Telescope (CFHT). In this work we discuss the photometric properties of the sample, including color-color diagrams of 599 new candidate stellar clusters, and 204 confirmed clusters. Comparisons with models of simple stellar populations suggest a large range of ages some as old as ˜ 10 Gyr. In addition, we find in the color-color diagrams a significant population of very young clusters (< 10 Myr) possessing nebular emission. Analysis of the radial density distribution suggests that the cluster system of M33 has suffered from significant depletion, possibly due to interactions with M31. To further understand the properties of M33 star clusters, we have carried out a morphological study 161 star clusters in M33 using ACS/HST images. We have obtained, for the first time, ellipticities, position angles, and surface brightness profiles of a statistically significant number of clusters. Ellipticities show that, on average, M33 clusters are more flattened than those of the Milky Way and M31, and more similar to clusters in the Small Magellanic Cloud. The ellipticities do not show any correlation with age or mass, suggesting that rotation is not the main cause of elongation in the M33 clusters. The position angles of the clusters show a bimodality with a strong peak perpendicular to the position angle of the galaxy. These results support the notion that tidal forces are the reason for the cluster flattening. We have fit analytical models to the surface brightness profiles, and derived structural parameters. The overall analysis shows several differences between the structural properties of the M33 cluster system and cluster systems in nearby galaxies. Finally, we have performed a spectroscopic study of star clusters in the above mentioned catalog. We present high-precision velocity measures of 45 star clusters, based on observations from the 10.4m Gran Telescopio Canarias (GTC) using OSIRIS and 4.2m William Herschel Telescope (WHT) using WYFFOS. All the clusters have been previously confirmed using HST imaging, and ages and integrated photometry are known. The velocity of the clusters with respect to local disk motion increases with age for young and intermediate clusters. The mean dispersion velocity for the intermediate age clusters in our sample is significantly larger than in previous studies. Analysis of these velocities along the major axis of the galaxy show no net rotation of the intermediate age subsample. The small number of old clusters in our sample does not allow for any conclusive evidence in that age division.

  15. Simulating star clusters with the AMUSE software framework. I. Dependence of cluster lifetimes on model assumptions and cluster dissolution modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico

    2013-12-01

    We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noisemore » introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.« less

  16. Hubble Space Telescope imaging of the central star forming region in NGC 1140 (exp 1)

    NASA Technical Reports Server (NTRS)

    Hunter, Deidre A.; O'Connell, Robert W.; Gallagher, John S. Iii

    1994-01-01

    We present broadband images taken with the Hubble Space Telescope's Planetary Camera of the central supergiant H II region in the amorphous galaxy NGC 1140. These images allow observations to a resolution of about 13 pc at the galaxy, and they reveal that its central 1/2 kpc contains 6-7 blue, luminous, compact super star clusters, many of which would be comparable in luminosity to globular clusters at the same age. A blue arc-shaped structure near the center may be a grouping of less luminous, R136/NGC 2070-sized clusters or a sheet of OB stars. Additional somewhat less luminous and redder clusters are also found farther out from the center. If these clusters are older, they too could have had luminosities comparable to those of the central six clusters at a comparable age. Thus, we find that NGC 1140 is remarkable in the number of extreme clusters that it has formed recently in a relatively small area of the galaxy. Since NGC 1140 exhibits global characteristics that are consistent with a recent merger, these clusters are likely to be a product of that event. This galaxy adds to the number of cases where rapid star formation has evidently produced super star clusters.

  17. An x-ray study of massive star forming regions with CHANDRA

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2007-08-01

    Massive stars are characterized by powerful stellar winds, strong ultraviolet (UV) radiation, and consequently devastating supernovae explosions, which have a profound influence on their natal clouds and galaxy evolution. However, the formation and evolution of massive stars themselves and how their low-mass siblings are affected in the wind-swept and UV-radiation-dominated environment are not well understood. Much of the stellar populations inside of the massive star forming regions (MSFRs) are poorly studied in the optical and IR wavelengths because of observational challenges caused by large distance, high extinction, and heavy contamination from unrelated sources. Although it has long been recognized that X-rays open a new window to sample the young stellar populations residing in the MSFRs, the low angular resolution of previous generation X-ray telescopes has limited the outcome from such studies. The sensitive high spatial resolution X-ray observations enabled by the Chandra X- ray Observatory and the Advanced CCD Imaging Spectrometer (ACIS) have significantly improved our ability to study the X-ray-emitting populations in the MSFRs in the last few years. In this thesis, I analyzed seven high spatial resolution Chandra /ACIS images of two massive star forming complexes, namely the NGC 6357 region hosting the 1 Myr old Pismis 24 cluster (Chapter 3) and the Rosette Complex including the 2 Myr old NGC 2244 cluster immersed in the Rosette Nebula (Chapter 4), embedded clusters in the Rosette Molecular Cloud (RMC; Chapter 5), and a triggered cluster NGC 2237 (Chapter 6). The X-ray sampled stars were studied in great details. The unique power of X-ray selection of young stellar cluster members yielded new knowledge in the stellar populations, the cluster structures, and the star formation histories. The census of cluster members is greatly improved in each region. A large fraction of the X-ray detections have optical or near-infrared (NIR) stellar counterparts (from 2MASS, SIRIUS and FLAMINGOS JHK images), most of which are previously uncatalogued young cluster members. This provides a reliable probe of the rich intermediate-mass and low-mass young stellar populations accompanying the massive OB stars in each region. For example, In the poorly- studied NGC 6357 region, our study increased the number of known members from optical study by a factor of ~40. As a result, normal initial mass functions (IMFs) for NGC 6357 and NGC 2244 were found, inconsistent with the top-heavy IMFs suspected in previous optical studies. The observed X-ray luminosity functions (XLFs) in NGC 6357 and NGC 2244 are compared to the Orion Nebula Cluster XLF, yielding the first estimate of NGC 6357's total cluster population, a few times the known Orion population. For NGC 2244, a total population of ~2000 X-ray-emitting stars is derived, consistent with previous estimate from IR studies. The morphologies and spatial structures of the clusters are investigated with absorption-stratified stellar surface density maps. Small-scale substructures superposed on the spherical clusters are found in NGC 6357 and NGC 2244. Both of their radial stellar density profiles show a power-law cusp around the density peak surrounded by an isothermal sphere. In NGC 2244, the spatial distribution of X-ray stars is strongly concentrated around the central O5 star, HD 46150. The other O4 star HD 46223 has few companions. The X-ray sources in the RMC show three distinctive structures and substructures within them, which include previously known embedded IR clusters and a new unobscured cluster (RMC A). We do not find clear evidence of sequentially triggered formation. The concentration of X-ray identified young stars implies that [Special characters omitted.] 35% of stars could be in a distributed population throughout the RMC region and clustered star formation is the dominant mode in this cloud. The NGC 2237 cluster, similar to RMC A, may have formed from collapse of pre-existing massive molecular clumps accompanying the formation of the NGC 2244 cluster. The spatial distribution of the NIR counterparts to X-ray stars in the optical dark region northwest of NGC 2237 show little evidence of triggered star formation in the pillar objects. The observed inner disk fraction in the MSFRs as indicated by K-band excess appears lower than the IR-excess disk fractions found in the nearby low-mass star formation regions of similar age. An overall K -excess disk frequency of ~6% for X-ray selected stars in the intermediate- to high-mass range in the NGC 6357 region (Chapter 3), and ~10% for stars with mass M [Special characters omitted.] in NGC 2244 (Chapter 4) are derived, which indicates that the inner disks around higher-mass stars evolve more rapidly. The X-ray stars in these regions provide an important new sample for studies of intermediate-mass PMS stars that are not accreting, in addition to the accreting HAeBe stars. The low K -excess disk frequency for X-ray selected stars in the solar mass range in NGC 2244 is intriguing, which may be attributed to different sensitivities to disk materials, selection effects between X-ray samples and IR samples and/or faster disk dissipation due to photoevaporation in the MSFRs. X-ray properties of stars across the mass spectrum are presented. Diversities in the X-ray spectra of O stars are seen, both soft X-ray emission consistent with the microshocks in stellar winds and hard X-ray components signifying magnetically confined winds or close binarity. X-ray luminosities for a sample of stars earlier than B4 in NGC 6357, NGC 2244, and M 17 confirm the long- standing log( L x /L bol ) ~ -7 relation, although larger scatter is seen among the L x /L bol ratios of B-type stars. Low-mass PMS stars frequently show X-ray flaring, including intense flares with luminosities above L x >= 10 32 ergs s - 1 . Diffuse X-ray emission is present in the NGC 6357 region and in the NGC 2244 cluster. The derived luminosity of diffuse emission in NGC 6357 is consistent with the integrated emission from the unresolved PMS stars. The NGC 2244 diffuse emission is likely originated from the wind termination shocks, and hence is truly diffuse in nature. In summary, Chandra X-ray observations offer multifaceted approaches to study the young stellar clusters in MSFRs in depth. Future perspectives with the Spitzer Space Telescope mid-IR observations for a systematic measurement of disk frequencies in X-ray sampled massive clusters and X-ray observations of the earliest phases of massive star formation are discussed.

  18. Globular Cluster Systems in Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Zepf, S.; Murdin, P.

    2000-11-01

    GLOBULAR CLUSTERS are dynamically bound and dense collections of large numbers of coeval stars. Typical globular clusters have roughly one million stars within a radius of a few parsecs. They are also usually close to spherical, hence the name globular. By virtue of their rich, isolated population of stars they provide an important laboratory for studies of STELLAR EVOLUTION. Moreover, because of...

  19. The B and Be Star Population of NGC 3766

    NASA Astrophysics Data System (ADS)

    McSwain, M. V.

    2006-12-01

    I present results from a spectroscopic monitoring program of B and Be stars in the open cluster NGC 3766. From a 4-year time baseline of photometric and spectroscopic data, I have identified 9 Be stars in the cluster that have undergone disk outbursts or whose disks have disappeared. Using Kurucz ATLAS9 model spectra to measure temperatures, gravities, rotational velocities, and abundances among the cluster members, I present preliminary results of the stellar and cluster properties that may affect the long term variability of Be stars. M.V.M. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401460.

  20. The nature, origin and evolution of embedded star clusters

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.; Lada, Elizabeth A.

    1991-01-01

    The recent development of imaging infrared array cameras has enabled the first systematic studies of embedded protoclusters in the galaxy. Initial investigations suggest that rich embedded clusters are quite numerous and that a significant fraction of all stars formed in the galaxy may begin their lives in such stellar systems. These clusters contain extremely young stellar objects and are important laboratories for star formation research. However, observational and theoretical considerations suggest that most embedded clusters do not survive emergence from molecular clouds as bound clusters. Understanding the origin, nature, and evolution of embedded clusters requires understanding the intimate physical relation between embedded clusters and the dense molecular cloud cores from which they form.

  1. X-ray studies of coeval star samples. II - The Pleiades cluster as observed with the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.

    1990-01-01

    Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that of Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars.

  2. Too Fast, Too Furious: A Galaxy's Fatal Plunge

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Trailing 200,000-light-year-long streamers of seething gas, a galaxy that was once like our Milky Way is being shredded as it plunges at 4.5 million miles per hour through the heart of a distant cluster of galaxies. In this unusually violent collision with ambient cluster gas, the galaxy is stripped down to its skeletal spiral arms as it is eviscerated of fresh hydrogen for making new stars. The galaxy's untimely demise is offering new clues to solving the mystery of what happens to spiral galaxies in a violent universe. Views of the early universe show that spiral galaxies were once much more abundant in rich clusters of galaxies. But they seem to have been vanishing over cosmic time. Where have these "missing bodies" gone? Astronomers are using a wide range of telescopes and analysis techniques to conduct a "CSI" or Crime Scene Investigator-style look at what is happening to this galaxy inside its cluster's rough neighborhood. "It's a clear case of galaxy assault and battery," says William Keel of the University of Alabama. "This is the first time we have a full suite of results from such disparate techniques showing the crime being committed, and the modus operandi." Keel and colleagues are laying out the "forensic evidence" of the galaxy's late life, in a series of presentations today in Atlanta, Ga., at the 203rd meeting of the American Astronomical Society. Astronomers have assembled the evidence by combining a variety of diagnostic observations from telescopes analyzing the galaxy's appearance in X-ray, optical, and radio light. Parallel observations at different wavelengths trace how stars, gas, and dust are being tossed around and torn from the fragile galaxy, called C153. Though such "distressed" galaxies have been seen before, this one's demise is unusually swift and violent. The galaxy belongs to a cluster of galaxies that slammed into another cluster about 100 million years ago. This galaxy took the brunt of the beating as it fell along a trajectory straight through the dense core of the colliding cluster. "This helps explain the weird X-ray and radio emissions we see," says Keel. "The galaxy is a laboratory for studying how gas can be stripped away when it flies through the hot cluster gas, shutting down star birth and transforming the galaxy." The first suggestion of galactic mayhem in this cluster came in 1994 when the Very Large Array radio telescope near Socorro, N.M., detected an unusual number of radio galaxies in the cluster, called Abell 2125. Radio sources trace both star formation and the feeding of central black holes in galaxy clusters. The radio observations also showed that C153 stood out from the other galaxies as an exceptionally powerful radio source. Keel's team began an extensive program of further observations to uncover details about the galaxies. "This was designed to see what the connection could possibly be between events on the 10-million-light-year scale of the cluster merger and what happens deep inside individual galaxies," says Keel. X-ray observations from the ROSAT satellite (an acronym for the Roentgen Satellite) demonstrated that the cluster contains vast amounts of 36-million-degree Fahrenheit (20-million-degree Kelvin) gas that envelops the galaxies. The gas is concentrated into two main lumps rather than smoothly distributed across the cluster, as is more commonly the case. This bolstered the suspicion that two galaxy clusters are actually colliding. In the mid-to-late 1990s astronomers turned the Mayall 4-meter telescope and the WIYN 3.5-meter telescope at the Kitt Peak National Observatory on the cluster to analyze the starlight via spectroscopy. They found many star-forming systems and even active galactic black holes fueled by the collision. The disintegrating galaxy C153 stood out dramatically when the KPNO telescopes were used to photomap the cluster in color. Astronomers then trained NASA's Hubble Space Telescope (HST) onto C153 and resolved a bizarre shape. They found that the galaxy looks unusually clumpy with many young star clusters and chaotic dust features. Besides the disrupted features in the galaxy's disk, HST also showed that the light in the tail is mostly attributed to recent star formation, providing a direct link to the stripping of the galaxy as it passed through the cluster core. Gas compressed along the galaxy's leading edge, like snow before a plow, ignited a firestorm of new star birth. Evidence of recent star formation also comes from the optical spectrum obtained at the 10-meter Gemini North telescope in Hawaii. The spectrum allows the researchers to estimate the time since the most recent burst of star formation. This conclusion was further bolstered when the Mosaic camera on Kitt Peak's Mayall telescope found a very long tail of extended gas coming off the galaxy. The tail was apparently generated in part by a hurricane of stellar winds boiling off the new star-birth regions and being blown backwards as the galaxy streaks through the surrounding hot gas of the cluster. Spectroscopic observations with the Gemini telescope allowed astronomers to age-date the starburst. They find that 90 percent of C153's blue light is from a population of stars that are 100 million years old. This age corresponds to the time the galaxy should have gone careening through the densest gas in the cluster core. The Gemini spectroscopic observations show the stars are in a regular pattern of orbital motion around the center, as usual for disk galaxies. However, there are multiple widespread clouds of gas moving independently of the stars. "This is an important clue that something beyond gravitational forces must be at work, since stars and gas respond the same way to purely gravitational forces," says Keel. "In other words, the galaxy's gas doesn't know what the stars are doing." NASA's Chandra X-ray Observatory discovered that the cooler clouds detected with optical telescopes and an associated radio feature are embedded in a much larger multimillion-degree trail of gas. Chandra's data indicate that this hot gas was probably enriched in heavy elements by the starburst and driven out of the galaxy by its supersonic motion through the much larger cloud of gas that pervades the cluster. Collectively, these observations offer evidence that the ram pressure of external gas in the cluster is stripping away the galaxy's own gas. This process has long been hypothesized to account for the forced evolution of cluster galaxies. Its aftermath has been seen in several ways. Some nearby examples, Seyfert's Sextet and Stefan's Quintet, are tight clusters that show the aftermath of high-velocity collisions. The galaxy C153 is destined to lose the last vestiges of its spiral arms and become a bland S0-type galaxy having a central bulge and disk, but no spiral-arm structure. These types of galaxies are common in the dense galaxy clusters seen today. Astronomers plan to make new observations with Gemini again in 2004 to study the dynamics of the gas and stars in the tail. The science team members are William Keel (University of Alabama), Frazer Owen (National Radio Astronomy Observatory), Michael Ledlow (Gemini Observatory), and Daniel Wang (University of Massachusetts). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Benjamin; Tan, Jonathan C.; Christie, Duncan

    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMCmore » collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.« less

  4. Ashes from the Elder Brethren

    NASA Astrophysics Data System (ADS)

    2001-03-01

    UVES Observes Stellar Abundance Anomalies in Globular Clusters Summary Globular clusters are very massive assemblies of stars. More than 100 are known in the Milky Way galaxy and most of them harbour several million stars. They are very dense - at their centers, the typical distance between individual stars is comparable to the size of the Solar System, or 100 to 1000 times closer than the corresponding distances between stars in the solar neighborhood. Globular clusters are among the oldest objects known , with estimated ages of 11 to 15 billion years [1]. All stars in a globular cluster were formed at nearly the same moment, and from the same parent cloud of gas and dust. The original chemical composition of all stars is therefore the same. But now, an international group of astronomers [2], working with the UVES Spectrograph at the ESO Very Large Telescope (VLT) , have obtained some unexpected results during a detailed analysis of dwarf stars in some globular clusters . Such stars have about the same mass as our Sun and like it, they evolve very slowly. Thus they still ought to have about the same abundances of most chemical elements. Nevertheless, the astronomers found large abundance variations from star to star, especially for the common elements Oxygen, Sodium, Magnesium and Aluminium . This phenomenon has never been seen in such stars before . It appears that those stars must somehow have received "burnt" stellar material from more massive stars that died many billion years ago. In their final phase - as "planetary nebulae" - they eject stellar material that has been enriched with certain chemical elements which were produced by the nuclear processes in their interiors during their active life. Such an acquisition of material from other stars has been proposed but has never before been seen in globular clusters . This new discovery obviously sets stars in globular cluster apart from those in less dense environments, like the solar neighbourhood. PR Photo 06a/01 : The globular cluster NGC 6752 . PR Photo 06b/01 : Spectra of dwarf stars in NGC 6752 Globular clusters ESO PR Photo 06a/01 ESO PR Photo 06a/01 [Preview - JPEG: 400 x 467 pix - 136k] [Normal - JPEG: 800 x 934 pix - 424k] [Hires - JPEG: 3000 x 3503 pix - 3.0M] Caption : PR Photo 06a/01 is an image of the globular cluster NGC 6752 ; stars for which spectra were obtained in the present programme are marked by small circles (only visible in the high-resolution version of this photo). NGC 6752 is a typical globular cluster, containing many hundreds of thousands of stars, of which some tens of thousands are visible in this photo. It is located at a distance of approximately 13,000 light-years and is one of the oldest known objects in the Universe. The bright, round object to the lower right of the cluster is the overexposed image of the 7th magnitude star HD 177999 . Technical information about this photo is available below. Globular clusters are very massive and extremely dense agglomerates of stars: typical distances between stars at their centres are comparable to the size of the Solar System. They were formed very early in the Universe and have very low metal content, down to about 1/200 of the Solar abundance. They are among the oldest objects for which relatively accurate ages can be determined for individual stars by means of their observed colours (for information about the "radioactive" method, see ESO Press Release 02/01. The study of globular clusters therefore plays a basic role in our understanding of the evolution of the Universe and of our own Galaxy. The globular clusters are quite distant and most are located in the Milky Way halo, far above or below the main plane of this galaxy. The nearest globular cluster is Messier 4 (NGC 6121) , about 7,000 light-years away. The globular cluster NGC 6752 , shown in PR Photo 06a/01 , is a typical representative of this class of celestial objects. Its distance is estimated at 13,000 light-years Spectral analysis supports distance and age determinations The vast majority of stars in globular clusters are "dwarfs" like our own Sun. They burn Hydrogen into Helium in their central regions, and like the Sun they spend billions of years in this particular evolutionary phase. When their light is dispersed with a spectrograph , thousands of narrow spectral lines are revealed that are caused by chemical elements like Iron, Sodium, Oxygen, Magnesium and Lithium, present in the outer atmospheres of these stars. "Spectral analysis" is one of the basic tools of astronomy, during which the accurate chemical composition of a star is determined by means of a detailed study of the lines seen in its spectrum. In this context, very detailed observations of dwarf stars in globular clusters are of great importance. They allow to compare directly the properties of stars in distant clusters with those of much closer - and hence more easily observable - similar stars in the solar neighbourhood. Such a comparison contributes to reducing current uncertainties in the determination of distances and ages of the globular clusters. Studies like these will ultimately yield a better determination of the age of our own Galaxy and the Universe, as well as the universal distance scale. Variations in chemical abundances ESO PR Photo 06b/01 ESO PR Photo 06b/01 [Preview - JPEG: 400 x 457 pix - 96k] [Normal - JPEG: 800 x 914 pix - 264k] Caption : PR Photo 06b/01 displays a series of spectra of dwarf stars in the globular cluster NGC 6752 , obtained with the UVES high-dispersion spectrograph at the 8.2-m VLT KUEYEN telescope. Sodium (Na) and Oxygen (O) lines are marked, and the spectra are arranged according to the strength of the Sodium lines, with the strongest at the top. It is obvious that stars with stronger Sodium lines (and therefore with a higher Sodium abundance) have weaker Oxygen lines (and are therefore poorer in Oxygen). Even with UVES, the most powerful high-resolution astronomical spectrograph in the world, exposures of up to 4.5 hours were required to record good spectra of these faint objects (V-mag = 17.2). Detailed observations of dwarf stars in globular clusters are rather difficult because they are quite faint objects; The brightest are at least 10,000 times fainter than the dimmest stars observable with the unaided eye. Nevertheless, the closest globular clusters are seen in the southern sky and with the high efficiency of the UVES spectrograph mounted at the KUEYEN 8.2-m telescope at Paranal (Chile), it has now become possible for the first time to obtain excellent spectra for a significant number of dwarf stars in globular clusters, cf. PR Photo 06b/01 . The UVES spectra cover a wide wavelength interval (350 - 900 nm) and display a very large number of spectral lines that originate from many different elements. The first results obtained from the excellent data for this observational programme immediately brought a great surprise to Raffaele Gratton and his co-investigators. The Italian astronomer reports that "our detailed analysis revealed that, while heavy elements like Iron display an impressively similar abundance in all of the observed dwarf stars, other elements, such as Oxygen, Sodium, Magnesium and Aluminium show large abundance variations from star to star". Moreover, "these variations are apparently not completely random, as there is evidence that certain elements change in a similar pattern from star to star". Evidence for accretion? This result is indeed unexpected, since the dwarf stars in globular clusters originated from the same interstellar material. Which effect may therefore produce the observed variations ? And why are such variations not observed in dwarf stars in the solar neighborhood ? The scientists think they have the answer. It has been known since the early 1970's that large star-to-star variations in the abundances of light elements like Carbon, Nitrogen, Oxygen, Sodium, Magnesium and Aluminium may occur in giant stars . Contrary to dwarf stars that still burn Hydrogen at their centres into Helium, giant stars have exhausted their Hydrogen supplies and have become much more luminous. Most investigators attributed the observed variations to the fact that in giant stars a certain amount of "mixing" occurs between the upper atmospheric layers (that emit the light we see) and the deeper (warmer) layers, in which some nuclear burning is going on, transforming Carbon into Nitrogen, etc. However, it is a well established fact of stellar evolution theory that such mixing and, consequently, the presence of abundance anomalies in the upper atmosphere can only occur in bright, evolved giant stars. It does not happen in dwarf stars, because the central temperature of those objects is not high enough to burn Oxygen or Magnesium, and to produce Sodium and Aluminium. It seems therefore not possible that the abundance anomalies are produced in those stars where they are observed. They should have been produced elsewhere, and transported in some way to the surface layers of the stars where we observe them [3]. ESO astronomer Luca Pasquini from the team explains that "we therefore believe that these observations provide evidence that a certain fraction of stars in some globular cluster has received "burnt" material from more massive stars." He adds that "the stars of that elder generation ended their active lifetimes a long time ago by ejecting their material into surrounding space during a "planetary nebula" phase and have now become very dim "white dwarf stars" [4]. The acquisition of material from other stars is a phenomenon that is apparently unique to globular clusters (except that it has also been observed in a few close binary stars). It clearly distinguishes stars in globular cluster from those found in less dense environments, like the solar neighborhood. More information The research paper ("The O-Na and Mg-Al Anticorrelations in Turn-Off and early Subgiants in Globular Clusters") on which this Press Release is based is now in press in the European journal Astronomy & Astrophysics. It is also available on the web as astro-ph/0012457. Notes [1]: 1 billion = 1,000 million. [2]: The team members in the ESO Large Program 165-L0263 devoted to the analysis of globular cluster dwarf stars, described in this Press Release, are: Raffaele Gratton (PI), Eugenio Carretta , Riccardo Claudi , Silvano Desidera , Sara Lucatello (Osservatorio Astronomico di Padova, Italy), Gisella Clementini , Angela Bragaglia (Osservatorio Astronomico di Bologna, Italy), Paolo Molaro , Piercarlo Bonifacio , Miriam Centurion (Osservatorio Astronomico di Trieste, Italy), Francesca D' Antona (Osservatorio Astronomico di Roma, Italy), Vittorio Castellani (Universita' di Pisa, Italy), Alessandro Chieffi (CNR-IAS, Italy), Oscar Straniero (Osservatorio di Teramo, Italy), Luca Pasquini , Patrick Francois (ESO), Francois Spite , Monique Spite (Observatoire de Meudon, France), Chris Sneden (University of Texas at Austin, USA), Frank Grundahl (University of Aarhus, Denmark). [3]: While it is apparent that some mass is transferred from the Planetary Nebulae to the stars, the details of this process are not clear. It may have happened before the stars here observed were formed, or later. In the latter case, the accretion may have occurred only during a particular evolutionary phase, some 100 million years after the cluster formed, i.e. about 11 to 15 billion years ago, and in very dense environments. Moreover, the accretion rate will depend on the relative velocities: only stars that move slowly with respect to the interstellar medium has a good chance of accreting matter. This may also be (part of) an explanation of the observed, large differences from star to star. [4]: A photo of a large planetary nebula is available as PR Photo 38a/98 and information about VLT observations of white dwarf stars in globular clusters are described in PR 20/99. Technical information about the photo PR Photo 06a/01 The image has been obtained through a v-band filter with the DFOSC multi-mode instrument the Danish 1.5-m Telescope at the ESO La Silla Observatory (Chile). The diameter of the field-of-view is 9 arcmin; the exposure time was 10 min, and the seeing was 1.3 arcsec. A few CCD columns suffer from imaging defects.

  5. STAR FORMATION ACTIVITY IN A YOUNG GALAXY CLUSTER AT Z = 0.866

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laganá, T. F.; Martins, L. P.; Ulmer, M. P.

    2016-07-10

    The galaxy cluster RX J1257+4738 at z = 0.866 is one of the highest redshift clusters with a richness of multi-wavelength data, and is thus a good target to study the star formation–density relation at early epochs. Using a sample of spectroscopically confirmed cluster members, we derive the star-formation rates (SFRs) of our galaxies using two methods: (1) the relation between SFR and total infrared luminosity extrapolated from the observed Spitzer Multiband Imaging Photometer for Spitzer 24 μ m imaging data; and (2) spectral energy distribution fitting using the MAGPHYS code, including eight different bands. We show that, for thismore » cluster, the SFR–density relation is very weak and seems to be dominated by the two central galaxies and the SFR presents a mild dependence on stellar mass, with more massive galaxies having higher SFR. However, the specific SFR (SSFR) decreases with stellar mass, meaning that more massive galaxies are forming fewer stars per unit of mass, and thus suggesting that the increase in star-forming members is driven by cluster assembly and infall. If the environment is somehow driving the star formation, one would expect a relation between the SSFR and the cluster centric distance, but that is not the case. A possible scenario to explain this lack of correlation is the contamination by infalling galaxies in the inner part of the cluster, which may be on their initial pass through the cluster center. As these galaxies have higher SFRs for their stellar mass, they enhance the mean SSFR in the center of the cluster.« less

  6. Star Formation in NGC 6531-Evidence From the age Spread and Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Forbes, Douglas

    1996-09-01

    The results of a photometric UBV study of the young open cluster NGC 6531 are presented. The cluster is found to have a mean reddening E(B-V)=0.28±0.04 (s.d.) and distance modulus (V0-Mv)=10.70±0.13 (s.e.), and 105±11 likely cluster members have been identified within the cluster coronal radius of 9 arcmin. A comparison of the high-luminosity end of the cluster color-magnitude diagram to the evolutionary models by Maeder & Meynet [A&AS, 76, 411(1988)] suggests a nuclear age of (8±2) Myr. The very clear gap in the distribution of stars with 0≤(B-V)0≤0.20, corresponding to the "burn-off" of 3He in stars contracting to the main sequence [Ulrich, ApJ, 168, 57 (1971)], implies a contraction age of (8±3) Myr. There would seem to be no evidence of a spread in the ages of cluster stars, as has been observed in several other young open clusters [Herbst & Miller, AJ, 87, 1478 (1982)]. The initial mass function (IMF) constructed from the cluster luminosity function and the mass-luminosity relation given by Scab (1986) shows good agreement with the field star IMF, and with the IMFS of a number of clusters of similar age and richness. The relative deficiency of low-mass stars seen by Herbst and Miller in NGC 3293 (a cluster of quite similar age and reddening) is not evident in NGC 6531.

  7. HUBBLE SEES A VAST 'CITY' OF STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In these pictures, a 'city' of a million stars glitters like a New York City skyline. The images capture the globular cluster 47 Tucanae, located 15,000 light-years from Earth in the southern constellation Tucana. Using NASA's Hubble Space Telescope, astronomers went hunting in this large city for planetary companions: bloated gaseous planets that snuggle close to their parent stars, completing an orbit in a quick three to five days. To their surprise, they found none. This finding suggests that the cluster's environment is too hostile for breeding planets or that it lacks the necessary elements for making them. The picture at left, taken by a terrestrial telescope, shows most of the cluster, a tightly packed group of middle-aged stars held together by mutual gravitational attraction. The box near the center represents the Hubble telescope's view. The image at right shows the Hubble telescope's close-up look at a swarm of 35,000 stars near the cluster's central region. The stars are tightly packed together: They're much closer together than our Sun and its closest stars. The picture, taken by the Wide Field and Planetary Camera 2, depicts the stars' natural colors and tells scientists about their composition and age. For example, the red stars denote bright red giants nearing the end of their lives; the more common yellow stars are similar to our middle-aged Sun. Most of the stars in the cluster are believed to have formed about 10 billion years ago. The bright, blue stars -- thought to be remnants of stellar collisions and mergers -- provide a few rejuvenated, energetic stars in an otherwise old system. The Hubble picture was taken in July 1999. Credits for Hubble image: NASA and Ron Gilliland (Space Telescope Science Institute) Credits for ground-based image: David Malin, c Anglo-Australian Observatory

  8. Uncovering multiple Wolf-Rayet star clusters and the ionized ISM in Mrk 178: the closest metal-poor Wolf-Rayet H II galaxy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Brinchmann, J.; Kunth, D.; García-Benito, R.; Crowther, P. A.; Hernández-Fernández, J.; Durret, F.; Contini, T.; Fernández-Martín, A.; James, B. L.

    2013-07-01

    New integral field spectroscopy (IFS) has been obtained for the nearby metal-poor Wolf-Rayet (WR) galaxy Mrk 178 to examine the spatial correlation between its WR stars and the neighbouring ionized interstellar medium (ISM). The strength of the broad WR features and its low metallicity make Mrk 178 an intriguing object. We have detected the blue and red WR bumps in different locations across the field of view (˜300 pc × 230 pc) in Mrk 178. The study of the WR content has been extended, for the first time, beyond its brightest star-forming knot uncovering new WR star clusters. Using Large/Small Magellanic Cloud-template WR stars, we empirically estimate a minimum of ˜20 WR stars within the region sampled. Maps of the spatial distribution of the emission lines and of the physical-chemical properties of the ionized ISM have been created and analysed. Here, we refine the statistical methodology by Pérez-Montero et al. (2011) to probe the presence of variations in the ISM properties. An error-weighted mean of 12+log(O/H) = 7.72 ± 0.01 is taken as the representative oxygen abundance for Mrk 178. A localized N and He enrichment, spatially correlated with WR stars, is suggested by this analysis. Nebular He II λ4686 emission is shown to be spatially extended reaching well beyond the location of the WR stars. This spatial offset between WRs and He II emission can be explained based on the mechanical energy input into the ISM by the WR star winds, and does not rule out WR stars as the He II ionization source. We study systematic aperture effects on the detection and measurement of the WR features, using Sloan Digital Sky Survey spectra combined with the power of IFS. In this regard, the importance of targeting low metallicity nearby systems is discussed.

  9. Yellow evolved stars in open clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, J.R.

    1987-05-01

    This paper describes a program in which Galactic cluster post-AGB candidates were first identified and then analyzed for cluster membership via radial velocities, monitored for possible photometric variations, examined for evidence of mass loss, and classified as completely as possible in terms of their basic stellar parameters. The intrinsically brightest supergiants are found in the youngest clusters. With increasing cluster age, the absolute luminosities attained by the supergiants decline. It appears that the evolutionary tracks of luminosity class II stars are more similar to those of class I than of class III. Only two superluminous giant star candidates are foundmore » in open clusters. 154 references.« less

  10. New Observational Evidence of Flash Mixing on the White Dwarf Cooling Curve

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; Lanz, T.; Sweigart, A. V.; Cracraft, Misty; Hubeny, Ivan; Landsman, W. B.

    2011-01-01

    Blue hook stars are a class of subluminous extreme horizontal branch stars that were discovered in UV images of the massive globular clusters w Cen and NGC 2808. These stars occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that the blue hook stars are very likely the progeny of stars that undergo extensive internal mixing during a late helium-core flash on the white dwarf cooling curve. This "flash mixing" produces hotter-than-normal EHB stars with atmospheres significantly enhanced in helium and carbon. The larger bolometric correction, combined with the decrease in hydrogen opacity, makes these stars appear sub luminous in the optical and UV. Flash mixing is more likely to occur in stars born with a high helium abundance, due to their lower mass at the main sequence turnoff. For this reason, the phenomenon is more common in those massive globular clusters that show evidence for secondary populations enhanced in helium. However, a high helium abundance does not, by itself, explain the presence of blue hook stars in massive globular clusters. Here, we present new observational evidence for flash mixing, using recent HST observations. These include UV color-magnitude diagrams of six massive globular clusters and far-UV spectroscopy of hot subdwarfs in one of these clusters (NGC 2808).

  11. A Starburst in the Core of a Galaxy Cluster: the Dwarf Irregular NGC 1427A in Fornax

    NASA Astrophysics Data System (ADS)

    Mora, Marcelo D.; Chanamé, Julio; Puzia, Thomas H.

    2015-09-01

    Gas-rich galaxies in dense environments such as galaxy clusters and massive groups are affected by a number of possible types of interactions with the cluster environment, which make their evolution radically different than that of field galaxies. The dwarf irregular galaxy NGC 1427A, presently infalling toward the core of the Fornax galaxy cluster for the first time, offers a unique opportunity to study those processes at a level of detail not possible to achieve for galaxies at higher redshifts, when galaxy-scale interactions were more common. Using the spatial resolution of the Hubble Space Telescope/Advanced Camera for Surveys and auxiliary Very Large Telescope/FORS1 ground-based observations, we study the properties of the most recent episodes of star formation in this gas-rich galaxy, the only one of its type near the core of the Fornax cluster. We study the structural and photometric properties of young star cluster complexes in NGC 1427A, identifying 12 bright such complexes with exceptionally blue colors. The comparison of our broadband near-UV/optical photometry with simple stellar population models yields ages below ˜ 4× {10}6 years and stellar masses from a few 1000 up to ˜ 3× {10}4{M}⊙ , slightly dependent on the assumption of cluster metallicity and initial mass function. Their grouping is consistent with hierarchical and fractal star cluster formation. We use deep Hα imaging data to determine the current star formation rate in NGC 1427A and estimate the ratio, Γ, of star formation occurring in these star cluster complexes to that in the entire galaxy. We find Γ to be among the largest such values available in the literature, consistent with starburst galaxies. Thus a large fraction of the current star formation in NGC 1427A is occurring in star clusters, with the peculiar spatial arrangement of such complexes strongly hinting at the possibility that the starburst is being triggered by the passage of the galaxy through the cluster environment. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 70.B-0695.

  12. The Hyades main sequence

    NASA Astrophysics Data System (ADS)

    Eggen, O. J.

    1982-11-01

    Intermediate band, H-beta and RI observations of 72 Hyades cluster stars to V = 11 mag are reported and discussed. A modulus of 3.2 mag is derived on the basis of a comparison with field stars of large parallax. Also presented are observations of 98 main-sequence stars of the Hyades group that were previously found to be group members from kinematical considerations. Parallaxes of the group stars, computed on the assumption that they are members of an extended Hyades cluster, yield mean values of (U, V, W) = (+40.5, -18.4, -4.9) km/s, with dispersions of (2.3, 2.3, 6.0) km/s, compared with (+41.7, -18.4, -2.0) and (2.6, 1.3, 1.9) km/s for the brightest cluster members. It is noted that all the stars discussed can be considered as members of a supercluster in which only a slight relaxation control of the W velocities is present for stars far from the nucleus. Evidence is found, including that of the Praesepe cluster at Z = +80 pc, for some interchange between the U, V, and W velocities in stars farthest from the galactic plane, with the total cluster velocity being maintained.

  13. VizieR Online Data Catalog: Radial velocities in M3, M13, and M92 (Kamann+, 2014)

    NASA Astrophysics Data System (ADS)

    Kamann, S.; Wisotzki, L.; Roth, M. M.; Gerssen, J.; Husser, T.-O.; Sandin, C.; Weilbacher, P.

    2014-04-01

    Radial velocity data are presented for three Galactic globular clusters, M3, M13, and M92. The provided catalogues include several hundreds of stars in each cluster that cover a wide range of distances to the cluster centres. Besides the measured radial velocities, the catalogues contain measurement uncertainties, identifiers, world coordinates and variability information for each star. The velocities for stars near the centres of the clusters were obtained using PMAS integral field spectroscopy (IFS). Note that in order to facilitate future variability studies, for each star the individual velocity measurements are provided instead of a single combined velocity. The PMAS data are complemented with velocities reported in various literature studies for stars at larger distances to the centres. (6 data files).

  14. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.

    2008-08-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  15. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Gosnell, Natalie; Latham, David W.

    2009-02-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  16. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.

    2008-02-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  17. On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael

    2006-01-01

    The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the buildup of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are fully consistent with observations in the field, cluster Fe enrichment immediately tracked a rapid, top-heavy phase of star formation - although transport of Fe into the ICM may have been more prolonged and star formation likely continued beyond redshift 1. The means of this prompt enrichment consisted of SNII yielding greater than or equal to 0.1 solar mass per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3 - 8 solar mass range) and/or SNIa with short delay times originating during the rapid star formation epoch. Star formation is greater than 3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.

  18. A Database of Young Star Clusters for Five Hundred Galaxies

    NASA Astrophysics Data System (ADS)

    Evans, Jessica; Whitmore, B. C.; Lindsay, K.; Chandar, R.; Larsen, S.

    2009-01-01

    The study of young massive stellar clusters has faced a series of observational challenges, such as the use of inconsistent data sets and low number statistics. To rectify these shortcomings, this project will use the source lists developed as part of the Hubble Legacy Archive to obtain a large, uniform database of super star clusters in nearby star-forming galaxies in order to address two fundamental astronomical questions: 1) To what degree is the cluster luminosity (and mass) function of star clusters universal? 2) What fraction of super star clusters are "missing" in optical studies (i.e., are hidden by dust)? The archive's recent data release (Data Release 2 - September, 2008) will help us achieve the large sample necessary (N 50 galaxies for multi-wavelength, N 500 galaxies for ACS F814W). The uniform data set will comprise of ACS, WFPC2, and NICMOS data, with DAOphot used for object detection. This database will also support comparisons with new Monte-Carlo simulations that have independently been developed in the past few years, and will be used to test the Whitmore, Chandar, Fall (2007) framework designed to understand the demographics of star clusters in all star forming galaxies. The catalogs will increase the number of galaxies with measured mass and luminosity functions by an order of magnitude, and will provide a powerful new tool for comparative studies, both ours and the community's. The poster will describe our preliminary investigation for the first 30 galaxies in the sample.

  19. A Comparison of Young Star Properties with Local Galactic Environment for LEGUS/LITTLE THINGS Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, Deidre A.; Adamo, Angela; Elmegreen, Bruce G.; Gallardo, Samavarti; Lee, Janice C.; Cook, David O.; Thilker, David; Kayitesi, Bridget; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Calzetti, Daniela; Tosi, Monica; Grasha, Kathryn; Messa, Matteo; Fumagalli, Michele; Dale, Daniel A.; Sabbi, Elena; Cignoni, Michele; Smith, Linda J.; Gouliermis, Dimitrios M.; Grebel, Eva K.; Aloisi, Alessandra; Whitmore, Bradley C.; Chandar, Rupali; Johnson, Kelsey E.

    2018-07-01

    We have explored the role environmental factors play in determining characteristics of young stellar objects in nearby dwarf irregular and blue compact dwarf galaxies. Star clusters are characterized by concentrations, masses, and formation rates; OB associations by mass and mass surface density; O stars by their numbers and near-ultraviolet absolute magnitudes; and H II regions by Hα surface brightnesses. These characteristics are compared to surrounding galactic pressure, stellar mass density, H I surface density, and star formation rate (SFR) surface density. We find no trend of cluster characteristics with environmental properties, implying that larger-scale effects are more important in determining cluster characteristics or that rapid dynamical evolution erases any memory of the initial conditions. On the other hand, the most massive OB associations are found at higher pressure and H I surface density, and there is a trend of higher H II region Hα surface brightness with higher pressure, suggesting that a higher concentration of massive stars and gas is found preferentially in regions of higher pressure. At low pressures we find massive stars but not bound clusters and OB associations. We do not find evidence for an increase of cluster formation efficiency as a function of SFR density. However, there is an increase in the ratio of the number of clusters to the number of O stars with increasing pressure, perhaps reflecting an increase in clustering properties with SFR.

  20. The Gaia-ESO Survey and CSI 2264: Substructures, disks, and sequential star formation in the young open cluster NGC 2264

    NASA Astrophysics Data System (ADS)

    Venuti, L.; Prisinzano, L.; Sacco, G. G.; Flaccomio, E.; Bonito, R.; Damiani, F.; Micela, G.; Guarcello, M. G.; Randich, S.; Stauffer, J. R.; Cody, A. M.; Jeffries, R. D.; Alencar, S. H. P.; Alfaro, E. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Carraro, G.; Costado, M. T.; Frasca, A.; Jofré, P.; Morbidelli, L.; Sousa, S. G.; Zaggia, S.

    2018-01-01

    Context. Reconstructing the structure and history of young clusters is pivotal to understanding the mechanisms and timescales of early stellar evolution and planet formation. Recent studies suggest that star clusters often exhibit a hierarchical structure, possibly resulting from several star formation episodes occurring sequentially rather than a monolithic cloud collapse. Aims: We aim to explore the structure of the open cluster and star-forming region NGC 2264 ( 3 Myr), which is one of the youngest, richest and most accessible star clusters in the local spiral arm of our Galaxy; we link the spatial distribution of cluster members to other stellar properties such as age and evolutionary stage to probe the star formation history within the region. Methods: We combined spectroscopic data obtained as part of the Gaia-ESO Survey (GES) with multi-wavelength photometric data from the Coordinated Synoptic Investigation of NGC 2264 (CSI 2264) campaign. We examined a sample of 655 cluster members, with masses between 0.2 and 1.8 M⊙ and including both disk-bearing and disk-free young stars. We used Teff estimates from GES and g,r,i photometry from CSI 2264 to derive individual extinction and stellar parameters. Results: We find a significant age spread of 4-5 Myr among cluster members. Disk-bearing objects are statistically associated with younger isochronal ages than disk-free sources. The cluster has a hierarchical structure, with two main blocks along its latitudinal extension. The northern half develops around the O-type binary star S Mon; the southern half, close to the tip of the Cone Nebula, contains the most embedded regions of NGC 2264, populated mainly by objects with disks and ongoing accretion. The median ages of objects at different locations within the cluster, and the spatial distribution of disked and non-disked sources, suggest that star formation began in the north of the cluster, over 5 Myr ago, and was ignited in its southern region a few Myr later. Star formation is likely still ongoing in the most embedded regions of the cluster, while the outer regions host a widespread population of more evolved objects; these may be the result of an earlier star formation episode followed by outward migration on timescales of a few Myr. We find a detectable lag between the typical age of disk-bearing objects and that of accreting objects in the inner regions of NGC 2264: the first tend to be older than the second, but younger than disk-free sources at similar locations within the cluster. This supports earlier findings that the characteristic timescales of disk accretion are shorter than those of disk dispersal, and smaller than the average age of NGC 2264 (i.e., ≲3 Myr). At the same time, we note that disks in the north of the cluster tend to be shorter-lived ( 2.5 Myr) than elsewhere; this may reflect the impact of massive stars within the region (notably S Mon), that trigger rapid disk dispersal. Conclusions: Our results, consistent with earlier studies on NGC 2264 and other young clusters, support the idea of a star formation process that takes place sequentially over a prolonged span in a given region. A complete understanding of the dynamics of formation and evolution of star clusters requires accurate astrometric and kinematic characterization of its population; significant advance in this field is foreseen in the upcoming years thanks to the ongoing Gaia mission, coupled with extensive ground-based surveys like GES. Full Table B.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A10

  1. Young star clusters in nearby molecular clouds

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  2. X-Ray Binaries and Star Clusters in the Antennae: Optical Cluster Counterparts

    NASA Astrophysics Data System (ADS)

    Rangelov, Blagoy; Chandar, Rupali; Prestwich, Andrea; Whitmore, Bradley C.

    2012-10-01

    We compare the locations of 82 X-ray binaries (XRBs) detected in the merging Antennae galaxies by Zezas et al., based on observations taken with the Chandra X-Ray Observatory, with a catalog of optically selected star clusters presented by Whitmore et al., based on observations taken with the Hubble Space Telescope. Within the 2σ positional uncertainty of ≈0farcs8, we find 22 XRBs are coincident with star clusters, where only two to three chance coincidences are expected. The ages of the clusters were estimated by comparing their UBVI, Hα colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident XRBs (64%) are hosted by star clusters with ages of ≈6 Myr or less. All of the very young host clusters are fairly massive and have M >~ 3 × 104 M ⊙, with many having masses M ≈ 105 M ⊙. Five of the XRBs are hosted by young clusters with ages τ ≈ 10-100 Myr, while three are hosted by intermediate-age clusters with τ ≈ 100-300 Myr. Based on the results from recent N-body simulations, which suggest that black holes are far more likely to be retained within their parent clusters than neutron stars, we suggest that our sample consists primarily of black hole binaries with different ages.

  3. SPECTROSCOPY OF LUMINOUS COMPACT BLUE GALAXIES IN DISTANT CLUSTERS. II. PHYSICAL PROPERTIES OF dE PROGENITOR CANDIDATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, S. M.; Wirth, Gregory D.; Bershady, M. A.

    2016-02-01

    Luminous Compact Blue Galaxies (LCBGs) are an extreme star-bursting population of galaxies that were far more common at earlier epochs than today. Based on spectroscopic and photometric measurements of LCBGs in massive (M > 10{sup 15} M{sub ⊙}), intermediate redshift (0.5 < z < 0.9) galaxy clusters, we present their rest-frame properties including star formation rate, dynamical mass, size, luminosity, and metallicity. The appearance of these small, compact galaxies in clusters at intermediate redshift helps explain the observed redshift evolution in the size–luminosity relationship among cluster galaxies. In addition, we find the rest-frame properties of LCBGs appearing in galaxy clusters are indistinguishable from field LCBGs atmore » the same redshift. Up to 35% of the LCBGs show significant discrepancies between optical and infrared indicators of star formation, suggesting that star formation occurs in obscured regions. Nonetheless, the star formation for LCBGs shows a decrease toward the center of the galaxy clusters. Based on their position and velocity, we estimate that up to 10% of cluster LCBGs are likely to merge with another cluster galaxy. Finally, the observed properties and distributions of the LCBGs in these clusters lead us to conclude that we are witnessing the quenching of the progenitors of dwarf elliptical galaxies that dominate the number density of present-epoch galaxy clusters.« less

  4. Hubble Sees a Youthful Cluster

    NASA Image and Video Library

    2017-12-08

    Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic Cloud, a satellite galaxy of our own galaxy, the Milky Way, in the southern hemisphere constellation of Dorado. First observed by John Herschel in 1835, NGC 1783 is nearly 160,000 light-years from Earth, and has a mass around 170,000 times that of the sun. Globular clusters are dense collections of stars held together by their own gravity, which orbit around galaxies like satellites. The image clearly shows the symmetrical shape of NGC 1783 and the concentration of stars towards the center, both typical features of globular clusters. By measuring the color and brightness of individual stars, astronomers can deduce an overall age for a cluster and a picture of its star formation history. NGC 1783 is thought to be less than one and a half billion years old — which is very young for globular clusters, which are typically several billion years old. During that time, it is thought to have undergone at least two periods of star formation, separated by 50 to 100 million years. This ebb and flow of star-forming activity is an indicator of how much gas is available for star formation at any one time. When the most massive stars created in the first burst of formation explode as supernovae they blow away the gas needed to form further stars, but the gas reservoir can later be replenished by less massive stars which last longer and shed their gas less violently. After this gas flows to the dense central regions of the star cluster, a second phase of star formation can take place and once again the short-lived massive stars blow away any leftover gas. This cycle can continue a few times, at which time the remaining gas reservoir is thought to be too small to form any new stars. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Rotation in USco and rho Oph with K2

    NASA Astrophysics Data System (ADS)

    Rebull, Luisa; Stauffer, John; K2 Clusters Team

    2018-01-01

    K2 observed Upper Scorpius and rho Oph as part of their Campaign 2 in 2014. At ~8 and ~1 Myr respectively, the stars in Upper Sco and rho Oph exhibit greater diversity of light curve shapes than are found in older clusters observed with K2 such as Pleiades or Praesepe. Nonetheless, we are able to derive rotation periods for 85% (971/1136) of the USco members and 80% (71/88) of the rho Oph members. About 25% of the periodic stars have evidence for multiple periods. These light curves sample smaller amplitudes to lower masses and with a far better cadence, than has even been probed before. We can compare USco with similar stars in Praesepe (~700 Myr) and the Pleiades (~125 Myr), all with K2 light curves.

  6. Massive Stars in the MCs: What They Tell Us about the IMF, Stellar Evolution, and Upper Mass "Cutoffs"

    NASA Astrophysics Data System (ADS)

    Massey, P.

    Massive stars in the Magellanic Clouds provide an instantaneous "snapshot" of star-formation. In this talk I will review what we have learned both about star formation, and stellar evolution. Studies over the past decade have shown that the initial mass function (IMF) is the same for massive stars born in OB associations in the LMC and SMC as in associations and clusters in the Milky Way; the slope of the IMF is essentially Salpeter (Gamma ~ -1.3), despite the factor of 10 difference in metallicity between these systems. Recent work on the R136 cluster (described in Hunter's review talk) suggest that there is no such thing as an upper mass cutoff to the IMF, at least not one that has been found observationally: for the youngest clusters (2 Myr and younger), the mass of the highest mass star present is simply dependent upon how populous the cluster is; i.e., the IMF is truncated by statistics, not physics. There does appear to be a significant population of massive stars that are born in the "field" (not part of a large OB association or cluster); the IMF of these stars is quite a bit steeper (Gamma ~ -4), although stars as massive as those found in associations are also found in the field. The mixed-age population of the MCs as a whole can be used to test stellar evolutionary models; the agreement with the work of the Geneva group is found to be excellent, for stars with masses >25 Mo, although the youngest stars may be missing in the HRD. The discovery that clusters born in associations are quite coeval (Delta tau <1-2 Myr) allows us to use the "turn-off masses" to determine what mass objects become Wolf-Rayet stars of various types, and new results will be reviewed.

  7. THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison

    2013-02-20

    We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a clustermore » recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.« less

  8. Spitzer Telescope Sends Rose for Valentine Day

    NASA Image and Video Library

    2004-02-12

    A cluster of newborn stars herald their birth in this interstellar Valentine Day commemorative picture obtained with NASA Spitzer Space Telescope. These bright young stars are found in a rosebud-shaped and rose-colored nebulosity known as NGC 7129. The star cluster and its associated nebula are located at a distance of 3300 light-years in the constellation Cepheus. A recent census of the cluster reveals the presence of 130 young stars. The stars formed from a massive cloud of gas and dust that contains enough raw materials to create a thousand Sun-like stars. In a process that astronomers still poorly understand, fragments of this molecular cloud became so cold and dense that they collapsed into stars. Most stars in our Milky Way galaxy are thought to form in such clusters. The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is about one quarter the size of the full moon. As in any nursery, mayhem reigns. Within the astronomically brief period of a million years, the stars have managed to blow a large, irregular bubble in the molecular cloud that once enveloped them like a cocoon. The rosy pink hue is produced by glowing dust grains on the surface of the bubble being heated by the intense light from the embedded young stars. Upon absorbing ultraviolet and visible-light photons produced by the stars, the surrounding dust grains are heated and re-emit the energy at the longer infrared wavelengths observed by Spitzer. The reddish colors trace the distribution of molecular material thought to be rich in hydrocarbons. The cold molecular cloud outside the bubble is mostly invisible in these images. However, three very young stars near the center of the image are sending jets of supersonic gas into the cloud. The impact of these jets heats molecules of carbon monoxide in the cloud, producing the intricate green nebulosity that forms the stem of the rosebud. Not all stars are formed in clusters. Away from the main nebula and its young cluster are two smaller nebulae, to the left and bottom of the central 'rosebud,'each containing a stellar nursery with only a few young stars. Astronomers believe that our own Sun may have formed billions of years ago in a cluster similar to NGC 7129. Once the radiation from new cluster stars destroys the surrounding placental material, the stars begin to slowly drift apart. http://photojournal.jpl.nasa.gov/catalog/PIA05266

  9. Effects of Combined Stellar Feedback on Star Formation in Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Wall, Joshua Edward; McMillan, Stephen; Pellegrino, Andrew; Mac Low, Mordecai; Klessen, Ralf; Portegies Zwart, Simon

    2018-01-01

    We present results of hybrid MHD+N-body simulations of star cluster formation and evolution including self consistent feedback from the stars in the form of radiation, winds, and supernovae from all stars more massive than 7 solar masses. The MHD is modeled with the adaptive mesh refinement code FLASH, while the N-body computations are done with a direct algorithm. Radiation is modeled using ray tracing along long characteristics in directions distributed using the HEALPIX algorithm, and causes ionization and momentum deposition, while winds and supernova conserve momentum and energy during injection. Stellar evolution is followed using power-law fits to evolution models in SeBa. We use a gravity bridge within the AMUSE framework to couple the N-body dynamics of the stars to the gas dynamics in FLASH. Feedback from the massive stars alters the structure of young clusters as gas ejection occurs. We diagnose this behavior by distinguishing between fractal distribution and central clustering using a Q parameter computed from the minimum spanning tree of each model cluster. Global effects of feedback in our simulations will also be discussed.

  10. A Photometric Survey of the Open Clusters NGC 7789 and M67

    NASA Astrophysics Data System (ADS)

    Janes, Kenneth

    2010-01-01

    Although there is strong evidence that stellar activity declines as a star ages, beyond about the age of the Hyades (600 Myr) there is little direct confirmation of this decline in stars of known age. This report is an update of an earlier report (Hayes-Gehrke, et al., 2004, AJ, 128, 2862) of a long-term project to explore stellar activity in old open clusters. I have now accumulated 12 years of photometry of the old clusters NGC 7789 (about 1.8 Gyr) and M 67 (about 4 Gyr). An analysis of these data has revealed a substantial number of low-amplitude variable stars in both clusters, including a number of previously-discovered eclipsing binary stars, and several stars near the main sequence turnoff of both clusters that exhibit apparently erratic variations. Some of the M 67 erratics are known X-ray sources. On the main sequence, the large majority of stars show little or no evidence for variability at the 0.1% - 0.2% level, consistent with a regular systematic decline in activity level with age.

  11. Cluster of Stars in Kepler Sight

    NASA Image and Video Library

    2009-04-16

    This image zooms into a small portion of NASA Kepler full field of view, an expansive, 100-square-degree patch of sky in our Milky Way galaxy. An eight-billion-year-old cluster of stars 13,000 light-years from Earth, called NGC 6791, can be seen in the image. Clusters are families of stars that form together out of the same gas cloud. This particular cluster is called an open cluster, because the stars are loosely bound and have started to spread out from each other. The area pictured is 0.2 percent of Kepler's full field of view, and shows hundreds of stars in the constellation Lyra. The image has been color-coded so that brighter stars appear white, and fainter stars, red. It is a 60-second exposure, taken on April 8, 2009, one day after the spacecraft's dust cover was jettisoned. Kepler was designed to hunt for planets like Earth. The mission will spend the next three-and-a-half years staring at the same stars, looking for periodic dips in brightness. Such dips occur when planets cross in front of their stars from our point of view in the galaxy, partially blocking the starlight. To achieve the level of precision needed to spot planets as small as Earth, Kepler's images are intentionally blurred slightly. This minimizes the number of saturated stars. Saturation, or "blooming," occurs when the brightest stars overload the individual pixels in the detectors, causing the signal to spill out into nearby pixels. http://photojournal.jpl.nasa.gov/catalog/PIA11986

  12. Galactic Doppelgängers: The Chemical Similarity Among Field Stars and Among Stars with a Common Birth Origin

    NASA Astrophysics Data System (ADS)

    Ness, M.; Rix, H.-W.; Hogg, David W.; Casey, A. R.; Holtzman, J.; Fouesneau, M.; Zasowski, G.; Geisler, D.; Shetrone, M.; Minniti, D.; Frinchaboy, Peter M.; Roman-Lopes, Alexandre

    2018-02-01

    We explore to what extent stars within Galactic disk open clusters resemble each other in the high-dimensional space of their photospheric element abundances and contrast this with pairs of field stars. Our analysis is based on abundances for 20 elements, homogeneously derived from APOGEE spectra (with carefully quantified uncertainties of typically 0.03 dex). We consider 90 red giant stars in seven open clusters and find that most stars within a cluster have abundances in most elements that are indistinguishable (in a {χ }2-sense) from those of the other members, as expected for stellar birth siblings. An analogous analysis among pairs of > 1000 field stars shows that highly significant abundance differences in the 20 dimensional space can be established for the vast majority of these pairs, and that the APOGEE-based abundance measurements have high discriminating power. However, pairs of field stars whose abundances are indistinguishable even at 0.03 dex precision exist: ∼0.3% of all field star pairs and ∼1.0% of field star pairs at the same (solar) metallicity [Fe/H] = 0 ± 0.02. Most of these pairs are presumably not birth siblings from the same cluster, but rather doppelgängers. Our analysis implies that “chemical tagging” in the strict sense, identifying birth siblings for typical disk stars through their abundance similarity alone, will not work with such data. However, our approach shows that abundances have extremely valuable information for probabilistic chemo-orbital modeling, and combined with velocities, we have identified new cluster members from the field.

  13. Embedded Clusters

    NASA Astrophysics Data System (ADS)

    Ascenso, Joana

    The past decade has seen an increase of star formation studies made at the molecular cloud scale, motivated mostly by the deployment of a wealth of sensitive infrared telescopes and instruments. Embedded clusters, long recognised as the basic units of coherent star formation in molecular clouds, are now seen to inhabit preferentially cluster complexes tens of parsecs across. This chapter gives an overview of some important properties of the embedded clusters in these complexes and of the complexes themselves, along with the implications of viewing star formation as a molecular-cloud scale process rather than an isolated process at the scale of clusters.

  14. Initial Dynamical Evolution of Star Clusters with Tidal Field

    NASA Astrophysics Data System (ADS)

    Park, So-Myoung; Goodwin, Simon P.; Kim, Sungsoo S.

    2017-03-01

    Observations have been suggested that star clusters could form from the rapid collapse and violent relaxation of substructured distributions. We investigate the collapse of fractal stellar distributions in no, weak, and very strong tidal fields. We find that the rapid collapse of substructure into spherical clusters happens quickly with no or a weak tidal field, but very strong tidal fields prevent a cluster forming. However, we also find that dense Plummer spheres are also rapidly destroyed in strong tidal fields. We suggest that this is why the low-mass star clusters cannot survive near the galactic centre which has strong tidal field.

  15. Intergalactic stellar populations in intermediate redshift clusters

    NASA Astrophysics Data System (ADS)

    Melnick, J.; Giraud, E.; Toledo, I.; Selman, F.; Quintana, H.

    2012-11-01

    A substantial fraction of the total stellar mass in rich clusters of galaxies resides in a diffuse intergalactic component usually referred to as the intracluster light (ICL). Theoretical models indicate that these intergalactic stars originate mostly from the tidal interaction of the cluster galaxies during the assembly history of the cluster, and that a significant fraction of these stars could have formed in situ from the late infall of cold metal-poor gas clouds on to the cluster. However, these models also overpredict the fraction of stellar mass in the ICL by a substantial margin, something that is still not well understood. The models also make predictions about the age distribution of the ICL stars, which may provide additional observational constraints. Here we present population synthesis models for the ICL of an intermediate redshift (z = 0.29) X-ray cluster that we have extensively studied in previous papers. The advantage of observing intermediate redshift clusters rather than nearby ones is that the former fit the field of view of multi-object spectrographs in 8-m telescopes and therefore permit us to encompass most of the ICL with only a few well-placed slits. In this paper we show that by stacking spectra at different locations within the ICL it is possible to reach sufficiently high signal-to-noise ratios to fit population synthesis models and derive meaningful results. The models provide ages and metallicities for the dominant populations at several different locations within the ICL and the brightest cluster galaxies (BCG) halo, as well as measures of the kinematics of the stars as a function of distance from the BCG. We thus find that the ICL in our cluster is dominated by old metal-rich stars, at odds with what has been found in nearby clusters where the stars that dominate the ICL are old and metal poor. While we see weak evidence of a young, metal-poor component, if real, these young stars would amount to less than 1 per cent of the total ICL mass, much less than the up to 30 per cent predicted by the models. We propose that the very metal-rich (i.e. 2.5× solar) stars in the ICL of our cluster, which comprise ˜40 per cent of the total mass, originate mostly from the central dumb-bell galaxy, while the remaining solar and metal-poor stars come from spiral, post-starburst (E+A) and metal-poor dwarf galaxies. About 16 per cent of the ICL stars are old and metal poor.

  16. Photometric binary stars in Praesepe and the search for globular cluster binaries

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1991-01-01

    A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.

  17. Close Binaries in the η Chamaeleontis Cluster

    NASA Astrophysics Data System (ADS)

    Köhler, Rainer; Petr-Gotzens, Monika G.

    2002-11-01

    We have used speckle interferometry and adaptive optics observations to search for multiple systems among 13 stars in the η Chamaeleontis cluster. We discovered two previously unknown subarcsecond binaries. Placing the components in infrared color-magnitude diagrams shows that most members of η Cha are coeval. Repeated observations of the binary RECX 1 allow us to determine a preliminary orbit and derive a system mass of about 2 Msolar. Based on observations obtained at the European Southern Observatory, La Silla, proposals 56.E-0197, 62.I-0399, 65.I-0350, 65.I-0086, 67.C-0354, and 68.C-0539.

  18. The globular cluster system of NGC 1316. IV. Nature of the star cluster complex SH2

    NASA Astrophysics Data System (ADS)

    Richtler, T.; Husemann, B.; Hilker, M.; Puzia, T. H.; Bresolin, F.; Gómez, M.

    2017-05-01

    Context. The light of the merger remnant NGC 1316 (Fornax A) is dominated by old and intermediate-age stars. The only sign of current star formation in this big galaxy is the Hii region SH2, an isolated star cluster complex with a ring-like morphology and an estimated age of 0.1 Gyr at a galactocentric distance of about 35 kpc. A nearby intermediate-age globular cluster, surrounded by weak line emission and a few more young star clusters, is kinematically associated. The origin of this complex is enigmatic. Aims: We want to investigate the nature of this star cluster complex. The nebular emission lines permit a metallicity determination which can discriminate between a dwarf galaxy or other possible precursors. Methods: We used the Integral Field Unit (IFU) of the VIMOS instrument at the Very Large Telescope of the European Southern Observatory in high dispersion mode to study the morphology, kinematics, and metallicity employing line maps, velocity maps, and line diagnostics of a few characteristic spectra. Results: The line ratios of different spectra vary, indicating highly structured Hii regions, but define a locus of uniform metallicity. The strong-line diagnostic diagrams and empirical calibrations point to a nearly solar or even super-solar oxygen abundance. The velocity dispersion of the gas is highest in the region offset from the bright clusters. Star formation may be active on a low level. There is evidence for a large-scale disk-like structure in the region of SH2, which would make the similar radial velocity of the nearby globular cluster easier to understand. Conclusions: The high metallicity does not fit to a dwarf galaxy as progenitor. We favour the scenario of a free-floating gaseous complex having its origin in the merger 2 Gyr ago. Over a long period the densities increased secularly until finally the threshold for star formation was reached. SH2 illustrates how massive star clusters can form outside starbursts and without a considerable field population. Based on observations taken at the European Southern Observatory, Cerro Paranal, Chile, under the programme 082.B-0680, 076.B-0154, 065.N-0166, 065.N-0459.

  19. X-ray insights into star and planet formation.

    PubMed

    Feigelson, Eric D

    2010-04-20

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.

  20. X-ray insights into star and planet formation

    PubMed Central

    Feigelson, Eric D.

    2010-01-01

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197

  1. Star cluster formation history along the minor axis of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.; Cole, Andrew A.; Emptage, Bryn

    2018-01-01

    We analysed Washington CMT1 photometry of star clusters located along the minor axis of the Large Magellanic Cloud (LMC), from the LMC optical centre up to ∼39° outwards to the North-West. The data base was exploited in order to search for new star cluster candidates, to produce cluster CMDs cleaned from field star contamination and to derive age estimates for a statistically complete cluster sample. We confirmed that 146 star cluster candidates are genuine physical systems, and concluded that an overall ∼30 per cent of catalogued clusters in the surveyed regions are unlikely to be true physical systems. We did not find any new cluster candidates in the outskirts of the LMC (deprojected distance ≳ 8°). The derived ages of the studied clusters are in the range 7.2 < log(t yr-1) ≤ 9.4, with the sole exception of the globular cluster NGC 1786 (log(t yr-1) = 10.10). We also calculated the cluster frequency for each region, from which we confirmed previously proposed outside-in formation scenarios. In addition, we found that the outer LMC fields show a sudden episode of cluster formation (log(t yr-1) ∼7.8-7.9) which continued until log(t yr-1) ∼7.3 only in the outermost LMC region. We link these features to the first pericentre passage of the LMC to the Milky Way (MW), which could have triggered cluster formation due to ram pressure interaction between the LMC and MW halo.

  2. Nuclear Rings in the IR: Hidden Super Star Clusters

    NASA Astrophysics Data System (ADS)

    Maoz, Dan

    1997-07-01

    We propose NICMOS broad-band {F160W, F187W} and Paschen Alpha {F187N} imaging of nuclear starburst rings in two nearby galaxies. We already have UV {F220W} FOC data, and are scheduled to obtain WFPC2 images in U, V, I, and Halpha+[NII] of these rings. The rings contain large populations of super star clusters similar to those recently discovered in other types of starburst systems. Nuclear rings contain large numbers of these clusters in relatively unobscured starburst environments. Measurement of the age, size, and stellar contents of the clusters can test the hypothesis that super star clusters are young globular clusters. Together with our UV and optical data, NICMOS images will provide the SED of numerous super star clusters over a decade in wavelength. Our already-approved observations will allow us to estimate, by comparison with evolutionary synthesis models, the masses and ages of the clusters. The proposed IR data will be sensitive to the number of supergiants {1.6 micron} and O-stars {Paschen Alpha} in each of the clusters. The observations will provide an independent determination of the reddening, mass, and age of each cluster. We expect to see in the IR numerous clusters that are obscured in the UV and optical. These clusters may be the younger ones, which are still embedded in their molecular clouds. By measuring the mass, age, and size of a large number of clusters, we can actually obtain an evolutionary picture of these objects at different stages in their lives.

  3. Rotation periods of open-cluster stars, 3

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Shetrone, Matthew D.; Dasgupta, Amil; Backman, Dana E.; Laaksonen, Bentley D.; Baker, Shawn W.; Marschall, Laurence A.; Whitney, Barbara A.; Kuijken, Konrad; Stauffer, John R.

    1995-01-01

    We present the results from a photometric monitoring program of 15 open cluster stars and one weak-lined T Tauri star during late 1993/early 1994. Several show rotators which are members of the Alpha Persei, Pleiades, and Hyades open clusters have been monitored and period estimates derived. Using all available Pleiades stars with photometric periods together with current X-ray flux measurements, we illustrate the X-ray activity/rotation relation among Pleiades late-G/K dwarfs. The data show a clear break in the rotation-activity relation around P approximately 6-7 days -- in general accordance with previous results using more heterogeneous samples of G/K stars.

  4. Early Results from Star Date: M83 - A Citizen Science Project to Age Date Star Clusters in the Southern Pinwheel Galaxy

    NASA Astrophysics Data System (ADS)

    Heartley, Jeremy; Whitmore, B. C.; Blair, W. P.; Christian, C. A.; Donaldson, T.; Hammer, D.; Smith, S.; Viana, A.

    2014-01-01

    The M83 Citizen Science Project is a collaborative effort currently in development between the Space Telescope Science Institute (STScI) and Zooniverse under the guidance of Dr. Brad Whitmore as part of Cy 19 proposal 12513 (PI - Dr. William Blair). This unique citizen science project will allow users to analyze individual star clusters within The Southern Pinwheel Galaxy, M83. The project will show users color-composite images taken with Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (HST) and ask them to estimate the age of the star cluster. Through a multistage process, the project will educate and familiarize the user with the appearance of each age category based on the presence and shape of H-alpha emission, degree of resolution of the individual stars, and color of the cluster. (Whitmore et al. 2011). Additionally, the project will involve the actual measurement of the star cluster and H-alpha cloud radii to be used for further assessment and reinforcement of age. The data from this project and the statistics it yields will quantify these ages which can then be used to inform the debate between universal and environmental models of star cluster formation and destruction in galaxies. The tentative launch date is December 2013, therefore early results should be available at the time of the conference.

  5. Black Widow Nebula Hiding in the Dust

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In this Spitzer image, the two opposing bubbles are being formed in opposite directions by the powerful outflows from massive groups of forming stars. The baby stars can be seen as specks of yellow where the two bubbles overlap.

    When individual stars form from molecular clouds of gas and dust they produce intense radiation and very strong particle winds. Both the radiation and the stellar winds blow the dust outward from the star creating a cavity or, bubble.

    In the case of the Black Widow Nebula, astronomers suspect that a large cloud of gas and dust condensed to create multiple clusters of massive star formation. The combined winds from these groups of large stars probably blew out bubbles into the direction of least resistance, forming a double bubble.

    The infrared image was captured by the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) Legacy project. The Spitzer picture is a four-channel false-color composite, showing emission from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8.0 microns (red).

  6. Collaboration patterns in the German political science co-authorship network.

    PubMed

    Leifeld, Philip; Wankmüller, Sandra; Berger, Valentin T Z; Ingold, Karin; Steiner, Christiane

    2017-01-01

    Research on social processes in the production of scientific output suggests that the collective research agenda of a discipline is influenced by its structural features, such as "invisible colleges" or "groups of collaborators" as well as academic "stars" that are embedded in, or connect, these research groups. Based on an encompassing dataset that takes into account multiple publication types including journals and chapters in edited volumes, we analyze the complete co-authorship network of all 1,339 researchers in German political science. Through the use of consensus graph clustering techniques and descriptive centrality measures, we identify the ten largest research clusters, their research topics, and the most central researchers who act as bridges and connect these clusters. We also aggregate the findings at the level of research organizations and consider the inter-university co-authorship network. The findings indicate that German political science is structured by multiple overlapping research clusters with a dominance of the subfields of international relations, comparative politics and political sociology. A small set of well-connected universities takes leading roles in these informal research groups.

  7. Parameters of oscillation generation regions in open star cluster models

    NASA Astrophysics Data System (ADS)

    Danilov, V. M.; Putkov, S. I.

    2017-07-01

    We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.

  8. Search for OB stars running away from young star clusters. I. NGC 6611

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  9. Neutron stars and millisecond pulsars from accretion-induced collapse in globular clusters

    NASA Technical Reports Server (NTRS)

    Bailyn, Charles D.; Grindlay, Jonathan E.

    1990-01-01

    This paper examines the limits on the number of millisecond pulsars which could be formed in globular clusters by the generally accepted scenario (in which a neutron star is created by the supernova of an initially massive star and subsequently captures a companion to form a low-mass X-ray binary which eventually becomes a millisecond pulsar). It is found that, while the number of observed low-mass X-ray binaries can be adequately explained in this way, the reasonable assumption that the pulsar luminosity function in clusters extends below the current observational limits down to the luminosity of the faintest millisecond pulsars in the field suggests a cluster population of millisecond pulsars which is substantially larger than the standard model can produce. Alleviating this problem by postulating much shorter lifetimes for the X-ray binaries requires massive star populations sufficiently large that the mass loss resulting from their evolution would be likely to unbind the cluster. It is argued that neutron star formation in globular clusters by accretion-induced collapse of white dwarfs may resolve the discrepancy in birthrates.

  10. Active galactic nuclei. IV - Supplying black hole clusters by tidal disruption and by tidal capture of stars

    NASA Technical Reports Server (NTRS)

    Stoeger, W. R.; Pacholczyk, A. G.; Stepinski, T. F.

    1992-01-01

    The extent to which individual holes in a cluster of black holes with a mass spectrum can liberate and accrete the resulting material by tidally disrupting stars they encounter, or by capturing stars as binary companions is studied. It is found that the smaller black holes in 'the halo' of such clusters can adequately supply themselves to the level M-dot sub h or greater than 0.0001(M-dot sub h) sub crit, and up to 0.05(M-dot sub h)sub crit for the smallest holes, by tidal disruption, as long as the cluster is embedded in a distribution of stars of relatively high density (not less than 0.1M sub cl/cu pc), and as long as the entire cluster of stars is not too compact (not less than 0.5 pc). Consideration is given to modifications this 'internal' mode of supply introduces in the spectrum emitted by such black hole clusters, and to the current status of their viability as models for AGN and QSOs in light of dynamical studies by Quinlan and Shapiro (1987, 1989).

  11. The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae

    NASA Astrophysics Data System (ADS)

    Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim

    2017-04-01

    We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ˜5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.

  12. A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is amore » Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the secondmore » generation (SG) stars. Our sample has an average [Fe/H] = −2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.« less

  14. STAR FORMATION HISTORY OF THE MILKY WAY HALO TRACED BY THE OOSTERHOFF DICHOTOMY AMONG GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Sohee; Lee, Young-Wook, E-mail: ywlee2@yonsei.ac.kr

    2015-06-22

    In our recent investigation of the Oosterhoff dichotomy in the multiple population paradigm, we have suggested that the RR Lyrae variables in the globular clusters (GCs) of Oosterhoff groups I, II, and III are produced mostly by first, second, and third generation stars (G1, G2, and G3), respectively. Here we show, for the first time, that the observed dichotomies in the inner and outer halo GCs can be naturally reproduced when these models are extended to all metallicity regimes, while maintaining reasonable agreements in the horizontal-branch type versus [Fe/H] correlations. In order to achieve this, however, specific star formation historiesmore » are required for the inner and outer halos. In the inner halo GCs, the star formation commenced and ceased earlier with a relatively short formation timescale between the subpopulations (∼0.5 Gyr), while in the outer halo, the formation of G1 was delayed by ∼0.8 Gyr with a more extended timescale between G1 and G2 (∼1.4 Gyr). This is consistent with the dual origin of the Milky Way halo. Despite the difference in detail, our models show that the Oosterhoff period groups observed in both outer and inner halo GCs are all manifestations of the “population-shift” effect within the instability strip, for which the origin can be traced back to the two or three discrete episodes of star formation in GCs.« less

  15. Interstellar Extinction in 20 Open Star Clusters

    NASA Astrophysics Data System (ADS)

    Rangwal, Geeta; Yadav, R. K. S.; Durgapal, Alok K.; Bisht, D.

    2017-12-01

    The interstellar extinction law in 20 open star clusters namely, Berkeley 7, Collinder 69, Hogg 10, NGC 2362, Czernik 43, NGC 6530, NGC 6871, Bochum 10, Haffner 18, IC 4996, NGC 2384, NGC 6193, NGC 6618, NGC 7160, Collinder 232, Haffner 19, NGC 2401, NGC 6231, NGC 6823, and NGC 7380 have been studied in the optical and near-IR wavelength ranges. The difference between maximum and minimum values of E(B - V) indicates the presence of non-uniform extinction in all the clusters except Collinder 69, NGC 2362, and NGC 2384. The colour excess ratios are consistent with a normal extinction law for the clusters NGC 6823, Haffner 18, Haffner 19, NGC 7160, NGC 6193, NGC 2401, NGC 2384, NGC 6871, NGC 7380, Berkeley 7, Collinder 69, and IC 4996. We have found that the differential colour-excess ΔE(B - V), which may be due to the occurrence of dust and gas inside the clusters, decreases with the age of the clusters. A spatial variation of colour excess is found in NGC 6193 in the sense that it decreases from east to west in the cluster region. For the clusters Berkeley 7, NGC 7380, and NGC 6871, a dependence of colour excess E(B - V) with spectral class and luminosity is observed. Eight stars in Collinder 232, four stars in NGC 6530, and one star in NGC 6231 have excess flux in near-IR. This indicates that these stars may have circumstellar material around them.

  16. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  17. New Halo Stars of the Galactic Globular Clusters M3 and M13 in the LAMOST DR1 Catalog

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2016-10-01

    M3 and M13 are Galactic globular clusters with previous reports of surrounding stellar halos. We present the results of a search for members and extratidal cluster halo stars within and outside of the tidal radius of these clusters in the LAMOST Data Release 1. We find seven candidate cluster members (inside the tidal radius) of both M3 and M13, respectively. In M3 we also identify eight candidate extratidal cluster halo stars at distances up to ˜9.8 times the tidal radius, and in M13 we identify 12 candidate extratidal cluster halo stars at distances up to ˜13.8 times the tidal radius. These results support previous indications that both M3 and M13 are surrounded by extended stellar halos, and we find that the GC destruction rates corresponding to the observed mass loss are generally significantly higher than theoretical studies predict.

  18. COCOA: Simulating Observations of Star Cluster Simulations

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2017-03-01

    COCOA (Cluster simulatiOn Comparison with ObservAtions) creates idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. The code can simulate optical observations from simulation snapshots in which positions and magnitudes of objects are known. The parameters for simulating the observations can be adjusted to mimic telescopes of various sizes. COCOA also has a photometry pipeline that can use standalone versions of DAOPHOT (ascl:1104.011) and ALLSTAR to produce photometric catalogs for all observed stars.

  19. Fluorine Abundances of AGB Stars in Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Hren, A.; Lebzelter, T.; Aringer, B.; Hinkle, K. H.; Nowotny, W.

    2015-08-01

    We have measured the abundance of fluorine, [F/Fe], in a number of AGB stars in stellar clusters have correlated the results with their C/O ratios. This allows us to investigate the change in the fluorine abundance along the evolution on the giant branch. The target list includes primarily O-rich stars in three LMC globular clusters - NGC 1806, NGC 1846 and NGC 1978 - as well as Rup 106 and 47 Tuc in our Galaxy. The observational data were obtained with the PHOENIX spectrograph, and the COMA code was used for modelling the synthetic spectra. Within individual clusters, we find consistent [F/Fe] values at similar C/O for most of our target stars.

  20. Astrometry in the globular cluster M13. II. Membership probabilities from old proper motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cudworth, K.

    Astrometric cluster membership probabilities have been derived from proper motions measured by other authors for stars in the region of the globular cluster M13. Several stars of individual interest are discussed.

  1. Baryonic dark clusters in galactic halos and their observable consequences

    NASA Technical Reports Server (NTRS)

    Wasserman, Ira; Salpeter, Edwin E.

    1994-01-01

    We consider the possibility that approximately 10% of the mass of a typical galaxy halo is in the form of massive (approximately 10(exp 7) solar masses), compact (escape speeds approximately 100 km/s) baryonic clusters made of neutron stars (approximately 10% by mass), black holes (less than or approximately equal to 1%) and brown dwarfs, asteroids, and other low-mass debris (approximately 90%). These general properties are consistent with several different observational and phenomenological constraints on cluster properties subject to the condition that neutron stars comprise approximately 1% of the total halo mass. Such compact, dark clusters could be the sites of a variety of collisional phenomena involving neutron stars. We find that integrated out to the Hubble distance approximately one neutron star-neutron star or neutron star-black hole collision occurs daily. Of order 0.1-1 asteroid-neutron star collisions may also happen daily in the halo of the Milky Way if there is roughly equal cluster mass per logarithmic particle mass interval between asteroids and brown dwarfs. These event rates are comparable to the frequency of gamma-ray burst detections by the Burst and Transient Source Experiment (BATSE) on the Compton Observatory, implying that if dark halo clusters are the sites of most gamma-ray bursts, perhaps approximately 90% of all bursts are extragalactic, but approximately 10% are galactic. It is possible that dark clusters of the kind discussed here could be detected directly by the Infrared Space Observatory (ISO) or Space Infrared Telescope Facility (SIRTF). If the clusters considered in this paper exist, they should produce spatially correlated gravitational microlensing of stars in the Large Magellanic Cloud (LMC). If 10% of the halo is in the form of dark baryonic clusters, and the remaining 90% is in brown dwarfs and other dark objects which are either unclustered or collected into low-mass clusters, then we expect that two events within approximately 1 min of one another are likely to be seen after a total of order 20-30 microlenses have been detected.

  2. Hundreds of new cluster candidates in the VISTA Variables in the Vía Láctea survey DR1

    NASA Astrophysics Data System (ADS)

    Barbá, R. H.; Roman-Lopes, A.; Nilo Castellón, J. L.; Firpo, V.; Minniti, D.; Lucas, P.; Emerson, J. P.; Hempel, M.; Soto, M.; Saito, R. K.

    2015-09-01

    Context. VISTA variables in the Vía Láctea is an ESO Public survey dedicated to scanning the bulge and an adjacent portion of the Galactic disk in the fourth quadrant using the VISTA telescope and its near-infrared camera VIRCAM. One of the leading goals of the VVV survey is to contribute to knowledge of the star cluster population of the Milky Way. Aims: To improve the census of Galactic star clusters, we performed a systematic and careful scan of the JHKs images of the Galactic plane section of the VVV survey. Methods: Our detection procedure is based on a combination of stellar density maps and visual inspection of promising features in the J-, H-, and KS-band images. The material examined are VVV JHKS color-composite images corresponding to Data Release 1 of VVV. Results: We report the discovery of 493 new infrared star cluster candidates. The analysis of the spatial distribution show that the clusters are very concentrated in the Galactic plane, presenting some local maxima around the position of large star-forming complexes, such as G305, RCW 95, and RCW 106. The vast majority of the new star cluster candidates are quite compact and generally surrounded by bright and/or dark nebulosities. IRAS point sources are associated with 59% of the sample, while 88% are associated with MSX point sources. GLIMPSE 8 μm images of the cluster candidates show a variety of morphologies, with 292 clusters dominated by knotty sources, while 361 clusters show some kind of nebulosity in this wavelength regime. Spatial cross-correlation with young stellar objects, masers, and extended green-object catalogs suggest that a large sample of the new cluster candidates are extremely young. In particular, 104 star clusters associated with methanol masers are excellent candidates for ongoing massive star formation. Also, there is a special set of sixteen cluster candidates that present clear signposts of star-forming activity having associated simultaneosly dark nebulae, young stellar objects, extended green objects, and masers. Full Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A120

  3. The Difference Between Clusters and Groups: A Journey from Cluster Cores to Their Outskirts and Beyond

    NASA Astrophysics Data System (ADS)

    Bower, Richard G.; Balogh, Michael L.

    In this review, we take the reader on a journey. We start by looking at the properties of galaxies in the cores of rich clusters. We have focused on the overall picture: star formation in clusters is strongly suppressed relative to field galaxies at the same redshift. We will argue that the increasing activity and blue populations of clusters with redshift results from a greater level of activity in field galaxies rather than a change in the transformation imposed by the cluster environment. With this in mind, we travel out from the cluster, focusing first on the properties of galaxies in the outskirts of clusters and then on galaxies in isolated groups. At low redshift, we are able to efficiently probe these environments using the Sloan Digital Sky Survey and 2dF redshift surveys. These allow an accurate comparison of galaxy star formation rates in different regions. The current results show a strong suppression of star formation above a critical threshold in local density. The threshold seems similar regardless of the overall mass of the system. At low redshift at least, only galaxies in close, isolated pairs have their star formation rate boosted above the global average. At higher redshift, work on constructing homogeneous catalogs of galaxies in groups and in the infall regions of clusters is still at an early stage. In the final section, we draw these strands together, summarizing what we can deduce about the mechanisms that transform star-forming field galaxies into their quiescent cluster counterparts. We discuss what we can learn about the impact of environment on the global star formation history of the Universe.

  4. The contribution of dissolving star clusters to the population of ultra faint objects in the outer halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Contenta, Filippo; Gieles, Mark; Balbinot, Eduardo; Collins, Michelle L. M.

    2017-04-01

    In the last decade, several ultra faint objects (UFOs, MV ≳ -3.5) have been discovered in the outer halo of the Milky Way. For some of these objects, it is not clear whether they are star clusters or (ultra faint) dwarf galaxies. In this work, we quantify the contribution of star clusters to the population of UFOs. We extrapolated the mass and Galactocentric radius distribution of the globular clusters using a population model, finding that the Milky Way contains about 3.3^{+7.3}_{-1.6} star clusters with MV ≳ -3.5 and Galactocentric radius ≥20 kpc. To understand whether dissolving clusters can appear as UFOs, we run a suite of direct N-body models, varying the orbit, the Galactic potential, the binary fraction and the black hole (BH) natal kick velocities. In the analyses, we consider observational biases such as luminosity limit, field stars and line-of-sight projection. We find that star clusters contribute to both the compact and the extended population of UFOs: clusters without BHs appear compact with radii ˜5 pc, while clusters that retain their BHs after formation have radii ≳ 20 pc. The properties of the extended clusters are remarkably similar to those of dwarf galaxies: high-inferred mass-to-light ratios due to binaries, binary properties mildly affected by dynamical evolution, no observable mass segregation and flattened stellar mass function. We conclude that the slope of the stellar mass function as a function of Galactocentric radius and the presence/absence of cold streams can discriminate between dark matter-free and dark matter-dominated UFOs.

  5. Suppressed star formation by a merging cluster system

    DOE PAGES

    Mansheim, A. S.; Lemaux, B. C.; Tomczak, A. R.; ...

    2017-03-24

    We examine the effects of an impending cluster merger on galaxies in the large scale structure (LSS) RX J0910 at z =1.105. Using multi-wavelength data, including 102 spectral members drawn from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey and precise photometric redshifts, we calculate star formation rates and map the specific star formation rate density of the LSS galaxies. These analyses along with an investigation of the color-magnitude properties of LSS galaxies indicate lower levels of star formation activity in the region between the merging clusters relative to the outskirts of the system. We suggest thatmore » gravitational tidal forces due to the potential of the merging halos may be the physical mechanism responsible for the observed suppression of star formation in galaxies caught between the merging clusters.« less

  6. THE VERY MASSIVE STAR CONTENT OF THE NUCLEAR STAR CLUSTERS IN NGC 5253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L. J.; Crowther, P. A.; Calzetti, D.

    2016-05-20

    The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters, separated by a projected distance of 5 pc. One cluster (#5) coincides with the peak of the H α emission and the other (#11) with a massive ultracompact H ii region. A recent analysis of these clusters shows that they have a photometric age of 1 ± 1 Myr, in apparent contradiction with the age of 3–5 Myr inferred from the presence of Wolf-Rayet features in the cluster #5 spectrum. We examine Hubble Space Telescope ultraviolet and Very Large Telescope optical spectroscopy ofmore » #5 and show that the stellar features arise from very massive stars (VMSs), with masses greater than 100 M {sub ⊙}, at an age of 1–2 Myr. We further show that the very high ionizing flux from the nuclear clusters can only be explained if VMSs are present. We investigate the origin of the observed nitrogen enrichment in the circumcluster ionized gas and find that the excess N can be produced by massive rotating stars within the first 1 Myr. We find similarities between the NGC 5253 cluster spectrum and those of metal-poor, high-redshift galaxies. We discuss the presence of VMSs in young, star-forming galaxies at high redshift; these should be detected in rest-frame UV spectra to be obtained with the James Webb Space Telescope . We emphasize that population synthesis models with upper mass cutoffs greater than 100 M {sub ⊙} are crucial for future studies of young massive star clusters at all redshifts.« less

  7. A model for the infrared emission from an OB star cluster environment

    NASA Technical Reports Server (NTRS)

    Leisawitz, D.

    1991-01-01

    A model for the infrared emission from the neighborhood of an OB star cluster is described. The distribution of gas and dust around the stars, properties of the dust, and the cluster and interstellar radiation fields are variable. The model can be applied to regions around clusters embedded to various degrees in their parental molecular clouds (i.e., compact H II regions, blister-type H II regions, and the tenuous H II regions ionized by naked O stars). The model is used to simulate IRAS observations of a typical blister H II region. Infrared surface brightness and spectral energy distributions are predicted and the impact of limited spatial resolution is illustrated. The model results are shown to be consistent with observations of the exemplary outer Galaxy OB cluster NGC 7380. It is planned to use the model as a diagnostic tool to probe the physical conditions and dust properties in star-formation regions and, ultimately, in an interpretation of the spectral energy distributions of spiral galaxies.

  8. Open clusters. II. Fundamental parameters of B stars in Collinder 223, Hogg 16, NGC 2645, NGC 3114, and NGC 6025

    NASA Astrophysics Data System (ADS)

    Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.

    2015-05-01

    Context. The knowledge of accurate values of effective temperature, surface gravity, and luminosity of stars in open clusters is very important not only to derive cluster distances and ages but also to discuss the stellar structure and evolution. Unfortunately, stellar parameters are still very scarce. Aims: Our goal is to study five open clusters to derive stellar parameters of the B and Be star population and discuss the cluster properties. In a near future, we intend to gather a statistically relevant samples of Be stars to discuss their origin and evolution. Methods: We use the Barbier-Chalonge-Divan spectrophotometric system, based on the study of low-resolution spectra around the Balmer discontinuity, since it is independent of the interstellar and circumstellar extinction and provides accurate Hertzsprung-Russell diagrams and stellar parameters. Results: We determine stellar fundamental parameters, such as effective temperatures, surface gravities, spectral types, luminosity classes, absolute and bolometric magnitudes and colour gradient excesses of the stars in the field of Collinder 223, Hogg 16, NGC 2645, NGC 3114, and NGC 6025. Additional information, mainly masses and ages of cluster stellar populations, is obtained using stellar evolution models. In most cases, stellar fundamental parameters have been derived for the first time. We also discuss the derived cluster properties of reddening, age and distance. Conclusions: Collinder 223 cluster parameters are overline{E(B-V) = 0.25 ± 0.03} mag and overline{(mv - M_v)0 = 11.21 ± 0.25} mag. In Hogg 16, we clearly distinguish two groups of stars (Hogg 16a and Hogg 16b) with very different mean true distance moduli (8.91 ± 0.26 mag and 12.51 ± 0.38 mag), mean colour excesses (0.26 ± 0.03 mag and 0.63 ± 0.08 mag), and spectral types (B early-type and B late-/A-type stars, respectively). The farthest group could be merged with Collinder 272. NGC 2645 is a young cluster (<14 Myr) with overline{E(B-V) = 0.58 ± 0.05} mag and overline{(mv - M_v)0 = 12.18 ± 0.30} mag. The cluster parameters of NGC 3114 are overline{E(B-V) = 0.10 ± 0.01} mag and overline{(mv - M_v)0 = 9.20 ± 0.15} mag. This cluster presents an important population of Be star, but it is difficult to define the cluster membership of stars because of the high contamination by field stars or the possible overlapping with a nearby cluster. Finally, we derive the following cluster parameters of NGC 6025: overline{E(B-V) = 0.34 ± 0.02} mag, overline{(mv - M_v)0 = 9.25 ± 0.17} mag, and an age between 40 Myr and 69 Myr. In all the cases, new Be candidate stars are reported based on the appearance of a second Balmer discontinuity. Observations taken at CASLEO, operating under agreement of CONICET and the Universities of La Plata, Córdoba and San Juan, Argentina.

  9. Not Alone: Tracing the Origins of Very-Low-Mass Stars and Brown Dwarfs Through Multiplicity Studies

    NASA Astrophysics Data System (ADS)

    Burgasser, A. J.; Reid, I. N.; Siegler, N.; Close, L.; Allen, P.; Lowrance, P.; Gizis, J.

    The properties of multiple stellar systems have long provided important empirical constraints for star-formation theories, enabling (along with several other lines of evidence) a concrete, qualitative picture of the birth and early evolution of normal stars. At very low masses (VLM; M ? 0.1 solar mass), down to and below the hydrogen-burning minimum mass, our understanding of formation processes is not as clear, with several competing theories now under consideration. One means of testing these theories is through the empirical characterization of VLM multiple systems. Here, we review the results of various VLM multiplicity studies to date. These systems can be generally characterized as closely separated (93% have projected separations ? < 20 AU), near equal-mass (77% have M2/M1 ? 0.8) and occurring infrequently (perhaps 10-30% of systems are binary). Both the frequency and maximum separation of stellar and brown dwarf binaries steadily decrease for lower system masses, suggesting that VLM binary formation and/or evolution may be a mass-dependent process. There is evidence for a fairly rapid decline in the number of loosely bound systems below ~0.3 solar mass, corresponding to a factor of 10-20 increase in the minimum binding energy of VLM binaries as compared to more massive stellar binaries. This wide-separation "desert" is present among both field (~1-5 G.y.) and older (>100 m.y.) cluster systems, while the youngest (<10 m.y.) VLM binaries, particularly those in nearby, low-density star-forming regions, appear to have somewhat different systemic properties. We compare these empirical trends to predictions laid out by current formation theories, and outline future observational studies needed to probe the full parameter space of the lowest-mass multiple systems.

  10. Stellar Variability in the Intermediate Age Cluster NGC 1846

    NASA Astrophysics Data System (ADS)

    Pajkos, Michael A.; Salinas, Ricardo; Vivas, Anna Katherina; Strader, Jay; Contreras, Rodrigo

    2017-01-01

    The existence of multiple stellar populations in Galactic globular clusters is considered a widespread phenomenon, with only a few possible exceptions. In the LMC intermediate-age globular clusters, the presence of extended main sequence turn off points (MSTOs), initially interpreted as evidence for multiple stellar populations, is now under scrutiny and stellar rotation has emerged as an alternative explanation. Here we propose yet another ingredient to this puzzle: the fact that the MSTO of these clusters passes through the instability strip making stellar variability a new alternative to explain this phenomenon. We report the first in-depth characterization of the variability, at the MSTO level, in any LMC cluster, and assess the role of variability masquerading as multiple stellar populations. We used the Gemini-S/GMOS to obtain time series photometry of NGC 1846. Using differencing image analysis, we identified 90 variables in the r-band, 68 of which were also found in the g-band. Of these 68, 57 were δ-scuti—with 35 having full phase coverage and 22 without. The average full period (Pfull) was 1.93 ± 0.79 hours. Furthermore, two eclipsing binaries and two RR Lyrae identified by OGLE were recovered. We conclude that not enough variables were found to provide a statistically significant impact on the extended MSTO, nor to explain the bifurcation of MSTO in NGC 1846. But the effect of variable stars could still be a viable explanation on clusters where only a hint of a MS extension is seen.

  11. Gravitational Conundrum? Dynamical Mass Segregation versus Disruption of Binary Stars in Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan; Zheng, Yong; Deng, Licai; Hu, Yi; Kouwenhoven, M. B. N.; Wicker, James E.

    2013-03-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses, simply because of gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr old Large Magellanic Cloud cluster NGC 1818 exhibits tantalizing hints at the >~ 2σ level of significance (>3σ if we assume a power-law secondary-to-primary mass-ratio distribution) of an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 M ⊙) with increasing distance from the cluster center, specifically between the inner 10''-20'' (approximately equivalent to the cluster's core and half-mass radii) and the outer 60''-80''. If confirmed, then this will offer support for the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems—with relatively low binding energies compared to the kinetic energy of their stellar members—in star clusters, which we have access to here by virtue of the cluster's unique combination of youth and high stellar density.

  12. Runaway Massive Stars from R136: VFTS 682 is Very Likely a "Slow Runaway"

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung

    2012-02-01

    We conduct a theoretical study on the ejection of runaway massive stars from R136—the central massive, starburst cluster in the 30 Doradus complex of the Large Magellanic Cloud. Specifically, we investigate the possibility of the very massive star (VMS) VFTS 682 being a runaway member of R136. Recent observations of the above VMS, by virtue of its isolated location and its moderate peculiar motion, have raised the fundamental question of whether isolated massive star formation is indeed possible. We perform the first realistic N-body computations of fully mass-segregated R136-type star clusters in which all the massive stars are in primordial binary systems. These calculations confirm that the dynamical ejection of a VMS from an R136-like cluster, with kinematic properties similar to those of VFTS 682, is common. Hence, the conjecture of isolated massive star formation is unnecessary to account for this VMS. Our results are also quite consistent with the ejection of 30 Dor 016, another suspected runaway VMS from R136. We further note that during the clusters' evolution, mergers of massive binaries produce a few single stars per cluster with masses significantly exceeding the canonical upper limit of 150 M ⊙. The observations of such single super-canonical stars in R136, therefore, do not imply an initial mass function with an upper limit greatly exceeding the accepted canonical 150 M ⊙ limit, as has been suggested recently, and they are consistent with the canonical upper limit.

  13. Interacting star clusters in the Large Magellanic Cloud. Overmerging problem solved by cluster group formation

    NASA Astrophysics Data System (ADS)

    Leon, Stéphane; Bergond, Gilles; Vallenari, Antonella

    1999-04-01

    We present the tidal tail distributions of a sample of candidate binary clusters located in the bar of the Large Magellanic Cloud (LMC). One isolated cluster, SL 268, is presented in order to study the effect of the LMC tidal field. All the candidate binary clusters show tidal tails, confirming that the pairs are formed by physically linked objects. The stellar mass in the tails covers a large range, from 1.8x 10(3) to 3x 10(4) \\msun. We derive a total mass estimate for SL 268 and SL 356. At large radii, the projected density profiles of SL 268 and SL 356 fall off as r(-gamma ) , with gamma = 2.27 and gamma =3.44, respectively. Out of 4 pairs or multiple systems, 2 are older than the theoretical survival time of binary clusters (going from a few 10(6) years to 10(8) years). A pair shows too large age difference between the components to be consistent with classical theoretical models of binary cluster formation (Fujimoto & Kumai \\cite{fujimoto97}). We refer to this as the ``overmerging'' problem. A different scenario is proposed: the formation proceeds in large molecular complexes giving birth to groups of clusters over a few 10(7) years. In these groups the expected cluster encounter rate is larger, and tidal capture has higher probability. Cluster pairs are not born together through the splitting of the parent cloud, but formed later by tidal capture. For 3 pairs, we tentatively identify the star cluster group (SCG) memberships. The SCG formation, through the recent cluster starburst triggered by the LMC-SMC encounter, in contrast with the quiescent open cluster formation in the Milky Way can be an explanation to the paucity of binary clusters observed in our Galaxy. Based on observations collected at the European Southern Observatory, La Silla, Chile}

  14. Westerlund 1: monolithic formation of a starburst cluster

    NASA Astrophysics Data System (ADS)

    Negueruela, Ignacio; Clark, J. Simon; Ritchie, Ben; Goodwin, Simon

    2015-08-01

    Westerlund 1 is in all likelihood the most massive young cluster in the Milky Way, with a mass on the order of 105 Msol. We have been observing its massive star population for ten years, measuring radial velocity changes for a substantial fraction of its OB stars and evolved supergiants. The properties of the evolved population are entirely consisting with a single burst of star formation, in excellent agreement with the results of studies based on the lower-mass population.Here we will present two new studies of the cluster: 1) A direct measurement of its average radial velocity and velocity dispersion based on individual measurements for several dozen stars with constant radial velocity and 2) A search for massive stars in its immediate neighbourhood using multi-object spectroscopy.The results of these two studies show that Westerlund 1 is decidedly subvirial and has a systemic radial velocity significantly different from that of nearby gas, which was assumed to provide a dynamical distance by previous authors. Moreover, the dynamical distance is inconsistent with the properties of the high-mass stellar population. In addition, we find that the cluster is completely isolated, with hardly any massive star in its vicinity that could be associated in terms of distance modulus or radial velocity. The cluster halo does not extend much further than five parsec away from the centre. All these properties are very unusual among starburst clusters in the Local Universe, which tend to form in the context of large star-forming regions.Westerlund 1 is thus the best example we have of a starburst cluster formed monolithically.

  15. The Solar-Type Hard-Binary Frequency and Distributions of Orbital Parameters in the Open Cluster M37

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Meibom, Soren; Barnes, Sydney A.; Mathieu, Robert D.

    2014-02-01

    Binary stars, and particularly the short-period ``hard'' binaries, govern the dynamical evolution of star clusters and determine the formation rates and mechanisms for exotic stars like blue stragglers and X-ray sources. Understanding the near-primordial hard-binary population of star clusters is of primary importance for dynamical models of star clusters, which have the potential to greatly advance our understanding of star cluster evolution. Yet the binary frequencies and distributions of binary orbital parameters (period, eccentricity, etc.) for young coeval stellar populations are poorly known, due to a lack of necessary observations. The young (~540 Myr) open cluster M37 hosts a rich binary population that can be used to empirically define these initial conditions. Importantly, this cluster has been the target of a comprehensive WIYN/Hydra radial-velocity (RV) survey, from which we have already identified a nearly complete sample of 329 solar-type (1.5 <=M [M_⊙] <=1.0) members in M37. Of these stars, 82 show significant RV variability, indicative of a binary companion. We propose to build upon these data with a multi-epoch RV survey using WIYN/Hydra to derive kinematic orbital solutions for these 82 binaries in M37. This project was granted time in 2013B and scheduled for later this year. We anticipate that about half of the detected binaries in M37 will acquire enough RV measurements (>=10) in 2013B to begin searching for orbital solutions. With this proposal and perhaps one additional semester we should achieve >=10 RV measurements for the remaining binaries.

  16. X-ray studies of coeval star samples. II. The Pleiades cluster as observed with the Einstein Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micela, G.; Sciortino, S.; Vaiana, G.S.

    1990-01-01

    Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that ofmore » Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars. 77 refs.« less

  17. Star formation activity in the southern Galactic H II region G351.63-1.25

    NASA Astrophysics Data System (ADS)

    Vig, S.; Ghosh, S. K.; Ojha, D. K.; Verma, R. P.; Tamura, M.

    2014-06-01

    The southern Galactic high-mass star-forming region, G351.63-1.25, is an H II region-molecular cloud complex with a luminosity of ˜2.0 × 105 L⊙, located at a distance of 2.4 kpc from the Sun. In this paper, we focus on the investigation of the associated H II region, embedded cluster and the interstellar medium in the vicinity of G351.63-1.25. We address the identification of exciting source(s) as well as the census of the stellar populations, in an attempt to unfold star formation activity in this region. The ionized gas distribution has been mapped using the Giant Metrewave Radio Telescope, India, at three frequencies: 1280, 610 and 325 MHz. The H II region shows an elongated morphology and the 1280 MHz map comprises six resolved high-density regions encompassed by diffuse emission spanning 1.4 × 1.0 pc2. Based on the measurements of flux densities at multiple radio frequencies, the brightest ultracompact core has electron temperature Te˜7647 {±} 153 K and emission measure, EM˜2.0 {±} 0.8×107 cm-6 pc. The zero-age main-sequence spectral type of the brightest radio core is O7.5. We have carried out near-infrared observations in the JHKs bands using the SIRIUS camera on the 1.4 m Infrared Survey Facility telescope. The near-infrared images reveal the presence of a cluster embedded in nebulous fan-shaped emission. The log-normal slope of the K-band luminosity function of the embedded cluster is found to be ˜0.27 ± 0.03, and the fraction of the near-infrared excess stars is estimated to be 43 per cent. These indicate that the age of the cluster is consistent with ˜1 Myr. Other available data of this region show that the warm (mid-infrared) and cold (millimetre) dust emission peak at different locations indicating progressive stages of star formation process. The champagne flow model from a flat, thin molecular cloud is used to explain the morphology of radio emission with respect to the millimetre cloud and infrared brightness.

  18. Wide-Field Variability Survey of the Globular Cluster M 79 and a New Period-Luminosity Relation for SX Phe Stars

    NASA Astrophysics Data System (ADS)

    Kopacki, G.

    2015-03-01

    We present the results of a search for variable stars in a 26×39 arcmin2 field around globular cluster M 79 (NGC 1904). The search was made by means of an extended version of image subtraction, which allows us to analyze in a uniform manner CCD frames obtained with different telescopes and cameras of different sizes and resolutions. The search resulted in finding 20 new variable stars, among which 13 are cluster members. The members include one new RR Lyr star of subtype c, three SX Phe stars, and nine variable red giants. We also show that V7 is a W Vir star with a period of 13.985 d. Revised mean periods of RRab and RRc stars, ab=0.71 d and c=0.34 d, respectively, and relative percentage of RRc stars, Nc/(Nab+Nc)=45% confirm that M 79 belongs to the Oosterhoff II group of globular clusters. The mean V magnitude of the horizontal branch of M 79 based on ten RR Lyr stars has been estimated to be VHB=RR=16.11±0.03 mag. In one RRc star, V9, light changes with three close frequencies were detected, indicating excitation of nonradial modes. An SX Phe star, V18, is a double-mode pulsator with two radial modes excited, fundamental and first overtone. Moreover, we have discovered two SX Phe or δ Sct stars and one W UMa type system, all likely field objects. We also studied the period-luminosity relation for SX Phe stars. Using 62 fundamental and fundamentalized periods of radial double-mode and high-amplitude SX Phe stars known in Galactic globular clusters, we have derived the slope and zero point of this relation to be, -3.3±0.27 and 2.68±0.03 mag (at log(P/d)=-1.24), respectively.

  19. From the sun to the Galactic Center: dust, stars and black hole(s)

    NASA Astrophysics Data System (ADS)

    Fritz, Tobias

    2013-07-01

    The centers of galaxies are their own ultimate gravitational sinks. Massive black holes and star clusters as well as gas are especially likely to fall into the centers of galaxies by dynamical friction or dissipation. Many galactic centers harbor supermassive black holes (SMBH) and dense nuclear (star) clusters which possibly arrived there by these processes. Nuclear clusters can be formed in situ from gas, or from smaller star clusters which fall to the center. Since the Milky Way harbors both an SMBH and a nuclear cluster, both can be studied best in the Galactic Center (GC), which is the closest galactic nucleus to us. In Chapter 1, I introduce the different components of the Milky Way, and put these into the context of the GC. I then give an overview of relevant properties (e.g. star content and distribution) of the GC. Afterwards, I report the results of four different studies about the GC. In Chapter 2, I analyze the limitations of astrometry, one of the most useful methods for the study of the GC. Thanks to the high density of stars and its relatively small distance from us it is possible to measure the motions of thousands of stars in the GC with images, separated by few years only. I find two main limitations to this method: (1) for bright stars the not perfectly correctable distortion of the camera limits the accuracy, and (2) for the majority of the fainter stars, the main limitation is crowding from the other stars in the GC. The position uncertainty of faint stars is mainly caused by the seeing halos of bright stars. In the very center faint unresolvable stars are also important for the position uncertainty. In Chapter 3, I evaluate the evidence for an intermediate mass black hole in the small candidate cluster IRS13E within the GC. Intermediate mass black holes (IMBHs) have a mass between the two types of confirmed black hole: the stellar remnants and the supermassive black holes in the centers of galaxies. One possibility for! their formation is the collision of stars in a dense young st! ar cluster. Such a cluster could sink to the GC by dynamical friction. There it would consist of few bright stars like IRS13E. Firstly, I analyze the SEDs of the objects in IRS13E. The SEDs of most objects can be explained by pure dust emission. Thus, most objects in IRS13E are pure dust clumps and only three young stars. This reduces the significance of the 'cluster' IRS13E compared to the stellar background. Secondly, I obtain acceleration limits for these three stars. The non-detection of accelerations makes an IMBH an unlikely scenario in IRS13E. However, since its three stars form a comoving association, which is unlikely to form by chance, the nature of IRS13E is not yet settled. In the third study (Chapter 4) I measure and analyze the extinction curve toward the GC. The extinction is a contaminant for GC observations and therefore it is necessary to know the extinction toward the GC to determine the luminosity properties of its stars. I obtain the extinction curve by measuring the flux of the HII region in the GC in several infrared HII lines and in the unextincted radio continuum. I compare these ratios with the ratios expected from recombination physics and obtain extinctions at 22 different lines between 1 and 19 micron. For the K-band I derive A_Ks=2.62+/-0.11. The extinction curve follows a power law with a steep slope of -2.11+/-0.06 shortward of 2.8 micron. At longer wavelengths the extinction is grayer and there are absorption features from ices. The extinction curve is a tool to constrain the properties of cosmic dust between the sun and the GC. The extinction curve cannot be explained by dust grains consisting of carbonaceous and silicate grains only. In addition composite particles, which also contain ices are necessary to fit the extinction curve. In the final part of this thesis (Chapter 5) I look at the properties of most of the stars in the GC. These are the old stars that form the nuclear cluster of the Milky Way. I obtain the mass distribution and the light distribution of these stars. I ! find that the flattening of the stellar distribution increases outside 70''. This indicates that inside a nearly spherical nuclear cluster dominates and that the surrounding light belongs mostly to the nuclear disk. I dissect the light in two components and obtain for the nuclear cluster L_Ks=2.7*10^7 L_sun. I obtain proper motions for more than 10000 stars and radial velocities for more than 2400 stars. Using Jeans modeling I combine velocities and the radial profile to obtain within 100'' (4 pc) a mass of 6.02*10^6 M_sun and a total nuclear cluster mass of 12.88*10^6 M_sun. The Jeans modeling and various other evidence weakly favor a core in the extended mass compared to a cusp. The old star light shows a similar core. The mass to light ratio of the old stars of the nuclear cluster is consistent with the usual initial mass function in the Galaxy. This suggests that most stars in GC formed in the usual way, in a mode different from the origin of the youngest stars there.

  20. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks

    PubMed Central

    Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

    2017-01-01

    Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic. PMID:28245222

  1. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks.

    PubMed

    Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

    2017-01-01

    Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.

  2. The fate of NGC602, an intense region of star-formation in the Wing of the SMC

    NASA Astrophysics Data System (ADS)

    Sabbi, Elena

    2017-08-01

    This is a small 2 orbit proposal designed to measure the internal dynamics of NGC602, a small region of intense star formation in the Wing of the SMC, with a low gas and dust density that has been often considered an unfavorable place for star formation. Small regions of massive star formation are important to study for our understanding of the process of star and cluster formation, the ionization of the interstellar medium, and the injection of energy and momentum into their host galaxy. By combining our new observations with archival ACS/WFC data acquired in July 2004, we will be able to measure the relative proper motions of the NGC602 sub-structures better than 2.3 km/s and investigate the nature of the apparently isolated massive stars found around NGC602. This study will provide unique observational data to characterize the early phase of cluster evolution and test cluster formation theories. It will also address significant open issues in star formation, cluster dynamics and the origin of isolated supernovae and GRBs.

  3. New red giant star in the Kepler open cluster NGC 6819

    NASA Astrophysics Data System (ADS)

    Komucyeya, E.; Abedigamba, O. P.; Jurua, E.; Anguma, S. K.

    2018-05-01

    A recent study indicated that 39 red giant stars showing solar-like oscillations were discovered in the field of Kepleropen cluster NGC 6819. The study was based on photometric distance estimates of 27 stars out of the 39. Using photometric method alone may not be adequate to confirm the membership of these stars. The stars were not previously known in literature to belong to the open cluster NGC 6819. In this study, Kepler data was used to study the membership of the 27 stars. A plot of apparent magnitude as a function of the large frequency separation, supplemented with the proper motion and radial velocity values from literature revealed KIC 5112840 to lie on the same plane with the well known members of the cluster. Echelle diagram was constructed, and the median gravity-mode period spacings (ΔP) calculated for KIC 5112840. A value of ΔP = 66.3 s was obtained, thus placing the red giant star KIC 5112840 on the Red Giant Branch stage of evolution. Our evolutionary status result using the approach in this paper is in agreement with what is in the available literature.

  4. A heavy-metal home

    NASA Image and Video Library

    2016-05-30

    This 10.5-billion-year-old globular cluster, NGC 6496, is home to heavy-metal stars of a celestial kind! The stars comprising this spectacular spherical cluster are enriched with much higher proportions of metals — elements heavier than hydrogen and helium, are in astronomy curiously known as metals — than stars found in similar clusters. A handful of these high-metallicity stars are also variable stars, meaning that their brightness fluctuates over time. NGC 6496 hosts a selection of long-period variables — giant pulsating stars whose brightness can take up to, and even over, a thousand days to change — and short-period eclipsing binaries, which dim when eclipsed by a stellar companion. The nature of the variability of these stars can reveal important information about their mass, radius, luminosity, temperature, composition, and evolution, providing astronomers with measurements that would be difficult or even impossible to obtain through other methods. NGC 6496 was discovered in 1826 by Scottish astronomer James Dunlop. The cluster resides at about 35 000 light-years away in the southern constellation of Scorpius (The Scorpion).

  5. What drives the formation of massive stars and clusters?

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram; Meixner, Margaret; Roman-Duval, Julia; Evans, Neal J., II; Rahman, Mubdi; Zinnecker, Hans; Nayak, Omnarayani; Bally, John; Jones, Olivia C.; Indebetouw, Remy

    2018-01-01

    Galaxy-wide surveys allow to study star formation in unprecedented ways. In this talk, I will discuss our analysis of the Large Magellanic Cloud (LMC) and the Milky Way, and illustrate how studying both the large and small scale structure of galaxies are critical in addressing the question: what drives the formation of massive stars and clusters?I will show that ‘turbulence-regulated’ star formation models do not reproduce massive star formation properties of GMCs in the LMC and Milky Way: this suggests that theory currently does not capture the full complexity of star formation on small scales. I will also report on the discovery of a massive star forming complex in the LMC, which in many ways manifests itself as an embedded twin of 30 Doradus: this may shed light on the formation of R136 and 'Super Star Clusters' in general. Finally, I will highlight what we can expect in the next years in the field of star formation with large-scale sky surveys, ALMA, and our JWST-GTO program.

  6. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    NASA Technical Reports Server (NTRS)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  7. Integrated Light Chemical Abundance Analyses of 7 M31 Outer Halo Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; Venn, Kim; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron L.; Wallerstein, George

    2015-01-01

    Detailed chemical abundances of globular clusters provide insight into the formation and evolution of galaxies and their globular cluster systems. This talk presents detailed chemical abundances for seven M31 outer halo globular clusters (with projected radii greater than 30 kpc), as derived from high resolution integrated light spectra. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS). The integrated abundances show that 4 of these clusters are metal-poor ([Fe/H] < -1.5) while the other 3 are more metal-rich. The most metal-poor globular clusters are α-enhanced, though 3 of the 4 are possibly less α-enhanced than MW stars (at the 1σ level). Other chemical abundance ratios ([Ba/Eu], [Eu/Ca], and [Ni/Fe]) are consistent with origins in low mass dwarf galaxies (similar to Fornax). The most metal-rich cluster ([Fe/H] ~ -1) stands out as being chemically distinct from Milky Way field stars of the same metallicity---its chemical abundance ratios agree best with the stars and clusters in the Large Magellanic Cloud (LMC) and the Sagittarius dwarf spheroidal (Sgr) than with the Milky Way field stars. The other metal-rich clusters, H10 and H23, look similar to the LMC and Milky Way field stars in all abundance ratios. These results indicate that M31's outer halo is being at least partially built up by the accretion of dwarf satellites, in agreement with previous observations.

  8. Deep CO(1-0) Observations of z = 1.62 Cluster Galaxies with Substantial Molecular Gas Reservoirs and Normal Star Formation Efficiencies

    NASA Astrophysics Data System (ADS)

    Rudnick, Gregory; Hodge, Jacqueline; Walter, Fabian; Momcheva, Ivelina; Tran, Kim-Vy; Papovich, Casey; da Cunha, Elisabete; Decarli, Roberto; Saintonge, Amelie; Willmer, Christopher; Lotz, Jennifer; Lentati, Lindley

    2017-11-01

    We present an extremely deep CO(1-0) observation of a confirmed z = 1.62 galaxy cluster. We detect two spectroscopically confirmed cluster members in CO(1-0) with signal-to-noise ratio > 5. Both galaxies have log({{ M }}\\star /{{ M }}⊙ ) > 11 and are gas rich, with {{ M }}{mol}/({{ M }}\\star +{{ M }}{mol}) ˜ 0.17-0.45. One of these galaxies lies on the star formation rate (SFR)-{{ M }}\\star sequence, while the other lies an order of magnitude below. We compare the cluster galaxies to other SFR-selected galaxies with CO measurements and find that they have CO luminosities consistent with expectations given their infrared luminosities. We also find that they have gas fractions and star formation efficiencies (SFE) comparable to what is expected from published field galaxy scaling relations. The galaxies are compact in their stellar light distribution, at the extreme end for all high-redshift star-forming galaxies. However, their SFE is consistent with other field galaxies at comparable compactness. This is similar to two other sources selected in a blind CO survey of the HDF-N. Despite living in a highly quenched protocluster core, the molecular gas properties of these two galaxies, one of which may be in the process of quenching, appear entirely consistent with field scaling relations between the molecular gas content, stellar mass, star formation rate, and redshift. We speculate that these cluster galaxies cannot have any further substantive gas accretion if they are to become members of the dominant passive population in z< 1 clusters.

  9. FIRST OBSERVATIONAL SIGNATURE OF ROTATIONAL DECELERATION IN A MASSIVE, INTERMEDIATE-AGE STAR CLUSTER IN THE MAGELLANIC CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaohan; Li, Chengyuan; De Grijs, Richard

    While the extended main-sequence turnoffs (eMSTOs) found in almost all 1–2 Gyr old star clusters in the Magellanic Clouds are often explained by postulating extended star formation histories (SFHs), the tight subgiant branches (SGBs) seen in some clusters challenge this popular scenario. Puzzlingly, the SGB of the eMSTO cluster NGC 419 is significantly broader at bluer than at redder colors. We carefully assess and confirm the reality of this observational trend. If we would assume that the widths of the features in color–magnitude space were entirely owing to a range in stellar ages, the SFHs of the eMSTO stars andmore » the blue SGB region would be significantly more prolonged than that of the red part of the SGB. This cannot be explained by assuming an internal age spread. We show that rotational deceleration of a population of rapidly rotating stars, a currently hotly debated alternative scenario, naturally explains the observed trend along the SGB. Our analysis shows that a “converging” SGB could be produced if the cluster is mostly composed of rapidly rotating stars that slow down over time owing to the conservation of angular momentum during their evolutionary expansion from main-sequence turnoff stars to red giants.« less

  10. On the Stellar Population and Star-Forming History of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne A.

    1997-05-01

    We report on the first phase of a study of the stellar population comprising the Orion Nebula Cluster (ONC). Approximately 50% of the ~ 3500 stars identified to date within ~ 2.5 pc of the namesake Trapezium stars are optically visible, and in this paper we focus on that sample with I < 17.5 mag. The large number and number density (npeak > 10(4) pc(-3) ) of stars, the wide range in stellar mass ( ~ 0.1-50 M_⊙), and the extreme youth (< 1-2 Myr) of the stellar population, make the ONC the best site for investigating: 1) the detailed shape of a truly ``initial'' mass spectrum; 2) the apparent age spread in a region thought to have undergone triggered star formation; 3) the time sequence of star formation as a function of stellar mass; and 4) trends of all of the above with cluster radius. Nearly 60% of the ~ 1600 optical stars have sufficient data (spectroscopy and photometry) for placement on a theoretical HR diagram; this subsample is unbiased with respect to apparent brightness or cluster radius, complete down to ~ 1 M_⊙, and representative of the total optical sample below ~ 1 M_⊙ for the age and extinction ranges characteristic of the cluster. Comparison of the derived HR diagram with traditional pre-main sequence evolutionary calculations shows a trend of increasing stellar age with increasing stellar mass. To avoid the implication of earlier characteristic formation times for higher-mass stars than for lower-mass stars, refinement of early evolutionary theory in a manner similar to the birthline hypothesis of Palla & Stahler (1993), is required. Subject to uncertainties in the tracks and isochrones, we can still investigate stellar mass and age distributions in the ONC. We find the ONC as a whole to be characterized by a mass spectrum which is not grossly inconsistent with ``standard'' stellar mass spectra. In particular, although there are structural differences between the detailed ONC mass spectrum and various models constructed from solar neighborhood data, the observed mass spectrum appears to a peak at ~ 0.2 M_⊙ and to fall off rapidly towards lower masses; several substellar objects are present. The abundance of low-mass stars relative to high-mass stars suggests that there is no bi-modal star formation mode; somewhat ironically, the ONC probably contains fractionally more low-mass stars than the solar neighborhood since the population not yet located on the HR diagram is dominated by sub-solar-mass stars. Nonetheless, the ONC mass spectrum is biased towards higher-mass stars within the innermost cluster radii (rprojected < 0.3 pc). We find the ONC as a whole to be characterized by a mean age of < 1 Myr and an age spread which is probably less than 2 Myr, but also by a bias towards younger stars at smaller projected cluster radii. Although the most massive stars and the youngest stars are found preferentially towards the center of the ONC it does not follow that the most massive stars are the youngest stars. A lower limit to the total cluster mass in stars is Mstars ~ 900 M_⊙ (probably a factor of < 2 underestimate). A lower limit to the recent star formation rate is ~ 10(-4) M_⊙ yr(-1) . All observational data in this study as well as stellar parameters derived from them are available in electronic format.

  11. HUBBLE'S PANORAMIC PORTRAIT OF A VAST STAR-FORMING REGION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a panoramic portrait of a vast, sculpted landscape of gas and dust where thousands of stars are being born. This fertile star-forming region, called the 30 Doradus Nebula, has a sparkling stellar centerpiece: the most spectacular cluster of massive stars in our cosmic neighborhood of about 25 galaxies. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 [the large blue blob left of center], are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that are incubators for nascent stars. The photo offers an unprecedented, detailed view of the entire inner region of 30 Doradus, measuring 200 light-years wide by 150 light-years high. The nebula resides in the Large Magellanic Cloud (a satellite galaxy of the Milky Way), 170,000 light-years from Earth. Nebulas like 30 Doradus are the 'signposts' of recent star birth. High-energy ultraviolet radiation from the young, hot, massive stars in R136 causes the surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths all formed at the same time about 2 million years ago. The stars in R136 are producing intense 'stellar winds' (streams of material traveling at several million miles an hour), which are wreaking havoc on the gas and dust in the surrounding neighborhood. The winds are pushing the gas away from the cluster and compressing the inner regions of the surrounding gas and dust clouds [the pinkish material]. The intense pressure is triggering the collapse of parts of the clouds, producing a new generation of star formation around the central cluster. The new stellar nursery is about 30 to 50 light-years from R136. Most of the stars in the nursery are not visible because they are still encased in their cocoons of gas and dust. Some of the nascent stars are forming in long columns of gas and dust. Previous Hubble observations revealed that the process of 'triggered' star formation often involves massive pillars of material that point toward the central cluster. Such pillars form when particularly dense clouds of gas and dust shield columns of material behind them from the blistering radiation and strong winds released by massive stars, like the stars in R136. This protected material becomes the pillars where stars can form and grow. The Hubble telescope first spied these pillars of stellar creation when it captured close-up views of the Eagle Nebula. The new image of 30 Doradus shows numerous pillars -- each about several light-years long -- oriented toward the central cluster. These pillars, which resemble tiny fingers, are similar in size to those in the Eagle Nebula. Without Hubble's resolution, they would not be visible. One pillar is visible within the oval-shaped structure to the left of the cluster. Two [one dark and one bright] are next to each other below and to the right of the cluster. One pillar is at upper right, and still another is just above the cluster. Newborn stars within most of these pillars already have been discovered in pictures taken by Hubble's infrared camera, the Near Infrared Camera and Multi-Object Spectrometer, which can penetrate the dust to detect embryonic stars. Eventually, intense radiation and stellar winds from the developing stars will blow off the tops of the pillars. The Hubble image shows that one such eruption already has occurred in 30 Doradus. A trio of young stars has just been 'born' by breaking out of its natal pillar. These new stars are just a few hundred thousand years old. In another 2 million years, the new generation of stars will be in full bloom. But the massive stars in R136 will have burned themselves out. And the nebula's central region will be a giant shell, devoid of gas and dust. Still later, all of the most massive stars and gas will have disappeared from the entire region. Only older, less massive stars will remain in a region cleared of gas and dust. The mosaic image of 30 Doradus consists of five overlapping pictures taken between January 1994 and September 2000 by Hubble's Wide Field and Planetary Camera 2. Several color filters were used to enhance important details in the stars and the nebula. Blue corresponds to the hot stars. The greenish color denotes hot gas energized by the central cluster of stars. Pink depicts the glowing edges of the gas and dust clouds facing the cluster, which are being bombarded by winds and radiation. Reddish-brown represents the cooler surfaces of the clouds, which are not receiving direct radiation from the central cluster. Credits: NASA, N. Walborn and J. Ma`iz-Apell`aniz (Space Telescope Science Institute, Baltimore, MD), R. Barb`a (La Plata Observatory, La Plata, Argentina)

  12. Interaction between bosonic dark matter and stars

    NASA Astrophysics Data System (ADS)

    Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos

    2016-02-01

    We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.

  13. Red giants and yellow stragglers in the young open cluster NGC 2447

    NASA Astrophysics Data System (ADS)

    da Silveira, M. D.; Pereira, C. B.; Drake, N. A.

    2018-06-01

    In this work we analysed, using high-resolution spectroscopy, a sample of 12 single and 4 spectroscopic binary stars of the open cluster NGC 2447. For the single stars, we obtained atmospheric parameters and chemical abundances of Li, C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, Nd, Eu. Rotational velocities were obtained for all the stars. The abundances of the light elements and Eu and the rotational velocities were derived using spectral synthesis technique. We obtained a mean metallicity of [Fe/H] = -0.17 ± 0.05. We found that the abundances of all elements are similar to field giants and/or giants of open clusters, even for the s-process elements, which are enhanced as in other young open clusters. We show that the spectroscopic binaries NGC 2447-26, 38, and 42 are yellow-straggler stars, of which the primary is a giant star and the secondary a main-sequence A-type star.

  14. Starburst Cluster Shows Celestial Fireworks

    NASA Image and Video Library

    2017-12-08

    NASA image release June 6, 2010 Like a July 4 fireworks display a young, glittering collection of stars looks like an aerial burst. The cluster is surrounded by clouds of interstellar gas and dust - the raw material for new star formation. The nebula, located 20,000 light-years away in the constellation Carina, contains a central cluster of huge, hot stars, called NGC 3603. This environment is not as peaceful as it looks. Ultraviolet radiation and violent stellar winds have blown out an enormous cavity in the gas and dust enveloping the cluster, providing an unobstructed view of the cluster. Most of the stars in the cluster were born around the same time but differ in size, mass, temperature, and color. The course of a star's life is determined by its mass, so a cluster of a given age will contain stars in various stages of their lives, giving an opportunity for detailed analyses of stellar life cycles. NGC 3603 also contains some of the most massive stars known. These huge stars live fast and die young, burning through their hydrogen fuel quickly and ultimately ending their lives in supernova explosions. Star clusters like NGC 3603 provide important clues to understanding the origin of massive star formation in the early, distant universe. Astronomers also use massive clusters to study distant starbursts that occur when galaxies collide, igniting a flurry of star formation. The proximity of NGC 3603 makes it an excellent lab for studying such distant and momentous events. This Hubble Space Telescope image was captured in August 2009 and December 2009 with the Wide Field Camera 3 in both visible and infrared light, which trace the glow of sulfur, hydrogen, and iron. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C. Credit: NASA, ESA, R. O'Connell (University of Virginia), F. Paresce (National Institute for Astrophysics, Bologna, Italy), E. Young (Universities Space Research Association/Ames Research Center), the WFC3 Science Oversight Committee, and the Hubble Heritage Team (STScI/AURA) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  15. Kinematic evidence for feedback-driven star formation in NGC 1893

    NASA Astrophysics Data System (ADS)

    Lim, Beomdu; Sung, Hwankyung; Bessell, Michael S.; Lee, Sangwoo; Lee, Jae Joon; Oh, Heeyoung; Hwang, Narae; Park, Byeong-Gon; Hur, Hyeonoh; Hong, Kyeongsoo; Park, Sunkyung

    2018-06-01

    OB associations are the prevailing star-forming sites in the Galaxy. Up to now, the process of how OB associations were formed remained a mystery. A possible process is self-regulating star formation driven by feedback from massive stars. However, although a number of observational studies uncovered various signposts of feedback-driven star formation, the effectiveness of such feedback has been questioned. Stellar and gas kinematics is a promising tool to capture the relative motion of newborn stars and gas away from ionizing sources. We present high-resolution spectroscopy of stars and gas in the young open cluster NGC 1893. Our findings show that newborn stars and the tadpole nebula Sim 130 are moving away from the central cluster containing two O-type stars, and that the time-scale of sequential star formation is about 1 Myr within a 9 pc distance. The newborn stars formed by feedback from massive stars account for at least 18 per cent of the total stellar population in the cluster, suggesting that this process can play an important role in the formation of OB associations. These results support the self-regulating star formation model.

  16. Halo substructure in the SDSS-Gaia catalogue: streams and clumps

    NASA Astrophysics Data System (ADS)

    Myeong, G. C.; Evans, N. W.; Belokurov, V.; Amorisco, N. C.; Koposov, S. E.

    2018-04-01

    We use the Sloan Digital Sky Survey (SDSS)-Gaia Catalogue to identify six new pieces of halo substructure. SDSS-Gaia is an astrometric catalogue that exploits SDSS data release 9 to provide first epoch photometry for objects in the Gaia source catalogue. We use a version of the catalogue containing 245 316 stars with all phase-space coordinates within a heliocentric distance of ˜10 kpc. We devise a method to assess the significance of halo substructures based on their clustering in velocity space. The two most substantial structures are multiple wraps of a stream which has undergone considerable phase mixing (S1, with 94 members) and a kinematically cold stream (S2, with 61 members). The member stars of S1 have a median position of (X, Y, Z) = (8.12, -0.22, 2.75) kpc and a median metallicity of [Fe/H] = -1.78. The stars of S2 have median coordinates (X, Y, Z) = (8.66, 0.30, 0.77) kpc and a median metallicity of [Fe/H] = -1.91. They lie in velocity space close to some of the stars in the stream reported by Helmi et al. By modelling, we estimate that both structures had progenitors with virial masses ≈1010M⊙ and infall times ≳ 9 Gyr ago. Using abundance matching, these correspond to stellar masses between 106 and 107M⊙. These are somewhat larger than the masses inferred through the mass-metallicity relation by factors of 5 to 15. Additionally, we identify two further substructures (S3 and S4 with 55 and 40 members) and two clusters or moving group (C1 and C2 with 24 and 12) members. In all six cases, clustering in kinematics is found to correspond to clustering in both configuration space and metallicity, adding credence to the reliability of our detections.

  17. The mass-ratio and eccentricity distributions of barium and S stars, and red giants in open clusters

    NASA Astrophysics Data System (ADS)

    Van der Swaelmen, M.; Boffin, H. M. J.; Jorissen, A.; Van Eck, S.

    2017-01-01

    Context. A complete set of orbital parameters for barium stars, including the longest orbits, has recently been obtained thanks to a radial-velocity monitoring with the HERMES spectrograph installed on the Flemish Mercator telescope. Barium stars are supposed to belong to post-mass-transfer systems. Aims: In order to identify diagnostics distinguishing between pre- and post-mass-transfer systems, the properties of barium stars (more precisely their mass-function distribution and their period-eccentricity (P-e) diagram) are compared to those of binary red giants in open clusters. As a side product, we aim to identify possible post-mass-transfer systems among the cluster giants from the presence of s-process overabundances. We investigate the relation between the s-process enrichment, the location in the (P-e) diagram, and the cluster metallicity and turn-off mass. Methods: To invert the mass-function distribution and derive the mass-ratio distribution, we used the method pioneered by Boffin et al. (1992) that relies on a Richardson-Lucy deconvolution algorithm. The derivation of s-process abundances in the open-cluster giants was performed through spectral synthesis with MARCS model atmospheres. Results: A fraction of 22% of post-mass-transfer systems is found among the cluster binary giants (with companion masses between 0.58 and 0.87 M⊙, typical for white dwarfs), and these systems occupy a wider area than barium stars in the (P-e) diagram. Barium stars have on average lower eccentricities at a given orbital period. When the sample of binary giant stars in clusters is restricted to the subsample of systems occupying the same locus as the barium stars in the (P-e) diagram, and with a mass function compatible with a WD companion, 33% (=4/12) show a chemical signature of mass transfer in the form of s-process overabundances (from rather moderate - about 0.3 dex - to more extreme - about 1 dex). The only strong barium star in our sample is found in the cluster with the lowest metallicity in the sample (I.e. star 173 in NGC 2420, with [Fe/H] = -0.26), whereas the barium stars with mild s-process abundance anomalies (from 0.25 to 0.6 dex) are found in the clusters with slightly subsolar metallicities. Our finding confirms the classical prediction that the s-process nucleosynthesis is more efficient at low metallicities, since the s-process overabundance is not clearly correlated with the cluster turn-off (TO) mass; such a correlation would instead hint at the importance of the dilution factor. We also find a mild barium star in NGC 2335, a cluster with a large TO mass of 4.3 M⊙, which implies that asymptotic giant branch stars that massive still operate the s-process and the third dredge-up. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and on observations made with the HARPS spectrograph installed on the 3.6 m telescope at the European Southern Observatory.

  18. The Formation of Filamentary Structures in Radiative Cluster Winds

    NASA Astrophysics Data System (ADS)

    Rodríguez-González, Ary; Esquivel, Alejandro; Raga, Alejandro C.; Cantó, Jorge

    We explore the dynamics of a "cluster wind" flow in the regime in which the shocks resulting from the interaction of winds from nearby stars are radiative. We show that for a cluster with low-intermedia mass stars, the wind interactions are indeed likely to be radiative. We then compute three dimensional, radiative simulations of a cluster of 75 young stars, exploring the effects of varying the wind parameters and the density of the initial ISM that permeates the volume of the cluster. These simulations show that the ISM is compressed by the action of the winds into a structure of dense knots and filaments.

  19. Massive Stars and Star Clusters in the Era of JWST

    NASA Astrophysics Data System (ADS)

    Klein, Richard

    Massive stars lie at the center of the web of physical processes that has shaped the universe as we know it, governing the evolution of the interstellar medium of galaxies, producing a majority of the heavy elements, and thereby determining the evolution of galaxies. Massive stars are also important as signposts, since they produce most of the light and almost all the ionizing radiation in regions of active star formation. A significant fraction of all stars form in massive clusters, which will be observable throughout the visible universe with JWST. Their luminosities are so high that the pressure of their light on interstellar dust grains is likely the dominant feedback mechanism regulating their formation. While this process has been studied in the local Universe, much less attention has been focused on how it behaves at high redshift, where the dust abundance is much lower due to the overall lower abundance of heavy elements. The high redshift Universe also differs from the nearby one in that observations imply that high redshift star formation occurs at significantly higher densities than are typically found locally. We propose to simulate the formation of individual massive stars from the high redshift universe to the present day universe spanning metallicities ranging from 0.001 to 1.0 and column densities from 0.1to 30.0 g/cm2 focusing on how the process depends on both the dust abundance and on the density of the star-forming gas. These simulations will be among the first to treat the formation of Population II stars, which form in regions of low metallicity. Based on these results, we shall then simulate the formation of clusters of stars across also cosmic time, both of moderate mass, such as the Orion Nebula Cluster, and of high mass, such as the super star clusters seen in starburst galaxies. These state-of-the-art simulations will be carried out using our newly developed advanced techniques in our radiation-magneto-hydrodynamic AMR code ORION, for radiative transfer with both ionizing and non-ionizing radiation that accurately handle both the direct radiation from stars and the diffuse infrared radiation field that builds up when direct radiation is reprocessed by dust grains. Our simulations include all of the relevant feedback effects such as radiative heating, radiation pressure, photodissociation and photoionization, protostellar outflows and stellar winds. The challenge in simulating the formation of massive stars and massive clusters is to include all these feedback effects self-consistently as they occur collectively. We are in an excellent position to do so. The results of these simulations will be directly relevant to the interpretation of observations with JWST, which will probe cluster formation in both the nearby and distant universe, and with SOFIA, which can observe high-mass star formation in the Galaxy. We shall make direct comparison with observations of massive protostars in the Galactic disk. We shall also compare with observations of star clusters that form in dense environments, such as the Galactic Center and in merging galaxies (e.g., the Antennae), and in low metallicity environments, such as the dwarf starburst galaxy I Zw 18. Once our simulations have been benchmarked with observations of massive protostars in the Galaxy and massive protoclusters in the local universe, they will provide the theoretical basis for interpreting observations of the formation of massive star clusters at high redshift with JWST. What determines the maximum mass of a star? How does stellar feedback affect the formation of individual stars and the formation of massive star clusters and how the answers to these questions evolve with cosmic time. The proposed research will provide high-resolution input to the study of stellar feedback on galaxy formation with a significantly more accurate treatment of the physics, particularly the radiative transfer that is so important for feedback.

  20. On star formation in stellar systems. I - Photoionization effects in protoglobular clusters

    NASA Technical Reports Server (NTRS)

    Tenorio-Tagle, G.; Bodenheimer, P.; Lin, D. N. C.; Noriega-Crespo, A.

    1986-01-01

    The progressive ionization and subsequent dynamical evolution of nonhomogeneously distributed low-metal-abundance diffuse gas after star formation in globular clusters are investigated analytically, taking the gravitational acceleration due to the stars into account. The basic equations are derived; the underlying assumptions, input parameters, and solution methods are explained; and numerical results for three standard cases (ionization during star formation, ionization during expansion, and evolution resulting in a stable H II region at its equilibrium Stromgren radius) are presented in graphs and characterized in detail. The time scale of residual-gas loss in typical clusters is found to be about the same as the lifetime of a massive star on the main sequence.

  1. Hubble Friday - Heavy Metal Stars

    NASA Image and Video Library

    2017-12-08

    Hubble rocks out with heavy metal stars! This 10.5-billion-year-old globular cluster, NGC 6496, is home to heavy-metal stars of a celestial kind! The stars comprising this spectacular spherical cluster are enriched with much higher proportions of metals — elements heavier than hydrogen and helium are curiously known as metals in astronomy — than stars found in similar clusters. A handful of these high-metallicity stars are also variable stars, meaning that their brightness fluctuates over time. NGC 6496 hosts a selection of long-period variables — giant pulsating stars whose brightness can take up to, and even over, a thousand days to change — and short-period eclipsing binaries, which dim when eclipsed by a stellar companion. The nature of the variability of these stars can reveal important information about their mass, radius, luminosity, temperature, composition, and evolution, providing astronomers with measurements that would be difficult or even impossible to obtain through other methods. NGC 6496 was discovered in 1826 by Scottish astronomer James Dunlop. The cluster resides at about 35,000 light-years away in the southern constellation of Scorpius (The Scorpion). Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt Text credit: European Space Agency Read more: go.nasa.gov/1U2wqGW

  2. X-Ray source populations in old open clusters: Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; van den Berg, Maureen; Wijnands, Rudy

    2014-09-01

    We are carrying out an X-ray survey of old open clusters with the Chandra X-ray Observatory. Single old stars, being slow rotators, are very faint in X-rays (L_X < 1×10^27 erg/s). Hence, X-rays produced by mass transfer in cataclysmic variables (CVs) or by rapid rotation of the stars in tidally locked, detached binaries (active binaries; ABs) can be detected, without contamination from single stars. By comparing the properties of various types of interacting binaries in different environments (the Galactic field, old open clusters, globular clusters), we aim to study binary evolution and how it may be affected by dynamical encounters with other cluster stars. Stellar clusters are good targets to study binaries, as age, distance, chemical composition, are well constrained. Collinder (Cr) 261 is an old open cluster (age ~ 7 Gyr), with one of the richest populations inferred of close binaries and blue stragglers of all open clusters and is therefore an obvious target to study the products of close encounters in open clusters. We will present the first results of this study, detailing the low-luminosity X-ray population of Cr 261, in conjunction with other open clusters in our survey (NGC 188, Berkeley 17, NGC 6253, M67, NGC 6791) and in comparison with populations in globular clusters.

  3. Eating a planet and spinning up

    NASA Astrophysics Data System (ADS)

    Qureshi, Ahmed; Naoz, Smadar; Shkolnik, Evgenya L.

    2018-01-01

    One of the predictions of high eccentricity planetary migration is that many planets will end up plunging into their host stars. We investigate the consequence of planetary mergers on their stellar hosts’ spin-period. Energy and angular momentum conservation yield that a planet consumption by a star will spin-up of the star. We find that our calculations align with the observed bifurcation in the stellar spin-period in young clusters. After a Sun-like star has eaten a planet, it will then, spin down due to magnetic braking, consistent with the observed lack of fast rotators in old clusters. The agreement between the calculations presented here and the observed spin-period of stars in young clusters provides circumstantial evidence that planetary accretion onto their host stars is a generic feature in planetary-system evolution.

  4. Deficit of Wide Binaries in the η Chamaeleontis Young Cluster

    NASA Astrophysics Data System (ADS)

    Brandeker, Alexis; Jayawardhana, Ray; Khavari, Parandis; Haisch, Karl E., Jr.; Mardones, Diego

    2006-12-01

    We have carried out a sensitive high-resolution imaging survey of stars in the young (6-8 Myr), nearby (97 pc) compact cluster around η Chamaeleontis to search for stellar and substellar companions. Our data were obtained using the NACO adaptive optics system on the ESO Very Large Telescope (VLT). Given its youth and proximity, any substellar companions are expected to be luminous, especially in the near-infrared, and thus easier to detect next to their parent stars. Here, we present VLT NACO adaptive optics imaging with companion detection limits for 17 η Cha cluster members, and follow-up VLT ISAAC near-infrared spectroscopy for companion candidates. The widest binary detected is ~0.2", corresponding to the projected separation 20 AU, despite our survey being sensitive down to substellar companions outside 0.3", and planetary-mass objects outside 0.5". This implies that the stellar companion probability outside 0.3" and the brown dwarf companion probability outside 0.5" are less than 0.16 with 95% confidence. We compare the wide binary frequency of η Cha to that of the similarly aged TW Hydrae association and estimate the statistical likelihood that the wide binary probability is equal in both groups to be less than 2×10-4. Even though the η Cha cluster is relatively dense, stellar encounters in its present configuration cannot account for the relative deficit of wide binaries. We thus conclude that the difference in wide binary probability in these two groups provides strong evidence for multiplicity properties being dependent on environment. In two appendices we derive the projected separation probability distribution for binaries, used to constrain physical separations from observed projected separations, and summarize statistical tools useful for multiplicity studies.

  5. On the mass of dense star clusters in starburst galaxies from spectrophotometry

    NASA Astrophysics Data System (ADS)

    Fleck, J.-J.; Boily, C. M.; Lançon, A.; Deiters, S.

    2006-07-01

    The mass of unresolved young star clusters derived from spectrophotometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar initial mass function (IMF), the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter η. When we compute η for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cut-off mass of 25.5Msolar. We also monitor the rise of colour gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the Large Magellanic Cloud cluster NGC 1818 at an age of 30Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2dex. The star formation rate derived for the cluster population is then underestimated by from 20 to 50 per cent.

  6. CHEMICAL ABUNDANCES OF MEMBER STARS IN THE OPEN CLUSTER NGC 2632 (PRAESEPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X. L.; Chen, Y. Q.; Zhao, G.

    2015-11-15

    Based on high-resolution, high signal-to-noise ratio spectra, we present abundances of 17 elements (Fe, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ni, Y, Zr, Ba, La) for six stars (one Am star, one F dwarf star, and four GK giant stars) and radial velocities for 18 proper-motion selected member stars in the open cluster NGC 2632. In the Am star, s-process elements Y and Ba are clearly overabundant, which may be considered as an indicator of a peculiar Am star. The average [Fe/H] is 0.16 ± 0.06 from four GK giant member stars, which is similarmore » to that of solar-type stars in the literature. As compared with dwarf stars, significant overabundances are found for Na, Mg, and Ba elements in our giant stars, which can be explained by the evolutionary effect. We also detect a star-to-star scatter of [Na/Fe] ratios among four giants which locate approximately at the same position in the CMD. Finally, we perform an analysis on the possible connection between the abundance and spatial structure of NGC 2632, but we find no inhomogeneous abundance among different clumps of stars in this cluster based on our limited sample.« less

  7. A Proper Motion Search for Stars Escaping from Globular Clusters with High Velocities

    NASA Astrophysics Data System (ADS)

    Meusinger, H.; Scholz, R.-D.; Irwin, M.

    The dynamical evolution of globular clusters, in particular during the late phases, may be strongly influenced by the energy transfer from binaries to passing stars. As a by-product of this process, stars with high velocities are expected, perhaps high enough to escape from the cluster. Accurate proper motions are the only suitable tool to identify candidates for such high-velocity cluster stars. In order to perform such a search, we use a catalogue of absolute proper motions and UBV magnitudes for about 104 stars with B < 20 in a field of 10 square degrees centered on the globular cluster M3. The data were derived from more than 80 photographic plates taken between 1965 and 1995 with the Tautenburg Schmidt telescope and measured by means of the APM facility, Cambridge. The stellar sample is complete to B = 18.5 and comprises nearly all post-main-sequence stars in the halo of M3 and its surrounding. The proper motions are of Hipparcos-like accuracy (median error 1 mas/yr) in this magnitude range. We find several dozens of candidates, distributed over the whole field, with proper motions and colours consistent with the assumption of their origin from the cluster. Further conclusions can be drawn only on the basis of radial velocity measurements for the candidates and of estimates for the field-star contamination by means of simulations of the Galactic structure and kinematics in this field.

  8. COS Spectroscopy of White Dwarf Companions to Blue Stragglers

    NASA Astrophysics Data System (ADS)

    Gosnell, Natalie M.; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leiner, Emily; Leigh, Nathan

    2017-01-01

    Complete membership studies of open stellar clusters reveal that 25% of the evolved stars follow alternative pathways in stellar evolution, meaning something in the history of these stars changed their composition or mass (or both). In order to draw a complete picture of stellar evolution we must include these canonically "strange" stars in our definition of standard stellar populations. The formation mechanism of blue straggler stars, traditionally defined to be brighter and bluer than the main sequence turnoff in a star cluster, has been an outstanding question for almost six decades. Recent Hubble Space Telescope (HST) far-ultraviolet (far-UV) observations directly reveal that the blue straggler stars in the old (7 Gyr) open cluster NGC 188 are predominantly formed through mass transfer. We will present HST far-UV COS spectroscopy of white dwarf companions to blue stragglers. These white dwarfs are the remnants of the mass transfer formation process. The effective temperatures and surface gravities of the white dwarfs delineate the timeline of blue straggler formation in this cluster. The existence of these binaries in a well-studied cluster environment provides an unprecedented opportunity to observationally constrain mass transfer models and inform our understanding of many other alternative pathway stellar products.

  9. Effect of tidal fields on star clusters

    NASA Technical Reports Server (NTRS)

    Chernoff, David; Weinberg, Martin

    1991-01-01

    We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).

  10. Comparison of calculated and observed integral magnitudes for the globular cluster M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerashchenko, A.N.; Kadla, Z.I.

    On the basis of a study of the distribution of stars in the central region of the globular cluster M13 it is found that integral photoelectric observations cover stars down to about the point of turnoff from the main sequence. Here the distribution of giants and stars of the horizontal branch as a function of distance from the center of the cluster is the same within limits of 0

  11. Unusual satellite data: A black hole?. [International Ultraviolet Explorer observations

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Data obtained by the NASA-launched European Space Agency's International Ultraviolet Explorer satellite suggests the possibility of a massive black hole at the center of some globular clusters (star groups) in our galaxy. Six of these clusters, three of them X-ray sources, were closely examined. Onboard short wavelength UV instrumentation penetrated the background denseness of the clusters 15,000 light years away where radiation, probably from a group of 10 to 20 bright blue stars orbiting the core, was observed. The stars may well be orbiting a massive black hole the size of 1,000 solar systems. The existence of the black hole is uncertain. The dynamics of the stars must be studied first to determine how they rotate in relation to the center of the million-star cluster. This may better indicate what provides the necessary gravitational pull that holds them in orbit.

  12. Chemical Abundances of Seven Outer Halo M31 Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.

    2017-03-01

    Observations of stellar streams in M31's outer halo suggest that M31 is actively accreting several dwarf galaxies and their globular clusters (GCs). Detailed abundances can chemically link clusters to their birth environments, establishing whether or not a GC has been accreted from a satellite dwarf galaxy. This talk presents the detailed chemical abundances of seven M31 outer halo GCs (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated-light spectra taken with the Hobby Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS)-this talk presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal-poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less alpha-enhanced than Milky Way stars at the 1 sigma level), and show signs of star-to-star Na and Mg variations. The other three GCs (H10, H23, and PA17) are more metal-rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way GCs, and other M31 clusters, H10 and PA17 have moderately-low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud (LMC). None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW Cloud, and PA53 and PA56 may be associated with the Eastern Cloud.

  13. Galaxy evolution in merging clusters: The passive core of the "Train Wreck" cluster of galaxies, A 520

    NASA Astrophysics Data System (ADS)

    Deshev, Boris; Finoguenov, Alexis; Verdugo, Miguel; Ziegler, Bodo; Park, Changbom; Hwang, Ho Seong; Haines, Christopher; Kamphuis, Peter; Tamm, Antti; Einasto, Maret; Hwang, Narae; Park, Byeong-Gon

    2017-11-01

    Aims: The mergers of galaxy clusters are the most energetic events in the Universe after the Big Bang. With the increased availability of multi-object spectroscopy and X-ray data, an ever increasing fraction of local clusters are recognised as exhibiting signs of recent or past merging events on various scales. Our goal is to probe how these mergers affect the evolution and content of their member galaxies. We specifically aim to answer the following questions: is the quenching of star formation in merging clusters enhanced when compared with relaxed clusters? Is the quenching preceded by a (short-lived) burst of star formation? Methods: We obtained optical spectroscopy of >400 galaxies in the field of the merging cluster Abell 520. We combine these observations with archival data to obtain a comprehensive picture of the state of star formation in the members of this merging cluster. Finally, we compare these observations with a control sample of ten non-merging clusters at the same redshift from The Arizona Cluster Redshift Survey (ACReS). We split the member galaxies into passive, star forming or recently quenched depending on their spectra. Results: The core of the merger shows a decreased fraction of star forming galaxies compared to clusters in the non-merging sample. This region, dominated by passive galaxies, is extended along the axis of the merger. We find evidence of rapid quenching of the galaxies during the core passage with no signs of a star burst on the time scales of the merger (≲0.4 Gyr). Additionally, we report the tentative discovery of an infalling group along the main filament feeding the merger, currently at 2.5 Mpc from the merger centre. This group contains a high fraction of star forming galaxies as well as approximately two thirds of all the recently quenched galaxies in our survey. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A131

  14. HUBBLE UNCOVERS MYSTERY OBJECTS IN THE DENSE CORE OF A NEARBY STAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Piercing the heart of a glittering swarm of stars, NASA's sharp-eyed Hubble Space Telescope unveils the central region of the globular cluster M22, a 12- to 14-billion-year-old grouping of stars in the constellation Sagittarius. The telescope's view of the cluster's core measures 3.3 light-years across. The stars near the cluster's core are 100,000 times more numerous than those in the Sun's neighborhood. Buried in the glow of starlight are about six 'mystery objects,' which astronomers estimate are no larger than one quarter the mass of the giant planet Jupiter, the solar system's heftiest planet. The mystery objects are too far and dim for Hubble to see directly. Instead, the orbiting observatory detected these unseen celestial bodies by looking for their gravitational effects on the light from far distant stars. In this case, the stars are far beyond the cluster in the galactic bulge, about 30,000 light-years from Earth at the center of the Milky Way Galaxy. M22 is 8,500 light-years away. The invisible objects betrayed their presence by bending the starlight gravitationally and amplifying it, a phenomenon known as microlensing. From February 22 to June 15, 1999, Hubble's Wide Field and Planetary Camera 2 looked through this central region and monitored 83,000 stars. During that time the orbiting observatory recorded six unexpectedly brief microlensing events. In each case a background star jumped in brightness for less than 20 hours before dropping back to normal. These transitory spikes in brightness mean that the object passing in front of the star must have been much smaller than a normal star. Hubble also detected one clear microlensing event. In that observation a star appeared about 10 times brighter over an 18-day span before returning to normal. Astronomers traced the leap in brightness to a dwarf star in the cluster floating in front of the background star. The inset photo shows the entire globular cluster of about 10 million stars. M22 is about 60 light-years wide. The image was taken in June 1995 by the Burrell Schmidt telescope at the Case Western Reserve University's Warner and Swasey Observatory on Kitt Peak in Arizona. This release is issued jointly by NASA and ESA. Credits for Hubble image: NASA, Kailash Sahu, Stefano Casertano, Mario Livio, Ron Gilliland (Space Telescope Science Institute), Nino Panagia (European Space Agency/Space Telescope Science Institute), Michael Albrow and Mike Potter (Space Telescope Science Institute) Credits for ground-based image: Nigel A.Sharp, REU program/AURA/NOAO/NSF

  15. VizieR Online Data Catalog: OCCASO survey. HRV for 12 open clusters (Casamiquela+, 2016)

    NASA Astrophysics Data System (ADS)

    Casamiquela, L.; Carrera, R.; Jordi, C.; Balaguer-Nunez, L.; Pancino, E.; Hidalgo, S. L.; Martinez-Vazquez, C. E.; Murabito, S.; Del Pino, A.; Aparicio, A.; Blanco-Cuaresma, S.; Gallart, C.

    2016-05-01

    We present results of radial velocities for stars in 12 completed clusters (77 stars), and the reference stars Arcturus and μ Leo. This is a total of 79 stars. We include radial velocities from individual spectra, and final radial velocities from combined spectra which reach a minimum signal-to-noise ratio of 70. Comparison with the literature is included in the cases which the stars had previous measurements. (2 data files).

  16. A Study of The Binary and Anomalous Stellar Populations in Two Intermediate-Aged Open Clusters

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; Milliman, Katelyn; Geller, Aaron M.; Gosnell, Natalie

    2010-08-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. It is now clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, sophisticated N-body models show that stellar dynamical processes play a central role in the formation of such anomalous stars. These stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose to expand our highly successful radial-velocity survey to include two new rich open clusters NGC 7789 (1.8 Gyr, -0.1 dex) and NGC 2506 (2.1 Gyr, -0.4 dex) as part of the WIYN Open Cluster Study (WOCS). Though these two clusters are both of intermediate age and of similar richness, they have quite different blue straggler populations. NGC 2506 has only 10 known blue stragglers, while NGC 7789 has at least 27, among the largest known populations of blue stragglers in an open cluster. Defining the hard-binary populations in these two clusters is critical for understanding the factors that determine blue straggler production rates. Our proposed observations will establish the hard- binary fraction and frequency distributions of orbital parameters (periods, eccentricities, mass-ratios, etc.) for orbital periods approaching the hard-soft boundary, and will provide a comprehensive survey of the blue stragglers and other anomalous stars, including secure cluster memberships and binary properties. These data will then form direct constraints for detailed N-body open cluster simulations from which we will study the impact of the hard-binary population on the production rates and mechanisms of blue stragglers.

  17. Open clusters in Auriga OB2

    NASA Astrophysics Data System (ADS)

    Marco, Amparo; Negueruela, Ignacio

    2016-06-01

    We study the area around the H II region Sh 2-234, including the young open cluster Stock 8, to investigate the extent and definition of the association Aur OB2 and the possible role of triggering in massive cluster formation. We obtained Strömgren and J, H, KS photometry for Stock 8 and Strömgren photometry for two other cluster candidates in the area, which we confirm as young open clusters and name Alicante 11 and Alicante 12. We took spectroscopy of ˜33 early-type stars in the area, including the brightest cluster members. We calculate a common distance of 2.80^{+0.27}_{-0.24} kpc for the three open clusters and surrounding association. We derive an age 4-6 Ma for Stock 8, and do not find a significantly different age for the other clusters or the association. The star LS V +34°23, with spectral type O8 II(f), is likely the main source of ionization of Sh 2-234. We observe an important population of pre-main-sequence stars, some of them with discs, associated with the B-type members lying on the main sequence. We interpret the region as an area of recent star formation with some residual and very localized ongoing star formation. We do not find evidence for sequential star formation on a large scale. The classical definition of Aur OB2 has to be reconsidered, because its two main open clusters, Stock 8 and NGC 1893, are not at the same distance. Stock 8 is probably located in the Perseus arm, but other nearby H II regions whose distances also place them in this arm show quite different distances and radial velocities and, therefore, are not connected.

  18. Strangeon and Strangeon Star

    NASA Astrophysics Data System (ADS)

    Xiaoyu, Lai; Renxin, Xu

    2017-06-01

    The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).

  19. The star-forming complex LMC-N79 as a future rival to 30 Doradus

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Zinnecker, Hans; Nayak, Omnarayani; Bally, John; Meixner, Margaret; Jones, Olivia C.; Indebetouw, Remy; Rahman, Mubdi

    2017-11-01

    Within the early Universe, `extreme' star formation may have been the norm rather than the exception1,2. Super star clusters (with masses greater than 105 solar masses) are thought to be the modern-day analogues of globular clusters, relics of a cosmic time (redshift z ≳ 2) when the Universe was filled with vigorously star-forming systems3. The giant H ii region 30 Doradus in the Large Magellanic Cloud is often regarded as a benchmark for studies of extreme star formation4. Here, we report the discovery of a massive embedded star-forming complex spanning about 500 pc in the unexplored southwest region of the Large Magellanic Cloud, which manifests itself as a younger, embedded twin of 30 Doradus. Previously known as N79, this region has a star-formation efficiency greater than that of 30 Doradus, by a factor of about 2, as measured over the past 0.5 Myr. Moreover, at the heart of N79 lies the most luminous infrared compact source discovered with large-scale infrared surveys of the Large Magellanic Cloud and Milky Way, possibly a precursor to the central super star cluster of 30 Doradus, R136. The discovery of a nearby candidate super star cluster may provide invaluable information to understand how extreme star formation proceeds in the current and high-redshift Universe.

  20. The Chemical Composition of NGC 5824, a Globular Cluster without Iron Spread but with an Extreme Mg–Al Anticorrelation

    NASA Astrophysics Data System (ADS)

    Mucciarelli, Alessio; Lapenna, Emilio; Ferraro, Francesco R.; Lanzoni, Barbara

    2018-05-01

    NGC 5824 is a massive Galactic globular cluster suspected to have an intrinsic spread in its iron content, according to the strength of the calcium triplet lines. We present chemical abundances of 117 cluster giant stars using high-resolution spectra acquired with the multi-object spectrograph FLAMES. The metallicity distribution of 87 red giant branch stars is peaked at [Fe/H] = ‑2.11 ± 0.01 dex, while that derived from 30 asymptotic giant branch stars is peaked at [Fe/H] = ‑2.20 ± 0.01 dex. Both the distributions are compatible with a null spread, indicating that this cluster did not retain the ejecta of supernovae. The small iron abundance offset between the two groups of stars is similar to the abundances already observed among red and asymptotic giant branch stars in other clusters. The lack of intrinsic iron spread rules out the possibility that NGC 5824 is the remnant of a disrupted dwarf galaxy, as previously suggested. We also find evidence of the chemical anomalies usually observed in globular clusters, namely the Na–O and the Mg–Al anticorrelations. In particular, NGC 5824 exhibits a huge range of [Mg/Fe] abundance, observed in only a few metal-poor and/or massive clusters. We conclude that NGC 5824 is a normal globular cluster, without spread in [Fe/H] but with an unusually large spread in [Mg/Fe], possibly due to an efficient self-enrichment driven by massive asymptotic giant branch stars. Based on observations collected at the ESO-VLT under the program 095.D-0290.

Top