Science.gov

Sample records for star color-magnitude diagram

  1. RR Lyrae stars and color-magnitude diagram of the globular cluster NGC 6388

    NASA Technical Reports Server (NTRS)

    Silbermann, N. A.; Smith, Horace A.; Bolte, Michael; Hazen, Martha L.

    1994-01-01

    We present new V, B-V, and V, V-R color-magnitude diagrams for the bulge globular cluster NGC 6388. These diagrams indicate that NGC 6388 is a metal-rich globular cluster with color-magnitude morphology similar to that of 47 Tucanae. We have conducted a search for new variable stars close to NGC 6388, finding three new RR Lyrae stars. The membership of these and previously discovered RR Lyrae stars near NGC 6388 is discussed. There is reason for believing that some of these variables are nonmembers. Others, however, may belong to the cluster and may be similar to the RR Lyrae star V9 in 47 Tuc.

  2. COMBINED EFFECTS OF BINARIES AND STELLAR ROTATION ON THE COLOR-MAGNITUDE DIAGRAMS OF INTERMEDIATE-AGE STAR CLUSTERS

    SciTech Connect

    Li Zhongmu; Mao Caiyan; Chen Li; Zhang Qian

    2012-12-20

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows 'golf club' color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  3. Combined Effects of Binaries and Stellar Rotation on the Color-Magnitude Diagrams of Intermediate-age Star Clusters

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li; Zhang, Qian

    2012-12-01

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows "golf club" color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  4. MEASURING GALAXY STAR FORMATION RATES FROM INTEGRATED PHOTOMETRY: INSIGHTS FROM COLOR-MAGNITUDE DIAGRAMS OF RESOLVED STARS

    SciTech Connect

    Johnson, Benjamin D.; Weisz, Daniel R.; Dalcanton, Julianne J.; Johnson, L. C.; Williams, Benjamin F.; Dale, Daniel A.; Dolphin, Andrew E.; Gil de Paz, Armando; Lee, Janice C.; Skillman, Evan D.; Boquien, Mederic

    2013-07-20

    We use empirical star formation histories (SFHs), measured from Hubble-Space-Telescope-based resolved star color-magnitude diagrams, as input into population synthesis codes to model the broadband spectral energy distributions (SEDs) of 50 nearby dwarf galaxies (6.5 < log M{sub *}/M{sub Sun} < 8.5, with metallicities {approx}10% solar). In the presence of realistic SFHs, we compare the modeled and observed SEDs from the ultraviolet (UV) through near-infrared and assess the reliability of widely used UV-based star formation rate (SFR) indicators. In the FUV through i bands, we find that the observed and modeled SEDs are in excellent agreement. In the Spitzer 3.6 {mu}m and 4.5 {mu}m bands, we find that modeled SEDs systematically overpredict observed luminosities by up to {approx}0.2 dex, depending on treatment of the TP-AGB stars in the synthesis models. We assess the reliability of UV luminosity as a SFR indicator, in light of independently constrained SFHs. We find that fluctuations in the SFHs alone can cause factor of {approx}2 variations in the UV luminosities relative to the assumption of a constant SFH over the past 100 Myr. These variations are not strongly correlated with UV-optical colors, implying that correcting UV-based SFRs for the effects of realistic SFHs is difficult using only the broadband SED. Additionally, for this diverse sample of galaxies, we find that stars older than 100 Myr can contribute from <5%-100% of the present day UV luminosity, highlighting the challenges in defining a characteristic star formation timescale associated with UV emission. We do find a relationship between UV emission timescale and broadband UV-optical color, though it is different than predictions based on exponentially declining SFH models. Our findings have significant implications for the comparison of UV-based SFRs across low-metallicity populations with diverse SFHs.

  5. Stellar Populations and the Star Formation Histories of LSB Galaxies. V. WFC3 Color-Magnitude Diagrams

    NASA Astrophysics Data System (ADS)

    Schombert, James; McGaugh, Stacy

    2015-09-01

    We present WFC3 observations of three low surface brightness (LSB) galaxies from the Schombert et al. LSB catalog that are within 11 Mpc of the Milky Way. Deep imaging at F336W, F555W, and F814W allow the construction of the V - I color-magnitude diagrams (CMD) to MI = -2. Overall 1869, 465, and 501 stellar sources are identified in the three LSB galaxies F415-3, F608-1, and F750-V1, respectively. The spatial distribution of young blue stars matches the Hα maps from ground-based imaging, indicating that star formation in LSB galaxies follows the same style as in other irregular galaxies. Several star complexes are identified, matching regions of higher surface brightness as seen from ground-based imaging. The CMD for each LSB galaxy has a similar morphology to Local Volume (LV) dwarf galaxies (i.e., a blue main sequence, blue and red He burning branches, and asymptotic giant branch (AGB) stars). The LSB CMD’s distinguish themselves from nearby dwarf CMD’s by having a higher proportion of blue main sequence stars and fewer AGB stars than expected from their mean metallicities. Current [Fe/H] values below -0.6 are deduced from the position of the red helium-burning branch (rHeB) stars in the V - I diagram. The distribution of stars on the blue helium-burning branch (bHeB) and rHeB from the U - V and V - I CMD indicate a history of constant star formation for the last 100 Myr.

  6. The initial mass function for massive stars in the Magellanic Clouds. 1: UBV photometry and color-magnitude diagrams for 14 OB associations

    NASA Technical Reports Server (NTRS)

    Hill, Robert J.; Madore, Barry F.; Freedman, Wendy L.

    1994-01-01

    UBV charge coupled device (CCD) photometry has been obtained for 14 OB associations in the Magellanic Clouds using the University of Toronto's 0.6 m telescope and the Carnegie Institution of Washington's 1.0 m reflector, both on Las Campanas, Chile. The data are presented and used to construct color-magnitude diagrams for the purposes of investigating the massive-star content of the associations.

  7. THE EXTRAGALACTIC DISTANCE DATABASE: COLOR-MAGNITUDE DIAGRAMS

    SciTech Connect

    Jacobs, Bradley A.; Tully, R. Brent; Rizzi, Luca; Shaya, Edward J.; Makarov, Dmitry I.; Makarova, Lidia

    2009-08-15

    The color-magnitude diagrams/tip of the red giant branch (CMDs/TRGB) section of the Extragalactic Distance Database contains a compilation of observations of nearby galaxies from the Hubble Space Telescope. Approximately 250 (and increasing) galaxies in the Local Volume have CMDs and the stellar photometry tables used to produce them available through the Web. Various stellar populations that make up a galaxy are visible in the CMDs, but our primary purpose for collecting and analyzing these galaxy images is to measure the TRGB in each. We can estimate the distance to a galaxy by using stars at the TRGB as standard candles. In this paper, we describe the process of constructing the CMDs and make the results available to the public.

  8. Color-Magnitude Diagram Constraints on the Metallicities, Ages, and Star Formation History of the Stellar Populations in the Carina Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    VandenBerg, Don A.; Stetson, Peter B.; Brown, Thomas M.

    2015-06-01

    Victoria-Regina isochrones for -0.4{\\mkern 1mu} ≤slant [α/Fe] ≤slant +0.4 and a wide range in [Fe/H], along with complementary zero-age horizontal branch (ZAHB) loci, have been applied to the color-magnitude diagram (CMD) of Carina. The color transformations that we have used have been “calibrated” so that isochrones provide excellent fits to the [{{(B-V)}0},{{M}V}] diagrams of M3 and M92 when well supported estimates of the globular cluster (GC) reddenings and metallicities are assumed. The adopted distance moduli, for both the GCs and Carina, are based on our ZAHB models, which are able to reproduce the old horizontal branch (HB) component (as well as the luminosity of the HB clump) of the dwarf spheroidal galaxy quite well—even if it spans a range in [Fe/H] of ˜1.5 dex, provided that [α/Fe] varies with [Fe/H] in approximately the way that has been derived spectroscopically. Ages derived here agree reasonably well with those found previously for the old and intermediate-age turnoff (TO) stars, as well as for the period of negligible star formation (SF) activity (˜6-10 Gyr ago). CMD simulations have been carried out for the faintest TO and subgiant stars. They indicate a clear preference for SF that lasted several Gyr instead of a short burst, with some indication that ages decrease with increasing [Fe/H]. In general, stellar models that assume spectroscopic metallicities provide satisfactory fits to the observations, including the thin giant branch of Carina, though higher oxygen abundances than those implied by the adopted values of [α/Fe] would have favorable consequences.

  9. Hubble Space Telescope Observations of M32: The Color-Magnitude Diagram

    NASA Technical Reports Server (NTRS)

    Grillmair, C. J.; Lauer, T. R.; Worthey, G.; Faber, S. M.; Freedman, W. L.; Madore, B. F.; Ajhar, E. A.; Baum, W. A.; Holtzman, J. A.; Lynds, C. R.; O'NeilJr., E. J.; Stetson, P. B.

    1996-01-01

    We present a V--I color-magnitude diagram for a region 1'--2' the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity.

  10. Color-magnitude diagram of Palomar 4 - CCD photometry

    NASA Astrophysics Data System (ADS)

    Christian, C. A.; Heasley, J. N.

    1986-04-01

    Photometry of the globular cluster Pal 4 was obtained with the RCA CCD camera on the 3.6 m Canada-France-Hawaii Telescope on Mauna Kea. The color-magnitude diagram of the cluster shows a well-defined red horizontal branch, typical of outer halo systems, and an asymptotic giant branch well separated from the giant branch. The population of Pal 4 has been sampled to the main-sequence turnoff region (V = 25), allowing a detailed comparison of this distant object with theoretical models. The cluster parameters consistent with the CCD data are (m - M)0 = 20.1 + or - 0.1 mag, E(B - V) = 0.02 + or - 0.02, and Fe/H forbidden line = -1.7 + or - 0.1 with Y =0.2. The age of the cluster, determined by comparison with the isochrones of VandenBerg and Bell (1985) is consistent with an age of 15 + or - 1 Gyr, similar to inner halo globular clusters with ages determined in the same way.

  11. Luminosity functions and color-magnitude diagrams for three OB associations in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Degioia-Eastwood, K.; Meyers, R. P.; Jones, D. P.

    1993-01-01

    Using the point spread function photometry program DAOPHOT, we have used UBV CCD photometry to construct color-magnitude diagrams and luminosity functions for three OB associations in the Large Magellanic Cloud. The region LH 76 appears to be completely coeval; the region LH 13 shows some evidence for noncoevality which will need to be checked with spectra of the stars in question. The region LH 105, which lies on the southern edge of 30 Doradus, shows significant contamination by an underlying older population, possibly from previous star forming events. The luminosity functions, which serve as the first step toward determining the initial mass function in these regions, are calculated.

  12. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  13. CCD photometry of the globular cluster NGC 5897 - Morphology of the color-magnitude diagram

    NASA Technical Reports Server (NTRS)

    Sarajedini, Ata

    1992-01-01

    The paper presents CCD photometry in the B and V bands of the Galactic globular cluster NGC 5897. The color-magnitude diagram (CMD) obtained for this cluster is used to examine the properties of the cluster and to compare the NGC 5897 to the well-known globular cluster M3. It was found that the metallicity of the NGC 5897 is in the range of the metallicity of M3 and that the age of NGC 5897 is about 2 Gyr greater than that of M3. The CMD for NGC 5897 also reveals a significant population of blue straggler stars (BSS) more massive than the cluster subgiant branch stars. A pseudomain sequence is constructed for NGC 5897 and the previously studied (Sarajedini and Da Costa, 1991) global cluster 6101, which includes the BSS and extends to the faintest regions of the unevolved main sequence.

  14. Ultraviolet Properties of Galactic Globular Clusters with GALEX. I. The Color-Magnitude Diagrams

    NASA Astrophysics Data System (ADS)

    Schiavon, Ricardo P.; Dalessandro, Emanuele; Sohn, Sangmo T.; Rood, Robert T.; O'Connell, Robert W.; Ferraro, Francesco R.; Lanzoni, Barbara; Beccari, Giacomo; Rey, Soo-Chang; Rhee, Jaehyon; Rich, R. Michael; Yoon, Suk-Jin; Lee, Young-Wook

    2012-05-01

    We present Galaxy Evolution Explorer (GALEX) data for 44 Galactic globular clusters (GCs) obtained during three GALEX observing cycles between 2004 and 2008. This is the largest homogeneous data set on the UV photometric properties of Galactic GCs ever collected. The sample selection and photometric analysis are discussed, and color-magnitude diagrams (CMDs) are presented. The blue and intermediate-blue horizontal branch is the dominant feature of the UV CMDs of old Galactic GCs. Our sample is large enough to display the remarkable variety of horizontal branch shapes found in old stellar populations. Other stellar types that are obviously detected are blue stragglers and post-core-He burning stars. The main features of UV CMDs of Galactic GCs are briefly discussed. We establish the locus of post-core-He burning stars in the UV CMD and present a catalog of candidate asymptotic giant branch (AGB), AGB-manqué, post early-AGB, and post-AGB stars within our cluster sample. The authors dedicate this paper to the memory of co-author Bob Rood, a pioneer in the theory of the evolution of low-mass stars, and a friend, who sadly passed away on 2011 November 2.

  15. ULTRAVIOLET PROPERTIES OF GALACTIC GLOBULAR CLUSTERS WITH GALEX. I. THE COLOR-MAGNITUDE DIAGRAMS

    SciTech Connect

    Schiavon, Ricardo P.; Rhee, Jaehyon; Dalessandro, Emanuele; Ferraro, Francesco R.; Lanzoni, Barbara E-mail: emanuele.dalessandr2@unibo.it E-mail: barbara.lanzoni@unibo.it; and others

    2012-05-15

    We present Galaxy Evolution Explorer (GALEX) data for 44 Galactic globular clusters (GCs) obtained during three GALEX observing cycles between 2004 and 2008. This is the largest homogeneous data set on the UV photometric properties of Galactic GCs ever collected. The sample selection and photometric analysis are discussed, and color-magnitude diagrams (CMDs) are presented. The blue and intermediate-blue horizontal branch is the dominant feature of the UV CMDs of old Galactic GCs. Our sample is large enough to display the remarkable variety of horizontal branch shapes found in old stellar populations. Other stellar types that are obviously detected are blue stragglers and post-core-He burning stars. The main features of UV CMDs of Galactic GCs are briefly discussed. We establish the locus of post-core-He burning stars in the UV CMD and present a catalog of candidate asymptotic giant branch (AGB), AGB-manque, post early-AGB, and post-AGB stars within our cluster sample.

  16. A CCD color-magnitude diagram for the globular cluster IC 4499

    NASA Technical Reports Server (NTRS)

    Sarajedini, Ata

    1993-01-01

    A color-magnitude diagram (CMD) based on CCD observations in B and V is presented for the Galactic globular cluster IC 4499. The CMD reaches the main-sequence turnoff and reveals a horizontal branch (HB) similar to that of M3 in morphology; however, RR Lyrae variables compose 68 percent of the HB stars in IC 4499. We find V(HB) = 17.68 +/- 0.03 mag and, after adopting a metal abundance of (Fe/H)=- 1.65 +/- 0.10, derive a reddening of E(B-V) = 0.15 +/- 0.03 using the color of the red giant branch. We show that the (B-V) color extent of the IC 4499 HB is significantly smaller than that of M3 and NGC 3201. In particular, the red HBs of these clusters appear morphologically indistinguishable, whereas the blue HBs of M3 and NGC 3201 are more extended than that of IC 4499. If this difference is due to a variation in the mass range along the blue HB, we estimate that, in the mean, stars on the blue HB of IC 4499 are at least roughly 0.02 solar mass more massive than similar stars in M3 and NGC 3201.

  17. Constraining Globular Cluster Age Uncertainties using the IR Color-Magnitude Diagram

    NASA Astrophysics Data System (ADS)

    Correnti, Matteo; Gennaro, Mario; Kalirai, Jason S.; Brown, Thomas M.; Calamida, Annalisa

    2016-05-01

    Globular Clusters (GCs) in the Milky Way are the primary laboratories for establishing the ages of the oldest stellar populations and for measuring the color-magnitude relation of stars. In infrared (IR) color-magnitude diagrams (CMDs), the stellar main sequence (MS) exhibits a “kink” due to opacity effects in M dwarfs such that lower mass and cooler dwarfs become bluer in the IR color baseline. This diagnostic offers a new opportunity to model GC CMDs and to reduce uncertainties on cluster properties (e.g., their derived ages). In this context, we analyzed Hubble Space Telescope Wide Field Camera 3 IR archival observations of four GCs—47 Tuc, M4, NGC 2808, and NGC 6752—for which the data are deep enough to fully sample the low-mass MS, reaching at least ≃2 mag below the “kink.” We derived the fiducial lines for each cluster and compared them with a grid of isochrones over a large range of parameter space, allowing age, metallicity, distance, and reddening to vary within reasonable selected ranges. The derived ages for the four clusters are, respectively, 11.6, 11.5, 11.2, and 12.1 Gyr and their random uncertainties are σ ˜ 0.7-1.1 Gyr. Our results suggest that the near-IR MS “kink,” combined with the MS turn-off, provides a valuable tool to measure GC ages and offers a promising opportunity to push the absolute age of GCs to sub-Gyr accuracy with the next generation IR telescopes such as the James Webb Space Telescope and the Wide-field Infrared Survey Telescope. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  18. On Using the Color-Magnitude Diagram Morphology of M67 to Test Solar Abundances

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Serenelli, A.; Weiss, A.; Chaboyer, B.

    2010-08-01

    The open cluster M67 has solar metallicity and an age of about 4 Gyr. The turnoff (TO) mass is close to the minimum mass for which solar metallicity stars develop a convective core during main sequence evolution as a result of the development of hydrogen burning through the CNO cycle. The morphology of the color-magnitude diagram (CMD) of M67 around the TO shows a clear hook-like feature, a direct sign that stars close to the TO have convective cores. VandenBerg et al. investigated the possibility of using the morphology of the M67 TO to put constraints on the solar metallicity, particularly CNO elements, for which solar abundances have been revised downward by more than 30% over the last few years. Here, we extend their work, filling the gaps in their analysis. To this aim, we compute isochrones appropriate for M67 using new (low metallicity) and old (high metallicity) solar abundances and study whether the characteristic TO in the CMD of M67 can be reproduced or not. We also study the importance of other constitutive physics on determining the presence of such a hook, particularly element diffusion, overshooting and nuclear reaction rates. We find that using the new solar abundance determinations, with low CNO abundances, makes it more difficult to reproduce the characteristic CMD of M67. This result is in agreement with results by VandenBerg et al. However, changes in the constitutive physics of the models, particularly overshooting, can influence and alter this result to the extent that isochrones constructed with models using low CNO solar abundances can also reproduce the TO morphology in M67. We conclude that only if all factors affecting the TO morphology are completely under control (and this is not the case), M67 could be used to put constraints on solar abundances.

  19. THE GLOBULAR CLUSTER NGC 6402 (M14). I. A NEW BV COLOR-MAGNITUDE DIAGRAM

    SciTech Connect

    Contreras Pena, C.; Catelan, M.; Grundahl, F.; Stephens, A. W.; Smith, H. A. E-mail: c.contreras@herts.ac.uk

    2013-09-15

    We present BV photometry of the Galactic globular cluster NGC 6402 (M14), based on 65 V frames and 67 B frames, reaching two magnitudes below the turnoff level. This represents, to the best of our knowledge, the deepest color-magnitude diagram (CMD) of NGC 6402 available in the literature. Statistical decontamination of field stars as well as differential reddening corrections are performed in order to derive a precise ridgeline and hence physical parameters of the cluster. We discuss previous attempts at deriving a reddening value for the cluster, and argue in favor of a value E(B - V) = 0.57 {+-} 0.02, which is significantly higher than indicated by either the Burstein and Heiles or Schlegel et al. (corrected according to Bonifacio et al.) interstellar dust maps. Differential reddening across the face of the cluster, which we find to be present at the level of {Delta}E(B - V) Almost-Equal-To 0.17 mag, is taken into account in our analysis. We measure several metallicity indicators based on the position of the red giant branch (RGB) in the cluster CMD. These give a metallicity of [Fe/H] = -1.38 {+-} 0.07 on the Zinn and West scale and [Fe/H] = -1.28 {+-} 0.08 on the new Carretta et al. (UVES) scale. We also provide measurements of other important photometric parameters for this cluster, including the position of the RGB luminosity function ''bump'' and the horizontal branch morphology. We compare the NGC 6402 ridgeline with that of NGC 5904 (M5) derived by Sandquist et al., and find evidence that NGC 6402 and M5 have approximately the same age to within the uncertainties, although the possibility that M14 may be slightly older cannot be ruled out.

  20. The Globular Cluster NGC 6402 (M14). I. A New BV Color-Magnitude Diagram

    NASA Astrophysics Data System (ADS)

    Contreras Peña, C.; Catelan, M.; Grundahl, F.; Stephens, A. W.; Smith, H. A.

    2013-09-01

    We present BV photometry of the Galactic globular cluster NGC 6402 (M14), based on 65 V frames and 67 B frames, reaching two magnitudes below the turnoff level. This represents, to the best of our knowledge, the deepest color-magnitude diagram (CMD) of NGC 6402 available in the literature. Statistical decontamination of field stars as well as differential reddening corrections are performed in order to derive a precise ridgeline and hence physical parameters of the cluster. We discuss previous attempts at deriving a reddening value for the cluster, and argue in favor of a value E(B - V) = 0.57 ± 0.02, which is significantly higher than indicated by either the Burstein & Heiles or Schlegel et al. (corrected according to Bonifacio et al.) interstellar dust maps. Differential reddening across the face of the cluster, which we find to be present at the level of ΔE(B - V) ≈ 0.17 mag, is taken into account in our analysis. We measure several metallicity indicators based on the position of the red giant branch (RGB) in the cluster CMD. These give a metallicity of [Fe/H] = -1.38 ± 0.07 on the Zinn & West scale and [Fe/H] = -1.28 ± 0.08 on the new Carretta et al. (UVES) scale. We also provide measurements of other important photometric parameters for this cluster, including the position of the RGB luminosity function "bump" and the horizontal branch morphology. We compare the NGC 6402 ridgeline with that of NGC 5904 (M5) derived by Sandquist et al., and find evidence that NGC 6402 and M5 have approximately the same age to within the uncertainties, although the possibility that M14 may be slightly older cannot be ruled out. Based on observations obtained with the 0.9 m telescope at the Cerro Tololo Inter-American Observatory, Chile, operated by the SMARTS consortium.

  1. The gap in the color-magnitude diagram of NGC 2420: A test of convective overshoot and cluster age

    NASA Technical Reports Server (NTRS)

    Demarque, Pierre; Sarajedini, Ata; Guo, X.-J.

    1994-01-01

    Theoretical isochrones have been constructed using the OPAL opacities specifically to study the color-magnitude diagram of the open star cluster NGC 2420. This cluster provides a rare test of core convection in intermediate-mass stars. At the same time, its age is of interest because of its low metallicity and relatively high Galactic latitude for an open cluster. The excellent color-magnitude diagram constructed by Anthony-Twarog et al. (1990) allows a detailed fit of the isochrones to the photometric data. We discuss the importance of convective overshoot at the convective core edge in determining the morphology of the gap located near the main-sequence turnoff. We find that given the assumptions made in the models, a modest amount of overshoot (0.23 H(sub p)) is required for the best fit. Good agreement is achieved with all features of the turnoff gap for a cluster age of 2.4 +/- 0.2 Gyr. We note that a photometrically complete luminosity function near the main-sequence turnoff and subgiant branch would also provide an important test of the overshoot models.

  2. An optical and near-infrared color-magnitude diagram for type I Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Palmer, Robert J.; Gibbs, John; Gorjian, Varoujan; Pruett, Lee; Young, Diedre; Boyd, Robert; Byrd, Joy; Cheshier, Jaicie; Chung, Stephanie; Clark, Ruby; Fernandez, Joseph; Gonzales, Elyse; Kumar, Anika; McGinnis, Gillian; Palmer, John; Perrine, Luke; Phelps, Brittney; Reginio, Margaret; Richter, Kristi; Sanchez, Elias; Washburn, Claire

    2016-01-01

    This project is seeking another standard candle for measuring cosmic distances by trying to establish a color-magnitude diagram for active galactic nuclei (AGN). Type I AGN selected from the NASA/IPAC Extragalactic Database (NED) were used to establish a correlation between the color and the luminosity of AGN. This work builds on previous NASA/IPAC Teacher Archive Research Program team attempts to establish such a relationship. This is novel in that it uses both optical and 1-2 micron near-infrared (NIR) wavelengths as a better color discriminator of the transition between accretion-dominated and dust/torus-dominated emission.Photometric data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS) was extracted and analyzed for type I AGN with redshifts z < 0.20. Our color-magnitude diagram for the area where the dust vaporizes is analogous to a stellar Hertzsprung-Russell (HR) diagram. Data from SDSS and 2MASS were specifically selected to focus on the sublimation boundary between the coolest part of the accretion disk and the hottest region of the inner edge of the dusty torus surrounding the accretion disk to find the greatest ratio for the color. The more luminous the AGN, the more extended the dust sublimation radius, causing a larger hot dust emitting surface area, which corresponds to a greater NIR luminosity.Our findings suggest that the best correlations correspond to colors associated with the Sloan z band and any of the 2MASS bands with slight variations dependent on redshift. This may result in a tool for using AGN as a standard for cosmic distances. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  3. Color-magnitude Diagrams for the Stellar Open Cluster M 67 in theVilnius Photometric System

    NASA Astrophysics Data System (ADS)

    Boyle, Richard P.; Janusz, Robert

    2015-01-01

    Stellar photometry in the Vilnius Photometric System requires one percent quality for deriving luminosity class and spectral type subclass. We use such existing photometry of the open cluster M 67 to calibrate new CCD observations at the Vatican Advanced Technology Telescope (VATT) for correcting the flat-fielding zero-point and deriving the color-transformation in this intermediate-band, seven filter system (Boyle et al., BAAS 37 #4, 2005).Recently we have developed a "tie-in" observational practice to apply the zero-point and color transformation of the M 67 observations to neighboring starfields of interest that have no existing photometry. Sky transparency must remain constant to better than one percent during a round of short exposures in a filter between the field having calibrated photometry and the new field having no photometry as if the new field was exposed simultaneously with the master field.Proof of success for this "tie-in" method is shown with the master field being M 67 and the "tie-in" field being the nearby extended "corona" area. The distinctive color-magnitude diagrams of the old open clusterM 67 reveal the sensitivity to having constant sky transparency during the round of short exposures on M 67 and its extended area. For the extended area has the same form in its color-magnitude diagram as M 67. So variation in sky transparency shows displacement on the color-magnitude diagrams at the one percent quality.We will attempt new analysis concerning evolution of this very old open cluster (2.56 Gyr, WEBDA, http://www.univie.ac.at/webda/) and the surrounding "coronal" extent with reference to previous work by Chupina and Vereshchagin (Astron. Astrophys, 334, 552, 1998).

  4. The development of a color-magnitude diagram for active galactic nuclei (AGN): hope for a new standard candle

    NASA Astrophysics Data System (ADS)

    McGinnis, G.; Chung, S.; Gonzales, E. V.; Gorjian, V.; Pruett, L.

    2015-12-01

    Of the galaxies in our universe, only a small percentage currently have Active Galactic Nuclei (AGN). These galaxies tend to be further out in the universe and older, and are different from inactive galaxies in that they emit high amounts of energy from their central black holes. These AGN can be classified as either Seyferts or quasars, depending on the amount of energy emitted from the center (less or more). We are studying the correlation between the ratio of dust emission and accretion disk emission to luminosities of AGN in order to determine if there is a relationship strong enough to act as a predictive model for distance within the universe. This relationship can be used as a standard candle if luminosity is found to determine distances in space. We have created a color-magnitude diagram depicting this relationship between luminosity and wavelengths, similar to the Hertzsprung-Russell (HR) diagram. The more luminous the AGN, the more dust surface area over which to emit energy, which results in a greater near-infrared (NIR) luminosity. This differs from previous research because we use NIR to differentiate accretion from dust emission. Using data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS), we analyzed over one thousand Type 1 Seyferts and quasars. We studied data at different wavelengths in order to show the relationship between color (the ratio of one wavelength to another) and luminosity. It was found that plotting filters i-K (the visible and mid-infrared regions of the electromagnetic spectrum) against the magnitude absolute K (luminosity) showed a strong correlation. Furthermore, the redshift range between 0.14 and 0.15 was the most promising, with an R2 of 0.66.

  5. The UV-Optical Galaxy Color-Magnitude Diagram. III. Constraints on Evolution from the Blue to the Red Sequence

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Wyder, Ted K.; Schiminovich, David; Barlow, Tom A.; Forster, Karl; Friedman, Peter G.; Morrissey, Patrick; Neff, Susan G.; Seibert, Mark; Small, Todd; Welsh, Barry Y.; Bianchi, Luciana; Donas, José; Heckman, Timothy M.; Lee, Young-Wook; Madore, Barry F.; Milliard, Bruno; Rich, R. Michael; Szalay, Alex S.; Yi, Sukyoung K.

    2007-12-01

    We introduce a new quantity, the mass flux density of galaxies evolving from the blue sequence to the red sequence. We propose a simple technique for constraining this mass flux using the volume-corrected number density in the extinction-corrected UV-optical color-magnitude distribution, the stellar age indexes HδA and Dn(4000), and a simple prescription for spectral evolution using a quenched star formation history. We exploit the excellent separation of red and blue sequences in the NUV-r band Hess function. The final value we measure, ρT˙=0.033 Msolar yr-1 Mpc-3, is strictly speaking an upper limit due to the possible contributions of bursting, composite, and extincted galaxies. However, it compares favorably with estimates of the average mass flux that we make based on the red luminosity function evolution derived from the DEEP2 and COMBO-17 surveys, ρ˙R=+0.034 Msolar yr-1 Mpc-3. We find that the blue sequence mass has remained roughly constant since z=1 (ρB˙~=0.01 Msolar yr-1 Mpc-3, but the average on-going star formation of ρ˙SF~=0.037 Msolar yr-1 Mpc-3 over 0

  6. Deep Advanced Camera for Surveys Imaging in the Globular Cluster NGC 6397: the Cluster Color-Magnitude Diagram and Luminosity Function

    NASA Astrophysics Data System (ADS)

    Richer, Harvey B.; Dotter, Aaron; Hurley, Jarrod; Anderson, Jay; King, Ivan; Davis, Saul; Fahlman, Gregory G.; Hansen, Brad M. S.; Kalirai, Jason; Paust, Nathaniel; Rich, R. Michael; Shara, Michael M.

    2008-06-01

    We present the color-magnitude diagram (CMD) from deep Hubble Space Telescope imaging in the globular cluster NGC 6397. The Advanced Camera for Surveys (ACS) was used for 126 orbits to image a single field in two colors (F814W, F606W) 5' SE of the cluster center. The field observed overlaps that of archival WFPC2 data from 1994 and 1997 which were used to proper motion (PM) clean the data. Applying the PM corrections produces a remarkably clean CMD which reveals a number of features never seen before in a globular cluster CMD. In our field, the main-sequence stars appeared to terminate close to the location in the CMD of the hydrogen-burning limit predicted by two independent sets of stellar evolution models. The faintest observed main-sequence stars are about a magnitude fainter than the least luminous metal-poor field halo stars known, suggesting that the lowest-luminosity halo stars still await discovery. At the bright end the data extend beyond the main-sequence turnoff to well up the giant branch. A populous white dwarf cooling sequence is also seen in the cluster CMD. The most dramatic features of the cooling sequence are its turn to the blue at faint magnitudes as well as an apparent truncation near F814W = 28. The cluster luminosity and mass functions were derived, stretching from the turnoff down to the hydrogen-burning limit. It was well modeled with either a very flat power-law or a lognormal function. In order to interpret these fits more fully we compared them with similar functions in the cluster core and with a full N-body model of NGC 6397 finding satisfactory agreement between the model predictions and the data. This exercise demonstrates the important role and the effect that dynamics has played in altering the cluster initial mass function.

  7. FROM THE COLOR-MAGNITUDE DIAGRAM OF {omega} CENTAURI AND (SUPER-)ASYMPTOTIC GIANT BRANCH STELLAR MODELS TO A GALACTIC PLANE PASSAGE GAS PURGING CHEMICAL EVOLUTION SCENARIO

    SciTech Connect

    Herwig, Falk; VandenBerg, Don A.; Navarro, Julio F.; Ferguson, Jason; Paxton, Bill E-mail: vandenbe@uvic.ca E-mail: paxton@kitp.ucsb.edu

    2012-10-01

    We have investigated the color-magnitude diagram of {omega} Centauri and find that the blue main sequence (bMS) can be reproduced only by models that have a helium abundance in the range Y = 0.35-0.40. To explain the faint subgiant branch of the reddest stars ('MS-a/RG-a' sequence), isochrones for the observed metallicity ([Fe/H] Almost-Equal-To -0.7) appear to require both a high age ({approx}13 Gyr) and enhanced CNO abundances ([CNO/Fe] Almost-Equal-To 0.9). Y Almost-Equal-To 0.35 must also be assumed in order to counteract the effects of high CNO on turnoff colors and thereby to obtain a good fit to the relatively blue turnoff of this stellar population. This suggests a short chemical evolution period of time (<1 Gyr) for {omega} Cen. Our intermediate-mass (super-)asymptotic giant branch (AGB) models are able to reproduce the high helium abundances, along with [N/Fe] {approx}2 and substantial O depletions if uncertainties in the treatment of convection are fully taken into account. These abundance features distinguish the bMS stars from the dominant [Fe/H] Almost-Equal-To -1.7 population. The most massive super-AGB stellar models (M{sub ZAMS} {>=} 6.8 M{sub Sun }, M{sub He,core} {>=} 1.245 M{sub Sun }) predict too large N enhancements, which limit their role in contributing to the extreme populations. In order to address the observed central concentration of stars with He-rich abundance, we show here quantitatively that highly He- and N-enriched AGB ejecta have particularly efficient cooling properties. Based on these results and on the reconstruction of the orbit of {omega} Cen with respect to the Milky Way, we propose the Galactic plane passage gas purging scenario for the chemical evolution of this cluster. The bMS population formed shortly after the purging of most of the cluster gas as a result of the passage of {omega} Cen through the Galactic disk (which occurs today every {approx}40 Myr for {omega} Cen) when the initial mass function of the dominant

  8. A Constraint on Zsolar from Fits of Isochrones to the Color-Magnitude Diagram of M67

    NASA Astrophysics Data System (ADS)

    VandenBerg, Don A.; Gustafsson, Bengt; Edvardsson, Bengt; Eriksson, Kjell; Ferguson, Jason

    2007-09-01

    The mass at which a transition is made between stars that have radiative or convective cores throughout the core H burning phase is a fairly sensitive function of Z (particularly, the CNO abundances). As a consequence, the ~4 Gyr, open cluster M67 provides a constraint on Zsolar (and the solar heavy-element mixture) because (1) high-resolution spectroscopy indicates that this system has virtually the same metal abundances as the Sun, and (2) its turnoff stars have masses just above the lower limit for sustained core convection on the main sequence. In this study, evolutionary tracks and isochrones using the latest MARCS model atmospheres as boundary conditions have been computed for 0.6-1.4 Msolar on the assumption of a metals mix (implying Zsolar~0.0125) based on the solar abundances derived by M. Asplund and collaborators using 3D model atmospheres. These calculations do not predict a turnoff gap where one is observed in M67. No such difficulty is found if the analysis uses isochrones for Zsolar=0.0165, assuming the Grevesse and Sauval mix of heavy elements. Our findings, like the inferences from helioseismology, indicate a problem with the abundances of Asplund and collaborators. However, it is possible that low-Z models with diffusive processes taken into account will be less problematic.

  9. Color/magnitude calibration for National Aeronautics and Space Administration (NASA) standard Fixed-Head Star Trackers (FHST)

    NASA Technical Reports Server (NTRS)

    Landis, J.; Leid, Terry; Garber, A.; Lee, M.

    1994-01-01

    This paper characterizes and analyzes the spectral response of Ball Aerospace fixed-head star trackers, (FHST's) currently in use on some three-axis stabilized spacecraft. The FHST output is a function of the frequency and intensity of the incident light and the position of the star image in the field of view. The FHST's on board the Extreme Ultraviolet Explorer (EUVE) have had occasional problems identifying stars with a high B-V value. These problems are characterized by inaccurate intensity counts observed by the tracker. The inaccuracies are due to errors in the observed star magnitude values. These errors are unique to each individual FHST. For this reason, data were also collected and analyzed from the Upper Atmosphere Research Satellite (UARS). As a consequence of this work, the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) hopes to improve the attitude accuracy on these missions and to adopt better star selection procedures for catalogs.

  10. The Ages of 55 Globular Clusters as Determined Using an Improved \\Delta V^HB_TO Method along with Color-Magnitude Diagram Constraints, and Their Implications for Broader Issues

    NASA Astrophysics Data System (ADS)

    VandenBerg, Don A.; Brogaard, K.; Leaman, R.; Casagrande, L.

    2013-10-01

    Ages have been derived for 55 globular clusters (GCs) for which Hubble Space Telescope Advanced Camera for Surveys photometry is publicly available. For most of them, the assumed distances are based on fits of theoretical zero-age horizontal-branch (ZAHB) loci to the lower bound of the observed distributions of HB stars, assuming reddenings from empirical dust maps and metallicities from the latest spectroscopic analyses. The age of the isochrone that provides the best fit to the stars in the vicinity of the turnoff (TO) is taken to be the best estimate of the cluster age. The morphology of isochrones between the TO and the beginning part of the subgiant branch (SGB) is shown to be nearly independent of age and chemical abundances. For well-defined color-magnitude diagrams (CMDs), the error bar arising just from the "fitting" of ZAHBs and isochrones is ≈ ± 0.25 Gyr, while that associated with distance and chemical abundance uncertainties is ~ ± 1.5-2 Gyr. The oldest GCs in our sample are predicted to have ages of ≈13.0 Gyr (subject to the aforementioned uncertainties). However, the main focus of this investigation is on relative GC ages. In conflict with recent findings based on the relative main-sequence fitting method, which have been studied in some detail and reconciled with our results, ages are found to vary from mean values of ≈12.5 Gyr at [Fe/H] <~ - 1.7 to ≈11 Gyr at [Fe/H] >~ -1. At intermediate metallicities, the age-metallicity relation (AMR) appears to be bifurcated: one branch apparently contains clusters with disk-like kinematics, whereas the other branch, which is displaced to lower [Fe/H] values by ≈0.6 dex at a fixed age, is populated by clusters with halo-type orbits. The dispersion in age about each component of the AMR is ~ ± 0.5 Gyr. There is no apparent dependence of age on Galactocentric distance (R G) nor is there a clear correlation of HB type with age. As previously discovered in the case of M3 and M13, subtle variations have

  11. VizieR Online Data Catalog: HST/ACS color-magnitude diagrams of candidate intermediate-age M 31 globular clusters. The role of blue horizontal branches.

    NASA Astrophysics Data System (ADS)

    Perina, S.; Galleti, S.; Fusi Pecci, F.; Bellazzini, M.; Federici, L.; Buzzoni, A.

    2011-10-01

    Tables b058.dat, b292_531.dat, b350.dat, b336.dat, b337.dat present the photometry of the individual stars of six M31 globular clusters. The observations were carried out with the ACS on board of the HST, employing the WFC+F435W/F606W filters. The data reduction has been performed using the ACS module of DOLPHOT, a point spread function-fitting package specifically devoted to the photometry of HST data, that provides as output the magnitudes and the pixel positions of the detected sources, and a number of quality parameters for a suitable sample selection. The tables present, for the chip holding the cluster, all the stars with valid measurements in both passbands, global quality flag=1, crowding parameter <0.5, chi-square parameter <2.5 and sharpness parameter between -0.3 and 0.3. The x,y coordinates, the magnitudes in the Vegamag system, the errors on the magnitudes and the ACS_WFC chip number are listed for each of the selected stars. (6 data files).

  12. The Leo I color-magnitude diagram

    NASA Astrophysics Data System (ADS)

    Reid, Neill; Mould, Jeremy

    1991-04-01

    The R-and I-band photometry of the Leo I dwarf galaxy is presented. A relatively narrow giant branch is found, Implying an abundance range of no more than Fe/H/= - 0.7 to - 1.3. This is in contrast to the results is found by Fox and Pritchet (1987) from BV CCD photometry. The distance modulus is estimated as (m - M) = 21.85 + or - 0.15, based on the luminosity of the tip of the red giant branch.

  13. UV-CONTINUUM SLOPES AT z {approx} 4-7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR-MAGNITUDE RELATIONSHIP FOR z {>=} 4 STAR-FORMING GALAXIES

    SciTech Connect

    Bouwens, R. J.; Franx, M.; Labbe, I.; Smit, R.; Illingworth, G. D.; Oesch, P.A.; Gonzalez, V.; Magee, D.; Van Dokkum, P.; Carollo, C. M.

    2012-08-01

    Ultra-deep Advanced Camera for Surveys (ACS) and WFC3/IR HUDF+HUDF09 data, along with the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS field, are used to measure UV colors, expressed as the UV-continuum slope {beta}, of star-forming galaxies over a wide range of luminosity (0.1L*{sub z=3} to 2L*{sub z=3}) at high redshift (z {approx} 7 to z {approx} 4). {beta} is measured using all ACS and WFC3/IR passbands uncontaminated by Ly{alpha} and spectral breaks. Extensive tests show that our {beta} measurements are only subject to minimal biases. Using a different selection procedure, Dunlop et al. recently found large biases in their {beta} measurements. To reconcile these different results, we simulated both approaches and found that {beta} measurements for faint sources are subject to large biases if the same passbands are used both to select the sources and to measure {beta}. High-redshift galaxies show a well-defined rest-frame UV color-magnitude (CM) relationship that becomes systematically bluer toward fainter UV luminosities. No evolution is seen in the slope of the UV CM relationship in the first 1.5 Gyr, though there is a small evolution in the zero point to redder colors from z {approx} 7 to z {approx} 4. This suggests that galaxies are evolving along a well-defined sequence in the L{sub UV}-color ({beta}) plane (a 'star-forming sequence'?). Dust appears to be the principal factor driving changes in the UV color {beta} with luminosity. These new larger {beta} samples lead to improved dust extinction estimates at z {approx} 4-7 and confirm that the extinction is essentially zero at low luminosities and high redshifts. Inclusion of the new dust extinction results leads to (1) excellent agreement between the star formation rate (SFR) density at z {approx} 4-8 and that inferred from the stellar mass density; and (2) to higher specific star formation rates (SSFRs) at z {approx}> 4, suggesting that the SSFR may evolve modestly (by factors of {approx}2) from

  14. Maxima and O-C Diagrams for 489 Mira Stars

    NASA Astrophysics Data System (ADS)

    Karlsson, T.

    2013-11-01

    Maxima for 489 Mira stars have been compiled. They were computed with data from AAVSO, AFOEV, VSOLJ, and BAA-VSS and collected from published maxima. The result is presented in a mysql database and on web pages with O-C diagrams, periods and some statistical information for each star.

  15. Big Black Holes Mean Bad News for Stars (diagram)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version Suppression of Star Formation from Supermassive Black Holes

    This diagram illustrates research from NASA's Galaxy Evolution Explorer showing that black holes -- once they reach a critical size -- can put the brakes on new star formation in elliptical galaxies.

    In this graph, galaxies and their supermassive black holes are indicated by the drawings (the black circle at the center of each galaxy represents the black hole). The relative masses of the galaxies and their black holes are reflected in the sizes of the drawings. Blue indicates that the galaxy has new stars, while red means the galaxy does not have any detectable new stars.

    The Galaxy Evolution Explorer observed the following trend: the biggest galaxies and black holes (shown in upper right corner) are more likely to have no observable star formation (red) than the smaller galaxies with smaller black holes. This is evidence that black holes can create environments unsuitable for stellar birth.

    The white line in the diagram illustrates that, for any galaxy no matter what the mass, its black hole must reach a critical size before it can shut down star formation.

  16. Magnetic AP Stars in the Hertzsprung-Russell Diagram

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; North, P.; Mathys, G.

    2000-08-01

    The evolutionary state of magnetic Ap stars is rediscussed using the recently released Hipparcos data. The distribution of the magnetic Ap stars of mass below 3 Msolar in the H-R diagram differs from that of the normal stars in the same temperature range at a high level of significance. Magnetic stars are concentrated toward the center of the main-sequence band. This is shown in two forms of the H-R diagram: one where logL is plotted against logTeff and a version more directly tied to the observed quantities, showing the astrometry-based luminosity (Arenou & Luri) against the (B2-G)0 index of Geneva photometry. In particular, it is found that magnetic fields appear only in stars that have already completed at least approximately 30% of their main-sequence lifetime. No clear picture emerges as to the possible evolution of the magnetic field across the main sequence. Hints of some (loose) relations between magnetic field strength and other stellar parameters are found: stars with shorter periods tend to have stronger fields, as do higher temperature and higher mass stars. A marginal trend of the magnetic flux to be lower in more slowly rotating stars may possibly be seen as suggesting a dynamo origin for the field. No correlation between the rotation period and the fraction of the main-sequence lifetime completed is observed, indicating that the slow rotation in these stars must already have been achieved before they became observably magnetic. Based on data from the ESA Hipparcos satellite and on observations collected at the European Southern Observatory (La Silla, Chile; ESO programs Nos. 43.7-004, 44.7-012, 49.7-030, 50.7-067, 51.7-041, 52.7-063, 53.7-028, 54.E-0416, and 55.E-0751), at the Observatoire de Haute-Provence (Saint-Michel l'Observatoire, France), at Kitt Peak National Observatory, and at the Canada-France-Hawaii Telescope.

  17. Robust automatic photometry of local galaxies from SDSS. Dissecting the color magnitude relation with color profiles

    NASA Astrophysics Data System (ADS)

    Consolandi, Guido; Gavazzi, Giuseppe; Fumagalli, Michele; Dotti, Massimo; Fossati, Matteo

    2016-06-01

    We present an automatic procedure to perform reliable photometry of galaxies on SDSS images. We selected a sample of 5853 galaxies in the Coma and Virgo superclusters. For each galaxy, we derive Petrosian g and i magnitudes, surface brightness and color profiles. Unlike the SDSS pipeline, our procedure is not affected by the well known shredding problem and efficiently extracts Petrosian magnitudes for all galaxies. Hence we derived magnitudes even from the population of galaxies missed by the SDSS which represents ~25% of all local supercluster galaxies and ~95% of galaxies with g < 11 mag. After correcting the g and i magnitudes for Galactic and internal extinction, the blue and red sequences in the color magnitude diagram are well separated, with similar slopes. In addition, we study (i) the color-magnitude diagrams in different galaxy regions, the inner (r ≤ 1 kpc), intermediate (0.2RPet ≤ r ≤ 0.3RPet) and outer, disk-dominated (r ≥ 0.35RPet)) zone; and (ii), we compute template color profiles, discussing the dependences of the templates on the galaxy masses and on their morphological type. The two analyses consistently lead to a picture where elliptical galaxies show no color gradients, irrespective of their masses. Spirals, instead, display a steeper gradient in their color profiles with increasing mass, which is consistent with the growing relevance of a bulge and/or a bar component above 1010 M⊙. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A38

  18. The color-magnitude distribution of small Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.; Emery, Joshua P.

    2014-11-01

    The Jupiter Trojans constitute a population of minor bodies that are situated in a 1:1 mean motion resonance with Jupiter and are concentrated in two swarms centered about the L4 and L5 Lagrangian points. Current theories of Solar System evolution describe a scenario in which the Trojans originated in a region beyond the primordial orbit of Neptune. It is hypothesized that during a subsequent period of chaotic dynamical disruptions in the outer Solar System, the primordial trans-Neptunian planetesimals were disrupted, and a fraction of them were scattered inwards and captured by Jupiter as Trojan asteroids, while the remaining objects were thrown outwards to larger heliocentric distances and eventually formed the Kuiper belt. If this is the case, a detailed study of the characteristics of Trojans may shed light on the relationships between the Trojans and other minor body populations in the outer Solar System, and more broadly, constrain models of late Solar System evolution. Several past studies of Trojans have revealed significant bimodalities with respect to various spectroscopic and photometric quantities, indicating the existence of two groupings among the Trojans - the so-called red and less-red sub-populations. In a previous work, we used primarily photometric data from the Sloan Digital Sky Survey to categorize several hundred Trojans with absolute magnitudes in the range H<12.3 into the two sub-populations. We demonstrated that the magnitude distributions of the color sub-populations are distinct to a high confidence level, suggesting that the red and less-red Trojans were formed in different locations and/or experienced different evolutionary histories. Most notably, we found that the discrepancy between the two color-magnitude distributions is concentrated at the faint end. Here, we present the results of a follow-up study, in which we analyze color measurements of a large number of small Trojans collected using the Suprime-Cam instrument on the Subaru

  19. THE AGE OF ELLIPTICALS AND THE COLOR-MAGNITUDE RELATION

    SciTech Connect

    Schombert, James; Rakos, Karl E-mail: karl.rakos@chello.at

    2009-07-10

    Using new narrowband color observations of early-type galaxies in clusters, we reconstruct the color-magnitude relation (CMR) with a higher degree of accuracy than previous work. We then use the spectroscopically determined ages and metallicities from three samples, combined with multimetallicity spectral energy distribution models, to compare predicted colors for galaxies with young ages (less than 8 Gyr) with the known CMR. We find that the CMR cannot by reproduced by the spectroscopically determined ages and metallicities in any of the samples despite the high internal accuracies to the spectroscopic indices. In contrast, using only the (Fe) index to determine [Fe/H], and assuming a mean age of 12 Gyr for a galaxy's stellar population, we derive colors that exactly match not only the color zero point of the CMR but also its slope. We consider the source of young age estimates, the H{beta} index, and examine the conflict between red continuum colors and large H{beta} values in galaxy spectra. We conclude that our current understanding of stellar populations is insufficient to correctly interpret H{beta} values.

  20. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    SciTech Connect

    Suh, Kyung-Won

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  1. ABOUT THE LINEARITY OF THE COLOR-MAGNITUDE RELATION OF EARLY-TYPE GALAXIES IN THE VIRGO CLUSTER

    SciTech Connect

    Smith Castelli, Analia V.; Faifer, Favio R.

    2013-07-20

    We revisit the color-magnitude relation of Virgo Cluster early-type galaxies in order to explore its alleged nonlinearity. To this aim, we reanalyze the relation already published from data obtained within the ACS Virgo Cluster Survey of the Hubble Space Telescope and perform our own photometry and analysis of the images of 100 early-type galaxies observed as part of this survey. In addition, we compare our results with those reported in the literature from data of the Sloan Digital Sky Survey. We have found that when the brightest galaxies and untypical systems are excluded from the sample, a linear relation arises in agreement with what is observed in other groups and clusters. The central regions of the brightest galaxies also follow this relation. In addition, we notice that Virgo contains at least four compact elliptical galaxies besides the well-known object VCC 1297 (NGC 4486B). Their locations in the ({mu}{sub eff})-luminosity diagram define a trend different from that followed by normal early-type dwarf galaxies, setting an upper limit in effective surface brightness and a lower limit in the effective radius for their luminosities. Based on the distribution of different galaxy sub-samples in the color-magnitude and ({mu}{sub eff})-luminosity diagrams, we draw some conclusions on their formation and the history of their evolution.

  2. The Cosmic Evolution Survey (COSMOS): The Morphological Content and Environmental Dependence of the Galaxy Color-Magnitude Relation at z ~ 0.7

    NASA Astrophysics Data System (ADS)

    Cassata, P.; Guzzo, L.; Franceschini, A.; Scoville, N.; Capak, P.; Ellis, R. S.; Koekemoer, A.; McCracken, H. J.; Mobasher, B.; Renzini, A.; Ricciardelli, E.; Scodeggio, M.; Taniguchi, Y.; Thompson, D.

    2007-09-01

    We study the environmental dependence and the morphological composition of the galaxy color-magnitude diagram at z~0.7, using a pilot subsample of COSMOS. The sample includes ~2000 galaxies with IAB<24 and photometric redshift within 0.61color-magnitude diagram shows a clear red sequence dominated by early-type galaxies and a remarkably well-defined ``blue sequence'' described by late-type objects. While the percentage of objects populating the two sequences is a function of environment, also following a clear morphology/color-density relation at this redshift, we establish that their normalization and slope are independent of local density. We identify and study a number of objects with ``anomalous'' colors, given their morphology, polluting the two sequences. Red late-type galaxies are found to be mostly highly inclined or edge-on spiral galaxies for which colors are dominated by internal reddening by dust. In a sample of color-selected red galaxies, these would represent 33% contamination with respect to truly passive spheroidals. Conversely, the population of blue early-type galaxies is composed of objects of moderate luminosity and mass, concurring to only ~5% of the mass in spheroidal galaxies. The majority of them (~70%) occupy a position in the μB-r50 plane not consistent with their being precursors of current-epoch elliptical galaxies. Their fraction with respect to the whole galaxy population does not depend on the environment, at variance with the general early-type class. In a color-mass diagram, color sequences are even better defined, with red galaxies covering in general a wider range of masses at nearly constant color, and blue galaxies showing a more pronounced dependence of color on mass. While the red sequence is adequately reproduced by models of passive evolution, the blue sequence is better interpreted as a

  3. StarFISH: For Inferring Star-formation Histories

    NASA Astrophysics Data System (ADS)

    Harris, Jason; Zaritsky, Dennis

    2012-04-01

    StarFISH is a suite of programs designed to determine the star formation history (SFH) of a stellar population, given multicolor stellar photometry and a library of theoretical isochrones. It constructs a library of synthetic color-magnitude diagrams from the isochrones, which includes the effects of extinction, photometric errors and completeness, and binarity. A minimization routine is then used to determine the linear combination of synthetic CMDs that best matches the observed photometry. The set of amplitudes modulating each synthetic CMD describes the star formation history of the observed stellar population.

  4. Analysis of the Petersen Diagram of Double Mode High Amplitude delta Scuti Stars

    NASA Astrophysics Data System (ADS)

    Furgoni, R.

    2016-06-01

    I created the Petersen diagram relative to all the Double Mode High Amplitude ? Scuti stars listed in the AAVSO's International Variable Star Index (Watson et al. 2007-2015) up to date December 29, 2015. For the first time I noticed that the ratio between the two periods P1/P0 seems in evident linear relation with the duration of the period P0, a finding never explicitly described in literature regarding this topic.

  5. Differential rotation of some HK Project stars and the butterfly diagrams

    NASA Astrophysics Data System (ADS)

    Katsova, M. M.; Livshits, M. A.; Soon, W.; Sokoloff, D. D.

    2009-02-01

    We analyze the long-term variability of the chromospheric radiation of 20 stars monitored in the course of HK Project. We apply the modified wavelet algorithm for this set of gapped data. Besides the rotational periods for all these stars, we find reliable changes of the periods from year to year for a few stars. Epochs of the slower rotation occur when the activity level of the star is high, and they come again during the next maximum of a cycle. Such an effect is traced in two ``Good'' stars, whose cycles are not quite regular, but they are more active than the Sun. So, the mean period of rotation of the star HD 115404 is 18.5 days, and sometimes it does increase up to 21.5 days. The sign of the differential rotation is the same as one for the Sun, and ΔΩ/<Ω> = -0.14. For the star HD 149661, this ratio is -0.074. Characteristic changes of rotational periods occur over around three years when the amplitude of the rotational modulation is large. These changes can be transformed into the butterfly diagrams without a priori assumptions. We compare these results with those for the Sun as a star and conclude that epochs when surface inhomogeneities rotate slower are synchronous with reversal of the global magnetic dipole.

  6. Blue straggler stars in Galactic open clusters and the effect of field star contamination

    NASA Astrophysics Data System (ADS)

    Carraro, G.; Vázquez, R. A.; Moitinho, A.

    2008-05-01

    Context: We investigate the distribution of blue straggler stars in the field of three open star clusters. Aims: The main purpose is to highlight the crucial role played by general Galactic disk fore-/back-ground field stars, which are often located in the same region of the color magnitude diagram as blue straggler stars. Methods: We analyze photometry taken from the literature of 3 open clusters of intermediate/old age rich in blue straggler stars, which are projected in the direction of the Perseus arm, and study their spatial distribution and the color magnitude diagram. Results: As expected, we find that a large portion of the blue straggler population in these clusters are simply young field stars belonging to the spiral arm. This result has important consequences on the theories of the formation and statistics of blue straggler stars in different population environments: open clusters, globular clusters, or dwarf galaxies. Conclusions: As previously emphasized by many authors, a detailed membership analysis is mandatory before comparing the blue straggler population in star clusters to theoretical models. Moreover, these sequences of young field stars (blue plumes) are potentially powerful tracers of Galactic structure and they require further consideration.

  7. Differential rotation of some HK-Project stars and the butterfly diagrams

    NASA Astrophysics Data System (ADS)

    Katsova, M. M.; Livshits, M. A.; Soon, W.; Baliunas, S. L.; Sokoloff, D. D.

    2010-02-01

    We analyze the long-term variability of the chromospheric radiation of 20 stars monitored in the course of the HK-Project at the Mount Wilson Observatory. We apply the modified wavelet algorithm for this set of gapped time series. Besides the mean rotational periods for all these stars, we find reliable changes of the rotational periods from year to year for a few stars. Epochs of slower rotation occur when the activity level of the star is high, and the relationship repeats again during the next maximum of an activity cycle. Such an effect is traced in two stars with activity cycles that are not perfectly regular (but labeled "Good" under the classification in [Baliunas, S.L., Donahue, R.A., Soon, W.H., Horne, J.H., Frazer, J., Woodard-Eklund, L., Bradford, M., Rao, L.M., Wilson, O.C., Zhang, Q. et al., 1995. ApJ 438, 269.]) but the two stars have mean activity levels exceed that of the Sun. The averaged rotational period of HD 115404 is 18.5 days but sometimes the period increases up to 21.5 days. The sign of the differential rotation is the same as the Sun's, and the value ΔΩ / < Ω > = - 0.14. For the star HD 149661, this ratio is -0.074. Characteristic changes of rotational periods occur over around three years when the amplitude of the rotational modulation is large. These changes can be transformed into latitude-time butterfly diagrams with minimal a priori assumptions. We compare these results with those for the Sun as a star and conclude that epochs when surface inhomogeneities rotate slower are synchronous with the reversal of the global magnetic dipole.

  8. An Atlas of O-C Diagrams of Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Kreiner, Jerzy M.; Kim, Chun-Hwey; Nha, Il-Seong

    The Atlas contains data for 1,138 eclipsing binaries represented by 91,798 minima timings, collected from the usual international and local journals, observatory publications and unpublished minima. Among this source material there is a considerable representation of amateur astronomers. Some timings were found in the card-index catalogue of the Astronomical Observatory of the Jagiellonian University, Cracow. Stars were included in the Atlas provided that they satisfied 3 criteria: (1) at least 20 minima had been times; (2) these minima spanned at least 2,500 cycles; and (3) the 2,500 cycles represented no fewer than 40 years. Some additional stars not strictly satisfying these criteria were also included if useful information was available. For each star, the Atlas contains the (O-C) diagram calculated by the authors and a table of general information containing: binary characteristics; assorted catalogue numbers; the statistics of the collected minima timings; the light elements (light ephemeris); comments and literature references. All of the data and diagrams in the Atlas are also available in electronic form on the Internet at http://www.as.ap.krakow.pl/o- c".

  9. VizieR Online Data Catalog: Kinematics and HR Diagrams of Southern Young Stars (Sartori+ 2003)

    NASA Astrophysics Data System (ADS)

    Sartori, M. J.; Lepine, J. R. D.; Dias, W. S.

    2003-07-01

    We investigate the spatial distribution, the space velocities and age distribution of the pre-main sequence (PMS) stars belonging to Ophiuchus, Lupus and Chamaeleon star-forming regions (SFRs), and of the young early-type star members of the Scorpius-Centaurus (Sco-Cen) OB association. These young stellar associations extend over the galactic longitude range from 280 to 360 degrees, and are at a distance interval of around 100 and 200pc. We present a compilation of PMS and early-type stars members of the investigated SFRs and OB associations. For these lists of stars we give the data used for the study of kinematic properties: positions, adopted distances, proper motions and radial velocities (whenever available), and the basic stellar data, used for the construction of Hertzsprung-Russel diagrams. All data have been taken from the literature. We also present the derived XYZ positions on the Galactic system, UVW components of the space velocities, visual extinction, and bolometric luminosity. (5 data files).

  10. A Mysterious Population of Stars With Weak CN Absorption in the Disk of M31

    NASA Astrophysics Data System (ADS)

    Kamath, Anika; Sales, Alyssa; Sarukkai, Atmika; Guhathakurta, Puragra; Hays, Jon; Rosenfield, Philip; SPLASH Collaboration; PHAT Collaboration

    2017-01-01

    From our study of certain stars in the Andromeda Galaxy, we found stars with clear evidence of the molecule cyanogen (CN) alongside molecules typically in oxygen-rich stars (TiO, Calcium) in their atmospheres. The juxtaposition of these molecules is amplified by our observation that stars do not normally simultaneously exhibit carbonaceous and oxygenaceous molecules. Due to the less apparent presence of CN in these stars compared to carbon stars, we initially named these stars ‘weak CN’ stars and assumed a relationship between these stars and carbon stars. To further deepen our understanding of the characteristics of these stars, we measured and analyzed their spectroscopic data, position on Color Magnitude Diagrams, variations in velocity, and placement in evolutionary stellar models. While spectra of weak CN and carbon stars indicated a shared presence of CN in both star groups, the placements of these stars on color magnitude diagrams suggested that these two populations are unrelated due to variations in brightness and temperature. Additional analyses of velocity, based on an observed correlation between velocity dispersion and age of a star (Dorman 2015), further implied that these weak CN stars are a younger and clearly separate group of stars. Finally, using stellar models to track changes in temperature and luminosity of stars over time, we mapped positions of weak CN stars to a region on the evolutionary path of massive stars. Based on our knowledge of this region, we found sufficient evidence to conclude that weak CN stars are part of a relatively unknown, young evolutionary phase of massive stars called red core Helium burning (RCHeB) stars. Over the course of our research, we also built a detection program to identify other weak CN stars based on their subtle spectral features. In the future, we hope to apply other limitations based on our knowledge of red core Helium burning stars to refine our search and expand our knowledge on this population of

  11. Stability boundaries for massive stars in the sHR diagram

    NASA Astrophysics Data System (ADS)

    Saio, Hideyuki; Georgy, Cyril; Meynet, Georges

    2015-01-01

    Stability boundaries of radial pulsations in massive stars are compared with positions of variable and non-variable blue-supergiants in the spectroscopic HR (sHR) diagram (Langer & Kudritzki 2014), whose vertical axis is 4 log T eff - log g(= log L/M). Observational data indicate that variables tend to have higher L/M than non-variables in agreement with the theoretical prediction. However, many variable blue-supergiants are found to have values of L/M below the theoretical stability boundary; i.e., surface gravities seem to be too high by around 0.2-0.3 dex.

  12. Color-magnitude distribution of face-on nearby galaxies in Sloan digital sky survey DR7

    SciTech Connect

    Jin, Shuo-Wen; Feng, Long-Long; Gu, Qiusheng; Huang, Song; Shi, Yong

    2014-05-20

    We have analyzed the distributions in the color-magnitude diagram (CMD) of a large sample of face-on galaxies to minimize the effect of dust extinctions on galaxy color. About 300,000 galaxies with log (a/b) < 0.2 and redshift z < 0.2 are selected from the Sloan Digital Sky Survey DR7 catalog. Two methods are employed to investigate the distributions of galaxies in the CMD, including one-dimensional (1D) Gaussian fitting to the distributions in individual magnitude bins and two-dimensional (2D) Gaussian mixture model (GMM) fitting to galaxies as a whole. We find that in the 1D fitting, two Gaussians are not enough to fit galaxies with the excess present between the blue cloud and the red sequence. The fitting to this excess defines the center of the green valley in the local universe to be (u – r){sub 0.1} = –0.121M {sub r,} 0{sub .1} – 0.061. The fraction of blue cloud and red sequence galaxies turns over around M {sub r,} {sub 0.1} ∼ –20.1 mag, corresponding to stellar mass of 3 × 10{sup 10} M {sub ☉}. For the 2D GMM fitting, a total of four Gaussians are required, one for the blue cloud, one for the red sequence, and the additional two for the green valley. The fact that two Gaussians are needed to describe the distributions of galaxies in the green valley is consistent with some models that argue for two different evolutionary paths from the blue cloud to the red sequence.

  13. CEPHEID VARIABLE STARS IN THE PEGASUS DWARF IRREGULAR GALAXY: CONSTRAINTS ON THE STAR FORMATION HISTORY

    SciTech Connect

    Meschin, I.; Gallart, C.; Aparicio, A.; Rosenberg, A.; Cassisi, S. E-mail: carme@iac.es E-mail: alf@iac.es

    2009-03-15

    Observations of the resolved stars obtained over a period of 11 years in the Local Group dwarf irregular galaxy Pegasus have been used to search for Cepheid variable stars. Images were obtained in 55 epochs in the V band and in 24 epochs in the I band. We have identified 26 Cepheids and have obtained their light curves and periods. On the basis of their position in the period-luminosity (PL) diagram, we have classified them as 18 fundamental modes and eight first overtone Cepheids. Two PL relations for Cepheids have been used to derive the distance, resulting in 1.07 {+-} 0.05 Mpc. We present the VARFINDER code which finds the variable stars and their predicted periods in a given synthetic color-magnitude diagram computed with IAC-star and we propose the use of the Cepheid population as a constraint of the star formation history of Pegasus.

  14. Self-consistent photometric and spectroscopic Star Formation Histories in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    García-Benito, R.; Pérez, E.; Pérez-Montero, E.; González Delgado, R.; Vílchez, J. M.

    2016-06-01

    This project aims to unify the spectroscopic and stellar photometric views by performing a comprehensive study of a sample of the nearest Blue Compact Dwarf Galaxies (BCDs). We plan to derive Star Formation Histories (SFH) both by means of Color-Magnitude Diagrams (CMDs) from extant Hubble Space Telescope (HST) optical imaging and with spectral fitting methods techniques using MUSE, allowing us to obtain state-of-the-art 2D stellar properties and abundances of the gas in BCDs.

  15. Phase diagram of three-flavor quark matter under compact star constraints

    SciTech Connect

    Blaschke, D.; Fredriksson, S.; Sandin, F.; Grigorian, H.; Oeztas, A.M.

    2005-09-15

    The phase diagram of three-flavor quark matter under compact star constraints is investigated within a Nambu-Jona-Lasinio model. Global color and electric charge neutrality is imposed for {beta}-equilibrated superconducting quark matter. The constituent quark masses and the diquark condensates are determined self-consistently in the plane of temperature and quark chemical potential. Both strong and intermediate diquark coupling strengths are considered. We show that in both cases, gapless superconducting phases do not occur at temperatures relevant for compact star evolution, i.e., below T{approx}50 MeV. The stability and structure of isothermal quark star configurations are evaluated. For intermediate coupling, quark stars are composed of a mixed phase of normal (NQ) and two-flavor superconducting (2SC) quark matter up to a maximum mass of 1.21 M{sub {center_dot}}. At higher central densities, a phase transition to the three-flavor color flavor locked (CFL) phase occurs and the configurations become unstable. For the strong diquark coupling we find stable stars in the 2SC phase, with masses up to 1.33 M{sub {center_dot}}. A second family of more compact configurations (twins) with a CFL quark matter core and a 2SC shell is also found to be stable. The twins have masses in the range 1.30...1.33 M{sub {center_dot}}. We consider also hot isothermal configurations at temperature T=40 MeV. When the hot maximum mass configuration cools down, due to emission of photons and neutrinos, a mass defect of 0.1 M{sub {center_dot}} occurs and two final state configurations are possible.

  16. Recovering star formation histories: Integrated-light analyses vs. stellar colour-magnitude diagrams

    NASA Astrophysics Data System (ADS)

    Ruiz-Lara, T.; Pérez, I.; Gallart, C.; Alloin, D.; Monelli, M.; Koleva, M.; Pompei, E.; Beasley, M.; Sánchez-Blázquez, P.; Florido, E.; Aparicio, A.; Fleurence, E.; Hardy, E.; Hidalgo, S.; Raimann, D.

    2015-11-01

    Context. Accurate star formation histories (SFHs) of galaxies are fundamental for understanding the build-up of their stellar content. However, the most accurate SFHs - those obtained from colour-magnitude diagrams (CMDs) of resolved stars reaching the oldest main-sequence turnoffs (oMSTO) - are presently limited to a few systems in the Local Group. It is therefore crucial to determine the reliability and range of applicability of SFHs derived from integrated light spectroscopy, as this affects our understanding of unresolved galaxies from low to high redshift. Aims: We evaluate the reliability of current full spectral fitting techniques in deriving SFHs from integrated light spectroscopy by comparing SFHs from integrated spectra to those obtained from deep CMDs of resolved stars. Methods: We have obtained a high signal-to-noise (S/N ~ 36.3 per Å) integrated spectrum of a field in the bar of the Large Magellanic Cloud (LMC) using EFOSC2 at the 3.6-metre telescope at La Silla Observatory. For this same field, resolved stellar data reaching the oMSTO are available. We have compared the star formation rate (SFR) as a function of time and the age-metallicity relation (AMR) obtained from the integrated spectrum using STECKMAP, and the CMD using the IAC-star/MinnIAC/IAC-pop set of routines. For the sake of completeness we also use and discuss other synthesis codes (STARLIGHT and ULySS) to derive the SFR and AMR from the integrated LMC spectrum. Results: We find very good agreement (average differences ~4.1%) between the SFR (t) and the AMR obtained using STECKMAP on the integrated light spectrum, and the CMD analysis. STECKMAP minimizes the impact of the age-metallicity degeneracy and has the advantage of preferring smooth solutions to recover complex SFHs by means of a penalized χ2. We find that the use of single stellar populations (SSPs) to recover the stellar content, using for instance STARLIGHT or ULySS codes, hampers the reconstruction of the SFR (t) and AMR

  17. The Spatially Resolved Star Formation History of NGC 300

    NASA Astrophysics Data System (ADS)

    Gogarten, S. M.; Dalcanton, J. J.; Williams, B. F.

    2009-01-01

    We present the star formation histories (SFH) of two regions in NGC 300 from the ACS Nearby Galaxies Survey Treasury (ANGST). ANGST is using the Hubble Space Telescope (HST) to determine the star formation histories of a volume-limited sample of nearby galaxies. We demonstrate that even small regions within a galaxy contain enough stars to derive the SFH by comparing color-magnitude diagrams (CMDs) of the resolved stellar populations to synthetic CMDs from stellar evolution models. Of the two regions selected, one can be identified as star-forming from its UV, Hα, and dust emission. The SFH of this region shows significant star formation over the past 10 Myr, unlike a non-star-forming region of the same size. These preliminary results will form the basis of a larger study of spatially-resolved star formation in nearby spirals.

  18. Colour-magnitude diagrams of star clusters in the Magellanic Clouds from wide-field electronography. II - NGC 2210

    NASA Astrophysics Data System (ADS)

    Andersen, J.; Blecha, A.; Walker, M. F.

    1986-04-01

    The authors report photometric observations in B and V to V = 23.1 for 235 stars in an annular field 39arcsec ≤ R ≤ 60arcsec centered on the LMC cluster NGC 2210. Corrected for the effects of non-member stars, the colour-magnitude diagram (CMD) of NGC 2210 is found to closely resemble the diagram for the old, very metal-poor galactic globular cluster M92. The detailed CMD for the cluster then confirms the assignment of NGC 2210 by Searle et al. (1980) to the oldest, most metal-poor population in the LMC (SWB class VII), based on its integrated colours. From the fit of the CMD to those of M92 and M3, the authors find for NGC 2210 a distance modulus of (m-M)0 = 17.9 - 18.4 under various assumptions concerning the reddening and metal abundance of the cluster and the absolute magnitudes of its HB stars.

  19. PROPERTIES OF LARGE-AMPLITUDE VARIABLE STARS DETECTED WITH TWO MICRON ALL SKY SURVEY PUBLIC IMAGES

    SciTech Connect

    Kouzuma, Shinjirou; Yamaoka, Hitoshi

    2009-11-15

    We present a catalog of variable stars in the near-infrared wavelength detected with overlapping regions of the Two Micron All Sky Survey public images, and discuss their properties. The investigated region is in the direction of the Galactic center (-30 deg. {approx}< l {approx}< 20 deg., |b| {approx}< 20 deg.), which covers the entire bulge. We have detected 136 variable stars, of which six are already known and 118 are distributed in the |b| {<=} 5 deg. region. Additionally, 84 variable stars have optical counterparts in Digitized Sky Survey images. The three diagrams (color-magnitude, light variance, and color-color diagrams) indicate that most of the detected variable stars should be large-amplitude and long-period variables such as Mira variables or OH/IR stars. The number density distribution of the detected variable stars implies that they trace the bar structure of the Galactic bulge.

  20. STELLAR POPULATIONS AND THE STAR FORMATION HISTORIES OF LSB GALAXIES. V. WFC3 COLOR–MAGNITUDE DIAGRAMS

    SciTech Connect

    Schombert, James; McGaugh, Stacy E-mail: stacy.mcgaugh@case.edu

    2015-09-15

    We present WFC3 observations of three low surface brightness (LSB) galaxies from the Schombert et al. LSB catalog that are within 11 Mpc of the Milky Way. Deep imaging at F336W, F555W, and F814W allow the construction of the V − I color–magnitude diagrams (CMD) to M{sub I} = −2. Overall 1869, 465, and 501 stellar sources are identified in the three LSB galaxies F415-3, F608-1, and F750-V1, respectively. The spatial distribution of young blue stars matches the Hα maps from ground-based imaging, indicating that star formation in LSB galaxies follows the same style as in other irregular galaxies. Several star complexes are identified, matching regions of higher surface brightness as seen from ground-based imaging. The CMD for each LSB galaxy has a similar morphology to Local Volume (LV) dwarf galaxies (i.e., a blue main sequence, blue and red He burning branches, and asymptotic giant branch (AGB) stars). The LSB CMD’s distinguish themselves from nearby dwarf CMD’s by having a higher proportion of blue main sequence stars and fewer AGB stars than expected from their mean metallicities. Current [Fe/H] values below −0.6 are deduced from the position of the red helium-burning branch (rHeB) stars in the V − I diagram. The distribution of stars on the blue helium-burning branch (bHeB) and rHeB from the U − V and V − I CMD indicate a history of constant star formation for the last 100 Myr.

  1. Acerca de la linealidad de la relación color-magnitud del cúmulo de Virgo

    NASA Astrophysics Data System (ADS)

    González, N.; Smith Castelli, A.; Faifer, F.; Forte, J. C.

    In this work we revisite the color-magnitude relation (CMR) of the Virgo cluster by means of the realization of our own photometry and the analysis of images of 100 early-type galaxies, observed as part of the ACS Virgo Cluster Survey of the Hubble Space Telescope (HST). Our objective, within the framework of the discussion about the nonlinearity of the CMR in the Virgo cluster, is to draw a comparison between the results of the photometry performed in this work and the results obtained in previous ones. FULL TEXT IN SPANISH

  2. The initial conditions of isolated star formation - X. A suggested evolutionary diagram for pre-stellar cores

    NASA Astrophysics Data System (ADS)

    Simpson, R. J.; Johnstone, D.; Nutter, D.; Ward-Thompson, D.; Whitworth, A. P.

    2011-10-01

    We propose an evolutionary path for pre-stellar cores on the radius-mass diagram, which is analogous to stellar evolutionary paths on the Hertzsprung-Russell diagram. Using James Clerk Maxwell Telescope (JCMT) observations of L1688 in the Ophiuchus star-forming complex, we analyse the HCO+ (J= 4 → 3) spectral line profiles of pre-stellar cores. We find that of the 58 cores observed, 14 show signs of infall in the form of a blue-asymmetric double-peaked line profile. These 14 cores all lie beyond the Jeans mass line for the region on a radius-mass plot. Furthermore, another 10 cores showing tentative signs of infall, in their spectral line profile shapes, appear on or just over the Jeans mass line. We therefore propose the manner in which a pre-stellar core evolves across this diagram. We hypothesize that a core is formed in the low-mass, low-radius region of the plot. It then accretes quasi-statically, increasing in both mass and radius. When it crosses the limit of gravitational instability, it begins to collapse, decreasing in radius, towards the region of the diagram where protostellar cores are seen.

  3. EXPLANATION OF A SPECIAL COLOR–MAGNITUDE DIAGRAM OF STAR CLUSTER NGC 1651 FROM DIFFERENT MODELS

    SciTech Connect

    Li, Zhongmu; Mao, Caiyan; Chen, Li

    2015-03-20

    The color–magnitude diagram (CMD) of globular cluster NGC 1651 has special structures including a broad main sequence, an extended main sequence turn-off, and an extended red giant clump. The reason for such a special CMD remains unclear. In order to test the difference among the results from various stellar population assumptions, we study a high-quality CMD of NGC 1651 from the Hubble Space Telescope archive using eight kinds of models. Distance modulus, extinction, age ranges, star formation mode, fraction of binaries, and fraction of rotational stars are determined and then compared. The results show that stellar populations both with and without age spread can reproduce the special structure of the observed CMD. A composite population with extended star formation from 1.8 Gyrs ago to 1.4 Gyrs ago, which contains 50% binaries and 70% rotational stars, fits the observed CMD best. Meanwhile, a 1.5 Gyr-old simple population that consists of rotational stars can also fit the observed CMD well. The results of CMD fitting are shown to depend strongly on stellar population type (simple or composite), and fraction of rotators. If the member stars of NGC 1651 formed in a single star burst, the effect of stellar rotation should be very important for explaining the observed CMDs. Otherwise, the effect may be small. It is also possible that the special observed CMD is a result of the combined effects of stellar binarity, rotation, and age spread. Therefore, further work on stellar population type and fraction of rotational stars of intermediate-age clusters are necessary to understand their observed CMDs.

  4. Relating turbulent pressure and macroturbulence across the HR diagram with a possible link to γ Doradus stars

    NASA Astrophysics Data System (ADS)

    Grassitelli, L.; Fossati, L.; Langer, N.; Miglio, A.; Istrate, A. G.; Sanyal, D.

    2015-12-01

    A significant fraction of the envelope of low- and intermediate-mass stars is unstable to convection, leading to sub-surface turbulent motion. Here, we consider and include the effects of turbulence pressure in our stellar evolution calculations. In search of an observational signature, we compare the fractional contribution of turbulent pressure to the observed macroturbulent velocities in stars at different evolutionary stages. We find a strong correlation between the two quantities, similar to what was previously found for massive OB stars. We therefore argue that turbulent pressure fluctuations of finite amplitude may excite high-order, high-angular degree stellar oscillations, which manifest themselves at the surface an additional broadening of the spectral lines, i.e., macroturbulence, across most of the HR diagram. When considering the locations in the HR diagram where we expect high-order oscillations to be excited by stochastic turbulent pressure fluctuations, we find a close match with the observational γ Doradus instability strip, which indeed contains high-order, non-radial pulsators. We suggest that turbulent pressure fluctuations on a percentual level may contribute to the γ Dor phenomenon, calling for more detailed theoretical modeling in this direction. Appendices A and B are available in electronic form at http://www.aanda.org

  5. Cyclic variations in O-C diagrams of field RR Lyrae stars as a result of LiTE

    NASA Astrophysics Data System (ADS)

    Liška, J.; Skarka, M.; Zejda, M.; Mikulášek, Z.; de Villiers, S. N.

    2016-07-01

    This paper presents an extensive overview of known and proposed RR Lyrae stars in binaries. The aim is to revise and extend the list with new Galactic field systems. We utilized maxima timings for 11 RRab type stars with suspicious behaviour from the GEOS data base, and determined maxima timings from data of sky surveys and our own observations. This significantly extended the number of suitable maxima timings. We modelled the proposed Light Time Effect (LiTE) in O-C diagrams to determine orbital parameters for these systems. In contrast to recent studies, our analysis focused on decades-long periods instead of periods in the order of years. Secondary components were found to be predominantly low-mass objects. However, for RZ Cet and AT Ser the mass of the suspected companion of more than one solar mass suggests that it is a massive white dwarf, a neutron star or even a black hole. We found that the semimajor axes of the proposed orbits are between 1 and 20 au. Because the studied stars belong to the closest RR Lyraes, maximal angular distances between components during orbit should at least be between 1 and 13 mas and this improves the chance to detect both stars using current telescopes. However, our interpretation of the O-C diagrams as a consequence of the LiTE should be considered as preliminary without reliable spectroscopic measurements. On the other hand, our models give a prediction of the period and radial velocity evolution which should be sufficient for plausible proof of binarity.

  6. Encoding of the infrared excess in the NUVrK color diagram for star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Arnouts, S.; Le Floc'h, E.; Chevallard, J.; Johnson, B. D.; Ilbert, O.; Treyer, M.; Aussel, H.; Capak, P.; Sanders, D. B.; Scoville, N.; McCracken, H. J.; Milliard, B.; Pozzetti, L.; Salvato, M.

    2013-10-01

    We present an empirical method of assessing the star formation rate (SFR) of star-forming galaxies based on their locations in the rest-frame color-color diagram (NUV - r) vs. (r - K). By using the Spitzer 24 μm sample in the COSMOS field (~16 400 galaxies with 0.2 ≤ z ≤ 1.3) and a local GALEX-SDSS-SWIRE sample (~700 galaxies with z ≤ 0.2), we show that the mean infrared excess ⟨IRX⟩ = ⟨ LIR/LUV ⟩ can be described by a single vector, NRK , that combines the two colors. The calibration between ⟨IRX⟩ and NRK allows us to recover the IR luminosity, LIR, with an accuracy of σ ~ 0.21 for the COSMOS sample and 0.27 dex for the local one. The SFRs derived with this method agree with the ones based on the observed (UV+IR) luminosities and on the spectral energy distribution (SED) fitting for the vast majority (~85%) of the star-forming population. Thanks to a library of model galaxy SEDs with realistic prescriptions for the star formation history, we show that we need to include a two-component dust model (i.e., birth clouds and diffuse ISM) and a full distribution of galaxy inclinations in order to reproduce the behavior of the ⟨IRX⟩ stripes in the NUVrK diagram. In conclusion, the NRK method, based only on the rest-frame UV/optical colors available in most of the extragalactic fields, offers a simple alternative of assessing the SFR of star-forming galaxies in the absence of far-IR or spectral diagnostic observations. Appendices are available in electronic form at http://www.aanda.org

  7. Flare stars across the H-R diagram: a clue to the origin of the corona

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    Kepler observations show that starspots and superflares are present in A stars. An analysis of Kepler short-cadence data shows that the relative number of A/F flare stars is only a factor of four smaller than K/M flare stars, which can be explained as a selection effect. The average maximum flare amplitude does not depend much on spectral type, which is to be expected if the size of the active region scales in proportion to the stellar radius. The presence of starspots and superflares in A stars suggests that these stars have magnetic fields. However, X-ray observations show that A stars do not possess coronae. I therefore conclude that convection in the stellar envelope is a necessary condition for the formation of the corona. A magnetic field may be necessary to enable coronal heating.

  8. Finding Young Stars in IC417

    NASA Astrophysics Data System (ADS)

    Odden, Caroline; Rebull, Luisa M.; Sanchez, Richard; Hall, Garrison; Dear, AnnaMaria; Hengel, Cassie; LaRocca, Mia; Lin, Samantha; Nix, Sabine; Sweckard, Teaghan; Wilhelm, Katie

    2016-01-01

    IC 417 is a young cluster in the constellation Auriga, towards the Galactic anti-center in the Perseus arm, at a distance of ~2.3 kpc. Previous studies suggested that there are young stars in this region; Camargo et al. (2012) identified several few-Myr-old clusters in this region from 2MASS clustering, and Jose et al. (2008) identified H-alpha excess sources. Since stars form from clouds of interstellar dust and gas, a signature of star formation is excess infrared (IR) emission, which is interpreted as evidence for circumstellar dust around young stars. We identified new candidate young stellar objects (YSOs) in IC 417 by incorporating near- and mid-infrared observations from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All-Sky Survey (2MASS). Infrared excess sources were identified by using a series of color cuts in various 2MASS/WISE color-magnitude and color-color diagrams following Koenig & Leisawitz (2014). We also assembled a list of OB and H-alpha stars from the literature, including those from Jose et al. (2008), and H-alpha bright stars from the IPHAS survey (Witham et al. 2008). Starting with this compiled list of approximately 200 interesting objects in the region, we then set about checking their reliability in three ways. We inspected the POSS, 2MASS, and WISE images of the sources. We assembled and inspected spectral energy distributions (SEDs) from archival data ranging from wavelengths of 0.7 to 22 um. Finally, we created and inspected color-color and color-magnitude diagrams. We find enough new YSO candidates to more than double the number yet identified in the IC 417 region. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  9. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey; Scolnic, Daniel; Shariff, Hikmatali; Foley, Ryan; Kirshner, Robert

    2017-01-01

    Inferring peak optical absolute magnitudes of Type Ia supernovae (SN Ia) from distance-independent measures such as their light curve shapes and colors underpins the evidence for cosmic acceleration. SN Ia with broader, slower declining optical light curves are more luminous (“broader-brighter”) and those with redder colors are dimmer. But the “redder-dimmer” color-luminosity relation widely used in cosmological SN Ia analyses confounds its two separate physical origins. An intrinsic correlation arises from the physics of exploding white dwarfs, while interstellar dust in the host galaxy also makes SN Ia appear dimmer and redder. Conventional SN Ia cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (MB vs. B-V) slope βint differs from the host galaxy dust law RB, this convolution results in a specific curve of mean extinguished absolute magnitude vs. apparent color. The derivative of this curve smoothly transitions from βint in the blue tail to RB in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope βapp between βint and RB. We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a dataset of SALT2 optical light curve fits of 277 nearby SN Ia at z < 0.10. The conventional linear fit obtains βapp ≈ 3. Our model finds a βint = 2.2 ± 0.3 and a distinct dust law of RB = 3.7 ± 0

  10. Old stellar populations in star-forming dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Held, Enrico V.; Saviane, Ivo; Momany, Yazan; Rizzi, Luca; Bertelli, Gianpaolo

    We present deep VLT/FORS1 observations of the two distant, isolated Local Group dwarfs Phoenix and Antlia. Our results provide further evidence for the presence of old stars in these star-forming dwarf galaxies. Old stellar populations are known in all of the Local Group dwarf spheroidal galaxies and in some dwarf irregulars, implying that dwarf galaxies started forming stars at a sharply defined early epoch irrespective of their subsequent star formation histories (e.g., Held et al., 2000; Saviane et al., 2000; and references therein). The new color-magnitude diagrams of Phoenix confirm the presence of a spatially extended blue HB population, indicating a conspicuous old component (Held et al., 1999; Martínez-Delgado et al., 1999). A preliminary analysis of stellar variability has led to the discovery of several tens RR Lyrae variables, which can provide clue information on the earliest star formation episode (see, e.g., Siegel and Majewski, 2000). The young main sequence extends down to the limit of our photometry (V=25.5 mag), which suggests that Phoenix underwent nearly continuous star formation in the last 2 Gyr. Our deep color-magnitude diagrams of Antlia have been used to investigate the gradient in the stellar populations of this dwarf irregular/spheroidal galaxy. While the young stars appear to be concentrated in a round central region (Aparicio et al., 1997; Sarajedini et al., 1997), the spatial distribution of the red giant stars defines an extended flattened halo (or disk) 2-3 kpc across.

  11. A SECOND NEUTRON STAR IN M4?

    SciTech Connect

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W.; Thompson, Ian B.

    2012-05-01

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a {approx}20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar).

  12. UBV stellar photometry of bright stars in GC M5 - I. UV colour-magnitude and colour-colour diagrams and some peculiarities in the HB stellar distribution

    NASA Astrophysics Data System (ADS)

    Markov, H. S.; Spassova, N. M.; Baev, P. V.

    2001-09-01

    We present stellar photometry in the UBV passbands for the globular cluster M5≡NGC 5904. The observations, taken from short-exposure photographic plates and CCD frames, were obtained in the Ritchey-Cretien (RC) focus of the 2-m telescope of the National Astronomy Observatory `Rozhen'. All stars in an annulus with radius 1<=r<=5.5arcmin were measured. We show that the ultraviolet (UV) colour-magnitude diagrams (CMDs) describe different evolutionary stages in a better manner than the `classical' V, B-V diagram. We use HB stars, with known spectroscopic Teff to check the validity of the colour zero-point. A review of all known UV-bright star candidates in M5 is made and some of their parameters are catalogued. Six new stars of this kind are suspected on the basis of their position on the CMD. New assessment of the cluster reddening and metallicity is done using the U-B, B-V diagram. We find that [Fe/H]=-1.38, which confirms the Zinn & West value, contrasting with recent spectroscopic estimates. In an effort to clarify the question of the gap in the blue horizontal branch (BHB) stellar distribution and to investigate some other peculiarities, we use the relatively long-base colour index U-V. A comparison of the observed V, (U-V)0 distribution of horizontal branch (HB) stars with a canonical zero-age horizontal branch (ZAHB) model reveals that the hottest stars rise above the model line. This is similar to the `u-jump' found in the Strömgren photometry. 18 BHB stars with (B-V)0∈[-0.02/0.18] are used to estimate their ultraviolet deficiency. It is shown that low-gravity (logg<=2) Kurucz's atmospheric models fit the observed distribution of these stars along the two-colour diagram well.

  13. A recent burst in the star formation history of LMC

    NASA Astrophysics Data System (ADS)

    Bertelli, Gianpaolo; Bressan, Alessandro; Chiosi, Cesare; Mateo, Mario

    We present deep photometric observations of stars in three fields of the Large Magellanic Cloud (LMC), and interpret these data using synthetic color-magnitude diagrams (CMDs) generated from the overshoot models of Bertelli et al. (1985, 1986, 1990), Bressan et al. (1986), and Aparicio et al. (1990) and from the classical models of Fagotto (1990). We can successfully model the field CMDs and LFs with a star-formation rate that experienced a large increase at a certain age of its history. Only overshoot models are able to provide a unique age of the sudden increase common to the three fields. Our study shows that this phenomenon happened about 4 x 10 exp 9 yrs ago adopting the following constraints: the slope of the initial mass function equal to 2.35 (the Salpeter value), a mean field-star metallicity of about -0.7, and the distance modulus of LMC equal to 18.4.

  14. Placing the Spotted T Tauri Star LkCa 4 on an HR Diagram

    NASA Astrophysics Data System (ADS)

    Gully-Santiago, Michael A.; Herczeg, Gregory J.; Czekala, Ian; Somers, Garrett; Grankin, Konstantin; Covey, Kevin R.; Donati, J. F.; Alencar, Silvia H. P.; Hussain, Gaitee A. J.; Shappee, Benjamin J.; Mace, Gregory N.; Lee, Jae-Joon; Holoien, T. W.-S.; Jose, Jessy; Liu, Chun-Fan

    2017-02-01

    Ages and masses of young stars are often estimated by comparing their luminosities and effective temperatures to pre-main-sequence stellar evolution tracks, but magnetic fields and starspots complicate both the observations and evolution. To understand their influence, we study the heavily spotted weak-lined T-Tauri star LkCa 4 by searching for spectral signatures of radiation originating from the starspot or starspot groups. We introduce a new methodology for constraining both the starspot filling factor and the spot temperature by fitting two-temperature stellar atmosphere models constructed from Phoenix synthetic spectra to a high-resolution near-IR IGRINS spectrum. Clearly discernable spectral features arise from both a hot photospheric component {T}{hot} ∼ 4100 K and a cool component {T}{cool} ∼ 2700–3000 K, which covers ∼80% of the visible surface. This mix of hot and cool emission is supported by analyses of the spectral energy distribution, rotational modulation of colors and of TiO band strengths, and features in low-resolution optical/near-IR spectroscopy. Although the revised effective temperature and luminosity make LkCa 4 appear to be much younger and of much lower mass than previous estimates from unspotted stellar evolution models, appropriate estimates will require the production and adoption of spotted evolutionary models. Biases from starspots likely afflict most fully convective young stars and contribute to uncertainties in ages and age spreads of open clusters. In some spectral regions, starspots act as a featureless “veiling” continuum owing to high rotational broadening and heavy line blanketing in cool star spectra. Some evidence is also found for an anticorrelation between the velocities of the warm and cool components.

  15. Fundamental parameters of Galactic luminous OB stars. IV. The upper HR diagram

    NASA Astrophysics Data System (ADS)

    Herrero, A.; Puls, J.; Villamariz, M. R.

    2000-02-01

    We present observations and analyses of seven Galactic O stars of type O6 and earlier. The analyses are carried out using NLTE plane-parallel, hydrostatic models as well as NLTE spherical models with mass-loss. With detailed calculations for the former and simulations for the latter, it is shown that the flux blocking due to UV metal lines is important for these objects, in agreement with previous studies, and the way the mechanism operates is explained. We find that the plane-parallel, hydrostatic unblanketed model atmospheres have increasing difficulties in fitting the early-type spectra of massive stars, and for 50 000 K and above a fit seems to be impossible. The gravities derived are relatively low even for the luminosity class V stars. These objects also show the mass discrepancy found in earlier studies, indicating that sphericity and mass-loss are important, even at their higher gravities. We then perform an analysis using spherical models with mass-loss. It is found that gravities should be increased by 0.1-0.25 dex, reducing, but not solving, the mass discrepancy. We show that spectroscopic masses are in better agreement with the theory of radiatively driven winds than evolutionary masses are. A helium abundance larger than solar is also obtained for most objects. Some additional effects (partly related to present approximations) that have an influence in our analyses are studied. It is found that He iI lambda 4200 is less sensitive to details of the model calculations than He iI lambda 4541 and thus it is preferred for temperature determinations, with the consequence of lower effective temperatures. It is shown that the fits to He iI lambda 4686 are improved when the upward rates of the He iI resonance lines are reduced (with respect to the conventional treatment adequate for lines formed in expanding atmospheres), either by setting them in detailed balance or by artificially adding extra opacity sources that simulate line blocking. The He iI blend with

  16. Faint star studies in the magellanic clouds. II. Field regions 9/sup 0/ northeast of the large magellanic cloud bar

    SciTech Connect

    Stryker, L.L.

    1984-06-01

    Photographic photometry is reported for 16 halo field regions. These fields lie 9./sup 0/1 northeast of the LMC bar, surrounding the old globular cluster NGC 2257. Field color-magnitude diagrams show a red horizontal branch, a subgiant branch redder than that of the cluster, and a profusion of blue stars delineating a younger main-sequence. Possible sources of the blue stars are discussed. The field is significantly younger than the cluster, showing that star formation, even in the outer regions of the LMC where the gas density is presently minimal, proceeded long after the formation of the old clusters. It appears that the major portion of stars in the LMC is of intermediate age. That this is true of a region 9 kpc from the bar is of great importance to the eventual derivation of a global history of star formation in the LMC.

  17. A Global Star-forming Episode in M31 2-4 Gyr Ago

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Dolphin, Andrew E.; Weisz, Daniel R.; Lewis, Alexia R.; Lang, Dustin; Bell, Eric F.; Boyer, Martha; Fouesneau, Morgan; Gilbert, Karoline M.; Monachesi, Antonela; Skillman, Evan

    2015-06-01

    We have identified a major global enhancement of star formation in the inner M31 disk that occurred between 2-4 Gyr ago, producing ˜60% of the stellar mass formed in the past 5 Gyr. The presence of this episode in the inner disk was discovered by modeling the optical resolved star color-magnitude diagrams of low extinction regions in the main disk of M31 (3 < R < 20 kpc) as part of the Panchromatic Hubble Andromeda Treasury. This measurement confirms and extends recent measurements of a widespread star formation enhancement of similar age in the outer disk, suggesting that this burst was both massive and global. Following the galaxy-wide burst, the star formation rate of M31 has significantly declined. We briefly discuss possible causes for these features of the M31 evolutionary history, including interactions with M32, M33, and/or a merger.

  18. Evolved stars in Omega Centauri. I - Radial distribution of blue subdwarfs

    NASA Technical Reports Server (NTRS)

    Bailyn, Charles D.; Sarajedini, Ata; Cohn, Haldan; Lugger, Phyllis M.; Grindlay, Jonathan E.

    1992-01-01

    A U - V color-magnitude diagram containing over 5000 stars from 10 fields in Omega Centauri at or brighter than the main-sequence turnoff is presented. Completeness corrections are obtained as a continuous function of magnitude and radial distance are obtained and used to show that the blue subdwarfs are centrally concentrated with respect to subgiants and stars on the horizontal branch proper. The chance probability of this result is less than 1 percent. Since the blue subdwarfs probably consist of helium-burning cores of about 0.5 solar mass surrounded by a thin hydrogen envelope, mass segregation could not produce this result if these stars had evolved singly. Two kinds of possible precursor systems are considered: pairs of degenerate dwarfs which subsequently merge to form helium-burning stars, and moderately wide binaries in which mass transfer is initiated shortly before the helium flash is ignited.

  19. On the Role Played by Lines in Radiatively Driven Stellar Winds Depending on the Position of the Stars in the HR Diagram

    NASA Technical Reports Server (NTRS)

    Migozzi, M. C.; Lafon, J. P. J.

    1985-01-01

    The radiative force due to transfer in ultraviolet lines is always an important mechanism in hot star wind dynamics. However, it is not clear when it is the dominant mechanism and which are the noise parameters. To investigate the efficiency of purely radiative momentum/energy transfer in hot star winds and in various regions of the HR diagram, the Leroy and Lafon model was improved and put to its limits; correlations between the mass loss rate, the luminosity and other parameters and the theoretical and the observational results, looking for observed stars violating the model were compared. It is concluded that in widespread region of the HR diagram, line driven models are consistent with observations, the radiative equilibrium physics is relevant throughout the expanding atmospheres and the mass loss rate is quasilinearly correlated with the luminosity.

  20. HST/ACS color-magnitude diagrams of candidate intermediate-age M 31 globular clusters. The role of blue horizontal branches

    NASA Astrophysics Data System (ADS)

    Perina, S.; Galleti, S.; Fusi Pecci, F.; Bellazzini, M.; Federici, L.; Buzzoni, A.

    2011-07-01

    We present deep (V ≃ 28.0) BV photometry obtained with the wide field channel of the Advanced Camera for Surveys on board HST for four M 31 globular clusters that were identified as candidate intermediate-age (age ~ 1-9 Gyr) by various authors, based on their integrated spectra and/or broad/intermediate-band colors. Two of them (B292 and B350) display an obvious blue horizontal branch, indicating that they are as old as the oldest Galactic globulars. On the other hand, for the other two (B058 and B337), which display red horizontal branches, it was not possible either to confirm or disconfirm the age estimate from integrated spectra. The analysis of the distribution in the spectral indices Mg2 and Hβ of the M 31 and Milky Way clusters whose horizontal branch can be classified as red or blue based on existing CMDs, strongly suggests that classical age diagnostics from integrated spectra may be significantly influenced by the HB morphology of the clusters and can lead to erroneous age-classifications. We also provide the CMD for another two clusters that fall into the field of the main targets, B336, an old and metal-poor globular with a significant population of RR Lyrae variables, and the newly discovered B531, a cluster with a very red red giant branch. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-10631 [P.I.: T. Puzia].Photometric catalogs are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A155 and at http://www.bo.astro.it/M31/hstcatalog/

  1. AGN on the color-magnitude diagram: Results from a Deep Medium Band Survey with the Subaru Telescope in the MUSYC-ECDFS Region

    NASA Astrophysics Data System (ADS)

    Cardamone, Carolin; Urry, C. Megan; van Dokkum, P.; Schawinski, Kevin; Gawiser, E.; Brammer, G.; Taylor, N.; Treister, E.; Taniguchi, Y.; Virani, S.

    2009-09-01

    We investigate the host galaxy colors of X-ray detected AGN in the Extended Chandra Deep Field South.We have conducted deep medium-band imaging with the Subaru telescope, in 18 filters from 427 nm to 856 nm, of the MUSYC survey field. We detect 80,000 galaxies to equivalent magnitude R 27 mag, of which approximately 1,000 are X-ray-detected AGN observed with Chandra and XMM. Combining the Subaru data with optical, IR data and IRAC photometry we obtain photometric redshifts using EAZY, a fast public photometric redshift code, in the range 0

  2. Dissecting 30 Doradus: Optical and Near Infrared Star Formation History of the starburst cluster NGC2070 from the Hubble Tarantula Treasury Project

    NASA Astrophysics Data System (ADS)

    Cignoni, Michele

    2015-08-01

    I will present new results on the star formation history of 30 Doradus in the Large Magellanic Cloud based on the panchromatic imaging survey Hubble Tarantula Treasury Project (HTTP). Here the focus is on the starburst cluster NGC2070. The star formation history is derived by comparing the deepest ever optical and NIR color-magnitude diagrams (CMDs) with state-of-the-art synthetic CMDs generated with the latest PARSEC models, which include all stellar phases from pre-main sequence (PMS) to post-main sequence. For the first time in this region we are able to measure the star formation using intermediate and low mass stars simultaneously. Our results suggest that NGC2070 experienced a prolonged activity. I will discuss the detailed star formation history, initial mass function and reddening distribution and how these relate to previous studies of this starburst region.

  3. Dissecting 30 Doradus: Optical and Near Infrared Star Formation History of the starburst cluster NGC2070 from the Hubble Tarantula Treasury Project

    NASA Astrophysics Data System (ADS)

    Cignoni, Michele; HTTP Team

    2017-03-01

    I will present new results on the star formation history of 30 Doradus in the Large Magellanic Cloud based on the panchromatic imaging survey Hubble Tarantula Treasury Project (HTTP). Here the focus is on the starburst cluster NGC2070. The star formation history is derived by comparing the deepest ever optical and NIR color-magnitude diagrams (CMDs) with state-of-the-art synthetic CMDs generated with the latest PARSEC models, which include all stellar phases from pre-main sequence to post-main sequence. For the first time in this region we are able to measure the star formation using intermediate and low mass stars simultaneously. Our results suggest that NGC2070 experienced a prolonged activity. I will discuss the detailed star formation history, initial mass function and reddening distribution.

  4. Ages of intermediate-age Magellanic Cloud star clusters

    NASA Technical Reports Server (NTRS)

    Flower, P. J.

    1984-01-01

    Ages of intermediate-age Large Magellanic Cloud star clusters have been estimated without locating the faint, unevolved portion of cluster main sequences. Six clusters with established color-magnitude diagrams were selected for study: SL 868, NGC 1783, NGC 1868, NGC 2121, NGC 2209, and NGC 2231. Since red giant photometry is more accurate than the necessarily fainter main-sequence photometry, the distributions of red giants on the cluster color-magnitude diagrams were compared to a grid of 33 stellar evolutionary tracks, evolved from the main sequence through core-helium exhaustion, spanning the expected mass and metallicity range for Magellanic Cloud cluster red giants. The time-dependent behavior of the luminosity of the model red giants was used to estimate cluster ages from the observed cluster red giant luminosities. Except for the possibility of SL 868 being an old globular cluster, all clusters studied were found to have ages less than 10 to the 9th yr. It is concluded that there is currently no substantial evidence for a major cluster population of large, populous clusters greater than 10 to the 9th yr old in the Large Magellanic Cloud.

  5. Observational constraints on massive-star evolution

    NASA Astrophysics Data System (ADS)

    Schulte-Ladbeck, Regina

    1997-07-01

    Massive stars are important constitutents of galaxies and are increasingly used as probes of galaxy evolution out to high redshifts. Yet, a very basic problem remains in understanding the distribution of massive stars across the Hertzsprung- Russell Diagram. This is known as the problem of the blue-to- red supergiant ratios in galaxies of different metallicities, a very sensitive indicator of the evolutionary paths that massive stars in different chemical environments appear to follow. Observations suggest a trend that the numbers of red supergiants increase with decreasing metallicity, but stellar- evolution models predict the opposite. We discuss various limitations of ground-based observations which have so far restricted accurate star counts to a few, nearby galaxies. We then argue that the HST archive contains a perfect set of photometric data to determine number counts of red supergiants in galaxies out to 5 Mpc. We propose to analyze WFPC2 observations in F555W {V} and F814W {I} filters to derive color-magnitude diagrams and complete luminosity functions of the red supergiant populations in 6 galaxies spanning a factor of 60 in metallicity. This systematic approach will put the functional form of the blue-to-red supergiant ratio with metallicity on firm observational footing.

  6. Homogeneous photometry and star counts in the field of 9 Galactic star clusters

    NASA Astrophysics Data System (ADS)

    Seleznev, A. F.; Carraro, G.; Costa, E.; Loktin, A. V.

    2010-01-01

    We present homogeneous V, I CCD photometry of nine stellar fields in the two inner quadrants of the Galactic plane. The lines-of-view to most of these fields aim in the direction of the very inner Galaxy, where the Galactic field is very dense, and extinction is high and patchy. Our nine fields are, according to several catalogs, centred on Galactic star clusters, namely Trumpler 13, Trumpler 20, Lynga 4, Hogg 19, Lynga 12, Trumpler 25, Trumpler 26, Ruprecht 128, and Trumpler 34. Apart from their coordinates, and in some cases additional basic data (mainly from the 2MASS archive), their properties are poorly known. By means of star count techniques and field star decontaminated Color Magnitude diagrams, the nature and size of these visual over-densities has been established; and, when possible, new cluster fundamental parameters have been derived. To strengthen our findings, we complement our data-set with JHKs photometry from the 2MASS archive, that we analyze using a suitably defined Q-parameter. Most clusters are projected towards the Carina-Sagittarium spiral arm. Because of that, we detect in the Color Magnitude diagrams of most of the other fields several distinctive sequences produced by young population within the arm. All the clusters are of intermediate or old age. The most interesting cases detected by our study are, perhaps, that of Trumpler 20, which seems to be much older than previously believed, as indicated by its prominent - and double - red clump; and that of Hogg 19, a previously overlooked old open cluster, whose existence in such regions of the Milky Way is puzzling.

  7. Second neutron star in globular cluster M4 .

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Kałużny, J.; Różyczka, M.; Krzemiński, W.; Thompson, I. B.

    We show that the optical counterpart of the brightest X-ray source C-X 1 in M4 is a ˜ 20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star, probably a millisecond pulsar.

  8. R associations. VI - The reddening law in dust clouds and the nature of early-type emission stars in nebulosity from a study of five associations

    NASA Technical Reports Server (NTRS)

    Herbst, W.; Warner, J. W.; Miller, D. P.; Herzog, A.

    1982-01-01

    Positions, identification charts, UBVRIKLMN photometry and spectral types are given for stars, illuminating reflection nebulae that are visible on the POSS prints, which have been identified in five associations. With a ratio of total to selective extinction of 4.2, the reddening law applicable to the dust clouds in which the stars are embedded is steeper than normal. The five associations exhibit 18 early-type stars with circumstellar shells, of which those with spectral types earlier than B5 characteristically have weak IR excesses, in contrast to the strong excesses indicative of circumstellar dust, of later-type stars. Color-magnitude charts show a distribution lying above the ZAMS by up to about 2 mag for both the circumstellar shell stars and those classified as rapid rotators. It is suggested that (1) rapid rotation accounts for the scatter in the color-magnitude diagram, and (2) many of the nebulous early-type emission-line stars are rapid rotators rather than pre-main sequence objects.

  9. THE FIRST DETECTION OF BLUE STRAGGLER STARS IN THE MILKY WAY BULGE

    SciTech Connect

    Clarkson, W. I.; Rich, R. Michael; Sahu, Kailash C.; Anderson, Jay; Smith, T. Ed.; Brown, Thomas M.; Bond, Howard E.; Livio, Mario; Minniti, Dante; Zoccali, Manuela; Renzini, Alvio

    2011-07-01

    We report the first detections of Blue Straggler Stars (BSS) in the bulge of the Milky Way. Proper motions from extensive space-based observations along a single sight line allow us to separate a sufficiently clean and well-characterized bulge sample such that we are able to detect a small population of bulge objects in the region of the color-magnitude diagram commonly occupied by young objects and blue stragglers. Variability measurements of these objects clearly establish that a fraction of them are blue stragglers. Out of the 42 objects found in this region of the color-magnitude diagram, we estimate that at least 18 are genuine BSS. We normalize the BSS population by our estimate of the number of horizontal branch stars in the bulge in order to compare the bulge to other stellar systems. The BSS fraction is clearly discrepant from that found in stellar clusters. The blue straggler population of dwarf spheroidals remains a subject of debate; some authors claim an anticorrelation between the normalized blue straggler fraction and integrated light. If this trend is real, then the bulge may extend it by three orders of magnitude in mass. Conversely, we find that the genuinely young (<5 Gyr) population in the bulge, must be at most 3.4% under the most conservative scenario for the BSS population.

  10. Probing the faintest stars in a globular star cluster.

    PubMed

    Richer, Harvey B; Anderson, Jay; Brewer, James; Davis, Saul; Fahlman, Gregory G; Hansen, Brad M S; Hurley, Jarrod; Kalirai, Jasonjot S; King, Ivan R; Reitzel, David; Rich, R Michael; Shara, Michael M; Stetson, Peter B

    2006-08-18

    NGC 6397 is the second closest globular star cluster to the Sun. Using 5 days of time on the Hubble Space Telescope, we have constructed an ultradeep color-magnitude diagram for this cluster. We see a clear truncation in each of its two major stellar sequences. Faint red main-sequence stars run out well above our observational limit and near to the theoretical prediction for the lowest mass stars capable of stable hydrogen burning in their cores. We also see a truncation in the number counts of faint blue stars, namely white dwarfs. This reflects the limit to which the bulk of the white dwarfs can cool over the lifetime of the cluster. There is also a turn toward bluer colors in the least luminous of these objects. This was predicted for the very coolest white dwarfs with hydrogen-rich atmospheres as the formation of H(2) and the resultant collision-induced absorption cause their atmospheres to become largely opaque to infrared radiation.

  11. Clues to the Evolution of W Ursae Majoris Contact Binary Star Systems Utilizing O-C Diagrams Obtained through Data Mining

    NASA Astrophysics Data System (ADS)

    Gill, Robert M.

    2016-05-01

    Contact binary star systems have been studied for well over one hundred years. Visual and photometric data have been collected and orbital periods have been calculated on hundreds of systems. One would like to know if those observed periods are stable or change over a long period of time. Changes in the period imply an ongoing evolutionary process in the binary system. One method which yields insight into this evolutionary process is by graphing observed data (O) - calculated data (C). These diagrams require period data collected over a considerably long time. Data mining the internet for these O-C diagrams is an effective method of collecting this long term information quickly. Possible evolutionary aspects of the binary system can then be explored; using OC diagram analysis obtained in this manner.

  12. Photometric binary stars in Praesepe and the search for globular cluster binaries

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1991-01-01

    A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.

  13. Mapping the Star Formation History of the Local Group with NHST

    NASA Astrophysics Data System (ADS)

    Brown, T. M.

    2003-05-01

    The color-magnitude diagram (CMD) is the most fundamental tool for studying the star formation history of nearby stellar populations. Strong constraints on the ages of stellar populations come from CMDs reaching the main sequence, and with the Hubble Space Telescope (HST), it is possible to produce such a CMD for stars at any distance within the Local Group. Unfortunately, resolving the main sequence in old populations beyond the satellites of the Milky Way requires an enormous investment of HST time, meaning that only a few pencil beams can be explored within the remaining HST mission. In strong contrast, an 8 meter UV-optical space telescope, diffraction limited at 0.5 microns, could map the star formation history of all galaxies in the Local Group: It would take only one hour to resolve the main sequence in any Local Group galaxy, allowing the exploration of hundreds of sight-lines in a reasonable program.

  14. The Dearth of UV-bright Stars in M32: Implications for Stellar Evolution Theory

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.; Kimble, Randy A.; Bowers, Charles W.

    2008-01-01

    Using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, we have obtained deep far ultraviolet images of the compact elliptical galaxy M32. When combined with earlier near-ultraviolet images of the same field, these data enable the construction of an ultraviolet color-magnitude diagram of the hot horizontal branch (HB) population and other hot stars in late phases of stellar evolution. We find few post-asymptotic giant branch (PAGB) stars in the galaxy, implying that these stars either cross the HR diagram more rapidly than expected, and/or that they spend a significant fraction of their time enshrouded in circumstellar material. The predicted luminosity gap between the hot HB and its AGB-Manque (AGBM) progeny is less pronounced than expected, especially when compared to evolutionary tracks with enhanced helium abundances, implying that the presence of hot HB stars in this metal-rich population is not due to (Delta)Y/(Delta)Z greater than or approx. 4. Only a small fraction (approx. 2%) of the HB population is hot enough to produce significant UV emission, yet most of the W emission in this galaxy comes from the hot HB and AGBM stars, implying that PAGB stars are not a significant source of W emission even in those elliptical galaxies with a weak W excess. Subject headings: galaxies: evolution - galaxies: stellar content - galaxies: individual (M32) - stars: evolution - stars: horizontal branch

  15. Not-so-simple stellar populations in the intermediate-age Large Magellanic Cloud star clusters NGC 1831 and NGC 1868

    SciTech Connect

    Li, Chengyuan; De Grijs, Richard; Deng, Licai E-mail: grijs@pku.edu.cn

    2014-04-01

    Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of the clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.

  16. Spitzer SAGE-Spec: Near Infrared Spectroscopy, Dust Shells, and Cool Envelopes in Extreme Large Magellanic Cloud Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ``tip" of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ``stellar" cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  17. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    SciTech Connect

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  18. AN INFRARED CENSUS OF STAR FORMATION IN THE HORSEHEAD NEBULA

    SciTech Connect

    Bowler, Brendan P.; Waller, William H.; Megeath, S. Thomas; Patten, Brian M.; Tamura, Motohide E-mail: william.waller@tufts.edu E-mail: bpatten@nsf.gov

    2009-03-15

    At {approx} 400 pc, the Horsehead Nebula (B33) is the closest radiatively sculpted pillar to the Sun, but the state and extent of star formation in this structure is not well understood. We present deep near-infrared (IRSF/SIRIUS JHK {sub S}) and mid-infrared (Spitzer/IRAC) observations of the Horsehead Nebula to characterize the star-forming properties of this region and to assess the likelihood of triggered star formation. Infrared color-color and color-magnitude diagrams are used to identify young stars based on infrared excess emission and positions to the right of the zero-age main sequence, respectively. Of the 45 sources detected at both near- and mid-infrared wavelengths, three bona fide and five candidate young stars are identified in this 7' x 7' region. Two bona fide young stars have flat infrared spectral energy distributions and are located at the western irradiated tip of the pillar. The spatial coincidence of the protostars at the leading edge of this elephant trunk is consistent with the radiation-driven implosion model of triggered star formation. There is no evidence, however, for sequential star formation within the immediate {approx} 1.'5 (0.17 pc) region from the cloud/H II region interface.

  19. An Infrared Census of Star Formation in the Horsehead Nebula

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Waller, William H.; Megeath, S. Thomas; Patten, Brian M.; Tamura, Motohide

    2009-03-01

    At ~ 400 pc, the Horsehead Nebula (B33) is the closest radiatively sculpted pillar to the Sun, but the state and extent of star formation in this structure is not well understood. We present deep near-infrared (IRSF/SIRIUS JHK S) and mid-infrared (Spitzer/IRAC) observations of the Horsehead Nebula to characterize the star-forming properties of this region and to assess the likelihood of triggered star formation. Infrared color-color and color-magnitude diagrams are used to identify young stars based on infrared excess emission and positions to the right of the zero-age main sequence, respectively. Of the 45 sources detected at both near- and mid-infrared wavelengths, three bona fide and five candidate young stars are identified in this 7' × 7' region. Two bona fide young stars have flat infrared spectral energy distributions and are located at the western irradiated tip of the pillar. The spatial coincidence of the protostars at the leading edge of this elephant trunk is consistent with the radiation-driven implosion model of triggered star formation. There is no evidence, however, for sequential star formation within the immediate ~ 1farcm5 (0.17 pc) region from the cloud/H II region interface.

  20. The Problem of Hipparcos Distances to Open Clusters. II. Constraints from Nearby Field Theory. Report 2; ClustersConstraints from nearly Field Stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; King, Jeremy R.; Hanson, Robert B.; Jones, Burton F.; Fischer, Debra; Stauffer, John R.; Pinsonneault, Marc H.

    1998-01-01

    This paper examines the discrepancy between distances to nearby open clusters as determined by parallaxes from Hipparcos compared to traditional main-sequence fitting. The biggest difference is seen for the Pleiades, and our hypothesis is that if the Hipparcos distance to the Pleiades is correct, then similar subluminous zero-age main-sequence (ZAMS) stars should exist elsewhere, including in the immediate solar neighborhood. We examine a color-magnitude diagram of very young and nearby solar-type stars and show that none of them lie below the traditional ZAMS, despite the fact that the Hipparcos Pleiades parallax would place its members 0.3 mag below that ZAMS. We also present analyses and observations of solar-type stars that do lie below the ZAMS, and we show that they are subluminous because of low metallicity and that they have the kinematics of old stars.

  1. Hertzsprung-Russell Diagram

    NASA Astrophysics Data System (ADS)

    Chiosi, C.; Murdin, P.

    2000-11-01

    The Hertzsprung-Russell diagram (HR-diagram), pioneered independently by EJNAR HERTZSPRUNG and HENRY NORRIS RUSSELL, is a plot of the star luminosity versus the surface temperature. It stems from the basic relation for an object emitting thermal radiation as a black body: ...

  2. Panchromatic Hubble Andromeda Treasury. XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    NASA Astrophysics Data System (ADS)

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dolphin, Andrew E.; Larsen, Søren S.; Sandstrom, Karin; Skillman, Evan D.

    2016-08-01

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color-magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ˜300 Myr. We measure Γ of 4%-8% for young, 10-100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (ΣSFR). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time (τ dep) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H2-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high ΣSFR starburst systems are well-explained by τ dep-dependent fiducial Γ models.

  3. The Hertzsprung-Russell Diagram.

    ERIC Educational Resources Information Center

    Woodrow, Janice

    1991-01-01

    Describes a classroom use of the Hertzsprung-Russell diagram to infer not only the properties of a star but also the star's probable stage in evolution, life span, and age of the cluster in which it is located. (ZWH)

  4. Optical spectroscopy of X-ray sources in the Taurus molecular cloud: discovery of ten new pre-main sequence stars

    NASA Astrophysics Data System (ADS)

    Scelsi, L.; Sacco, G.; Affer, L.; Argiroffi, C.; Pillitteri, I.; Maggio, A.; Micela, G.

    2008-11-01

    Aims: We have analyzed optical spectra of 25 X-ray sources identified as potential new members of the Taurus molecular cloud (TMC), in order to confirm their membership in this star-forming region. Methods: Fifty-seven candidate members were previously selected among the X-ray sources in the XEST survey, having a 2MASS counterpart compatible with a pre-main sequence star based on color-magnitude and color-color diagrams. We obtained high-resolution optical spectra for 7 of these candidates with the SARG spectrograph at the TNG telescope, which were used to search for lithium absorption and to measure the Hα line and the radial and rotational velocities. Then, 18 low-resolution optical spectra obtained with the instrument DOLORES for other candidate members were used for spectral classification, for Hα measurements, and to assess membership together with IR color-color and color-magnitude diagrams and additional information from the X-ray data. Results: We found that 3 sources show lithium absorption, with equivalent widths (EWs) of 500 mÅ, broad spectral line profiles, indicating rotational velocities of 20{-}40 km s-1, radial velocities consistent with those for known members, and Hα emission. Two of them are classified as new weak-lined T Tauri stars, while the EW ( -9 Å) of the Hα line and its broad asymmetric profile clearly indicate that the third star (XEST-26-062) is a classical T Tauri star. Fourteen sources observed with DOLORES are M-type stars. Fifteen sources show Hα emission. Six of them have spectra that indicate surface gravity lower than in main sequence stars, and their de-reddened positions in IR color-magnitude diagrams are consistent with their derived spectral type and with pre-main sequence models at the distance of the TMC. The K-type star XEST-11-078 is confirmed as a new member on the basis of the strength of the Hα emission line. Overall, we confirm membership to the TMC for 10 out of 25 X-ray sources observed in the optical. Three

  5. EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H-R DIAGRAMS?

    SciTech Connect

    Baraffe, I.; Chabrier, G.; Gallardo, J. E-mail: chabrier@ens-lyon.fr

    2009-09-01

    We present evolutionary models for young low-mass stars and brown dwarfs taking into account episodic phases of accretion at early stages of the evolution, a scenario supported by recent large surveys of embedded protostars. An evolution including short episodes of vigorous accretion followed by longer quiescent phases can explain the observed luminosity spread in H-R diagrams of star-forming regions at ages of a few Myr, for objects ranging from a few Jupiter masses to a few tenths of a solar mass. The gravitational contraction of these accreting objects strongly departs from the standard Hayashi track at constant T{sub eff}. The best agreement with the observed luminosity scatter is obtained if most of the accretion shock energy is radiated away. The obtained luminosity spread at 1 Myr in the H-R diagram is equivalent to what can be misinterpreted as an {approx}10 Myr age spread for non-accreting objects. We also predict a significant spread in radius at a given T{sub eff}, as suggested by recent observations. These calculations bear important consequences for our understanding of star formation and early stages of evolution and on the determination of the initial mass function for young ({<=} a few Myr) clusters. Our results also show that the concept of a stellar birthline for low-mass objects has no valid support.

  6. SPITZER SAGE-SMC INFRARED PHOTOMETRY OF MASSIVE STARS IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Bonanos, A. Z.; Lennon, D. J.; Massa, D. L. E-mail: lennon@stsci.ed

    2010-08-15

    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE-SMC survey database, for which we present uniform photometry from 0.3to24 {mu}m in the UBVIJHK{sub s} +IRAC+MIPS24 bands. We compare the color-magnitude diagrams and color-color diagrams to those of stars in the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 {mu}m in the SMC are a few very luminous hypergiants, four B-type stars with peculiar, flat spectral energy distributions, and all three known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in our SMC catalog, respectively, when compared to the LMC catalog, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A and F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.

  7. The Jet from MWC 137 Points at a Supergiant B[e] Star in a Binary

    NASA Astrophysics Data System (ADS)

    Mehner, A.; de Wit, W. J.; Groh, J. H.; Oudmaijer, R. D.; Baade, D.; Rivinius, Th.; Selman, F.; Boffin, H. M. J.; Martayan, C.

    2017-02-01

    The Galactic B[e] star MWC 137 is a prime example of an object with an uncertain evolutionary classification. Previous work has suggested that is either a pre- or a post-main sequence object. Integral field spectrograph observations with the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT MUSE) of the host cluster SH 2-266 are used to provide a reliable evolutionary classification. The MUSE data also allowed the discovery of a large collimated outflow, geometrically centered on MWC 137. A color-magnitude diagram analysis of the cluster promotes strongly a post-main sequence stage for MWC 137, while the existence of a jet implies the presence of an accretion disk. A SWIFT X-ray source, which may be associated with MWC 137, hints at the possibility of a neutron star companion.

  8. A study of variable stars in the open cluster NGC 1582 and its surrounding field

    NASA Astrophysics Data System (ADS)

    Song, Fang-Fang; Esamdin, Ali; Ma, Lu; Liu, Jin-Zhong; Zhang, Yu; Niu, Hu-Biao; Yang, Tao-Zhi

    2016-10-01

    This paper presents Charge-Coupled Device time-series photometric observations of the open cluster NGC 1582 and its surrounding field with Johnson B, V and R filters by using the Nanshan 1 m telescope administered by Xinjiang Astronomical Observatory. 19 variable stars and three variable candidates were detected in a 45‧ × 48.75‧ field around the cluster. 12 of the variable stars are newly-discovered variable objects. The physical properties, classifications and memberships of these 22 objects are studied through their light curves, their positions on the color-magnitude diagram and with archival data from the Naval Observatory Merged Astrometric Dataset. Among these objects, five are eclipsing binary systems, six are pulsating variable stars including one known δ Scuti star and one newly-discovered RR Lyrae star. The distance to the RR Lyrae star is estimated to be 7.9 ± 0.3 kpc, indicating that the star is located far behind the cluster. Four variable stars are probable members of the cluster, and 13 of the 22 objects are confirmed to be field stars.

  9. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime. II. Sample-Echelle diagrams and rotation

    SciTech Connect

    Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.

    2016-06-17

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (${\\rm{\\Delta }}\

  10. Unexpected Series of Regular Frequency Spacing of δ Scuti Stars in the Non-asymptotic Regime. II. Sample-Echelle Diagrams and Rotation

    NASA Astrophysics Data System (ADS)

    Paparó, M.; Benkő, J. M.; Hareter, M.; Guzik, J. A.

    2016-06-01

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Using several possible assumptions for the origin of the spacings, we derived the large separation ({{Δ }}ν ) that are distributed along the mean density versus large separations relation derived from stellar models.

  11. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime. II. Sample-Echelle diagrams and rotation

    DOE PAGES

    Paparo, M.; Benko, J. M.; Hareter, M.; ...

    2016-06-17

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\

  12. WIDE-FIELD SURVEY OF EMISSION-LINE STARS IN IC 1396

    SciTech Connect

    Nakano, M.; Sugitani, K.; Watanabe, M.; Fukuda, N.; Ishihara, D.; Ueno, M.

    2012-03-15

    We have made an extensive survey of emission-line stars in the IC 1396 H II region to investigate the low-mass population of pre-main-sequence (PMS) stars. A total of 639 H{alpha} emission-line stars were detected in an area of 4.2 deg{sup 2} and their i' photometry was measured. Their spatial distribution exhibits several aggregates near the elephant trunk globule (Rim A) and bright-rimmed clouds at the edge of the H II region (Rim B and SFO 37, 38, 39, 41), and near HD 206267, which is the main exciting star of the H II region. Based on the extinction estimated from the near-infrared color-color diagram, we have selected PMS star candidates associated with IC 1396. The age and mass were derived from the extinction-corrected color-magnitude diagram and theoretical PMS tracks. Most of our PMS candidates have ages of <3 Myr and masses of 0.2-0.6 M{sub Sun }. Although it appears that only a few stars were formed in the last 1 Myr in the east region of the exciting star, the age difference among subregions in our surveyed area is not clear from the statistical test. Our results may suggest that massive stars were born after the continuous formation of low-mass stars for 10 Myr. The birth of the exciting star could be the late stage of slow but contiguous star formation in the natal molecular cloud. It may have triggered the formation of many low-mass stars at the dense inhomogeneity in and around the H II region by a radiation-driven implosion.

  13. Wide-field Survey of Emission-line Stars in IC 1396

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Sugitani, K.; Watanabe, M.; Fukuda, N.; Ishihara, D.; Ueno, M.

    2012-03-01

    We have made an extensive survey of emission-line stars in the IC 1396 H II region to investigate the low-mass population of pre-main-sequence (PMS) stars. A total of 639 Hα emission-line stars were detected in an area of 4.2 deg2 and their i' photometry was measured. Their spatial distribution exhibits several aggregates near the elephant trunk globule (Rim A) and bright-rimmed clouds at the edge of the H II region (Rim B and SFO 37, 38, 39, 41), and near HD 206267, which is the main exciting star of the H II region. Based on the extinction estimated from the near-infrared color-color diagram, we have selected PMS star candidates associated with IC 1396. The age and mass were derived from the extinction-corrected color-magnitude diagram and theoretical PMS tracks. Most of our PMS candidates have ages of <3 Myr and masses of 0.2-0.6 M ⊙. Although it appears that only a few stars were formed in the last 1 Myr in the east region of the exciting star, the age difference among subregions in our surveyed area is not clear from the statistical test. Our results may suggest that massive stars were born after the continuous formation of low-mass stars for 10 Myr. The birth of the exciting star could be the late stage of slow but contiguous star formation in the natal molecular cloud. It may have triggered the formation of many low-mass stars at the dense inhomogeneity in and around the H II region by a radiation-driven implosion.

  14. A census of variable stars in the young cluster NGC 2282

    NASA Astrophysics Data System (ADS)

    Dutta, Somnath; Mondal, Soumen; Das, Ramkrishna; Joshi, Santosh; Jose, Jessy; Ghosh, Supriyo

    2016-07-01

    We report the results of CCD I time series photometry of the young (2-5 Myr) cluster NGC 2282 using 2m Himalayan Chandra Telescope (HCT), India and 1.3m Devasthal Fast Optical Telescope, Aries, Nainital, India. The deep I-band (˜20.5 mag) analysis enables us to probe the study of variability towards low-mass end of pre-main sequence (PMS) stars. The technique of differential photometry has been used to identify photometric variable stars, which provides high photometric precision, even in the central crowded nebulous region. Additionally, large rms deviation of magnitudes from normal trends and significant periods in a Lomb-Scargle analysis were also considered as signatures of variable stars. A total of 65 stars were found as photometric variable. The PMS members associated with the region were identified using infrared (IR) data from UKIDSS and Spitzer-IRAC. Based on the optical and NIR color-magnitude diagram analyses, the age of the probable PMS variable sources has been estimated to be in the range of 1-5 Myr. Masses of these PMS variable stars were found to be ˜0.15-3.0 Msun these could be T Tauri stars. Majority of the variable T Tauri stars have periods less than 15 days, such periodic variability are proposed to be the results of rotational modulation by hot or cool stellar spots on the star surface.

  15. The Formation and Evolution of the Large Magellanic Cloud from Selected Clusters and Star Fields

    NASA Astrophysics Data System (ADS)

    Olsen, Knut Anders Grova

    We have obtained deep Hubble Space Telescope color-magnitude diagrams of fields centered on the six old LMC globular clusters NGC 1754, NGC 1835, WGC 1898, NGC 1916, NGC 2005, and NGC 2019. The data have been carefully calibrated and the effects of crowding on the photometric accuracy have been thoroughly investigated. The observations have been used to produce V-I,V color-magnitude diagrams of the clusters and of the background field stars, which we have separated from each other through a statistical cleaning technique. The cluster color-magnitude diagrams show that the clusters are old, with main sequence turnoffs at V~ 22.5 and well-developed horizontal branches. We used the slopes of the red giant branches to measure the abundances, which we find to be 0.3 dex higher, on average, than previously measured spectroscopic abundances. In two cases there is significant variable reddening across at least part of the image, but only for NGC 1916 does differential reddening preclude accurate measurements of the CMD characteristics. The mean reddenings of the clusters, measured both from the color of the red giant branch and through comparison with Milky Way clusters, are <=0.10 magnitudes in E(B-V) in all cases. By matching tbe color-magnitude diagrams of the clusters to fiducial sequences of the Milky Way globular clusters M3, M5, and M55, we find that the mean difference of the LMC and Milky Way cluster ages is 1.0 ± 1.2 Gyr, calculated such that a positive difference indicates that the LMC clusters are older. Through Monte Carlo simulations, errors in the individual measurements of the ages relative to Milky Way clusters are found to be ~<1.0 Gyr. We find a similar chronology by comparing the horizontal branch morphologies and abundances with HB evolutionary tracks, assuming that age is the 'second parameter'. These results imply that the LMC formed at the same time as the Milky Way Galaxy. The evolution of the LMC following its formation has been studied through

  16. CURious Variables Experiment (CURVE). CCD Photometry and Variable Stars in the Field of Open Cluster NGC637

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, P.; Olech, A.; Wisniewski, M.; Kedzierski, P.; Mularczyk, K.; Zloczewski, K.; Starczewski, S.; Szaruga, K.

    2006-09-01

    We present VI photometry for the open cluster NGC 637 which is located in the Cassiopeia region. Morphology of cluster color-magnitude diagram indicates that it is a young object with age of a few million years. The apparent distance modulus of the cluster is 13.9<(m-M)_V<14.3 mag, while reddening is 0.69stars in NGC 637. One of the variables is a non-radially pulsating beta Cep-type star. Other one is a likely ellipsoidal variable, however its pulsating nature cannot be excluded.

  17. Hubble Space Telescope/NICMOS Observations of I Zw 18: A Population of Old Asymptotic Giant Branch Stars Revealed.

    PubMed

    Östlin

    2000-06-01

    I present the first results from a Hubble Space Telescope/NICMOS imaging study of the most metal-poor blue compact dwarf galaxy, I Zw 18. The near-infrared color-magnitude diagram (CMD) is dominated by two populations, one 10-20 Myr population of red supergiants and one 0.1-5 Gyr population of asymptotic giant branch stars. Stars older than 1 Gyr are required to explain the observed CMD at the adopted distance of 12.6 Mpc, showing that I Zw 18 is not a young galaxy. The results hold also if the distance to I Zw 18 is significantly larger. This rules out the possibility that I Zw 18 is a truly young galaxy formed recently in the local universe.

  18. WFPC2 Observations of Star Clusters in the Magellanic Clouds. Report 2; The Oldest Star Clusters in the Small Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Mighell, Kenneth J.; Sarajedini, Ata; French, Rica S.

    1998-01-01

    We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F45OW ( approximately B) and F555W (approximately V) of the intermediate-age populous star clusters NGC 121, NGC 339, NGC 361, NGC 416, and Kron 3 in the Small Magellanic Cloud. We use published photometry of two other SMC populous star clusters, Lindsay 1 and Lindsay 113, to investigate the age sequence of these seven populous star clusters in order to improve our understanding of the formation chronology of the SMC. We analyzed the V vs B-V and M(sub V) vs (B-V)(sub 0) color-magnitude diagrams of these populous Small Magellanic Cloud star clusters using a variety of techniques and determined their ages, metallicities, and reddenings. These new data enable us to improve the age-metallicity relation of star clusters in the Small Magellanic Cloud. In particular, we find that a closed-box continuous star-formation model does not reproduce the age-metallicity relation adequately. However, a theoretical model punctuated by bursts of star formation is in better agreement with the observational data presented herein.

  19. Mass Loss and Dust Injection rates from Evolved Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.

    2010-01-01

    The Spitzer Space Telescope is continuing to contribute greatly to our understanding of the mass return from evolved stars in the Magellanic Clouds (MCs). I first review a number of smaller early Spitzer studies of evolved stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). These studies often built upon earlier such studies using data from prior missions, like the Midcourse Space Experiment. I discuss various Spitzer spectroscopic studies that have investigated the dust compositions of evolved stars in the lower metallicity environments of the MCs. Also, I review studies of the MCs' massive evolved stars, which have been given somewhat less attention than other populations. Excitingly, using Spitzer data, for the first time the mass-loss from the diverse evolved star MC populations is being quantified. With the advent of the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Legacy program, tens of thousands of stars in the LMC have been classified as evolved stars using SAGE Spitzer data. I briefly review how evolved stars are classified (e.g., by using color-magnitude and color-color diagrams) using data from the SAGE surveys. Finally, I discuss work on radiative transfer (RT) modeling of evolved stars, which follows earlier work estimating their mass-loss using colors or emission in excess of stellar photosphere emission. This RT work starts by seeking acceptable dust properties for RT models of both SAGE Spectral Energy Distributions (SEDs) and SAGE-Spectroscopy (Spitzer Legacy program; PI: F. Kemper) spectra of asymptotic giant branch (AGB) stars. Afterwards, large grids of RT models are constructed to determine mass-loss rates for AGB stars and red supergiants in the SAGE samples of the LMC and, eventually, the SMC.

  20. Deep HST/ACS Photometry of an Arc of Young Stars in the Southern Halo of M82

    NASA Astrophysics Data System (ADS)

    Suwannajak, Chutipong

    2016-01-01

    We present deep HST/ACS photometry of an arclike, overdense region of stars in the southern halo of M82, located approximately 5 kpc from its disk. This arc feature was originally identified about a decade ago. The early ground-based studies suggested that it contains young stars with ages and metallicities similar to those that formed in the tidal tails between M81, M82, and NGC3077 during their interactions. The arc is clearly presented in the spatial distribution of stars in our field with significantly higher stellar density than the background M82 halo stars. The location of the tip of the red giant branch (RGB) reveals the arc to have a similar distance to M81 and M82, therefore confirming that it belongs to this interacting system. Combining our data with those from the ACS Nearby Galaxy Survey Treasury (ANGST), we construct a color-magnitude diagram (CMD) for the arc. A sequence of young stars is clearly presented on its CMD. This young main sequence is not seen in other parts of the M82 halo. Single-metallicity isochrones are used to derive the age of the young stars in the arc. We confirm that these stars exhibit ages consistent with young stars found in the HI bridges between M81, M82 and NGC3077. Furthermore, the mean metallicity of the RGB stars is also derived from their metallicity distribution function and found to be similar to that found in the HI bridges.

  1. Be Stars and Physical Properties of the Young Open Cluster NGC 6834

    NASA Astrophysics Data System (ADS)

    Miller, G. J.; Grebel, E. K.; Yoss, K. M.

    1996-12-01

    We present initial results for the young open cluster NGC 6834 obtained with the 1-m telescope at Mount Laguna Observatory. We observed this cluster as part of a CCD-photometric survey for Be stars using B,V filters and two narrow-band interference filters at Hα and Hα continuum. Through a census of Be stars in clusters, where stars are coeval, equidistant, have the same metallicities, and share a common origin, we hope to gain a better understanding of the properties and origins of the still enigmatic Be phenomenon. Our B,V color-magnitude diagram of NGC 6834 shows an extended blue main sequence widened at fainter magnitudes by field star contamination. Fitting Geneva isochrones with solar metallicity to the cluster population, we find an age of ~ 50 Myr, a mean reddening of E(B-V)~ 0.7 mag, and a distance modulus of 12.2 mag (i.e. a distance of ~ 2750 pc). Our data reach roughly 4 magnitudes fainter in V than previous photographic or photoelectric studies. For the detection of Be stars, we use a two-color diagram. The most prominent feature distinguishing Be stars from B stars is their Balmer emission. The (Hα \\ continuum - Hα ) index allows us to find stars bright in Hα . The (B-V) color index serves to distinguish blue stars from red giants and red supergiants, which also may exhibit Hα emission. We find six Be star candidates in NGC 6834, that stand out clearly through their enhanced Balmer emission. Only one was known previously in this cluster. The brightness in Hα is well-correlated with reddened (B-V) colors. The relatively small number of Be stars in NGC 6834 is consistent with the young age of the cluster and the spectral type (B5) at the main-sequence turnoff.

  2. Definition and empirical structure of the range of stellar chromospheres-coronae across the H-R diagram: Cool stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1986-01-01

    Major advances in our understanding of non-radiative heating and other activity in stars cooler than T sub eff = 10,000K has occured in the last few years. This observational evidence is reviewed and the trends that are now becoming apparent are discussed. The evidence for non-radiatively heated outer atmospheric layers (chromospheres, transition regions, and coronae) in dwarf stars cooler than spectral type A7, in F and G giants, pre-main sequence stars, and close bindary systems is unambiguous, as is the evidence for chromospheres in the K and M giants and supergiants. The existence of non-radiative heating in the outer layers of the A stars remains undetermined despite repeated searches at all wavelengths. Two important trends in the data are the decrease in plasma emission measure with age on the main sequence and decreasing rotational velocity. Variability and atmospheric inhomogeneity are commonly seen, and there is considerable evidence that magnetic fields define the geometry and control the energy balance in the outer atmospheric layers. In addition, the microwave observations imply that non-thermal electrons are confined in coronal magnetic flux tubes in at least the cool dwarfs and RS CVn systems. The chromospheres in the K and M giants and supergiants are geometrically extended, as are the coronae in the RS CVn systems and probably also in other stars.

  3. Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram

    NASA Astrophysics Data System (ADS)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2016-08-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims: We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. Methods: We completed a grid of 330 stellar evolution models for globular cluster low-mass stars computed with different initial chemical compositions corresponding to the predictions of the original FRMS scenario for [Fe/H] = -1.75. Starting from the initial helium-sodium relation that allows reproducing the currently observed distribution of sodium in NGC 6752, we deduce the helium distribution expected in that cluster at ages equal to 9 and 13 Gyr. We distinguish the stars that are moderately enriched in helium from those that are very helium-rich (initial helium mass fraction below and above 0.4, respectively), and compare the predictions of the FRMS framework with other scenarios for globular cluster enrichment. Results: The effect of helium enrichment on the stellar lifetime and evolution reduces the total number of very helium-rich stars that remain in the cluster at 9 and 13 Gyr to only 12% and 10%, respectively, from an initial fraction of 21%. Within this age range, most of the stars still burn their hydrogen in their core, which widens the MS band significantly in effective temperature. The fraction of very helium-rich stars drops in the more advanced evolution phases, where the associated spread in effective temperature strongly decreases. These

  4. Know the Star, Know the Planet. III. Discovery of Late-Type Companions to Two Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C., Jr.; Tokovinin, Andrei; Mason, Brian D.; Riddle, Reed L.; Hartkopf, William I.; Law, Nicholas M.; Baranec, Christoph

    2015-04-01

    We discuss two multiple star systems that host known exoplanets: HD 2638 and 30 Ari B. Adaptive optics imagery revealed an additional stellar companion to both stars. We collected multi-epoch images of the systems with Robo-AO and the PALM-3000 adaptive optics systems at Palomar Observatory and provide relative photometry and astrometry. The astrometry indicates that the companions share common proper motion with their respective primaries. Both of the new companions have projected separations less than 30 AU from the exoplanet host star. Using the projected separations to compute orbital periods of the new stellar companions, HD 2638 has a period of 130 yr and 30 Ari B has a period of 80 yr. Previous studies have shown that the true period is most likely within a factor of three of these estimated values. The additional component to 30 Ari makes it the second confirmed quadruple system known to host an exoplanet. HD 2638 hosts a hot Jupiter and the discovery of a new companion strengthens the connection between hot Jupiters and binary stars. We place the systems on a color-magnitude diagram and derive masses for the companions which turn out to be roughly 0.5 solar mass stars.

  5. THE CURIOUS RADIAL DISTRIBUTIONS OF HORIZONTAL BRANCH STARS IN NGC 6441

    SciTech Connect

    Krogsrud, David A.; Sandquist, Eric L.; Kato, Tadafumi E-mail: erics@sciences.sdsu.edu

    2013-04-20

    NGC 6441 is one of the most massive and most metal-rich globular clusters in the galaxy, and is noted for an unusual extended horizontal branch that reaches past the instability strip. We find evidence that there are two different populations of stars within the heavily populated red clump. Once a differential reddening correction is applied, a large but compact group of stars is found at the faint red end of the clump in the color-magnitude diagram. Brighter, bluer stars in the clump are found to be more centrally concentrated within the cluster at a very high level of significance. Curiously, the blue horizontal branch stars show a more complex distribution and are not more centrally concentrated than the brighter red clump stars. The spatial distributions of clump stars are in agreement with the idea that the brighter bluer part of the clump is a helium-enriched second generation. The blue horizontal branch stars may be showing evidence that they are being dynamically evaporated.

  6. THE STRUCTURE OF THE STAR-FORMING CLUSTER RCW 38

    SciTech Connect

    Winston, E.; Wolk, S. J.; Bourke, T. L.; Spitzbart, B.; Megeath, S. T.; Gutermuth, R.

    2011-12-20

    We present a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 {mu}m) is combined with Two Micron All Sky Survey near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 class II stars, and 74 class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001{sub O}bj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, N{sub H} and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. We posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains.

  7. Star Formation in Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Dohm-Palmer, Robbie Christopher

    I have explored the star formation histories of the dwarf irregular galaxies Sextans A and GR 8. I measured photometry of individual stars from images taken by the Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope. With the photometry I constructed color-magnitude diagrams (CMDs) in the B, V, and I. I investigated the errors in the photometry extraction, and conducted artificial star tests to measure the photometric limits. The high resolution of the Hubble Space Telescope allowed photometric measurements that were far more accurate than ground-based observations. For galaxies at these distances (1-2 Mpc), the accuracy of stellar photometry from ground-based observations is limited by crowding of stellar images. The high accuracy photometry showed a clear separation of the main sequence from the massive, blue, core He-burning stars (HeB). These are stars in the bluest extent of the so-called 'blue-loop' phase of stellar evolution. This is the first time this phase of evolution has been clearly identified in a low metallicity system. The distributions of stars in the CMDs agreed very well with stellar evolution model predictions. I have used the CMDs to calculate the recent star formation histories of both galaxies. The main sequence luminosity function provided the star formation rate (SFR) over the past ~50 Myr. I developed a new technique for calculating the SFR from the blue HeB luminosity function. Furthermore, the blue HeB evolutionary phase has a one-to-one relation between age and magnitude. This allowed me to calculate the position, as well as the strength of star formation over the past ~500 Myr. The star formation was found in concentrated regions. These regions are of order 100 pc across and last of order 100 Myr. The regions were found near the highest density HI gas. I estimated the gas-to-star conversion efficiency to be 5-10%. The results from GR 8 suggest that the star forming gas clouds may be self-gravitating, and that each cloud

  8. Keck Observations of the UV-Bright Star Barnard 29 in the Globular Cluster M13 (NGC 6205)

    NASA Astrophysics Data System (ADS)

    Dixon, William Van Dyke; Chayer, Pierre; Reid, Iain N.

    2016-06-01

    In color-magnitude diagrams of globular clusters, stars brighter than the horizontal branch and bluer than the red-giant branch are known as UV-bright stars. Most are evolving from the asymptotic giant branch (AGB) to the tip of the white-dwarf cooling curve. To better understand this important phase of stellar evolution, we have analyzed a Keck HIRES echelle spectrum of the UV-bright star Barnard 29 in M13. We begin by fitting the star's H I (Hα, Hβ, and Hγ) and He I lines with a grid of synthetic spectra generated from non-LTE H-He models computed using the TLUSTY code. We find that the shape of the star's Hα profile is not well reproduced with these models. Upgrading from version 200 to version 204M of TLUSTY solves this problem: the Hα profile is now well reproduced. TLUSTY version 204 includes improved calculations for the Stark broadening of hydrogen line profiles. Using these models, we derive stellar parameters of Teff = 21,100 K, log g = 3.05, and log (He/H) = -0.87, values consistent with those of previous authors. The star's Keck spectrum shows photospheric absorption from N II, O II, Mg II, Al III, Si II, Si III, S II, Ar II, and Fe III. The abundances of these species are consistent with published values for the red-giant stars in M13, suggesting that the star's chemistry has changed little since it left the AGB.

  9. Variable Stars and Stellar Populations in Andromeda XXI. II. Another Merged Galaxy Satellite of M31?

    NASA Astrophysics Data System (ADS)

    Cusano, Felice; Garofalo, Alessia; Clementini, Gisella; Cignoni, Michele; Federici, Luciana; Marconi, Marcella; Musella, Ilaria; Ripepi, Vincenzo; Speziali, Roberto; Sani, Eleonora; Merighi, Roberto

    2015-06-01

    B and V time-series photometry of the M31 dwarf spheroidal satellite Andromeda XXI (And XXI) was obtained with the Large Binocular Cameras at the Large Binocular Telescope. We have identified 50 variables in And XXI, of which 41 are RR Lyrae stars (37 fundamental-mode—RRab, and 4 first-overtone-RRc, pulsators) and 9 are Anomalous Cepheids (ACs). The average period of the RRab stars (< {P}{ab}> =0.64 days) and the period-amplitude diagram place And XXI in the class of Oosterhoff II—Oosterhoff-Intermediate objects. From the average luminosity of the RR Lyrae stars we derived the galaxy distance modulus of (m - M)0 = 24.40 ± 0.17 mag, which is smaller than previous literature estimates, although still consistent with them within 1σ. The galaxy color-magnitude diagram shows evidence for the presence of three different stellar generations in And XXI: (1) an old (˜12 Gyr) and metal-poor ([Fe/H] = -1.7 dex) component traced by the RR Lyrae stars; (2) a slightly younger (10-6 Gyr) and more metal-rich ([Fe/H] = -1.5 dex) component populating the red horizontal branch, and (3) an intermediate age (˜1 Gyr) component with the same metallicity that produced the ACs. Finally, we provide hints that And XXI could be the result of a minor merging event between two dwarf galaxies. Based on data collected with the LBC at the LBT.

  10. Evolutionary studies of the young star clusters: NGC 1960, NGC 2453 and NGC 2384

    NASA Astrophysics Data System (ADS)

    Hasan, Priya; Kilambi, G. C.; Hasan, S. N.

    2008-02-01

    We report the analysis of the young star clusters NGC 1960, NGC 2453 and NGC 2384 observed in the J (1.12 μm), H (1.65 μm) and K' (2.2 μm) bands. Estimates of reddening, distance and age as E( B- V)=0.25, d=1380 pc and t=31.6 to 125 Myr for NGC 1960, E( B- V)=0.47, d=3311 pc and t=40 to 200 Myr for NGC 2453 and E( B- V)=0.25, d=3162 pc and t=55 to 125 Myr for NGC 2384 have been obtained. Also, we have extended the color magnitude diagrams of these clusters to the fainter end and thus extended the luminosity functions to fainter magnitudes. The evolution of the main sequence and luminosity functions of these clusters have been compared with themselves as well as Lyngå 2 and NGC 1582.

  11. A DEEP UBVRI CCD PHOTOMETRY OF SIX OPEN STAR CLUSTERS IN THE GALACTIC ANTICENTER REGION

    SciTech Connect

    Lata, Sneh; Pandey, Anil K.; Kumar, Brijesh; Bhatt, Himali; Pace, Giancarlo; Sharma, Saurabh

    2010-02-15

    We present deep UBVRI CCD photometry of six open star clusters situated in the Galactic anticenter region (l{approx} 120-200 deg.). The sample includes three unstudied (Be 6, Be 77, King 17) and three partly studied open clusters (Be 9, NGC 2186, and NGC 2304). The fundamental parameters have been determined by comparing color-color and color-magnitude diagrams with the theoretical models. The structural parameters and morphology of the clusters were discussed on the basis of radial density profiles and isodensity contours, respectively. The isodensity contours show that all the clusters have asymmetric shapes. An investigation of structural parameters indicates that the evolution of core and corona of the clusters is mainly controlled by internal relaxation processes.

  12. Proceedings of the Workshop on the Spectrophotometric Dating of Stars and Galaxies

    NASA Technical Reports Server (NTRS)

    Hubeny, Ivan; Heap, Sara; Cornett, Robert

    1999-01-01

    In the past decade, we have seen an avalanche of new observational results from space observatories and ground-based observatories. These observations have revealed young globular clusters in the cores of merger galaxies, elliptical galaxies at redshifts up to z=1.5, and starburst galaxies at high redshift. Analyses of the detailed spectra or color- magnitude diagrams of these systems promise to give a new understanding of evolutionary processes and to provide a check on cosmological ages. At the same time, these new spectro-photometric data present new challenges to current methods of spectral analysis and modeling.At the Workshop, we will discuss these new opportunities and challenges on spectro-photometric dating of stars and galaxies.

  13. The Abundance of Lithium in an ABG Star in the Globular Cluster M3 (NGC 5272)

    NASA Astrophysics Data System (ADS)

    Givens, R. A.; Pilachowski, C. A.

    2016-12-01

    A survey of red giants in the globular cluster M3 with the Hydra multi-object spectrograph on the WIYN 3.5 m telescope indicated a prominent Li i 6707 Å feature in the red giant vZ 1050. Followup spectroscopy with the ARC 3.5 m telescope confirmed this observation and yielded a derived abundance of A(Li)NLTE = 1.6 ± 0.05. In addition, the high oxygen and low sodium abundances measured from the same spectrum suggest that vZ 1050 is a first generation cluster star. The location of vZ 1050 above the horizontal branch and blueward of the red giant branch in the cluster’s color-magnitude diagram places vZ 1050 on M3's asymptotic giant branch. The likely source for the enhanced lithium abundance is the Cameron-Fowler mechanism operating in vZ 1050 itself.

  14. New Young Star Candidates in BRC 27

    NASA Astrophysics Data System (ADS)

    Novatne, Lauren J.; Mattrocce, G.; Milan, T.; Quinonez, A.; Rebull, L. M.; Barge, J.; Amayo, R.; Bieber, H.; Block, L.; Cheung, E.; Cruz, A.; Elkin, D.; Figueroa, A.; Jakus, M.; Kelo, A.; Larson, O.; Lemma, B.; Li, Y.; Loe, C.; Maciag, V.; Moreno, N.; Nevels, M.; Pezanoski-Cohen, G.; Short, M.; Skatchke, K.; Tur-Kaspa, A.; Zegeye, D.; Armstrong, J.; Bonadurer, R.; French, D.; Free, B.; Miller, C.; Scherich, H.; Willis, T.; Koenig, X.; Laher, R.; Padgett, D.; Piper, M.; Pavlak, A.; Piper, M.; Venezio, E.; Ali, B.

    2013-01-01

    All stars originate from clouds of interstellar gas that collapse either under their own gravity or with external help. In triggered star formation, the collapse of a cloud is initiated by pressure, e.g., from nearby star(s). When the external source is bright stars, it can illuminate the rims of the cloud, creating bright-rimmed clouds (BRCs) to be visible at optical and infrared (IR) wavelengths. We searched for new candidate young stellar objects (YSOs) primarily using the March 2012 all-sky release of Wide-field Infrared Survey Explorer (WISE) data in BRC 27, which is part of CMa R1, a region of known star formation. Spitzer data of a 5’x5’ region centered on BRC 27 were presented by Johnson et al. 2012 and Rebull et al. 2012. We investigated WISE data within a 20 arcminute radius of BRC 27 0.35 sq. deg), combining it with Spitzer data serendipitously obtained in this region, 2MASS data, and optical data. We started from nearly 4000 WISE sources and identified about 200 candidate YSOs via a series of color cuts (Koenig et al. 2012) to identify objects with WISE colors consistent with other YSOs, e.g., having an apparent IR excess. There are about 100 objects in this region already identified in the literature as possible YSOs, about 40 of which we recovered with the color cuts. We investigated these literature YSOs and YSO candidates in all available images, and created spectral energy distributions (SEDs) and color-magnitude diagrams for further analysis of each object. We will present an analysis of our selected sub-sample of YSO candidates. This research was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds. Our education results are described in a companion education poster, Bonadurer et al.

  15. The Star Formation History and Extended Structure of the Hercules Milky Way Satellite

    NASA Astrophysics Data System (ADS)

    Sand, David J.; Olszewski, Edward W.; Willman, Beth; Zaritsky, Dennis; Seth, Anil; Harris, Jason; Piatek, Slawomir; Saha, Abi

    2009-10-01

    We present imaging of the recently discovered Hercules Milky Way satellite and its surrounding regions to study its structure, star formation history and to thoroughly search for signs of disruption. We robustly determine the distance, luminosity, size, and morphology of Hercules utilizing a bootstrap approach to characterize our uncertainties. We derive a distance to Hercules via a comparison to empirical and theoretical isochrones, finding a best match with the isochrone of M92, which yields a distance of 133 ± 6 kpc. As previous studies have found, Hercules is very elongated, with epsilon = 0.67 ± 0.03 and a half-light radius of rh sime 230 pc. Using the color-magnitude-fitting package StarFISH, we determine that Hercules is old (>12 Gyr) and metal-poor ([Fe/H] ~ -2.0), with a spread in metallicity, in agreement with previous spectroscopic work. This result is robust with respect to slight variations in the distance to Hercules and mismatches between the observed Hercules color-magnitude diagram and theoretical isochrones. We infer a total absolute magnitude of MV = -6.2 ± 0.4. Our innovative search for external Hercules structure both in the plane of the sky and along the line of sight yields some evidence that Hercules is embedded in a larger stream of stars. A clear stellar extension is seen to the northwest with several additional candidate stellar overdensities along the position angle of Hercules out to ~35' (~1.3 kpc). While the association of any of the individual stellar overdensities with Hercules is difficult to determine, we do show that the summed color-magnitude diagram of all three is consistent with Hercules' stellar population. Finally, we estimate that any change in the distance to Hercules across its face is at most ~6 kpc, and the data are consistent with Hercules being at the same distance throughout. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the US

  16. Evidence for two discrete epochs of star formation in the large magellanic cloud

    SciTech Connect

    Frogel, J.A.; Blanco, V.M.

    1983-11-15

    An infrared color-magnitude diagram for an unbiased sample of M giants in a 0.12 deg/sup 2/ field of the Large Magellanic Cloud (LMC) shows the existence of two distinct asymptotic giant branches (AGBs), one of which is 1.5 mag brighter than the other. Stars on the bright AGB are quite similar in color and luminosity to giants in LMC clusters which have ages of about 10/sup 8/ yr; those on the faint AGB look like giants in clusters with ages of a few Gyr. The faint AGB is identified with the star-forming episode found by Butcher and Stryker. The bright AGB is taken to be evidence for a second, discrete episode of star formation corresponding in age to the blue globular clusters in the LMC. At least for main-sequence stars near the turnoff, this recent episode has been only one-tenth as efficient at making stars as was the older episode. The rate of star formation between these two episodes appears to have been significantly lower than in either.

  17. Evidence for two discrete epochs of star formation in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Frogel, J. A.; Blanco, V. M.

    1983-11-01

    An infrared color-magnitude diagram for an unbiased sample of M giants in a 0.12 sq deg field of the Large Magellanic Cloud (LMC) shows the existence of two distinct asymptotic giant branches (AGBs), one of which is 1.5 mag brighter than the other. Stars on the bright AGB are quite similar in color and luminosity to giants in LMC clusters which have ages of about 10 to the 8th yr; those on the faint AGB look like giants in clusters with ages of a few Gyr. The faint AGB is identified with the star-forming episode found by Butcher and Stryker (1981). The bright AGB is taken to be evidence for a second, discrete episode of star formation corresponding in age to the blue globular clusters in the LMC. At least for main-sequence stars near the turnoff, this recent episode has been only one-tenth as efficient at making stars as was the older episode. The rate of star formation between these two episodes appears to have been significantly lower than in either.

  18. Discovery of 27 New Variable Stars in the Globular Cluster NGC 6584

    NASA Astrophysics Data System (ADS)

    Toddy, Joseph; Johnson, E. W.; Darragh, A. N.; Murphy, B. W.

    2012-01-01

    Using the Southeastern Association for Research in Astronomy 0.6 meter telescope located at Cerro Tololo, we searched for variable stars in the globular cluster NGC 6584. We obtained images for 10 nights between 28 May and 6 July of 2011. After processing the images, we used the image subtraction technique developed by Alard (2000) to search for the variable stars. We detected a total of 69 variable stars in our 10x10 arc-minute field, including 42 previously known variables cataloged by Millis & Liller (1980) and 27 hereto undetected variables. In total, we classified 44 as type RRab, with a mean period of 0.56776 days, 16 as type RRc with a mean period of 0.30886 days, 6 eclipsing binaries, and 3 long period (P > 2 days) variable stars. Many of the RR Lyrae stars exhibited the Blazhko Effect. Furthermore, the RR Lyrae stars exhibit a period/amplitude relationship consistent with NGC 6584 being an Oosterhoff Type I cluster. Here we present refined periods, complete multi-color light curves, and classifications for each of the 69 variables, as well Oosterhoff and color-magnitude diagrams for the cluster. This project was funded in part by the National Science Foundation Research Experiences for Undergraduates (REU) program through grant NSF AST-1004 872 and by a grant from the Butler Institute for Research and Scholarship.

  19. Color-magnitude relations within globular cluster systems of giant elliptical galaxies: The effects of globular cluster mass loss and the stellar initial mass function

    SciTech Connect

    Goudfrooij, Paul; Kruijssen, J. M. Diederik E-mail: kruijssen@mpa-garching.mpg.de

    2014-01-01

    Several recent studies have provided evidence for a 'bottom-heavy' stellar initial mass function (IMF) in massive elliptical galaxies. Here we investigate the influence of the IMF shape on the recently discovered color-magnitude relation (CMR) among globular clusters (GCs) in such galaxies. To this end we use calculations of GC mass loss due to stellar and dynamical evolution to evaluate (1) the shapes of stellar mass functions in GCs after 12 Gyr of evolution as a function of current GC mass along with their effects on integrated-light colors and mass-to-light ratios, and (2) their impact on the effects of GC self-enrichment using the 2009 'reference' model of Bailin and Harris. As to the class of metal-poor GCs, we find the observed shape of the CMR (often referred to as the 'blue tilt') to be very well reproduced by Bailin and Harris's reference self-enrichment model once 12 Gyr of GC mass loss is taken into account. The influence of the IMF on this result is found to be insignificant. However, we find that the observed CMR among the class of metal-rich GCs (the 'red tilt') can only be adequately reproduced if the IMF was bottom-heavy (–3.0 ≲ α ≲ –2.3 in dN/dM∝M{sup α}), which causes the stellar mass function at subsolar masses to depend relatively strongly on GC mass. This constitutes additional evidence that the metal-rich stellar populations in giant elliptical galaxies were formed with a bottom-heavy IMF.

  20. A Second Neutron Star in M4?

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W.; Thompson, Ian B.

    2012-05-01

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a ~20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar). Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  1. Coronagraphic imaging of pre-main-sequence stars: Remnant evvelopes of star formation seen in reflection

    NASA Technical Reports Server (NTRS)

    Nakajima, Tadashi; Golimowski, David A.

    1995-01-01

    star/disk system. These three-reflection nebulae may trace the surfaces of pseudodisks from which matter accretes onto the stars or the inner circumstellar disks. 19 stellar objects brighter than I = 19 were detected around 9 program stars. Using a color-magnitude diagram, we have identified three new PMS candidates aroun Z CMa and one previously known PMS candidate, GG Tau/c.

  2. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    SciTech Connect

    Cole, Andrew A.; Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; McConnachie, Alan W.; Brooks, Alyson M.; Leaman, Ryan E-mail: drw@ucsc.edu E-mail: skillman@astro.umn.edu E-mail: abrooks@physics.rutgers.edu

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  3. The Mass Loss Return from Evolved Stars to the Large Magellanic Cloud: Oxygen-Rich Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, S.; Meixner, M.; Kemper, F.; Tielens, X.; Speck, A.; Matsuura, M.; Bernard, J.; Hony, S.; Gordon, K.; Indebetouw, R.; Marengo, M.; Sloan, G.; Woods, P.; Vijh, U. P.

    2010-01-01

    The Spitzer Space Telescope Legacy program Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) has observed over 6 million stars in the Large Magellanic Cloud with both the Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) instruments to explore the life-cycle of matter in a galaxy. Over 17000 of these stars were found to be candidate Oxygen-rich Asymptotic Giant Branch (O-rich AGB) stars. We combine photometry from Spitzer and elsewhere in constructing Spectral Energy Distributions (SEDs) for the SAGE candidate O-rich AGB stars. These SEDs are then modeled using the radiative transfer program 2Dust, with the goal of determining the O-rich AGB star candidates' mass-loss rates. Spitzer Infrared Spectrograph (IRS) spectra are available as part of the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) for a number of SAGE O-rich AGB star candidates; for two of these, IRS spectra in addition to the photometry are modeled with 2Dust to determine reasonable dust grain parameters to use for the candidate O-rich AGB stars in the rest of the SAGE sample. Using these dust grain properties, a grid of radiative transfer models was computed using 2Dust, varying stellar effective temperature and luminosity, dust shell inner radius, and dust shell optical depth at 10 microns wavelength. Synthetic photometry from models and observed photometry are plotted on color-color and color-magnitude diagrams, and model SEDs are directly compared to observed SEDs. The mass-loss rates from all O-rich AGB stars, especially those with the highest mass-loss rates, in the LMC are estimated and compared to its mass budget. Dust composition is also discussed in light of the results of the model grids.

  4. Near-infrared studies of embedded star clusters

    NASA Astrophysics Data System (ADS)

    Park, Chan

    The Fan Mountain Near-Infrared Camera, FanCam, features an 8.7'x8.7' field of view on a 1024x1024 Teledyne Imaging Sensors HAWAII-1 detector array. The instrument mounts at the f/15.5 focus of the 31 inch telescope. Its seeing-limited optical design, optimized for the JHK atmospheric bands, includes a field stop at the telescope focus, a doublet collimator, two 8-position filterwheels straddling a Lyot stop, and a doublet reimager. The 0.51''pixel-1 plate scale leads to a slightly oversampled point spread function for the typical seeing of 1.5''. The entire optical train is encased in a cryogenic dewar cooled by a closed-loop cooling system. Chapter 2 describes the camera design and some early results of camera performance test. Long term near-infrared, J, H, and Ks, photometric monitoring of the embedded cluster NGC 1333 is presented in Chapter 3. We employ the Stetson variability index and reduced chi 2 to identify variable objects. Color-magnitude and color-color diagrams demonstrate that NGC 1333 is extremely young and highly extincted. Light curves in all three bands are well correlated. The spatial distribution of variable stars shows a strong correlation with the peak of the extinction map while non-variable stars are evenly spread over the whole field of view. Spitzer-2MASS-identified IR excess YSOs and Chandra X-ray sources were compared with our variable stars. A total of 25 previously-unknown member candidates are presented, with 15 objects in the mass range of brown dwarfs. The IMF and mass distribution of the cluster are presented. We discuss the implication of Ks vs. H--Ks color-magnitude diagram slope statistics in view of the evolutionary sequence of young star-forming embedded clusters. Another long term near-infrared, J, H, and Ks, photometric monitoring performed with FanCam for the embedded cluster NGC 7129 is presented in Chapter 4.

  5. X-SHOOTER OBSERVATIONS OF MAIN-SEQUENCE STARS IN THE GLOBULAR CLUSTER NGC 2808: FIRST CHEMICAL TAGGING OF A He-NORMAL AND A He-RICH DWARF

    SciTech Connect

    Bragaglia, A.; Carretta, E.; Gratton, R. G.; Lucatello, S.; D'Orazi, V.; Milone, A.; Piotto, G.; Cassisi, S.; Sneden, C.; Bedin, L. R. E-mail: eugenio.carretta@oabo.inaf.i E-mail: sara.lucatello@oapd.inaf.i E-mail: antonino.milone@unipd.i E-mail: cassisi@oa-teramo.inaf.i

    2010-09-01

    We present the first chemical composition study of two unevolved stars in the globular cluster NGC 2808, obtained with the X-shooter spectrograph at VLT. NGC 2808 shows three discrete, well-separated main sequences. The most accepted explanation for this phenomenon is that their stars have different helium contents. We observed one star on the bluest main sequence (bMS, claimed to have a high helium content, Y {approx}0.4) and the other on the reddest main sequence (rMS, consistent with a canonical helium content, Y = 0.245). We analyzed features of NH, CH, Na, Mg, Al, and Fe. While Fe, Ca, and other elements have the same abundances in the two stars, the bMS star shows a huge enhancement of N, a depletion of C, an enhancement of Na and Al, and a small depletion of Mg with respect to the rMS star. This is exactly what is expected if stars on the bMS formed from the ejecta produced by an earlier stellar generation in the complete CNO and MgAl cycles whose main product is helium. The elemental abundance pattern differences in these two stars are consistent with the differences in the helium content suggested by the color-magnitude diagram positions of the stars.

  6. Exploring the Late Evolutionary Stages of Sun-like Stars with LSST

    NASA Astrophysics Data System (ADS)

    Morris, Margaret; Montez, Rodolfo

    2015-01-01

    We examine how the Large Synoptic Survey Telescope (LSST) can be used to test and advance our understanding of the late stages of stellar evolution for low- to intermediate-mass stars. From the tip of the asymptotic giant branch (AGB) to the planetary nebulae (PNe) phase, we establish the limiting volume through which LSST will be able to detect stars in these brief but luminous phases of stellar evolution. We consider ugrizy color-magnitude and color-color diagrams that can be used to distinguish these types of evolved stars. We demonstrate the potential for LSST to advance studies that explore the period-luminosity relation of AGB stars, the influence of binary companions on the shaping of mass loss, and pulsational instabilities that potentially probe the composition of hot pre-white dwarf cores. We argue that LSST will directly confront the binary hypothesis on the origin of planetary nebulae by providing photometric and temporal constraints on binary companions to the central stars and by vastly expanding the number of known planetary nebulae.

  7. Variable Stars in the 50BiN Open Cluster Survey. I. NGC 2301

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Deng, Licai; Zhang, Xiaobin; Xin, Yu; Yan, Zhengzhou; Tian, Jianfeng; Luo, Yangping; Luo, Changqing; Zhang, Chunguang; Peng, Yingjiang; Pan, Yang; Sun, Jinjiang; Luo, Zhiquan

    2015-11-01

    The current work is the first contribution from the 50 cm Binocular Network, whose primary goal is to systematically detect and characterize variable stars in Galactic open clusters. In this paper, we report the results of a search for variables in the open cluster NGC 2301. Eighteen variable stars including 12 new objects were detected in a 20‧ × 20‧ field around the cluster. The physical properties, classifications, and memberships are discussed using the behaviors of the light curves, the positions on the color-magnitude diagram, and the archival proper-motion data. Among the 12 new objects, 5 are low-amplitude δ Scuti stars, 4 of which are probable members of the cluster. One of them is discovered to be a δ Scuti star in an eclipsing binary system. One γ Doradus candidate is identified as a cluster member, but is apparently located very close to the blue edge of the γ Doradus instability strip and therefore can be used to pin down the blue edge of the instability strip. The remaining five new variables are classified as an EW-type eclipsing binary with an orbital period of 0.5785 days and four unknown type variable stars. In addition, revised basic data for the six known variables are given according to our observations.

  8. An Evolving Trio of Hybrid Stars: C 111

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2004-01-01

    Our goal is to understand the behavior of the outer atmosphere in this intermediate stage to create a comprehensive picture of atmospheric evolution. In the hybrid phase, the large-scale magnetic dynamo activity decays and hydrodynamic processes assume importance. Some hot plasma is still confined close to the star by magnetic loops, yet the confining field is breaking open, the atmosphere can escape through these open field lines, and the diffuse corona may be warm. There may well be a more extended and variable transition process. It remains for FUSE to identify the controlling parameters of the hybrid stars. It shows the positions of our 3 targets in the color-magnitude diagram where it is seen that they are at the extreme end of the hybrid region. Originally we had been awarded the hybrid star Iota Aur, but due to newly imposed pointing constraints of FUSE, that target was not accessible. And so we substituted Iota Dra, a giant of mass similar to our other targets but less evolved. In addition, Iota Dra was recently found to harbor a sub-stellar objects, possibly a planet, and so it could reveal the stellar environment of the planet. This substitution was accepted.

  9. Chemical abundances of massive stars in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Kaufer, Andreas; Tolstoy, Eline; Kudritzki, Rolf-Peter; Przybilla, Norbert; Smartt, Stephen J.; Lennon, Daniel J.

    The relative abundances of elements in galaxies can provide valuable information on the stellar and chemical evolution of a galaxy. While nebulae can provide abundances for a variety of light elements, stars are the only way to directly determine the abundances of iron-group and s-process and r-process elements in a galaxy. The new 8m and 10m class telescopes and high-efficiency spectrographs now make high-quality spectral observations of bright supergiants possible in dwarf galaxies in the Local Group. We have been concentrating on elemental abundances in the metal-poor dwarf irregular galaxies, NGC 6822, WLM, Sextants A, and GR 8. Comparing abundance ratios to those predicted from their star formation histories, determined from color-magnitude diagrams, and comparing those ratios between these galaxies can give us new insights into the evolution of these dwarf irregular galaxies. Iron-group abundances also allow us to examine the metallicities of the stars in these galaxies directly, which affects their inferred mass loss rates and predicted stellar evolution properties.

  10. New BVI {sub C} photometry of low-mass pleiades stars: Exploring the effects of rotation on broadband colors

    SciTech Connect

    Kamai, Brittany L.; Stassun, Keivan G.; Vrba, Frederick J.; Stauffer, John R.

    2014-08-01

    We present new BVI{sub C} photometry for 350 Pleiades proper motion members with 9 < V ≲ 17. Importantly, our new catalog includes a large number of K- and early M-type stars, roughly doubling the number of low-mass stars with well-calibrated Johnson/Cousins photometry in this benchmark cluster. We combine our new photometry with existing photometry from the literature to define a purely empirical isochrone at Pleiades age (≈100 Myr) extending from V = 9 to 17. We use the empirical isochrone to identify 48 new probable binaries and 14 likely nonmembers. The photometrically identified single stars are compared against their expected positions in the color-magnitude diagram (CMD). At 100 Myr, the mid K and early M stars are predicted to lie above the zero-age main sequence (ZAMS) having not yet reached the ZAMS. We find in the B – V versus V CMD that mid K and early M dwarfs are instead displaced below (or blueward of) the ZAMS. Using the stars' previously reported rotation periods, we find a highly statistically significant correlation between rotation period and CMD displacement, in the sense that the more rapidly rotating stars have the largest displacements in the B – V CMD.

  11. Star formation histories from resolved stellar populations in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Gogarten, Stephanie Morris

    We present the results of three applications of using resolved stellar populations to derive star formation histories (SFHs) of regions in the nearby spiral galaxies M81 and NGC 300. We use data from the Advanced Camera for Surveys (ACS) Nearby Galaxy Survey Treasury (ANGST) and compare observed color- magnitude diagrams (CMDs) with synthetic CMDs from stellar evolution models to find the best-fitting combination of stellar ages and metallicities. In the outer disk of M81, we probe the stellar populations of small regions which are UV-bright but Ha-faint as well as HII regions. We determine that the HII regions contain more massive stars than the other regions and are therefore consistent with being at least a few Myr younger; however, we cannot rule out a truncated initial mass function as an explanation for the differences between these regions. Our data for NGC 300 cover the location of an unusual optical transient, NGC 300 OT2008-1, which has been speculated to represent a new class of objects. Despite the lack of an optical precursor for this object, we infer the mass of the progenitor by deriving the SFH from the stars surrounding the transient location, under the assumption that since most stars form in clusters, the population should be coeval. We find a star formation event of age 8-13 Myr and determine that the progenitor should be a star which has recently turned off the main sequence, of mass 12-17 [Special characters omitted.] . Expanding our view of NGC 300 to a radial strip of the disk from the center to 5.4 kpc, we divide the galaxy into radial bins and derive the SFH at each location. We find that the percentage of young stars in the outer regions is considerably greater than in the inner regions, but the slope of the surface density of the disk increases only slightly with time.

  12. Carbon Stars In Andromeda. II. Demographics and Photometric Properties

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Hamren, K.; Dorman, C.; Toloba, E.; Seth, A.; Dalcanton, J.; Nayak, A.; PHAT Collaboration; SPLASH Collaboration

    2014-01-01

    This is the second of two talks about a sample of newly-discovered carbon stars in the Andromeda galaxy (M31). As explained in the first talk, these stars were identified on the basis of their spectroscopic characteristics using Keck/DEIMOS spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey. We explore the physical properties of strong and weak carbon stars using photometric data from a Hubble Space Telescope Multi-Cycle Treasury program: Panchromatic Hubble Andromeda Treasury (PHAT). The PHAT data set includes deep photometry in six filters: two in the ultraviolet, two in the optical, and two in the near infrared. The carbon stars appear to be in the asymptotic giant branch stage of their evolution as evidenced by the fact that they lie above the tip of the red giant branch and are cleanly separated from normal (i.e., oxygen-rich) giants in color-magnitude diagrams. We study the spatial distribution of carbon stars in M31 and use kinematics to determine whether they belong to M31's thin disk, thick disk, or spheroid. These carbon stars serve as highly visible tracers of the intermediate-mass, intermediate-age stellar population in M31; they are important markers in the study of the star-formation history of the galaxy. This research was part of the SPLASH and PHAT collaboration. We are grateful to the National Science Foundation and NASA for funding support. AN's participation was under the auspices of UCSC's Science Internship Program.

  13. Variable Stars and Stellar Populations in Andromeda XXV. III. a Central Cluster or the Galaxy NUCLEUS?*

    NASA Astrophysics Data System (ADS)

    Cusano, Felice; Garofalo, Alessia; Clementini, Gisella; Cignoni, Michele; Federici, Luciana; Marconi, Marcella; Ripepi, Vincenzo; Musella, Ilaria; Testa, Vincenzo; Carini, Roberta; Faccini, Marco

    2016-09-01

    We present B and V time series photometry of Andromeda XXV, the third galaxy in our program on the Andromeda’s satellites, which we have imaged with the Large Binocular Cameras of the Large Binocular Telescope. The field of Andromeda XXV is found to contain 62 variable stars, for which we present light curves and characteristics of the light variation (period, amplitudes, variability type, mean magnitudes, etc.). The sample includes 57 RR Lyrae variables (46 fundamental-mode—RRab, and 11 first-overtone—RRc, pulsators), 3 anomalous Cepheids, 1 eclipsing binary system, and 1 unclassified variable. The average period of the RRab stars (< {Pab}> =0.60 σ = 0.04 days) and the period-amplitude diagram place Andromeda XXV in the class of the Oosterhoff-Intermediate objects. From the average luminosity of the RR Lyrae stars we derive for the galaxy a distance modulus of (m-M)0 = 24.63 ± 0.17 mag. The color-magnitude diagram reveals the presence in Andromeda XXV of a single, metal-poor ([Fe/H] = -1.8 dex) stellar population as old as ˜10-12 Gyr, traced by a conspicuous red giant branch and the large population of RR Lyrae stars. We discovered a spherically shaped high density of stars near the galaxy center. This structure appears to be at a distance consistent with Andromeda XXV and we suggest it could either be a star cluster or the nucleus of Andromeda XXV. We provide a summary and compare the number and characteristics of the pulsating stars in the M31 satellites analyzed so far for variability. Based on data collected with the Large Binocular Cameras at the Large Binocular Telescope.

  14. THE MASSIVE STAR POPULATION IN M101. I. THE IDENTIFICATION AND SPATIAL DISTRIBUTION OF THE VISUALLY LUMINOUS STARS

    SciTech Connect

    Grammer, Skyler; Humphreys, Roberta M. E-mail: roberta@umn.edu

    2013-11-01

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. But very little is known about the origin of these giant eruptions and their progenitors, many of which are presumably very massive, evolved stars. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the evolved massive star populations in nearby galaxies. The nearby, nearly face-on, giant spiral M101 is an excellent laboratory for studying a large population of very massive stars. In this paper, we present BVI photometry obtained from archival HST/ACS Wide Field Camera images of M101. We have produced a catalog of luminous stars with photometric errors <10% for V < 24.5 and 50% completeness down to V ∼ 26.5 even in regions of high stellar crowding. Using color and luminosity criteria, we have identified candidate luminous OB-type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent of M101 corresponding to 0.5 dex in metallicity. We discuss the resolved stellar content in the giant star-forming complexes NGC 5458, 5453, 5461, 5451, 5462, and 5449 and discuss their color-magnitude diagrams in conjunction with the spatial distribution of the stars to determine their spatio-temporal formation histories.

  15. B, V photometry for ∼19,000 stars in and around the Magellanic Cloud globular clusters NGC 1466, NGC 1841, NGC 2210, NGC 2257, and reticulum

    SciTech Connect

    Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea M. E-mail: nemec@camosun.ca E-mail: awalker@ctio.noao.edu

    2014-06-01

    Homogeneous B, V photometry is presented for 19,324 stars in and around 5 Magellanic Cloud globular clusters: NGC 1466, NGC 1841, NGC 2210, NGC 2257, and Reticulum. The photometry is derived from eight nights of CCD imaging with the Cerro Tololo Inter-American Observatory 0.9 m SMARTS telescope. Instrumental magnitudes were transformed to the Johnson B, V system using accurate calibration relations based on a large sample of Landolt-Stetson equatorial standard stars, which were observed on the same nights as the cluster stars. Residual analysis of the equatorial standards used for the calibration, and validation of the new photometry using Stetson's sample of secondary standards in the vicinities of the five Large Magellanic Cloud clusters, shows excellent agreement with our values in both magnitudes and colors. Color-magnitude diagrams reaching to the main-sequence turnoffs at V ∼ 22 mag, sigma-magnitude diagrams, and various other summaries are presented for each cluster to illustrate the range and quality of the new photometry. The photometry should prove useful for future studies of the Magellanic Cloud globular clusters, particularly studies of their variable stars.

  16. A Search for Host Stars of Free-Floating Planetary Mass Objects

    NASA Astrophysics Data System (ADS)

    Tristan, Isaiah; Bowler, Brendan P.

    2017-01-01

    Over the past decade, the number of free-floating planetary-mass objects (FFPMOs) and imaged planets in widely-bound orbits (from hundreds to thousand of AU) have increased steadily, but the origin of these objects and the relationship between them is unclear. To test if known free-floating objects could actually be distant companions to stars, we searched for wide co-moving companions around a sample of 77 young brown dwarfs and FFPMOs using the PPMXL proper motion catalog. Contamination rates (the probability of field stars co-moving by chance) were then calculated using nearby but unrelated fields, and host star candidates were further vetted using their positions in color magnitude diagrams. Using this method, we recovered all previously known widely-bound host stars within our sample and identified several promising widely separated systems, with separations ranging from 10^4-10^5 AU. Follow up radial velocities are currently being obtained to validate the shared space motion of the most promising candidates; if confirmed, these will be the widest planetary systems known.

  17. On the Star-Formation History of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Cole, A. A.; Smecker-Hane, T. A.; Gallagher, J. S., III

    1999-12-01

    Using WFPC2, we have obtained deep images in the V and I passbands of two fields in the central Large Magellanic Cloud. From these data, we have constructed high-quality color-magnitude diagrams that extend to I 27 and contain 70,000 stars each. Our CMDs extend over 2.5 magnitudes below the oldest main-sequence turnoff, which will allow us to determine the complete star-formation history of the two LMC fields with unprecedented accuracy. The fields are near the star clusters SL 336 (disk) and HS 275 (bar). We present our first analysis, focusing on the distance, age, and metallicity of the two fields as derived from the red clump and the red giant, asymptotic giant, and horizontal branches. There is evidence for differing histories of star-formation and/or chemical enrichment between the bar and the inner disk. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Partial funding provided by NSF grant AST-9619460 to TSH.

  18. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    SciTech Connect

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  19. Investigation of the open star cluster NGC 6800

    NASA Astrophysics Data System (ADS)

    Ananjevskaja, Yu. K.; Frolov, V. N.; Polyakov, E. V.

    2015-07-01

    The results of a comprehensive study of the Galactic open cluster NGC 6800 are presented. The positions of stars to a limiting magnitude B ≃ 16{./ m }5 in an 80' × 80' field centered at the cluster were measured on eight plates from the Pulkovo normal astrograph with a maximum epoch difference of 57 years. The measurements were performed with the Pulkovo "Fantasy" automated measuring system. The corresponding field from the 2MASS catalogue was used as an additional plate. As a result, the relative proper motions of stars were obtained with a root-mean-square error of 3.0 mas yr-1. A catalogue of BV and JHK magnitudes for objects in the investigated region was compiled from available published resources. The astrometric selection of cluster members was made by the maximum likelihood method. An individual cluster membership probability of a star P ≥ 60% served as the first selection criterion. The position of a star on the photometric color-magnitude ( V ~ B - V, J ~ J - K s ) diagrams was considered as the second selection criterion. On the basis of these criteria, it was established that 109 stars are members of NGC 6800, These data were used to refine the physical parameters of the cluster: the mean reddening E( B - V) = 0 m . 40, the true distance modulus ( V - M V )0 = 10{./ m }05, and the cluster age ~250 Myr. The luminosity and mass functions were constructed. The position of the center of the cluster NGC 6800 was improved: α = 19h27m11{./s}2 and δ = +25°07'24〃(2000). The catalogue of relative proper motions for stars in the field is available in electronic form only.

  20. Star Formation Activity in the Galactic H II Region Sh2-297

    NASA Astrophysics Data System (ADS)

    Mallick, K. K.; Ojha, D. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Dewangan, L. K.; Tamura, M.

    2012-11-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm-3 and 9.15 × 105 cm-6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ~7farcm5 × 7farcm5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H - K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ~0.1-2 M ⊙ and 0.5-2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be ~1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  1. An all-sky sample of intermediate-mass star-forming regions

    SciTech Connect

    Lundquist, Michael J.; Kobulnicky, Henry A.; Alexander, Michael J.; Kerton, Charles R.; Arvidsson, Kim

    2014-04-01

    We present an all-sky sample of 984 candidate intermediate-mass Galactic star-forming regions that are color selected from the Infrared Astronomical Satellite (IRAS) Point Source Catalog and morphologically classify each object using mid-infrared Wide-field Infrared Survey Explorer (WISE) images. Of the 984 candidates, 616 are probable star-forming regions (62.6%), 128 are filamentary structures (13.0%), 39 are point-like objects of unknown nature (4.0%), and 201 are galaxies (20.4%). We conduct a study of four of these regions, IRAS 00259+5625, IRAS 00420+5530, IRAS 01080+5717, and IRAS 05380+2020, at Galactic latitudes |b| > 5° using optical spectroscopy from the Wyoming Infrared Observatory, along with near-infrared photometry from the Two-Micron All Sky Survey, to investigate their stellar content. New optical spectra, color-magnitude diagrams, and color-color diagrams reveal their extinctions, spectrophotometric distances, and the presence of small stellar clusters containing 20-78 M {sub ☉} of stars. These low-mass diffuse star clusters contain ∼65-250 stars for a typical initial mass function, including one or more mid-B stars as their most massive constituents. Using infrared spectral energy distributions we identify young stellar objects near each region and assign probable masses and evolutionary stages to the protostars. The total infrared luminosity lies in the range 190-960 L {sub ☉}, consistent with the sum of the luminosities of the individually identified young stellar objects.

  2. VLT/MUSE discovers a jet from the evolved B[e] star MWC 137

    NASA Astrophysics Data System (ADS)

    Mehner, A.; de Wit, W. J.; Groh, J. H.; Oudmaijer, R. D.; Baade, D.; Rivinius, T.; Selman, F.; Boffin, H. M. J.; Martayan, C.

    2016-01-01

    Aims: Not all stars exhibiting the optical spectral characteristics of B[e] stars are in the same evolutionary stage. The Galactic B[e] star MWC 137 is a prime example of an object with uncertain classification, where previous work has suggested either a pre- or a post-main sequence classification. Our goal is to settle this debate and provide a reliable evolutionary classification. Methods: Integral field spectrograph observations with the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT MUSE) of the cluster SH 2-266 are used to analyze the nature of MWC 137. Results: A collimated outflow is discovered that is geometrically centered on MWC 137. The central position of MWC 137 in the cluster SH 2-266 within the larger nebula suggests strongly that it is a member of this cluster and that it is the origin of both the nebula and the newly discovered jet. Comparison of the color-magnitude diagram of the brightest cluster stars with stellar evolutionary models results in a distance of about 5.2 ± 1.4 kpc. We estimate that the cluster is at least 3 Myr old. The jet emanates from MWC 137 at a position angle of 18-20°. The jet extends over 66'' (1.7 pc) projected on the plane of the sky, shows several knots, and has electron densities of about 103 cm-1 and projected velocities of up to ± 450 km s-1. From the Balmer emission line decrement of the diffuse intracluster nebulosity, we determine E(B-V) = 1.4 mag for the inner 1' cluster region. The spectral energy distribution of the brightest cluster stars yields a slightly lower extinction of E(B-V) ~ 1.2 mag for the inner region and E(B-V) ~ 0.4-0.8 mag for the outer region. The extinction toward MWC 137 is estimated to be E(B-V) ~ 1.8 mag (AV ~ 5.6 mag). Conclusions: Our analysis of the optical and near-infrared color-magnitude and color-color diagrams suggests a post-main sequence stage for MWC 137. The existence of a jet in this object implies the presence of an accretion disk. Several possibilities for MWC

  3. In preparation to Gaia: compilation of late-type stars possible members of stellar kinematic groups (stellar streams, moving groups, and associations)

    NASA Astrophysics Data System (ADS)

    Montes, D.

    2015-05-01

    In this contribution we present a compilation of late-type stars (F, G, K and M) possible members of the different stellar kinematic groups analysed in the literature. We include the young and old classical moving groups and superclusters, the recently identified young nearby loose associations as well as other stellar streams identified in recent surveys that contains large number of dwarf and giant stars. These stars were selected by using kinematics (with the precision currently available), by using an age-oriented method using relative age indicators (Li abundances, chromospheric and coronal emission and the kinematics) as well as color-magnitude diagrams and pre-main sequence isochrones or by chemical tagging. However, to add constraints to the membership and be able to discern between different groups of similar age a much better kinematic is needed and this will be only possible with the forthcoming precise data that Gaia will provide. The compilation provided here will be ready to use the data of Gaia as soon as will available in order to be able to better understand the stellar kinematic groups and discern between real physical structures of coeval stars with a common origin (debris of star-forming aggregates in the disk) and field-like stars (structures formed by resonance interactions, associated with dynamical resonances (bar) or spiral structure).

  4. A High-resolution Multiband Survey of Westerlund 2 with the Hubble Space Telescope. I. Is the Massive Star Cluster Double?

    NASA Astrophysics Data System (ADS)

    Zeidler, Peter; Sabbi, Elena; Nota, Antonella; Grebel, Eva K.; Tosi, Monica; Bonanos, Alceste Z.; Pasquali, Anna; Christian, Carol; de Mink, Selma E.; Ubeda, Leonardo

    2015-09-01

    We present first results from a high resolution multi-band survey of the Westerlund 2 region with the Hubble Space Telescope. Specifically, we imaged Westerlund 2 with the Advanced Camera for Surveys through the F555W, F814W, and F658N filters and with the Wide Field Camera 3 in the F125W, F160W, and F128N filters. We derive the first high resolution pixel-to-pixel map of the color excess E{(B-V)}{{g}} of the gas associated with the cluster, combining the Hα (F658N) and Paβ (F128N) line observations. We demonstrate that, as expected, the region is affected by significant differential reddening with a median of E{(B-V)}{{g}}=1.87 mag. After separating the populations of cluster members and foreground contaminants using a (F814W-F160W) versus F814W color-magnitude diagram, we identify a pronounced pre-main-sequence population in Westerlund 2 showing a distinct turn-on. After dereddening each star of Westerlund 2 individually in the color-magnitude diagram we find via over-plotting PARSEC isochrones that the distance is in good agreement with the literature value of ˜ 4.16+/- 0.33 kpc. With zero-age main sequence fitting to two-color-diagrams, we derive a value of total to selective extinction of {R}V=3.95+/- 0.135. A spatial density map of the stellar content reveals that the cluster might be composed of two clumps. We estimate the same age of 0.5-2.0 Myr for both clumps. While the two clumps appear to be coeval, the northern clump shows a ˜ 20% lower stellar surface density.

  5. Search for Carbon-Rich Asymptotic Giant Branch Stars in Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Indahl, Briana; Pessev, P.

    2014-01-01

    From our current understanding of stellar evolution, it would not be expected to find carbon rich asymptotic giant branch (AGB) stars in Milky Way globular clusters. Due to the low metallicity of the population II stars making up the globular clusters and their age, stars large enough to fuse carbon should have already evolved off of the asymptotic giant branch. Recently, however, there have been serendipitous discoveries of these types of stars. Matsunaga et al. (2006) discovered a Mira variable in the globular cluster Lynga 7. It was later confirmed by Feast et al. (2012) that the star is a member of the cluster and must be a product of a stellar merger. In the same year, Sharina et al. (2012) discovered a carbon star in the low metallicity globular cluster NGC6426 and reports it to be a CH star. Five more of these types of stars have been made as serendipitous discoveries and have been reported by Harding (1962), Dickens (1972), Cote et al. (1997), and Van Loon (2007). The abundance of these types of carbon stars in Milky Way globular clusters has been unknown because the discovery of these types of objects has only ever been a serendipitous discovery. These stars could have been easily overlooked in the past as they are outside the typical parameter space of galactic globular clusters. Also advances in near-infrared instruments and observing techniques have made it possible to detect the fainter carbon stars in binary systems. Having an understanding of the abundances of carbon stars in galactic globular clusters will aid in the modeling of globular cluster and galaxy formation leading to a better understanding of these processes. To get an understanding of the abundances of these stars we conducted the first comprehensive search for AGB carbon stars into all Milky Way globular clusters listed in the Harris Catalog (expect for Pyxis). I have found 128 carbon star candidates using methods of comparing color magnitude diagrams of the clusters with the carbon

  6. SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). II. COOL EVOLVED STARS

    SciTech Connect

    Boyer, Martha L.; Meixner, Margaret; Gordon, Karl D.; Shiao, Bernie; Srinivasan, Sundar; Van Loon, Jacco Th.; McDonald, Iain; Kemper, F.; Zaritsky, Dennis; Block, Miwa; Engelbracht, Charles W.; Misselt, Karl; Babler, Brian; Bracker, Steve; Meade, Marilyn; Whitney, Barbara; Hora, Joe; Robitaille, Thomas; Indebetouw, Remy; Sewilo, Marta

    2011-10-15

    We investigate the infrared (IR) properties of cool, evolved stars in the Small Magellanic Cloud (SMC), including the red giant branch (RGB) stars and the dust-producing red supergiant (RSG) and asymptotic giant branch (AGB) stars using observations from the Spitzer Space Telescope Legacy program entitled 'Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity SMC', or SAGE-SMC. The survey includes, for the first time, full spatial coverage of the SMC bar, wing, and tail regions at IR wavelengths (3.6-160 {mu}m). We identify evolved stars using a combination of near-IR and mid-IR photometry and point out a new feature in the mid-IR color-magnitude diagram that may be due to particularly dusty O-rich AGB stars. We find that the RSG and AGB stars each contribute {approx}20% of the global SMC flux (extended + point-source) at 3.6 {mu}m, which emphasizes the importance of both stellar types to the integrated flux of distant metal-poor galaxies. The equivalent SAGE survey of the higher-metallicity Large Magellanic Cloud (SAGE-LMC) allows us to explore the influence of metallicity on dust production. We find that the SMC RSG stars are less likely to produce a large amount of dust (as indicated by the [3.6] - [8] color). There is a higher fraction of carbon-rich stars in the SMC, and these stars appear to reach colors as red as their LMC counterparts, indicating that C-rich dust forms efficiently in both galaxies. A preliminary estimate of the dust production in AGB and RSG stars reveals that the extreme C-rich AGB stars dominate the dust input in both galaxies, and that the O-rich stars may play a larger role in the LMC than in the SMC.

  7. Proper motion with HST: Searching for high-velocity stars in the core of the globular cluster 47 Tucanae

    SciTech Connect

    Meylan, G.; Minniti, D.; Pryor, C.; Tinney, C.G.; Phinney, E.S.; Sams, B.

    1996-02-13

    Binary stars play an essential role during the late phases of the dynamical evolution of a globular cluster. They transfer energy to passing stars and so can strongly influence the cluster evolution, enough to delay, halt, and even reverse core collapse. Hard binaries are known to exist in cluster cores, e.g., in the form of millisecond pulsars (about half of the millisecond pulsars observed in 47 Tucanae are such hard binaries). The presence of hard binaries may also be revealed by searching for the by-products of close encounters: high- velocity stars, such as those discovered in the core of 47 Tuc by Meylan et al. (1991) and Gebhardt et al. (1995). These studies represent the limit of the radial velocity data which can be obtained from the ground. If more progress is to be made, it must come through obtaining proper motions--a task for which {ital only} the Hubble Space Telescope (HST) is suitable. We are using WFPC2 to obtain deep U (F300W) images of the core of 47 Tuc at three different epochs over two years, with which we will measure differential proper motions to a 1-{sigma} limit of 0.23 mas/yr. This--rather conservative--estimate corresponds to a 5-{sigma} detection of all stars with tangential velocities greater than 22 km s{sup -1}. By using the F300W filter we can measure stars over the whole color-magnitude diagram, from the red-giant branch to well down the main sequence. Such a complete census will provide unique constraints as a function of the stellar mass on relaxation processes, collision and ejection rates, and the velocity distribution. Here we report on the first-epoch (Cycle 5) observations of this project. Although no proper motions are available yet, some preliminary by-product results are presented. These include luminosity functions and color-magnitude diagrams for the core of 47 Tuc and the light curves of variable blue straggler stars and of a candidate X-ray source. 32 refs., 5 figs.

  8. HST/COS Observations of the UV-Bright Star Y453 in the Globular Cluster M4 (NGC 6121)

    NASA Astrophysics Data System (ADS)

    Dixon, William V. D.; Chayer, Pierre; Benjamin, Robert A.

    2016-01-01

    Post-AGB stars represent a short-lived phase of stellar evolution during which stars cross the optical color-magnitude diagram from the cool, red tip of the assymptotic giant branch (AGB) to the hot, blue tip of the white-dwarf cooling curve. Their surface chemistry reflects the nuclear-shell burning, mixing, and mass-loss processes characteristic of AGB stars, and their high effective temperatures allow the detection of elements that are unobservable in cool giants. Post-AGB stars in globular clusters offer the additional advantages of known distance, age, and initial chemistry. To better understand the AGB evolution of low-mass stars, we have observed the post-AGB star Y453 in the globular cluster M4 (NGC 6121) with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope. The star, which has an effective temperature of at least 60,000 K, shows absorption from He, C, N, O, Ne, Si, S, Ti, Cr, Mn, Fe, Co, Ni, and Ga. While the star's C and O abundances are consistent with those measured in a sample of nitrogen-poor RGB stars in M4, its N abundance is considerably enhanced. The star's low C abundance suggests that it left the AGB before the onset of third dredge-up.This work was supported by NASA grant HST-GO-13721.001-A to the University of Wisconsin, Whitewater. P.C. is supported by the Canadian Space Agency under a contract with NRC Herzberg Astronomy and Astrophysics.

  9. The star formation history in the Andromeda halo

    NASA Astrophysics Data System (ADS)

    Brown, Thomas M.

    I present the preliminary results of a program to measure the star formation history in the halo of the Andromeda galaxy. Using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope, we obtained the deepest optical images of the sky to date, in a field on the southeast minor axis of Andromeda, 51' (11 kpc) from the nucleus. The resulting color-magnitude diagram (CMD) contains approximately 300,000 stars and extends more than 1.5 mag below the main sequence turnoff, with 50% completeness at V = 30.7 mag. We interpret this CMD using comparisons to ACS observations of five Galactic globular clusters through the same filters, and through χ2-fitting to a finely-spaced grid of calibrated stellar population models. We find evidence for a major (~30%) intermediate-age (6-8 Gyr) metal-rich ([Fe/H])>-0.5) population in the Andromeda halo, along with a significant old metal-poor population akin to that in the Milky Way halo. The large spread in ages suggests that the Andromeda halo formed as a result of a more violent merging history than that in our own Milky Way.

  10. ON THE ESTIMATION OF RANDOM UNCERTAINTIES OF STAR FORMATION HISTORIES

    SciTech Connect

    Dolphin, Andrew E.

    2013-09-20

    The standard technique for measurement of random uncertainties of star formation histories (SFHs) is the bootstrap Monte Carlo, in which the color-magnitude diagram (CMD) is repeatedly resampled. The variation in SFHs measured from the resampled CMDs is assumed to represent the random uncertainty in the SFH measured from the original data. However, this technique systematically and significantly underestimates the uncertainties for times in which the measured star formation rate is low or zero, leading to overly (and incorrectly) high confidence in that measurement. This study proposes an alternative technique, the Markov Chain Monte Carlo (MCMC), which samples the probability distribution of the parameters used in the original solution to directly estimate confidence intervals. While the most commonly used MCMC algorithms are incapable of adequately sampling a probability distribution that can involve thousands of highly correlated dimensions, the Hybrid Monte Carlo algorithm is shown to be extremely effective and efficient for this particular task. Several implementation details, such as the handling of implicit priors created by parameterization of the SFH, are discussed in detail.

  11. Are We Correctly Measuring the Star Formation in Galaxies?

    NASA Astrophysics Data System (ADS)

    McQuinn, K. B. W.; Skillman, E. D.; Dolphin, A. E.; Mitchell, N. P.

    2016-06-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV-SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is 53% larger than previous relations.

  12. Updated census of RR Lyrae stars in the globular cluster ω Centauri (NGC 5139)

    NASA Astrophysics Data System (ADS)

    Navarrete, C.; Contreras Ramos, R.; Catelan, M.; Clement, C. M.; Gran, F.; Alonso-García, J.; Angeloni, R.; Hempel, M.; Dékány, I.; Minniti, D.

    2015-05-01

    Aims: ω Centauri (NGC 5139) contains many variable stars of different types and, in particular, more than one hundred RR Lyrae stars. This enabled gathering a homogeneous sample (in terms of instrument, image quality, and time coverage) of high-quality near-infrared (NIR) RR Lyrae light curves by performing an extensive time-series campaign aimed at this object. We have conducted a variability survey of ω Cen in the NIR, using ESO's 4.1 m Visible and Infrared Survey Telescope for Astronomy (VISTA). This is the first paper of a series describing our results. Methods: ω Cen was observed using VIRCAM mounted on VISTA. A total of 42 epochs in J and 100 epochs in KS were obtained, distributed over a total timespan of 352 days. Point-spread function photometry was performed using DAOPHOT in the inner and DoPhot in the outer regions of the cluster. Periods of the known variable stars were improved when necessary using an ANOVA analysis. Results: We collected an unprecedented homogeneous and complete NIR catalog of RR Lyrae stars in the field of ω Cen, allowing us to study for the first time all the RR Lyrae stars associated with the cluster, except for four stars that are located far away from the cluster center. We derived membership status, subclassifications between RRab and RRc subtypes, periods, amplitudes, and mean magnitudes for all the stars in our sample. Additionally, four new RR Lyrae stars were discovered, two of which are very likely cluster members. We also discuss here the distribution of ω Cen stars in the Bailey (period-amplitude) diagram. We provide reference lines in this plane for both Oosterhoff Type I (OoI) and Oosterhoff Type II (OoII) components in J and KS. Conclusions: We clarify the status of many (candidate) RR Lyrae stars that have been reported as unclear in previous studies. This includes stars with anomalous positions in the color-magnitude diagram, uncertain periods or/and variability types, and possible field interlopers. We conclude

  13. Observation Of New Variable Stars In The Field Of Open Cluster M23

    NASA Astrophysics Data System (ADS)

    Wilkerson, Jeffrey A.; Brown, T. S.; Frank, K. A.; Joshi, U.; Lacoul, B. K.; Rengstorf, N. P.; Schiefelbein, A. M.

    2007-05-01

    In 2002 a program of surveying regions containing bright open star clusters was initiated using the observing facilities at Luther College. As part of this program the half degree square field containing open cluster M23 was observed in 2003, 2005 and 2006, resulting in approximately 45,000 2.5-second images, 45,000 3.5-second images and 65,000 5.0-second images. The data set contains images from 94 nights spanning a time range from JD 2452810 to JD 2454005. We have searched for stellar variability on timescales from seconds to years in approximately 1600 stars in this field. Unambiguous variability is apparent in 30 stars ranging in magnitude from about 10 to 17. Twenty-eight of these stars have not been previously reported as variable. Seven of the stars are eclipsing binaries, including two apparent W UMa-type contact binaries and one additional eclipsing binary with a period shorter than 0.6 days. The remaining 23 variables are red pulsating stars with long periods. Most of these stars have amplitudes smaller than two magnitudes and periods between 200 and 400 days. Thus, they are likely Semi-Regular variables. We present celestial coordinates, estimated amplitude and estimated period for each of these stars, as well as several selected light curves. Finally, we have performed low-precision BVRI photometry of the field and have placed most of the observed variables on color magnitude diagrams. We are grateful for support from the Roy J. Carver Charitable Trust and the R. J. McElroy Trust.

  14. Stellar variability in open clusters. I. A new class of variable stars in NGC 3766

    NASA Astrophysics Data System (ADS)

    Mowlavi, N.; Barblan, F.; Saesen, S.; Eyer, L.

    2013-06-01

    Aims: We analyze the population of periodic variable stars in the open cluster NGC 3766 based on a 7-year multiband monitoring campaign conducted on the 1.2 m Swiss Euler telescope at La Silla, Chili. Methods: The data reduction, light curve cleaning, and period search procedures, combined with the long observation time line, allowed us to detect variability amplitudes down to the millimagnitude (mmag) level. The variability properties were complemented with the positions in the color-magnitude and color-color diagrams to classify periodic variable stars into distinct variability types. Results: We find a large population (36 stars) of new variable stars between the red edge of slowly pulsating B (SPB) stars and the blue edge of δ Sct stars, a region in the Hertzsprung-Russell (HR) diagram where no pulsation is predicted to occur based on standard stellar models. The bulk of their periods ranges from 0.1 to 0.7 d, with amplitudes between 1 and 4 mmag for the majority of them. About 20% of stars in that region of the HR diagram are found to be variable, but the number of members of this new group is expected to be higher, with amplitudes below our mmag detection limit. The properties of this new group of variable stars are summarized and arguments set forth in favor of a pulsation origin of the variability, with g-modes sustained by stellar rotation. Potential members of this new class of low-amplitude periodic (most probably pulsating) A and late-B variables in the literature are discussed. We additionally identify 16 eclipsing binary, 13 SPB, 14 δ Sct, and 12 γ Dor candidates, as well as 72 fainter periodic variables. All are new discoveries. Conclusions: We encourage searching for this new class of variables in other young open clusters, especially in those hosting a rich population of Be stars. Appendices are available in electronic form at http://www.aanda.orgReduced photometry of the variable stars is only available at the CDS via anonymous ftp to http

  15. Massive Stars and the Ionization of the Diffuse Medium

    NASA Astrophysics Data System (ADS)

    Kahre, Lauren E.; Walterbos, Rene A. M.

    2015-08-01

    Diffuse ionized Gas (DIG, sometimes called the warm ionized medium or WIM) has been recognized as a major component of the interstellar medium (ISM) in disk galaxies. A general understanding of the characteristics of the DIG is emerging, but several questions remain unanswered. One of these is the ionization mechanism for this gas, believed to be connected to OB stars and HII regions. Using 5-band (NUV (2750 A), U, V, B, and I) photometric imaging data from the Hubble Space Telescope (HST) Legacy Extragalactic Ultraviolet Survey (LEGUS) and ground-based Halpha data from the Local Volume Legacy (LVL) survey and HST Halpha data from LEGUS, we will investigate the photoionization of HII regions and DIG in nearly 50 galaxies. The 5-band photometry will enable us to determine properties of the most massive stars and reddening corrections for specific regions within a galaxy. Luminosities and ages for groups and clusters will be obtained from SED-fitting of photometric data. For individual stars ages will be determined from isochrone-fitting using reddening-corrected color-magnitude diagrams. We can then obtain estimates of the ionizing luminosities by matching these photometric properties for massive stars and clusters to various stellar atmosphere models. We will compare these predictions to the inferred Lyman continuum production rates from reddening-corrected ground- and HST-based Halpha data for HII regions and DIG. This particular presentation will demonstrate the above process for a set of selected regions in galaxies within the LEGUS sample. It will subsequently be expanded to cover the full LEGUS sample, with the overall goals of obtaining a better understanding of the radiative energy feedback from massive stars on the ISM, particularly their ability to ionize the surrounding ISM over a wide range of spatial scales and SFR surface densities, and to connect the ionization of the ISM to HII region morphologies.

  16. Hubble Diagram

    NASA Astrophysics Data System (ADS)

    Djorgovski, S.; Murdin, P.

    2000-11-01

    Initially introduced as a way to demonstrate the expansion of the universe, and subsequently to determine the expansion rate (the HUBBLE CONSTANT H0), the Hubble diagram is one of the classical cosmological tests. It is a plot of apparent fluxes (usually expressed as magnitudes) of some types of objects at cosmological distances, against their REDSHIFTS. It is used as a tool to measure the glob...

  17. THE STAR FORMATION HISTORY OF THE VERY METAL-POOR BLUE COMPACT DWARF I Zw 18 FROM HST/ACS DATA

    SciTech Connect

    Annibali, F.; Cignoni, M.; Tosi, M.; Clementini, G.; Contreras Ramos, R.; Fiorentino, G.; Van der Marel, R. P.; Aloisi, A.; Marconi, M.; Musella, I.

    2013-12-01

    We have derived the star formation history (SFH) of the blue compact dwarf galaxy I Zw 18 through comparison of deep HST/ACS data with synthetic color-magnitude diagrams (CMDs). A statistical analysis was implemented for the identification of the best-fit SFH and relative uncertainties. We confirm that I Zw 18 is not a truly young galaxy, having started forming stars earlier than ∼1 Gyr ago, and possibly at epochs as old as a Hubble time. In I Zw 18's main body we infer a lower limit of ≈2 × 10{sup 6} M {sub ☉} for the mass locked up in old stars. I Zw 18's main body has been forming stars very actively during the last ∼10 Myr, with an average star formation rate (SFR) as high as ≈1 M {sub ☉} yr{sup –1} (or ≈2 × 10{sup –5} M {sub ☉} yr{sup –1} pc{sup –2}). On the other hand, the secondary body was much less active at these epochs, in agreement with the absence of significant nebular emission. The high current SFR can explain the very blue colors and the high ionized gas content in I Zw 18, resembling primeval galaxies in the early universe. Detailed chemical evolution models are required to quantitatively check whether the SFH from the synthetic CMDs can explain the low measured element abundances, or if galactic winds with loss of metals are needed.

  18. An HST/WFPC2 Survey for Nearby Companions of Galactic Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Wallace, D. J.

    2003-12-01

    Wolf-Rayet (WR) stars provide key insights about the final evolutionary phase of the most massive stars. I present here the results of a new, high angular resolution, imaging survey of 61 Galactic WR stars, which was designed to detect new companions, clusters, and/or associations surrounding these stars. High resolution observations are essential to provide a true census of the number and astrophysical parameters of massive stars, to understand the effects of nearby companions on their evolutionary paths, and to understand the effects of these companions on the stellar environment. The survey is based on images of each WR target made with the Planetary Camera of the Hubble Space Telescope WFPC2 instrument (usually through the F336W, F439W, and F555W filters, which are near counterparts of the Johnson UBV filters). I measured astrometric positions and photometric magnitudes on the HST synthetic system for all the stars found within 15 arcsec of each WR star. I present results on new companions for 23 (38%) of the 61 WR stars in the survey sample. Three WR stars (WR 86, WR 146, and WR 147) are resolved as close colliding-wind binary systems. Another three WR stars (WR 98a, WR 104, and WR 112) are dusty WC9 type stars in hierarchical multiple systems. Six WR stars are members of previously unrecognized stellar groups. Finally, for thirteen WR stars, I determine new stellar parameters based on an analysis of the color-color and color-magnitude diagrams of the nearby cluster/association main sequence stars. My WR sample breaks down into 57% cluster/association members, 33% field stars, and 10% runaways. This agrees reasonably well with the fractions determined by Mason et al. (1998) of 72%, 20%, and 8% for the same categories among the O stars. I find the same trend that the binary fraction decreases from cluster/association to field and to runaway groups in accordance with our expectation that many of the latter were originally binary members that were ejected by

  19. Hubble Tarantula Treasury Project V. The Star Cluster Hodge 301: The Old Face of 30 Doradus

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Sabbi, E.; van der Marel, R. P.; Lennon, D. J.; Tosi, M.; Grebel, E. K.; Gallagher, J. S., III; Aloisi, A.; de Marchi, G.; Gouliermis, D. A.; Larsen, S.; Panagia, N.; Smith, L. J.

    2016-12-01

    Based on color-magnitude diagrams (CMDs) from the Hubble Space Telescope Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 and 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800 M ⊙ and average reddening E(B - V) ≈ 0.22-0.24 mag, with a differential reddening δE(B - V) ≈ 0.04 mag. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  20. Discovery of 6 SX Phoenicis Stars in the Globular Cluster NGC 4833

    NASA Astrophysics Data System (ADS)

    Murphy, Brian W.; Darragh, A. N.

    2012-01-01

    We report the discovery of 6 SX Phoenicis stars in the globular cluster NGC 4833. Images were obtained from January through June 2011 with the Southeastern Association for Research in Astronomy (SARA) 0.6 meter telescope located at Cerro Tololo Interamerican Observatory. The image subtraction method of Alard & Lupton (1998) was used to search for variable stars in the cluster. We confirmed 16 previously known variables cataloged by Demers & Wehlau (1977). In addition to the previously known variables we have identified 11 new variables. Of the total number of confirmed variables in our 10x10 arc minute field, we classified 10 RRab variables, with a mean period of 0.69591 days, 9 RRc, with a mean period of 0.39555 days, a W Ursae Majoris contact binary, an Algol-type binary, and the 6 SX Phoenicis stars with a mean period of 0.05847 days. The periods and relative numbers of RRab and RRc variables are indicative of the cluster being of the Oosterhoff type II. We present the periods of previously known variables and the periods, classification, and multi-color light curves of the newly discovered variables, and their location on the color-magnitude diagram. This project was funded in part by the National Science Foundation Research Experiences for Undergraduates (REU) program through grant NSF AST-1004 872 and by a grant from the Butler Institute for Research and Scholarship.

  1. IAC-POP: FINDING THE STAR FORMATION HISTORY OF RESOLVED GALAXIES

    SciTech Connect

    Aparicio, Antonio E-mail: shidalgo@iac.es

    2009-08-15

    IAC-pop is a code designed to solve the star formation history (SFH) of a complex stellar population system, like a galaxy, from the analysis of the color-magnitude diagram (CMD). It uses a genetic algorithm to minimize a {chi}{sup 2} merit function comparing the star distributions in the observed CMD and the CMD of a synthetic stellar population. A parameterization of the CMDs is used, which is the main input of the code. In fact, the code can be applied to any problem in which a similar parameterization of an experimental set of data and models can be made. The method's internal consistency and robustness against several error sources, including observational effects, data sampling, and stellar evolution library differences, are tested. It is found that the best stability of the solution and the best way to estimate errors are obtained by several runs of IAC-pop with varying the input data parameterization. The routine MinnIAC is used to control this process. IAC-pop is offered for free use and can be downloaded from the site http://iac-star.iac.es/iac-pop. The routine MinnIAC is also offered under request, but support cannot be provided for its use. The only requirement for the use of IAC-pop and MinnIAC is referencing this paper and crediting as indicated in the site.

  2. SPITZER SAGE INFRARED PHOTOMETRY OF MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Bonanos, A. Z.; Massa, D. L.; Sewilo, M. E-mail: massa@stsci.edu

    2009-10-15

    We present a catalog of 1750 massive stars in the Large Magellanic Cloud (LMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3 to 24 {mu}m in the UBVIJHK{sub s} +IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant, and luminous blue variable (LBV) stars are among the brightest infrared point sources in the LMC, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among {approx}900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/L {sub sun} {>=} 4) and the rare, dusty progenitors of the new class of optical transients (e.g., SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.

  3. Hubble Space Telescope imaging of super-star clusters in NGC 1569 and NGC 1705

    NASA Technical Reports Server (NTRS)

    O'Connell, Robert W.; Gallagher, John S., III; Hunter, Deidre A.

    1994-01-01

    We examine the structural properties of three super-star clusters in the nearby, H I-rich galaxies NGC 1569 and NGC 1705. The clusters, which have total absolute V magnitudes between -13.3 and -14.1, appear to be point sources on ground-based images but are partially resolved in new images obtained with the Hubble Space Telescope (HST) Planetary Camera. From deconvolved V- and I-band images we find that the three clusters have very compact cores with extended halos that are partially resolved into individual stars. Using new distances to the galaxies derived from color-magnitude diagrams for field stars, we find that the half-light radii are 2.2-3.4 pc. The cluster in NGC 1705 is barely resolved in the HST images. The clusters in NGC 1569, on the other hand, show significant substructure in their cores and ellipticities that are comparable to the flattenings seen in young clusters in the Large Magellanic Cloud (LMC). The clusters show internal (V-I) color gradients. The properties of these clusters are similar to R136, the core of the luminous star-forming complex 30 Doradus in the LMC, except that R136 has a lower luminosity and central surface brightness. The half-light surface brightness of the brightest cluster (NGC 1569 A) is 1.3 x 10(exp 6) L(sub v) solar/ sq cm, which is over 65 times higher than R136 and 1200 times higher than the mean rich LMC star cluster other than R136 after allowing for aging effects. The next brightest clusters in each of these galaxies are greater than or = 2 mag fainter. Thus, the super-star clusters represent an extreme but uncommon mode of star formation. In terms of luminosity and size, they appear to be good analogs of young globular clusters.

  4. Asteroseismology Across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Thompson, M. J.; Cunha, M. S.; Monteiro, M. J. P. F. G.

    2003-05-01

    Ground-based observations have detected solar-like oscillations on Sun-like stars, and diagnostics similar to those used in helioseismology are now being used to test and constrain the physics and evolutionary state of these stars. Multi-mode oscillations are being observed in an abundance of other stars, including slowly pulsating B stars (SPB stars), delta-Scuti stars, Ap stars and the pulsating white dwarfs. New classes of pulsators continue to be discovered across the Herzsprung-Russell diagram. Yet the chances still to be faced to make asteroseismology across the HR diagram a reality are formidable. Observation, data analysis and theory all pose hard problems to be overcome. This book, reflecting the goal of the meeting, aims to facilitate a cross-fertilisation of ideas and approaches between fields covering different pulsators and with different areas of expertise. The book successfully covers most known types of pulsators, reflecting a highly productive and far reaching interchange of ideas which we believe is conveyed by the papers and posters published, making it a reference for researchers and postgraduate students working on stellar structure and evolution. Link: http://www.wkap.nl/prod/b/1-4020-1173-3

  5. Stars at the Tip of Peculiar Elephant Trunk-Like Clouds in IC 1848E: A Possible Third Mechanism of Triggered Star Formation

    NASA Astrophysics Data System (ADS)

    Chauhan, Neelam; Ogura, Katsuo; Pandey, Anil K.; Samal, Manash R.; Bhatt, Bhuwan C.

    2011-08-01

    The H II region IC 1848 harbors a lot of intricate elephant trunk-like structures that look morphologically different from usual bright-rimmed clouds (BRCs). Of particular interest is a concentration of thin and long elephant trunk-like structures in the southeastern part of IC 1848E. Some of them have an apparently associated star or two stars at their very tip. We conducted VIc photometry of several of these stars. Their positions on the V/(V - Ic) color-magnitude diagram as well as the physical parameters obtained by SED fittings indicate that they are low-mass pre-main-sequence stars having ages of mostly one Myr, or less. This strongly suggests that they formed from elongated, elephant trunk-like clouds. We presume that such elephant trunk-like structures are genetically different from BRCs, on the basis of the differences in morphology, size distributions, and the ages of the associated young stars. We suspect that those clouds have been caused by hydrodynamical instability of the ionization/shock front of the expanding H II region. Similar structures often show up in recent numerical simulations of the evolution of H II regions. We further hypothesize that this mechanism makes a third mode of triggered star formation associated with H II regions, in addition to the two known mechanisms, i.e., collect-and-collapse of the shell accumulated around an expanding H II region and radiation-driven implosion of BRCs originated from pre-existing cloud clumps.

  6. The Range of the Star Formation Rate in Local BCDs

    NASA Astrophysics Data System (ADS)

    Hopp, U.

    We will compare the star formation rate (SFR) obtained for the emission line galaxy sample (ELGS) of Popescu et al (1999, 2000) and of very nearby Blue Compact Dwarf Galaxies (BCD) which were resolved into individual stars with HST. For the ELGS, the SFR was derived from the Balmer line flux applying standard calibration. The new metal-depend calibrations of Weilbacher & Fritze-von Alvensleben (2001) will be considered. The galaxies of the ELGS are distributed in intermediate to very low environment galaxy densities. About half a dozen nearby (D <= 7 Mpc) BCDs in similar density regimes have been resolved into individual stars using either WFPC2 or NIC2 aboard HST. Analysing their color-magnitude diagrams yield clues on the recent and past SFR (e. g. Schulte-Ladbeck et al., 2001, Hopp, 2001). From both samples, we found that the SFR of BCDs is, on average, surprisingly low. For the ELGS, the values range from 2.2 Msolar yr-1 down to 0.01 Msolar yr-1, with two third of them below 0.3 Msolar yr-1. BCDs with high, star-burst like SFR (>= 0.8 Msolar yr-1) are rare (<= 10%). References: Hopp, U., 2001, in: K. de Boer, Proc. of ``Dwarf Galaxies and their Environment'', January 2001, Shacker Verlag, in press Popescu, C.C., Hopp, U., 2000, A&AS, 142, 247 Popescu, C.C., Hopp, U., Rosa, M., 1999, A&A, 350, 414 Schulte-Ladbeck, R.E., Hopp, U., Greggio, L., Crone, M., Drozdovsky, I.O., 2001, AJ (June), in press Weilbacher, P.M., Fritze-von Alvensleben, U., 2001, A&A, in press (astro-ph/0105282)

  7. EARLY-TYPE GALAXIES AT z = 1.3. I. THE LYNX SUPERCLUSTER: CLUSTER AND GROUPS AT z = 1.3. MORPHOLOGY AND COLOR-MAGNITUDE RELATION

    SciTech Connect

    Mei, Simona; Raichoor, Anand; Huertas-Company, Marc; Adam Stanford, S.; Rettura, Alessandro; Jee, Myungkook J.; Holden, Brad P.; Illingworth, Garth D.; Nakata, Fumiaki; Kodama, Tadayuki; Finoguenov, Alexis; Ford, Holland C.; Rosati, Piero; Tanaka, Masayuki; Koyama, Yusei; Shankar, Francesco; Carrasco, Eleazar R.; Demarco, Ricardo; Eisenhardt, Peter; and others

    2012-08-01

    We confirm the detection of three groups in the Lynx supercluster, at z Almost-Equal-To 1.3, through spectroscopic follow-up and X-ray imaging, and we give estimates for their redshifts and masses. We study the properties of the group galaxies compared to the two central clusters, RX J0849+4452 and RX J0848+4453. Using spectroscopic follow-up and multi-wavelength photometric redshifts, we select 89 galaxies in the clusters, of which 41 are spectroscopically confirmed, and 74 galaxies in the groups, of which 25 are spectroscopically confirmed. We morphologically classify galaxies by visual inspection, noting that our early-type galaxy (ETG) sample would have been contaminated at the 30%-40% level by simple automated classification methods (e.g., based on Sersic index). In luminosity-selected samples, both clusters and groups show high fractions of bulge-dominated galaxies with a diffuse component that we visually identified as a disk and which we classified as bulge-dominated spirals, e.g., Sas. The ETG fractions never rise above Almost-Equal-To 50% in the clusters, which is low compared to the fractions observed in other massive clusters at z Almost-Equal-To 1. In the groups, ETG fractions never exceed Almost-Equal-To 25%. However, overall bulge-dominated galaxy fractions (ETG plus Sas) are similar to those observed for ETGs in clusters at z {approx} 1. Bulge-dominated galaxies visually classified as spirals might also be ETGs with tidal features or merger remnants. They are mainly red and passive, and span a large range in luminosity. Their star formation seems to have been quenched before experiencing a morphological transformation. Because their fraction is smaller at lower redshifts, they might be the spiral population that evolves into ETGs. For mass-selected samples of galaxies with masses M > 10{sup 10.6} M{sub Sun} within {Sigma} > 500 Mpc{sup -2}, the ETG and overall bulge-dominated galaxy fractions show no significant evolution with respect to local

  8. Near-infrared spectroscopy of candidate red supergiant stars in clusters

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Zhu, Qingfeng; Ivanov, Valentin D.; Figer, Donald F.; Davies, Ben; Menten, Karl M.; Kudritzki, Rolf P.; Chen, C.-H. Rosie

    2014-11-01

    Context. Clear identifications of Galactic young stellar clusters farther than a few kpc from the Sun are rare, despite the large number of candidate clusters. Aims: We aim to improve the selection of candidate clusters rich in massive stars with a multiwavelength analysis of photometric Galactic data that range from optical to mid-infrared wavelengths. Methods: We present a photometric and spectroscopic analysis of five candidate stellar clusters, which were selected as overdensities with bright stars (Ks< 7 mag) in GLIMPSE and 2MASS images. Results: A total of 48 infrared spectra were obtained. The combination of photometry and spectroscopy yielded six new red supergiant stars with masses from 10 M⊙ to 15 M⊙. Two red supergiants are located at Galactic coordinates (l,b) = (16.°7, -0.°63) and at a distance of about ~3.9 kpc; four other red supergiants are members of a cluster at Galactic coordinates (l,b) = (49.°3, + 0.°72) and at a distance of ~7.0 kpc. Conclusions: Spectroscopic analysis of the brightest stars of detected overdensities and studies of interstellar extinction along their line of sights are fundamental to distinguish regions of low extinction from actual stellar clusters. The census of young star clusters containing red supergiants is incomplete; in the existing all-sky near-infrared surveys, they can be identified as overdensities of bright stars with infrared color-magnitude diagrams characterized by gaps. Based on observations collected at the European Southern Observatory (ESO Programme 60.A-9700(E), and 089.D-0876), and on observations collected at the UKIRT telescope (programme ID H243NS).MM is currently employed by the MPIfR. Part of this work was performed at RIT (2009), at ESA (2010), and at the MPIfR.Tables 3, 4, and 6 are available in electronic form at http://www.aanda.org

  9. ON THE LAST 10 BILLION YEARS OF STELLAR MASS GROWTH IN STAR-FORMING GALAXIES

    SciTech Connect

    Leitner, Samuel N.

    2012-02-01

    The star formation rate-stellar mass relation (SFR-M{sub *}) and its evolution (i.e., the SFR main sequence) describe the growth rate of galaxies of a given stellar mass and at a given redshift. Assuming that present-day star-forming galaxies (SFGs) were always star forming in the past, these growth rate observations can be integrated to calculate average star formation histories (SFHs). Using this Main Sequence Integration (MSI) approach, we trace present-day massive SFGs back to when they were 10%-20% of their current stellar mass. The integration is robust throughout those epochs: the SFR data underpinning our calculations are consistent with the evolution of stellar mass density in this regime. Analytic approximations to these SFHs are provided. Integration-based results reaffirm previous suggestions that current SFGs formed virtually all of their stellar mass at z < 2. It follows that massive galaxies observed at z > 2 are not the typical progenitors of SFGs today. We also check MSI-based SFHs against those inferred from analysis of the fossil record-from spectral energy distributions (SEDs) of SFGs in the Sloan Digital Sky Survey and color-magnitude diagrams (CMDs) of resolved stars in dwarf irregular galaxies. Once stellar population age uncertainties are accounted for, the main sequence is in excellent agreement with SED-based SFHs (from VESPA). Extrapolating SFR main sequence observations to dwarf galaxies, we find differences between MSI results and SFHs from CMD analysis of Advanced Camera for Surveys Nearby Galaxy Survey Treasury and Local Group galaxies. Resolved dwarfs appear to grow much slower than main sequence trends imply, and also slower than slightly higher mass SED-analyzed galaxies. This difference may signal problems with SFH determinations, but it may also signal a shift in star formation trends at the lowest stellar masses.

  10. K{sub s} -BAND LUMINOSITY EVOLUTION OF THE ASYMPTOTIC GIANT BRANCH POPULATION BASED ON STAR CLUSTERS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Ko, Youkyung; Lee, Myung Gyoon; Lim, Sungsoon E-mail: mglee@astro.snu.ac.kr

    2013-11-10

    We present a study of K{sub s} -band luminosity evolution of the asymptotic giant branch (AGB) population in simple stellar systems using star clusters in the Large Magellanic Cloud (LMC). We determine physical parameters of LMC star clusters including center coordinates, radii, and foreground reddenings. Ages of 83 star clusters are derived from isochrone fitting with the Padova models, and those of 19 star clusters are taken from the literature. The AGB stars in 102 star clusters with log(age) = 7.3-9.5 are selected using near-infrared color-magnitude diagrams based on Two Micron All Sky Survey photometry. Then we obtain the K{sub s} -band luminosity fraction of AGB stars in these star clusters as a function of ages. The K{sub s} -band luminosity fraction of AGB stars increases, on average, as age increases from log(age) ∼ 8.0, reaching a maximum at log(age) ∼ 8.5, and it decreases thereafter. There is a large scatter in the AGB luminosity fraction for given ages, which is mainly due to stochastic effects. We discuss this result in comparison with five simple stellar population models. The maximum K{sub s} -band AGB luminosity fraction for bright clusters is reproduced by the models that expect the value of 0.7-0.8 at log(age) = 8.5-8.7. We discuss the implication of our results with regard to the study of size and mass evolution of galaxies.

  11. Using a Weak CN Spectral Feature as a Marker for Massive AGB Stars in the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Kamath, Anika; Sales, Alyssa; Sarukkai, Atmika; Hays, Jon; PHAT Collaboration; SPLASH Collaboration

    2017-01-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) survey has produced six-filter photometry at near-ultraviolet, optical and nearly infrared wavelengths (F275W, F336W, F475W, F814W, F110W and F160W) for over 100 million stars in the disk of the of the Andromeda galaxy (M31). As part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey, medium resolution (R ~ 2000) spectra covering the wavelength range 4500-9500A were obtained for over 5000 relatively bright stars from the PHAT source catalog using the Keck II 10-meter telescope and DEIMOS spectrograph. While searching for carbon stars in the spectroscopic data set, we discovered a rare population of stars that show a weak CN spectral absorption feature at ~7900A (much weaker than the CN feature in typical carbon stars) along with other spectral absorption features like TiO and the Ca triplet that are generally not present/visible in carbon star spectra but that are typical for normal stars with oxygen rich atmospheres. These 150 or so "weak CN" stars appear to be fairly localized in six-filter space (i.e., in various color-color and color-magnitude diagrams) but are generally offset from carbon stars. Comparison to PARSEC model stellar tracks indicates that these weak CN stars are probably massive (5-10 Msun) asymptotic giant branch (AGB) stars in a relatively short-lived core helium burning phase of their evolution. Careful spectroscopic analysis indicates that the details of the CN spectral feature are about 3-4x weaker in weak CN stars than in carbon stars. The kinematics of weak CN stars are similar to those of other young stars (e.g., massive main sequence stars) and reflect the well ordered rotation of M31's disk.This research project is funded in part by NASA/STScI and the National Science Foundation. Much of this work was carried out by high school students and undergraduates under the auspices of the Science Internship Program and LAMAT program at the University of

  12. Hubble Tarantula Treasury Project. II. The Star-formation History of the Starburst Region NGC 2070 in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Sabbi, E.; van der Marel, R. P.; Tosi, M.; Zaritsky, D.; Anderson, J.; Lennon, D. J.; Aloisi, A.; de Marchi, G.; Gouliermis, D. A.; Grebel, E. K.; Smith, L. J.; Zeidler, P.

    2015-10-01

    We present a study of the recent star formation (SF) of 30 Doradus in the Large Magellanic Cloud (LMC) using the panchromatic imaging survey Hubble Tarantula Treasury Project. In this paper we focus on the stars within 20 pc of the center of 30 Doradus, the starburst region NGC 2070. We recovered the SF history by comparing deep optical and near-infrared color-magnitude diagrams (CMDs) with state-of-the-art synthetic CMDs generated with the latest PAdova and TRieste Stellar Evolution Code (PARSEC) models, which include all stellar phases from pre-main-sequence to post-main-sequence. For the first time in this region we are able to measure the SF using intermediate- and low-mass stars simultaneously. Our results suggest that NGC 2070 experienced prolonged activity. In particular, we find that the SF in the region (1) exceeded the average LMC rate ≈ 20 Myr ago, (2) accelerated dramatically ≈ 7 Myr ago, and (3) reached a peak value 1-3 Myr ago. We did not find significant deviations from a Kroupa initial mass function down to 0.5 {M}⊙ . The average internal reddening E(B-V) is found to be between 0.3 and 0.4 mag. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  13. The ACS Nearby Galaxy Survey Treasury. I. The Star Formation History of the M81 Outer Disk

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Seth, Anil C.; Weisz, Daniel; Dolphin, Andrew; Skillman, Evan; Harris, Jason; Holtzman, Jon; Girardi, Léo; de Jong, Roelof S.; Olsen, Knut; Cole, Andrew; Gallart, Carme; Gogarten, Stephanie M.; Hidalgo, Sebastian L.; Mateo, Mario; Rosema, Keith; Stetson, Peter B.; Quinn, Thomas

    2009-01-01

    The Advanced Camera for Surveys (ACS) Nearby Galaxy Survey Treasury is a large Hubble Space Telescope (HST)/ACS treasury program to obtain resolved stellar photometry for a volume-limited sample of galaxies out to 4 Mpc. As part of this program, we have obtained deep ACS imaging of a field in the outer disk of the large spiral galaxy M81. The field contains the outskirts of a spiral arm as well as an area containing no current star formation. Our imaging results in a color-magnitude diagram (CMD) reaching to m F814W = 28.8 and m F606W = 29.5, one magnitude fainter than the red clump. Through detailed modeling of the full CMD, we quantify the age and metallicity distribution of the stellar populations contained in the field. The mean metallicity in the field is -1 < [M/H] < 0 and only a small fraction of stars have ages lsim 1 Gyr. The results show that most of the stars in this outer disk field were formed by z ~ 1 and that the arm structure at this radius has a lifetime of gsim 100 Myr. We discuss the measured evolution of the M81 disk in the context of surveys of high redshift disk galaxies and deep stellar photometry of other nearby galaxies. All of these indicate that massive spiral disks are mostly formed by z ~ 1 and that they have experienced rapid metal enrichment.

  14. Is the massive star cluster Westerlund 2 double? - A high resolution multi-band survey with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Zeidler, Peter; Nota, Antonella; Sabbi, Elena; Grebel, Eva K.; Tosi, Monica; Bonanos, Alceste Z.; Pasquali, Anna; Christian, Carol; de Mink, Selma E.

    2017-03-01

    Westerlund 2 (Wd2) is one of the most massive young star clusters known in the Milky Way. The close proximity (4.16 kpc) to the Sun, and the young age (2.0 Myr) allow us to study star formation in detail at a high spatial resolution. We present results from our recent deep multi-band survey in the optical and near-infrared obtained with the Hubble Space Telescope. We demonstrated that, as expected, the region is affected by significant differential reddening with a median value of E(B - V) g = 1.87 mag. The distance was inferred from the dereddened color-magnitude diagrams using Padova isochrones. Analyzing the spatial distribution of stars we found that Wd2 consists of two sub-clumps, namely the main cluster of Westerlund 2 and a less well populated clump located to the North. We estimated the same age of 0.1-2.0 Myr for both sub-clumps, thus we conclude that they are likely coeval.

  15. THE CLUSTERED NATURE OF STAR FORMATION. PRE-MAIN-SEQUENCE CLUSTERS IN THE STAR-FORMING REGION NGC 602/N90 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Gouliermis, Dimitrios A.; Gennaro, Mario; Schmeja, Stefan; Dolphin, Andrew E.; Tognelli, Emanuele; Prada Moroni, Pier Giorgio

    2012-03-20

    Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC 602/N90 is characterized by the H II nebular ring N90 and the young cluster of pre-main-sequence (PMS) and early-type main-sequence stars NGC 602, located in the central area of the ring. We present a thorough cluster analysis of the stellar sample identified with Hubble Space Telescope/Advanced Camera for Surveys in the region. We show that apart from the central cluster low-mass PMS stars are congregated in 13 additional small, compact sub-clusters at the periphery of NGC 602, identified in terms of their higher stellar density with respect to the average background density derived from star counts. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction ({approx}60%) of the total population being clustered, while the remaining is diffusely distributed in the intercluster area, covering the whole central part of the region. From the corresponding color-magnitude diagrams we disentangle an age difference of {approx}2.5 Myr between NGC 602 and the compact sub-clusters, which appear younger, on the basis of comparison of the brighter PMS stars with evolutionary models, which we accurately calculated for the metal abundance of the SMC. The diffuse PMS population appears to host stars as old as those in NGC 602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings, we propose a scenario according to which the region NGC 602/N90 experiences an active clustered star formation for the last {approx}5 Myr. The central cluster NGC 602 was

  16. Low-Mass Pre-Main-Sequence Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.

    2012-09-01

    The stellar Initial Mass Function (IMF) suggests that stars with sub-solar mass form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre-main-sequence (PMS) evolutionary phase, i.e., they have not started their lives on the main-sequence yet. The peculiar nature of these objects and the contamination of their samples by the fore- and background evolved populations of the Galactic disk impose demanding observational techniques, such as X-ray surveying and optical spectroscopy of large samples for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the metal-poor companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of the above techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope within the last five years yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of star-forming regions in these galaxies, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of the PMS stellar content of the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the

  17. The Advanced Camera for Surveys Nearby Galaxy Survey Treasury. IV. The Star Formation History of NGC 2976

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Gilbert, Karoline M.; Roškar, Rok; Seth, Anil C.; Weisz, Daniel; Dolphin, Andrew; Gogarten, Stephanie M.; Skillman, Evan; Holtzman, Jon

    2010-01-01

    We present resolved stellar photometry of NGC 2976 obtained with the Advanced Camera for Surveys (ACS) as part of the ACS Nearby Galaxy Survey Treasury (ANGST) program. The data cover the radial extent of the major axis of the disk out to 6 kpc, or ~6 scale lengths. The outer disk was imaged to a depth of M F606W ~ 1, and an inner field was imaged to the crowding limit at a depth of M F606W ~ -1. Through detailed analysis and modeling of the resulting color-magnitude diagrams, we have reconstructed the star formation history (SFH) of the stellar populations currently residing in these portions of the galaxy, finding similar ancient populations at all radii but significantly different young populations at increasing radii. In particular, outside of the well-measured break in the disk surface brightness profile, the age of the youngest population increases with distance from the galaxy center, suggesting that star formation is shutting down from the outside-in. We use our measured SFH, along with H I surface density measurements, to reconstruct the surface density profile of the disk during previous epochs. Comparisons between the recovered star formation rates and reconstructed gas densities at previous epochs are consistent with star formation following the Schmidt law during the past 0.5 Gyr, but with a drop in star formation efficiency at low gas densities, as seen in local galaxies at the present day. The current rate and gas density suggest that rapid star formation in NGC 2976 is currently in the process of ceasing from the outside-in due to gas depletion. This process of outer disk gas depletion and inner disk star formation was likely triggered by an interaction with the core of the M81 group gsim1 Gyr ago that stripped the gas from the galaxy halo and/or triggered gas inflow from the outer disk toward the galaxy center.

  18. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. IV. THE STAR FORMATION HISTORY OF NGC 2976

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Gilbert, Karoline M.; Roskar, Rok; Gogarten, Stephanie M.; Seth, Anil C.; Weisz, Daniel; Skillman, Evan; Dolphin, Andrew; Holtzman, Jon E-mail: jd@astro.washington.ed E-mail: stephanie@astro.washington.ed E-mail: dweisz@astro.umn.ed E-mail: dolphin@raytheon.co

    2010-01-20

    We present resolved stellar photometry of NGC 2976 obtained with the Advanced Camera for Surveys (ACS) as part of the ACS Nearby Galaxy Survey Treasury (ANGST) program. The data cover the radial extent of the major axis of the disk out to 6 kpc, or approx6 scale lengths. The outer disk was imaged to a depth of M{sub F606W} approx 1, and an inner field was imaged to the crowding limit at a depth of M{sub F606W} approx -1. Through detailed analysis and modeling of the resulting color-magnitude diagrams, we have reconstructed the star formation history (SFH) of the stellar populations currently residing in these portions of the galaxy, finding similar ancient populations at all radii but significantly different young populations at increasing radii. In particular, outside of the well-measured break in the disk surface brightness profile, the age of the youngest population increases with distance from the galaxy center, suggesting that star formation is shutting down from the outside-in. We use our measured SFH, along with H I surface density measurements, to reconstruct the surface density profile of the disk during previous epochs. Comparisons between the recovered star formation rates and reconstructed gas densities at previous epochs are consistent with star formation following the Schmidt law during the past 0.5 Gyr, but with a drop in star formation efficiency at low gas densities, as seen in local galaxies at the present day. The current rate and gas density suggest that rapid star formation in NGC 2976 is currently in the process of ceasing from the outside-in due to gas depletion. This process of outer disk gas depletion and inner disk star formation was likely triggered by an interaction with the core of the M81 group approx>1 Gyr ago that stripped the gas from the galaxy halo and/or triggered gas inflow from the outer disk toward the galaxy center.

  19. Carbon Stars in the Large Magellanic Cloud: Luminosities, Colors, and Implications for the History of Star Formation

    NASA Astrophysics Data System (ADS)

    Costa, Edgardo; Frogel, Jay A.

    1996-12-01

    We present RI and JHK photometry for 888 and 204 carbon (C) stars, respectively, of the 1035 C stars found by Blanco and his collaborators in 52 fields of the Large Magellanic Cloud (LMC). The results of our analysis of the data fall into two categories: (1) Derivation of the physical properties of the stars and a comparison with models. (2) The variation in C star properties with position in the LMC and implications for the history of star formation. For the 197 stars with data in all 5 photometric bands, we derive an equation that gives m_bol_(+/-0.34 mag) from the R_0_ and I_0_ data alone. With m_bol_ for 895 LMC C stars we derive a luminosity function that is closely similar to those for previous (but an order of magnitude smaller) samples of both field and cluster LMC C stars. We find only two C stars brighter than m_bol_ = 12.5 and fewer than 10 fainter than 15.5. A comparison of our derived bolometric magnitudes and effective temperatures for the LMC C stars with the models of Lattanzio [ApJ, 311,708(1986); ApJS, 76,215 (1991)] leads us to conclude that ~1 M_sun_ is the minimum mass required to produce a Population II C star. In addition, the observed lower limit we find to the C star luminosities corresponds to the luminosity at which a 1 M_sun_ Pop II star is predicted to have its first major thermal pulse. From a comparison of field and cluster C star color-magnitude diagrams, we conclude that the range in age and metallicity of the LMC field C stars is at least as great as those from LMC clusters. The metallicity range of the field C stars, though, appears to extend to a significantly higher value based on our finding that red C stars with (J - K)_0_ > 1.9 are three to four times more common in the field sample than in cluster stars and a similar difference previously noted between field and cluster M giants [Frogel & Blanco, ApJ, 365, 168 (1990)]. For each field observed we derive a luminosity m_bol_(t) that should be related to the transition

  20. The Massive Star Population in M101

    NASA Astrophysics Data System (ADS)

    Grammer, Skyler H.

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. Very little is known about the origin of these giant eruptions and their progenitors which are presumably very-massive, evolved stars such as luminous blue variables, hypergiants, and supergiants. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the luminous and evolved massive star populations in several nearby galaxies. We aim to identify the likely progenitors of the giant eruptions, study the spatial variations in the stellar populations, and examine the relationship between massive star populations and their environment. The work presented here is focused on stellar populations in the relatively nearby, giant, spiral galaxy M101 from sixteen archival BVI HST/ACS images. We create a catalog of stars in the direction to M101 with photometric errors < 10% for V < 24.5 and 50% completeness down to V ˜ 26.5 even in regions of high stellar crowding. Using color and magnitude criteria we have identified candidate luminous OB type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent. From our catalog, we derive the star formation history (SFH) for the stellar populations in five 2' wide annuli by fitting the color-magnitude diagrams. Binning the SFH into time frames corresponding to populations traced by Halpha, far ultraviolet (FUV), and near ultraviolet (NUV) emission, we show that the fraction of stellar populations young enough to contribute in Halpha is 15% " 35% in the inner regions, compared to less than 5% in the outer regions. This provides a sufficient explanation for the lack of Halpha emission at large radii. We also model the blue to red supergiant ratio in our

  1. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. X. ULTRAVIOLET TO INFRARED PHOTOMETRY OF 117 MILLION EQUIDISTANT STARS

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Weisz, Daniel R.; Byler, Nell; Johnson, L. C. E-mail: jd@astro.washington.edu E-mail: lcjohnso@astro.washington.edu; and others

    2014-11-01

    We have measured stellar photometry with the Hubble Space Telescope Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys in near ultraviolet (F275W, F336W), optical (F475W, F814W), and near infrared (F110W, F160W) bands for 117 million resolved stars in M31. As part of the Panchromatic Hubble Andromeda Treasury survey, we measured photometry with simultaneous point-spread function (PSF) fitting across all bands and at all source positions after precise astrometric image alignment (<5-10 mas accuracy). In the outer disk, the photometry reaches a completeness-limited depth of F475W ∼ 28, while in the crowded, high surface brightness bulge, the photometry reaches F475W ∼ 25. We find that simultaneous photometry and optimized measurement parameters significantly increase the detection limit of the lowest-resolution filters (WFC3/IR) providing color-magnitude diagrams (CMDs) that are up to 2.5 mag deeper when compared with CMDs from WFC3/IR photometry alone. We present extensive analysis of the data quality including comparisons of luminosity functions and repeat measurements, and we use artificial star tests to quantify photometric completeness, uncertainties and biases. We find that the largest sources of systematic error in the photometry are due to spatial variations in the PSF models and charge transfer efficiency corrections. This stellar catalog is the largest ever produced for equidistant sources, and is publicly available for download by the community.

  2. VARIABLE STARS IN THE ULTRA-FAINT DWARF SPHEROIDAL GALAXY URSA MAJOR I

    SciTech Connect

    Garofalo, Alessia; Moretti, Maria Ida; Cusano, Felice; Clementini, Gisella; Ripepi, Vincenzo; Dall'Ora, Massimo; Coppola, Giuseppina; Musella, Ilaria; Marconi, Marcella E-mail: fcusano@na.astro.it E-mail: ripepi@na.astro.it E-mail: imoretti@na.astro.it E-mail: ilaria@na.astro.it

    2013-04-10

    We have performed the first study of the variable star population of Ursa Major I (UMa I), an ultra-faint dwarf satellite recently discovered around the Milky Way (MW) by the Sloan Digital Sky Survey. Combining time series observations in the B and V bands from four different telescopes, we have identified seven RR Lyrae stars in UMa I, of which five are fundamental-mode (RRab) and two are first-overtone pulsators (RRc). Our V, B - V color-magnitude diagram of UMa I reaches V {approx} 23 mag (at a signal-to-noise ratio of {approx}6) and shows features typical of a single old stellar population. The mean pulsation period of the RRab stars (P{sub ab}) = 0.628, {sigma} = 0.071 days (or (P{sub ab}) = 0.599, {sigma} = 0.032 days, if V4, the longest period and brightest variable, is discarded) and the position on the period-amplitude diagram suggest an Oosterhoff-intermediate classification for the galaxy. The RR Lyrae stars trace the galaxy horizontal branch (HB) at an average apparent magnitude of (V(RR)) = 20.43 {+-} 0.02 mag (average on six stars and discarding V4), giving in turn a distance modulus for UMa I of (m - M){sub 0} = 19.94 {+-} 0.13 mag, distance d = 97.3{sup +6.0}{sub -5.7} kpc, in the scale where the distance modulus of the Large Magellanic Cloud is 18.5 {+-} 0.1 mag. Isodensity contours of UMa I red giants and HB stars (including the RR Lyrae stars identified in this study) show that the galaxy has an S-shaped structure, which is likely caused by the tidal interaction with the MW. Photometric metallicities were derived for six of the UMa I RR Lyrae stars from the parameters of the Fourier decomposition of the V-band light curves, leading to an average metal abundance of [Fe/H] = -2.29 dex ({sigma} = 0.06 dex, average on six stars) on the Carretta et al. metallicity scale.

  3. A NEW MILKY WAY HALO STAR CLUSTER IN THE SOUTHERN GALACTIC SKY

    SciTech Connect

    Balbinot, E.; Santiago, B. X.; Da Costa, L.; Maia, M. A. G.; Rocha-Pinto, H. J.; Majewski, S. R.; Nidever, D.; Thomas, D.; Wechsler, R. H.; Yanny, B.

    2013-04-20

    We report on the discovery of a new Milky Way (MW) companion stellar system located at ({alpha}{sub J2000,}{delta}{sub J2000}) = (22{sup h}10{sup m}43{sup s}.15, 14 Degree-Sign 56 Prime 58 Double-Prime .8). The discovery was made using the eighth data release of SDSS after applying an automated method to search for overdensities in the Baryon Oscillation Spectroscopic Survey footprint. Follow-up observations were performed using Canada-France-Hawaii-Telescope/MegaCam, which reveal that this system is comprised of an old stellar population, located at a distance of 31.9{sup +1.0}{sub -1.6} kpc, with a half-light radius of r{sub h}= 7.24{sup +1.94}{sub -1.29} pc and a concentration parameter of c = log{sub 10}(r{sub t} /r{sub c} ) = 1.55. A systematic isochrone fit to its color-magnitude diagram resulted in log (age yr{sup -1}) = 10.07{sup +0.05}{sub -0.03} and [Fe/H] = -1.58{sup +0.08}{sub -0.13}. These quantities are typical of globular clusters in the MW halo. The newly found object is of low stellar mass, whose observed excess relative to the background is caused by 95 {+-} 6 stars. The direct integration of its background decontaminated luminosity function leads to an absolute magnitude of M{sub V} = -1.21 {+-} 0.66. The resulting surface brightness is {mu}{sub V} = 25.90 mag arcsec{sup -2}. Its position in the M{sub V} versus r{sub h} diagram lies close to AM4 and Koposov 1, which are identified as star clusters. The object is most likely a very faint star cluster-one of the faintest and lowest mass systems yet identified.

  4. Dwarf spheroidal satellites of M31. I. Variable stars and stellar populations in Andromeda XIX

    SciTech Connect

    Cusano, Felice; Clementini, Gisella; Garofalo, Alessia; Federici, Luciana E-mail: gisella.clementini@oabo.inaf.it E-mail: alessia.garofalo@studio.unibo.it; and others

    2013-12-10

    We present B, V time-series photometry of Andromeda XIX (And XIX), the most extended (half-light radius of 6.'2) of Andromeda's dwarf spheroidal companions, which we observed with the Large Binocular Cameras at the Large Binocular Telescope. We surveyed a 23' × 23' area centered on And XIX and present the deepest color-magnitude diagram (CMD) ever obtained for this galaxy, reaching, at V ∼ 26.3 mag, about one magnitude below the horizontal branch (HB). The CMD shows a prominent and slightly widened red giant branch, along with a predominantly red HB, which extends to the blue to significantly populate the classical instability strip. We have identified 39 pulsating variable stars, of which 31 are of RR Lyrae type and 8 are Anomalous Cepheids (ACs). Twelve of the RR Lyrae variables and three of the ACs are located within And XIX's half light radius. The average period of the fundamental mode RR Lyrae stars ((P {sub ab}) = 0.62 days, σ = 0.03 days) and the period-amplitude diagram qualify And XIX as an Oosterhoff-Intermediate system. From the average luminosity of the RR Lyrae stars ((V(RR)) = 25.34 mag, σ = 0.10 mag), we determine a distance modulus of (m – M){sub 0} = 24.52 ± 0.23 mag in a scale where the distance to the Large Magellanic Cloud (LMC) is 18.5 ± 0.1 mag. The ACs follow a well-defined Period-Wesenheit (PW) relation that appears to be in very good agreement with the PW relationship defined by the ACs in the LMC.

  5. Star Formation in NGC 6531-Evidence From the age Spread and Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Forbes, Douglas

    1996-09-01

    The results of a photometric UBV study of the young open cluster NGC 6531 are presented. The cluster is found to have a mean reddening E(B-V)=0.28±0.04 (s.d.) and distance modulus (V0-Mv)=10.70±0.13 (s.e.), and 105±11 likely cluster members have been identified within the cluster coronal radius of 9 arcmin. A comparison of the high-luminosity end of the cluster color-magnitude diagram to the evolutionary models by Maeder & Meynet [A&AS, 76, 411(1988)] suggests a nuclear age of (8±2) Myr. The very clear gap in the distribution of stars with 0≤(B-V)0≤0.20, corresponding to the "burn-off" of 3He in stars contracting to the main sequence [Ulrich, ApJ, 168, 57 (1971)], implies a contraction age of (8±3) Myr. There would seem to be no evidence of a spread in the ages of cluster stars, as has been observed in several other young open clusters [Herbst & Miller, AJ, 87, 1478 (1982)]. The initial mass function (IMF) constructed from the cluster luminosity function and the mass-luminosity relation given by Scab (1986) shows good agreement with the field star IMF, and with the IMFS of a number of clusters of similar age and richness. The relative deficiency of low-mass stars seen by Herbst and Miller in NGC 3293 (a cluster of quite similar age and reddening) is not evident in NGC 6531.

  6. THE STAR FORMATION HISTORY OF LEO T FROM HUBBLE SPACE TELESCOPE IMAGING

    SciTech Connect

    Weisz, Daniel R.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Williams, Benjamin F.; Zucker, Daniel B.; Dolphin, Andrew E.; Martin, Nicolas F.; De Jong, Jelte T. A.; Holtzman, Jon A.; Bell, Eric F.; Belokurov, Vasily; Evans, N. Wyn

    2012-04-01

    We present the star formation history (SFH) of the faintest known star-forming galaxy, Leo T, based on deep imaging taken with the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2). The HST/WFPC2 color-magnitude diagram (CMD) of Leo T is exquisitely deep, extending {approx}2 mag below the oldest main-sequence turnoff, permitting excellent constraints on star formation at all ages. We use a maximum likelihood CMD fitting technique to measure the SFH of Leo T assuming three different sets of stellar evolution models: Padova (solar-scaled metallicity) and BaSTI (both solar-scaled and {alpha}-enhanced metallicities). The resulting SFHs are remarkably consistent at all ages, indicating that our derived SFH is robust to the choice of stellar evolution model. From the lifetime SFH of Leo T, we find that 50% of the total stellar mass formed prior to z {approx} 1 (7.6 Gyr ago). Subsequent to this epoch, the SFH of Leo T is roughly constant until the most recent {approx}25 Myr, where the SFH shows an abrupt drop. This decrease could be due to a cessation of star formation or stellar initial mass function sampling effects, but we are unable to distinguish between the two scenarios. Overall, our measured SFH is consistent with previously derived SFHs of Leo T. However, the HST-based solution provides improved age resolution and reduced uncertainties at all epochs. The SFH, baryonic gas fraction, and location of Leo T are unlike any of the other recently discovered faint dwarf galaxies in the Local Group, and instead bear strong resemblance to gas-rich dwarf galaxies (irregular or transition), suggesting that gas-rich dwarf galaxies may share common modes of star formation over a large range of stellar mass ({approx}10{sup 5}-10{sup 9} M{sub Sun }).

  7. Stellar Populations and Star Formation History of the Metal-poor Dwarf Galaxy DDO 68

    NASA Astrophysics Data System (ADS)

    Sacchi, E.; Annibali, F.; Cignoni, M.; Aloisi, A.; Sohn, T.; Tosi, M.; van der Marel, R. P.; Grocholski, A. J.; James, B.

    2016-10-01

    We present the star formation history (SFH) of the extremely metal-poor dwarf galaxy DDO 68, based on our photometry with the Advanced Camera for Surveys. With a metallicity of only 12+{log}({{O}}/{{H}})=7.15 and a very isolated location, DDO 68 is one of the most metal-poor galaxies known. It has been argued that DDO 68 is a young system that started forming stars only ˜0.15 Gyr ago. Our data provide a deep and uncontaminated optical color-magnitude diagram (CMD) that allows us to disprove this hypothesis since we find a population of at least ˜1 Gyr old stars. The star formation activity has been fairly continuous over all the look-back time. The current rate is quite low, and the highest activity occurred between 10 and 100 Myr ago. The average star formation rate over the whole Hubble time is ≃0.01 M ⊙ yr-1, corresponding to a total astrated mass of ≃1.3 × 108 M ⊙. Our photometry allows us to infer the distance from the tip of the red giant branch, D = 12.08 ± 0.67 Mpc; however, to let our synthetic CMD reproduce the observed ones, we need a slightly higher distance, D = 12.65 Mpc, or (m - M)0 = 30.51, still inside the errors of the previous determination, and we adopt the latter. DDO 68 shows a very interesting and complex history, with its quite disturbed shape and a long tail, probably due to tidal interactions. The SFH of the tail differs from that of the main body mainly for enhanced activity at recent epochs likely triggered by the interaction. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS5-26555.

  8. Investigation of the open star cluster NGC 2323 (M50) based on the proper motions and photometry of its constituent stars

    NASA Astrophysics Data System (ADS)

    Frolov, V. N.; Ananjevskaja, Yu. K.; Polyakov, E. V.

    2012-02-01

    The results of a comprehensive study of the Galactic open cluster NGC 2323 (M50) are presented. The positions of stars to a limiting magnitude {ie74-1} in a {ie74-2} area centered on the cluster were measured on six plates from the Pulkovo normal astrograph with a maximum epoch difference of 60 yr. The measurements were performed with the Pulkovo "Fantasy" automated measuring system upgraded in 2010. The corresponding areas from the USNO-A2.0, USNO-B1, and 2MASS catalogues were used as additional plates. As a result, the relative proper motions of stars were obtained with a root-mean-square error of 5.85 mas yr-1. A catalogue of UBV and JHK magnitudes for objects in the investigated area was compiled from available published resources. The astrometric selection of cluster members was made by the maximum likelihood method. A high individual cluster membership probability of a star ( P ≥ 80%) served as the first selection criterion. The position of a star on the photometric color-magnitude ( V ∝ ( B-V), J ∝ ( J-K)) diagrams of the cluster was considered as the second criterion. The position of an object on the color-color (( U-B)-( B-V), ( J-H)-( J-K)) diagrams served as the third criterion. On the basis of these criteria, it was established that 508 stars are members of NGC 2323. These data were used to refine the physical parameters of the cluster: the mean reddening {ie74-3}, the true distance modulus {ie74-4}, and the cluster age of about 140 Myr from the grid of isochrones computed by the Padova group for solar chemical composition. Two tables contain the catalogues of proper motions and photometry for stars in the area. The luminosity and mass functions were constructed. The cluster membership of red and blue giants, variable, double, and multiple stars was considered. The position of the cluster center was improved: {ie74-5}, δ = -08°20'16″(2000.0).

  9. The evolution of massive stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  10. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. VI. THE ANCIENT STAR-FORMING DISK OF NGC 404

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Stilp, Adrienne; Dolphin, Andrew; Seth, Anil C.; Weisz, Daniel; Skillman, Evan E-mail: jd@astro.washington.ed E-mail: roskar@astro.washington.ed E-mail: aseth@cfa.harvard.ed E-mail: skillman@astro.umn.ed

    2010-06-10

    We present HST/WFPC2 observations across the disk of the nearby isolated dwarf S0 galaxy NGC 404, which hosts an extended gas disk. The locations of our fields contain a roughly equal mixture of bulge and disk stars. All of our resolved stellar photometry reaches m {sub F814W} = 26 (M {sub F814W} = -1.4), which covers 2.5 mag of the red giant branch and main-sequence stars with ages <300 Myr. Our deepest field reaches m {sub F814W} = 27.2 (M {sub F814W} = -0.2), sufficient to resolve the red clump and main-sequence stars with ages <500 Myr. Although we detect trace amounts of star formation at times more recent than 10 Gyr ago for all fields, the proportion of red giant stars to asymptotic giants and main-sequence stars suggests that the disk is dominated by an ancient (>10 Gyr) population. Detailed modeling of the color-magnitude diagram suggests that {approx}70% of the stellar mass in the NGC 404 disk formed by z {approx} 2 (10 Gyr ago) and at least {approx}90% formed prior to z {approx} 1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early- and late-type disks may have different long-term evolutionary histories, not simply differences in their recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in Galaxy Evolution Explorer images show that the brightest FUV regions contain the youngest stars, but that some young stars (<160 Myr) lie outside of these regions. FUV luminosity appears to be strongly affected by both age and stellar mass within individual regions. Finally, we use our measurements to infer the relationship between the star formation rate and the gas density of the disk at previous epochs. We find that most of the history of the NGC 404 disk is consistent with star formation that has decreased with the gas density according to the Schmidt law. However, {approx} 0

  11. GalevNB: a conversion from N-BODY simulations to observations—its application on the study of UV-excess in star clusters

    NASA Astrophysics Data System (ADS)

    Pang, Xiaoying; Olczak, Christoph; Guo, Difeng; Spurzem, Rainer

    2015-08-01

    We present GalevNB (Galev for N-body simulations), an utility that converts fundamental stellar properties of N-body simulations into observational properties using the GALEV (GAlaxy EVolutionary synthesis models) package, and thus allowing direct comparisons between observations and N-body simulations. It works by converting fundamental stellar properties, such as stellar mass, temperature, luminosity and metallicity into observational magnitudes for a variety of filters of mainstream instruments/telescopes, such as HST, ESO, SDSS, 2MASS, etc., and into spectra that spans from far-UV (90 Å) to near-IR (160 μm). As an application, we use GalevNB to investigate the secular evolution of spectral energy distribution (SED) and color-magnitude diagram (CMD) of a simulated star cluster over a few hundred million years. The model cluster in this work is evolved using the most recent version of NBODY6++ utilizing many GPU cores in parallel to accelerate multi-node multi-core simulations (Wang et al. 2015), which is the MPI parallel version based on the state-of-the-art direct N-body integrator NBODY6GPU. With the results given by GalevNB, we discover an UV-excess in the integrated SED of the cluster over the whole simulation time. We also identify four candidates that contribute to the FUV peak, core helium burning stars, thermal pulsing asymptotic giant branch (TPAGB) stars, white dwarfs and naked helium stars. Among them, TAGB is a favorable candidate from theoretical point of view (O’connell 1999). On the contrary, white dwarf’s candidate position is controversial (Magris & Bruzual 1993, Landsman et al. 1998) because of low luminosity. The life time of massive star descendants: core helium burning stars and naked helium stars, is very short. Though both of they are very bright at the UV at the early age, their short-term emission makes them become insignificant candidates.

  12. THE ASYMPTOTIC GIANT BRANCH AND THE TIP OF THE RED GIANT BRANCH AS PROBES OF STAR FORMATION HISTORY: THE NEARBY DWARF IRREGULAR GALAXY KKH 98

    SciTech Connect

    Melbourne, J.; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D. C.; Dolphin, A. E-mail: ben@astro.washington.ed E-mail: ammons@ucolick.or E-mail: koo@ucolick.or E-mail: adolphin@raytheon.co

    2010-03-20

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D = 2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (near-IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR-bright stars reaching over 1 mag below the tip of the RGB. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the red clump and the main-sequence turnoff for 0.5 Gyr old populations. Compared to the optical color-magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate-age (0.5-5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10{sup -4} M{sub sun} yr{sup -1}) for much of cosmic time. Except for the youngest main-sequence populations (age <0.1 Gyr), which are typically fainter than the AO data flux limit, the SFH estimated from the 592 IR-bright stars is a reasonable match to that derived from the much larger optical data set. Differences between the optical- and IR-derived SFHs for 0.1-1 Gyr populations suggest that current stellar evolution models may be overproducing the AGB by as much as a factor of 3 in this galaxy. At the depth of the AO data, the IR-luminous stars are not crowded. Therefore, these techniques can potentially be used to determine the stellar populations of galaxies at significantly further distances.

  13. Auto-consistent test of Galaxy star formation histories derived from resolved stellar population and integral spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Patricio, V.; Rothberg, B.; Sanchez-Janssen, R.; Vale Asari, N.

    We present the first results of our observational project 'Starfish' (STellar Population From Integrated Spectrum). The goal of this project is to calibrate, for the first time, the properties of stellar populations derived from integrated spectra with the same properties derived from direct imaging of stellar populations in the same set of galaxies. These properties include the star-formation history (SFH), stellar mass, age, and metallicity. To date, such calibrations have been demonstrated only in star clusters, globular clusters with single stellar populations, not in complex and composite objects such as galaxies. We are currently constructing a library of integrated spectra obtained from a sample of 38 nearby dwarf galaxies obtained with GEMINI/GMOS-N&S (25h) and VLT/VIMOS-IFU (43h). These are to be compared with color magnitude diagrams (CMDs) of the same galaxies constructed from archival HST imaging sensitive to at least 1.5 magnitudes below the tip of the red giant branch. From this comparison we will assess the systematics and uncertainties from integrated spectral techniques. The spectra library will be made publicly available to the community via a dedicated web-page and Vizier database. This dataset will provide a unique benchmark for testing fitting procedures and stellar population models for both nearby and distant galaxies. http://www.sc.eso.org/˜marodrig/Starfish/

  14. New galactic star clusters discovered in the VVV survey. Candidates projected on the inner disk and bulge

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Chené, A.-N.; Ramírez Alegría, S.; Sharma, S.; Clarke, J. R. A.; Kurtev, R.; Negueruela, I.; Marco, A.; Amigo, P.; Minniti, D.; Bica, E.; Bonatto, C.; Catelan, M.; Fierro, C.; Geisler, D.; Gromadzki, M.; Hempel, M.; Hanson, M. M.; Ivanov, V. D.; Lucas, P.; Majaess, D.; Moni Bidin, C.; Popescu, B.; Saito, R. K.

    2014-09-01

    Context. VISTA Variables in the Vía Láctea (VVV) is one of six ESO Public Surveys using the 4 meter Visible and Infrared Survey Telescope for Astronomy (VISTA). The VVV survey covers the Milky Way bulge and an adjacent section of the disk, and one of the principal objectives is to search for new star clusters within previously unreachable obscured parts of the Galaxy. Aims: The primary motivation behind this work is to discover and analyze obscured star clusters in the direction of the inner Galactic disk and bulge. Methods: Regions of the inner disk and bulge covered by the VVV survey were visually inspected using composite JHKS color images to select new cluster candidates on the basis of apparent overdensities. DR1, DR2, CASU, and point spread function photometry of 10 × 10 arcmin fields centered on each candidate cluster were used to construct color-magnitude and color-color diagrams. Follow-up spectroscopy of the brightest members of several cluster candidates was obtained in order to clarify their nature. Results: We report the discovery of 58 new infrared cluster candidates. Fundamental parameters such as age, distance, and metallicity were determined for 20 of the most populous clusters. Based on observations gathered as part of observing programs: 179.B-2002,VIRCAM, VISTA at ESO, Paranal Observatory; NTT at ESO, La Silla Observatory (programs 087.D-0490A and 089.D-0462A) and with the SOAR telescope at the NOAO (program CN2012A-045).

  15. Nonthermal Radio Emission and the HR Diagram

    NASA Technical Reports Server (NTRS)

    Gibson, D. M.

    1985-01-01

    Perhaps the most reliable indicator of non-radiative heating/momentum in a stellar atmosphere is the presence of nonthermal radio emission. To date, 77 normal stellar objects have been detected and identified as nonthermal sources. These stellar objects are tabulated herein. It is apparent that non-thermal radio emission is not ubiquitous across the HR diagram. This is clearly the case for the single stars; it is not as clear for the binaries unless the radio emission is associated with their late-type components. Choosing to make this association, the single stars and the late-type components are plotted together. The following picture emerges: (1) there are four locations on the HR diagram where non-thermal radio stars are found; (2) the peak incoherent 5 GHz luminosities show a suprisingly small range for stars within each class; (3) the fraction of stellar energy that escapes as radio emission can be estimated by comparing the integrated maximum radio luminosity to the bolometric luminosity; (4) there are no apparent differences in L sub R between binaries with two cool components, binaries with one hot and one cool component, and single stars for classes C and D; and (5) The late-type stars (classes B, C, and D) are located in parts of the HR diagram where there is reason to suspect that the surfaces of the stars are being braked with respect to their interiors.

  16. The Origin of Hot Subluminous Horizontal-Branch Stars in (omega) Centauri and NGC 2808

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.; Brown, Thomas M.; Lanz, Thierry; Landsman, Wayne B.; Hubeny, Ivan

    2001-01-01

    Hot subluminous stars lying up to 0.7 mag below the extreme horizontal branch (EHB) are found in the ultraviolet (UV) color magnitude diagrams of both (omega) Cen and NGC 2808. In order to explore the evolutionary status of these subluminous stars, we have evolved a set of low-mass stars continuously from the main sequence through the helium-core flash to the HB (horizontal branch) for a wide range in the mass loss along the red-giant branch (RGB). Stars with the largest mass loss evolve off the RGB to high effective temperatures before igniting helium in their cores. Our results indicate that the subluminous EHB stars, as well as the gap within the EHB of NGC 2808, can be explained if these stars undergo a late helium-core flash while descending the white-dwarf cooling curve. Under these conditions the convection zone produced by the helium flash will penetrate into the stellar envelope, thereby mixing most, if not all, of the envelope hydrogen into the hot helium-burning interior, where it is rapidly consumed. This phenomenon is analogous to the 'born-again' scenario for producing hydrogen-deficient stars following a very late helium-shell flash. This 'flash mixing' of the stellar envelope greatly enhances the envelope helium and carbon abundances and, as a result, leads to a discontinuous jump in the HB effective temperature. We argue that the EHB gap in NGC 2808 is associated with this theoretically predicted dichotomy in the HB morphology. Using new helium- and carbon-rich stellar atmospheres, we show that these changes in the envelope abundances of the flash-mixed stars will suppress the UV flux by the amount needed to explain the hot subluminous EHB stars in (omega) Cen and NGC 2808. Moreover, we demonstrate that models without flash mixing lie, at most, only approximately 0.1 mag below the EHB, and hence fail to explain the observations. Flash mixing may also provide a new evolutionary channel for producing the high gravity, helium-rich sdO and sdB stars.

  17. Are We Correctly Measuring Star-Formation Rates?

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B.; Skillman, Evan D.; Dolphin, Andrew E.; Mitchell, Noah P.

    2017-01-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction-corrected, integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star-formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey (STARBIRDS) and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV-SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ˜53% larger than previous relations. These results have signficant implications for measuring FUV-based SFRs of high-redshift galaxies.

  18. THE EFFECTS OF ROTATION ON THE MAIN-SEQUENCE TURNOFF OF INTERMEDIATE-AGE MASSIVE STAR CLUSTERS

    SciTech Connect

    Yang, Wuming; Bi, Shaolan; Liu, Zhie; Meng, Xiangcun E-mail: yangwuming@ynao.ac.cn

    2013-10-20

    The double or extended main-sequence turnoffs (MSTOs) in the color-magnitude diagram (CMD) of intermediate-age massive star clusters in the Large Magellanic Cloud are generally interpreted as age spreads of a few hundred Myr. However, such age spreads do not exist in younger clusters (i.e., 40-300 Myr), which challenges this interpretation. The effects of rotation on the MSTOs of star clusters have been studied in previous works, but the results obtained are conflicting. Compared with previous works, we consider the effects of rotation on the main-sequence lifetime of stars. Our calculations show that rotating models have a fainter and redder MSTO with respect to non-rotating counterparts with ages between about 0.8 and 2.2 Gyr, but have a brighter and bluer MSTO when age is larger than 2.4 Gyr. The spread of the MSTO caused by a typical rotation rate is equivalent to the effect of an age spread of about 200 Myr. Rotation could lead to the double or extended MSTOs in the CMD of the star clusters with ages between about 0.8 and 2.2 Gyr. However, the extension is not significant, and it does not even exist in younger clusters. If the efficiency of the mixing were high enough, the effects of the mixing would counteract the effect of the centrifugal support in the late stage of evolution, and the rotationally induced extension would disappear in the old intermediate-age star clusters, but younger clusters would have an extended MSTO. Moreover, the effects of rotation might aid in understanding the formation of some 'multiple populations' in globular clusters.

  19. Fundamental Parameters of a Large, Unbiased Sample of Massive, Young, Embedded Star Clusters in the Milky Way

    NASA Astrophysics Data System (ADS)

    Dallilar, Yigit; Barnes, Peter; Lada, Elizabeth; Ryder, Stuart

    2015-08-01

    Massive star cluster formation in our Galaxy is still a mystery. Unlike studies on nearby star formation regions (Pleiades, Orion Nebula), there is no unbiased sample of massive young star clusters except the CHaMP survey, which is focused on the Carina Arm (Barnes et al. 2011, ApJS, 196, 12). In this project, we examine properties of young clusters identified in the CHaMP survey through infrared photometry. Near infrared (J,H,K) imaging was obtained with the Australian Astronomical Telescope and deep mid infrared (IRAC bands 1,2) imaging was obtained with the Spitzer Space Telescope during the warm mission. Photometric analysis was performed with a combination of Sextrac- tor and Psfex software. Photometric calibration for NIR data was handled exploiting 2Mass coverage for our fields. For MIR data, photometric calibration was obtained using GLIMPSE coverage for a small number of our images, then bootstrapping this to calibrate other images, since all images are obtained with the same pipeline. To identify cluster members, we provide constraints on the source classification using field AGB stars and faint background galaxies, which have similar characteristics as reddened young stellar objects. Predicted locations of these objects on color-magnitude and color-color diagrams are used as a guide, as are the stellar classification parameter from Sextractor and faint galaxy catalogs covering our fields. We also examine extinction properties towards these young clusters, exploiting well known properties of AGB star population in our fields. Combining the IR data with existing mm-wave specroscopy, we compute values for the gas to dust ratio of these young clusters using extinction properties plus differential H-K color maps and NH column density measurements, all obtained as a part of the CHaMP survey. These results help us to identify evolutionary stages of these young clusters. Eventually, we will constrain cluster properties like age, distance and metallicity with

  20. Hubble Space Telescope Proper Motions along the Sagittarius Stream. I. Observations and Results for Stars in Four Fields

    NASA Astrophysics Data System (ADS)

    Sohn, Sangmo Tony; van der Marel, Roeland P.; Carlin, Jeffrey L.; Majewski, Steven R.; Kallivayalil, Nitya; Law, David R.; Anderson, Jay; Siegel, Michael H.

    2015-04-01

    We present a multi-epoch Hubble Space Telescope (HST) study of stellar proper motions (PMs) for four fields spanning 200° along the Sagittarius (Sgr) stream: one trailing arm field, one field near the Sgr dwarf spheroidal tidal radius, and two leading arm fields. We determine absolute PMs of dozens of individual stars per field, using established techniques that use distant background galaxies as the stationary reference frame. Stream stars are identified based on combined color-magnitude diagram and PM information. The results are broadly consistent with the few existing PM measurements for the Sgr galaxy and the trailing arm. However, our new results provide the highest PM accuracy for the stream to date, the first PM measurements for the leading arm, and the first PM measurements for individual stream stars; we also serendipitously determine the PM of the globular cluster NGC 6652. In the trailing-arm field, the individual PMs allow us to kinematically separate trailing-arm stars from leading-arm stars that are 360° further ahead in their orbit. Also, in three of our fields we find indications that two distinct kinematical components may exist within the same arm and wrap of the stream. Qualitative comparison of the HST data to the predictions of the Law & Majewski and Peñarrubia et al. N-body models show that the PM measurements closely follow the predicted trend with Sgr longitude. This provides a successful consistency check on the PM measurements, as well as on these N-body approaches (which were not tailored to fit any PM data).

  1. On the kinematic separation of field and cluster stars across the bulge globular NGC 6528

    SciTech Connect

    Lagioia, E. P.; Bono, G.; Buonanno, R.; Milone, A. P.; Stetson, P. B.; Prada Moroni, P. G.; Dall'Ora, M.; Aparicio, A.; Monelli, M.; Calamida, A.; Ferraro, I.; Iannicola, G.; Gilmozzi, R.; Matsunaga, N.; Walker, A.

    2014-02-10

    We present deep and precise multi-band photometry of the Galactic bulge globular cluster NGC 6528. The current data set includes optical and near-infrared images collected with ACS/WFC, WFC3/UVIS, and WFC3/IR on board the Hubble Space Telescope. The images cover a time interval of almost 10 yr, and we have been able to carry out a proper-motion separation between cluster and field stars. We performed a detailed comparison in the m {sub F814W}, m {sub F606W} – m {sub F814W} color-magnitude diagram with two empirical calibrators observed in the same bands. We found that NGC 6528 is coeval with and more metal-rich than 47 Tuc. Moreover, it appears older and more metal-poor than the super-metal-rich open cluster NGC 6791. The current evidence is supported by several diagnostics (red horizontal branch, red giant branch bump, shape of the sub-giant branch, slope of the main sequence) that are minimally affected by uncertainties in reddening and distance. We fit the optical observations with theoretical isochrones based on a scaled-solar chemical mixture and found an age of 11 ± 1 Gyr and an iron abundance slightly above solar ([Fe/H] = +0.20). The iron abundance and the old cluster age further support the recent spectroscopic findings suggesting a rapid chemical enrichment of the Galactic bulge.

  2. The ACS Fornax Cluster Survey. XII. Diffuse Star Clusters in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Yiqing; Peng, Eric W.; Lim, Sungsoon; Jordán, Andrés; Blakeslee, John; Côté, Patrick; Ferrarese, Laura; Pattarakijwanich, Petchara

    2016-10-01

    Diffuse star clusters (DSCs) are old and dynamically hot stellar systems that have lower surface brightness and more extended morphology than globular clusters (GCs). Using the images from Hubble Space Telescope (HST)/ACS Fornax Cluster Survey, we find that 12 out of 43 early-type galaxies (ETGs) in the Fornax Cluster host significant numbers of DSCs. Together with literature data from the HST/ACS Virgo Cluster Survey, where 18 out of 100 ETGs were found to host DSCs, we systematically study the relationship of DSCs with GCs and their host galaxy environment. Two DSC hosts are post-merger galaxies, with most of the other hosts either having low mass or showing clear disk components. We find that while the number ratio of DSCs to GCs is nearly constant in massive galaxies, the DSC-to-GC ratio becomes systematically higher in lower-mass hosts. This suggests that DSCs may be more efficient at forming (or surviving) in low-density environments. DSC hosts are not special either in their position in the cluster or in the galactic color-magnitude diagram. Why some disk and low-mass galaxies host DSCs while others do not is still a puzzle, however. The mean ages of DSC hosts and nonhosts are similar at similar masses, implying that formation efficiency rather than survival is the reason behind different DSC number fractions in ETGs.

  3. A New Formation Mechanism for the Hottest Horizontal-Branch Stars

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Hot subluminous stars lying up to 0.7 mag below the extreme horizontal branch (EHB) are found in the ultraviolet color-magnitude diagrams (CMDs) of both omega Cen and NGC 2808. In order to investigate the origin of these subluminous stars, we have constructed a detailed set of evolutionary sequences that follow the evolution of low-mass stars continuously from the zero-age main sequence through the helium-core flash to the HB for a wide range in the mass loss along the red-giant branch (RGB). Stars with the largest mass loss evolve off the RGB to high effective temperatures before igniting helium in their cores. Our results indicate that the subluminous EHB stars, as well as the high temperature gap along the EHB of NGC 2808, can be explained if these stars undergo a late helium-core flash while descending the white-dwarf cooling curve. Under these conditions the convection zone produced by the main helium flash will penetrate into the stellar envelope, thereby mixing most, if not all, of the envelope hydrogen into the hot helium-burning interior, where it is rapidly consumed. This phenomenon is analogous to the 'born-again' scenario for producing hydrogen-deficient stars following a very late helium-shell flash. This 'flash mixing' of the envelope during a late helium-core flash greatly enhances the envelope helium and carbon abundances and, as a result, leads to a discontinuous increase in the HB effective temperature. We argue that the hot HB gap observed in NGC 2808 is associated with this theoretically predicted dichotomy in the RB properties. Using new helium- and carbon-rich stellar atmospheres, we show that the changes in the envelope abundances due to flash mixing will suppress the ultraviolet flux in the spectra of hot EHB stars. We suggest that such changes in the emergent spectral energy distribution are primarily responsible for explaining the hot subluminous EHB stars in omega Cen and NGC 2808. Moreover, we demonstrate that models without flash mixing

  4. The Origin of Hot Subluminous Horizontal-Branch Stars in Omega Centauri and NGC 2808

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.; Brown, T. M.; Lanz, T.; Landsman, W. B.; Hubeny, I.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Hot subluminous stars lying up to 0.7 mag below the extreme horizontal branch (EHB) are found in the ultraviolet color-magnitude diagrams of both omega Cen (DCruz et.al. 2000) and NGC 2808 (Brown et al. 2001). In order to investigate the origin of these subluminous stars, we have constructed a detailed set of evolutionary sequences that follow the evolution of low-mass stars continuously from the zero-age main sequence through the helium-core flash to the HB for a wide range in the mass loss along the red-giant branch (RGB). Stars with the largest mass loss evolve off the RGB to high effective temperatures before igniting helium in their cores (Castellani & Castellani 1993). Our results indicate that the location of the subluminous EHB stars, as well as the high temperature gap along the EHB of NGC 2808, can be explained if these stars undergo a late helium-core flash while descending the white-dwarf cooling curve. Under these conditions the convection zone produced by the main helium flash will penetrate into the stellar envelope, thereby mixing most, if not all, of the envelope hydrogen into the hot helium-burning interior, where it is rapidly consumed (Sweigart 1997). This phenomenon is analogous to the "born-again" scenario for producing hydrogen-deficient stars following a very late helium-shell flash. This "flash mixing" of the envelope during a late helium-core flash greatly enhances the envelope helium and carbon abundances and, as a result, leads to a discontinuous increase in the HB effective temperature. We argue that the hot HB gap observed in NGC 2808 is associated with this theoretically predicted dichotomy in the HB properties. Using new helium- and carbon-rich stellar atmospheres, we show that the changes in the envelope abundances due to flash mixing will suppress the ultraviolet flux in the spectra of hot EHB stars. We suggest that such changes in the emergent spectral energy distribution are primarily responsible for explaining the hot

  5. The Halo Stars in NGC 5128. III. An Inner Halo Field and the Metallicity Distribution

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Harris, Gretchen L. H.

    2002-06-01

    We present new Hubble Space Telescope WFPC2 (V,I) photometry for field stars in NGC 5128 at a projected distance of 8 kpc from the galaxy center, which probes a mixture of its inner halo and outer bulge. The color-magnitude diagram shows an old red giant branch that is even broader in color than our two previously studied outer halo fields (at 21 and 31 kpc), with significant numbers of stars extending to solar metallicity and higher. The peak frequency of the metallicity distribution function (MDF) is at [m/H]~=-0.4, with even fewer metal-poor stars than in the outer halo fields. If we use the 21 and 31 kpc fields to define template ``halo'' MDFs and subtract these from the 8 kpc field, the residual ``bulge'' population has a mean [m/H]~=-0.2, similar to the bulges of other large spiral and elliptical galaxies. We find that the main features of the halo MDF can be reproduced by a simple chemical evolution model in which early star formation goes on simultaneously with an initial stage of rapid infall of very metal-poor gas, after which the infall dies away exponentially. Finally, by comparison with the MDFs for the NGC 5128 globular clusters, we find that in all the halo fields we have studied there is a clear decrease of specific frequency SN (number of clusters per unit halo light) with increasing metallicity. At the lowest-metallicity range ([Fe/H]<-1.6) SN is ~4-8, while at metallicities [Fe/H]>-1 it has dropped to ~=1.5. This trend may indicate that globular cluster formation efficiency is a strong function of the metallicity of the protocluster gas. However, we suggest an alternate possibility, which is that globular clusters form preferentially sooner than field stars. If most of the cluster formation within a host giant molecular cloud takes place sooner than most of the distributed field-star formation and if the earliest most metal-poor star-forming clouds are prematurely disrupted by their own first bursts of star formation, then they would leave

  6. Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity

    SciTech Connect

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Kalirai, Jason S.; Correnti, Matteo E-mail: verap@stsci.edu E-mail: correnti@stsci.edu; and others

    2014-12-10

    We present a color-magnitude diagram analysis of deep Hubble Space Telescope imaging of a mass-limited sample of 18 intermediate-age (1-2 Gyr old) star clusters in the Magellanic Clouds, including eight clusters for which new data were obtained. We find that all star clusters in our sample feature extended main-sequence turnoff (eMSTO) regions that are wider than can be accounted for by a simple stellar population (including unresolved binary stars). FWHM widths of the MSTOs indicate age spreads of 200-550 Myr. We evaluate the dynamical evolution of clusters with and without initial mass segregation. Our main results are (1) the fraction of red clump (RC) stars in secondary RCs in eMSTO clusters scales with the fraction of MSTO stars having pseudo-ages of ≲1.35 Gyr; (2) the width of the pseudo-age distributions of eMSTO clusters is correlated with their central escape velocity v {sub esc}, both currently and at an age of 10 Myr. We find that these two results are unlikely to be reproduced by the effects of interactive binary stars or a range of stellar rotation velocities. We therefore argue that the eMSTO phenomenon is mainly caused by extended star formation within the clusters; and (3) we find that v {sub esc} ≥ 15 km s{sup –1} out to ages of at least 100 Myr for all clusters featuring eMSTOs, and v {sub esc} ≤ 12 km s{sup –1} at all ages for two lower-mass clusters in the same age range that do not show eMSTOs. We argue that eMSTOs only occur for clusters whose early escape velocities are higher than the wind velocities of stars that provide material from which second-generation stars can form. The threshold of 12-15 km s{sup –1} is consistent with wind velocities of intermediate-mass asymptotic giant branch stars and massive binary stars in the literature.

  7. Caution: Venn Diagrams Ahead!

    ERIC Educational Resources Information Center

    Kimmins, Dovie L.; Winters, J. Jeremy

    2015-01-01

    Two perspectives of the term "Venn diagram" reflect the typical differences in the uses of Venn diagrams in the subject areas of mathematics and language arts. These differences are subtle; nevertheless, they can potentially be confusing. In language arts, the circles in a Venn diagram typically represent things that can be compared and…

  8. THE INFRARED EYE OF THE WIDE-FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE REVEALS MULTIPLE MAIN SEQUENCES OF VERY LOW MASS STARS IN NGC 2808

    SciTech Connect

    Milone, A. P.; Aparicio, A.; Monelli, M. E-mail: aparicio@iac.es; and others

    2012-08-01

    We use images taken with the infrared channel of the Wide Field Camera 3 on the Hubble Space Telescope to study the multiple main sequences (MSs) of NGC 2808. Below the turnoff, the red, the middle, and the blue MS, previously detected from visual-band photometry, are visible over an interval of about 3.5 F160W magnitudes. The three MSs merge together at the level of the MS bend. At fainter magnitudes, the MS again splits into two components containing {approx}65% and {approx}35% of stars, with the most-populated MS being the bluest one. Theoretical isochrones suggest that the latter is connected to the red MS discovered in the optical color-magnitude diagram (CMD) and hence corresponds to the first stellar generation, having primordial helium and enhanced carbon and oxygen abundances. The less-populated MS in the faint part of the near-IR CMD is helium-rich and poor in carbon and oxygen, and it can be associated with the middle and the blue MS of the optical CMD. The finding that the photometric signature of abundance anti-correlation is also present in fully convective MS stars reinforces the inference that they have a primordial origin.

  9. The Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE): The Dust Extinction Curve in the Small Magellanic Cloud from Red Clump Stars

    NASA Astrophysics Data System (ADS)

    Yanchulova Merica-Jones, Petia; Sandstrom, Karin; Johnson, Lent C.; SMIDGE Team

    2016-06-01

    We present preliminary measurements of the average dust extinction curve in a 200 pc x 100 pc region in the Small Magellanic Cloud (SMC) using multi-band Hubble Space Telescope observations of resolved stellar populations from SMIDGE. Extinction curve determinations from a fully-sampled region of the SMC are of great interest. SMC-like extinction is widely used to correct for the effects of dust in low metallicity or high redshift galaxies, however, there are currently very few extinction curve measurements in the SMC. We measure the extinction curve using color-magnitude diagrams of red clump stars experiencing reddening by dust along a vector from which the curve shape can theoretically be directly measured. In addition, our analysis of the extincted and unextincted red clump stars shows a substantial line-of-sight depth for the stellar distribution of the SMC, consistent with recent observations of Cepheids. With the deep multi-band photometry from SMIDGE we are able to separate these two effects and measure both the extinction curve and the line-of-sight depth. Our study implies that extinction curve measurements in nearby galaxies need to take into account the impact of an extended galactic structure on dust extinction along the line of sight.

  10. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  11. Is the massive star cluster Westerlund 2 double? - A high resolution multi-band survey with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Zeidler, Peter; Nota, Antonella; Sabbi, Elena; Grebel, Eva K.; Bonanos, Alceste; Christian, Carol A.; de Mink, Selma; Tosi, Monica; Ubeda, Leonardo; Pasquali, Anna

    2015-08-01

    Westerlund 2 is one of the most massive young star clusters known in the Milky Way. Located in the Carina-Sagittarius spiral arm, and containing more than 80 O-Type stars, Westerlund 2 is a perfect target to study the star formation process and feedback in the presence of massive stars as well as the possible triggering of star formation in the surrounding clouds. The close proximity (4.16 kpc) to the Sun, as well as the young age (<2.0 Myr) allow us to study star formation in detail at a high spatial resolution and makes it possible to determine the mass function of the cluster close to its initial state.We present results from our recent multi-band survey in the optical and near-infrared obtained with the Advanced Camera for Surveys and the Wide Field Camera 3 on board of the Hubble Space Telescope, covering an area of ~20 arcsec2.Combining Hα and Paβ line observations we were able to create a high resolution pixel-to-pixel map of the color excess E(B-V)g of the gas. We demonstrated that, as expected, the region is affected by significant differential reddening with a median value of E(B-V)g=1.87 mag, which is caused by the still present gas and dust of the HII region RCW49.After separating the cluster members from foreground contaminants we obtained for Westerlund 2 a pronounced pre-main-sequence population including a distinct turn-on region. The distance was inferred from the dereddened color-magnitude diagrams using Padova isochrones. It is in good agreement with the literature value of 4.16±0.33 kpc determined with spectroscopic data. By fitting the zero-age-main-sequence to two-color-diagrams we derived a value for the total-to-selective extinction of RV=3.78±0.125.Analyzing the spatial distribution of stars using a spatial number density map, we found that Westerlund 2 most likely consists of two clumps, namely the main body of Westerlund 2 and a less well populated one located to the North. We estimated the same age of 0.5-2.0 Myr for both clumps

  12. New variable stars discovered in the fields of three Galactic open clusters using the VVV survey

    NASA Astrophysics Data System (ADS)

    Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.

    2016-11-01

    This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.

  13. Extension of Empirical Color Calibration and Test using Cool and Metal-Rich Stars in NGC 6791

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Terndrup, Donald M.; Pinsonneault, Marc H.; Lee, Jae-woo

    2015-08-01

    We extend our effort to calibrate stellar isochrones in the Johnson-Cousins (BVIC) and the Two Micron All Sky Survey (JHKs) filter systems based on observations of well-studied open clusters. Using cool main-sequence (MS) stars in Praesepe, we define empirical corrections to the Lejeune et al. color-effective temperature (Teff) relations down to Teff ~ 3600 K, complementing our previous work based on the Hyades and the Pleiades. We apply empirically corrected isochrones to existing optical and near-infrared photometry of cool (Teff ~ 5500 K) and metal-rich ([Fe/H]=+0.37) MS stars in NGC 6791, and find that color-excess and distance estimates from color-magnitude diagrams with different color indices converge on each other at the precisely known metallicity of the cluster. Along with a satisfactory agreement with eclipsing binary data in the cluster, we view the improved internal consistency as a validation of our calibrated isochrones at super-solar metallicities. For very cool stars (Teff < 4800 K), however, we find that BV colors of our models are systematically redder than the cluster photometry by ~0.02 mag. We use color-Teff transformations from the infrared flux method (IRFM) and alternative photometry to examine a potential color-scale error in the input cluster photometry. After excluding BV photometry of these cool MS stars, we derive E(B-V)=0.105±0.014, [M/H]=+0.42±0.07, (m-M)0 = 13.04±0.09, and the age of 9.5±0.3 Gyr for NGC 6791.

  14. Finding High Quality Young Star Candidates in Ceph C using X-ray, Optical, and IR data

    NASA Astrophysics Data System (ADS)

    Orr, Laura; Rebull, Luisa M.; Johnson, Milton; Miller, Alexandra; Aragon Orozco, Anthony; Bakhaj, Benjamin; Bakshian, Jacquelyn; Chiffelle, Elizabeth; DeLint, Arie; Gerber, Stefan; Mader, Jared; Marengo, Amelia; McAdams, Jesse; Montufar, Cassandra; Orr, Quinton; San Emeterio, Lis; Stern, Eliyah; Weisserman, Drew

    2017-01-01

    We looked for new candidate young stars within the star forming region of Ceph OB3, more specifically in a region of this molecular cloud called Ceph C. While this region lies in the galactic plane and is included in several large surveys, Ceph C has not been well studied in the past and few young stellar objects (YSOs) have been identified there. The YSOVAR team (Rebull et al. 2014) has time-series monitoring data of this region, and in order to understand the diversity of the light curves, it is crucial to understand which objects in the field of view are likely YSOs, and which are foreground/background objects. The goal of our study is to identify candidate YSO sources as well as support the greater understanding of the variety, evolution, and variability of young stars. Our search for young stars includes data in X-ray, optical, and IR. Data points used are from Chandra, SDSS, IPHAS, 2MASS, Spitzer IRAC and MIPS, and WISE, giving us data over many orders of magnitude, 0.001 to 25 microns (0.36 to 25 microns without the X-rays). The catalogs were merged across all available wavelengths. Each source was inspected in all available images to insure good matches and quality of data across wavelengths and to eliminate poor candidates, those with contamination or confusion, and non-YSO objects. Spectral energy distributions (SEDs) for each candidate YSO were constructed and compared to images for greater assessment and reliable YSO identification. Color-color and color-magnitude diagrams have been created for the sources in this region and are used in conjunction with images, SEDs, X-ray, IR excess, and variability properties to identify candidate YSOs. Support provided for this work by the NASA/IPAC Teacher Archive Research Program (NITARP), which receives funding from the NASA ADP program.

  15. The open cluster IC 1805 and its vicinity: investigation of stars in the Vilnius, IPHAS, 2MASS, and WISE systems

    NASA Astrophysics Data System (ADS)

    Straižys, V.; Boyle, R. P.; Janusz, R.; Laugalys, V.; Kazlauskas, A.

    2013-06-01

    The results of CCD photometry in the Vilnius seven-color system down to V = 18 mag are presented for 242 stars in the direction of the young open cluster IC 1805 that is located in the active star-forming region W4 in the Cas OB6 association. Photometric data were used to classify stars into spectral and luminosity classes, and to determine their interstellar reddenings, extinctions and distances. We confirm the CH3OH and H2O maser VLBA parallax results that the cluster is located close to the front side of the Perseus arm, at a distance about 2.0 kpc. In the color-magnitude diagram, zero-age main sequence (ZAMS) stars of the cluster extend to spectral class A0. The extinction values for the majority of the cluster stars are between 2.2 and 2.7 mag, with a mean value of 2.46 mag. This extinction originates mainly between the Sun and the outer edge of the Local arm, in accordance with the distribution of CO clouds. In the Perseus arm and beyond, the extinction was investigated using the classification and reddening determination for A0-F0 stars measured in the r, i, Hα system of the IPHAS survey to r = 19 mag. The extinction AV within the Perseus arm ranges from 2.5-4.5 mag at the front edge to 3.0-5.0 mag at the far edge. Possibly, we have found about 20 early A-type stars located in the Outer arm. The 2MASS JHKs photometry for red giants gives much higher extinction values (up to about 6 mag), which would correspond to the stars located behind dense clouds of both arms. In the area, using the WISE, 2MASS, and IPHAS photometry data, 18 possible young stellar objects (YSOs) of low masses are identified. Six high-mass YSOs (five Ae/Be stars and a F6e star) are known from previous investigations. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/554/A3

  16. A Chandra Study of the Rosette Star-forming Complex. III. The NGC 2237 Cluster and the Region's Star Formation History

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Feigelson, Eric D.; Townsley, Leisa K.; Broos, Patrick S.; Román-Zúñiga, Carlos G.; Lada, Elizabeth; Garmire, Gordon

    2010-06-01

    We present high spatial resolution Chandra X-ray images of the NGC 2237 young stellar cluster on the periphery of the Rosette Nebula. We detect 168 X-ray sources, 80% of which have stellar counterparts in USNO, Two Micron All Sky Survey, and deep FLAMINGOS images. These constitute the first census of the cluster members with 0.2 <~ M <~ 2 M sun. Star locations in near-infrared color-magnitude diagrams indicate a cluster age around 2 Myr with a visual extinction of 1 <~ AV <~ 3 at 1.4 kpc, the distance of the Rosette Nebula's main cluster NGC 2244. We derive the K-band luminosity function and the X-ray luminosity function of the cluster, which indicate a population ~400-600 stars. The X-ray-selected sample shows a K-excess disk frequency of 13%. The young Class II counterparts are aligned in an arc ~3 pc long suggestive of a triggered formation process induced by the O stars in NGC 2244. The diskless Class III sources are more dispersed. Several X-ray emitting stars are located inside the molecular cloud and around gaseous pillars projecting from the cloud. These stars, together with a previously unreported optical outflow originating inside the cloud, indicate that star formation is continuing at a low level and the cluster is still growing. This X-ray view of young stars on the western side of the Rosette Nebula complements our earlier studies of the central cluster NGC 2244 and the embedded clusters on the eastern side of the Nebula. The large-scale distribution of the clusters and molecular material is consistent with a scenario in which the rich central NGC 2244 cluster formed first, and its expanding H II region triggered the formation of the now-unobscured satellite clusters Rosette Molecular Cloud (RMC) XA and NGC 2237. A large swept-up shell material around the H II region is now in a second phase of collect-and-collapse fragmentation, leading to the recent formation of subclusters. Other clusters deeper in the molecular cloud appear unaffected by the

  17. A CHANDRA STUDY OF THE ROSETTE STAR-FORMING COMPLEX. III. THE NGC 2237 CLUSTER AND THE REGION'S STAR FORMATION HISTORY

    SciTech Connect

    Wang Junfeng; Feigelson, Eric D.; Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon; Roman-Zuniga, Carlos G.; Lada, Elizabeth

    2010-06-10

    We present high spatial resolution Chandra X-ray images of the NGC 2237 young stellar cluster on the periphery of the Rosette Nebula. We detect 168 X-ray sources, 80% of which have stellar counterparts in USNO, Two Micron All Sky Survey, and deep FLAMINGOS images. These constitute the first census of the cluster members with 0.2 {approx}< M {approx}< 2 M {sub sun}. Star locations in near-infrared color-magnitude diagrams indicate a cluster age around 2 Myr with a visual extinction of 1 {approx}< A{sub V} {approx}< 3 at 1.4 kpc, the distance of the Rosette Nebula's main cluster NGC 2244. We derive the K-band luminosity function and the X-ray luminosity function of the cluster, which indicate a population {approx}400-600 stars. The X-ray-selected sample shows a K-excess disk frequency of 13%. The young Class II counterparts are aligned in an arc {approx}3 pc long suggestive of a triggered formation process induced by the O stars in NGC 2244. The diskless Class III sources are more dispersed. Several X-ray emitting stars are located inside the molecular cloud and around gaseous pillars projecting from the cloud. These stars, together with a previously unreported optical outflow originating inside the cloud, indicate that star formation is continuing at a low level and the cluster is still growing. This X-ray view of young stars on the western side of the Rosette Nebula complements our earlier studies of the central cluster NGC 2244 and the embedded clusters on the eastern side of the Nebula. The large-scale distribution of the clusters and molecular material is consistent with a scenario in which the rich central NGC 2244 cluster formed first, and its expanding H II region triggered the formation of the now-unobscured satellite clusters Rosette Molecular Cloud (RMC) XA and NGC 2237. A large swept-up shell material around the H II region is now in a second phase of collect-and-collapse fragmentation, leading to the recent formation of subclusters. Other clusters deeper

  18. ULTRA-DEEP HUBBLE SPACE TELESCOPE IMAGING OF THE SMALL MAGELLANIC CLOUD: THE INITIAL MASS FUNCTION OF STARS WITH M {approx}< 1 M {sub Sun}

    SciTech Connect

    Kalirai, Jason S.; Anderson, Jay; Dotter, Aaron; Reid, I. Neill; Richer, Harvey B.; Fahlman, Gregory G.; Hansen, Brad M. S.; Rich, R. Michael; Hurley, Jarrod; Shara, Michael M. E-mail: jayander@stsci.edu E-mail: richer@astro.ubc.ca E-mail: hansen@astro.ucla.edu E-mail: jhurley@swin.edu.au

    2013-02-15

    We present a new measurement of the stellar initial mass function (IMF) based on ultra-deep, high-resolution photometry of >5000 stars in the outskirts of the Small Magellanic Cloud (SMC) galaxy. The Hubble Space Telescope (HST) Advanced Camera for Surveys observations reveal this rich, cospatial population behind the foreground globular cluster 47 Tuc, which we targeted for 121 HST orbits. The stellar main sequence of the SMC is measured in the F606W, F814W color-magnitude diagram down to {approx}30th magnitude, and is cleanly separated from the foreground star cluster population using proper motions. We simulate the SMC population by extracting stellar masses (single and unresolved binaries) from specific IMFs and converting those masses to luminosities in our bandpasses. The corresponding photometry for these simulated stars is drawn directly from a rich cloud of 4 million artificial stars, thereby accounting for the real photometric scatter and completeness of the data. Over a continuous and well-populated mass range of M = 0.37-0.93 M {sub Sun} (e.g., down to a {approx}75% completeness limit at F606W = 28.7), we demonstrate that the IMF is well represented by a single power-law form with slope {alpha} = -1.90 ({sup +0.15} {sub -0.10}) (3{sigma} error) (e.g., dN/dM{proportional_to} M {sup {alpha}}). This is shallower than the Salpeter slope of {alpha} = -2.35, which agrees with the observed stellar luminosity function at higher masses. Our results indicate that the IMF does not turn over to a more shallow power-law form within this mass range. We discuss implications of this result for the theory of star formation, the inferred masses of galaxies, and the (lack of a) variation of the IMF with metallicity.

  19. A Washington Photometric Survey of the Large Magellanic Cloud Field Star Population

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.; Geisler, Doug; Mateluna, Renee

    2012-10-01

    We present photometry for an unprecedented database of some 5.5 million stars distributed throughout the Large Magellanic Cloud main body, from 21 fields covering a total area of 7.6 deg2, obtained from Washington CT 1 T 2 CTIO 4 m MOSAIC data. Extensive artificial star tests over the whole mosaic image data set and the observed behavior of the photometric errors with magnitude demonstrate the accuracy of the morphology and clearly delineate the position of the main features in the color-magnitude diagrams (CMDs). The representative T 1(MS TO) mags are on average ~0.5 mag brighter than the T 1 mags for the 100% completeness level of the respective field, allowing us to derive an accurate age estimate. We have analyzed the CMD Hess diagrams and used the peaks in star counts at the main sequence turnoff and red clump (RC) locations to age date the most dominant sub-population (or "representative" population) in the stellar population mix. The metallicity of this representative population is estimated from the locus of the most populous red giant branch track. We use these results to derive age and metallicity estimates for all of our fields. The analyzed fields span age and metallicity ranges covering most of the galaxy's lifetime and chemical enrichment, i.e., ages and metallicities between ~1 and 13 Gyr and ~-0.2 and -1.2 dex, respectively. We show that the dispersions associated with the mean ages and metallicities represent in general a satisfactory estimate of the age/metallicity spread (~1-3 Gyr/0.2-0.3 dex), although a few subfields have a slightly larger age/metallicity spread. Finally, we revisit the study of the vertical structure (VS) phenomenon, a striking feature composed of stars that extend from the bottom, bluest end of the RC to ~0.45 mag fainter. We confirm that the VS phenomenon is not clearly seen in most of the studied fields and suggest that its occurrence is linked to some other condition(s) in addition to the appropriate age, metallicity, and

  20. Phase Diagrams of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Chuck; Berry, Don; da Silva Schneider, Andre

    2016-03-01

    In the inner crust of neutrons stars, where matter is near the saturation density, protons and neutrons arrange themselves into complex structures called nuclear pasta. Early theoretical work predicted a simple graduated hierarchy of pasta phases, consisting of spheres, cylinders, slabs, and uniform matter with voids. Previous work has simulated these phases with a simple classical model and has shown that the formation of these structures is dependent on the temperature, density, and proton fraction. However, previous work only studied a limited range of these parameters due to computational limitations. Thanks to recent advances in computing it is now possible to survey the structure of nuclear pasta for a larger range of parameters. By simulating nuclear pasta with constant temperature and proton fraction in an expanding simulation volume we are able to study the phase transitions in nuclear pasta, and thus produce a set of phase diagrams. We report on these phase diagrams as well as newly identified phases of nuclear pasta and discuss their implications for neutron star observables.

  1. THE BLUE STRAGGLER STAR POPULATION IN NGC 1261: EVIDENCE FOR A POST-CORE-COLLAPSE BOUNCE STATE

    SciTech Connect

    Simunovic, Mirko; Puzia, Thomas H.; Sills, Alison E-mail: tpuzia@astro.puc.cl

    2014-11-01

    We present a multi-passband photometric study of the Blue Straggler Star (BSS) population in the Galactic globular cluster (GC) NGC 1261, using available space- and ground-based survey data. The inner BSS population is found to have two distinct sequences in the color-magnitude diagram (CMD), similar to double BSS sequences detected in other GCs. These well defined sequences are presumably linked to single short-lived events such as core collapse, which are expected to boost the formation of BSSs. In agreement with this, we find a BSS sequence in NGC 1261 which can be well reproduced individually by a theoretical model prediction of a 2 Gyr old population of stellar collision products, which are expected to form in the denser inner regions during short-lived core contraction phases. Additionally, we report the occurrence of a group of BSSs with unusually blue colors in the CMD, which are consistent with a corresponding model of a 200 Myr old population of stellar collision products. The properties of the NGC 1261 BSS populations, including their spatial distributions, suggest an advanced dynamical evolutionary state of the cluster, but the core of this GC does not show the classical signatures of core collapse. We argue that these apparent contradictions provide evidence for a post-core-collapse bounce state seen in dynamical simulations of old GCs.

  2. Globular cluster photometry with the Hubble Space Telescope. 3: Blue stragglers and variable stars in the core of M3

    NASA Technical Reports Server (NTRS)

    Guhathakurta, Puragra; Yanny, Brian; Bahcall, John N.; Schneider, Donald P.

    1994-01-01

    This paper describes Hubble Space Telescope (HST)/Planetary Camera-I images of the core of the dense globular cluster M3 (NGC 5272). Stellar photometry in the F555W (V) and F785LP (I) bands, with a 1-sigma photometric accuracy of about 0.1 mag, has been used to construct color-magnitude diagrams of about 4700 stars above the main-sequence turnoff within r less than or approximately equal to 1 min of the cluster center. We have also analyzed archival HST F336W (U) images of M3 obtained by the Wide Field/Planetary Camera-I Instrument Definition Team. The UVI data are used to identify 28 blue straggler (BS) stars within the central 0.29 sq. arcmin. The specific frequency of BSs in this region of M3, N(sub BS)/N(sub V less than (V(HB)+2)) = 0.094 +/- 0.019, is about a factor of 2 - 3 higher than that found by Bolte et al. in a recent ground-based study of the same region, but comparable to that seen in the sparse outer parts of the same cluster and in HST observations of the core of the higher density cluster 47 Tuc. The BSs in M3 are slightly more centrally concentrated than red giant branch stars while horizontal branch stars are somewhat less concentrated red giants. The radial distribution of V-selected subgiant and turnoff stars is well fit by a King model with a core radius r(sub core) = 28 arcmin +/- 2 arcmin (90% confidence limits), which corresponds to 1.4 pc. Red giant and horizontal branch stars selected in the ultraviolet data (U less than 18) have a somewhat more compact distribution (r(sub core) = 22.5 arcmin). The HST U data consist of 17 exposures acquired over a span of three days. We have used these data to isolate 40 variable stars for which relative astrometry, brightnesses, colors, and light curves are presented. A Kolmogorov-Smirnov test indicates that, typically, the variability for each star is significant at the 95% level. We identify two variable BS candidates (probably of the SX Phe type), out of a sample of approximately 25 BSs in which

  3. Multicolor Photometry of the Merging Galaxy Cluster A2319: Dynamics and Star Formation Properties

    NASA Astrophysics Data System (ADS)

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622^{+91}_{-70} km s-1, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ~10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ~ 20 mag. A u-band (~3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h BATC = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time scales, older stellar ages, and

  4. Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties

    SciTech Connect

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu E-mail: yuanqirong@njnu.edu.cn

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time

  5. Detailed photometric analysis of young star groups in the galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Rodríguez, M. J.; Baume, G.; Feinstein, C.

    2016-10-01

    Aims: The purpose of this work is to understand the global characteristics of the stellar populations in NGC 300. In particular, we focused our attention on searching young star groups and study their hierarchical organization. The proximity and orientation of this Sculptor Group galaxy make it an ideal candidate for this study. Methods: The research was conducted using archival point spread function (PSF) fitting photometry measured from images in multiple bands obtained with the Advanced Camera for Surveys of the Hubble Space Telescope (ACS/HST). Using the path linkage criterion (PLC), we cataloged young star groups and analyzed them from the observation of individual stars in the galaxy NGC 300. We also built stellar density maps from the bluest stars and applied the SExtractor code to identify overdensities. This method provided an additional tool for the detection of young stellar structures. By plotting isocontours over the density maps and comparing the two methods, we could infer and delineate the hierarchical structure of the blue population in the galaxy. For each region of a detected young star group, we estimated the size and derived the radial surface density profiles for stellar populations of different color (blue and red). A statistical decontamination of field stars was performed for each region. In this way it was possible to build the color-magnitude diagrams (CMD) and compare them with theoretical evolutionary models. We also constrained the present-day mass function (PDMF) per group by estimating a value for its slope. Results: The blue population distribution in NGC 300 clearly follows the spiral arms of the galaxy, showing a hierarchical behavior in which the larger and loosely distributed structures split into more compact and denser ones over several density levels. We created a catalog of 1147 young star groups in six fields of the galaxy NGC 300, in which we present their fundamental characteristics. The mean and the mode radius values

  6. Asteroseismic Diagram for Subgiants and Red Giants

    NASA Astrophysics Data System (ADS)

    Gai, Ning; Tang, Yanke; Yu, Peng; Dou, Xianghua

    2017-02-01

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ1–Δν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ1–Δν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M ⊙, the ΔΠ1–Δν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ, which indicate similar evolution states especially for similar mass stars, on the ΔΠ1–Δν diagram.

  7. The Critical Importance of Russell's Diagram

    NASA Astrophysics Data System (ADS)

    Gingerich, O.

    2013-04-01

    The idea of dwarf and giants stars, but not the nomenclature, was first established by Eijnar Hertzsprung in 1905; his first diagrams in support appeared in 1911. In 1913 Henry Norris Russell could demonstrate the effect far more strikingly because he measured the parallaxes of many stars at Cambridge, and could plot absolute magnitude against spectral type for many points. The general concept of dwarf and giant stars was essential in the galactic structure work of Harlow Shapley, Russell's first graduate student. In order to calibrate the period-luminosity relation of Cepheid variables, he was obliged to fall back on statistical parallax using only 11 Cepheids, a very sparse sample. Here the insight provided by the Russell diagram became critical. The presence of yellow K giant stars in globular clusters credentialed his calibration of the period-luminosity relation by showing that the calibrated luminosity of the Cepheids was comparable to the luminosity of the K giants. It is well known that in 1920 Shapley did not believe in the cosmological distances of Heber Curtis' spiral nebulae. It is not so well known that in 1920 Curtis' plot of the period-luminosity relation suggests that he didn't believe it was a physical relation and also he failed to appreciate the significance of the Russell diagram for understanding the large size of the Milky Way.

  8. The Recent Star Formation History of GR 8 from Hubble Space Telescope Photometry of the Resolved Stars

    NASA Astrophysics Data System (ADS)

    Dohm-Palmer, Robbie C.; Skillman, E. D.; Gallagher, J.; Tolstoy, E.; Mateo, Mario; Dufour, R. J.; Saha, A.; Hoessel, J.; Chiosi, C.

    1998-09-01

    We have used the Hubble Space Telescope to observe the resolved stars in the dwarf irregular galaxy GR 8 (DDO 155, UGC 8091). The data consisted of dithered Wide Field Planetary Camera 2 images in three bands: F439W (1 hr), F555W (30 minutes), and F814W (30 minutes). The stellar photometry was extracted with a modified version of DoPHOT. Artificial star tests showed the data to be 50% complete to V = 26.3, B = 25.4, and I = 25.2. The color-magnitude diagrams contain well-defined populations, including a very young main sequence (MS) (<10 Myr), and a red giant branch as old as several Gyr. These features align well with stellar evolution models of the appropriate metallicity. The distance based on the tip of the red giant branch is in excellent agreement with the Cepheid determination of mu = 26.75 +/- 0.35 (2.2 Mpc), which we adopted. An extended stellar ``halo'' was discovered well beyond the H i. Based on the MS and blue HeB luminosity function, we calculated the star formation rate (SFR) over the past 500 Myr. The SFR has been fairly constant, at 400 M_⊙ Myr^-1 kpc^-2 with up to 60% variations. The blue HeB stars were used as a tracer for the location of star formation over this time period. The star formation occurred in superassociation size regions (100-200 pc), which lasted ~100 Myr. These regions come and go with no obvious pattern, except that they seem to concentrate in the current locations of H i clumps. This suggested that the H i clumps are long-lived features that support several star-forming events over time. The most likely explanation is that the star-forming regions are gravitationally bound. We estimated the gas-to-star conversion efficiency to be 6%. We compared our results with those of three other dI galaxies: Sextans A, Pegasus DIG, and Leo A. There is a trend of higher SFR per area with larger M_HI/L_B. Also, the star formation pattern is similar in all four galaxies. Finally, none of the four dI galaxies contained a large starburst

  9. The Advanced Camera for Surveys Nearby Galaxy Survey Treasury. V. Radial Star Formation History of NGC 300

    NASA Astrophysics Data System (ADS)

    Gogarten, Stephanie M.; Dalcanton, Julianne J.; Williams, Benjamin F.; Roškar, Rok; Holtzman, Jon; Seth, Anil C.; Dolphin, Andrew; Weisz, Daniel; Cole, Andrew; Debattista, Victor P.; Gilbert, Karoline M.; Olsen, Knut; Skillman, Evan; de Jong, Roelof S.; Karachentsev, Igor D.; Quinn, Thomas R.

    2010-04-01

    We present new Hubble Space Telescope (HST) observations of NGC 300 taken as part of the Advanced Camera for Surveys Nearby Galaxy Survey Treasury (ANGST). Individual stars are resolved in these images down to an absolute magnitude of M F814W = 1.0 (below the red clump). We determine the star formation history of the galaxy in six radial bins by comparing our observed color-magnitude diagrams (CMDs) with synthetic CMDs based on theoretical isochrones. We find that the stellar disk out to 5.4 kpc is primarily old, in contrast with the outwardly similar galaxy M33. We determine the scale length as a function of age and find evidence for inside-out growth of the stellar disk: the scale length has increased from 1.1 ± 0.1 kpc 10 Gyr ago to 1.3 ± 0.1 kpc at present, indicating a buildup in the fraction of young stars at larger radii. As the scale length of M33 has recently been shown to have increased much more dramatically with time, our results demonstrate that two galaxies with similar sizes and morphologies can have very different histories. With an N-body simulation of a galaxy designed to be similar to NGC 300, we determine that the effects of radial migration should be minimal. We trace the metallicity gradient as a function of time and find a present-day metallicity gradient consistent with that seen in previous studies. Consistent results are obtained from archival images covering the same radial extent but differing in placement and filter combination.

  10. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    SciTech Connect

    Mapelli, Michela; Zampieri, Luca

    2014-10-10

    We have run 600 N-body simulations of intermediate-mass (∼3500 M {sub ☉}) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z {sub ☉}). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M {sub ☉} are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z {sub ☉}). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo an RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z {sub ☉}), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.

  11. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. V. RADIAL STAR FORMATION HISTORY OF NGC 300

    SciTech Connect

    Gogarten, Stephanie M.; Dalcanton, Julianne J.; Williams, Benjamin F.; Roskar, Rok; Gilbert, Karoline M.; Quinn, Thomas R.; Holtzman, Jon; Seth, Anil C.; Dolphin, Andrew; Weisz, Daniel; Skillman, Evan; Cole, Andrew; Debattista, Victor P.; Olsen, Knut; De Jong, Roelof S.; Karachentsev, Igor D.

    2010-04-01

    We present new Hubble Space Telescope (HST) observations of NGC 300 taken as part of the Advanced Camera for Surveys Nearby Galaxy Survey Treasury (ANGST). Individual stars are resolved in these images down to an absolute magnitude of M{sub F814W} = 1.0 (below the red clump). We determine the star formation history of the galaxy in six radial bins by comparing our observed color-magnitude diagrams (CMDs) with synthetic CMDs based on theoretical isochrones. We find that the stellar disk out to 5.4 kpc is primarily old, in contrast with the outwardly similar galaxy M33. We determine the scale length as a function of age and find evidence for inside-out growth of the stellar disk: the scale length has increased from 1.1 +- 0.1 kpc 10 Gyr ago to 1.3 +- 0.1 kpc at present, indicating a buildup in the fraction of young stars at larger radii. As the scale length of M33 has recently been shown to have increased much more dramatically with time, our results demonstrate that two galaxies with similar sizes and morphologies can have very different histories. With an N-body simulation of a galaxy designed to be similar to NGC 300, we determine that the effects of radial migration should be minimal. We trace the metallicity gradient as a function of time and find a present-day metallicity gradient consistent with that seen in previous studies. Consistent results are obtained from archival images covering the same radial extent but differing in placement and filter combination.

  12. The star formation histories of local group dwarf galaxies. I. Hubble space telescope/wide field planetary camera 2 observations

    SciTech Connect

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-10

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10{sup 5} M{sub ☉} to 30% for galaxies with M > 10{sup 7} M{sub ☉}) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

  13. The Distances to Open Clusters from Main-sequence Fitting. V. Extension of Color Calibration and Test Using Cool and Metal-rich Stars in NGC 6791

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Terndrup, Donald M.; Pinsonneault, Marc H.; Lee, Jae-Woo

    2015-09-01

    We extend our effort to calibrate stellar isochrones in the Johnson-Cousins ({{BVI}}C) and the 2MASS ({{JHK}}s) filter systems based on observations of well-studied open clusters. Using cool main-sequence (MS) stars in Praesepe, we define empirical corrections to the Lejeune et al. color-effective temperature ({T}{eff}) relations down to {T}{eff}˜ 3600 {{K}}, complementing our previous work based on the Hyades and the Pleiades. We apply empirically corrected isochrones to existing optical and near-infrared photometry of cool ({T}{eff}≲ 5500 {{K}}) and metal-rich ([{Fe}/{{H}}]= +0.37) MS stars in NGC 6791. The current methodology relies on an assumption that color-{T}{eff} corrections are independent of metallicity, but we find that estimates of color excess and distance from color-magnitude diagrams with different color indices converge on each other at the precisely known metallicity of the cluster. Along with a satisfactory agreement with eclipsing binary data in the cluster, we view the improved internal consistency as a validation of our calibrated isochrones at super-solar metallicities. For very cool stars ({T}{eff}≲ 4800 {{K}}), however, we find that B - V colors of our models are systematically redder than the cluster photometry by ˜0.02 mag. We use color-{T}{eff} transformations from the infrared flux method and alternative photometry to examine a potential color-scale error in the input cluster photometry. After excluding B - V photometry of these cool MS stars, we derive E(B\\-\\V)=0.105+/- 0.014, [M/H]\\=\\+0.42+/- 0.07, {(m\\-\\M)}0=13.04+/- 0.08, and the age of 9.5 ± 0.3 Gyr for NGC 6791.

  14. Hubble Tarantula Treasury Project. III. Photometric Catalog and Resulting Constraints on the Progression of Star Formation in the 30 Doradus Region

    NASA Astrophysics Data System (ADS)

    Sabbi, E.; Lennon, D. J.; Anderson, J.; Cignoni, M.; van der Marel, R. P.; Zaritsky, D.; De Marchi, G.; Panagia, N.; Gouliermis, D. A.; Grebel, E. K.; Gallagher, J. S., III; Smith, L. J.; Sana, H.; Aloisi, A.; Tosi, M.; Evans, C. J.; Arab, H.; Boyer, M.; de Mink, S. E.; Gordon, K.; Koekemoer, A. M.; Larsen, S. S.; Ryon, J. E.; Zeidler, P.

    2016-01-01

    We present and describe the astro-photometric catalog of more than 800,000 sources found in the Hubble Tarantula Treasury Project (HTTP). HTTP is a Hubble Space Telescope Treasury program designed to image the entire 30 Doradus region down to the sub-solar (˜0.5 M⊙) mass regime using the Wide Field Camera 3 and the Advanced Camera for Surveys. We observed 30 Doradus in the near-ultraviolet (F275W, F336W), optical (F555W, F658N, F775W), and near-infrared (F110W, F160W) wavelengths. The stellar photometry was measured using point-spread function fitting across all bands simultaneously. The relative astrometric accuracy of the catalog is 0.4 mas. The astro-photometric catalog, results from artificial star experiments, and the mosaics for all the filters are available for download. Color-magnitude diagrams are presented showing the spatial distributions and ages of stars within 30 Dor as well as in the surrounding fields. HTTP provides the first rich and statistically significant sample of intermediate- and low-mass pre-main sequence candidates and allows us to trace how star formation has been developing through the region. The depth and high spatial resolution of our analysis highlight the dual role of stellar feedback in quenching and triggering star formation on the giant H ii region scale. Our results are consistent with stellar sub-clustering in a partially filled gaseous nebula that is offset toward our side of the Large Magellanic Cloud. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  15. The Age and Distance of the Kepler Open Cluster NGC 6811 from an Eclipsing Binary, Turnoff Star Pulsation, and Giant Asteroseismology

    NASA Astrophysics Data System (ADS)

    Sandquist, Eric L.; Jessen-Hansen, J.; Shetrone, Matthew D.; Brogaard, Karsten; Meibom, Søren; Leitner, Marika; Stello, Dennis; Bruntt, Hans; Antoci, Victoria; Orosz, Jerome A.; Grundahl, Frank; Frandsen, Søren

    2016-11-01

    We present the analysis of an eccentric, partially eclipsing long-period (P = 19.23 days) binary system KIC 9777062 that contains main-sequence stars near the turnoff of the intermediate-age open cluster NGC 6811. The primary is a metal-lined Am star with a possible convective blueshift to its radial velocities, and one star (probably the secondary) is likely to be a γ Dor pulsator. The component masses are 1.603 ± 0.006(stat.) ± 0.016(sys.) and 1.419 ± 0.003 ± 0.008 {M}⊙ , and the radii are 1.744 ± 0.004 ± 0.002 and 1.544 ± 0.002 ± 0.002 {R}⊙ . The isochrone ages of the stars are mildly inconsistent: the age from the mass-radius combination for the primary (1.05 ± 0.05 ± 0.09 Gyr, where the last quote was systematic uncertainty from models and metallicity) is smaller than that from the secondary (1.21 ± 0.05 ± 0.15 Gyr) and is consistent with the inference from the color-magnitude diagram (1.00 ± 0.05 Gyr). We have improved the measurements of the asteroseismic parameters Δν and ν max for helium-burning stars in the cluster. The masses of the stars appear to be larger (or alternately, the radii appear to be smaller) than predicted from isochrones using the ages derived from the eclipsing stars. The majority of stars near the cluster turnoff are pulsating stars: we identify a sample of 28 δ Sct, 15 γ Dor, and 5 hybrid types. We used the period-luminosity relation for high-amplitude δ Sct stars to fit the ensemble of the strongest frequencies for the cluster members, finding {(m-M)}V=10.37+/- 0.03. This is larger than most previous determinations, but smaller than values derived from the eclipsing binary (10.47 ± 0.05). Based on observations made with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen, and with the Nordic Optical Telescope, operated by the Nordic

  16. Age determination of 15 old to intermediate-age small Magellanic cloud star clusters

    SciTech Connect

    Parisi, M. C.; Clariá, J. J.; Piatti, A. E.; Geisler, D.; Leiton, R.; Carraro, G.; Costa, E.; Grocholski, A. J.; Sarajedini, A. E-mail: claria@oac.uncor.edu E-mail: dgeisler@astro-udec.cl E-mail: gcarraro@eso.org E-mail: grocholski@phys.lsu.edu

    2014-04-01

    We present color-magnitude diagrams in the V and I bands for 15 star clusters in the Small Magellanic Cloud (SMC) based on data taken with the Very Large Telescope (VLT, Chile). We selected these clusters from our previous work, wherein we derived cluster radial velocities and metallicities from calcium II infrared triplet (CaT) spectra also taken with the VLT. We discovered that the ages of six of our clusters have been appreciably underestimated by previous studies, which used comparatively small telescopes, graphically illustrating the need for large apertures to obtain reliable ages of old and intermediate-age SMC star clusters. In particular, three of these clusters, L4, L6, and L110, turn out to be among the oldest SMC clusters known, with ages of 7.9 ± 1.1, 8.7 ± 1.2, and 7.6 ± 1.0 Gyr, respectively, helping to fill a possible 'SMC cluster age gap'. Using the current ages and metallicities from Parisi et al., we analyze the age distribution, age gradient, and age-metallicity relation (AMR) of a sample of SMC clusters measured homogeneously. There is a suggestion of bimodality in the age distribution but it does not show a constant slope for the first 4 Gyr, and we find no evidence for an age gradient. Due to the improved ages of our cluster sample, we find that our AMR is now better represented in the intermediate/old period than we had derived in Parisi et al., where we simply took ages available in the literature. Additionally, clusters younger than ∼4 Gyr now show better agreement with the bursting model of Pagel and Tautvaišienė, but we confirm that this model is not a good representation of the AMR during the intermediate/old period. A more complicated model is needed to explain the SMC chemical evolution in that period.

  17. THE NATURE OF STARBURSTS. I. THE STAR FORMATION HISTORIES OF EIGHTEEN NEARBY STARBURST DWARF GALAXIES

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Stark, David; Weisz, Daniel; Cannon, John M.; Dalcanton, Julianne; Williams, Benjamin; Dolphin, Andrew; Hidalgo-RodrIguez, Sebastian

    2010-09-20

    We use archival Hubble Space Telescope observations of resolved stellar populations to derive the star formation histories (SFHs) of 18 nearby starburst dwarf galaxies. In this first paper, we present the observations, color-magnitude diagrams (CMDs), and the SFHs of the 18 starburst galaxies, based on a homogeneous approach to the data reduction, differential extinction, and treatment of photometric completeness. We adopt a star formation rate (SFR) threshold normalized to the average SFR of the individual system as a metric for classifying starbursts in SFHs derived from resolved stellar populations. This choice facilitates finding not only the currently bursting galaxies but also 'fossil' bursts increasing the sample size of starburst galaxies in the nearby (D < 8 Mpc) universe. Thirteen of the eighteen galaxies are experiencing ongoing bursts and five galaxies show fossil bursts. From our reconstructed SFHs, it is evident that the elevated SFRs of a burst are sustained for hundreds of Myr with variations on small timescales. A long >100 Myr temporal baseline is thus fundamental to any starburst definition or identification method. The longer lived bursts rule out rapid 'self-quenching' of starbursts on global scales. The bursting galaxies' gas consumption timescales are shorter than the Hubble time for all but one galaxy confirming the short-lived nature of starbursts based on fuel limitations. Additionally, we find that the strength of the H{alpha} emission usually correlates with the CMD-based SFR during the last 4-10 Myr. However, in four cases, the H{alpha} emission is significantly less than what is expected for models of starbursts; the discrepancy is due to the SFR changing on timescales of a few Myr. The inherently short timescale of the H{alpha} emission limits identifying galaxies as starbursts based on the current characteristics which may or may not be representative of the recent SFH of a galaxy.

  18. Constraints on the Distance Moduli, Helium and Metal Abundances, and Ages of Globular Clusters from their RR Lyrae and Non-variable Horizontal-branch Stars. I. M3, M15, and M92

    NASA Astrophysics Data System (ADS)

    VandenBerg, Don A.; Denissenkov, P. A.; Catelan, Márcio

    2016-08-01

    Up-to-date isochrones, zero-age horizontal-branch (ZAHB) loci, and evolutionary tracks for core He-burning stars are applied to the color-magnitude diagrams of M3, M15, and M92, focusing in particular on their RR Lyrae populations. Periods for the ab- and c-type variables are calculated using the latest theoretical calibrations of {log} {P}{ab} and {log} {P}c as a function of luminosity, mass, effective temperature ({T}{{eff}}), and metallicity. Our models are generally able to reproduce the measured periods to well within the uncertainties implied by the stellar properties on which pulsation periods depend, as well as the mean periods and cluster-to-cluster differences in < {P}{ab}> and < {P}c> , on the assumption of well-supported values of E(B-V), {(m-M)}V, and [Fe/H]. While many of RR Lyrae in M3 lie close to the same ZAHB that fits the faintest horizontal-branch (HB) stars at bluer or redder colors, the M92 variables are all significantly evolved stars from ZAHB locations on the blue side of the instability strip. M15 appears to contain a similar population of HB stars as M92, along with additional helium-enhanced populations not present in the latter which comprise most of its RR Lyrae stars. The large number of variables in M15 and the similarity of the observed values of < {P}{ab}> and < {P}c> in M15 and M92 can be explained by HB models that allow for variations in Y. Similar ages (˜12.5 Gyr) are found for all three clusters, making them significantly younger than the field halo subgiant HD 140283. Our analysis suggests a preference for stellar models that take diffusive processes into account.

  19. Elementary diagrams in nuclear and neutron matter

    SciTech Connect

    Wiringa, R.B.

    1995-08-01

    Variational calculations of nuclear and neutron matter are currently performed using a diagrammatic cluster expansion with the aid of nonlinear integral equations for evaluating expectation values. These are the Fermi hypernetted chain (FHNC) and single-operator chain (SOC) equations, which are a way of doing partial diagram summations to infinite order. A more complete summation can be made by adding elementary diagrams to the procedure. The simplest elementary diagrams appear at the four-body cluster level; there is one such E{sub 4} diagram in Bose systems, but 35 diagrams in Fermi systems, which gives a level of approximation called FHNC/4. We developed a novel technique for evaluating these diagrams, by computing and storing 6 three-point functions, S{sub xyz}(r{sub 12}, r{sub 13}, r{sub 23}), where xyz (= ccd, cce, ddd, dde, dee, or eee) denotes the exchange character at the vertices 1, 2, and 3. All 35 Fermi E{sub 4} diagrams can be constructed from these 6 functions and other two-point functions that are already calculated. The elementary diagrams are known to be important in some systems like liquid {sup 3}He. We expect them to be small in nuclear matter at normal density, but they might become significant at higher densities appropriate for neutron star calculations. This year we programmed the FHNC/4 contributions to the energy and tested them in a number of simple model cases, including liquid {sup 3}He and Bethe`s homework problem. We get reasonable, but not exact agreement with earlier published work. In nuclear and neutron matter with the Argonne v{sub 14} interaction these contributions are indeed small corrections at normal density and grow to only 5-10 MeV/nucleon at 5 times normal density.

  20. Inductively generating Euler diagrams.

    PubMed

    Stapleton, Gem; Rodgers, Peter; Howse, John; Zhang, Leishi

    2011-01-01

    Euler diagrams have a wide variety of uses, from information visualization to logical reasoning. In all of their application areas, the ability to automatically layout Euler diagrams brings considerable benefits. In this paper, we present a novel approach to Euler diagram generation. We develop certain graphs associated with Euler diagrams in order to allow curves to be added by finding cycles in these graphs. This permits us to build Euler diagrams inductively, adding one curve at a time. Our technique is adaptable, allowing the easy specification, and enforcement, of sets of well-formedness conditions; we present a series of results that identify properties of cycles that correspond to the well-formedness conditions. This improves upon other contributions toward the automated generation of Euler diagrams which implicitly assume some fixed set of well-formedness conditions must hold. In addition, unlike most of these other generation methods, our technique allows any abstract description to be drawn as an Euler diagram. To establish the utility of the approach, a prototype implementation has been developed.

  1. Phase diagram of Hertzian spheres

    NASA Astrophysics Data System (ADS)

    Pàmies, Josep C.; Cacciuto, Angelo; Frenkel, Daan

    2009-07-01

    We report the phase diagram of interpenetrating Hertzian spheres. The Hertz potential is purely repulsive, bounded at zero separation, and decreases monotonically as a power law with exponent 5/2, vanishing at the overlapping threshold. This simple functional describes the elastic interaction of weakly deformable bodies and, therefore, it is a reliable physical model of soft macromolecules, like star polymers and globular micelles. Using thermodynamic integration and extensive Monte Carlo simulations, we computed accurate free energies of the fluid phase and a large number of crystal structures. For this, we defined a general primitive unit cell that allows for the simulation of any lattice. We found multiple re-entrant melting and first-order transitions between crystals with cubic, trigonal, tetragonal, and hexagonal symmetries.

  2. Square Source Type Diagram

    NASA Astrophysics Data System (ADS)

    Aso, N.; Ohta, K.; Ide, S.

    2014-12-01

    Deformation in a small volume of earth interior is expressed by a symmetric moment tensor located on a point source. The tensor contains information of characteristic directions, source amplitude, and source types such as isotropic, double-couple, or compensated-linear-vector-dipole (CLVD). Although we often assume a double couple as the source type of an earthquake, significant non-double-couple component including isotropic component is often reported for induced earthquakes and volcanic earthquakes. For discussions on source types including double-couple and non-double-couple components, it is helpful to display them using some visual diagrams. Since the information of source type has two degrees of freedom, it can be displayed onto a two-dimensional flat plane. Although the diagram developed by Hudson et al. [1989] is popular, the trace corresponding to the mechanism combined by two mechanisms is not always a smooth line. To overcome this problem, Chapman and Leaney [2012] developed a new diagram. This diagram has an advantage that a straight line passing through the center corresponds to the mechanism obtained by a combination of an arbitrary mechanism and a double-couple [Tape and Tape, 2012], but this diagram has some difficulties in use. First, it is slightly difficult to produce the diagram because of its curved shape. Second, it is also difficult to read out the ratios among isotropic, double-couple, and CLVD components, which we want to obtain from the estimated moment tensors, because they do not appear directly on the horizontal or vertical axes. In the present study, we developed another new square diagram that overcomes the difficulties of previous diagrams. This diagram is an orthogonal system of isotropic and deviatoric axes, so it is easy to get the ratios among isotropic, double-couple, and CLVD components. Our diagram has another advantage that the probability density is obtained simply from the area within the diagram if the probability density

  3. THE SLOW DEATH (OR REBIRTH?) OF EXTENDED STAR FORMATION IN z {approx} 0.1 GREEN VALLEY EARLY-TYPE GALAXIES

    SciTech Connect

    Fang, Jerome J.; Faber, S. M.; Graves, Genevieve J.; Rich, R. Michael

    2012-12-10

    UV observations in the local universe have uncovered a population of early-type galaxies with UV flux consistent with low-level recent or ongoing star formation. Understanding the origin of such star formation remains an open issue. We present resolved UV-optical photometry of a sample of 19 Sloan Digital Sky Survey (SDSS) early-type galaxies at z {approx} 0.1 drawn from the sample originally selected by Salim and Rich to lie in the bluer part of the green valley in the UV-optical color-magnitude diagram as measured by the Galaxy Evolution Explorer (GALEX). Utilizing high-resolution Hubble Space Telescope (HST) far-UV imaging provides unique insight into the distribution of UV light in these galaxies, which we call ''extended star-forming early-type galaxies'' (ESF-ETGs) because of extended UV emission that is indicative of recent star formation. The UV-optical color profiles of all ESF-ETGs show red centers and blue outer parts. Their outer colors require the existence of a significant underlying population of older stars in the UV-bright regions. An analysis of stacked SDSS spectra reveals weak LINER-like emission in their centers. Using a cross-matched SDSS DR7/GALEX GR6 catalog, we search for other green valley galaxies with similar properties to these ESF-ETGs and estimate that Almost-Equal-To 13% of dust-corrected green valley galaxies of similar stellar mass and UV-optical color are likely ESF-candidates, i.e., ESF-ETGs are not rare. Our results are consistent with star formation that is gradually declining in existing disks, i.e., the ESF-ETGs are evolving onto the red sequence for the first time, or with rejuvenated star formation due to accreted gas in older disks provided that the gas does not disrupt the structure of the galaxy and the resulting star formation is not too recent and bursty. ESF-ETGs may typify an important subpopulation of galaxies that can linger in the green valley for up to several Gyrs, based on their resemblance to nearby gas

  4. INFORMATION ON THE MILKY WAY FROM THE 2MASS ALL SKY STAR COUNT: BIMODAL COLOR DISTRIBUTIONS

    SciTech Connect

    Chang, Chan-Kao; Lai, Shao-Yu; Peng, Ting-Hung; Ko, Chung-Ming E-mail: cmko@astro.ncu.edu.tw

    2012-11-10

    The J - K{sub s} color distributions (CDs) with a bin size of 0.05 mag has been carried out for the entire Milky Way using the Two Micron All Sky Survey Point Source Catalog (2MASS PSC). The CDs are bimodal, with a red peak at 0.8 < J - K{sub s} < 0.85 and a blue peak at 0.3 < J - K{sub s} < 0.4. The colors of the red peak are more or less the same for the whole sky, but those of the blue peak depend on Galactic latitude (J - K{sub s} {approx} 0.35 at low Galactic latitudes and 0.35 < J - K{sub s} < 0.4 for other sky areas). The blue peak dominates the bimodal CDs at low Galactic latitudes and becomes comparable with the red peak in other sky regions. In order to explain the bimodal distribution and the global trend shown by the all-sky 2MASS CDs, we assemble an empirical Hertzsprung-Russell (H-R) diagram, which is composed of observational-based near-infrared H-R diagrams and color-magnitude diagrams, and incorporate a Milky Way model. In the empirical H-R diagram, the main-sequence turn-off for stars in the thin disk is relatively bluer, (J - K{sub s} ){sub 0} = 0.31, compared with that of the thick disk which is (J - K{sub s} ){sub 0} = 0.39. The age of the thin/thick disk is roughly estimated to be around 4-5/8-9 Gyr according to the color-age relation of the main-sequence turn-off. In general, the 2MASS CDs can be treated as a tool to measure the age of the stellar population of the Milky Way in a statistical manner and to our knowledge it is the first attempt to do so.

  5. VizieR Online Data Catalog: KPNO spectroscopy of G & K dwarfs HIP stars (Kim+, 2016)

    NASA Astrophysics Data System (ADS)

    Kim, B.; An, D.; Stauffer, J. R.; Lee, Y. S.; Terndrup, D. M.; Johnson, J. A.

    2016-07-01

    We selected a random subset of Hipparcos field stars that satisfy our color-magnitude cut, and obtained their high-resolution (R~60000) spectra with the echelle spectrograph on the Mayall 4m telescope at Kitt Peak National Observatory (KPNO). Our observing campaign was composed of five nights in 2010 May and four nights in 2010 September. The wavelength coverages were set to 4340-7670Å in May, and 4400-7870Å in September. (4 data files).

  6. Instability Regions in the Upper HR Diagram

    NASA Technical Reports Server (NTRS)

    deJager, Cornelis; Lobel, Alex; Nieuwenhuijzen, Hans; Stothers, Richard; Hansen, James E. (Technical Monitor)

    2001-01-01

    The following instability regions for blueward evolving supergiants are outlined and compared: (1) Areas in the Hertzsprung-Russell(HR) diagram where stars are dynamically unstable. (2) Areas where the effective acceleration in the upper part of the photospheres is negative, hence directed outward. (3) Areas where the sonic points of the stellar wind (Where wind velocity = sound velocity) are situated inside the photospheres, at a level deeper than tau(sub Ross) = 0.01. We compare the results with the positions of actual stars in the HR diagram and we find evidence that the recent strong contraction of the yellow hypergiant HR8752 was initiated in a period during which (g(sub eff)) is less than 0, whereupon the star became dynamically unstable. The instability and extreme shells around IRC+10420 are suggested to be related to three factors: (g(sub eff)) is less than 0; the sonic point is situated inside the photosphere; and the star is dynamically unstable.

  7. New clues to the cause of extended main-sequence turnoffs in intermediate-age star clusters in the Magellanic Clouds

    SciTech Connect

    Correnti, Matteo; Goudfrooij, Paul; Kalirai, Jason S.; Girardi, Leo; Puzia, Thomas H.; Kerber, Leandro E-mail: goudfroo@stsci.edu E-mail: leo.girardi@oapd.inaf.it E-mail: lkerber@gmail.com

    2014-10-01

    We use the Wide Field Camera 3 on board the Hubble Space Telescope (HST) to obtain deep, high-resolution images of two intermediate-age star clusters in the Large Magellanic Cloud of relatively low mass (≈10{sup 4} M {sub ☉}) and significantly different core radii, namely NGC 2209 and NGC 2249. For comparison purposes, we also reanalyzed archival HST images of NGC 1795 and IC 2146, two other relatively low-mass star clusters. From the comparison of the observed color-magnitude diagrams with Monte Carlo simulations, we find that the main-sequence turnoff (MSTO) regions in NGC 2209 and NGC 2249 are significantly wider than that derived from simulations of simple stellar populations, while those in NGC 1795 and IC 2146 are not. We determine the evolution of the clusters' masses and escape velocities from an age of 10 Myr to the present age. We find that differences among these clusters can be explained by dynamical evolution arguments if the currently extended clusters (NGC 2209 and IC 2146) experienced stronger levels of initial mass segregation than the currently compact ones (NGC 2249 and NGC 1795). Under this assumption, we find that NGC 2209 and NGC 2249 have estimated escape velocities, V {sub esc} ≳ 15 km s{sup –1} at an age of 10 Myr, large enough to retain material ejected by slow winds of first-generation stars, while the two clusters that do not feature extended MSTOs have V {sub esc} ≲ 12 km s{sup –1} at that age. These results suggest that the extended MSTO phenomenon can be better explained by a range of stellar ages rather than a range of stellar rotation velocities or interacting binaries.

  8. Luminous and Variable Stars in M31 and M33. III. The Yellow and Red Supergiants and Post-red Supergiant Evolution

    NASA Astrophysics Data System (ADS)

    Gordon, Michael S.; Humphreys, Roberta M.; Jones, Terry J.

    2016-07-01

    Recent supernova (SN) and transient surveys have revealed an increasing number of non-terminal stellar eruptions. Though the progenitor class of these eruptions includes the most luminous stars, little is known of the pre-SN mechanics of massive stars in their most evolved state, thus motivating a census of possible progenitors. From surveys of evolved and unstable luminous star populations in nearby galaxies, we select a sample of yellow and red supergiant (RSG) candidates in M31 and M33 for review of their spectral characteristics and spectral energy distributions (SEDs). Since the position of intermediate- and late-type supergiants on the color-magnitude diagram can be heavily contaminated by foreground dwarfs, we employ spectral classification and multi-band photometry from optical and near-infrared surveys to confirm membership. Based on spectroscopic evidence for mass loss and the presence of circumstellar (CS) dust in their SEDs, we find that 30%-40% of the yellow supergiants are likely in a post-RSG state. Comparison with evolutionary tracks shows that these mass-losing, post-RSGs have initial masses between 20 and 40 M ⊙. More than half of the observed RSGs in M31 and M33 are producing dusty CS ejecta. We also identify two new warm hypergiants in M31, J004621.05+421308.06 and J004051.59+403303.00, both of which are likely in a post-RSG state. Based on observations obtained with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  9. MAIN-SEQUENCE STAR POPULATIONS IN THE VIRGO OVERDENSITY REGION

    SciTech Connect

    Jerjen, H.; Da Costa, G. S.; Tisserand, P.; Willman, B.; Arimoto, N.; Okamoto, S.; Mateo, M.; Saviane, I.; Walsh, S.; Geha, M.; Jordan, A.; Zoccali, M.; Olszewski, E.; Walker, M.; Kroupa, P.

    2013-05-20

    We present deep color-magnitude diagrams (CMDs) for two Subaru Suprime-Cam fields in the Virgo Stellar Stream (VSS)/Virgo Overdensity (VOD) and compare them to a field centered on the highest concentration of Sagittarius (Sgr) Tidal Stream stars in the leading arm, Branch A of the bifurcation. A prominent population of main-sequence stars is detected in all three fields and can be traced as faint as g Almost-Equal-To 24 mag. Using theoretical isochrone fitting, we derive an age of 9.1{sup +1.0}{sub -1.1} Gyr, a median abundance of [Fe/H] = -0.70{sup +0.15}{sub -0.20} dex, and a heliocentric distance of 30.9 {+-} 3.0 kpc for the main sequence of the Sgr Stream Branch A. The dominant main-sequence populations in the two VSS/VOD fields ({Lambda}{sub Sun} Almost-Equal-To 265 Degree-Sign , B{sub Sun} Almost-Equal-To 13 Degree-Sign ) are located at a mean distance of 23.3 {+-} 1.6 kpc and have an age of {approx}8.2 Gyr, and an abundance of [Fe/H] = -0.67{sup +0.16}{sub -0.12} dex, similar to the Sgr Stream stars. These statistically robust parameters, derived from the photometry of 260 main-sequence stars, are also in good agreement with the age of the main population in the Sgr dwarf galaxy (8.0 {+-} 1.5 Gyr). They also agree with the peak in the metallicity distribution of 2-3 Gyr old M giants, [Fe/H] Almost-Equal-To -0.6 dex, in the Sgr north leading arm. We then compare the results from the VSS/VOD fields with the Sgr Tidal Stream model by Law and Majewski based on a triaxial Galactic halo shape that is empirically calibrated with Sloan Digital Sky Survey Sgr A-branch and Two Micron All Sky Survey M-giant stars. We find that the most prominent feature in the CMDs, the main-sequence population at 23 kpc, is not explained by the model. Instead the model predicts in these directions a low-density filamentary structure of Sgr debris stars at {approx}9 kpc and a slightly higher concentration of Sgr stars spread over a heliocentric distance range of 42-53 kpc. At best

  10. Main-Sequence Star Populations in the Virgo Overdensity Region

    NASA Astrophysics Data System (ADS)

    Jerjen, H.; Da Costa, G. S.; Willman, B.; Tisserand, P.; Arimoto, N.; Okamoto, S.; Mateo, M.; Saviane, I.; Walsh, S.; Geha, M.; Jordán, A.; Olszewski, E.; Walker, M.; Zoccali, M.; Kroupa, P.

    2013-05-01

    We present deep color-magnitude diagrams (CMDs) for two Subaru Suprime-Cam fields in the Virgo Stellar Stream (VSS)/Virgo Overdensity (VOD) and compare them to a field centered on the highest concentration of Sagittarius (Sgr) Tidal Stream stars in the leading arm, Branch A of the bifurcation. A prominent population of main-sequence stars is detected in all three fields and can be traced as faint as g ≈ 24 mag. Using theoretical isochrone fitting, we derive an age of 9.1^{+1.0}_{-1.1} Gyr, a median abundance of [Fe/H] = -0.70^{+0.15}_{-0.20} dex, and a heliocentric distance of 30.9 ± 3.0 kpc for the main sequence of the Sgr Stream Branch A. The dominant main-sequence populations in the two VSS/VOD fields (Λ⊙ ≈ 265°, B ⊙ ≈ 13°) are located at a mean distance of 23.3 ± 1.6 kpc and have an age of ~8.2 Gyr, and an abundance of [Fe/H] = -0.67^{+0.16}_{-0.12} dex, similar to the Sgr Stream stars. These statistically robust parameters, derived from the photometry of 260 main-sequence stars, are also in good agreement with the age of the main population in the Sgr dwarf galaxy (8.0 ± 1.5 Gyr). They also agree with the peak in the metallicity distribution of 2-3 Gyr old M giants, [Fe/H] ≈-0.6 dex, in the Sgr north leading arm. We then compare the results from the VSS/VOD fields with the Sgr Tidal Stream model by Law & Majewski based on a triaxial Galactic halo shape that is empirically calibrated with Sloan Digital Sky Survey Sgr A-branch and Two Micron All Sky Survey M-giant stars. We find that the most prominent feature in the CMDs, the main-sequence population at 23 kpc, is not explained by the model. Instead the model predicts in these directions a low-density filamentary structure of Sgr debris stars at ~9 kpc and a slightly higher concentration of Sgr stars spread over a heliocentric distance range of 42-53 kpc. At best there is only marginal evidence for the presence of these populations in our data. Our findings then suggest that while there are

  11. CALCULATING ASTEROSEISMIC DIAGRAMS FOR SOLAR-LIKE OSCILLATIONS

    SciTech Connect

    White, Timothy R.; Bedding, Timothy R.; Stello, Dennis; Huber, Daniel; Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans

    2011-12-20

    With the success of the Kepler and CoRoT missions, the number of stars with detected solar-like oscillations has increased by several orders of magnitude; for the first time we are able to perform large-scale ensemble asteroseismology of these stars. In preparation for this golden age of asteroseismology we have computed expected values of various asteroseismic observables from models of varying mass and metallicity. The relationships between these asteroseismic observables, such as the separations between mode frequencies, are able to significantly constrain estimates of the ages and masses of these stars. We investigate the scaling relation between the large frequency separation, {Delta}{nu}, and mean stellar density. Furthermore we present model evolutionary tracks for several asteroseismic diagrams. We have extended the so-called C-D diagram beyond the main sequence to the subgiants and the red giant branch. We also consider another asteroseismic diagram, the {epsilon} diagram, which is more sensitive to variations in stellar properties at the subgiant stages and can aid in determining the correct mode identification. The recent discovery of gravity-mode period spacings in red giants forms the basis for a third asteroseismic diagram. We compare the evolutionary model tracks in these asteroseismic diagrams with results from pre-Kepler studies of solar-like oscillations and early results from Kepler.

  12. Dynamics and Stellar Content of the Giant Southern Stream in M31. I. Keck Spectroscopy of Red Giant Stars

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Rich, R. Michael; Reitzel, David B.; Cooper, Michael C.; Gilbert, Karoline M.; Majewski, Steven R.; Ostheimer, James C.; Geha, Marla C.; Johnston, Kathryn V.; Patterson, Richard J.

    2006-05-01

    strengths of the M31 RGB stars are generally consistent with photometric estimates of their metallicity (derived by fitting RGB fiducials in the color-magnitude diagram). There is indirect evidence of a population of intermediate-age stars in the stream. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  13. Impulse-Momentum Diagrams

    ERIC Educational Resources Information Center

    Rosengrant, David

    2011-01-01

    Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists. These representations include: pictures, free-body diagrams, energy bar charts, electrical circuits, and, more recently, computer simulations and…

  14. THE ACS NEARBY GALAXY SURVEY TREASURY. VII. THE NGC 4214 STARBURST AND THE EFFECTS OF STAR FORMATION HISTORY ON DWARF MORPHOLOGY

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Weisz, Daniel R.; Seth, Anil C.; Skillman, Evan D.; Dolphin, Andrew E. E-mail: jd@astro.washington.edu E-mail: dweisz@astro.washington.edu E-mail: skillman@astro.umn.edu

    2011-07-01

    We present deep Hubble Space Telescope WFPC2 optical observations obtained as part of the ACS Nearby Galaxy Survey Treasury as well as early release Wide Field Camera 3 ultraviolet and infrared observations of the nearby dwarf starbursting galaxy NGC 4214. Our data provide a detailed example of how covering such a broad range in wavelength provides a powerful tool for constraining the physical properties of stellar populations. The deepest data reach the ancient red clump at M{sub F814W} {approx} - 0.2. All of the optical data reach the main-sequence turnoff for stars younger than {approx}300 Myr and the blue He-burning sequence for stars younger than 500 Myr. The full color-magnitude diagram (CMD) fitting analysis shows that all three fields in our data set are consistent with {approx}75% of the stellar mass being older than 8 Gyr, in spite of showing a wide range in star formation rates at present. Thus, our results suggest that the scale length of NGC 4214 has remained relatively constant for many gigayears. As previously noted by others, we also find the galaxy has recently ramped up production consistent with its bright UV luminosity and its population of UV-bright massive stars. In the central field we find UV point sources with F336W magnitudes as bright as -9.9. These are as bright as stars with masses of at least 52-56 M{sub sun} and ages near 4 Myr in stellar evolution models. Assuming a standard initial mass function, our CMD is well fitted by an increase in star formation rate beginning 100 Myr ago. The stellar populations of this late-type dwarf are compared with those of NGC 404, an early-type dwarf that is also the most massive galaxy in its local environment. The late-type dwarf appears to have a similar high fraction of ancient stars, suggesting that these dominant galaxies may form at early epochs even if they have low total mass and very different present-day morphologies.

  15. Age-dependent metallicity gradients of the MilkyWay disk from main sequence turn-off stars in LSS-GAC

    NASA Astrophysics Data System (ADS)

    Xiang, Maosheng; Liu, Xiaowei

    2015-08-01

    The stellar metallicity gradient plays an important role on constraining the formation and assemblage history of the Galactic disk. We use 297, 042 main sequence turn-off stars from LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC) to study the radial metallicity gradient, [Fe/H]/R, and the vertical metallicity gradient, [Fe/H]/|Z|, of the Galactic disk in the anti-center direction. We carry out age determination for these turnoff stars via isochrone fitting and study the age-dependent metallicity gradients. We have implemented a detailed analysis on the sample selection effect to account for the target selection in the color - magnitude diagram (CMD) and the potential bias on metallicity gradients of a magnitude limited sample. Our results show that both the radial and vertical gradients have strong spatial and temporal evolution. The radial gradients of the oldest (age > 11Gyr) stars are almost zero at all heights above the Galactic disk plane, while those of the younger stars are always negative. The vertical gradients of the oldest stars are negative and show very weak evolution with the Galactocentric distance in the disk plane, R, while those of the younger stars show strong evolution with R. At the early epoch, the radial gradient steepens as the age becomes younger, with a maximum occurs at 7 - 8Gyr, after then it becomes flatter. Similar trend with age is also presented in the vertical gradients. We infer that the formation of the Galactic disk has experienced at least two phases. The earlier phase is probably a slow, pressure-supported collapse of gas, where the gas settle down to the disk from the vertical direction. In the later phase, there is significant radial flow of gas. Transition of the gas behaviors between the two phases occurs between 8 and 11Gyr. The two phases are responsible for the formation of the Galactic thick and thin disks, respectively, and consequently, we recommend that the age is a natural, physical criterion to

  16. Age Determination of Six Intermediate-Age Small Magellanic Cloud Star Clusters with HST/ACS

    NASA Astrophysics Data System (ADS)

    Glatt, Katharina; Grebel, Eva K.; Sabbi, Elena; Gallagher, John S., III; Nota, Antonella; Sirianni, Marco; Clementini, Gisella; Tosi, Monica; Harbeck, Daniel; Koch, Andreas; Kayser, Andrea; Da Costa, Gary

    2008-10-01

    We present a photometric analysis of the star clusters Lindsay 1, Kron 3, NGC 339, NGC 416, Lindsay 38, and NGC 419 in the Small Magellanic Cloud (SMC), observed with the Hubble Space Telescope Advanced Camera for Surveys (ACS) in the F555W and F814W filters. Our color-magnitude diagrams (CMDs) extend ~3.5 mag deeper than the main-sequence turnoff points, deeper than any previous data. Cluster ages were derived using three different isochrone models: Padova, Teramo, and Dartmouth, which are all available in the ACS photometric system. Fitting observed ridgelines for each cluster, we provide a homogeneous and unique set of low-metallicity, single-age fiducial isochrones. The cluster CMDs are best approximated by the Dartmouth isochrones for all clusters, except for NGC 419 where the Padova isochrones provided the best fit. Using Dartmouth isochrones we derive ages of 7.5 ± 0.5 Gyr (Lindsay 1), 6.5 ± 0.5 Gyr (Kron 3), 6 ± 0.5 Gyr (NGC 339), 6 ± 0.5 Gyr (NGC 416), and 6.5 ± 0.5 Gyr (Lindsay 38). The CMD of NGC 419 shows several main-sequence turnoffs, which belong to the cluster and to the SMC field. We thus derive an age range of 1.2-1.6 Gyr for NGC 419. We confirm that the SMC contains several intermediate-age populous star clusters with ages unlike those of the Large Magellanic Cloud and the Milky Way. Interestingly, our intermediate-age star clusters have a metallicity spread of ~0.6 dex, which demonstrates that the SMC does not have a smooth, monotonic age-metallicity relation. We find an indication for centrally-concentrated blue straggler star candidates in NGC 416, while these are not present for the other clusters. Using the red clump magnitudes, we find that the closest cluster, NGC 419 (~50 kpc), and the farthest cluster, Lindsay 38 (~67 kpc), have a relative distance of ~17 kpc, which confirms the large depth of the SMC. The three oldest SMC clusters (NGC 121, Lindsay 1, and Kron 3) lie in the northwestern part of the SMC, while the youngest (NGC 419

  17. TEP process flow diagram

    SciTech Connect

    Wilms, R Scott; Carlson, Bryan; Coons, James; Kubic, William

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  18. THE ACS LCID PROJECT. VI. THE STAR FORMATION HISTORY OF THE TUCANA dSph AND THE RELATIVE AGES OF THE ISOLATED dSph GALAXIES

    SciTech Connect

    Monelli, M.; Gallart, C.; Hidalgo, S. L.; Aparicio, A.; Drozdovsky, I.

    2010-10-20

    We present a detailed study of the star formation history (SFH) of the Tucana dwarf spheroidal galaxy. High-quality, deep HST/ACS data, collected in the framework of the LCID project, allowed us to obtain the deepest color-magnitude diagram to date, reaching the old main-sequence turnoff (F814 {approx} 29) with good photometric accuracy. Our analysis, based on three different SFH codes, shows that Tucana is an old and metal-poor stellar system, which experienced a strong initial burst of star formation at a very early epoch ({approx_equal}13 Gyr ago) which lasted a maximum of 1 Gyr (sigma value). We are not able to unambiguously answer the question of whether most star formation in Tucana occurred before or after the end of the reionization era, and we analyze alternative scenarios that may explain the transformation of Tucana from a gas-rich galaxy into a dSph. Current measurements of its radial velocity do not preclude that Tucana may have crossed the inner regions of the Local Group (LG) once, and so gas stripping by ram pressure and tides due to a close interaction cannot be ruled out. A single pericenter passage would generate insufficient tidal heating to turn an originally disky dwarf into a true dSph; however, this possibility would be consistent with the observed residual rotation in Tucana. On the other hand, the high star formation rate measured at early times may have injected enough energy into the interstellar medium to blow out a significant fraction of the initial gas content. Gas that is heated but not blown out would also be more easily stripped via ram pressure. We compare the SFH inferred for Tucana with that of Cetus, the other isolated LG dSph galaxy in the LCID sample. We show that the formation time of the bulk of star formation in Cetus is clearly delayed with respect to that of Tucana. This reinforces the conclusion of Monelli et al. that Cetus formed the vast majority of its stars after the end of the reionization era implying, therefore

  19. Wilson Loop Diagrams and Positroids

    NASA Astrophysics Data System (ADS)

    Agarwala, Susama; Marin-Amat, Eloi

    2017-03-01

    In this paper, we study a new application of the positive Grassmannian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N= 4 Super Yang-Mill theory ( N = 4 SYM). There has been much interest in studying this theory via the positive Grassmannians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This allows us to apply the combinatorial tools in matroid theory used to identify positroids (non-negative Grassmannians) to Wilson loop diagrams. In doing so, we find that certain non-planar Wilson loop diagrams define positive Grassmannians. While non-planar diagrams do not have physical meaning, this finding suggests that they may have value as an algebraic tool, and deserve further investigation.

  20. STAR FORMATION AND YOUNG STELLAR CONTENT IN THE W3 GIANT MOLECULAR CLOUD

    SciTech Connect

    Rivera-Ingraham, Alana; Martin, Peter G.; Polychroni, Danae; Moore, Toby J. T.

    2011-12-10

    In this work, we have carried out an in-depth analysis of the young stellar content in the W3 giant molecular cloud (GMC). The young stellar object (YSO) population was identified and classified in the Infrared Array Camera/Multiband Imaging Photometer color-magnitude space according to the 'Class' scheme and compared to other classifications based on intrinsic properties. Class 0/I and II candidates were also compared to low-/intermediate-mass pre-main-sequence (PMS) stars selected through their colors and magnitudes in the Two Micron All Sky Survey. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate-mass objects can be more reliably identified. By means of the minimum spanning tree algorithm and our YSO spatial distribution and age maps, we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large-scale turbulence likely powered by isolated bursts of star formation that triggered secondary star formation events. Star formation in the eastern high-density layer (HDL) also shows signs of quiescent and triggered stellar activity, as well as extended periods of star formation. While our findings support triggering as a key factor for inducing and enhancing some of the major star-forming activity in the HDL (e.g., W3 Main/W3(OH)), we argue that some degree of quiescent or spontaneous star formation is required to explain the observed YSO population. Our results also support previous studies claiming a spontaneous origin for the isolated massive star(s) powering KR 140.

  1. Warped penguin diagrams

    SciTech Connect

    Csaki, Csaba; Grossman, Yuval; Tanedo, Philip; Tsai, Yuhsin

    2011-04-01

    We present an analysis of the loop-induced magnetic dipole operator in the Randall-Sundrum model of a warped extra dimension with anarchic bulk fermions and an IR brane-localized Higgs. These operators are finite at one-loop order and we explicitly calculate the branching ratio for {mu}{yields}e{gamma} using the mixed position/momentum space formalism. The particular bound on the anarchic Yukawa and Kaluza-Klein (KK) scales can depend on the flavor structure of the anarchic matrices. It is possible for a generic model to either be ruled out or unaffected by these bounds without any fine-tuning. We quantify how these models realize this surprising behavior. We also review tree-level lepton flavor bounds in these models and show that these are on the verge of tension with the {mu}{yields}e{gamma} bounds from typical models with a 3 TeV Kaluza-Klein scale. Further, we illuminate the nature of the one-loop finiteness of these diagrams and show how to accurately determine the degree of divergence of a five-dimensional loop diagram using both the five-dimensional and KK formalism. This power counting can be obfuscated in the four-dimensional Kaluza-Klein formalism and we explicitly point out subtleties that ensure that the two formalisms agree. Finally, we remark on the existence of a perturbative regime in which these one-loop results give the dominant contribution.

  2. Comparing M31 and Milky Way satellites: The extended star formation histories of Andromeda II and Andromeda XVI

    SciTech Connect

    Weisz, Daniel R.; Skillman, Evan D.; McQuinn, Kristen B. W.; Hidalgo, Sebastian L.; Monelli, Matteo; Gallart, Carme; Aparicio, Antonio; McConnachie, Alan; Stetson, Peter B.; Bernard, Edouard J.; Boylan-Kolchin, Michael; Cassisi, Santi; Cole, Andrew A.; Ferguson, Henry C.; Irwin, Mike; Martin, Nicolas F.; Mayer, Lucio; Navarro, Julio F.

    2014-07-01

    We present the first comparison between the lifetime star formation histories (SFHs) of M31 and Milky Way (MW) satellites. Using the Advanced Camera for Surveys on board the Hubble Space Telescope, we obtained deep optical imaging of Andromeda II (And II; M{sub V} = –12.0; log(M {sub *}/M {sub ☉}) ∼ 6.7) and Andromeda XVI (And XVI; M{sub V} = –7.5; log(M {sub *}/M {sub ☉}) ∼ 4.9) yielding color-magnitude diagrams that extend at least 1 mag below the oldest main-sequence turnoff, and are similar in quality to those available for the MW companions. And II and And XVI show strikingly similar SFHs: both formed 50%-70% of their total stellar mass between 12.5 and 5 Gyr ago (z ∼ 5-0.5) and both were abruptly quenched ∼5 Gyr ago (z ∼ 0.5). The predominance of intermediate age populations in And XVI makes it qualitatively different from faint companions of the MW and clearly not a pre-reionization fossil. Neither And II nor And XVI appears to have a clear analog among MW companions, and the degree of similarity in the SFHs of And II and And XVI is not seen among comparably faint-luminous pairs of MW satellites. These findings provide hints that satellite galaxy evolution may vary substantially among hosts of similar stellar mass. Although comparably deep observations of more M31 satellites are needed to further explore this hypothesis, our results underline the need for caution when interpreting satellite galaxies of an individual system in a broader cosmological context.

  3. The Young, Massive, Star Cluster Sandage-96 After the Explosion of Supernova 2004dj in NGC 2403

    NASA Astrophysics Data System (ADS)

    Vinkó, J.; Sárneczky, K.; Balog, Z.; Immler, S.; Sugerman, B. E. K.; Brown, P. J.; Misselt, K.; Szabó, Gy. M.; Csizmadia, Sz.; Kun, M.; Klagyivik, P.; Foley, R. J.; Filippenko, A. V.; Csák, B.; Kiss, L. L.

    2009-04-01

    The bright Type II-plateau supernova (SN) 2004dj occurred within the young, massive stellar cluster Sandage-96 in a spiral arm of NGC 2403. New multiwavelength observations obtained with several ground-based and space-based telescopes were combined to study the radiation from Sandage-96 after SN 2004dj faded away. Sandage-96 started to dominate the flux in the optical bands starting from 2006 September (~800 days after explosion). The optical fluxes are equal to the pre-explosion ones within the observational uncertainties. An optical Keck spectrum obtained ~900 days after explosion shows the dominant blue continuum from the cluster stars shortward of 6000 Å as well as strong SN nebular emission lines redward. The integrated spectral energy distribution (SED) of the cluster has been extended into the ultraviolet region by archival XMM-Newton and new Swift observations, and compared with theoretical models. The outer parts of the cluster have been resolved by the Hubble Space Telescope, allowing the construction of a color-magnitude diagram (CMD). The fitting of the cluster SED with theoretical isochrones results in cluster ages distributed between 10 and 40 Myr, depending on the assumed metallicity and the theoretical model family. The isochrone fitting of the CMDs indicates that the resolved part of the cluster consists of stars having a bimodal age distribution: a younger population at ~10-16 Myr and an older one at ~32-100 Myr. The older population has an age distribution similar to that of the other nearby field stars. This may be explained with the hypothesis that the outskirts of Sandage-96 are contaminated by stars captured from the field during cluster formation. The young age of Sandage-96 and the comparison of its pre and postexplosion SEDs suggest 12 lsim M prog lsim 20 M sun as the most probable mass range for the progenitor of SN 2004dj. This is consistent with, but perhaps slightly higher than, most of the other Type II-plateau SN progenitor masses

  4. The Star Formation Histories of Local Group Dwarf Galaxies. III. Characterizing Quenching in Low-mass Galaxies

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2015-05-01

    We explore the quenching of low-mass galaxies (104 ≲ {{M}\\star } ≲ 108 {{M}⊙ }) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived by analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) lower-mass galaxies quench earlier than higher-mass galaxies; (2) inside of Rvirial there is no correlation between a satellite’s current proximity to a massive host and its quenching epoch; and (3) there are hints of systematic differences in the quenching times of M31 and Milky Way (MW) satellites, although the sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with results from the literature, we qualitatively consider the redshift evolution (z = 0-1) of the quenched galaxy fraction over ˜7 dex in stellar mass (104 ≲ {{M}\\star } ≲ 1011.5 {{M}⊙ }). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest-mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between {{M}\\star } ˜ 108-1010 {{M}⊙ } have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times for low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall, while higher-mass satellites (e.g., Leo I, Fornax) typically quench ˜1-4 Gyr after infall. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA constract NAS 5-26555.

  5. Single stars in the Hyades open cluster. Fiducial sequence for testing stellar and atmospheric models

    NASA Astrophysics Data System (ADS)

    Kopytova, Taisiya G.; Brandner, Wolfgang; Tognelli, Emanuele; Prada Moroni, Pier Giorgio; Da Rio, Nicola; Röser, Siegfried; Schilbach, Elena

    2016-01-01

    Context. Age and mass determinations for isolated stellar objects remain model-dependent. While stellar interior and atmospheric theoretical models are rapidly evolving, we need a powerful tool to test them. Open clusters are good candidates for this role. Aims: We aim to create a fiducial sequence of stellar objects for testing stellar and atmospheric models. Methods: We complement previous studies on the Hyades multiplicity by Lucky Imaging observations with the AstraLux Norte camera. This allows us to exclude possible binary and multiple systems with companions outside a 2-7 AU separation and to create a single-star sequence for the Hyades. The sequence encompasses 250 main-sequence stars ranging from A5V to M6V. Using the Tool for Astrophysical Data Analysis (TA-DA), we create various theoretical isochrones applying different combinations of interior and atmospheric models. We compare the isochrones with the observed Hyades single-star sequence on J vs. J-Ks, J vs. J-H, and Ks vs. H-Ks color-magnitude diagrams. As a reference we also compute absolute fluxes and magnitudes for all stars from X-ray to mid-infrared based on photometric measurements available in the literature(ROSAT X-ray, GALEX UV, APASS gri, 2MASS JHKs, and WISE W1 to W4). Results: We find that combinations of both PISA and DARTMOUTH stellar interior models with BT-Settl 2010 atmospheric models describe the observed sequence well. We use PISA in combination with BT-Settl 2010 models to derive theoretical predictions for physical parameters (Teff, mass, log g) of 250 single stars in the Hyades. The full sequence covers the mass range of 0.13-2.30 M⊙, and effective temperatures between 3060 K and 8200 K. Conclusions: Within the measurement uncertainties, the current generation of models agree well with the single-star sequence. The primary limitations are the uncertainties in the measurement of the distances to individual Hyades members, and uncertainties in the photometry. Gaia parallaxes

  6. Program Synthesizes UML Sequence Diagrams

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2006-01-01

    A computer program called "Rational Sequence" generates Universal Modeling Language (UML) sequence diagrams of a target Java program running on a Java virtual machine (JVM). Rational Sequence thereby performs a reverse engineering function that aids in the design documentation of the target Java program. Whereas previously, the construction of sequence diagrams was a tedious manual process, Rational Sequence generates UML sequence diagrams automatically from the running Java code.

  7. Ultra-Deep Hubble Space Telescope Imaging of the Small Magellanic Cloud: The Initial Mass Function of Stars with M <~ 1 M ⊙

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason S.; Anderson, Jay; Dotter, Aaron; Richer, Harvey B.; Fahlman, Gregory G.; Hansen, Brad M. S.; Hurley, Jarrod; Reid, I. Neill; Rich, R. Michael; Shara, Michael M.

    2013-02-01

    We present a new measurement of the stellar initial mass function (IMF) based on ultra-deep, high-resolution photometry of >5000 stars in the outskirts of the Small Magellanic Cloud (SMC) galaxy. The Hubble Space Telescope (HST) Advanced Camera for Surveys observations reveal this rich, cospatial population behind the foreground globular cluster 47 Tuc, which we targeted for 121 HST orbits. The stellar main sequence of the SMC is measured in the F606W, F814W color-magnitude diagram down to ~30th magnitude, and is cleanly separated from the foreground star cluster population using proper motions. We simulate the SMC population by extracting stellar masses (single and unresolved binaries) from specific IMFs and converting those masses to luminosities in our bandpasses. The corresponding photometry for these simulated stars is drawn directly from a rich cloud of 4 million artificial stars, thereby accounting for the real photometric scatter and completeness of the data. Over a continuous and well-populated mass range of M = 0.37-0.93 M ⊙ (e.g., down to a ~75% completeness limit at F606W = 28.7), we demonstrate that the IMF is well represented by a single power-law form with slope α = -1.90 (+0.15 -0.10) (3σ error) (e.g., dN/dMvprop M α). This is shallower than the Salpeter slope of α = -2.35, which agrees with the observed stellar luminosity function at higher masses. Our results indicate that the IMF does not turn over to a more shallow power-law form within this mass range. We discuss implications of this result for the theory of star formation, the inferred masses of galaxies, and the (lack of a) variation of the IMF with metallicity. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with proposal GO-11677.

  8. The Color-Magnitude Distribution of Small Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.

    2015-12-01

    We present an analysis of survey observations targeting the leading L4 Jupiter Trojan cloud near opposition using the wide-field Suprime-Cam CCD camera on the 8.2 m Subaru Telescope. The survey covered about 38 deg2 of sky and imaged 147 fields spread across a wide region of the L4 cloud. Each field was imaged in both the g‧ and the i‧ band, allowing for the measurement of g - i color. We detected 557 Trojans in the observed fields, ranging in absolute magnitude from H = 10.0 to H = 20.3. We fit the total magnitude distribution to a broken power law and show that the power-law slope rolls over from 0.45 ± 0.05 to {0.36}-0.09+0.05 at a break magnitude of {H}b={14.93}-0.88+0.73. Combining the best-fit magnitude distribution of faint objects from our survey with an analysis of the magnitude distribution of bright objects listed in the Minor Planet Center catalog, we obtain the absolute magnitude distribution of Trojans over the entire range from H = 7.2 to H = 16.4. We show that the g - i color of Trojans decreases with increasing magnitude. In the context of the less-red and red color populations, as classified in Wong et al. using photometric and spectroscopic data, we demonstrate that the observed trend in color for the faint Trojans is consistent with the expected trend derived from extrapolation of the best-fit color population magnitude distributions for bright cataloged Trojans. This indicates a steady increase in the relative number of less-red objects with decreasing size. Finally, we interpret our results using collisional modeling and propose several hypotheses for the color evolution of the Jupiter Trojan population. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  9. Diagonal Slices of 3D Young Diagrams in the Approach of Maya Diagrams

    NASA Astrophysics Data System (ADS)

    Cai, Li-Qiang; Wang, Li-Fang; Wu, Ke; Yang, Jie

    2014-09-01

    According to the correspondence between 2D Young diagrams and Maya diagrams and the relation between 2D and 3D Young diagrams, we construct 3D Young diagrams in the approach of Maya diagrams. Moreover, we formulate the generating function of 3D Young diagrams, which is the MacMahon function in terms of Maya diagrams.

  10. Potential-pH Diagrams.

    ERIC Educational Resources Information Center

    Barnum, Dennis W.

    1982-01-01

    Potential-pH diagrams show the domains of redoxpotential and pH in which major species are most stable. Constructing such diagrams provides students with opportunities to decide what species must be considered, search literature for equilibrium constants and free energies of formation, and practice in using the Nernst equation. (Author/JN)

  11. A Sub-Kiloparsec Scale View of Star Formation in M31

    NASA Astrophysics Data System (ADS)

    Lewis, Alexia R.

    This dissertation examines the properties of star formation in the nearest large Milky Way- like galaxy, the Andromeda Galaxy (M31). Using resolved star data from the Hubble Space Telescope obtained as part of the Panchromatic Hubble Andromeda Treasury (PHAT), I model the optical color-magnitude diagrams (CMDs) of > 9000 regions that are 100pcx100pc (projected) in size to derive the most finely spatially-resolved star formation history (SFH) of M31 to date. I find that M31's 10 kpc star-forming ring is a long-lived feature, continually forming stars over at least the past 500 Myr. Additionally, I find that the star formation rate in M31 has decreased by a factor of 3 - 4 over the same period of time. This is strong evidence that M31 is turning off its star formation. I use these SFHs to predict the ultraviolet flux in each region. To do this, I create modeled spectral energy distributions by summing up simple stellar populations with ages and SFRs set by the SFH and convolving with the pare them with the observed FUV and NUV maps obtained by the Galaxy Evolution Explorer (GALEX) response curves to generate flux. I then create maps of this predicted flux in the far- and near-ultraviolet (FUV and NUV) and compare them with the observed FUV and NUV maps obtained by GALEX. The time resolution provided by the spatially-resolved SFHs enables very accurate modeling of the UV flux. The predicted and observed fluxes agree to within 5% in each band. I also generate maps of the intrinsic, dust-free flux and compare those to maps of GALEX FUV + Spitzer 24 mum data and I find that the synthetic maps require much more flux. This suggests a discrepancy with the 24 mum correction. This also results in an under-estimate of the FUV + 24 mum derived SFR compared to that determined from the spatially-resolved SFHs. I also explore variation of the dust attenuation curve across the disk of M31. Using GALEX observations and the predicted, dust-free UV flux, I constrain the total

  12. Particles, Feynman Diagrams and All That

    ERIC Educational Resources Information Center

    Daniel, Michael

    2006-01-01

    Quantum fields are introduced in order to give students an accurate qualitative understanding of the origin of Feynman diagrams as representations of particle interactions. Elementary diagrams are combined to produce diagrams representing the main features of the Standard Model.

  13. Atemporal diagrams for quantum circuits

    SciTech Connect

    Griffiths, Robert B.; Wu Shengjun; Yu Li; Cohen, Scott M.

    2006-05-15

    A system of diagrams is introduced that allows the representation of various elements of a quantum circuit, including measurements, in a form which makes no reference to time (hence 'atemporal'). It can be used to relate quantum dynamical properties to those of entangled states (map-state duality), and suggests useful analogies, such as the inverse of an entangled ket. Diagrams clarify the role of channel kets, transition operators, dynamical operators (matrices), and Kraus rank for noisy quantum channels. Positive (semidefinite) operators are represented by diagrams with a symmetry that aids in understanding their connection with completely positive maps. The diagrams are used to analyze standard teleportation and dense coding, and for a careful study of unambiguous (conclusive) teleportation. A simple diagrammatic argument shows that a Kraus rank of 3 is impossible for a one-qubit channel modeled using a one-qubit environment in a mixed state.

  14. Ion mixing and phase diagrams

    NASA Astrophysics Data System (ADS)

    Lau, S. S.; Liu, B. X.; Nicolet, M.-A.

    1983-05-01

    Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynamical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation. Ion-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures, extension of terminal solubility from both sides of the phase diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that from metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

  15. CCD photometry in the globular cluster NGC 288. I - Blue stragglers and main-sequence binary stars

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1992-01-01

    Photometry based on a mosaic of CCD images in B and V is presented for the globular cluster NGC 288. The spatial coverage ranges from the cluster core to about 6 core radii, and stars have been measured over the absolute visual magnitude range -1.2 to 8.4. The cluster is shown to contain a significant number of blue straggler stars in the central regions, and there is an excess of objects brighter and redder than the single-star main-sequence in the color-magnitude plane. These objects are interpreted as a population of main-sequence binary stars. With this interpretation, the explicity measured fraction of binary stars is 10 percent, which sets a lower limit for the total binary population.

  16. Deep Hubble Space Telescope Imaging of IC 1613. II. The Star Formation History

    NASA Astrophysics Data System (ADS)

    Skillman, Evan D.; Tolstoy, Eline; Cole, Andrew A.; Dolphin, Andrew E.; Saha, Abhijit; Gallagher, J. S.; Dohm-Palmer, R. C.; Mateo, Mario

    2003-10-01

    We have taken deep images of an outlying field in the Local Group dwarf irregular galaxy IC 1613 with the WFPC2 aboard the Hubble Space Telescope in the standard broadband F555W (V, 8 orbits) and F814W (I, 16 orbits) filters. The photometry reaches to V=27.7 (MV=+3.4) and I=27.1 (MI=+2.8) at the 50% completeness level, the deepest to date for an isolated dwarf irregular galaxy. We analyze the resulting color-magnitude diagram (CMD) and compare it with CMDs created from theoretical stellar models using three different methods to derive a star formation history (SFH) as well as constrain the chemical evolution for IC 1613. All three methods find an enhanced star formation rate (SFR), at roughly the same magnitude (factor of 3), over roughly the same period (from 3 to 6 Gyr ago). Additionally, all three methods were driven to similar age-metallicity relationships (AMR) that show an increase from [Fe/H]~-1.3 at earliest times to [Fe/H]~-0.7 at present. Good agreement is found between the AMR which is derived from the CMD analysis and that which can be inferred from the derived SFH at all but the earliest ages. The agreement between the three models and the self-consistency of the derived chemical enrichment history support the reality of the derived SFH of IC 1613 and, more generally, are supportive of the practice of constructing galaxy SFHs from CMDs. A comparison of the newly observed outer field with an earlier studied central field of IC 1613 shows that the SFR in the outer field has been significantly depressed during the last Gyr. This implies that the optical scale length of the galaxy has been decreasing with time and that comparison of galaxies at intermediate redshift with present-day galaxies should take this effect into account. Comparing the CMD of the outer field of IC 1613 with CMDs of Milky Way dSph companions, we find strong similarities between IC 1613 and the more distant dSph companions (Carina, Fornax, Leo I, and Leo II) in that all are dominated

  17. Observations of Hierarchical Solar-type Multiple Star Systems

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C., Jr.; Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.; Riddle, Reed L.

    2015-10-01

    Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color-magnitude diagram and discuss each multiple system individually.

  18. Oxygen-enhanced models for globular cluster stars. III - Horizontal-branch sequences

    NASA Technical Reports Server (NTRS)

    Dorman, Ben

    1992-01-01

    A large grid of horizontal-branch (HB) evolutionary sequences which have been calculated with core expansion and semiconvection and with enhanced oxygen composition are presented and described. Tracks for 10 different metallicities are computed; they range from (Fe/H) = -0.47 to -2.26 and comprise a total of 115 sequences. The evolution is traced from the zero-age horizontal-branch (ZAHB) to the lower AGB at a point where log L/solar luminosity = 2.25. All of the sequences are illustrated on both the theoretical H-R diagram and on the B, V color-magnitude diagram. A complete set of tables for the ZAHB models and a representative sample of tabulations of the track parameters are provided. The phenomena which control HB evolution morphology, and existing certainties in theoretical HB models are discussed.

  19. Automatically Assessing Graph-Based Diagrams

    ERIC Educational Resources Information Center

    Thomas, Pete; Smith, Neil; Waugh, Kevin

    2008-01-01

    To date there has been very little work on the machine understanding of imprecise diagrams, such as diagrams drawn by students in response to assessment questions. Imprecise diagrams exhibit faults such as missing, extraneous and incorrectly formed elements. The semantics of imprecise diagrams are difficult to determine. While there have been…

  20. Massive Compact Stars as Quark Stars

    NASA Astrophysics Data System (ADS)

    Rodrigues, Hilário; Barbosa Duarte, Sérgio; de Oliveira, José Carlos T.

    2011-03-01

    High-mass compact stars have been reported recently in the literature, providing strong constraints on the properties of the ultra dense matter beyond the saturation nuclear density. In view of these results, the calculations of quark star or hybrid star equilibrium structure must be compatible with the provided observational data. But since the equations of state used in describing quark matter are in general too soft in comparison with the equation of states used to describe the hadronic or nuclear matter, the calculated quark star models presented in the literature are in general not suitable to explain the stability of highly-compact massive objects. In this work, we present the calculations of a spherically symmetric quark star structure by using an equation of state that takes into account the superconducting color-flavor locked phase of the strange quark matter. In addition, some fundamental aspects of QCD (asymptotic freedom and confinement) are considered by means of a phenomenological description of the deconfined quark phase, the density-dependent quark mass model. The quark matter behavior introduced by this model stiffens the corresponding equation of state. We thus investigate the influence of this model on the mass-radius diagram of quark stars. We obtain massive quark stars due to the stiffness of the equation of state, when a reasonable parameterization of the color superconducting gap is used. Models of quark stars enveloped by a nucleonic crust composed of a nuclear lattice embedded in an electron gas, with nuclei close to neutron drip line, are also discussed.

  1. Investigation of a transiting planet candidate in Trumpler 37: An astrophysical false positive eclipsing spectroscopic binary star

    NASA Astrophysics Data System (ADS)

    Errmann, R.; Torres, G.; Schmidt, T. O. B.; Seeliger, M.; Howard, A. W.; Maciejewski, G.; Neuhäuser, R.; Meibom, S.; Kellerer, A.; Dimitrov, D. P.; Dincel, B.; Marka, C.; Mugrauer, M.; Ginski, Ch.; Adam, Ch.; Raetz, St.; Schmidt, J. G.; Hohle, M. M.; Berndt, A.; Kitze, M.; Trepl, L.; Moualla, M.; Eisenbeiß, T.; Fiedler, S.; Dathe, A.; Graefe, Ch.; Pawellek, N.; Schreyer, K.; Kjurkchieva, D. P.; Radeva, V. S.; Yotov, V.; Chen, W. P.; Hu, S. C.-L.; Wu, Z.-Y.; Zhou, X.; Pribulla, T.; Budaj, J.; Vaňko, M.; Kundra, E.; Hambálek, Ľ.; Krushevska, V.; Bukowiecki, Ł.; Nowak, G.; Marschall, L.; Terada, H.; Tomono, D.; Fernandez, M.; Sota, A.; Takahashi, H.; Oasa, Y.; Briceño, C.; Chini, R.; Broeg, C. H.

    We report our investigation of the first transiting planet candidate from the YETI project in the young (˜4 Myr old) open cluster Trumpler 37. The transit-like signal detected in the lightcurve of F8V star 2M21385603+5711345 repeats every 1.364894±0.000015 days, and has a depth of 54.5±0.8 mmag in R. Membership in the cluster is supported by its mean radial velocity and location in the color-magnitude diagram, while the Li diagnostic and proper motion are inconclusive in this regard. Follow-up photometric monitoring and adaptive optics imaging allow us to rule out many possible blend scenarios, but our radial-velocity measurements show it to be an eclipsing single-lined spectroscopic binary with a late-type (mid-M) stellar companion, rather than one of planetary nature. The estimated mass of the companion is 0.15-0.44 M⊙. The search for planets around very young stars such as those targeted by the YETI survey remains of critical importance to understand the early stages of planet formation and evolution. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration (Proposal ID H215Hr). The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC, Proposal IDs H10-3.5-015 and H10-2.2-004). Some of the observations reported here were obtained at

  2. The hot γ Doradus and Maia stars

    NASA Astrophysics Data System (ADS)

    Balona, L. A.; Engelbrecht, C. A.; Joshi, Y. C.; Joshi, S.; Sharma, K.; Semenko, E.; Pandey, G.; Chakradhari, N. K.; Mkrtichian, David; Hema, B. P.; Nemec, J. M.

    2016-08-01

    The hot γ Doradus stars have multiple low frequencies characteristic of γ Dor or SPB variables, but are located between the red edge of the SPB and the blue edge of the γ Dor instability strips where all low-frequency modes are stable in current models of these stars. Though δ Sct stars also have low frequencies, there is no sign of high frequencies in hot γ Dor stars. We obtained spectra to refine the locations of some of these stars in the H-R diagram and conclude that these are, indeed, anomalous pulsating stars. The Maia variables have multiple high frequencies characteristic of β Cep and δ Sct stars, but lie between the red edge of the β Cep and the blue edge of the δ Sct instability strips. We compile a list of all Maia candidates and obtain spectra of two of these stars. Again, it seems likely that these are anomalous pulsating stars which are currently not understood.

  3. The Panchromatic Hubble Andromeda Treasury. XI. The Spatially Resolved Recent Star Formation History of M31

    NASA Astrophysics Data System (ADS)

    Lewis, Alexia R.; Dolphin, Andrew E.; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Seth, Anil C.; Simones, Jacob E.; Skillman, Evan D.; Choi, Yumi; Fouesneau, Morgan; Guhathakurta, Puragra; Johnson, Lent C.; Kalirai, Jason S.; Leroy, Adam K.; Monachesi, Antonela; Rix, Hans-Walter; Schruba, Andreas

    2015-06-01

    We measure the recent star formation history (SFH) across M31 using optical images taken with the Hubble Space Telescope as part of the Panchromatic Hubble Andromeda Treasury (PHAT). We fit the color-magnitude diagrams in ˜9000 regions that are ˜100 pc × 100 pc in projected size, covering a 0.5 square degree area (˜380 kpc2, deprojected) in the NE quadrant of M31. We show that the SFHs vary significantly on these small spatial scales but that there are also coherent galaxy-wide fluctuations in the SFH back to ˜500 Myr, most notably in M31's 10 kpc star-forming ring. We find that the 10 kpc ring is at least 400 Myr old, showing ongoing star formation (SF) over the past ˜500 Myr. This indicates the presence of molecular gas in the ring over at least 2 dynamical times at this radius. We also find that the ring’s position is constant throughout this time, and is stationary at the level of 1 km s-1, although there is evidence for broadening of the ring due to the diffusion of stars into the disk. Based on existing models of M31's ring features, the lack of evolution in the ring’s position makes a purely collisional ring origin highly unlikely. Besides the well-known 10 kpc ring, we observe two other ring-like features. There is an outer ring structure at 15 kpc with concentrated SF starting ˜80 Myr ago. The inner ring structure at 5 kpc has a much lower star formation rate (SFR) and therefore lower contrast against the underlying stellar disk. It was most clearly defined ˜200 Myr ago, but is much more diffuse today. We find that the global SFR has been fairly constant over the last ˜500 Myr, though it does show a small increase at 50 Myr that is 1.3 times the average SFR over the past 100 Myr. During the last ˜500 Myr, ˜60% of all SF has occurred in the 10 kpc ring. Finally, we find that in the past 100 Myr, the average SFR over the PHAT survey area is 0.28 ± 0.03 {{M}⊙ } y{{r}-1} with an average deprojected intensity of 7.3× {{10}-4} {{M}⊙ } y

  4. Voronoi Diagrams and Spring Rain

    ERIC Educational Resources Information Center

    Perham, Arnold E.; Perham, Faustine L.

    2011-01-01

    The goal of this geometry project is to use Voronoi diagrams, a powerful modeling tool across disciplines, and the integration of technology to analyze spring rainfall from rain gauge data over a region. In their investigation, students use familiar equipment from their mathematical toolbox: triangles and other polygons, circumcenters and…

  5. Primordial main equence binary stars in the globular cluster M71

    NASA Technical Reports Server (NTRS)

    Yan, Lin; Mateo, Mario

    1994-01-01

    We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the

  6. ASTEROSEISMIC DIAGRAMS FROM A SURVEY OF SOLAR-LIKE OSCILLATIONS WITH KEPLER

    SciTech Connect

    White, Timothy R.; Bedding, Timothy R.; Stello, Dennis; Benomar, Othman; Huber, Daniel; Appourchaux, Thierry; Gaulme, Patrick; Ballot, Jerome; Bonanno, Alfio; Corsaro, Enrico; Broomhall, Anne-Marie; Chaplin, William J.; Elsworth, Yvonne P.; Hekker, Saskia; Campante, Tiago L.; Christensen-Dalsgaard, Jorgen; Dogan, Guelnur; Handberg, Rasmus; Fletcher, Stephen T.; Garcia, Rafael A. [Laboratoire AIM, CEA and others

    2011-11-20

    Photometric observations made by the NASA Kepler Mission have led to a dramatic increase in the number of main-sequence and subgiant stars with detected solar-like oscillations. We present an ensemble asteroseismic analysis of 76 solar-type stars. Using frequencies determined from the Kepler time-series photometry, we have measured three asteroseismic parameters that characterize the oscillations: the large frequency separation ({Delta}{nu}), the small frequency separation between modes of l = 0 and l = 2 ({delta}{nu}{sub 02}), and the dimensionless offset ({epsilon}). These measurements allow us to construct asteroseismic diagrams, namely the so-called Christensen-Dalsgaard diagram of {delta}{nu}{sub 02} versus {Delta}{nu}, and the recently re-introduced {epsilon} diagram. We compare the Kepler results with previously observed solar-type stars and with theoretical models. The positions of stars in these diagrams places constraints on their masses and ages. Additionally, we confirm the observational relationship between {epsilon} and T{sub eff} that allows for the unambiguous determination of radial order and should help resolve the problem of mode identification in F stars.

  7. Modeling the Asteroseismic Surface Term across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Schmitt, Joseph R.; Basu, Sarbani

    2015-08-01

    Asteroseismology is a powerful tool that can precisely characterize the mass, radius, and other properties of field stars. However, our inability to properly model the near-surface layers of stars creates a frequency-dependent frequency difference between the observed and the modeled frequencies, usually referred to as the “surface term.” This surface term can add significant errors to the derived stellar properties unless removed properly. In this paper, we simulate surface terms across a significant portion of the HR diagram, exploring four different masses (M=0.8,1.0,1.2, and 1.5 {M}⊙ ) at five metallicities ([{Fe}/{{H}}]=0.5,0.0,-0.5,-1.0, and -1.5) from the main sequence to red giants for stars with {T}{eff}\\lt 6500 K and explore how well the most common ways of fitting and removing the surface term actually perform. We find that the two-term model proposed by Ball & Gizon works much better than other models across a large portion of the HR diagram, including the red giants, leading us to recommend its use for future asteroseismic analyses.

  8. HUNTING FOR YOUNG DISPERSING STAR CLUSTERS IN IC 2574

    SciTech Connect

    Pellerin, Anne; Meyer, Martin M.; Calzetti, Daniella; Harris, Jason E-mail: martin.meyer@uwa.edu.au E-mail: jharris@30doradus.org

    2012-12-01

    Dissolving stellar groups are very difficult to detect using traditional surface photometry techniques. We have developed a method to find and characterize non-compact stellar systems in galaxies where the young stellar population can be spatially resolved. By carrying out photometry on individual stars, we are able to separate the luminous blue stellar population from the star field background. The locations of these stars are used to identify groups by applying the HOP algorithm, which are then characterized using color-magnitude and stellar density radial profiles to estimate age, size, density, and shape. We test the method on Hubble Space Telescope Advanced Camera for Surveys archival images of IC 2574 and find 75 dispersed stellar groups. Of these, 20 highly dispersed groups are good candidates for dissolving systems. We find few compact systems with evidence of dissolution, potentially indicating that star formation in this galaxy occurs mostly in unbound clusters or groups. These systems indicate that the dispersion rate of groups and clusters in IC 2574 is at most 0.45 pc Myr{sup -1}. The location of the groups found with HOP correlate well with H I contour map features. However, they do not coincide with H I holes, suggesting that those holes were not created by star-forming regions.

  9. OLD MAIN-SEQUENCE TURNOFF PHOTOMETRY IN THE SMALL MAGELLANIC CLOUD. II. STAR FORMATION HISTORY AND ITS SPATIAL GRADIENTS

    SciTech Connect

    Noel, Noelia E. D.; Gallart, Carme; Hidalgo, Sebastian L.; Aparicio, Antonio; Costa, Edgardo; Mendez, Rene A. E-mail: carme@iac.e E-mail: antapaj@iac.e E-mail: rmendez@das.uchile.c

    2009-11-10

    We present a quantitative analysis of the star formation history (SFH) of 12 fields in the Small Magellanic Cloud (SMC) based on unprecedented deep [(B - R), R] color-magnitude diagrams (CMDs). Our fields reach down to the oldest main-sequence turnoff with a high photometric accuracy, which is vital for obtaining accurate SFHs, particularly at intermediate and old ages. We use the IAC-pop code to obtain the SFH, using synthetic CMDs generated with IAC-star. We obtain the SFH as a function psi(t, z) of age and metallicity. We also consider several auxiliary functions: the initial mass function (IMF), phi(m), and a function accounting for the frequency and relative mass distribution of binary stars, beta(f, q). We find that there are several main periods of enhancement of star formation: a young one peaked at approx0.2-0.5 Gyr old, only present in the eastern and in the central-most fields; two at intermediate ages present in all fields: a conspicuous one peaked at approx4-5 Gyr, and a less significant one peaked at approx1.5-2.5; and an old one, peaked at approx10 Gyr in all fields but the western ones. In the western fields, this old enhancement splits into two, one peaked at approx8 Gyr old and another at approx12 Gyr old. This 'two-enhancement' zone is unaffected by our choice of stellar evolutionary library but more data covering other fields of the SMC are necessary in order to ascertain its significancy. Correlation between star formation rate enhancements and SMC-Milky Way encounters is not clear. Some correlation could exist with encounters taken from the orbit determination of Kallivayalil et al. But our results would also fit in a first pericenter passage scenario like the one claimed by Besla et al. For SMC-Large Magellanic Cloud encounters, we find a correlation only for the most recent encounter approx0.2 Gyr ago. This coincides with the youngest psi(t) enhancement peaked at these ages in our eastern fields. The population younger than 1 Gyr represents

  10. Hero's journey in bifurcation diagram

    NASA Astrophysics Data System (ADS)

    Monteiro, L. H. A.; Mustaro, P. N.

    2012-06-01

    The hero's journey is a narrative structure identified by several authors in comparative studies on folklore and mythology. This storytelling template presents the stages of inner metamorphosis undergone by the protagonist after being called to an adventure. In a simplified version, this journey is divided into three acts separated by two crucial moments. Here we propose a discrete-time dynamical system for representing the protagonist's evolution. The suffering along the journey is taken as the control parameter of this system. The bifurcation diagram exhibits stationary, periodic and chaotic behaviors. In this diagram, there are transition from fixed point to chaos and transition from limit cycle to fixed point. We found that the values of the control parameter corresponding to these two transitions are in quantitative agreement with the two critical moments of the three-act hero's journey identified in 10 movies appearing in the list of the 200 worldwide highest-grossing films.

  11. Quantum Dimer Model: Phase Diagrams

    NASA Astrophysics Data System (ADS)

    Goldstein, Garry; Chamon, Claudio; Castelnovo, Claudio

    We present new theoretical analysis of the Quantum Dimer Model. We study dimer models on square, cubic and triangular lattices and we reproduce their phase diagrams (which were previously known only numerically). We show that there are several types of dimer liquids and solids. We present preliminary analysis of several other models including doped dimers and planar spin ice, and some results on the Kagome and hexagonal lattices.

  12. Phase diagram of crushed powders

    NASA Astrophysics Data System (ADS)

    Bodard, Sébastien; Jalbaud, Olivier; Saurel, Richard; Burtschell, Yves; Lapebie, Emmanuel

    2016-12-01

    Compression of monodisperse powder samples in quasistatic conditions is addressed in a pressure range such that particles fragmentation occurs while the solid remains incompressible (typical pressure range of 1-300 MPa for glass powders). For a granular bed made of particles of given size, the existence of three stages is observed during compression and crush up. First, classical compression occurs and the pressure of the granular bed increases along a characteristic curve as the volume decreases. Then, a critical pressure is reached for which fragmentation begins. During the fragmentation process, the granular pressure stays constant in a given volume range. At the end of this second stage, 20%-50% of initial grains are reduced to finer particles, depending on the initial size. Then the compression undergoes the third stage and the pressure increases along another characteristic curve, in the absence of extra fragmentation. The present paper analyses the analogies between the phase transition in liquid-vapour systems and powder compression with crush-up. Fragmentation diagram for a soda lime glass is determined by experimental means. The analogues of the saturation pressure and latent heat of phase change are determined. Two thermodynamic models are then examined to represent the crush-up diagram. The first one uses piecewise functions while the second one is of van der Waals type. Both equations of state relate granular pressure, solid volume fraction, and initial particle diameter. The piecewise functions approach provides reasonable representations of the phase diagram while the van der Waals one fails.

  13. Causal diagrams in systems epidemiology

    PubMed Central

    2012-01-01

    Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s). Transmitted causes ("causes of causes") tend not to be systematically analysed. The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties. The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets. Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback. PMID:22429606

  14. Scheil-Gulliver Constituent Diagrams

    NASA Astrophysics Data System (ADS)

    Pelton, Arthur D.; Eriksson, Gunnar; Bale, Christopher W.

    2017-03-01

    During solidification of alloys, conditions often approach those of Scheil-Gulliver cooling in which it is assumed that solid phases, once precipitated, remain unchanged. That is, they no longer react with the liquid or with each other. In the case of equilibrium solidification, equilibrium phase diagrams provide a valuable means of visualizing the effects of composition changes upon the final microstructure. In the present study, we propose for the first time the concept of Scheil-Gulliver constituent diagrams which play the same role as that in the case of Scheil-Gulliver cooling. It is shown how these diagrams can be calculated and plotted by the currently available thermodynamic database computing systems that combine Gibbs energy minimization software with large databases of optimized thermodynamic properties of solutions and compounds. Examples calculated using the FactSage system are presented for the Al-Li and Al-Mg-Zn systems, and for the Au-Bi-Sb-Pb system and its binary and ternary subsystems.

  15. THE SOLAR NEIGHBORHOOD. XXVIII. THE MULTIPLICITY FRACTION OF NEARBY STARS FROM 5 TO 70 AU AND THE BROWN DWARF DESERT AROUND M DWARFS

    SciTech Connect

    Dieterich, Sergio B.; Henry, Todd J.; Golimowski, David A.; Krist, John E.; Tanner, Angelle M.

    2012-08-15

    We report on our analysis of Hubble Space Telescope/NICMOS snapshot high-resolution images of 255 stars in 201 systems within {approx}10 pc of the Sun. Photometry was obtained through filters F110W, F180M, F207M, and F222M using NICMOS Camera 2. These filters were selected to permit clear identification of cool brown dwarfs through methane contrast imaging. With a plate scale of 76 mas pixel{sup -1}, NICMOS can easily resolve binaries with subarcsecond separations in the 19.''5 Multiplication-Sign 19.''5 field of view. We previously reported five companions to nearby M and L dwarfs from this search. No new companions were discovered during the second phase of data analysis presented here, confirming that stellar/substellar binaries are rare. We establish magnitude and separation limits for which companions can be ruled out for each star in the sample, and then perform a comprehensive sensitivity and completeness analysis for the subsample of 138 M dwarfs in 126 systems. We calculate a multiplicity fraction of 0.0{sup +3.5}{sub -0.0}% for L companions to M dwarfs in the separation range of 5-70 AU, and 2.3{sup +5.0}{sub -0.7}% for L and T companions to M dwarfs in the separation range of 10-70 AU. We also discuss trends in the color-magnitude diagrams using various color combinations and present astrometry for 19 multiple systems in our sample. Considering these results and results from several other studies, we argue that the so-called brown dwarf desert extends to binary systems with low-mass primaries and is largely independent of primary mass, mass ratio, and separations. While focusing on companion properties, we discuss how the qualitative agreement between observed companion mass functions and initial mass functions suggests that the paucity of brown dwarfs in either population may be due to a common cause and not due to binary formation mechanisms.

  16. Infrared Study of the Southern Galactic Star-Forming Regions Associated with IRAS 10049-5657 and IRAS 10031-5632

    NASA Astrophysics Data System (ADS)

    Vig, S.; Ghosh, S. K.; Ojha, D. K.; Verma, R. P.

    2008-10-01

    We investigate the physical conditions of the interstellar medium and stellar components in the regions of the southern Galactic star-forming complexes associated with IRAS 10049-5657 and IRAS 10031-5632. These regions have been mapped simultaneously in two far-infrared bands (λeff ~ 150 and 210 μm), with ~1' angular resolution using the Tata Institute of Fundamental Research 1 m balloon-borne telescope. Spatial distribution of the temperature of cool dust and optical depth at 200 μm have been obtained taking advantage of the similar beams in the two bands. The HIRES processed Infrared Astronomical Satellite (IRAS) maps at 12, 25, 60, and 100 μm have been used for comparison. Using the Two Micron All Sky Survey near-infrared sources, we find the stellar populations of the embedded young clusters. A rich cluster of OB stars is seen in the IRAS 10049-5657 region. The fits to the stellar density radial profile of the cluster associated with IRAS 10049-5657 have been explored with the inverse radius profile as well as the King's profile; the cluster radius is ~2 pc. The source in the cluster closest to the IRAS peak is IRA-7, which lies above the zero-age main-sequence curve of spectral type O5 in the color-magnitude diagram. Unlike IRAS 10049-5657, a small cluster comprising a few deeply embedded sources is seen at the location of IRAS 10031-5632. Self-consistent radiative transfer modeling aimed at extracting important physical and geometrical details of the two IRAS sources shows that the best-fit models are in good agreement with the observed spectral energy distributions. The geometric details of the associated cloud and optical depths (τ100) have been estimated. A uniform density distribution of dust and gas is implied for both the sources. In addition, the infrared ionic fine-structure line emission from gas has been modeled for both the regions and compared with data from the IRAS low-resolution spectrometer. For IRAS 10049-5657, the observed and modeled

  17. Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams

    ERIC Educational Resources Information Center

    Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde

    2013-01-01

    This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…

  18. Phase diagrams of polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Mahdi, Khaled A.

    We study the phase diagram of polyelectrolyte solutions in salt and salt-free environments. We examine the phase behavior of polyelectrolyte solutions, in the semidilute regime, using different physical models, namely the Random Phase Approximation (RPA) and the cross-linked model. In the RPA, we calculate the electrostatic free energy by summing all the fluctuations of the chains and all present ionic species. Within this approximation, the phase diagrams of salt-free polyelectrolyte solutions show phase separation even without including short-range attractions or ion condensation. We find that the phase behavior of large chains resembles the phase diagram of polymer network solutions. That is, the equilibrium is established between a network phase and a chain-free phase. Upon the addition of salt, the dissociated ions increase the entropy of the system and overcome the energy from the electrostatic fluctuations. When the short-range attraction between monomers is included in the model, the free energy predicts phase segregation for all salt valences at high salt concentrations (1 mol/l and higher). The phenomenon is called salting-out and occurs simply because the addition of salt reduces the quality of the solvent and induces precipitation. However, phase segregation in the presence of multivalent ions in polyelectrolyte solutions occurs at low salt concentrations (less than 1 mol/l). We propose that this phase separation is due to polyions cross-linked by multivalent ions. We constructed a phenomenological two-state model to examine this phenomenon. The two phases coexisting in the solution are a network-like phase and a polymer-free phase. The polymer-free phase is modeled using Debye-Huckel theory. In the cross-linked phase, each condensed multivalent ion attracts an equal number of monomers creating a neutral cluster. The energy of the cluster is evaluated by a simple Coulombic energy. The bare monomer charges between the linkages are treated as line of

  19. IRAS Observations of Delta Scuti Stars

    NASA Astrophysics Data System (ADS)

    Templeton, M. R.; Harrison, T. E.

    1998-07-01

    Mid-far infrared and radio observations of A-F stars are important for constraining the level of mass loss from these stars. It was theorized by Willson et al. (1987) that mass loss could play a significant role in the evolution of these stars, and could be responsible for shifting a star in the HR diagram by as much as one spectral class. Observations of normal A-F stars at 6 cm by Brown et al. (1990) and at the IRAS 12, 25, and 60 5m bands by Patten and Willson (1991) have shown that extreme mass loss rates (on the order of 10^-8 to 10^-9 solar masses per year) are not seen in these stars, but lower mass loss rates could still have significant impact on the evolution of these stars [see Guzik and Cox (1995) for example].

  20. Phase diagrams for sonoluminescing bubbles

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Lohse, Detlef; Brenner, Michael P.

    1996-11-01

    Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence (SL). Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. We present phase diagrams in the gas concentration versus forcing pressure state space and also in the ambient radius versus gas concentration and versus forcing pressure state spaces. These phase diagrams are based on the thresholds for energy focusing in the bubble and two kinds of instabilities, namely (i) shape instabilities and (ii) diffusive instabilities. Stable SL only occurs in a tiny parameter window of large forcing pressure amplitude Pa˜1.2-1.5 atm and low gas concentration of less than 0.4% of the saturation. The upper concentration threshold becomes smaller with increased forcing. Our results quantitatively agree with experimental results of Putterman's UCLA group on argon, but not on air. However, air bubbles and other gas mixtures can also successfully be treated in this approach if in addition (iii) chemical instabilities are considered. All statements are based on the Rayleigh-Plesset ODE approximation of the bubble dynamics, extended in an adiabatic approximation to include mass diffusion effects. This approximation is the only way to explore considerable portions of parameter space, as solving the full PDEs is numerically too expensive. Therefore, we checked the adiabatic approximation by comparison with the full numerical solution of the advection diffusion PDE and find good agreement.

  1. Strange stars

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Farhi, Edward; Olinto, Angela

    1986-01-01

    Strange matter, a form of quark matter that is postulated to be absolute stable, may be the true ground stage of the hadrons. If this hypothesis is correct, neutron stars may convert to 'strange stars'. The mass-radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and for mass of 1 solar mass or less, mass is proportional to the cube of the radius. For masses between 1 solar mass and 2 solar masses, the radii of strange stars are about 10 km, as for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin crust with the same composition as the preneutron drip outer layer of a conventional neutron star crust. Strange stars cool efficiently via neutrino emission.

  2. Hubble Space Telescope Proper Motions of Individual Stars in Stellar Streams: Orphan, Sagittarius, Lethe, and the New "Parallel’ Stream"

    NASA Astrophysics Data System (ADS)

    Sohn, Sangmo Tony; van der Marel, Roeland P.; Kallivayalil, Nitya; Majewski, Steven R.; Besla, Gurtina; Carlin, Jeffrey L.; Law, David R.; Siegel, Michael H.; Anderson, Jay

    2016-12-01

    We present a multi-epoch Hubble Space Telescope (HST) study of stellar proper motions (PMs) for four fields along the Orphan Stream. We determine absolute PMs of several individual stars per target field using established techniques that utilize distant background galaxies to define a stationary reference frame. Five Orphan Stream stars are identified in one of the four fields based on combined color-magnitude and PM information. The average PM is consistent with the existing model of the Orphan Stream by Newberg et al. In addition to the Orphan Stream stars, we detect stars that likely belong to other stellar streams. To identify which stellar streams these stars belong to, we examine the 2d bulk motion of each group of stars on the sky by subtracting the PM contribution of the solar motion (which is a function of position on the sky and distance) from the observed PMs, and comparing the vector of net motion with the spatial extent of known stellar streams. By doing this, we identify candidate stars in the Sagittarius and Lethe streams, and a newly found stellar stream at a distance of ˜17 kpc, which we tentatively name the “Parallel Stream.” Together with our Sagittarius stream study, this work demonstrates that even in the Gaia era, HST will continue to be advantageous in measuring PMs of old stellar populations on a star-by-star basis, especially for distances beyond ˜10 kpc.

  3. Stars and Star Myths.

    ERIC Educational Resources Information Center

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  4. Continuation of point clouds via persistence diagrams

    NASA Astrophysics Data System (ADS)

    Gameiro, Marcio; Hiraoka, Yasuaki; Obayashi, Ippei

    2016-11-01

    In this paper, we present a mathematical and algorithmic framework for the continuation of point clouds by persistence diagrams. A key property used in the method is that the persistence map, which assigns a persistence diagram to a point cloud, is differentiable. This allows us to apply the Newton-Raphson continuation method in this setting. Given an original point cloud P, its persistence diagram D, and a target persistence diagram D‧, we gradually move from D to D‧, by successively computing intermediate point clouds until we finally find a point cloud P‧ having D‧ as its persistence diagram. Our method can be applied to a wide variety of situations in topological data analysis where it is necessary to solve an inverse problem, from persistence diagrams to point cloud data.

  5. Phase diagrams for high Tc superconductors

    SciTech Connect

    Whitler, J.D.; Roth, R.S. NIST, Gaithersburg, MD )

    1991-01-01

    The phase diagrams of ternary and quaternary systems containing superconducting phases are presented, as are the phase diagrams of the associated binary systems. The diagrams are divided into two large groups: (1) alkaline earth-rare earth-copper-oxygen diagrams, and (2) alkaline earth-bismuth/lead-copper-oxygen diagrams. The first group includes BaO-REO-CuO systems followed by SrO-REO-CuO or Nd2O3-CeO-CuO systems. The second group includes systems related to the AE-Bi2O3-CuO and AE-PbO-CuO systems. The phase diagrams are accompanied by notes relating procedures used in the studies, results obtained, and comparisons with the results in the literature for the same system.

  6. Hubble's diagram and cosmic expansion

    PubMed Central

    Kirshner, Robert P.

    2004-01-01

    Edwin Hubble's classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173]. The chief result, that a galaxy's distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble's Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble's distances have a large systematic error, Hubble's velocities come chiefly from Vesto Melvin Slipher, and the interpretation in terms of the de Sitter effect is out of the mainstream of modern cosmology, this article opened the way to investigation of the expanding, evolving, and accelerating universe that engages today's burgeoning field of cosmology. PMID:14695886

  7. Gravity on-shell diagrams

    NASA Astrophysics Data System (ADS)

    Herrmann, Enrico; Trnka, Jaroslav

    2016-11-01

    We study on-shell diagrams for gravity theories with any number of super-symmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only d log-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for {N}=8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in [1].

  8. Hubble's diagram and cosmic expansion.

    PubMed

    Kirshner, Robert P

    2004-01-06

    Edwin Hubble's classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168-173]. The chief result, that a galaxy's distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble's Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble's distances have a large systematic error, Hubble's velocities come chiefly from Vesto Melvin Slipher, and the interpretation in terms of the de Sitter effect is out of the mainstream of modern cosmology, this article opened the way to investigation of the expanding, evolving, and accelerating universe that engages today's burgeoning field of cosmology.

  9. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  10. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-01

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO-AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N2, N2O, and H2O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV' transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  11. Process Flow Diagrams for Training and Operations

    NASA Astrophysics Data System (ADS)

    Venter, Jacobus

    This paper focuses on the use of process flow diagrams for training first responders who execute search and seizure warrants at electronic crime scenes. A generic process flow framework is presented, and the design goals and layout characteristics of process flow diagrams are discussed. An evaluation of the process flow diagrams used in training courses indicates that they are beneficial to first responders performing searches and seizures, and they speed up investigations, including those conducted by experienced personnel.

  12. Origin and use of crystallization phase diagrams

    PubMed Central

    Rupp, Bernhard

    2015-01-01

    Crystallization phase diagrams are frequently used to conceptualize the phase relations and also the processes taking place during the crystallization of macromolecules. While a great deal of freedom is given in crystallization phase diagrams owing to a lack of specific knowledge about the actual phase boundaries and phase equilibria, crucial fundamental features of phase diagrams can be derived from thermodynamic first principles. Consequently, there are limits to what can be reasonably displayed in a phase diagram, and imagination may start to conflict with thermodynamic realities. Here, the commonly used ‘crystallization phase diagrams’ are derived from thermodynamic excess properties and their limitations and appropriate use is discussed. PMID:25760697

  13. The Sun Like Star : HT Vir

    NASA Astrophysics Data System (ADS)

    Tanriver, Mehmet; Özeren, Ferhat Fikri

    2016-12-01

    This study is focused on the photometric (light curve) analysis of the Sun like star HT Vir which is a binary star located in the ASAS catalogue, shows variation in W UMa (EW/KW) type. The solution of light curve was executed using the PHOBE code. We conducted an unspotted solution for the HT Vir binary system. The positions in the HR diagram of the components are also discussed.

  14. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  15. An infrared survey of RW Aurigae stars

    NASA Technical Reports Server (NTRS)

    Glass, I. S.; Penston, M. V.

    1974-01-01

    An infrared photometric survey of 89 RW Aur type variables in both hemispheres has been made. JHKL magnitudes and colors are listed. The RW Aur variables include a small number of highly reddened late-type stars. All T Tauri and hot Orion population stars show infrared excesses and the infrared properties mark certain field stars as being young. The greatest infrared excesses are found for A and F stars while young variable B stars usually show no excesses. The location of the RW Aur stars in the two-color H-K, K-L diagram favor dust re-radiation over free-free emission as the mechanism responsible for the infrared excess. A weak correlation of H-K with emission class links the occurrence of circumstellar dust and gas shells.

  16. Interesting features in the combined Galex and Sloan color diagrams of solar-like galactic populations

    SciTech Connect

    Smith, Myron A.; Shiao, Bernard; Bianchi, Luciana E-mail: shiao@stsci.edu

    2014-06-01

    , chromospherically active stars in the field. We also address a third perplexing color property, namely, the presence of a prominent island of 'UV red' stars surrounded by 'UV blue' stars in the diagnostic (NUV–g), (g – i) color diagram. We find that the subpopulation composing this island is mainly horizontal branch stars. These objects do not exhibit UV excesses and therefore have UV colors typical for their spectral types. This subpopulation appears 'red' in the UV only because the stars' colors are not pulled to the blue by the inclusion of UVe stars.

  17. Vesicle deformation by microtubules: A phase diagram

    NASA Astrophysics Data System (ADS)

    Emsellem, Virginie; Cardoso, Olivier; Tabeling, Patrick

    1998-10-01

    The experimental investigation of vesicles deformed by the growth of encapsulated microtubules shows that the axisymmetric morphologies can be classified into ovals, lemons, φ, cherries, dumbbells, and pearls. A geometrical phase diagram is established. Numerical minimization of the elastic energy of the membrane reproduces satisfactorily well the observed morphologies and the corresponding phase diagram.

  18. New distances to RAVE stars

    NASA Astrophysics Data System (ADS)

    Binney, J.; Burnett, B.; Kordopatis, G.; McMillan, P. J.; Sharma, S.; Zwitter, T.; Bienaymé, O.; Bland-Hawthorn, J.; Steinmetz, M.; Gilmore, G.; Williams, M. E. K.; Navarro, J.; Grebel, E. K.; Helmi, A.; Parker, Q.; Reid, W. A.; Seabroke, G.; Watson, F.; Wyse, R. F. G.

    2014-01-01

    Probability density functions (pdfs) are determined from new stellar parameters for the distance moduli of stars for which the RAdial Velocity Experiment (RAVE) has obtained spectra with S/N ≥ 10. Single-Gaussian fits to the pdf in distance modulus suffice for roughly half the stars, with most of the other half having satisfactory two-Gaussian representations. As expected, early-type stars rarely require more than one Gaussian. The expectation value of distance is larger than the distance implied by the expectation of distance modulus; the latter is itself larger than the distance implied by the expectation value of the parallax. Our parallaxes of Hipparcos stars agree well with the values measured by Hipparcos, so the expectation of parallax is the most reliable distance indicator. The latter are improved by taking extinction into account. The effective temperature-absolute magnitude diagram of our stars is significantly improved when these pdfs are used to make the diagram. We use the method of kinematic corrections devised by Schönrich, Binney and Asplund to check for systematic errors for general stars and confirm that the most reliable distance indicator is the expectation of parallax. For cool dwarfs and low-gravity giants, <ϖ> tends to be larger than the true distance by up to 30 per cent. The most satisfactory distances are for dwarfs hotter than 5500 K. We compare our distances to stars in 13 open clusters with cluster distances from the literature and find excellent agreement for the dwarfs and indications that we are overestimating distances to giants, especially in young clusters.

  19. The morphological diagram of spinels

    SciTech Connect

    Ziolkowski, J.

    1996-02-01

    Catalytic anisotropy in mild oxidation reactions results from the varying activity of different crystal faces. Here, spinels exposing (100), (110), and (111) faces have been considered and their Curie-Wulff plots have been drawn, admitting that the relative G(hkl) surface free energies may change in a wide range as a function of composition, inversion, and segregation degree. The normalized free surface energies are defined as A = G(100)/G(111), B = G(110)/G(111), and C = G(111)/G(111) = 1 = const. This made it possible to construct bidimensional morphological diagrams (morphology = f(A,B) at C = const) in the exposed-face-type, solid-type, and exposure-percentage versions. Eleven morphological habits of grains have been identified, including (100)-cube, (110)-dodecahedron, (111)-hexagons, 18-hedron, 20-hedron, and up to 26-hedra bordered with (i) 6 (100)-octagons, 12 (110)-rectangles, and 8 (111)-hexagons, (ii) 6 (100)-squares, 12 (110)-rectangles, and 8 (111)-triangles, or (iii) 6 (100)-squares, 12 (110)-octagons, and 8 (100)-triangles. The analysis is valid for all compounds crystallizing in the cubic system and preferentially exposing the three enumerated faces.

  20. Phase diagram of elastic spheres.

    PubMed

    Athanasopoulou, L; Ziherl, P

    2017-02-15

    Experiments show that polymeric nanoparticles often self-assemble into several non-close-packed lattices in addition to the face-centered cubic lattice. Here, we explore theoretically the possibility that the observed phase sequences may be associated with the softness of the particles, which are modeled as elastic spheres interacting upon contact. The spheres are described by two finite-deformation theories of elasticity, the modified Saint-Venant-Kirchhoff model and the neo-Hookean model. We determine the range of indentations where the repulsion between the spheres is pairwise additive and agrees with the Hertz theory. By computing the elastic energies of nine trial crystal lattices at densities far beyond the Hertzian range, we construct the phase diagram and find the face- and body-centered cubic lattices as well as the A15 lattice and the simple hexagonal lattice, with the last two being stable at large densities where the spheres are completely faceted. These results are qualitatively consistent with observations, suggesting that deformability may indeed be viewed as a generic property that determines the phase behavior in nanocolloidal suspensions.

  1. Phase diagram of ammonium nitrate

    SciTech Connect

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-07

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N{sub 2}, N{sub 2}O, and H{sub 2}O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV{sup ′} transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  2. Phase Diagram of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-06-01

    Ammonium Nitrate (AN) has often been subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood - resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety, in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN, in different chemical environments, at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 15 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 673 K. The present study has been supported by the U.S. DHS under Award Number 2008-ST-061-ED0001.

  3. A Study of Massive Stars Evolving toward the Wolf-Rayet Stage

    NASA Astrophysics Data System (ADS)

    Maryeva, O. V.; Klochkova, V. G.; Chentsov, E. L.; Polcaro, V. F.; Rossi, C.; Viotti, R. F.

    2017-02-01

    We present the results of our study of two massive stars, V1302 Aql (IRC+10420) and GR 290 (M33/V532, Romano's Star), with different initial masses but now approaching the region of Wolf-Rayet stars on the Hertzsprung-Russell diagram, one from the yellow hypergiants side and the other from the Luminous Blue Variables side.

  4. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  5. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  6. METALLICITIES, AGE-METALLICITY RELATIONSHIPS, AND KINEMATICS OF RED GIANT BRANCH STARS IN THE OUTER DISK OF THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Carrera, R.; Gallart, C.; Aparicio, A.; Hardy, E.

    2011-08-15

    The outer disk of the Large Magellanic Cloud (LMC) is studied in order to unveil clues about its formation and evolution. Complementing our previous studies in innermost fields (3 kpc {approx}< R {approx}< 7 kpc), we obtained deep color-magnitude diagrams in six fields with galactocentric distances from 5.2 kpc to 9.2 kpc and different azimuths. The comparison with isochrones shows that while the oldest population is approximately coeval in all fields, the age of the youngest populations increases with increasing radius. This agrees with the results obtained in the innermost fields. Low-resolution spectroscopy in the infrared Ca II triplet region has been obtained for about 150 stars near the tip of the red giant branch in the same fields. Radial velocities and stellar metallicities have been obtained from these spectra. The metallicity distribution of each field has been analyzed together with those previously studied. The metal content of the most metal-poor objects, which are also the oldest according to the derived age-metallicity relationships, is similar in all fields independently of the galactocentric distance. However, while the metallicity of the most metal-rich objects measured, which are the youngest ones, remains constant in the inner 6 kpc, it decreases with increasing radius from there on. The same is true for the mean metallicity. According to the derived age-metallicity relationships, which are consistent with being the same in all fields, this result may be interpreted as an outside-in formation scheme in opposition with the inside-out scenario predicted by {Lambda}CDM cosmology for a galaxy like the LMC. The analysis of the radial velocities of our sample of giants shows that they follow a rotational cold disk kinematics. The velocity dispersion increases as metallicity decreases indicating that the most metal-poor/oldest objects are distributed in a thicker disk than the most metal-rich/youngest ones in agreement with the findings in other disks

  7. CH Stars and Barium Stars

    NASA Astrophysics Data System (ADS)

    Bond, H.; Sion, E.; Murdin, P.

    2000-11-01

    The classical barium (or `Ba II') stars are RED GIANT STARS whose spectra show strong absorption lines of barium, strontium and certain other heavy elements, as well as strong features due to carbon molecules. Together with the related class of CH stars, the Ba II stars were crucial in establishing the existence of neutron-capture reactions in stellar interiors that are responsible for the synt...

  8. Phase diagrams of self-organizing maps

    NASA Astrophysics Data System (ADS)

    Bauer, H.-U.; Riesenhuber, M.; Geisel, T.

    1996-09-01

    We present a method which allows the analytic determination of phase diagrams in the self-organizing map, a model for the formation of topographic projection patterns in the brain and in signal processing applications. The method only requires an ansatz for the tesselation of the data space induced by the map, not for the explicit state of the map. We analytically obtain phase diagrams for various examples, including models for the development of orientation and ocular-dominance maps. The latter phase diagram exhibits transitions to broadening ocular-dominance patterns as observed in a recent experiment.

  9. The ACS Nearby Galaxy Survey Treasury. VIII. The Global Star Formation Histories of 60 Dwarf Galaxies in the Local Volume

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Dalcanton, Julianne J.; Williams, Benjamin F.; Gilbert, Karoline M.; Skillman, Evan D.; Seth, Anil C.; Dolphin, Andrew E.; McQuinn, Kristen B. W.; Gogarten, Stephanie M.; Holtzman, Jon; Rosema, Keith; Cole, Andrew; Karachentsev, Igor D.; Zaritsky, Dennis

    2011-09-01

    We present uniformly measured star formation histories (SFHs) of 60 nearby (D <~ 4 Mpc) dwarf galaxies based on color-magnitude diagrams of resolved stellar populations from images taken with the Hubble Space Telescope and analyzed as part of the ACS Nearby Galaxy Survey Treasury program (ANGST). This volume-limited sample contains 12 dwarf spheroidal (dSph)/dwarf elliptical (dE), 5 dwarf spiral, 28 dwarf irregular (dI), 12 dSph/dI (transition), and 3 tidal dwarf galaxies. The sample spans a range of ~10 mag in MB and covers a wide range of environments, from highly interacting to truly isolated. From the best-fit SFHs, we find three significant results for dwarf galaxies in the ANGST volume: (1) the majority of dwarf galaxies formed the bulk of their mass prior to z ~ 1, regardless of current morphological type; (2) the mean SFHs of dIs, transition dwarf galaxies (dTrans), and dSphs are similar over most of cosmic time, and only begin to diverge a few Gyr ago, with the clearest differences between the three appearing during the most recent 1 Gyr and (3) the SFHs are complex and the mean values are inconsistent with simple SFH models, e.g., single bursts, constant star formation rates (SFRs), or smooth, exponentially declining SFRs. The mean SFHs show clear divergence from the cosmic SFH at z <~ 0.7, which could be evidence that low-mass systems have experienced delayed star formation relative to more massive galaxies. The sample shows a strong density-morphology relationship, such that the dSphs in the sample are less isolated than the dIs. We find that the transition from a gas-rich to gas-poor galaxy cannot be solely due to internal mechanisms such as stellar feedback, and instead is likely the result of external mechanisms, e.g., ram pressure and tidal stripping and tidal forces. In terms of their environments, SFHs, and gas fractions, the majority of the dTrans appear to be low-mass dIs that simply lack Hα emission, similar to Local Group (LG) dTrans DDO 210

  10. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  11. CADDIS Volume 5. Causal Databases: Interactive Conceptual Diagrams (ICDs)

    EPA Pesticide Factsheets

    In Interactive Conceptual Diagram (ICD) section of CADDIS allows users to create conceptual model diagrams, search a literature-based evidence database, and then attach that evidence to their diagrams.

  12. Conservation of Angular Momentum Confirmed: Rotational Deceleration in an Intermediate-Age Star Cluster

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Wu, Xiaohan; Li, Chengyuan; Deng, Licai

    2017-01-01

    The subgiant branch (SGB) of the extended main-sequence turn-off (eMSTO) Small Magellanic Cloud cluster NGC 419 is significantly broader at bluer than at redder colors. If we would assume that the widths of the features in color--magnitude space were entirely owing to a range in stellar ages, the star-formation histories of the eMSTO stars and the blue SGB region would be significantly more prolonged than that of the red part of the SGB. This cannot be explained by assuming an internal age spread, a popular scenario to explain eMSTOs at intermediate ages (1--2 Gyr). We show that rotational deceleration of a population of rapidly rotating stars naturally explains the observed trend along the SGB. Our analysis shows that a "converging" SGB could be produced if the cluster is mostly composed of rapidly rotating stars that slow down over time owing to the conservation of angular momentum during their evolutionary expansion from main-sequence turn-off stars to red giants.

  13. Veitch diagram plotter simplifies Boolean functions

    NASA Technical Reports Server (NTRS)

    Rubin, D. K.

    1964-01-01

    This device for simplifying the plotting of a Veitch diagram consists of several overlays for blocking out the unwanted squares. This method of plotting the various input combinations to a computer is used in conjunction with the Boolean functions.

  14. Some Geometric Aspects of the Ternary Diagram.

    ERIC Educational Resources Information Center

    Philip, G. M.; Watson, D. F.

    1989-01-01

    Uses the process of normalization in the Cartesian coordinate system which entails radial projection onto a transect to compare different compositions of minerals. Warns that the ternary diagram should not be used as a framework for calculations. (MVL)

  15. An Improved Mnemonic Diagram for Thermodynamic Relationships.

    ERIC Educational Resources Information Center

    Rodriguez, Joaquin; Brainard, Alan J.

    1989-01-01

    Considers pressure, volume, entropy, temperature, Helmholtz free energy, Gibbs free energy, enthalpy, and internal energy. Suggests the mnemonic diagram is for use with simple systems that are defined as macroscopically homogeneous, isotropic, uncharged, and chemically inert. (MVL)

  16. New Emission Stars in B Cyg OB7

    NASA Astrophysics Data System (ADS)

    Melikian, N. D.; Karapetian, A. A.; Gomez, J.

    2016-12-01

    This is a continuation of a search for and study of emission objects in known dark clouds and star formation regions. New results are presented from a search for emission stars in the region of Cyg OB7 where 36 new emission stars have been discovered previously. The current observations were made adjacent to previously studied regions in the vicinity of the object HH 448. 26 new emission stars were found in three small regions with a combined area of 0.11 sq. deg. On an (H-K)-(J-H) two-color diagram these stars lie among the classical T Tau stars (CTTS) and T Tau stars with weak lines (WTTS). A strong change in brightness was recorded for one of the emission stars.

  17. Panchromatic Hubble Andromeda Treasury. XIV. The Period-Age Relationship of Cepheid Variables in M31 Star Clusters

    NASA Astrophysics Data System (ADS)

    Senchyna, Peter; Johnson, L. Clifton; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Dolphin, Andrew; Williams, Benjamin F.; Rosenfield, Philip; Larsen, Søren S.

    2015-11-01

    We present a sample of 11 M31 Cepheids in stellar clusters, derived from the overlap of the Panchromatic Hubble Andromeda Treasury cluster catalog and the Pan-STARRS1 (PS1) disk Cepheid catalog. After identifying the PS1 Cepheids in the Hubble Space Telescope (HST) catalog, we calibrate the PS1 mean magnitudes using the higher resolution HST photometry, revealing up to 1 mag offsets due to crowding effects in the ground-based catalog. We measure ages of the clusters by performing single-age stellar population fits to their color-magnitude diagrams excluding their Cepheids. From these cluster age measurements, we derive an empirical period-age relation which agrees well with the existing literature values. By confirming this relation for M31 Cepheids, we justify its application in high-precision pointwise age estimation across M31.

  18. Lattice and Phase Diagram in QCD

    SciTech Connect

    Lombardo, Maria Paola

    2008-10-13

    Model calculations have produced a number of very interesting expectations for the QCD Phase Diagram, and the task of a lattice calculations is to put these studies on a quantitative grounds. I will give an overview of the current status of the lattice analysis of the QCD phase diagram, from the quantitative results of mature calculations at zero and small baryochemical potential, to the exploratory studies of the colder, denser phase.

  19. SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?

    SciTech Connect

    Baella, N. O.; Pereira, C. B.; Miranda, L. F.

    2013-11-01

    Symbiotic stars are key objects in understanding the formation and evolution of interacting binary systems, and are probably the progenitors of Type Ia supernovae. However, the number of known symbiotic stars is much lower than predicted. We aim to search for new symbiotic stars, with particular emphasis on the S-type yellow symbiotic stars, in order to determine their total population, evolutionary timescales, and physical properties. The Two Micron All Sky Survey (2MASS) (J – H) versus (H – K {sub s}) color-color diagram has been previously used to identify new symbiotic star candidates and show that yellow symbiotics are located in a particular region of that diagram. Candidate symbiotic stars are selected on the basis of their locus in the 2MASS (J – H) versus (H – K {sub s}) diagram and the presence of Hα line emission in the Stephenson and Sanduleak Hα survey. This diagram separates S-type yellow symbiotic stars from the rest of the S-type symbiotic stars, allowing us to select candidate yellow symbiotics. To establish the true nature of the candidates, intermediate-resolution spectroscopy is obtained. We have identified the Hα emission line source SS 383 as an S-type yellow symbiotic candidate by its position in the 2MASS color-color diagram. The optical spectrum of SS 383 shows Balmer, He I, He II, and [O III] emission lines, in combination with TiO absorption bands that confirm its symbiotic nature. The derived electron density (≅10{sup 8-9} cm{sup –3}), He I emission line intensity ratios, and position in the [O III] λ5007/Hβ versus [O III] λ4363/Hγ diagram indicate that SS 383 is an S-type symbiotic star, with a probable spectral type of K7-M0 deduced for its cool component based on TiO indices. The spectral type and the position of SS 383 (corrected for reddening) in the 2MASS color-color diagram strongly suggest that SS 383 is an S-type yellow symbiotic. Our result points out that the 2MASS color-color diagram is a powerful tool in

  20. Star-planet connection through metallicity

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; Figueira, P.; Santos, N. C.; Israelian, G.; Mortier, A.; Mordasini, C.; Delgado Mena, E.; Sousa, S. G.; Correi, A. C. M.; Oshagh, M.

    2014-07-01

    We used a large sample of FGK dwarf planet-hosting stars with stellar parameters derived in a homogeneous way from the SWEET-Cat database (Santos et al. 2013) to study the relation between stellar metallicity and position of planets in the period-mass diagram. Using this large sample we show that planets orbiting metal-poor stars have longer periods than those in metal-rich systems. This trend is valid for masses at least from ≈ 10 M⊕ to ≈ 4 MJup. Moreover, Earth-like planets orbiting metal-rich stars always show shorter periods (≤20 days) than those orbiting metal-poor stars. However, in the short-period regime there are a similar number of planets orbiting metal-poor stars. Our results suggest that the planets in the P-MP diagram are evolving differently because of a mechanism that operates over a wide range of planetary masses. This mechanism is stronger or weaker depending on the metallicity of the respective system. Most probably planets in metal-poor disks form farther out from their central star and/or they form later and do not have time to migrate as far as the planets in metal-rich systems.

  1. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  2. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars.

  3. RR Lyrae stars in NGC 6362★

    NASA Astrophysics Data System (ADS)

    Smolec, R.; Moskalik, P.; Kałużny, J.; Pych, W.; Różyczka, M.; Thompson, I. B.

    2017-01-01

    We present the analysis of the top-quality photometry of RR Lyrae stars in the globular cluster NGC 6362, gathered over 11 observing seasons by the CASE project. 16 stars are fundamental mode pulsators (RRab stars) and 16 are first overtone pulsators (RRc stars). In two stars, previously identified as RRab, V3 and V34, we detect additional periodicity identified as radial first overtone mode. Lower than usual period ratios (0.730 and 0.728), dominant pulsation in the radial fundamental mode and presence of a long-period modulation indicate, that these two variables are not classical RRd stars, but are new members of the recently identified class of anomalous RRd variables. In a significant fraction of RRc stars, 63 per cent, we detect additional shorter-period variability in the (0.60, 0.65)P1 range. This form of double-periodic pulsation must be common in first overtone RR Lyr stars, as space observations indicate. The incidence rate we find in NGC 6362, is the highest in ground-based observations reported so far. We study the properties of these stars in detail; in particular we confirm that in the colour-magnitude diagram, this group is adjacent to the interface between RRab and RRc stars, as first reported in the analysis of M3 observations by Jurcsik et al. The incidence rate of the Blazhko effect is also very high: we observe it in 69 per cent of RRab stars and in 19 per cent of RRc stars. Rare, double-periodic modulation is reported in one RRab and in one RRc star. Finally we discuss V37 - a peculiar variable in which we detect two close high-amplitude periodicities and modulation. Its previous classification as RRc must be treated as tentative.

  4. Introduction to causal diagrams for confounder selection.

    PubMed

    Williamson, Elizabeth J; Aitken, Zoe; Lawrie, Jock; Dharmage, Shyamali C; Burgess, John A; Forbes, Andrew B

    2014-04-01

    In respiratory health research, interest often lies in estimating the effect of an exposure on a health outcome. If randomization of the exposure of interest is not possible, estimating its effect is typically complicated by confounding bias. This can often be dealt with by controlling for the variables causing the confounding, if measured, in the statistical analysis. Common statistical methods used to achieve this include multivariable regression models adjusting for selected confounding variables or stratification on those variables. Therefore, a key question is which measured variables need to be controlled for in order to remove confounding. An approach to confounder-selection based on the use of causal diagrams (often called directed acyclic graphs) is discussed. A causal diagram is a visual representation of the causal relationships believed to exist between the variables of interest, including the exposure, outcome and potential confounding variables. After creating a causal diagram for the research question, an intuitive and easy-to-use set of rules can be applied, based on a foundation of rigorous mathematics, to decide which measured variables must be controlled for in the statistical analysis in order to remove confounding, to the extent that is possible using the available data. This approach is illustrated by constructing a causal diagram for the research question: 'Does personal smoking affect the risk of subsequent asthma?'. Using data taken from the Tasmanian Longitudinal Health Study, the statistical analysis suggested by the causal diagram approach was performed.

  5. Dynamic tactile diagram simplification on refreshable displays.

    PubMed

    Rastogi, Ravi; Pawluk, Dianne T V

    2013-01-01

    The increasing use of visual diagrams in educational and work environments, and even our daily lives, has created obstacles for individuals who are blind or visually impaired to independently access the information they represent. Although physical tactile pictures can be created to convey the visual information, it is typically a slow, cumbersome, and costly process. Refreshable haptic displays, which interact with computers, promise to make this access quicker, easier, and cheaper. One important aspect in converting visual to tactile diagrams is to simplify the diagram as otherwise it can be too difficult to interpret with touch. Enabling this to be under user control in an interactive environment, such as with refreshable displays, could allow users to avoid being overwhelmed by the diagrams at any instant in time while still retaining access to all information in "storage". Through this article the authors investigate whether two types of diagram simplification--boundary simplification and contextual simplification--showed potential utility in an interactive environment. Boundary simplification was found to be significantly helpful in answering general questions about borders on a geographic map, and contextual simplification was helpful in answering relational questions, as compared to using the original map unchanged.

  6. The Semiotic Structure of Geometry Diagrams: How Textbook Diagrams Convey Meaning

    ERIC Educational Resources Information Center

    Dimmel, Justin K.; Herbst, Patricio G.

    2015-01-01

    Geometry diagrams use the visual features of specific drawn objects to convey meaning about generic mathematical entities. We examine the semiotic structure of these visual features in two parts. One, we conduct a semiotic inquiry to conceptualize geometry diagrams as mathematical texts that comprise choices from different semiotic systems. Two,…

  7. Students' Understanding of Diagrams for Solving Word Problems: A Framework for Assessing Diagram Proficiency

    ERIC Educational Resources Information Center

    Poch, Apryl L.; van Garderen, Delinda; Scheuermann, Amy M.

    2015-01-01

    A visual representation, such as a diagram, can be a powerful strategy for solving mathematical word problems. However, using a representation to solve mathematical word problems is not as simple as it seems! Many students with learning disabilities struggle to use a diagram effectively and efficiently. This article provides a framework for…

  8. 49 CFR 1152.10 - System diagram map.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false System diagram map. 1152.10 Section 1152.10... TRANSPORTATION UNDER 49 U.S.C. 10903 System Diagram § 1152.10 System diagram map. (a) Each carrier shall prepare a diagram of its rail system on a map, designating all lines in its system by the...

  9. 49 CFR 1152.10 - System diagram map.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false System diagram map. 1152.10 Section 1152.10... TRANSPORTATION UNDER 49 U.S.C. 10903 System Diagram § 1152.10 System diagram map. (a) Each carrier shall prepare a diagram of its rail system on a map, designating all lines in its system by the...

  10. Fishbone Diagrams: Organize Reading Content with a "Bare Bones" Strategy

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    Fishbone diagrams, also known as Ishikawa diagrams or cause-and-effect diagrams, are one of the many problem-solving tools created by Dr. Kaoru Ishikawa, a University of Tokyo professor. Part of the brilliance of Ishikawa's idea resides in the simplicity and practicality of the diagram's basic model--a fish's skeleton. This article describes how…

  11. Use of Affinity Diagrams as Instructional Tools in Inclusive Classrooms.

    ERIC Educational Resources Information Center

    Haselden, Polly G.

    2003-01-01

    This article describes how the affinity diagram, a tool for gathering information and organizing it into natural groupings, can be used in inclusive classrooms. It discusses how students can be taught to use an affinity diagram, how affinity diagrams can be used to reflect many voices, and how affinity diagrams can be used to plan class projects.…

  12. The Butterfly diagram leopard skin pattern

    NASA Astrophysics Data System (ADS)

    Ternullo, Maurizio

    2011-08-01

    A time-latitude diagram where spotgroups are given proportional relevance to their area is presented. The diagram reveals that the spotted area distribution is higly dishomogeneous, most of it being concentrated in few, small portions (``knots'') of the Butterfly Diagram; because of this structure, the BD may be properly described as a cluster of knots. The description, assuming that spots scatter around the ``spot mean latitude'' steadily drifting equatorward, is challenged. Indeed, spots cluster around at as many latitudes as knots; a knot may appear at either lower or higher latitudes than previous ones, in a seemingly random way; accordingly, the spot mean latitude abruptly drifts equatorward or even poleward at any knot activation, in spite of any smoothing procedure. Preliminary analyses suggest that the activity splits, in any hemisphere, into two or more distinct ``activity waves'', drifting equatorward at a rate higher than the spot zone as a whole.

  13. Massive star-formation regions in the Magellanic Clouds

    SciTech Connect

    Hutchings, J.B.; Thompson, I.B.

    1988-08-01

    Optical and UV spectroscopy of stars from six compact, luminous groups or clusters in the SMC and LMC is presented. The groups are characterized by high concentrations of nebulosity or starlight confined to areas smaller than 30 arcsec on a side, in which some stars can be resolved. The spectra and fluxes are used to derive luminosities and effective temperatures for the stars. Spectroscopic and stellar wind properties are also noted. It is found that the stars are all of O and B-type, with low extinction. The stars generally have little or no sign of stellar winds, and often have spectral peculiarities, such as weak lines or mixed spectral indicators. Most spectra have strong, broad Ly-alpha absorption, and some have broad Ca II absorption. The stars are placed on the H-R diagram, and it is argued that some of them are massive stars in pre-main-sequence stages of their evolution. 8 references.

  14. Messier's nebulae and star clusters.

    NASA Astrophysics Data System (ADS)

    Jones, K. G.

    Charles Messier's Catalogue of nebulae and star clusters, published in 1784, marked the start of a new era of deep sky astronomy. Today, this tradition of observing galaxies and clusters is kept alive by serious amateur astronomers who study the objects of the deep sky. Nearly all the objects are visible in a small telescope. The author has revised his definitive version of Messier's Catalogue. His own observations and drawings, together with maps and diagrams, make this a valuable introduction to deep sky observing. Historical and astrophysical notes bring the science of these nebulae right up to date.

  15. Gaia benchmark stars and their twins in the Gaia-ESO Survey

    NASA Astrophysics Data System (ADS)

    Jofré, P.

    2016-09-01

    The Gaia benchmark stars are stars with very precise stellar parameters that cover a wide range in the HR diagram at various metallicities. They are meant to be good representative of typical FGK stars in the Milky Way. Currently, they are used by several spectroscopic surveys to validate and calibrate the methods that analyse the data. I review our recent activities done for these stars. Additionally, by applying our new method to find stellar twins on the Gaia-ESO Survey, I discuss how good representatives of Milky Way stars the benchmark stars are and how they distribute in space.

  16. Metal-rich SX Phe stars in the Kepler field

    NASA Astrophysics Data System (ADS)

    Nemec, James M.; Balona, Luis A.; Murphy, Simon J.; Kinemuchi, Karen; Jeon, Young-Beom

    2017-04-01

    A spectroscopic and photometric analysis has been carried out for 32 candidate SX Phe variable blue straggler stars in the Kepler field. Radial velocities (RVs), space motions (U, V, W), projected rotation velocities (vsin i), spectral types and atmospheric characteristics (Teff, log g, [Fe/H], ξt, ζRT, etc.) are presented for 30 of the 32 stars. Although several stars are metal-weak with extreme halo orbits, the mean [Fe/H] of the sample is near-solar, thus the stars are more metal-rich than expected for a typical sample of Pop. II stars and more like halo metal-rich A-type stars. Two-thirds of the stars are fast rotators with vsin i > 50 km s-1, including four stars with vsin i > 200 km s-1. Three of the stars have (negative) RVs > 250 km s-1, five have retrograde space motions and 21 have total speeds (relative to the Local Standard of Rest) >400 km s-1. All but one of the 30 stars have positions in a Toomre diagram consistent with the kinematics of bona fide halo stars (the exception being a thick-disc star). Observed Rømer time delays, pulsation frequency modulations and light curves suggest that at least one-third of the stars are in binary (or triple) systems with orbital periods ranging from 2.3 d to more than four years.

  17. The Stars of Heaven

    NASA Astrophysics Data System (ADS)

    Pickover, Clifford A.

    2004-05-01

    Do a little armchair space travel, rub elbows with alien life forms, and stretch your mind to the furthest corners of our uncharted universe. With this astonishing guidebook, you don't have to be an astronomer to explore the mysteries of stars and their profound meaning for human existence. Clifford A. Pickover tackles a range of topics from stellar evolution to the fundamental reasons why the universe permits life to flourish. He alternates sections that explain the mysteries of the cosmos with sections that dramatize mind-expanding concepts through a fictional dialog between futuristic humans and their alien peers (who embark on a journey beyond the reader's wildest imagination). This highly accessible and entertaining approach turns an intimidating subject into a scientific game open to all dreamers. Told in Pickover's inimitable blend of fascinating state-of-the-art science and whimsical science fiction, and packed with numerous diagrams and illustrations, The Stars of Heaven unfolds a world of paradox and mystery, one that will intrigue anyone who has ever pondered the night sky with wonder.

  18. The dwarf spheroidal galaxy in Draco. III - Proper motion membership probabilities

    NASA Technical Reports Server (NTRS)

    Stetson, P. B.

    1980-01-01

    PDS astrometry from photographic plates of the Draco dwarf galaxy is used to derive proper motion membership probabilities for stars measured in earlier photometric studies. It is found that removing probable foreground stars from the color-magnitude diagram of Draco tends to strengthen earlier conclusions about the structure of the giant and subgiant branches. The possible existence of an upper horizontal branch containing core helium-burning stars of more than one solar mass is still questionable. A reduced proper motion diagram for probable foreground stars is presented and discussed briefly.

  19. Spectropolarimetry of Giant stars: Probing the influence of magnetic field on evolved stars Spectropolarimetry of Giant stars: Probing the influence of magnetic field on evolved stars

    NASA Astrophysics Data System (ADS)

    da Costa, Jefferson; Castro, Matthieu; Petit, Pascal; do Nascimento, José-Dias, Jr.

    2015-08-01

    It is know that lithium is element easily destroyed in stellar interior, the existence of lithium rich stars means a great challenge in stellar evolution. In this context our observations ravels the serendipitous discovery of an unusually high lithium abundance star. This is a K0III HD 150050, which has strong deepening on lithium line (6707.8 Å) this means lithium abundance of 2.81 0.2 dex, therefore this star belong a rare group called super Li-Rich stars. A possible source of the non-standard episodes required to produce Li-rich stars were identified in magneto-thermohaline mixing accounted by models of extra-mixing induced by magnetic buoyancy. However to better understand this is necessary more observational data. In last three decades several studies has showed that late type red giant stars presents a remarkable modifications in these outer atmosphere layers when they become late type star in HR diagram. These changes are founded through X-ray, Ultraviolet, and Chromospheric activity analyses, and then we can establish the called “Dividing lines”. We made spectropalarimetric observations with ESPaDOnS@CFHT to achieve two main objectives: analyze the influence of magnetic field in the Li-rich giant stars, and understand how works the magnetic field in late type giants and supergiants across the “dividing line”.

  20. Weight diagram construction of Lax operators

    SciTech Connect

    Carbon, S.L.; Piard, E.J.

    1991-10-01

    We review and expand methods introduced in our previous paper. It is proved that cyclic weight diagrams corresponding to representations of affine Lie algebras allow one to construct the associated Lax operator. The resultant Lax operator is in the Miura-like form and generates the modified KdV equations. The algorithm is extended to the super-symmetric case.

  1. Valid Structure Diagrams and Chemical Gibberish

    ERIC Educational Resources Information Center

    Tauber, Stephen J.; Rankin, Kirk

    1972-01-01

    Chemical structure diagrams are considered as utterances in a written language. Two types of grammars are considered for this language: topological grammars and geometric grammars. The hypothesis is presented that compact computer storage may become accessible via grammars. (15 references) (Author/NH)

  2. Image Attributes: A Study of Scientific Diagrams.

    ERIC Educational Resources Information Center

    Brunskill, Jeff; Jorgensen, Corinne

    2002-01-01

    Discusses advancements in imaging technology and increased user access to digital images, as well as efforts to develop adequate indexing and retrieval methods for image databases. Describes preliminary results of a study of undergraduates that explored the attributes naive subjects use to describe scientific diagrams. (Author/LRW)

  3. The Binary Temperature-Composition Phase Diagram

    ERIC Educational Resources Information Center

    Sanders, Philip C.; Reeves, James H.; Messina, Michael

    2006-01-01

    The equations for the liquid and gas lines in the binary temperature-composition phase diagram are derived by approximating that delta(H)[subscript vap] of the two liquids are equal. It is shown that within this approximation, the resulting equations are not too difficult to present in an undergraduate physical chemistry lecture.

  4. The Keynesian Diagram: A Cross to Bear?

    ERIC Educational Resources Information Center

    Fleck, Juergen

    In elementary economics courses students are often introduced to the basic concepts of macroeconomics through very simplified static models, and the concept of a macroeconomic equilibrium is generally explained with the help of an aggregate demand/aggregate supply (AD/AS) model and an income/expenditure model (via the Keynesian cross diagram).…

  5. Computer-Generated Diagrams for the Classroom.

    ERIC Educational Resources Information Center

    Carle, Mark A.; Greenslade, Thomas B., Jr.

    1986-01-01

    Describes 10 computer programs used to draw diagrams usually drawn on chalkboards, such as addition of three vectors, vector components, range of a projectile, lissajous figures, beats, isotherms, Snell's law, waves passing through a lens, magnetic field due to Helmholtz coils, and three curves. Several programming tips are included. (JN)

  6. Data Exploration: Transposition Operations in Dynamic Diagrams.

    ERIC Educational Resources Information Center

    Sivasankaran, Vijay K.; Owen, Charles L.

    1992-01-01

    Defines transposition operations (changing the way the display of the model proceeds) in diagrams within computer graphics. Describes transpositions that are spatial (moving the point of view or the point viewed), procedural (changing the flow of time), or organizational (arranging multiple simultaneous views and interjecting auxiliary measuring…

  7. Drawing conformal diagrams for a fractal landscape

    SciTech Connect

    Winitzki, Sergei

    2005-06-15

    Generic models of cosmological inflation and the recently proposed scenarios of a recycling universe and the string theory landscape predict spacetimes whose global geometry is a stochastic, self-similar fractal. To visualize the complicated causal structure of such a universe, one usually draws a conformal (Carter-Penrose) diagram. I develop a new method for drawing conformal diagrams, applicable to arbitrary 1+1-dimensional spacetimes. This method is based on a qualitative analysis of intersecting lightrays and thus avoids the need for explicit transformations of the spacetime metric. To demonstrate the power and simplicity of this method, I present derivations of diagrams for spacetimes of varying complication. I then apply the lightray method to three different models of an eternally inflating universe (scalar-field inflation, recycling universe, and string theory landscape) involving the nucleation of nested asymptotically flat, de Sitter and/or anti-de Sitter bubbles. I show that the resulting diagrams contain a characteristic fractal arrangement of lines.

  8. Fog Machines, Vapors, and Phase Diagrams

    ERIC Educational Resources Information Center

    Vitz, Ed

    2008-01-01

    A series of demonstrations is described that elucidate the operation of commercial fog machines by using common laboratory equipment and supplies. The formation of fogs, or "mixing clouds", is discussed in terms of the phase diagram for water and other chemical principles. The demonstrations can be adapted for presentation suitable for elementary…

  9. Dynamic Tactile Diagram Simplification on Refreshable Displays

    ERIC Educational Resources Information Center

    Rastogi, Ravi; Pawluk, Dianne T. V.

    2013-01-01

    The increasing use of visual diagrams in educational and work environments, and even our daily lives, has created obstacles for individuals who are blind or visually impaired to "independently" access the information they represent. Although physical tactile pictures can be created to convey the visual information, it is typically a slow,…

  10. Failure Diagram for Chemically Assisted Crack Growth

    NASA Astrophysics Data System (ADS)

    Sadananda, K.; Vasudevan, A. K.

    2011-02-01

    A failure diagram that combines the thresholds for failure of a smooth specimen to that of a fracture mechanics specimen, similar to the modified Kitagawa diagram in fatigue, is presented. For a given material/environment system, the diagram defines conditions under which a crack initiated at the threshold stress in a smooth specimen becomes a propagating crack, by satisfying the threshold stress intensity of a long crack. In analogy with fatigue, it is shown that internal stresses or local stress concentrations are required to provide the necessary mechanical crack tip driving forces, on one hand, and reaction/transportation kinetics to provide the chemical potential gradients, on the other. Together, they help in the initiation and propagation of the cracks. The chemical driving forces can be expressed as equivalent mechanical stresses using the failure diagram. Both internal stresses and their gradients, in conjunction with the chemical driving forces, have to meet the minimum magnitude and the minimum gradients to sustain the growth of a microcrack formed. Otherwise, nonpropagating conditions will prevail or a crack formed will remain dormant. It is shown that the processes underlying the crack nucleation in a smooth specimen and the crack growth of a fracture mechanics specimen are essentially the same. Both require building up of internal stresses by local plasticity. The process involves intermittent crack tip blunting and microcrack nucleation until the crack becomes unstable under the applied stress.

  11. Geometrical splitting and reduction of Feynman diagrams

    NASA Astrophysics Data System (ADS)

    Davydychev, Andrei I.

    2016-10-01

    A geometrical approach to the calculation of N-point Feynman diagrams is reviewed. It is shown that the geometrical splitting yields useful connections between Feynman integrals with different momenta and masses. It is demonstrated how these results can be used to reduce the number of variables in the occurring functions.

  12. Complexities of One-Component Phase Diagrams

    ERIC Educational Resources Information Center

    Ciccioli, Andrea; Glasser, Leslie

    2011-01-01

    For most materials, the solid at and near the triple-point temperature is denser than the liquid with which it is in equilibrium. However, for water and certain other materials, the densities of the phases are reversed, with the solid being less dense. The profound consequences for the appearance of the "pVT" diagram of one-component materials…

  13. Phase diagram of spiking neural networks

    PubMed Central

    Seyed-allaei, Hamed

    2015-01-01

    In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters – excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli. PMID:25788885

  14. On phase diagrams of magnetic reconnection

    SciTech Connect

    Cassak, P. A.; Drake, J. F.

    2013-06-15

    Recently, “phase diagrams” of magnetic reconnection were developed to graphically organize the present knowledge of what type, or phase, of reconnection is dominant in systems with given characteristic plasma parameters. Here, a number of considerations that require caution in using the diagrams are pointed out. First, two known properties of reconnection are omitted from the diagrams: the history dependence of reconnection and the absence of reconnection for small Lundquist number. Second, the phase diagrams mask a number of features. For one, the predicted transition to Hall reconnection should be thought of as an upper bound on the Lundquist number, and it may happen for considerably smaller values. Second, reconnection is never “slow,” it is always “fast” in the sense that the normalized reconnection rate is always at least 0.01. This has important implications for reconnection onset models. Finally, the definition of the relevant Lundquist number is nuanced and may differ greatly from the value based on characteristic scales. These considerations are important for applications of the phase diagrams. This is demonstrated by example for solar flares, where it is argued that it is unlikely that collisional reconnection can occur in the corona.

  15. The Evolution of Advanced Merger (U)LIRGs on the Color-Stellar Mass Diagram

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Hao, Cai-Na; Xia, Xiao-Yang

    2016-08-01

    Based on a sample of 79 local advanced merger (adv-merger) (U)LIRGs, we search for evidence of quenching processes by investigating the distributions of star formation history indicators (EW(Hα), EW(HΔA) and Dn(4000)) on the NUV-r color-mass and SFR-M * diagrams. The distributions of EW(Hα) and Dn(4000) on the NUV-r color-mass diagram show clear trends that at a given stellar mass, galaxies with redder NUV-r colors have smaller EW(Hα) and larger D n (4000). The reddest adv-merger (U)LIRGs close to the green valley mostly have D n (4000)> 1.4. In addition, in the SFR-M * diagram, as the SFR decreases, the EW(Hα) decreases and the D n (4000) increases, implying that the adv-merger (U)LIRGs on the star formation main sequence have more evolved stellar populations than those above the main sequence. These results indicate that a fraction of the adv-merger (U)LIRGs have already exhibited signs of fading from the starburst phase and that the NUV-r reddest adv-merger (U)LIRGs are likely at the initial stage of post-starbursts with an age of ˜ 1 Gyr, which is consistent with the gas exhaustion time-scales. Therefore, our results offer additional support for the fast evolutionary track from the blue cloud to the red sequence.

  16. Students' different understandings of class diagrams

    NASA Astrophysics Data System (ADS)

    Boustedt, Jonas

    2012-03-01

    The software industry needs well-trained software designers and one important aspect of software design is the ability to model software designs visually and understand what visual models represent. However, previous research indicates that software design is a difficult task to many students. This article reports empirical findings from a phenomenographic investigation on how students understand class diagrams, Unified Modeling Language (UML) symbols, and relations to object-oriented (OO) concepts. The informants were 20 Computer Science students from four different universities in Sweden. The results show qualitatively different ways to understand and describe UML class diagrams and the "diamond symbols" representing aggregation and composition. The purpose of class diagrams was understood in a varied way, from describing it as a documentation to a more advanced view related to communication. The descriptions of class diagrams varied from seeing them as a specification of classes to a more advanced view, where they were described to show hierarchic structures of classes and relations. The diamond symbols were seen as "relations" and a more advanced way was seeing the white and the black diamonds as different symbols for aggregation and composition. As a consequence of the results, it is recommended that UML should be adopted in courses. It is briefly indicated how the phenomenographic results in combination with variation theory can be used by teachers to enhance students' possibilities to reach advanced understanding of phenomena related to UML class diagrams. Moreover, it is recommended that teachers should put more effort in assessing skills in proper usage of the basic symbols and models and students should be provided with opportunities to practise collaborative design, e.g. using whiteboards.

  17. RHIC CRITICAL POINT SEARCH: ASSESSING STARs CAPABILITIES.

    SciTech Connect

    SORENSEN,P.

    2006-07-03

    In this report we discuss the capabilities and limitations of the STAR detector to search for signatures of the QCD critical point in a low energy scan at RHIC. We find that a RHIC low energy scan will cover a broad region of interest in the nuclear matter phase diagram and that the STAR detector--a detector designed to measure the quantities that will be of interest in this search--will provide new observables and improve on previous measurements in this energy range.

  18. Model atmospheres for cool supergiant stars.

    NASA Technical Reports Server (NTRS)

    Alexander, D. R.; Johnson, H. R.

    1972-01-01

    The results of an exploratory grid of model atmospheres for cool giant stars are used to illustrate the effect of varying the chemical composition of the atmosphere. The effects of composition changes (depletion of C and O, enrichment of N, and increase in the ratio C/O), which might be expected from processing of the original material of a star through the CNO cycle of nuclear burning, are studied. The models also include the important CN opacity. They are illustrated by giving several representative T-P and T-tau diagrams, spectral energy curves, and column density tables of molecules.

  19. Stellar Population Gradients in WLM

    NASA Astrophysics Data System (ADS)

    Noriega-Mendoza, H.; Holtzman, J.

    2001-12-01

    WLM is one of the most isolated galaxies in the Local Group. From archival HST frames, we look for population gradients using star count ratios from distinct regions of the Color-Magnitude diagram. We find clear evidence for a central concentration of the younger stars. This scenario supports the two-component disk/halo-like structure suggested for dwarf irregular galaxies (Martinez-Delgado, Gallart & Aparicio, 1999).

  20. Detection of the Tip of Red Giant Branc in NGC 5128

    NASA Technical Reports Server (NTRS)

    Soria, Roberto; Mould, Jeremy R.; Watson, Alan M.; Gallagher, John S., III; Ballester, Gilda E.; Burrows, Christopher J.; Casertano, Stefano; Clarke, John T.; Crisp, David; Griffiths, Richard E.; Hester, J. Jeff; Hoessel, John G.; Holtzman, Jon A.; Scowen, Paul A.; Stapelfeldt, Karl R.; Trauger, John T.; Westphal, James A.

    1996-01-01

    We present a color-magnitude diagram of more than 10,000 stars in the halo of galaxy NGC 5128 (Centaurus A), based on WFPC2 images through the V and I filters. The position of the red-giant branch stars is compared with the loci of the RGB in six well-studied globular clusters and in the dwarf elliptical galaxy NGC 185;...

  1. THE STAR FORMATION HISTORY OF THE MILKY WAY'S NUCLEAR STAR CLUSTER

    SciTech Connect

    Pfuhl, O.; Fritz, T. K.; Eisenhauer, F.; Genzel, R.; Gillessen, S.; Ott, T.; Dodds-Eden, K.; Zilka, M.; Sternberg, A.; Maness, H.

    2011-11-10

    We present spatially resolved imaging and integral field spectroscopy data for 450 cool giant stars within 1 pc from Sgr A*. We use the prominent CO bandheads to derive effective temperatures of individual giants. Additionally we present the deepest spectroscopic observation of the Galactic center (GC) so far, probing the number of B9/A0 main-sequence stars (2.2-2.8 M{sub sun}) in two deep fields. From spectrophotometry we construct a Hertzsprung-Russell diagram of the red giant population and fit the observed diagram with model populations to derive the star formation history of the nuclear cluster. We find (1) that the average nuclear star formation rate dropped from an initial maximum {approx}10 Gyr ago to a deep minimum 1-2 Gyr ago and increased again during the last few hundred Myrs, (2) that roughly 80% of the stellar mass formed more than 5 Gyr ago, and (3) that mass estimates within R {approx} 1 pc from Sgr A* favor a dominant star formation mode with a 'normal' Chabrier/Kroupa initial mass function for the majority of the past star formation in the GC. The bulk stellar mass seems to have formed under conditions significantly different from the young stellar disks, perhaps because at the time of the formation of the nuclear cluster the massive black hole and its sphere of influence were much smaller than today.

  2. BINARY STAR SYNTHETIC PHOTOMETRY AND DISTANCE DETERMINATION USING BINSYN

    SciTech Connect

    Linnell, Albert P.; DeStefano, Paul; Hubeny, Ivan E-mail: pdestefa@uw.edu

    2013-09-15

    This paper extends synthetic photometry to components of binary star systems. The paper demonstrates accurate recovery of single star photometric properties for four photometric standards, Vega, Sirius, GD153, and HD209458, ranging over the HR diagram, when their model synthetic spectra are placed in fictitious binary systems and subjected to synthetic photometry processing. Techniques for photometric distance determination have been validated for all four photometric standards.

  3. Star formation across galactic environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    . Complementing this study of normal star-forming galaxies, my study of quasar host galaxies utilizes narrow- and medium-band images of eight Palomar-Green (PG) quasars from the WFPC2 and NICMOS instruments aboard the Hubble Space Telescope. Using images of a point-spread function (PSF) star in the same filters, I subtract the PSF of the quasar from each of the target images. The residual light images clearly show the host galaxies of the respective quasars. The narrow-band images were chosen to be centered on the Hbeta, [O II ], [O III], and Paalpha emission lines, allowing the use of line ratios and luminosities to create extinction and star formation maps. Additionally, I utilize the line-ratio maps to distinguish AGN-powered line emission from star formation powered line emission with line-diagnostic diagrams. I find star formation in each of the eight quasar host galaxies in my study. The bulk star-formation rates are lower than expected, suggesting that quasar host galaxies may be dynamically more advanced than previously believed. Seven of the eight quasar host galaxies in this study have higher-than-typical mass-specific star-formation rates. Additionally, I see evidence of shocked gas, supporting the hypotheses presented in earlier works that suggest that AGN activity quenches star formation in its host galaxy by disrupting its gas reservoir.

  4. Classification of compact binaries: an X-ray analog to the HR diagram

    NASA Astrophysics Data System (ADS)

    Dil Vrtilek, Saeqa; Raymond, John C.; Gopalan, Giri; Boroson, Bram Seth; Bornn, Luke

    2016-06-01

    X-ray binary systems (XRBs), when examined in an appropriate coordinate system derived from X-ray spectral and intensity information, appear to cluster based on their compact object type. We introduce such a coordinate system, in which two coordinates are hardness ratios and the third is a broadband X-ray intensity. In Gopalan, Vrtilek, & Bornn (2015) we developed a Bayesian statistical model that estimates the probability that an XRB contains a black hole, non-pulsing neutron star, or pulsing neutron star, depending on its location in our coordinate space. In particular, we utilized a latent variable model in which the latent variables follow a Gaussian process prior distribution. Here we expand our work to incorporate systems where the compact object is a white dwarf: cataclysmic variables (CVs). The fact that the CVs also fall into a location spatially distinct from the other XRB types supports the use of X-ray color-color-intensity diagrams as 3-dimensional analogs to the Hertzsprung-Russell diagram for normal stars.

  5. Symbiotic stars

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  6. IRAS colors of carbon stars - An optical spectroscopic test

    SciTech Connect

    Cohen, M.; Wainscoat, R.J.; Walker, H.J.; Volk, K.; Schwartz, D.E.; Search for Extraterrestrial Intelligence Institute, Los Altos, CA )

    1989-06-01

    Optical spectra are obtained of 57 photographic counterparts to IRAS sources not previously studied spectroscopically, and expected on the basis of their IRAS colors to be M or C type stars. Confirmed carbon stars are found only in a restricted range of 12-25 index, and constitute a striking vertical sequence in the 12-25-60 micron color-color diagram. This sequence is in accord with evolutionary models for AGB stars that convert M into C stars by dredge-up, and follow loops in the color-color plane. Optically visible and optically invisible carbon stars occupy different color-color locations consistent with their representations of different evolutionary states in the life of relatively low-mass stars. 16 refs.

  7. Evolutionary Connections Between RSGs and Other Massive Stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2015-08-01

    Red supergiants are an important mass-loss phase near the end of a massive star's life, but there are many other evolved mass-losing stars that populate the HR Diagram, and not all massive stars will pass through a red supergiant phase. This talk will provide an overview of other types of massive stars and how they relate to red supergiants. Mass loss by red supergiant winds will be weighed against the mass loss of other massive stars in terms of their contribution to pre-supernova evolution, focussing on trends with initial mass and metallicity. Moreover, some other evolved massive stars have already been RSG or will be in the future, and circumstellar material is an important clue in this regard. Last, the diversity of different supernova explosions, their circumstellar material, and statistics of SN types provide important constraints on the role of RSGs in the latest phases of evolution and mass loss.

  8. IRAS colors of carbon stars - An optical spectroscopic test

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Wainscoat, Richard J.; Walker, Helen J.; Volk, Kevin; Schwartz, Deborah E.

    1989-01-01

    Optical spectra are obtained of 57 photographic counterparts to IRAS sources not previously studied spectroscopically, and expected on the basis of their IRAS colors to be M or C type stars. Confirmed carbon stars are found only in a restricted range of 12-25 index, and constitute a striking 'vertical' sequence in the 12-25-60 micron color-color diagram. This sequence is in accord with evolutionary models for AGB stars that convert M into C stars by dredge-up, and follow loops in the color-color plane. Optically visible and optically invisible carbon stars occupy different color-color locations consistent with their representations of different evolutionary states in the life of relatively low-mass stars.

  9. Photometry of stars in the Cas OB5 Associations

    NASA Astrophysics Data System (ADS)

    Tanriver, Mehmet; Keskin, Ahmet

    2016-07-01

    OB associations are a grouping of very young associations, contain 10-100 very hot massive stars, spectral types O and B. Also, the OB associations contain low and intermediate mass stars, too. Association members are believed to form within the same small volume inside a giant molecular cloud. Once the surrounding dust and gas is blown away, the remaining stars become not tied up and begin to drift separately. It is believed that the majority of all stars in the Milky Way were formed in OB associations. O type stars are short-lived, and will be at an end as supernovae after roundly a million years. OB associations are generally only a few million years in age or less. In this study, the photometry of UU Cas and field star which been Cas OB5 association member was carried out. Light curves and color diagrams are given in the study.

  10. Isolating signatures of major cloud-cloud collisions using position-velocity diagrams

    NASA Astrophysics Data System (ADS)

    Haworth, T. J.; Tasker, E. J.; Fukui, Y.; Torii, K.; Dale, J. E.; Shima, K.; Takahira, K.; Habe, A.; Hasegawa, K.

    2015-06-01

    Collisions between giant molecular clouds are a potential mechanism for triggering the formation of massive stars, or even super star clusters. The trouble is identifying this process observationally and distinguishing it from other mechanisms. We produce synthetic position-velocity diagrams from models of cloud-cloud collisions, non-interacting clouds along the line of sight, clouds with internal radiative feedback and a more complex cloud evolving in a galactic disc, to try and identify unique signatures of collision. We find that a broad bridge feature connecting two intensity peaks, spatially correlated but separated in velocity, is a signature of a high-velocity cloud-cloud collision. We show that the broad bridge feature is resilient to the effects of radiative feedback, at least to around 2.5 Myr after the formation of the first massive (ionizing) star. However for a head-on 10 km s-1 collision, we find that this will only be observable from 20 to 30 per cent of viewing angles. Such broad-bridge features have been identified towards M20, a very young region of massive star formation that was concluded to be a site of cloud-cloud collision by Torii et al., and also towards star formation in the outer Milky Way by Izumi et al.

  11. Finding and accessing diagrams in biomedical publications.

    PubMed

    Kuhn, Tobias; Luong, ThaiBinh; Krauthammer, Michael

    2012-01-01

    Complex relationships in biomedical publications are often communicated by diagrams such as bar and line charts, which are a very effective way of summarizing and communicating multi-faceted data sets. Given the ever-increasing amount of published data, we argue that the precise retrieval of such diagrams is of great value for answering specific and otherwise hard-to-meet information needs. To this end, we demonstrate the use of advanced image processing and classification for identifying bar and line charts by the shape and relative location of the different image elements that make up the charts. With recall and precisions of close to 90% for the detection of relevant figures, we discuss the use of this technology in an existing biomedical image search engine, and outline how it enables new forms of literature queries over biomedical relationships that are represented in these charts.

  12. Phase diagram of UCoGe

    NASA Astrophysics Data System (ADS)

    Mineev, V. P.

    2017-03-01

    The temperature-pressure phase diagram of ferromagnetic superconductor UCoGe includes four phase transitions. They are between the paramagnetic and the ferromagnetic states with the subsequent transition in the superconducting ferromagnetic state and between the normal and the superconducting states after which the transition to the superconducting ferromagnetic state has to occur. Here we have developed the Landau theory description of the phase diagram and established the specific ordering arising at each type of transition. The phase transitions to the ferromagnetic superconducting state are inevitably accompanied by the emergence of screening currents. The corresponding magnetostatics considerations allow for establishing the significant difference between the transition from the ferromagnetic to the ferromagnetic superconducting state and the transition from the superconducting to the ferromagnetic superconducting state.

  13. Flamelet Regime Diagram for Turbulent Combustion Simulations

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lee; Ihme, Matthias; Kolla, Hemanth; Chen, Jacqueline

    2016-11-01

    The flamelet model has been widely used in numerical combustion investigations, particularly for the closure of large-eddy simulations (LES) of turbulent reacting flows. In most cases, the simulation results demonstrated good agreements with their experimental counterparts. However, a systematic analysis of the flamelet model's applicability, as well as its potential limitations, is seldom conducted, and the model performance is usually based only on a-posteriori comparisons. The objective of this work is to derive a metric that can formally quantify the suitability of the flamelet model in different flame configurations. For this purpose, a flamelet regime diagram has been developed and studied in the context of direct numerical simulations (DNS) of a turbulent lifted jet flame. The implementation of the regime diagram in LES has been investigated through explicit filtering of the DNS results.

  14. Diagrams of stability of circumbinary planetary systems

    NASA Astrophysics Data System (ADS)

    Popova, Elena

    2014-07-01

    The stability diagrams in the ``pericentric distance - eccentricity'' plane of initial data are built and analyzed for Kepler-38, Kepler-47, and Kepler-64 (PH1). This completes a survey of stability of the known up to now circumbinary planetary systems, initiated by Popova & Shevchenko (2013), where the analysis was performed for Kepler-16, 34, and 35. In the diagrams, the planets appear to be ``embedded'' in the fractal chaos border; however, I make an attempt to measure the ``distance'' to the chaos border in a physically consistent way. The obtained distances are compared to those given by the widely used numerical-experimental criterion by Holman & Wiegert (1999), who employed smooth polynomial approximations to describe the border. I identify the resonance cells, hosting the planets.

  15. Phase diagram of a single lane roundabout

    NASA Astrophysics Data System (ADS)

    Echab, H.; Lakouari, N.; Ez-Zahraouy, H.; Benyoussef, A.

    2016-03-01

    Using the cellular automata model, we numerically study the traffic dynamic in a single lane roundabout system of four entry/exit points. The boundaries are controlled by the injecting rates α1, α2 and the extracting rate β. Both the system with and without Splitter Islands of width Lsp are considered. The phase diagram in the (α1 , β) space and its variation with the roundabout size, Pagg (i.e. the probability of aggressive entry), and Pexit (i.e. the probability of preferential exit) are constructed. The results show that the phase diagram in both cases consists of three phases: free flow, congested and jammed. However, as Lsp increases the free flow phase enlarges while the congested and jammed ones shrink. On the other hand, the short sized roundabout shows better performance in the free flow phase while the large one is more optimal in the congested phase. The density profiles are also investigated.

  16. Modeling the Round Earth through Diagrams

    NASA Astrophysics Data System (ADS)

    Padalkar, Shamin; Ramadas, Jayashree

    Earlier studies have found that students, including adults, have problems understanding the scientifically accepted model of the Sun-Earth-Moon system and explaining day-to-day astronomical phenomena based on it. We have been examining such problems in the context of recent research on visual-spatial reasoning. Working with middle school students in India, we have developed a pedagogical sequence to build the mental model of the Earth and tried it in three schools for socially and educationally disadvantaged students. This pedagogy was developed on the basis of (1) a reading of current research in imagery and visual-spatial reasoning and (2) students' difficulties identified during the course of pretests and interviews. Visual-spatial tools such as concrete (physical) models, gestures, and diagrams are used extensively in the teaching sequence. The building of a mental model is continually integrated with drawing inferences to understand and explain everyday phenomena. The focus of this article is inferences drawn with diagrams.

  17. Prediction of boron carbon nitrogen phase diagram

    NASA Astrophysics Data System (ADS)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  18. Penguin diagrams for improved staggered fermions

    SciTech Connect

    Lee, Weonjong

    2005-01-01

    We calculate, at the one-loop level, penguin diagrams for improved staggered fermion operators constructed using various fat links. The main result is that diagonal mixing coefficients with penguin operators are identical between the unimproved operators and the improved operators using such fat links as Fat7, Fat7+Lepage, Fat7, HYP (I) and HYP (II). In addition, it turns out that the off-diagonal mixing vanishes for those constructed using fat links of Fat7, Fat7 and HYP (II). This is a consequence of the fact that the improvement by various fat links changes only the mixing with higher dimension operators and off-diagonal operators. The results of this paper, combined with those for current-current diagrams, provide complete matching at the one-loop level with all corrections of O(g{sup 2}) included.

  19. Phase diagram of silica from computer simulation

    NASA Astrophysics Data System (ADS)

    Saika-Voivod, Ivan; Sciortino, Francesco; Grande, Tor; Poole, Peter H.

    2004-12-01

    We evaluate the phase diagram of the “BKS” potential [van Beest, Kramer, and van Santen, Phys. Rev. Lett. 64, 1955 (1990)], a model of silica widely used in molecular dynamics (MD) simulations. We conduct MD simulations of the liquid, and three crystals ( β -quartz, coesite, and stishovite) over wide ranges of temperature and density, and evaluate the total Gibbs free energy of each phase. The phase boundaries are determined by the intersection of these free energy surfaces. Not unexpectedly for a classical pair potential, our results reveal quantitative discrepancies between the locations of the BKS and real silica phase boundaries. At the same time, we find that the topology of the real phase diagram is reproduced, confirming that the BKS model provides a satisfactory qualitative description of a silicalike material. We also compare the phase boundaries with the locations of liquid-state thermodynamic anomalies identified in previous studies of the BKS model.

  20. Finding and Accessing Diagrams in Biomedical Publications

    PubMed Central

    Kuhn, Tobias; Luong, ThaiBinh; Krauthammer, Michael

    2012-01-01

    Complex relationships in biomedical publications are often communicated by diagrams such as bar and line charts, which are a very effective way of summarizing and communicating multi-faceted data sets. Given the ever-increasing amount of published data, we argue that the precise retrieval of such diagrams is of great value for answering specific and otherwise hard-to-meet information needs. To this end, we demonstrate the use of advanced image processing and classification for identifying bar and line charts by the shape and relative location of the different image elements that make up the charts. With recall and precisions of close to 90% for the detection of relevant figures, we discuss the use of this technology in an existing biomedical image search engine, and outline how it enables new forms of literature queries over biomedical relationships that are represented in these charts. PMID:23304318

  1. The SUPERBLINK all-sky catalog of 2.8 million stars with proper motions larger than 40 mas/yr, enhanced with data from the first GAIA release

    NASA Astrophysics Data System (ADS)

    Lepine, Sebastien

    2017-01-01

    An updated version of the SUPERBLINK all-sky catalog of 2.8 million stars with proper motions larger than 40 mas/yr is presented. This version incorporates data from the GAIA first release (DR1), and identifies the photometric counterparts of the stars in variety of other catalogs including ROSAT, GALEX, APASS, SDSS, 2MASS and WISE. All bright stars (0stars in the faint magnitude range (12stars with no current GAIA parallaxes. In addition, photometric distances are provided for stars with no trigonometric parallax measurement, using color-magnitude relationships recalibrated with the new GAIA parallaxes; these stars constitute the majority of objects in the SUPERBLINK catalog, and overwhelmingly consist of M dwarfs and white dwarfs in the Solar vicinity. We examine the completeness and magnitude limit of the GAIA first data release for stars with large proper motions.

  2. Displaying multimedia environmental partitioning by triangular diagrams

    SciTech Connect

    Lee, S.C.; Mackay, D.

    1995-11-01

    It is suggested that equilateral triangular diagrams are a useful method of depicting the equilibrium partitioning of organic chemicals among the three primary environmental media of the atmosphere, the hydrosphere, and the organosphere (natural organic matter and biotic lipids and waxes). The technique is useful for grouping chemicals into classes according to their partitioning tendencies, for depicting the incremental effects of substituents such as alkyl groups and chlorine, and for showing how partitioning changes in response to changes in temperature.

  3. Phase diagram of a traffic roundabout

    NASA Astrophysics Data System (ADS)

    Huang, Ding-wei

    2007-09-01

    We propose a simple cellular automaton model to study the traffic dynamics in a roundabout. Both numerical and analytical results are presented. We are able to obtain exact solutions in the full parameter space. Exact phase diagrams are derived. When the traffic from two directions mixed, there are only five distinct phases. Some of the combinations from naive intuition are strictly forbidden. We also compare the results to a signaled intersection.

  4. Sketching for Military Courses of Action Diagrams

    DTIC Science & Technology

    2003-01-01

    Course-of- Action Diagrams. Proceedings of the 14th International Workshop on Qualitative Reasoning. Morelia, Mexico . June, 2000. 10. Forbus, K...computational model of sketching. IUI’01, January 14-17, 2001, Santa Fe, New Mexico 15. Forbus, K., Gentner, D. and Law, K. 1995. MAC/FAC: A...Operations 2002. pp. 85- 90. 22. Landay, J. and Myers, B. 1996. Sketching storyboards to illustrate interface behaviors. CHI’96 Conference Companion

  5. Mixed wasted integrated program: Logic diagram

    SciTech Connect

    Mayberry, J.; Stelle, S.; O`Brien, M.; Rudin, M.; Ferguson, J.; McFee, J.

    1994-11-30

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).

  6. Spectroscopic Survey Of Delta Scuti Stars

    NASA Astrophysics Data System (ADS)

    Kahraman Alicavus, Filiz; Niemczura, Ewa; Polinska, Magdalena; Helminiak, Krzysztof G.; Lampens, Patricia; Molenda-Zakowicz, Joanna; Ukita, Nobuharu; Kambe, Eiji

    2016-07-01

    We present the results of a spectroscopic study of pulsating stars of Delta Scuti type. The spectral types and luminosity classes, fundamental atmospheric parameters (the effective temperature, surface gravity, microturbulent velocity), detailed chemical composition and projected rotational velocities of a significant number of Delta Scuti-type stars were derived. The spectral classification was performed by comparing the spectra of our targets with the spectra of standard stars. The atmospheric parameters were determined by using different methods. The initial atmospheric parameters were derived from the analysis of photometric indices, the spectral energy distribution and the hydrogen lines, while the final atmospheric parameters were obtained from the analysis of iron lines. The spectrum synthesis method was used to determine chemical compositions of the investigated stars. As a result, we derived accurate atmospheric parameters, the projected rotational velocities and the abundance patterns of analysed sample. These results allow us to examine the position of Delta Scuti-type stars in the H-R diagram, and to investigate the effect of the rotational velocity on pulsation properties and a chemical difference between the Delta Scuti-type stars and the Gamma Doradus and A-F type hybrid stars.

  7. 75 FR 61512 - Outer Continental Shelf Official Protraction Diagrams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Bureau of Ocean Energy Management, Regulation and Enforcement Outer Continental Shelf Official Protraction Diagrams AGENCY: Bureau of Ocean Energy Management, Regulation and Enforcement, Interior. ACTION... Outer Continental Shelf Official Protraction Diagrams (OPDs) located within Atlantic Ocean areas,...

  8. NEW APPROACHES: Using free body diagrams as a diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Whiteley, Peter

    1996-09-01

    A selection of `Free Body Diagrams' were completed by Advanced Level physics students prior to instruction. The diagrams drawn pointed to a range of understandings and conceptions held by the students that might help to guide instructional strategies.

  9. Proof test diagrams for Zerodur glass-ceramic

    NASA Technical Reports Server (NTRS)

    Tucker, D. S.

    1991-01-01

    Proof test diagrams for Zerodur glass-ceramics are calculated from available fracture mechanics data. It is shown that the environment has a large effect on minimum time-to-failure as predicted by proof test diagrams.

  10. Rainbow's stars

    NASA Astrophysics Data System (ADS)

    Garattini, Remo; Mandanici, Gianluca

    2017-01-01

    In recent years, a growing interest in the equilibrium of compact astrophysical objects like white dwarf and neutron stars has been manifested. In particular, various modifications due to Planck-scale energy effects have been considered. In this paper we analyze the modification induced by gravity's rainbow on the equilibrium configurations described by the Tolman-Oppenheimer-Volkoff (TOV) equation. Our purpose is to explore the possibility that the rainbow Planck-scale deformation of space-time could support the existence of different compact stars.

  11. Chameleon stars

    SciTech Connect

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Singleton, Douglas

    2011-10-15

    We consider a gravitating spherically symmetric configuration consisting of a scalar field nonminimally coupled to ordinary matter in the form of a perfect fluid. For this system we find static, regular, asymptotically flat solutions for both relativistic and nonrelativistic cases. It is shown that the presence of the nonminimal interaction leads to substantial changes both in the radial matter distribution of the star and in the star's total mass. A simple stability test indicates that, for the choice of parameters used in the paper, the solutions are unstable.

  12. Automated D/3 to Visio Analog Diagrams

    SciTech Connect

    Posey, Stephen B.

    2000-08-10

    ADVAD1 reads an ASCII file containing the D/3 DCS MDL input for analog points for a D/3 continuous database. It uses the information in the files to create a series of Visio files representing the structure of each analog chain, one drawing per Visio file. The actual drawing function is performed by Visio (requires Visio version 4.5+). The user can configure the program to select which fields in the database are shown on the diagram and how the information is to be presented. This gives a visual representation of the structure of the analog chains, showing selected fields in a consistent manner. Updating documentation can be done easily and the automated approach eliminates human error in the cadding process. The program can also create the drawings far faster than a human operator is capable, able to create approximately 270 typical diagrams in about 8 minutes on a Pentium II 400 MHz PC. The program allows for multiple option sets to be saved to provide different settings (i.e., different fields, different field presentations, and /or different diagram layouts) for various scenarios or facilities on one workstation. Option sets may be exported from the Windows registry to allow duplication of settings on another workstation.

  13. Antiferromagnetic phase diagram of the cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Nunes, L. H. C. M.; Teixeira, A. W.; Marino, E. C.

    2017-02-01

    Taking the spin-fermion model as the starting point for describing the cuprate superconductors, we obtain an effective nonlinear sigma-field hamiltonian, which takes into account the effect of doping in the system. We obtain an expression for the spin-wave velocity as a function of the chemical potential. For appropriate values of the parameters we determine the antiferromagnetic phase diagram for the YBa2Cu3O6+x compound as a function of the dopant concentration in good agreement with the experimental data. Furthermore, our approach provides a unified description for the phase diagrams of the hole-doped and the electron doped compounds, which is consistent with the remarkable similarity between the phase diagrams of these compounds, since we have obtained the suppression of the antiferromagnetic phase as the modulus of the chemical potential increases. The aforementioned result then follows by considering positive values of the chemical potential related to the addition of holes to the system, while negative values correspond to the addition of electrons.

  14. Phase diagram of the Gaussian-core model.

    PubMed

    Prestipino, Santi; Saija, Franz; Giaquinta, Paolo V

    2005-05-01

    We trace with high numerical accuracy the phase diagram of the Gaussian-core model, a classical system of point particles interacting via a Gaussian-shaped, purely repulsive potential. This model, which provides a reliable qualitative description of the thermal behavior of interpenetrable globular polymers, is known to exhibit a polymorphic fcc-bcc transition at low densities and reentrant melting at high densities. Extensive Monte Carlo simulations, carried out in conjunction with accurate calculations of the solid free energies, lead to a thermodynamic scenario that is partially modified with respect to previous knowledge. In particular, we find that: (i) the fluid-bcc-fcc triple-point temperature is about one third of the maximum freezing temperature; (ii) upon isothermal compression, the model exhibits a fluid-bcc-fcc-bcc-fluid sequence of phases in a narrow range of temperatures just above the triple point. We discuss these results in relation to the behavior of star-polymer solutions and of other softly repulsive systems.

  15. The Formation Of Massive Stars And The Effects Of Rotation On Star Formation

    NASA Astrophysics Data System (ADS)

    Maeder, A.

    2011-11-01

    We first review the current debates about massive star formation over the last decade. Then we concentrate on the accretion scenario, emphasizing the evidences in favor of it. We study the basic properties of the accretion scenario in the spherical case. In the case of massive stars, the free-fall time is longer than the Kelvin-Helmholtz timescale, so that the massive stars in formation reach thermal equilibrium before the accretion is completed. This is why the history of the accretion rates for massive stars is so critical. We derive analytically the typical accretion rates, their upper and lower limits, showing the importance of dust properties. We examine the basic properties of the disk, their luminosity and temperature in the stationary approximation, as well as their various components. The results of some recent numerical models are discussed with a particular attention to the effects that favor accretion on the central body relatively to the case of spherical accretion. These effects strongly influence the final stellar mass resulting from a collapsing clump in a cloud. We also show some properties of the pre-main sequence tracks of massive stars in the Hertzsprung-Russell diagram. During the first part of their evolution up to a mass of about 3M⊙ the forming stars are overluminous, then they are strongly underluminous (with respect to the zero age main sequence) up to a mass of about 10M⊙ until they adjust after a slight overluminosity to the main sequence values. We consider some rotational properties related to star formation. The angular momentum has to be reduced by a factor of about 106 during star formation. Some effects contributing to this reduction have been studied particularly in the case of low- and intermediate-mass stars: disk locking and magnetic braking. We also discuss the case of massive stars and emphasize the effects of the gravity darkening of rotating stars that may favor the accretion from the disk of massive stars in formation.

  16. Massive basketball diagram for a thermal scalar field theory

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Braaten, Eric; Strickland, Michael

    2000-08-01

    The ``basketball diagram'' is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a φ4 interaction to three-loop order.

  17. Chromospheric Activity in Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Simon, Theodore

    IUE observations of solar-type stars show a decline of chromospheric and TR emission with age. For main-sequence stars older than 100 million yr, this decay is exponential from a plateau defined by the youngest stars. At an age of ~1 million yr, the pre-main-sequence T Tauri stars have UV emission line fluxes some 2 orders of magnitude above the plateau for mainsequence stars. This suggests that chromospheric activity in the T Tauri stars falls to the levels of the older stars by a separate decay scheme. The decline in pre-mainsequence activity may be caused by the evolutionary shallowing of the convection zone, while on the main-sequence it is due to the star's spindown. This hypothesis needs confirmation, but relatively few T Tauri stars have been observed by IUE. Since the majority of the T Tauri stars thus far observed are probably more massive than the Sun, it may be inappropriate to compare their UV emission with that of the older I Mo dwarf stars. We propose here to observe the ultraviolet chromospheric and TR lines of pre-main-sequence stars we believe to be of ~1 M(sun). We have chosen a sample of low-luminosity M-type T Tauri stars from the T-associations in Lupus; if evolutionary tracks have any validity, a large fraction of those stars should be close to 1 M(sun)in mass. In order to place the stars more accurately on the H-R diagram and to determine their rotation rates (for comparison with the mainsequence stars), we plan concurrent visual spectroscopy and visual-infrared photometry.

  18. When did M31's disk form?

    NASA Astrophysics Data System (ADS)

    Morrison, Heather

    2004-07-01

    The recent discovery of THIN disk globular clusters in M31 provides a unique opportunity to determine the age of M31's disk. The globular cluster kinematics imply that the disk has not been significantly heated or destroyed by a merger since they were formed. Thus the cluster ages provide a lower limit to the disk age. This limit will complement the high-redshift data, where few disk galaxies are currently known because of their relatively low surface brighness. We propose to obtain BV ACS imaging of seven disk clusters to below the level of the horizontal branch {HB} to determine the distribution of evolved stars in the color-magnitude diagram. The contribution of evolved stars, particularly blue HB stars, is crucial to estimating the age of the globular cluster from both color-magnitude diagrams and the high S/N integrated spectra which we will obtain from the ground.

  19. The Problem of Labels in E-Assessment of Diagrams

    ERIC Educational Resources Information Center

    Jayal, Ambikesh; Shepperd, Martin

    2009-01-01

    In this article we explore a problematic aspect of automated assessment of diagrams. Diagrams have partial and sometimes inconsistent semantics. Typically much of the meaning of a diagram resides in the labels; however, the choice of labeling is largely unrestricted. This means a correct solution may utilize differing yet semantically equivalent…

  20. Students' Learning Activities While Studying Biological Process Diagrams

    ERIC Educational Resources Information Center

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal…

  1. Oak Ridge National Laboratory Technology Logic Diagram. Executive Summary

    SciTech Connect

    Not Available

    1993-06-30

    This executive summary contains a description of the logic diagram format; some examples from the diagram (Vol. 2) and associated technology evaluation data sheets (Vol. 3); a complete (albeit condensed) listing of the RA, D&D, and WM problems at ORNL; and a complete listing of the technology rankings for all the areas covered by the diagram.

  2. Science Visual Literacy: Learners' Perceptions and Knowledge of Diagrams

    ERIC Educational Resources Information Center

    McTigue, Erin M.; Flowers, Amanda C.

    2011-01-01

    Constructing meaning from science texts relies not only on comprehending the words but also the diagrams and other graphics. The goal of this study was to explore elementary students' perceptions of science diagrams and their skills related to diagram interpretation. 30 students, ranging from second grade through middle school, completed a diagram…

  3. Crystallization of carbon-oxygen mixtures in white dwarf stars.

    PubMed

    Horowitz, C J; Schneider, A S; Berry, D K

    2010-06-11

    We determine the phase diagram for dense carbon-oxygen mixtures in white dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and from Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the 12C(α,γ)16O reaction to S(300)≤170  keV b.

  4. Crystallization of Carbon-Oxygen Mixtures in White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Schneider, A. S.; Berry, D. K.

    2010-06-01

    We determine the phase diagram for dense carbon-oxygen mixtures in white dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and from Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the C12(α,γ)O16 reaction to S300≤170keVb.

  5. Constraining the Limits of the Magnetic Confinement-Rotation Diagram: An Analysis of Two B-type Systems Hosting Recently Discovered Extreme Centrifugal Magnetospheres

    NASA Astrophysics Data System (ADS)

    Sikora, James

    Following the detection in the late 70s of a strong magnetic field in the early B-type star sigma Ori E and, more recently with the results of the Magnetism In MassivE Stars (MiMeS) survey, an important and rare subclass of magnetic B-type stars has been emerging. Magnetic stars hosting so called "centrifugal magnetospheres" are characterized by rapid rotation and feature strong and broad emission lines in their spectra produced by a hot plasma co-rotating with the star well beyond the surface (at distances of several times the stellar radius). Since the first discovery of these properties in the magnetic B2Vp star sigma Ori E, the dense, rigidly-rotating circumstellar plasma has been understood as an accumulation of the star's wind in regions of closed magnetic loops above the surface. These objects serve as unique laboratories for studying how the fast winds emitted by all B-type stars interact with magnetic fields in extreme environments. In this study, the properties of two rapidly rotating stars, HD 23478 and HD 35502, hosts to centrifugal magnetospheres and exhibiting strong emission in their spectra, are derived. Our results establish new upper limits on the magnetic confinement-rotation diagram { a diagnostic tool which is used to understand the magnetospheres of O- and B-type stars in a broader context. The derived rapid rotation and strong magnetic fields imply that these two stars occupy the most extreme region of the magnetic confinement-rotation diagram populated by known centrifugal magnetosphere-hosting stars such as sigma Ori E and HR 5907.

  6. Star Power

    SciTech Connect

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  7. Star Power

    ScienceCinema

    None

    2016-07-12

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  8. Galaxy emission line classification using three-dimensional line ratio diagrams

    SciTech Connect

    Vogt, Frédéric P. A.; Dopita, Michael A.; Kewley, Lisa J.; Sutherland, Ralph S.; Scharwächter, Julia; Basurah, Hassan M.; Ali, Alaa; Amer, Morsi A.

    2014-10-01

    Two-dimensional (2D) line ratio diagnostic diagrams have become a key tool in understanding the excitation mechanisms of galaxies. The curves used to separate the different regions—H II-like or excited by an active galactic nucleus (AGN)—have been refined over time but the core technique has not evolved significantly. However, the classification of galaxies based on their emission line ratios really is a multi-dimensional problem. Here we exploit recent software developments to explore the potential of three-dimensional (3D) line ratio diagnostic diagrams. We introduce the ZQE diagrams, which are a specific set of 3D diagrams that separate the oxygen abundance and the ionization parameter of H II region-like spectra and also enable us to probe the excitation mechanism of the gas. By examining these new 3D spaces interactively, we define the ZE diagnostics, a new set of 2D diagnostics that can provide the metallicity of objects excited by hot young stars and that cleanly separate H II region-like objects from the different classes of AGNs. We show that these ZE diagnostics are consistent with the key log [N II]/Hα versus log [O III]/Hβ diagnostic currently used by the community. They also have the advantage of attaching a probability that a given object belongs to one class or the other. Finally, we discuss briefly why ZQE diagrams can provide a new way to differentiate and study the different classes of AGNs in anticipation of a dedicated follow-up study.

  9. Proper motions, cluster membership and reddening in NGC 6611

    NASA Technical Reports Server (NTRS)

    Kamp, L. W.

    1974-01-01

    Approaches used in reductions for proper motion are based on methods developed by Vasilevskis et al. (1965). Probabilities of cluster membership were determined by fitting the distribution of stars in the proper motion vector diagram with two bivariate Gaussian distributions for the field and the cluster stars. The spectroscopic data indicate that the stellar content of the cluster is not anomalous. The color-magnitude diagram is considered along with questions regarding member stars lying above the main sequence, the cluster age, and aspects of spatial structure.

  10. Simultaneous Chiral Symmetry Restoration and Deconfinement Consequences for the QCD Phase Diagram

    NASA Astrophysics Data System (ADS)

    Klähn, Thomas; Fischer, Tobias; Hempel, Matthias

    2017-02-01

    For studies of quark matter in astrophysical scenarios, the thermodynamic bag model is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Klähn & Fischer we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant {B}{dc} from a given hadronic equation of state in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction, the phase diagram, and implications for protoneutron stars.

  11. Sinc function representation and three-loop master diagrams

    SciTech Connect

    Easther, Richard; Guralnik, Gerald; Hahn, Stephen

    2001-04-15

    We test the Sinc function representation, a novel method for numerically evaluating Feynman diagrams, by using it to evaluate the three-loop master diagrams. Analytical results have been obtained for all these diagrams, and we find excellent agreement between our calculations and the exact values. The Sinc function representation converges rapidly, and it is straightforward to obtain accuracies of 1 part in 10{sup 6} for these diagrams and with longer runs we found results better than 1 part in 10{sup 12}. Finally, this paper extends the Sinc function representation to diagrams containing massless propagators.

  12. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  13. Electron lithography STAR design guidelines. Part 1: The STAR user design manual

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Newman, W.

    1982-01-01

    The STAR system developed by NASA enables any user with a logic diagram to design a semicustom digital MOS integrated circuit. The system is comprised of a library of standard logic cells and computer programs to place, route, and display designs implemented with cells from the library. Library cells of the CMOS metal gate and CMOS silicon gate technologies were simulated using SPICE, and the results are shown and compared.

  14. Generic Phase Diagram of Binary Superlattices

    NASA Astrophysics Data System (ADS)

    Tkachenko, Alexei

    Emergence of a large variety of self-assembled superlattices is a dramatic recent trend in the fields of nanoparticle and colloidal sciences. Motivated by this development, we propose a model that combines simplicity with a remarkably rich phase behavior, applicable to a wide range of such self-assembled systems. Those include nanoparticle and colloidal assemblies driven by DNA-mediated interactions, electrostatics, and possibly, by controlled drying. In our model, a binary system of Large and Small hard sphere (L and S)interact via selective short-range (''sticky'') attraction. In its simplest version, this Binary Sticky Sphere model features attraction only between 'S' and 'L' particles, respectively. We demonstrate that in the limit when this attraction is sufficiently strong compared to kT, the problem becomes purely geometrical: the thermodynamically preferred state should maximize the number of S-L contacts. A general procedure for constructing the phase diagram as a function of system composition f, and particle size ratio r, is outlined. In this way, the global phase behavior can be calculated very efficiently, for a given set of plausible candidate phases. Furthermore, the geometric nature of the problem enables us to generate those candidate phases through a well defined and intuitive construction. We calculate the phase diagrams both for 2D and 3D systems, and compare the results with existing experiments. Most of the 3D superlattices observed to date are featured in our phase diagram, while several more are yet to be discovered. The research was carried out at the CFN, DOE Office of Science Facility, at BNL, under Contract No. DE-SC0012704.

  15. State-transition diagrams for biologists.

    PubMed

    Bersini, Hugues; Klatzmann, David; Six, Adrien; Thomas-Vaslin, Véronique

    2012-01-01

    It is clearly in the tradition of biologists to conceptualize the dynamical evolution of biological systems in terms of state-transitions of biological objects. This paper is mainly concerned with (but obviously not limited too) the immunological branch of biology and shows how the adoption of UML (Unified Modeling Language) state-transition diagrams can ease the modeling, the understanding, the coding, the manipulation or the documentation of population-based immune software model generally defined as a set of ordinary differential equations (ODE), describing the evolution in time of populations of various biological objects. Moreover, that same UML adoption naturally entails a far from negligible representational economy since one graphical item of the diagram might have to be repeated in various places of the mathematical model. First, the main graphical elements of the UML state-transition diagram and how they can be mapped onto a corresponding ODE mathematical model are presented. Then, two already published immune models of thymocyte behavior and time evolution in the thymus, the first one originally conceived as an ODE population-based model whereas the second one as an agent-based one, are refactored and expressed in a state-transition form so as to make them much easier to understand and their respective code easier to access, to modify and run. As an illustrative proof, for any immunologist, it should be possible to understand faithfully enough what the two software models are supposed to reproduce and how they execute with no need to plunge into the Java or Fortran lines.

  16. State-Transition Diagrams for Biologists

    PubMed Central

    Bersini, Hugues; Klatzmann, David; Six, Adrien; Thomas-Vaslin, Véronique

    2012-01-01

    It is clearly in the tradition of biologists to conceptualize the dynamical evolution of biological systems in terms of state-transitions of biological objects. This paper is mainly concerned with (but obviously not limited too) the immunological branch of biology and shows how the adoption of UML (Unified Modeling Language) state-transition diagrams can ease the modeling, the understanding, the coding, the manipulation or the documentation of population-based immune software model generally defined as a set of ordinary differential equations (ODE), describing the evolution in time of populations of various biological objects. Moreover, that same UML adoption naturally entails a far from negligible representational economy since one graphical item of the diagram might have to be repeated in various places of the mathematical model. First, the main graphical elements of the UML state-transition diagram and how they can be mapped onto a corresponding ODE mathematical model are presented. Then, two already published immune models of thymocyte behavior and time evolution in the thymus, the first one originally conceived as an ODE population-based model whereas the second one as an agent-based one, are refactored and expressed in a state-transition form so as to make them much easier to understand and their respective code easier to access, to modify and run. As an illustrative proof, for any immunologist, it should be possible to understand faithfully enough what the two software models are supposed to reproduce and how they execute with no need to plunge into the Java or Fortran lines. PMID:22844438

  17. Comprehending 3D Diagrams: Sketching to Support Spatial Reasoning.

    PubMed

    Gagnier, Kristin M; Atit, Kinnari; Ormand, Carol J; Shipley, Thomas F

    2016-11-25

    Science, technology, engineering, and mathematics (STEM) disciplines commonly illustrate 3D relationships in diagrams, yet these are often challenging for students. Failing to understand diagrams can hinder success in STEM because scientific practice requires understanding and creating diagrammatic representations. We explore a new approach to improving student understanding of diagrams that convey 3D relations that is based on students generating their own predictive diagrams. Participants' comprehension of 3D spatial diagrams was measured in a pre- and post-design where students selected the correct 2D slice through 3D geologic block diagrams. Generating sketches that predicated the internal structure of a model led to greater improvement in diagram understanding than visualizing the interior of the model without sketching, or sketching the model without attempting to predict unseen spatial relations. In addition, we found a positive correlation between sketched diagram accuracy and improvement on the diagram comprehension measure. Results suggest that generating a predictive diagram facilitates students' abilities to make inferences about spatial relationships in diagrams. Implications for use of sketching in supporting STEM learning are discussed.

  18. Algorithms for Disconnected Diagrams in Lattice QCD

    SciTech Connect

    Gambhir, Arjun Singh; Stathopoulos, Andreas; Orginos, Konstantinos; Yoon, Boram; Gupta, Rajan; Syritsyn, Sergey

    2016-11-01

    Computing disconnected diagrams in Lattice QCD (operator insertion in a quark loop) entails the computationally demanding problem of taking the trace of the all to all quark propagator. We first outline the basic algorithm used to compute a quark loop as well as improvements to this method. Then, we motivate and introduce an algorithm based on the synergy between hierarchical probing and singular value deflation. We present results for the chiral condensate using a 2+1-flavor clover ensemble and compare estimates of the nucleon charges with the basic algorithm.

  19. On critical exponents without Feynman diagrams

    NASA Astrophysics Data System (ADS)

    Sen, Kallol; Sinha, Aninda

    2016-11-01

    In order to achieve a better analytic handle on the modern conformal bootstrap program, we re-examine and extend the pioneering 1974 work of Polyakov’s, which was based on consistency between the operator product expansion and unitarity. As in the bootstrap approach, this method does not depend on evaluating Feynman diagrams. We show how this approach can be used to compute the anomalous dimensions of certain operators in the O(n) model at the Wilson-Fisher fixed point in 4-ɛ dimensions up to O({ɛ }2). AS dedicates this work to the loving memory of his mother.

  20. Failure Assessment Diagram for Titanium Brazed Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Jones, Justin S.; Powell, Mollie M.; Puckett, David F.

    2011-01-01

    The interaction equation was used to predict failure in Ti-4V-6Al joints brazed with Al 1100 filler metal. The joints used in this study were geometrically similar to the joints in the brazed beryllium metering structure considered for the ATLAS telescope. This study confirmed that the interaction equation R(sub sigma) + R(sub Tau) = 1, where R(sub sigma) and R(sub Tau)are normal and shear stress ratios, can be used as conservative lower bound estimate of the failure criterion in ATLAS brazed joints as well as for construction of the Failure Assessment Diagram (FAD).

  1. Mapping the QCD Phase Transition with Accreting Compact Stars

    SciTech Connect

    Blaschke, D.; Poghosyan, G.; Grigorian, H.

    2008-10-29

    We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ''phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in the {omega}-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a drop in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the {omega}-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXPs with sufficiently accurate determination of their masses, spin frequencies and magnetic fields.

  2. Converting neutron stars into strange stars

    NASA Technical Reports Server (NTRS)

    Olinto, A. V.

    1991-01-01

    If strange matter is formed in the interior of a neutron star, it will convert the entire neutron star into a strange star. The proposed mechanisms are reviewed for strange matter seeding and the possible strange matter contamination of neutron star progenitors. The conversion process that follows seeding and the recent calculations of the conversion timescale are discussed.

  3. Star clusters

    NASA Astrophysics Data System (ADS)

    Labhardt, Lukas; Binggeli, Bruno

    Star clusters are at the heart of astronomy, being key objects for our understanding of stellar evolution and galactic structure. Observations with the Hubble Space Telescope and other modern equipment have revealed fascinating new facts about these galactic building blocks. This book provides two comprehensive and up-to-date, pedagogically designed reviews on star clusters by two well-known experts in the field. Bruce Carney presents our current knowledge of the relative and absolute ages of globular clusters and the chemical history of our Galaxy. Bill Harris addresses globular clusters in external galaxies and their use as tracers of galaxy formation and cosmic distance indicators. The book is written for graduate students as well as professionals in astronomy and astrophysics.

  4. Exceptional Stars

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Hansen, B.; van Kerkwijk, M.; Phinney, E. S.

    2005-12-01

    As part of our Interdisciplinary Scientist effort (PI, Kulkarni) for the Space Interferometry Mission (SIM) we proposed an investigation with SIM of a number of exceptional stars. With SIM we plan to observe dozens of nearby white dwarfs and search for planets surviving the evolution away from the main sequence as well as (newly formed) planets formed in the circumbinary disks of post-AGB binaries or as a result of white dwarf mergers. We propose to measure the proper motion of a sample of X-ray binaries and Be star binaries with the view of understanding the originof high latitude objects and inferring natal kicks and pre-supernova orbits. We plan to observe several compact object binaries to determine the mass of the compact star. Of particular importance is the proposed observation of SS 433 (for which we propose to use the spectrometer on SIM to measure the proper motion of the emission line clumps embedded in the relativistic jets). Separately we are investigating the issue of frame tie between SIM and the ecliptic frame (by observing binary millisecond pulsars with SIM; the position of these objects is very well determined by pulsar timing) and the degree to which highly precise visibility amplitude measurements can be inverted to infer binary parameters.

  5. Neutron Stars

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Ed

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in observations of the latter.

  6. Revisiting the phase diagram of hard ellipsoids

    NASA Astrophysics Data System (ADS)

    Odriozola, Gerardo

    2012-04-01

    In this work, the well-known Frenkel-Mulder phase diagram of hard ellipsoids of revolution [D. Frenkel and B. M. Mulder, Mol. Phys. 55, 1171 (1985), 10.1080/00268978500101971] is revisited by means of replica exchange Monte Carlo simulations. The method provides good sampling of dense systems and so, solid phases can be accessed without the need of imposing a given structure. At high densities, we found plastic solids and fcc-like crystals for semi-spherical ellipsoids (prolates and oblates), and SM2 structures [P. Pfleiderer and T. Schilling, Phys. Rev. E 75, 020402 (2007)] for x : 1-prolates and 1 : x-oblates with x ≥ 3. The revised fluid-crystal and isotropic-nematic transitions reasonably agree with those presented in the Frenkel-Mulder diagram. An interesting result is that, for small system sizes (100 particles), we obtained 2:1- and 1.5:1-prolate equations of state without transitions, while some order is developed at large densities. Furthermore, the symmetric oblate cases are also reluctant to form ordered phases.

  7. Critical point analysis of phase envelope diagram

    NASA Astrophysics Data System (ADS)

    Soetikno, Darmadi; Kusdiantara, Rudy; Puspita, Dila; Sidarto, Kuntjoro A.; Siagian, Ucok W. R.; Soewono, Edy; Gunawan, Agus Y.

    2014-03-01

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  8. Phase diagrams of disordered Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Shapourian, Hassan; Hughes, Taylor L.

    2016-02-01

    Weyl semimetals are gapless quasitopological materials with a set of isolated nodal points forming their Fermi surface. They manifest their quasitopological character in a series of topological electromagnetic responses including the anomalous Hall effect. Here, we study the effect of disorder on Weyl semimetals while monitoring both their nodal/semimetallic and topological properties through computations of the localization length and the Hall conductivity. We examine three different lattice tight-binding models which realize the Weyl semimetal in part of their phase diagram and look for universal features that are common to all of the models, and interesting distinguishing features of each model. We present detailed phase diagrams of these models for large system sizes and we find that weak disorder preserves the nodal points up to the diffusive limit, but does affect the Hall conductivity. We show that the trend of the Hall conductivity is consistent with an effective picture in which disorder causes the Weyl nodes move within the Brillouin zone along a specific direction that depends deterministically on the properties of the model and the neighboring phases to the Weyl semimetal phase. We also uncover an unusual (nonquantized) anomalous Hall insulator phase which can only exist in the presence of disorder.

  9. Ab initio phase diagram of iridium

    NASA Astrophysics Data System (ADS)

    Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.

    2016-09-01

    The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.

  10. Revisiting the phase diagram of hard ellipsoids.

    PubMed

    Odriozola, Gerardo

    2012-04-07

    In this work, the well-known Frenkel-Mulder phase diagram of hard ellipsoids of revolution [D. Frenkel and B. M. Mulder, Mol. Phys. 55, 1171 (1985)] is revisited by means of replica exchange Monte Carlo simulations. The method provides good sampling of dense systems and so, solid phases can be accessed without the need of imposing a given structure. At high densities, we found plastic solids and fcc-like crystals for semi-spherical ellipsoids (prolates and oblates), and SM2 structures [P. Pfleiderer and T. Schilling, Phys. Rev. E 75, 020402 (2007)] for x : 1-prolates and 1 : x-oblates with x ≥ 3. The revised fluid-crystal and isotropic-nematic transitions reasonably agree with those presented in the Frenkel-Mulder diagram. An interesting result is that, for small system sizes (100 particles), we obtained 2:1- and 1.5:1-prolate equations of state without transitions, while some order is developed at large densities. Furthermore, the symmetric oblate cases are also reluctant to form ordered phases.

  11. Critical point analysis of phase envelope diagram

    SciTech Connect

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy Puspita, Dila Sidarto, Kuntjoro A. Soewono, Edy; Gunawan, Agus Y.

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  12. Pedagogical and curricular thinking of professional astronomers teaching the Hertzsprung-Russell diagram in introductory astronomy courses for non-science majors

    NASA Astrophysics Data System (ADS)

    Brogt, Erik

    2009-06-01

    This qualitative study explores the pedagogical and curricular thinking of five professional astronomers, faculty at a university, about teaching the Hertzsprung-Russell diagram in introductory astronomy courses for non-science majors. Data sources for this study included two semi-structured interviews per participant, in which they were asked about teaching the Hertzsprung-Russell diagram, as well as about the introductory course in general. In addition, participants were asked to complete four cognitive tasks; the creation of a lesson plan, a concept map on how they would like their students to think about the Hertzsprung-Russell diagram at the end of the course, a Pathfinder network rating task, and responding to stereotypical student statements regarding the Hertzsprung-Russell diagram. The data was analyzed using a case study approach, followed by a discussion of themes that emerged from the data. Results indicate that participants had primarily affect and process goals for the course, rather than content goals. In addition, they wanted students to view the HR diagram as a part of a flow chart, where input physics (both observed and inferred properties of stars) leads to the construction of the HR diagram, which in turn is used to make inferences about stellar evolution. Participants identified several student difficulties with the HR diagram, among which interpreting a graph was the most pertinent. In several stereotypical student statements, participants responded using the exact same analogies to explain the concepts to the students. This may be indicative of some underlying pedagogical content knowledge.

  13. Diagrams: A Visual Survey of Graphs, Maps, Charts and Diagrams for the Graphic Designer.

    ERIC Educational Resources Information Center

    Lockwood, Arthur

    Since the ultimate success of any diagram rests in its clarity, it is important that the designer select a method of presentation which will achieve this aim. He should be aware of the various ways in which statistics can be shown diagrammatically, how information can be incorporated in maps, and how events can be plotted in chart or graph form.…

  14. Spectroscopic binaries among Hipparcos M giants. III. The eccentricity - period diagram and mass-transfer signatures

    NASA Astrophysics Data System (ADS)

    Jorissen, A.; Frankowski, A.; Famaey, B.; van Eck, S.

    2009-05-01

    Context: This paper is the third one in a series devoted to studying the properties of binaries involving M giants. Aims: We use a new set of orbits to construct the first (e - log P) diagram of an extensive sample of M giant binaries, to obtain their mass-function distribution, and to derive evolutionary constraints for this class of binaries and related systems. Methods: The orbital properties of binaries involving M giants were analysed and compared with those of related families of binaries (K giants, post-AGB stars, barium stars, Tc-poor S stars). Results: The orbital elements of post-AGB stars and M giants are not very different, which may indicate that, for the considered sample of post-AGB binaries, the post-AGB star left the AGB at quite an early stage (M4 or so). Neither are the orbital elements of post-mass-transfer binaries like barium stars very different from those of M giants, suggesting that the mass transfer did not alter the orbital elements much, contrary to current belief. Finally, we show that binary systems with e < 0.4 log P - 1 (with periods expressed in days) are predominantly post-mass-transfer systems, because (i) the vast majority of barium and S systems match this condition; and (ii) these systems have companion masses peaking around 0.6 M⊙, as expected for white dwarfs. The latter property has been shown to hold as well for open-cluster binaries involving K giants, for which a lower bound on the companion mass may easily be set. Based on observations carried out at the Swiss telescope installed at the Observatoire de Haute Provence (OHP, France), and at the 1.93-m OHP telescope.

  15. Surface magnetic fields across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Landstreet, John D.

    2015-10-01

    The past 20 years have seen remarkable advances in spectropolarimetric instrumentation that have allowed us, for the first time, to identify some magnetic stars in most major stages of stellar evolution. We are beginning to see the broad outline of how such fields change during stellar evolution, to confront theoretical hypotheses and models of magnetic field structure and evolution with detailed data, and to understand more of the ways in which the presence of a field in turn affects stellar structure and evolution.

  16. Star Cluster Buzzing With Pulsars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is

  17. YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD STAR-FORMING REGION N206

    SciTech Connect

    Romita, Krista Alexandra; Meixner, M.; Sewilo, M.; Shiao, B.; Carlson, Lynn Redding; Whitney, B.; Babler, B.; Meade, M.; Indebetouw, R.; Hora, J. L. E-mail: carlson@stsci.ed E-mail: brian@sal.wisc.ed E-mail: jhora@cfa.harvard.ed

    2010-09-20

    We present analysis of the energetic star-forming region Henize 206 (N206) located near the southern edge of the Large Magellanic Cloud (LMC) based on photometric data from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE-LMC; IRAC 3.6, 4.5, 5.8, 8.0 {mu}m and MIPS 24 {mu}m), Infrared Survey Facility near-infrared survey (J, H, K{sub s}), and the Magellanic Clouds Photometric Survey (MCPS UBVI) covering a wavelength range of 0.36-24 {mu}m. Young stellar object (YSO) candidates are identified based upon their location in infrared color-magnitude space and classified by the shapes of their spectral energy distributions in comparison with a pre-computed grid of YSO models. We identify 116 YSO candidates: 102 are well characterized by the YSO models, predominately Stage I, and 14 may be multiple sources or young sources with transition disks. Careful examination of the individual sources and their surrounding environment allows us to identify a factor of {approx}14.5 more YSO candidates than have already been identified. The total mass of these well-fit YSO candidates is {approx}520 M{sub sun}. We calculate a current star formation rate of 0.27 x 10{sup -1} M{sub sun} yr{sup -1} kpc{sup -2}. The distribution of YSO candidates appears to follow shells of neutral material in the interstellar medium.

  18. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars.

  19. Phase diagrams of bosonic ABn chains

    NASA Astrophysics Data System (ADS)

    Cruz, G. J.; Franco, R.; Silva-Valencia, J.

    2016-04-01

    The A B N - 1 chain is a system that consists of repeating a unit cell with N sites where between the A and B sites there is an energy difference of λ. We considered bosons in these special lattices and took into account the kinetic energy, the local two-body interaction, and the inhomogenous local energy in the Hamiltonian. We found the charge density wave (CDW) and superfluid and Mott insulator phases, and constructed the phase diagram for N = 2 and 3 at the thermodynamic limit. The system exhibited insulator phases for densities ρ = α/ N, with α being an integer. We obtained that superfluid regions separate the insulator phases for densities larger than one. For any N value, we found that for integer densities ρ, the system exhibits ρ + 1 insulator phases, a Mott insulator phase, and ρ CDW phases. For non-integer densities larger than one, several CDW phases appear.

  20. Reentrant Phase Diagram of Network Fluids

    NASA Astrophysics Data System (ADS)

    Russo, J.; Tavares, J. M.; Teixeira, P. I. C.; Telo da Gama, M. M.; Sciortino, F.

    2011-02-01

    We introduce a microscopic model for particles with dissimilar patches which displays an unconventional “pinched” phase diagram, similar to the one predicted by Tlusty and Safran in the context of dipolar fluids [Science 290, 1328 (2000)SCIEAS0036-807510.1126/science.290.5495.1328]. The model—based on two types of patch interactions, which account, respectively, for chaining and branching of the self-assembled networks—is studied both numerically via Monte Carlo simulations and theoretically via first-order perturbation theory. The dense phase is rich in junctions, while the less-dense phase is rich in chain ends. The model provides a reference system for a deep understanding of the competition between condensation and self-assembly into equilibrium-polymer chains.

  1. Phase diagram of water in carbon nanotubes.

    PubMed

    Takaiwa, Daisuke; Hatano, Itaru; Koga, Kenichiro; Tanaka, Hideki

    2008-01-08

    A phase diagram of water in single-walled carbon nanotubes at atmospheric pressure is proposed, which summarizes ice structures and their melting points as a function of the tube diameter up to 1.7 nm. The investigation is based on extensive molecular dynamics simulations over numerous thermodynamic states on the temperature-diameter plane. Spontaneous freezing of water in the simulations and the analysis of ice structures at 0 K suggest that there exist at least nine ice phases in the cylindrical space, including those reported by x-ray diffraction studies and those unreported by simulation or experiment. Each ice has a structure that maximizes the number of hydrogen bonds under the cylindrical confinement. The results show that the melting curve has many local maxima, each corresponding to the highest melting point for each ice form. The global maximum in the melting curve is located at approximately 11 A, where water freezes in a square ice nanotube.

  2. Specification of Learning Content Using Feature Diagrams

    NASA Astrophysics Data System (ADS)

    Damaševičius, Robertas

    The main idea of a learning object (LO) is to break educational content down into small chunks that can be reused in various learning environments. When reused, such small chunks of educational content are combined in various ways leading to a great variability of the learning content. We propose using feature diagrams (FDs) for the specification of learning content at different layers of abstraction starting from the organization of teaching material in a lecture down to the specification and demonstration of particular software/hardware components. FDs can be used by (1) designers, teachers, and learners for graphical representation of domain knowledge in LOs; (2) programmers to specify and express variability-commonality relationships of LOs at a higher abstraction level to allow the development and implementation of generative LOs; and (3) researchers as a vehicle for analysis and better understanding of the e-Learning domain itself.

  3. Geostrophic Scatter Diagrams and Potential Vorticity Dynamics.

    NASA Astrophysics Data System (ADS)

    Read, P. L.; Rhines, P. B.; White, A. A.

    1986-12-01

    where S is the potential vorticity forcing, K the lateral eddy (or viscous) v the horizontal velocity, and the integrals are taken over and around any region enclosed by a mean streamline. Hence dQ/dis often negative. corresponding to two common properties of quasi-geostrophic circulations: that the eddy motion (or viscosity) transport Q down its mean gradient (K > 0) and that the circulation integral have the same sign as the potential vorticity forcing. Two sets of examples, both involving (Q,) scatter diagrams constructed from numerically simulated data, are presented. One relates to steady baroclinic wave motion in a rotating annulus system, and the other to the time-averaged circulation in an ocean basin.

  4. The wiring diagram for plant G signaling

    SciTech Connect

    Colaneri, Alejandro C.; Jones, Alan M.

    2014-10-01

    Like electronic circuits, the modular arrangement of cell-signaling networks decides how inputs produce outputs. Animal heterotrimeric guanine nucleotide binding proteins (G-proteins) operate as switches in the circuits that signal between extracellular agonists and intracellular effectors. There still is no biochemical evidence for a receptor or its agonist in the plant G-protein pathways. Plant G-proteins deviate in many important ways from the animal paradigm. This paper covers important discoveries from the last two years that enlighten these differences and ends describing alternative wiring diagrams for the plant signaling circuits regulated by G-proteins. Finally, we propose that plant G-proteins are integrated in the signaling circuits as variable resistor rather than switches, controlling the flux of information in response to the cell's metabolic state.

  5. The wiring diagram for plant G signaling

    DOE PAGES

    Colaneri, Alejandro C.; Jones, Alan M.

    2014-10-01

    Like electronic circuits, the modular arrangement of cell-signaling networks decides how inputs produce outputs. Animal heterotrimeric guanine nucleotide binding proteins (G-proteins) operate as switches in the circuits that signal between extracellular agonists and intracellular effectors. There still is no biochemical evidence for a receptor or its agonist in the plant G-protein pathways. Plant G-proteins deviate in many important ways from the animal paradigm. This paper covers important discoveries from the last two years that enlighten these differences and ends describing alternative wiring diagrams for the plant signaling circuits regulated by G-proteins. Finally, we propose that plant G-proteins are integrated inmore » the signaling circuits as variable resistor rather than switches, controlling the flux of information in response to the cell's metabolic state.« less

  6. Phase diagram of chirally imbalanced QCD matter

    SciTech Connect

    Chernodub, M. N.; Nedelin, A. S.

    2011-05-15

    We compute the QCD phase diagram in the plane of the chiral chemical potential and temperature using the linear sigma model coupled to quarks and to the Polyakov loop. The chiral chemical potential accounts for effects of imbalanced chirality due to QCD sphaleron transitions which may emerge in heavy-ion collisions. We found three effects caused by the chiral chemical potential: the imbalanced chirality (i) tightens the link between deconfinement and chiral phase transitions; (ii) lowers the common critical temperature; (iii) strengthens the order of the phase transition by converting the crossover into the strong first order phase transition passing via the second order end point. Since the fermionic determinant with the chiral chemical potential has no sign problem, the chirally imbalanced QCD matter can be studied in numerical lattice simulations.

  7. Understanding starch gelatinization: The phase diagram approach.

    PubMed

    Carlstedt, Jonas; Wojtasz, Joanna; Fyhr, Peter; Kocherbitov, Vitaly

    2015-09-20

    By constructing a detailed phase diagram for the potato starch-water system based on data from optical microscopy, synchrotron X-ray scattering and differential scanning calorimetry, we show that gelatinization can be interpreted in analogy with a eutectic transition. The phase rule explains why the temperature of the gelatinization transition (G) is independent on water content. Furthermore, the melting (M1) endotherm observed in DSC represents a liquidus line; the temperature for this event increases with increasing starch concentration. Both the lamellar spacing and the inter-helix distance were observed to decrease with increasing starch content for starch concentrations between approximately 65 wt% and 75 wt%, while the inter-helix distance continued decreasing upon further dehydration. Understanding starch gelatinization has been a longstanding challenge. The novel approach presented here shows interpretation of this phenomenon from a phase equilibria perspective.

  8. Microfluidic Evaporation for Phase Diagram Screening

    NASA Astrophysics Data System (ADS)

    Moreau, Patrick; Salmon, Jean-Baptiste; Leng, Jacques

    2007-11-01

    We use a pervaporation-based microfluidic device to concentrate solutions in a controlled way. This allows us to develop chips for phase diagram screening,and to study both fundamental and technological issues, such as the impact of kinetic pathway of concentration on a variety of aqueous solutions (colloids, surfactants, polymers and mixtures of thereof). The first part of the presentation will deals with the characterization of the concentration process (including analytical results, numerical simulations, a