Sample records for star explodes acting

  1. All That Remains of Exploded Star

    NASA Image and Video Library

    2011-10-24

    Infrared images from NASA Spitzer Space Telescope and Wide-field Infrared Survey Explorer are combined in this image of RCW 86, the dusty remains of the oldest documented example of an exploding star, or supernova.

  2. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    PubMed

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  3. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  4. The association of GRB 060218 with a supernova and the evolution of the shock wave.

    PubMed

    Campana, S; Mangano, V; Blustin, A J; Brown, P; Burrows, D N; Chincarini, G; Cummings, J R; Cusumano, G; Della Valle, M; Malesani, D; Mészáros, P; Nousek, J A; Page, M; Sakamoto, T; Waxman, E; Zhang, B; Dai, Z G; Gehrels, N; Immler, S; Marshall, F E; Mason, K O; Moretti, A; O'Brien, P T; Osborne, J P; Page, K L; Romano, P; Roming, P W A; Tagliaferri, G; Cominsky, L R; Giommi, P; Godet, O; Kennea, J A; Krimm, H; Angelini, L; Barthelmy, S D; Boyd, P T; Palmer, D M; Wells, A A; White, N E

    2006-08-31

    Although the link between long gamma-ray bursts (GRBs) and supernovae has been established, hitherto there have been no observations of the beginning of a supernova explosion and its intimate link to a GRB. In particular, we do not know how the jet that defines a gamma-ray burst emerges from the star's surface, nor how a GRB progenitor explodes. Here we report observations of the relatively nearby GRB 060218 (ref. 5) and its connection to supernova SN 2006aj (ref. 6). In addition to the classical non-thermal emission, GRB 060218 shows a thermal component in its X-ray spectrum, which cools and shifts into the optical/ultraviolet band as time passes. We interpret these features as arising from the break-out of a shock wave driven by a mildly relativistic shell into the dense wind surrounding the progenitor. We have caught a supernova in the act of exploding, directly observing the shock break-out, which indicates that the GRB progenitor was a Wolf-Rayet star.

  5. NASA's Swift Satellite Catches First Supernova in The Act of Exploding

    NASA Astrophysics Data System (ADS)

    2008-05-01

    GREENBELT, Md.- Thanks to a fortuitous observation with NASA’s Swift satellite, astronomers for the first time have caught a star in the act of exploding. Astronomers have previously observed thousands of stellar explosions, known as supernovae, but they have always seen them after the fireworks were well underway. "For years we have dreamed of seeing a star just as it was exploding, but actually finding one is a once in a lifetime event," says team leader Alicia Soderberg, a Hubble and Carnegie-Princeton Fellow at Princeton University in Princeton, N.J. "This newly born supernova is going to be the Rosetta stone of supernova studies for years to come." A typical supernova occurs when the core of a massive star runs out of nuclear fuel and collapses under its own gravity to form an ultradense object known as a neutron star. The newborn neutron star compresses and then rebounds, triggering a shock wave that plows through the star’s gaseous outer layers and blows the star to smithereens. Astronomers thought for nearly four decades that this shock "break-out" will produce bright X-ray emission lasting a few minutes. X-ray Image X-ray Images But until this discovery, astronomers have never observed this signal. Instead, they have observed supernovae brightening days or weeks later, when the expanding shell of debris is energized by the decay of radioactive elements forged in the explosion. "Seeing the shock break-out in X-rays can give a direct view of the exploding star in the last minutes of its life and also provide a signpost to which astronomers can quickly point their telescopes to watch the explosion unfold," says Edo Berger, a Carnegie-Princeton Fellow at Princeton University. Soderberg's discovery of the first shock breakout can be attributed to luck and Swift's unique design. On January 9, 2008, Soderberg and Berger were using Swift to observe a supernova known as SN 2007uy in the spiral galaxy NGC 2770, located 90 million light-years from Earth in the constellation Lynx. At 9:33 a.m. EST they spotted an extremely bright 5-minute X-ray outburst in NGC 2770. They quickly recognized that the X-rays were coming from another location in the same galaxy. People Who Read This Also Read... Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters In a paper submitted to Nature, Soderberg and 38 colleagues show that the energy and pattern of the X-ray outburst is consistent with a shock wave bursting through the surface of the progenitor star. This marks the birth of the supernova now known as SN 2008D. Although astronomers were lucky that Swift was observing NGC 2770 just at the moment when SN 2008D’s shock wave was blowing up the star, Swift is well equipped to study such an event because of its multiple instruments observing in gamma rays, X-rays, and ultraviolet light. "It was a gift of nature for Swift to be observing that patch of sky when the supernova exploded. But thanks to Swift's flexibility, we have been able to trace its evolution in detail every day since," says Swift lead scientist Neil Gehrels of NASA’s Goddard Space Flight Center in Greenbelt, Md. Due to the significance of the X-ray outburst, Soderberg immediately mounted an international observing campaign to study SN 2008D. Observations were made with major telescopes such as the Hubble Space Telescope, the Chandra X-ray Observatory, the Very Large Array in New Mexico, the Gemini North telescope in Hawaii, the Keck I telescope in Hawaii, the 200-inch and 60-inch telescopes at the Palomar Observatory in California, and the 3.5-meter telescope at the Apache Point Observatory in New Mexico. The combined observations helped Soderberg and her colleagues pin down the energy of the initial X-ray outburst, which will help theorists better understand supernovae. The observations also show that SN 2008D is an ordinary Type Ibc supernova, which occurs when a massive, compact star explodes. Significantly, radio and X-ray observations found no evidence that a jet played a role in the explosion, ruling out a rare type of stellar explosion known as a gamma-ray burst. "This was a typical supernova," says Swift team member Stefan Immler of NASA Goddard. "The significance is not the explosion itself, but the fact that we were able to see the star blow up in real time, which gives us unprecedented insight into the explosion process."

  6. Sloshing Star Goes Supernova

    NASA Image and Video Library

    2014-02-19

    NuSTAR has provided the first observational evidence in support of a theory that says exploding stars slosh around before detonating. That theory, referred to as mild asymmetries, is shown here in a simulation by Christian Ott.

  7. NuSTAR Captures the Beat of a Dead Star Animation

    NASA Image and Video Library

    2014-10-08

    The brightest pulsar detected to date is shown in this frame from an animation that flips back and forth between images captured by NASA NuSTAR. A pulsar is a type of neutron star, the leftover core of a star that exploded in a supernova.

  8. Lighting up a Dead Star Layers

    NASA Image and Video Library

    2006-10-26

    This image from NASA Spitzer Space Telescope shows the scattered remains of an exploded star named Cassiopeia A. Spitzer infrared detectors picked through these remains and found that much of the star original layering had been preserved.

  9. Hubble Finds Supernova Companion Star after Two Decades of Searching

    NASA Image and Video Library

    2017-12-08

    This is an artist's impression of supernova 1993J, an exploding star in the galaxy M81 whose light reached us 21 years ago. The supernova originated in a double-star system where one member was a massive star that exploded after siphoning most of its hydrogen envelope to its companion star. After two decades, astronomers have at last identified the blue helium-burning companion star, seen at the center of the expanding nebula of debris from the supernova. The Hubble Space Telescope identified the ultraviolet glow of the surviving companion embedded in the fading glow of the supernova. More info: Using NASA’s Hubble Space Telescope, astronomers have discovered a companion star to a rare type of supernova. The discovery confirms a long-held theory that the supernova, dubbed SN 1993J, occurred inside what is called a binary system, where two interacting stars caused a cosmic explosion. "This is like a crime scene, and we finally identified the robber," said Alex Filippenko, professor of astronomy at University of California (UC) at Berkeley. "The companion star stole a bunch of hydrogen before the primary star exploded." SN 1993J is an example of a Type IIb supernova, unusual stellar explosions that contains much less hydrogen than found in a typical supernova. Astronomers believe the companion star took most of the hydrogen surrounding the exploding main star and continued to burn as a super-hot helium star. “A binary system is likely required to lose the majority of the primary star’s hydrogen envelope prior to the explosion. The problem is that, to date, direct observations of the predicted binary companion star have been difficult to obtain since it is so faint relative to the supernova itself,” said lead researcher Ori Fox of UC Berkeley. Read more: 1.usa.gov/1Az5Qb9 Credit: NASA, ESA, G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. The Creation of Titanium in Stars

    NASA Image and Video Library

    2014-02-19

    This diagram illustrates why NASA NuSTAR can see radioactivity in the remains of exploded stars for the first time. The observatory detects high-energy X-ray photons that are released by a radioactive substance called titanium-44.

  11. Experimental design to understand the interaction of stellar radiation with molecular clouds

    NASA Astrophysics Data System (ADS)

    VanDervort, Robert; Davis, Josh; Trantham, Matt; Klein, Sallee; Frank, Yechiel; Raicher, Erez; Fraenkel, Moshe; Shvarts, Dov; Keiter, Paul; Drake, R. Paul

    2017-06-01

    Enhanced star formation triggered by local O and B type stars is an astrophysical problem of interest. O and B type stars are massive, hot stars that emit an enormous amount of radiation. This radiation acts to either compress or blow apart clumps of gas in the interstellar media. For example, in the optically thick limit, when the x-ray radiation in the gas clump has a short mean free path length the x-ray radiation is absorbed near the clump edge and compresses the clump. In the optically thin limit, when the mean free path is long, the radiation is absorbed throughout acting to heat the clump. This heating explodes the gas clump. Careful selection of parameters, such as foam density or source temperature, allow the experimental platform to access different hydrodynamic regimes. The stellar radiation source is mimicked by a laser irradiated thin gold foil. This will provide a source of thermal x-rays (around ~100 eV). The gas clump is mimicked by a low-density foam around 0.150 g/cc. Simulations were done using radiation hydrodynamics codes to tune the experimental parameters. The experiment will be carried out at the Omega laser facility on OMEGA 60.

  12. Massive Star Goes Out With a Whimper Instead of a Bang (Artist's Concept)

    NASA Image and Video Library

    2017-05-25

    Every second a star somewhere out in the universe explodes as a supernova. But some extremely massive stars go out with a whimper instead of a bang. When they do, they can collapse under the crushing tug of gravity and vanish out of sight, only to leave behind a black hole. The doomed star N6946-BH1 was 25 times as massive as our sun. It began to brighten weakly in 2009. But, by 2015, it appeared to have winked out of existence. By a careful process of elimination, based on observations by the Large Binocular Telescope and NASA's Hubble and Spitzer space telescopes, researchers eventually concluded that the star must have become a black hole. This may be the fate for extremely massive stars in the universe. This illustration shows the final stages in the life of a supermassive star that fails to explode as a supernova, but instead implodes to form a black hole. https://photojournal.jpl.nasa.gov/catalog/PIA21466

  13. Mass Chart for Dead Stars and Black Holes

    NASA Image and Video Library

    2014-10-08

    This chart illustrates relative masses of super-dense cosmic objects, ranging from white dwarfs to supermassive black holes encased in the cores of most galaxies. The first three dead stars left all form when stars more massive than our sun explode.

  14. Beacons of X-ray Light Animation

    NASA Image and Video Library

    2014-10-08

    This image shows a neutron star -- the core of a star that exploded in a massive supernova. This particular neutron star is known as a pulsar because it sends out rotating beams of X-rays that sweep past Earth like lighthouse beacons.

  15. Massive stars in their death throes.

    PubMed

    Eldridge, John J

    2008-12-13

    The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently, there are eight detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants, as theory has long predicted. However, no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae, which, given the expected progenitors, is an unlikely result. Also, observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict the current stellar evolution theory. This suggests that we may need to update our understanding.

  16. Kepler Beyond Planets: Finding Exploding Stars (Type Ia Supernova from a White Dwarf Stealing Matter)

    NASA Image and Video Library

    2018-03-26

    This frame from an animation shows a gigantic star exploding in a "core collapse" supernova. As atoms fuse inside the star, eventually the star can't support its own weight anymore. Gravity makes the star collapse on itself. Core collapse supernovae are called type Ib, Ic, or II depending on the chemical elements present. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22352

  17. Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Maeda, Keiichi

    2018-01-01

    Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.

  18. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  19. Dance of the Light Echoes

    NASA Image and Video Library

    2008-05-29

    This composite image from NASA Spitzer Space Telescope shows the remnant of a star that exploded, called Cassiopeia A center and its surrounding light echoes -- dances of light through dusty clouds, created when stars blast apart.

  20. NASA's Chandra Sees Brightest Supernova Ever

    NASA Astrophysics Data System (ADS)

    2007-05-01

    WASHINGTON - The brightest stellar explosion ever recorded may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory and ground-based optical telescopes. This discovery indicates that violent explosions of extremely massive stars were relatively common in the early universe, and that a similar explosion may be ready to go off in our own galaxy. "This was a truly monstrous explosion, a hundred times more energetic than a typical supernova," said Nathan Smith of the University of California at Berkeley, who led a team of astronomers from California and the University of Texas in Austin. "That means the star that exploded might have been as massive as a star can get, about 150 times that of our sun. We've never seen that before." Chandra X-ray Image of SN 2006gy Chandra X-ray Image of SN 2006gy Astronomers think many of the first generation of stars were this massive, and this new supernova may thus provide a rare glimpse of how the first stars died. It is unprecedented, however, to find such a massive star and witness its death. The discovery of the supernova, known as SN 2006gy, provides evidence that the death of such massive stars is fundamentally different from theoretical predictions. "Of all exploding stars ever observed, this was the king," said Alex Filippenko, leader of the ground-based observations at the Lick Observatory at Mt. Hamilton, Calif., and the Keck Observatory in Mauna Kea, Hawaii. "We were astonished to see how bright it got, and how long it lasted." The Chandra observation allowed the team to rule out the most likely alternative explanation for the supernova: that a white dwarf star with a mass only slightly higher than the sun exploded into a dense, hydrogen-rich environment. In that event, SN 2006gy should have been 1,000 times brighter in X-rays than what Chandra detected. Animation of SN 2006gy Animation of SN 2006gy "This provides strong evidence that SN 2006gy was, in fact, the death of an extremely massive star," said Dave Pooley of the University of California at Berkeley, who led the Chandra observations. The star that produced SN 2006gy apparently expelled a large amount of mass prior to exploding. This large mass loss is similar to that seen from Eta Carinae, a massive star in our galaxy, raising suspicion that Eta Carinae may be poised to explode as a supernova. Although SN 2006gy is intrinsically the brightest supernova ever, it is in the galaxy NGC 1260, some 240 million light years away. However, Eta Carinae is only about 7,500 light years away in our own Milky Way galaxy. "We don't know for sure if Eta Carinae will explode soon, but we had better keep a close eye on it just in case," said Mario Livio of the Space Telescope Science Institute in Baltimore, who was not involved in the research. "Eta Carinae's explosion could be the best star-show in the history of modern civilization." A New Line of Stellar Evolution A New Line of Stellar Evolution Supernovas usually occur when massive stars exhaust their fuel and collapse under their own gravity. In the case of SN 2006gy, astronomers think that a very different effect may have triggered the explosion. Under some conditions, the core of a massive star produces so much gamma ray radiation that some of the energy from the radiation converts into particle and anti-particle pairs. The resulting drop in energy causes the star to collapse under its own huge gravity. After this violent collapse, runaway thermonuclear reactions ensue and the star explodes, spewing the remains into space. The SN 2006gy data suggest that spectacular supernovas from the first stars - rather than completely collapsing to a black hole as theorized - may be more common than previously believed. "In terms of the effect on the early universe, there's a huge difference between these two possibilities," said Smith. "One pollutes the galaxy with large quantities of newly made elements and the other locks them up forever in a black hole." The results from Smith and his colleagues will appear in The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  1. The Gobbling Dwarf that Exploded

    NASA Astrophysics Data System (ADS)

    2007-07-01

    A unique set of observations, obtained with ESO's VLT, has allowed astronomers to find direct evidence for the material that surrounded a star before it exploded as a Type Ia supernova. This strongly supports the scenario in which the explosion occurred in a system where a white dwarf is fed by a red giant. ESO PR Photo 31a/07 ESO PR Photo 31a/07 Evolution of SN 2006X Spectrum Because Type Ia supernovae are extremely luminous and quite similar to one another, these exploding events have been used extensively as cosmological reference beacons to trace the expansion of the Universe. However, despite significant recent progress, the nature of the stars that explode and the physics that governs these powerful explosions have remained very poorly understood. In the most widely accepted models of Type Ia supernovae the pre-explosion white dwarf star orbits another star. Due to the close interaction and the strong attraction produced by the very compact object, the companion star continuously loses mass, 'feeding' the white dwarf. When the mass of the white dwarf exceeds a critical value, it explodes. The team of astronomers studied in great detail SN 2006X, a Type Ia supernova that exploded 70 million light-years away from us, in the splendid spiral Galaxy Messier 100 (see ESO 08/06). Their observations led them to discover the signatures of matter lost by the normal star, some of which is transferred to the white dwarf. The observations were made with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted at ESO's 8.2-m Very Large Telescope, on four different occasions, over a time span of four months. A fifth observation at a different time was secured with the Keck telescope in Hawaii. The astronomers also made use of radio data obtained with NRAO's Very Large Array as well as images extracted from the NASA/ESA Hubble Space Telescope archive. ESO PR Photo 31b/07 ESO PR Photo 31b/07 SN 2006X, before and after the Type Ia Supernova explosion "No Type Ia supernova has ever been observed at this level of detail for more than four months after the explosion," says Ferdinando Patat, lead author of the paper reporting the results in this week's issue of Science Express, the online version of the Science research journal. "Our data set is really unique." The most remarkable findings are clear changes in the absorption of material, which has been ejected from the companion giant star. Such changes of interstellar material have never been observed before and demonstrate the effects a supernova explosion can have on its immediate environment. The astronomers deduce from the observations the existence of several gaseous shells (or clumps) which are material ejected as stellar wind from the giant star in the recent past. "The material we have uncovered probably lies in a series of shells having a radius of the order of 0.05 light-years, or roughly 3 000 times the distance between Earth and the Sun", explains Patat. "The material is moving with a velocity of 50 km/s, implying that the material would have been ejected some 50 years before the explosion." Such a velocity is typical for the winds of red giants. The system that exploded was thus most likely composed of a white dwarf that acted as a giant 'vacuum cleaner', drawing gas off its red giant companion. In this case however, the cannibal act proved fatal for the white dwarf. This is the first time that clear and direct evidence for material surrounding the explosion has been found. "One crucial issue is whether what we have seen in SN 2006X represents the rule or is rather an exceptional case," wonders Patat. "But given that this supernova has shown no optical, UV and radio peculiarity whatsoever, we conclude that what we have witnessed for this object is a common feature among normal SN Ia. Nevertheless, only future observations will give us answers to the many new questions these observations have posed to us." A high resolution image of SN 2006X in the spiral galaxy Messier 100 is available as ESO Press Photo 08a/06. More Information These results are reported in a paper in Science Express published on 12 July 2007 ("Detection of circumstellar material in a normal Type Ia Supernova", by F. Patat et al.). The team is composed of F. Patat and L. Pasquini (ESO), P. Chandra and R. Chevalier (University of Virginia, USA), S. Justham, Ph. Podsiadlowski , and C. Wolf (University of Oxford, UK), A. Gal-Yam and J.D. Simon (California Institute of Technology, Pasadena, USA), I.A. Crawford (Birkbeck College London, UK), P.A. Mazzali, W. Hillebrandt, and N. Elias-Rosa (Max-Planck-Institute for Astrophysics, Garching, Germany), A.W.A. Pauldrach (Ludwig-Maximilians University, Munich, Germany), K. Nomoto (University of Tokyo, Japan), S. Benetti, E. Cappellaro, A. Renzini , F. Sabbadin, and M. Turatto (INAF-Osservatorio Astronomico, Padova, Italy), D.C. Leonard (San Diego State University, USA), and A. Pastorello (Queen's University Belfast, UK). P.A. Mazzali is also associated with INAF/Trieste, Italy.

  2. The Case of Missing Iron in Cassiopeia A

    NASA Image and Video Library

    2014-02-19

    When astronomers first looked at images of a supernova remnant called Cassiopeia A, captured by NASA NuSTAR. The mystery of Cassiopeia A Cas A, a massive star that exploded in a supernova more than 11,000 years ago continues to confound scientists.

  3. Black Holes Categorization, Along with the Space(s) they Inhabit, to Explain the Astro-Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2011-12-01

    We define and categorize black holes (BH) and the space they inhabit. We describe mechanisms for their formation and mechanisms of black hole collisions and explosions/bursts, inside of the universe. These are linked to the formation of galaxies, stars, planets and planetary processes. Insight is gained regarding the formation and evolution of galaxies and the matter contained therein. Space itself must be categorized as to its purpose and properties as it relates to the various categories of black holes and processes ongoing within the space in which the processes occur. What we herein refer to as category-1 (c-1) black hole, formed the universe, by generating catagory-2 (c-2) black holes, say about 10% of which formed galaxies and 90% remain as dark matter in the form of c-2 BHs that are still evolving. C-1 BHs can explode/burst by collision or on their own, and give off great numbers (e.g., trillions) of c-2 BHs inside the universe, in c-2 space, which can become galaxies and which is the start of the universe. C-2 BHs can explode/burst and form a galaxy, containing c-3 space, filled with c-3 BHs. C-3 BHs are somewhat more modified and expanded than c-2 BHs and are formed from exploded/burst c-2 BHs on their own due to instabilities or by colliding with another c-2 BH and exploding/bursting to form gas and dust clouds peppered with c-3 BHs. Additionally, remnants from the exploded c-2 BH may include a range of sizes from minute particles that would contribute to the formation of massive gas and dust clouds peppered with the c-3 BHs; to about 10 to 20 solar masses that form large stars; and others, much smaller (tiny) stars that eventually become planets and moons. Some, eventually explode/burst inside the galaxy to produce the gas and dust clouds that we see inside the galaxy. These gas and dust clouds are peppered with c-4 BHs that eventually are seen as new stars forming in the dust clouds (described below). We envision three mechanisms (a,b,&c) for stellar origin, formation and evolution. The first type 'a' is well known (accepted); whereas, the other two 'b&c' are new and presented herein. The presently generally accepted process 'a,' consists of an accretion and gravitation process where mass comes together from interstellar gas and dust, left over from previous stars' deaths/explosions; or, from some other gas and dust accumulation. In addition, to this process, we propose a process 'b,' where a star originates as an expanded, modified Black Hole (BH) (described later with Figure 4) with none or little help from accretion/gravitation, begins to radiate, and continues to grow into a star. A third process 'c,' is also possible in which a star would originate from a combination of the two mechanisms 'a & b' described above. This latter mechanism is perhaps the most common type. This type starts as an expanded, modified BH inside of a gas and dust cloud. This, then serves as the nucleus that starts the subsequent accretion/gravitation process; however, it greatly accelerates the accretion/gravitation formation process as in the standard process. This mechanism could then explain how some super-cluster complexes, which have been estimated to take 40 to 60 billion years to form, can occur in a universe of a much younger age, as exists.

  4. Black Holes Categorization, along with the Space(s) they inhabit, to explain the Astro-Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2012-04-01

    We define and categorize black holes (BH) and the space they inhabit. We describe mechanisms for their formation and mechanisms of black hole collisions and explosions/bursts, inside of the universe. These are linked to the formation of galaxies, stars, planets and planetary processes. Insight is gained regarding the formation and evolution of galaxies and the matter contained therein. Space itself must be categorized as to its purpose and properties as it relates to the various categories of black holes and processes ongoing within the space in which the processes occur. What we herein refer to as category-1 (c-1) black hole, formed the universe, by generating catagory-2 (c-2) black holes, say about 10% of which formed galaxies and 90% remain as dark matter in the form of c-2 BHs that are still evolving. C-1 BHs can explode/burst by collision or on their own, and give off great numbers (e.g., trillions) of c-2 BHs inside the universe, in c-2 space, which can become galaxies and which is the start of the universe. C-2 BHs can explode/burst and form a galaxy, containing c-3 space, filled with c-3 BHs. C-3 BHs are somewhat more modified and expanded than c-2 BHs and are formed from exploded/burst c-2 BHs on their own due to instabilities or by colliding with another c-2 BH and exploding/bursting to form gas and dust clouds peppered with c-3 BHs. Additionally, remnants from the exploded c-2 BH may include a range of sizes from minute particles that would contribute to the formation of massive gas and dust clouds peppered with the c-3 BHs; to about 10 to 20 solar masses that form large stars; and others, much smaller (tiny) stars that eventually become planets and moons. Some, eventually explode/burst inside the galaxy to produce the gas and dust clouds that we see inside the galaxy. These gas and dust clouds are peppered with c-4 BHs that eventually are seen as new stars forming in the dust clouds (described below). We envision three mechanisms (a,b,&c) for stellar origin, formation and evolution. The first type 'a' is well known (accepted); whereas, the other two 'b&c' are new and presented herein. The presently generally accepted process 'a,' consists of an accretion and gravitation process where mass comes together from interstellar gas and dust, left over from previous stars' deaths/explosions; or, from some other gas and dust accumulation. In addition, to this process, we propose a process 'b,' where a star originates as an expanded, modified Black Hole (BH) (described later with Figure 4) with none or little help from accretion/gravitation, begins to radiate, and continues to grow into a star. A third process 'c,' is also possible in which a star would originate from a combination of the two mechanisms 'a & b' described above. This latter mechanism is perhaps the most common type. This type starts as an expanded, modified BH inside of a gas and dust cloud. This, then serves as the nucleus that starts the subsequent accretion/gravitation process; however, it greatly accelerates the accretion/gravitation formation process as in the standard process. This mechanism could then explain how some super-cluster complexes, which have been estimated to take 40 to 60 billion years to form, can occur in a universe of a much younger age of 13.5 billion, as exists.

  5. A giant outburst two years before the core-collapse of a massive star.

    PubMed

    Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L

    2007-06-14

    The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.

  6. Once an Onion, Always an Onion (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This artist's concept illustrates a massive star before and after it blew up in a cataclysmic 'supernova' explosion. NASA's Spitzer Space Telescope found evidence that this star -- the remains of which are named Cassiopeia A -- exploded with some degree of order, preserving chunks of its onion-like layers as it blasted apart.

    Cassiopeia A is located 10,000 light-years away in the constellation Cassiopeia. It was once a massive star 15 to 20 times larger than our sun. Its fiery death would have been viewable from Earth about 340 years ago.

    The top figure shows the star before it died, when its layers of elements were stacked neatly, with the heaviest at the core and the lightest at the top. Spitzer found evidence that these layers were preserved when the star exploded, flinging outward in all directions, but not at the same speeds. As a result, some chunks of the layered material traveled farther out than others, as illustrated in the bottom drawing.

    The infrared observatory was able to see the tossed-out layers, because they light up upon ramming into a 'reverse' shock wave created in the aftermath of the explosion. When a massive star explodes, it creates two types of shock waves. The forward shock wave darts out quickest, and, in the case of Cassiopeia A, is now traveling at supersonic speeds up to 7,500 kilometers per second (4,600 miles/second). The reverse shock wave is produced when the forward shock wave slams into a shell of surrounding material expelled before the star died. It tags along behind the forward shock wave at slightly slower speeds.

    Chunks of the star that were thrown out fastest hit the shock wave sooner and have had more time to heat up to scorching temperatures previously detected by X-ray and visible-light telescopes. Chunks of the star that lagged behind hit the shock wave later, so they are cooler and radiate infrared light that was not seen until Spitzer came along. These lagging chunks are made up of gas and dust containing neon, oxygen and aluminum -- elements from the middle layers of the original star.

  7. An extremely luminous X-ray outburst at the birth of a supernova

    NASA Astrophysics Data System (ADS)

    Soderberg, A. M.; Berger, E.; Page, K. L.; Schady, P.; Parrent, J.; Pooley, D.; Wang, X.-Y.; Ofek, E. O.; Cucchiara, A.; Rau, A.; Waxman, E.; Simon, J. D.; Bock, D. C.-J.; Milne, P. A.; Page, M. J.; Barentine, J. C.; Barthelmy, S. D.; Beardmore, A. P.; Bietenholz, M. F.; Brown, P.; Burrows, A.; Burrows, D. N.; Byrngelson, G.; Cenko, S. B.; Chandra, P.; Cummings, J. R.; Fox, D. B.; Gal-Yam, A.; Gehrels, N.; Immler, S.; Kasliwal, M.; Kong, A. K. H.; Krimm, H. A.; Kulkarni, S. R.; Maccarone, T. J.; Mészáros, P.; Nakar, E.; O'Brien, P. T.; Overzier, R. A.; de Pasquale, M.; Racusin, J.; Rea, N.; York, D. G.

    2008-05-01

    Massive stars end their short lives in spectacular explosions-supernovae-that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their `delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the `break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

  8. An extremely luminous X-ray outburst at the birth of a supernova.

    PubMed

    Soderberg, A M; Berger, E; Page, K L; Schady, P; Parrent, J; Pooley, D; Wang, X-Y; Ofek, E O; Cucchiara, A; Rau, A; Waxman, E; Simon, J D; Bock, D C-J; Milne, P A; Page, M J; Barentine, J C; Barthelmy, S D; Beardmore, A P; Bietenholz, M F; Brown, P; Burrows, A; Burrows, D N; Bryngelson, G; Byrngelson, G; Cenko, S B; Chandra, P; Cummings, J R; Fox, D B; Gal-Yam, A; Gehrels, N; Immler, S; Kasliwal, M; Kong, A K H; Krimm, H A; Kulkarni, S R; Maccarone, T J; Mészáros, P; Nakar, E; O'Brien, P T; Overzier, R A; de Pasquale, M; Racusin, J; Rea, N; York, D G

    2008-05-22

    Massive stars end their short lives in spectacular explosions--supernovae--that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

  9. Luck Reveals Stellar Explosion's First Moments

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Through a stroke of luck, astronomers have witnessed the first violent moments of a stellar explosion known as a supernova. Astronomers have seen thousands of these stellar explosions, but all previous supernovae were discovered days after the event had begun. This is the first time scientists have been able to study a supernova from its very beginning. Seeing one just moments after the event began is a major breakthrough that points the way to unraveling longstanding mysteries about how such explosions really work. Galaxy Before Supernova Explosion NASA's Swift satellite took these images of SN 2007uy in galaxy NGC 2770 before SN 2008D exploded. An X-ray image is on the left; image at right is in visible light. CREDIT: NASA/Swift Science Team/Stefan Immler. Large Image With Labels Large Image Without Labels Galaxy After Supernova Explosion On January 9, 2008, Swift caught a bright X-ray burst from an exploding star. A few days later, SN 2008D appeared in visible light. CREDIT: NASA/Swift Science Team/Stefan Immler. Large Image With Labels Large Image Without Labels "For years, we have dreamed of seeing a star just as it was exploding," said team leader Alicia Soderberg, a Hubble and Carnegie-Princeton Fellow at Princeton University. "This newly-born supernova is going to be the Rosetta Stone of supernova studies for years to come." Theorists had predicted for four decades that a bright burst of X-rays should be produced as the shock wave from a supernova blasts out of the star and through dense material surrounding the star. However, in order to see this burst, scientists faced the nearly-impossible challenge of knowing in advance where to point their telescopes to catch a supernova in the act of exploding. On January 9, luck intervened. Soderberg and her colleagues were making a scheduled observation of the galaxy NGC 2770, 88 million light-years from Earth, using the X-ray telescope on NASA's Swift satellite. During that observation, a bright burst of X-rays came from one of the galaxy's spiral arms. Soderberg led a 38-person international scientific team that quickly began an intensive effort to study the new object using both orbiting and ground-based telescopes. In order to conclude that they had, in fact, seen the predicted early burst of X-rays from a supernova, they needed to eliminate alternative explanations, such as a gamma-ray burst, and then to show that, as time went on, the object behaved like a normal supernova. The scientists scrutinized the object with Swift's gamma-ray instrument, the Chandra X-ray Observatory, and the Hubble Space Telescope. On the ground, they used the Gemini North telescope and the Keck I telescope in Hawaii, the 200-inch and 60-inch telescopes at Palomar Observatory in California, the 3.5-meter telescope at Apache Point Observatory in New Mexico, and the National Science Foundation's Very Large Array (VLA) and Very Long Baseline Array (VLBA) radio telescopes. The VLA and VLBA provided key information that showed the object evolving in a pattern similar to other supernovae. "The data from all these telescopes confirmed that what we were seeing is indeed a supernova and not some new type of object. That initial X-ray burst thus is the earliest observation ever of an exploding star," Soderberg said. The scientists are excited at the prospects of learning vital new details that will help them settle longstanding controversies about the mechanisms of supernova explosions. Stars much more massive than our Sun end their lives in supernova explosions, as they run out of fuel for the thermonuclear reactions that power them. With no more energy being released at the star's core, the core collapses. Further collapse of the star is thought to cause a violent rebound that blasts most of the stars's material into space. What remains is a superdense neutron star or a black hole. The details of this scenario, however, are not well understood, and astronomers differ over the exact mechanisms. Much of the difficulty in understanding the process comes from the fact that, until now, supernovae were only detected after the initial explosion was over. "We think that every core-collapse supernova will show an X-ray burst like this one. If so, with the right instruments, we should be able to discover and study several hundred of them every year. Astronomical instruments planned for the future should then allow us to finally unravel the mystery of how these explosions occur," Soderberg said. The scientists are reporting their findings in an article in the journal Nature. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  10. An asymptotic-giant-branch star in the progenitor system of a type Ia supernova.

    PubMed

    Hamuy, Mario; Phillips, M M; Suntzeff, Nicholas B; Maza, José; González, L E; Roth, Miguel; Krisciunas, Kevin; Morrell, Nidia; Green, E M; Persson, S E; McCarthy, P J

    2003-08-07

    Stars that explode as supernovae come in two main classes. A type Ia supernova is recognized by the absence of hydrogen and the presence of elements such as silicon and sulphur in its spectrum; this class of supernova is thought to produce the majority of iron-peak elements in the Universe. They are also used as precise 'standard candles' to measure the distances to galaxies. While there is general agreement that a type Ia supernova is produced by an exploding white dwarf star, no progenitor system has ever been directly observed. Significant effort has gone into searching for circumstellar material to help discriminate between the possible kinds of progenitor systems, but no such material has hitherto been found associated with a type Ia supernova. Here we report the presence of strong hydrogen emission associated with the type Ia supernova SN2002ic, indicating the presence of large amounts of circumstellar material. We infer from this that the progenitor system contained a massive asymptotic-giant-branch star that lost several solar masses of hydrogen-rich gas before the supernova explosion.

  11. Cosmic Journeys: To the Edge of Gravity, Space and Time...

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2000-01-01

    A star explodes, blowing its contents into interstellar space. At its core, a black hole may form. Or maybe a neutron star or white dwarf, depending on the size of the original star. Over the next million years, a new star may form from the left over gas. The ever-changing Universe is the ultimate recycler. NASA's Cosmic Journeys is a set of missions that will of explore the Universe's many mysteries. An summary of future missions is presented.

  12. Stellar shrapnel

    NASA Image and Video Library

    2017-12-08

    Several thousand years ago, a star some 160,000 light-years away from us exploded, scattering stellar shrapnel across the sky. The aftermath of this energetic detonation is shown here in this striking image from the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3. The exploding star was a white dwarf located in the Large Magellanic Cloud, one of our nearest neighboring galaxies. Around 97 percent of stars within the Milky Way that are between a tenth and eight times the mass of the sun are expected to end up as white dwarfs. These stars can face a number of different fates, one of which is to explode as supernovae, some of the brightest events ever observed in the universe. If a white dwarf is part of a binary star system, it can siphon material from a close companion. After gobbling up more than it can handle — and swelling to approximately one and a half times the size of the sun — the star becomes unstable and ignites as a Type Ia supernova. This was the case for the supernova remnant pictured here, which is known as DEM L71. It formed when a white dwarf reached the end of its life and ripped itself apart, ejecting a superheated cloud of debris in the process. Slamming into the surrounding interstellar gas, this stellar shrapnel gradually diffused into the separate fiery filaments of material seen scattered across this skyscape. Image credit: ESA/Hubble & NASA, Y. Chu Text credit: European Space Agency NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Dance of the Light Echoes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This composite image from NASA's Spitzer Space Telescope shows the remnant of a star that exploded, called Cassiopeia A (center) and its surrounding 'light echoes' -- dances of light through dusty clouds, created when stars blast apart. The light echoes are colored and the surrounding clouds of dust are gray.

    In figure 1, dramatic changes are highlighted in phenomena referred to as light echoes (colored areas) around the Cassiopeia A supernova remnant (center). Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died.

    A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. In figure 1, this apparent motion can be seen here by the shift in colored dust clumps

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 11,000 light-years away in the northern constellation Cassiopeia.

    This composite consists of six processed images taken over a time span of three years. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Bluer colors represent an earlier time and redder ones, a later time. The progression of the light echo through the dust can be seen here by the shift in colored dust clumps.

    This light echo is the largest ever seen, stretching more than 300 light-years away from Cassiopeia A. If viewed from Earth, the entire frame would take up the same amount of space as seven full moons. The supernova remnant is located 11,000 light-years away in the northern constellation Cassiopeia.

    The earliest Spitzer image shown here was taken in February 2005, and the latest one in January 2008. The image was processed to emphasize the light echo by enhancing the areas that change, which appear in color, and dimming regions that remain constant, seen in grayscale. Spurious color artifacts such as diffraction spikes around stars were removed by hand.

  14. The 3D Death of a Massive Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    What happens at the very end of a massive star's life, just before its core's collapse? A group led by Sean Couch (California Institute of Technology and Michigan State University) claim to have carried out the first three-dimensional simulations of these final few minutes — revealing new clues about the factors that can lead a massive star to explode in a catastrophic supernova at the end of its life. A Giant Collapses In dying massive stars, in-falling matter bounces off the of collapsed core, creating a shock wave. If the shock wave loses too much energy as it expands into the star, it can stall out — but further energy input can revive it and result in a successful explosion of the star as a core-collapse supernova. In simulations of this process, however, theorists have trouble getting the stars to consistently explode: the shocks often stall out and fail to revive. Couch and his group suggest that one reason might be that these simulations usually start at core collapse assuming spherical symmetry of the progenitor star. Adding Turbulence Couch and his collaborators suspect that the key is in the final minutes just before the star collapses. Models that assume a spherically-symmetric star can't include the effects of convection as the final shell of silicon is burned around the core — and those effects might have a significant impact! To test this hypothesis, the group ran fully 3D simulations of the final three minutes of the life of a 15 solar-mass star, ending with core collapse, bounce, and shock-revival. The outcome was striking: the 3D modeling introduced powerful turbulent convection (with speeds of several hundred km/s!) in the last few minutes of silicon-shell burning. As a result, the initial structure and motions in the star just before core collapse were very different from those in core-collapse simulations that use spherically-symmetric initial conditions. The turbulence was then further amplified during collapse and formation of the shock, generating pressure that aided the shock expansion — which should ultimately help the star explode! The group cautions that their simulations are still very idealized, but these results clearly indicate that the 3D structure of massive stellar cores has an important impact on the core-collapse supernova mechanism. Citation Sean M. Couch et al. 2015 ApJ 808 L21 doi:10.1088/2041-8205/808/1/L21

  15. Initial experiments to understand the interaction of stellar radiation with molecular clouds

    NASA Astrophysics Data System (ADS)

    Vandervort, Robert; Davis, Josh; Trantham, Matt; Klein, Sallee; Shvarts, Dov; Keiter, Paul; Drake, R. Paul

    2017-10-01

    Enhanced star formation triggered by local O and B type stars is an astrophysical problem of interest. O and B type stars are massive, hot stars that emit an enormous amount of radiation. This radiation acts to either compress or blow apart gas clumps in the interstellar media. For example, in the optically thick limit, when the radiation in the gas clump has a short mean free path, radiation is absorbed near the clump edge and compresses the clump. In the optically thin limit, when the mean free path is long, the radiation is absorbed throughout, acting to heat the clump. This heating explodes the gas clump. Careful selection of parameters, such as foam density or source temperature, allow the experimental platform to access different hydrodynamic regimes. 2D CRASH simulations guide our parameter selection. A stellar radiation source is mimicked by a laser-irradiated, thin, gold foil, providing a source of thermal x-rays around 100 eV. The gas clump is mimicked by low-density CRF foam. We plan to show the preliminary experimental results of this platform in the optically thick limit, from experiments scheduled in August. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, Grant No. DE-NA0002956, and the NLUF Program, Grant No. DE-NA0002719, and through LLE, University of Rochester by the NNSA/OICF under Cooperative Agreement No. DE-NA0001944. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207.

  16. Experimental design to understand the interaction of stellar radiation with molecular clouds

    NASA Astrophysics Data System (ADS)

    Vandervort, Robert; Davis, Josh; Trantham, Matt; Klein, Sallee; Frank, Yechiel; Raicher, Erez; Fraenkel, Moshe; Shvarts, Dov; Keiter, Paul; Drake, R. Paul

    2016-10-01

    Enhanced star formation triggered by local O and B type stars is an astrophysical problem of interest. O and B type stars are massive, hot stars that emit an enormous amount of radiation. This radiation acts to either compress or blow apart clumps of gas in the interstellar media. For example, in the optically thick limit, when the x-ray radiation in the gas clump has a short mean free path length the x-ray radiation is absorbed near the clump edge and compresses the clump. In the optically thin limit, when the mean free path is long, the radiation is absorbed throughout acting to heat the clump. This heating explodes the gas clump. Careful selection of parameters, such as foam density or source temperature, allow the experimental platform to access different hydrodynamic regimes. The stellar radiation source is mimicked by a laser irradiated thin gold foil. This will provide a source of thermal x-rays (around 100 eV). The gas clump is mimicked by a low-density foam around 0.12 g/cc. Simulations were done using radiation hydrodynamics codes to tune the experimental parameters. The experiment will be carried out at the Omega laser facility on OMEGA 60. Funding acknowledgements: This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, Grant No. DE-NA0001840, and the NLUF Program, Grant No. DE-NA0000850, and through LLE, University of Rochester by the NNSA/OICF under Agreement No. DE-FC52-08NA28302.

  17. After the Explosion: Investigating Supernova Sites

    NASA Image and Video Library

    2015-03-26

    A new study analyzes several sites where dead stars once exploded. The explosions, called Type Ia supernovae, occurred within galaxies, six of which are shown in these images from the Sloan Digital Sky Survey.

  18. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Radice, David; Burrows, Adam; Vartanyan, David; Skinner, M. Aaron; Dolence, Joshua C.

    2017-11-01

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11 {M}⊙ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes (1 {{B}}\\equiv {10}51 {erg}), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 {M}⊙ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. We find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.

  19. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    DOE PAGES

    Radice, David; Burrows, Adam; Vartanyan, David; ...

    2017-11-15

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11more » $${M}_{\\odot }$$ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes ($$1\\ {\\rm{B}}\\equiv {10}^{51}\\ \\mathrm{erg}$$), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 $${M}_{\\odot }$$ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. Lastly, we find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.« less

  20. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radice, David; Burrows, Adam; Vartanyan, David

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11more » $${M}_{\\odot }$$ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes ($$1\\ {\\rm{B}}\\equiv {10}^{51}\\ \\mathrm{erg}$$), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 $${M}_{\\odot }$$ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. Lastly, we find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.« less

  1. The Quiet Explosion

    NASA Astrophysics Data System (ADS)

    2008-07-01

    A European-led team of astronomers are providing hints that a recent supernova may not be as normal as initially thought. Instead, the star that exploded is now understood to have collapsed into a black hole, producing a weak jet, typical of much more violent events, the so-called gamma-ray bursts. The object, SN 2008D, is thus probably among the weakest explosions that produce very fast moving jets. This discovery represents a crucial milestone in the understanding of the most violent phenomena observed in the Universe. Black Hole ESO PR Photo 23a/08 A Galaxy and two Supernovae These striking results, partly based on observations with ESO's Very Large Telescope, will appear tomorrow in Science Express, the online version of Science. Stars that were at birth more massive than about 8 times the mass of our Sun end their relatively short life in a cosmic, cataclysmic firework lighting up the Universe. The outcome is the formation of the densest objects that exist, neutron stars and black holes. When exploding, some of the most massive stars emit a short cry of agony, in the form of a burst of very energetic light, X- or gamma-rays. In the early afternoon (in Europe) of 9 January 2008, the NASA/STFC/ASI Swift telescope discovered serendipitously a 5-minute long burst of X-rays coming from within the spiral galaxy NGC 2770, located 90 million light-years away towards the Lynx constellation. The Swift satellite was studying a supernova that had exploded the previous year in the same galaxy, but the burst of X-rays came from another location, and was soon shown to arise from a different supernova, named SN 2008D. Researchers at the Italian National Institute for Astrophysics (INAF), the Max-Planck Institute for Astrophysics (MPA), ESO, and at various other institutions have observed the supernova at great length. The team is led by Paolo Mazzali of INAF's Padova Observatory and MPA. "What made this event very interesting," says Mazzali, "is that the X-ray signal was very weak and 'soft' [1], very different from a gamma-ray burst and more in line with what is expected from a normal supernova." So, after the supernova was discovered, the team rapidly observed it from the Asiago Observatory in Northern Italy and established that it was a Type Ic supernova. "These are supernovae produced by stars that have lost their hydrogen and helium-rich outermost layers before exploding, and are the only type of supernovae which are associated with (long) gamma-ray bursts," explains Mazzali. "The object thus became even more interesting!" Earlier this year, an independent team of astronomers reported in the journal Nature that SN 2008D is a rather normal supernova. The fact that X-rays were detected was, they said, because for the first time, astronomers were lucky enough to catch the star in the act of exploding. Mazzali and his team think otherwise. "Our observations and modeling show this to be a rather unusual event, to be better understood in terms of an object lying at the boundary between normal supernovae and gamma-ray bursts." The team set up an observational campaign to monitor the evolution of the supernova using both ESO and national telescopes, collecting a large quantity of data. The early behaviour of the supernova indicated that it was a highly energetic event, although not quite as powerful as a gamma-ray burst. After a few days, however, the spectra of the supernova began to change. In particular Helium lines appeared, showing that the progenitor star was not stripped as deeply as supernovae associated with gamma-ray bursts. Over the years, Mazzali and his group have developed theoretical models to analyse the properties of supernovae. When applied to SN2008D, their models indicated that the progenitor star was at birth as massive as 30 times the Sun, but had lost so much mass that at the time of the explosion the star had a mass of only 8-10 solar masses. The likely result of the collapse of such a massive star is a black hole. "Since the masses and energies involved are smaller than in every known gamma-ray burst related supernova, we think that the collapse of the star gave rise to a weak jet, and that the presence of the Helium layer made it even more difficult for the jet to remain collimated, so that when it emerged from the stellar surface the signal was weak," says Massimo Della Valle, co-author. "The scenario we propose implies that gamma-ray burst-like inner engine activity exists in all supernovae that form a black hole," adds co-author Stefano Valenti. "As our X-ray and gamma-ray instruments become more advanced, we are slowly uncovering the very diverse properties of stellar explosions," explains Guido Chincarini, co-author and the Principal Investigator of the Italian research on gamma-ray bursts. "The bright gamma-ray bursts were the easiest to discover, and now we are seeing variations on a theme that link these special events to more normal ones." These are however very important discoveries, as they continue to paint a picture of how massive star end their lives, producing dense objects, and injecting new chemical elements back into the gas from which new stars will be formed.

  2. An integral condition for core-collapse supernova explosions

    DOE PAGES

    Murphy, Jeremiah W.; Dolence, Joshua C.

    2017-01-10

    Here, we derive an integral condition for core-collapse supernova (CCSN) explosions and use it to construct a new diagnostic of explodability. The fundamental challenge in CCSN theory is to explain how a stalled accretion shock revives to explode a star. In this manuscript, we assume that the shock revival is initiated by the delayed-neutrino mechanism and derive an integral condition for spherically symmetric shock expansion, v s > 0. One of the most useful one-dimensional explosion conditions is the neutrino luminosity and mass-accretion rate (more » $${L}_{\

  3. Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova

    NASA Astrophysics Data System (ADS)

    Smartt, Stephen J.; Maund, Justyn R.; Hendry, Margaret A.; Tout, Christopher A.; Gilmore, Gerard F.; Mattila, Seppo; Benn, Chris R.

    2004-01-01

    We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8+4-2 solar masses. This confirms both stellar evolution models and supernova theories predicting that cool red supergiants are the immediate progenitor stars of type II-plateau supernovae.

  4. The Year Ahead: Scholarship.

    ERIC Educational Resources Information Center

    Wheeler, David L., And Others

    1987-01-01

    Research concerns facing scholars are described including: in science--AIDS, exploding star, Ozone Hole, animal patents, Supernova 1987A, quasars, etc.--and in humanities and social sciences--theology, psychology of health, global environment, cognitive archaeology, classic African civilizations, feminism, etc. (MLW)

  5. A High-resolution Study of Presupernova Core Structure

    NASA Astrophysics Data System (ADS)

    Sukhbold, Tuguldur; Woosley, S. E.; Heger, Alexander

    2018-06-01

    The density structure surrounding the iron core of a massive star when it dies is known to have a major effect on whether or not the star explodes. Here we repeat previous surveys of presupernova evolution with some important corrections to code physics and four to 10 times better mass resolution in each star. The number of presupernova masses considered is also much larger. Over 4000 models are calculated in the range from 12 to 60 M ⊙ with varying mass loss rates. The core structure is not greatly affected by the increased spatial resolution. The qualitative patterns of compactness measures and their extrema are the same, but with the increased number of models, the scatter seen in previous studies is replaced by several localized branches. More physics-based analyses by Ertl et al. and Müller et al. show these branches with less scatter than the single-parameter characterization of O’Connor & Ott. These branches are particularly apparent for stars in the mass ranges 14–19 and 22–24 M ⊙. The multivalued solutions are a consequence of interference between several carbon- and oxygen-burning shells during the late stages of evolution. For a relevant range of masses, whether a star explodes or not may reflect the small, almost random differences in its late evolution more than its initial mass. The large number of models allows statistically meaningful statements about the radius, luminosity, and effective temperatures of presupernova stars, their core structures, and their remnant mass distributions.

  6. Possible Detection of a Pair Instability Supernova in the Modern Universe, and Implications for the First Stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2008-03-01

    SN 2006gy radiated far more energy in visual light than any other supernova so far, and potential explanations for its energy demands have implications for galactic chemical evolution and the deaths of the first stars. It remained bright for over 200 days, longer than any normal supernova, and it radiated more than 1051 ergs of luminous energy at visual wavelengths. I argue that this Type IIn supernova was probably the explosion of an extremely massive star like Eta Carinae that retained its hydrogen envelope when it exploded, having suffered relatively little mass loss during its lifetime. That this occurred at roughly Solar metallicity challenges current paradigms for mass loss in massive-star evolution. I explore a few potential explanations for SN2006gy's power source, involving either circumstellar interaction, or instead, the decay of 56Ni to 56Co to 56Fe. If SN 2006gy was powered by the conversion of shock energy into light, then the conditions must be truly extraordinary and traditional interaction models don't work. If SN 2006gy was powered by radioactive decay, then the uncomfortably huge 56Ni mass requires that the star exploded as a pair instability supernova. The mere possibility of this makes SN 2006gy interesting, especially at this meeting, because it is the first good candidate for a genuine pair instability supernova.

  7. Featured Image: Making a Rapidly Rotating Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506

  8. Once an Onion, Always an Onion Artist Concept

    NASA Image and Video Library

    2006-10-26

    This artist concept shows that NASA Spitzer Space Telescope found evidence that this star, the remains of which are named Cassiopeia A, exploded with some degree of order, preserving chunks of its onion-like layers as it blasted apart.

  9. Deepest Image of Exploded Star Uncovers Bipolar Jets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This spectacular Chandra X-Ray Observatory (CXO) image of the supernova remnant Cassiopeia A is the most detailed image ever made of the remains of an exploded star. The one-million-second image shows a bright outer ring (green) 10 light years in diameter that marks the location of a shock wave generated by the supernova explosion. In the upper left corner is a large jet-like structure that protrudes beyond the shock wave, and a counter-jet can be seen on the lower right. The x-ray spectra show that the jets are rich in silicon atoms, and relatively poor in iron atoms. This indicates that the jets formed soon after the initial explosion of the star, otherwise, the jets should have contained large quantities of iron from the star's central regions. The bright blue areas are composed almost purely of iron gas, which was produced in the central, hottest regions of the star and somehow ejected in a direction almost perpendicular to the jets. The bright source at the center of the image is presumed to be a neutron star created during the supernova. Unlike most others, this neutron star is quiet, faint, and so far shows no evidence of pulsed radiation. A working hypothesis is that the explosion that created Cassiopeia A produced high speed jets similar to, but less energetic than, the hyper nova jets thought to produce gamma-ray bursts. During the explosion, the star may have developed an extremely strong magnetic filed that helped to accelerate the jets and later stifled any pulsar wind activity. CXO project management is the responsibility of NASA's Marshall Space Flight Center in Huntsville, Alabama.

  10. Pulsar Artist Concept

    NASA Image and Video Library

    2017-01-06

    This artist's concept shows a pulsar, which is like a lighthouse, as its light appears in regular pulses as it rotates. Pulsars are dense remnants of exploded stars, and are part of a class of objects called neutron stars. Magnetars are different kinds of neutron stars -- they have violent, high-energy outbursts of X-ray and gamma ray light. A mysterious object called PSR J1119-6127 has been seen behaving as both a pulsar and a magnetar, suggesting that it could be a "missing link" between these objects. http://photojournal.jpl.nasa.gov/catalog/PIA21085

  11. Dissecting Dust from Detonation of Dead Star

    NASA Image and Video Library

    2014-06-04

    This infrared image from NASA Spitzer Space Telescope shows N103B -- all that remains from a supernova that exploded a millennium ago in the Large Magellanic Cloud, a satellite galaxy 160,000 light-years away from our own Milky Way.

  12. Dissecting the Wake of a Supernova Explosion

    NASA Image and Video Library

    2007-12-20

    The elements and molecules that flew out of the Cassiopeia A star when it exploded about 300 years ago can be seen clearly for the first time in this plot of data, called a spectrum, taken by NASA Spitzer Space Telescope.

  13. The origin of the Crab Nebula and the electron capture supernova in 8-10 M solar mass stars

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    The chemical composition of the Crab Nebula is compared with several presupernova models. The small carbon and oxygen abundances in the helium-rich nebula are consistent with only the presupernova model of the star whose main sequence mass was MMS approximately 8-9.5 M. More massive stars contain too much carbon in the helium layer and smaller mass stars do not leave neutron stars. The progenitor star of the Crab Nebula lost appreciable part of the hydrogen-rich envelope before the hydrogen-rich and helium layers were mixed by convection. Finally it exploded as the electron capture supernova; the O+Ne+Mg core collapsed to form a neutron star and only the extended helium-rich envelope was ejected by the weak shock wave.

  14. Cauldron of Light

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    In this animation, a seething cauldron of light appears to bubble and ooze around the remains of a giant star that astronomers have been watching tear itself apart for the last 300 years. This movie flips quickly between different observations taken over three years by NASA's Spitzer Space Telescope.

    Beginning in the center, the well-studied Cassiopeia A supernova remnant is shown. Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died.

    Panning outward, 'light echoes' create the illusion of motion in the clouds, as different areas of the material are lit up in succession by the light flash of the supernova. A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light.

    In reality, the clouds are stationary, at least in the brief time over which these observations were taken. The inclination of the clouds cause some light echoes to appear to expand away from the supernova remnant, while others move towards it or boil in many directions with seeming turbulence.

  15. Hubble Sees a Star Set to Explode

    NASA Image and Video Library

    2014-01-10

    Floating at the center of this new Hubble image is a lidless purple eye, staring back at us through space. This ethereal object, known officially as [SBW2007] 1 but sometimes nicknamed SBW1, is a nebula with a giant star at its center. The star was originally twenty times more massive than our sun, and is now encased in a swirling ring of purple gas, the remains of the distant era when it cast off its outer layers via violent pulsations and winds. But the star is not just any star; scientists say that it is destined to go supernova. Twenty-six years ago, another star with striking similarities went supernova — SN 1987A. Early Hubble images of SN 1987A show eerie similarities to SBW1. Both stars had identical rings of the same size and age, which were travelling at similar speeds; both were located in similar HII regions; and they had the same brightness. In this way SBW1 is a snapshot of SN1987a's appearance before it exploded, and unsurprisingly, astronomers love studying them together. At a distance of more than 20 000 light-years it will be safe to watch when the supernova goes off. If we are very lucky it may happen in our own lifetimes. Credit: ESA/NASA, acknowledgement: Nick Rose NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. The Future of Astronomy

    ERIC Educational Resources Information Center

    Greenstein, Jesse L.

    1973-01-01

    Presents a summary of the Reports of the Panels'' published by the Astronomy Survey Committee of the National Academy of Sciences in 1973, involving aspects of cosmology, quasars, exploding galaxies, stars, stellar evolution, solar system, organic molecules, life, and interstellar communication. Included are recommendations for scientific…

  17. A Novel Theory For The Origin And Evolution Of Stars And Planets, Including Earth, Which Asks, 'Was The Earth Once A Small Bright Star?'

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2001-12-01

    Improved prediction methods for earthquakes and volcanic activity will naturally follow from our theory, based on new concepts of the earth's interior composition, state and activity. In this paper we present a novel hypothesis for the formation and evolution of galaxies, stars (including black holes (BHs), neutron stars, giant, mid-size, dwarf, dying and dead stars), planets (including earth), and moons. Present day phenomenon will be used to substantiate the validity of this hypothesis. Every `body' is a multiple type of star, generated from modified pieces called particle proliferators, of a dislodged/expanded BH (of category 2 (c-2)) which explodes due to a collision with another expanded BH (or explodes on its own). This includes the sun, and the planet earth, which is a type of dead star. Such that, if we remove layers of the earth, starting with the crust, we will find evidence of each preceding star formation, from brown to blue, and the remains of the particle proliferator as the innermost core is reached. We show that the hypothesis is consistent with both the available astronomical data regarding stellar evolution and planetary formation; as well as the evolution of the earth itself, by considerations of the available geophysical data. Where data is not available, reasonably simple experiments are suggested to demonstrate further the consistency and viability of the hypothesis. Theories are presented to help define and explain phenomenon such as how two (or more) c-2 BHs expand and collide to form a small `big bang' (It is postulated that there was a small big bang to form each galaxy, similar to the big bang from a category 1 BH(s) that may have formed our universe. The Great Attractors would be massive c-2 BHs and act on galaxy clusters similar to the massive c-3 BHs at the center of Galaxies acting on stars.). This in turn afforded the material/matter to form all the galactic bodies, including the dark matter inside the galaxies that we catalogue as category-3 BH(s). We conceive that c-3 BHs form gas and dust clouds, inside galaxies, that are the incubators for new stars and planets. The start and development of the planet earth, initially as an emergent piece from the colliding c-2 BHs, is given special attention to explain the continuing expansion/growth that takes place in all stars and planets. We present a new cross section of the earth (as a dead star). Although the dimensions of the inner core, outer core, and the mantle (inner and outer) are about the same as presently known, new insight is given to their formation, evolution and composition. We explain the formation of the land, the growing/expanding earth (proportional to the ocean bed growth), the division of the continents, and the formation of the ocean beds (possibly long before the oceans existed). Attempts will be made to explain the source of the supply of water on earth. We explain various planetary phenomenon including: how/why the earth is growing/expanding (not based on current plate tectonic theory) causing it to retard its rotation; why the oceans are different sizes (the Pacific is about twice the Atlantic); why the masses at the poles are shifting into the Atlantic Ocean (may provide an alternative explanation for the ice ages); why various types of earthquakes occur (a new source is presented), why volcanoes occur (two types are discussed); and improved prediction methods for earthquakes and volcanic eruptions; the making/forming of the mountains from bending and compression buckling, and shear failures of the outer surfaces of the earth's brittle outer skin of the 1st crust (and also from eruptions) due to reduction in curvature of the crust.

  18. The Detection Rate of Early UV Emission from Supernovae: A Dedicated Galex/PTF Survey and Calibrated Theoretical Estimates

    NASA Astrophysics Data System (ADS)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran. O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer; Kulkarni, Shrinivas R.; Ben-Ami, Sagi; Kasliwal, Mansi M.; The ULTRASAT Science Team; Chelouche, Doron; Rafter, Stephen; Behar, Ehud; Laor, Ari; Poznanski, Dovi; Nakar, Ehud; Maoz, Dan; Trakhtenbrot, Benny; WTTH Consortium, The; Neill, James D.; Barlow, Thomas A.; Martin, Christofer D.; Gezari, Suvi; the GALEX Science Team; Arcavi, Iair; Bloom, Joshua S.; Nugent, Peter E.; Sullivan, Mark; Palomar Transient Factory, The

    2016-03-01

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R ⊙, explosion energies of 1051 erg, and ejecta masses of 10 M ⊙. Exploding blue supergiants and Wolf-Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (˜0.5 SN per deg2), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  19. Milky Way's Super-efficient Particle Accelerators Caught in The Act

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Thanks to a unique "ballistic study" that combines data from ESO's Very Large Telescope and NASA's Chandra X-ray Observatory, astronomers have now solved a long-standing mystery of the Milky Way's particle accelerators. They show in a paper published today on Science Express that cosmic rays from our galaxy are very efficiently accelerated in the remnants of exploded stars. During the Apollo flights astronauts reported seeing odd flashes of light, visible even with their eyes closed. We have since learnt that the cause was cosmic rays - extremely energetic particles from outside the Solar System arriving at the Earth, and constantly bombarding its atmosphere. Once they reach Earth, they still have sufficient energy to cause glitches in electronic components. Galactic cosmic rays come from sources inside our home galaxy, the Milky Way, and consist mostly of protons moving at close to the speed of light, the "ultimate speed limit" in the Universe. These protons have been accelerated to energies exceeding by far the energies that even CERN's Large Hadron Collider will be able to achieve. "It has long been thought that the super-accelerators that produce these cosmic rays in the Milky Way are the expanding envelopes created by exploded stars, but our observations reveal the smoking gun that proves it", says Eveline Helder from the Astronomical Institute Utrecht of Utrecht University in the Netherlands, the first author of the new study. "You could even say that we have now confirmed the calibre of the gun used to accelerate cosmic rays to their tremendous energies", adds collaborator Jacco Vink, also from the Astronomical Institute Utrecht. For the first time Helder, Vink and colleagues have come up with a measurement that solves the long-standing astronomical quandary of whether or not stellar explosions produce enough accelerated particles to explain the number of cosmic rays that hit the Earth's atmosphere. The team's study indicates that they indeed do and it directly tells us how much energy is removed from the shocked gas in the stellar explosion and used to accelerate particles. "When a star explodes in what we call a supernova a large part of the explosion energy is used for accelerating some particles up to extremely high energies", says Helder. "The energy that is used for particle acceleration is at the expense of heating the gas, which is therefore much colder than theory predicts". People Who Read This Also Read... NASA Announces 2009 Astronomy and Astrophysics Fellows Cosmic Heavyweights in Free-for-all Galaxies Coming of Age in Cosmic Blobs Oldest Known Objects Are Surprisingly Immature The researchers looked at the remnant of a star that exploded in AD 185, as recorded by Chinese astronomers. The remnant, called RCW 86, is located about 8200 light-years away towards the constellation of Circinus (the Drawing Compass). It is probably the oldest record of the explosion of a star. Using ESO's Very Large Telescope, the team measured the temperature of the gas right behind the shock wave created by the stellar explosion. They measured the speed of the shock wave as well, using images taken with NASA's X-ray Observatory Chandra three years apart. They found it to be moving at between 10 and 30 million km/h, between 1 and 3 percent the speed of light. The temperature of the gas turned out to be 30 million degrees Celsius. This is quite hot compared to everyday standards, but much lower than expected, given the measured shock wave's velocity. This should have heated the gas up to at least half a billion degrees. "The missing energy is what drives the cosmic rays", concludes Vink.

  20. Kepler Beyond Planets: Finding Exploding Stars (Type Felt Supernova)

    NASA Image and Video Library

    2018-03-26

    This frame from an animation shows a kind of stellar explosion called a Fast-Evolving Luminous Transient. In this case, a giant star "burps" out a shell of gas and dust about a year before exploding. Most of the energy from the supernova turns into light when it hits this previously ejected material, resulting in a short, but brilliant burst of radiation. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22351

  1. A surge of light at the birth of a supernova.

    PubMed

    Bersten, M C; Folatelli, G; García, F; Van Dyk, S D; Benvenuto, O G; Orellana, M; Buso, V; Sánchez, J L; Tanaka, M; Maeda, K; Filippenko, A V; Zheng, W; Brink, T G; Cenko, S B; de Jaeger, T; Kumar, S; Moriya, T J; Nomoto, K; Perley, D A; Shivvers, I; Smith, N

    2018-02-21

    It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

  2. A surge of light at the birth of a supernova

    NASA Astrophysics Data System (ADS)

    Bersten, M. C.; Folatelli, G.; García, F.; van Dyk, S. D.; Benvenuto, O. G.; Orellana, M.; Buso, V.; Sánchez, J. L.; Tanaka, M.; Maeda, K.; Filippenko, A. V.; Zheng, W.; Brink, T. G.; Cenko, S. B.; de Jaeger, T.; Kumar, S.; Moriya, T. J.; Nomoto, K.; Perley, D. A.; Shivvers, I.; Smith, N.

    2018-02-01

    It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

  3. A new way to make Thorne-Zytkow objects

    NASA Technical Reports Server (NTRS)

    Leonard, Peter J. T.; Hills, Jack G.; Dewey, Rachel J.

    1994-01-01

    We have found a new way to make Thorne-Zytkow objects, which are massive stars with degenerate neutron cores. The asymmetric kick given to the neutron star formed when the primary of a massive tight binary system explodes as a supernova sometimes has the appropriate direction and amplitude to place the newly formed neutron star into a bound orbit with a pericenter distance smaller than the radius of the secondary. Consequently, the neutron star becomes embedded in the secondary. Thorne-Zytkow objects are expected to look like extreme M-type supergiants, assuming that they can avoid a runaway neutrino instability. Accretion onto the embedded neutron star will produce either an isolated, spun-up neutron star (possibly a short-period pulsar) or a black hole. Whether neutron star or black hole remnants predominate depends on the lifetime of Thorne-Zytkow objects, the accretion rates involved, and the maximum neutron star mass, none of which are definitively understood.

  4. Hubble Space Telescope Image, Supernova Remnant Cassiopeia A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).

  5. Space Science

    NASA Image and Video Library

    2000-01-01

    The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or "Cas A" for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).

  6. A Year in the Life of an Infrared Echo

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Supernova Remnant Cassiopeia A One Year Apart

    These Spitzer Space Telescope images, taken one year apart, show the supernova remnant Cassiopeia A (yellow ball) and surrounding clouds of dust (reddish orange). The pictures illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago.

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia.

    Infrared echoes are created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The top Spitzer image was taken on November 30, 2003, and the bottom, on December 2, 2004.

  7. Interacting supernovae and supernova impostors

    NASA Astrophysics Data System (ADS)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  8. Progenitor constraints for core-collapse supernovae from Chandra X-ray observations

    NASA Astrophysics Data System (ADS)

    Heikkilä, T.; Tsygankov, S.; Mattila, S.; Eldridge, J. J.; Fraser, M.; Poutanen, J.

    2016-03-01

    The progenitors of hydrogen-poor core-collapse supernovae (SNe) of Types Ib, Ic and IIb are believed to have shed their outer hydrogen envelopes either by extremely strong stellar winds, characteristic of classical Wolf-Rayet stars, or by binary interaction with a close companion star. The exact nature of the progenitors and the relative importance of these processes are still open questions. One relatively unexplored method to constrain the progenitors is to search for high-mass X-ray binaries (HMXBs) at SN locations in pre-explosion X-ray observations. In an HMXB, one star has already exploded as a core-collapse SN, producing a neutron star or a stellar mass black hole. It is likely that the second star in the system will also explode as an SN, which should cause a detectable long-term change in the system's X-ray luminosity. In particular, a pre-explosion detection of an HMXB coincident with an SN could be informative about the progenitor's nature. In this paper, we analyse pre-explosion ACIS observations of 18 nearby Type Ib, Ic and IIb SNe from the Chandra X-ray observatory public archive. Two sources that could potentially be associated with the SN are identified in the sample. Additionally we make similar post-explosion measurements for 46 SNe. Although our modelling indicates that progenitor systems with compact binary companions are probably quite rare, studies of this type can in the future provide more stringent constraints as the number of discovered nearby SNe and suitable pre-explosion X-ray data are both increasing.

  9. Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies

    NASA Astrophysics Data System (ADS)

    Cikota, Aleksandar; De Cia, Annalisa; Schulze, Steve; Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; Perley, Daniel A.; Cikota, Stefan; Kim, Sam; Patat, Ferdinando; Lunnan, Ragnhild; Quimby, Robert; Yaron, Ofer; Yan, Lin; Mazzali, Paolo A.

    2017-08-01

    Superluminous supernovae (SLSNe) are the most luminous supernovae in the Universe. They are found in extreme star-forming galaxies and are probably connected with the death of massive stars. One hallmark of very massive progenitors would be a tendency to explode in very dense, UV-bright and blue regions. In this paper, we investigate the resolved host galaxy properties of two nearby hydrogen-poor SLSNe, PTF 11hrq and PTF 12dam. For both galaxies Hubble Space Telescope multifilter images were obtained. Additionally, we perform integral field spectroscopy of the host galaxy of PTF 11hrq using the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT/MUSE), and investigate the line strength, metallicity and kinematics. Neither PTF 11hrq nor PTF 12dam occurred in the bluest part of their host galaxies, although both galaxies have overall blue UV-to-optical colours. The MUSE data reveal a bright starbursting region in the host of PTF 11hrq, although far from the SN location. The SN exploded close to a region with disturbed kinematics, bluer colour, stronger [O III] and lower metallicity. The host galaxy is likely interacting with a companion. PTF 12dam occurred in one of the brightest pixels, in a starbursting galaxy with a complex morphology and a tidal tail, where interaction is also very likely. We speculate that SLSN explosions may originate from stars generated during star formation episodes triggered by interaction. High-resolution imaging and integral field spectroscopy are fundamental for a better understanding of SLSNe explosion sites and how star formation varies across their host galaxies.

  10. Hubble Sees the Remains of a Star Gone Supernova

    NASA Image and Video Library

    2017-12-08

    These delicate wisps of gas make up an object known as SNR B0519-69.0, or SNR 0519 for short. The thin, blood-red shells are actually the remnants from when an unstable progenitor star exploded violently as a supernova around 600 years ago. There are several types of supernovae, but for SNR 0519 the star that exploded is known to have been a white dwarf star — a Sun-like star in the final stages of its life. SNR 0519 is located over 150 000 light-years from Earth in the southern constellation of Dorado (The Dolphinfish), a constellation that also contains most of our neighboring galaxy the Large Magellanic Cloud (LMC). Because of this, this region of the sky is full of intriguing and beautiful deep sky objects. The LMC orbits the Milky Way galaxy as a satellite and is the fourth largest in our group of galaxies, the Local Group. SNR 0519 is not alone in the LMC; the NASA/ESA Hubble Space Telescope also came across a similar bauble a few years ago in SNR B0509-67.5, a supernova of the same type as SNR 0519 with a strikingly similar appearance. European Space Agency/NASA Hubble NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Massive stars: flare activity due to infalls of comet-like bodies

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz S.

    2015-01-01

    Passages of comet-like bodies through the atmosphere/chromosphere of massive stars at velocities more than 600 km/s will be accompanied, due to aerodynamic effects as crushing and flattening, by impulse generation of hot plasma within a relatively very thin layer near the stellar surface/photosphere as well as ``blast'' shock wave, i.e., impact-generated photospheric stellar/solar flares. Observational manifestations of such high-temperature phenomena will be eruption of the explosive layer's hot plasma, on materials of the star and ``exploding'' comet nuclei, into the circumstellar environment and variable anomalies in chemical abundances of metal atoms/ions like Fe, Si etc. Interferometric and spectroscopic observations/monitoring of young massive stars with dense protoplanetary discs are of interest for massive stars physics/evolution, including identification of mechanisms for massive stars variability.

  12. Stellar alchemy. The celestial origin of atoms

    NASA Astrophysics Data System (ADS)

    Cassé, Michel

    Why do the stars shine? What messages can we read in the light they send to us from the depths of the night? Nuclear astrophysics is a fascinating discipline, and enables connections to be made between atoms, stars, and human beings. Through modern astronomy, scientists have managed to unravel the full history of the chemical elements, and to understand how they originated and evolved into all the elements that compose our surroundings today. The transformation of metals into gold, something once dreamed of by alchemists, is a process commonly occurring in the cores of massive stars. But the most exciting revelation is the intimate connection that humanity itself has with the debris of exploded stars. This engaging account of nucleosynthesis in stars, and the associated chemical evolution of the Universe, is suitable for the general reader.

  13. Supernova shock breakout from a red supergiant.

    PubMed

    Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-07-11

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars.

  14. Color Composite Image of the Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is a color composite of the supernova remnant E0102-72: x-ray (blue), optical (green), and radio (red). E0102-72 is the remnant of a star that exploded in a nearby galaxy known as the Small Magellanic Cloud. The star exploded outward at speeds in excess of 20 million kilometers per hour (12 million mph) and collided with surrounding gas. This collision produced two shock waves, or cosmic sonic booms, one traveling outward, and the other rebounding back into the material ejected by the explosion. The radio image, shown in red, was made using the Australia Telescope Compact Array. The radio waves are due to extremely high-energy electrons spiraling around magnetic field lines in the gas and trace the outward moving shock wave. The Chandra X-ray Observatory image, shown in blue, shows gas that has been heated to millions of degrees by the rebounding, or reverse shock wave. The x-ray data show that this gas is rich in oxygen and neon. These elements were created by nuclear reactions inside the star and hurled into space by the supernova. The Hubble Space Telescope optical image, shown in green, shows dense clumps of oxygen gas that have 'cooled' to about 30,000 degrees. Photo Credit: X-ray (NASA/CXC/SAO); optical (NASA/HST): radio: (ACTA)

  15. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-11-01

    This image is a color composite of the supernova remnant E0102-72: x-ray (blue), optical (green), and radio (red). E0102-72 is the remnant of a star that exploded in a nearby galaxy known as the Small Magellanic Cloud. The star exploded outward at speeds in excess of 20 million kilometers per hour (12 million mph) and collided with surrounding gas. This collision produced two shock waves, or cosmic sonic booms, one traveling outward, and the other rebounding back into the material ejected by the explosion. The radio image, shown in red, was made using the Australia Telescope Compact Array. The radio waves are due to extremely high-energy electrons spiraling around magnetic field lines in the gas and trace the outward moving shock wave. The Chandra X-ray Observatory image, shown in blue, shows gas that has been heated to millions of degrees by the rebounding, or reverse shock wave. The x-ray data show that this gas is rich in oxygen and neon. These elements were created by nuclear reactions inside the star and hurled into space by the supernova. The Hubble Space Telescope optical image, shown in green, shows dense clumps of oxygen gas that have "cooled" to about 30,000 degrees. Photo Credit: X-ray (NASA/CXC/SAO); optical (NASA/HST): radio: (ACTA)

  16. Supernova Explosions Stay In Shape

    NASA Astrophysics Data System (ADS)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular remnants. This type of supernova is thought to be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers as "standard candles" for measuring cosmic distances. On the other hand, the remnants tied to the "core-collapse" supernova explosions were distinctly more asymmetric. This type of supernova occurs when a very massive, young star collapses onto itself and then explodes. "If we can link supernova remnants with the type of explosion", said co-author Enrico Ramirez-Ruiz, also of University of California, Santa Cruz, "then we can use that information in theoretical models to really help us nail down the details of how the supernovas went off." Models of core-collapse supernovas must include a way to reproduce the asymmetries measured in this work and models of Type Ia supernovas must produce the symmetric, circular remnants that have been observed. Out of the 17 supernova remnants sampled, ten were classified as the core-collapse variety, while the remaining seven of them were classified as Type Ia. One of these, a remnant known as SNR 0548-70.4, was a bit of an "oddball". This one was considered a Type Ia based on its chemical abundances, but Lopez finds it has the asymmetry of a core-collapse remnant. "We do have one mysterious object, but we think that is probably a Type Ia with an unusual orientation to our line of sight," said Lopez. "But we'll definitely be looking at that one again." While the supernova remnants in the Lopez sample were taken from the Milky Way and its close neighbor, it is possible this technique could be extended to remnants at even greater distances. For example, large, bright supernova remnants in the galaxy M33 could be included in future studies to determine the types of supernova that generated them. The paper describing these results appeared in the November 20 issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  17. Dissecting a Light Echo

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for audio animation

    This animation illustrates how a light echo works, and how an optical illusion of material moving outward is created.

    A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one.

    The animation starts by showing the explosion of a star, which results in a flash of light that moves outward in all directions. The direction of our line of sight from Earth is indicated by the blue arrow.

    When the light flash reaches surrounding dust, shown here as three dark clouds, the dust is heated up, creating infrared light that begins to travel toward Earth (indicated by the red arrows). Dust closest to the explosion lights up first, while the explosion's shock wave takes longer to reach more distant material. This results in light from different parts of the cloud reaching Earth at different times, creating the illusion of motion over time.

    As the animation shows, the inclination of the cloud toward our line of sight can result in the material seeming to move both away from and toward the central star.

  18. Lighting up a Dead Star's Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image from NASA's Spitzer Space Telescope shows the scattered remains of an exploded star named Cassiopeia A. Spitzer's infrared detectors 'picked' through these remains and found that much of the star's original layering had been preserved.

    In this false-color image, the faint, blue glow surrounding the dead star is material that was energized by a shock wave, called the forward shock, which was created when the star blew up. The forward shock is now located at the outer edge of the blue glow. Stars are also seen in blue. Green, yellow and red primarily represent material that was ejected in the explosion and heated by a slower shock wave, called the reverse shock wave.

    The picture was taken by Spitzer's infrared array camera and is a composite of 3.6-micron light (blue); 4.5-micron light (green); and 8.0-micron light (red).

  19. Networks, Netwar, and Information-Age Terrorism

    DTIC Science & Technology

    1999-01-01

    intermediate nodes. • The star, hub, or wheel network, as in a franchise or a cartel structure where a set of actors is tied to a central node or actor...Aviv and Jerusalem. On March 21, a Hamas satchel bomb exploded at a Tel Aviv cafe , killing three persons and injuring 48; on July 30, two Hamas

  20. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2002-12-18

    At a distance of 6,000 light years from Earth, the star cluster RCW 38 is a relatively close star-forming region. This area is about 5 light years across, and contains thousands of hot, very young stars formed less than a million years ago, 190 of which exposed x-rays to Chandra. Enveloping the star cluster, the diffused cloud of x-rays shows an excess of high energy x-rays, which indicates that the x-rays come from trillion-volt electrons moving in a magnetic field. Such particles are typically produced by exploding stars, or in the strong magnetic fields around neutron stars or black holes, none of which are evident in RCW 38. One possible origin for the particles, could be an undetected supernova that occurred in the cluster, possibly thousands of years ago, producing a shock wave that is interacting with the young stars. Regardless of the origin of these energetic electrons, their presence could change the chemistry of the disks that will eventually form planets around the stars in the cluster.

  1. Neutrino signal from pair-instability supernovae

    NASA Astrophysics Data System (ADS)

    Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.

    2017-11-01

    A very massive star with a carbon-oxygen core in the range of 64M ⊙

  2. THE DETECTION RATE OF EARLY UV EMISSION FROM SUPERNOVAE: A DEDICATED GALEX/PTF SURVEY AND CALIBRATED THEORETICAL ESTIMATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran O.

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find thatmore » our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R{sub ⊙}, explosion energies of 10{sup 51} erg, and ejecta masses of 10 M{sub ⊙}. Exploding blue supergiants and Wolf–Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (∼0.5 SN per deg{sup 2}), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.« less

  3. Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.

  4. THE DISCOVERY OF A RARE WO-TYPE WOLF-RAYET STAR IN THE LARGE MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu, E-mail: nmorrell@lco.cl

    While observing OB stars within the most crowded regions of the Large Magellanic Cloud, we happened upon a new Wolf-Rayet (WR) star in Lucke-Hodge 41, the rich OB association that contains S Doradus and numerous other massive stars. At first glance the spectrum resembled that of a WC4 star, but closer examination showed strong O VI {lambda}{lambda}3811, 34 lines, leading us to classify it as a WO4. This is only the second known WO in the LMC, and the first known WO4 (the other being a WO3). This rarity is to be expected due to these stars' short lifespans asmore » they represent the most advanced evolutionary stage in a massive star's lifetime before exploding as supernovae. This discovery shows that while the majority of WRs within the LMC have been discovered, there may be a few WRs left to be found.« less

  5. Non-identical neutron star twins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glendenning, Norman K.; Kettner, Christiane

    1998-07-01

    The work of J. A. Wheeler in the mid 1960's showed that forsmooth equations of state no stable stellar configurations with centraldensities above that corresponding to the limiting mass of 'neutronstars' (in the generic sense) were stable against acoustical vibrationalmodes. A perturbation would cause any such star to collapse to a blackhole or explode. Accordingly, there has been no reason to expect that astable degenerate family of stars with higher density than the knownwhite dwarfs and neutron stars might exist. We have found a class ofexceptions corresponding to certain equations of state that describe afirst order phase transition. We discussmore » how such a higher density familyof stars could be formed in nature, and how the promising new explorationof oscillations in the X-ray brightness of accreting neutron stars mightprovide a means of identifying them. Our proof of the possible existenceof a third family of degenerate stars is one of principle and rests ongeneral principles like causality, microstability of matter and GeneralRelativity.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaron, O.; Perley, D. A.; Gal-Yam, A.

    With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, that sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ~3 hr after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 hr post-explosion) spectra, map the distribution of material in the immediate environment (≲ 10 15 cm)more » of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10 -3 solar masses per year. The complete disappearance of flash-ionised emission lines within the first several days requires that the dense CSM be confined to within ≲10 15 cm, consistent with radio non-detections at 70–100 days. The observations indicate that iPTF 13dqy was a regular Type II SN; thus, the finding that the probable red supergiant (RSG) progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.« less

  7. Confined dense circumstellar material surrounding a regular type II supernova

    NASA Astrophysics Data System (ADS)

    Yaron, O.; Perley, D. A.; Gal-Yam, A.; Groh, J. H.; Horesh, A.; Ofek, E. O.; Kulkarni, S. R.; Sollerman, J.; Fransson, C.; Rubin, A.; Szabo, P.; Sapir, N.; Taddia, F.; Cenko, S. B.; Valenti, S.; Arcavi, I.; Howell, D. A.; Kasliwal, M. M.; Vreeswijk, P. M.; Khazov, D.; Fox, O. D.; Cao, Y.; Gnat, O.; Kelly, P. L.; Nugent, P. E.; Filippenko, A. V.; Laher, R. R.; Wozniak, P. R.; Lee, W. H.; Rebbapragada, U. D.; Maguire, K.; Sullivan, M.; Soumagnac, M. T.

    2017-02-01

    With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, which sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ~3 h after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 h post-explosion) spectra, map the distribution of material in the immediate environment (<~1015 cm) of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10-3 solar masses per year. The complete disappearance of flash-ionized emission lines within the first several days requires that the dense CSM be confined to within <~1015 cm, consistent with radio non-detections at 70-100 days. The observations indicate that iPTF 13dqy was a regular type II supernova; thus, the finding that the probable red supergiant progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.

  8. On The Origin Of Two-Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii

    2007-07-01

    The proper motion of massive stars could cause them to explode far from the geometric centers of their wind-driven bubbles and thereby could affect the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. Cygnus Loop, 3C 400.2, etc.).

  9. Formation of Double Neutron Star Systems

    NASA Astrophysics Data System (ADS)

    Tauris, T. M.; Kramer, M.; Freire, P. C. C.; Wex, N.; Janka, H.-T.; Langer, N.; Podsiadlowski, Ph.; Bozzo, E.; Chaty, S.; Kruckow, M. U.; van den Heuvel, E. P. J.; Antoniadis, J.; Breton, R. P.; Champion, D. J.

    2017-09-01

    Double neutron star (DNS) systems represent extreme physical objects and the endpoint of an exotic journey of stellar evolution and binary interactions. Large numbers of DNS systems and their mergers are anticipated to be discovered using the Square Kilometre Array searching for radio pulsars, and the high-frequency gravitational wave detectors (LIGO/VIRGO), respectively. Here we discuss all key properties of DNS systems, as well as selection effects, and combine the latest observational data with new theoretical progress on various physical processes with the aim of advancing our knowledge on their formation. We examine key interactions of their progenitor systems and evaluate their accretion history during the high-mass X-ray binary stage, the common envelope phase, and the subsequent Case BB mass transfer, and argue that the first-formed NSs have accreted at most ˜ 0.02 {M}⊙ . We investigate DNS masses, spins, and velocities, and in particular correlations between spin period, orbital period, and eccentricity. Numerous Monte Carlo simulations of the second supernova (SN) events are performed to extrapolate pre-SN stellar properties and probe the explosions. All known close-orbit DNS systems are consistent with ultra-stripped exploding stars. Although their resulting NS kicks are often small, we demonstrate a large spread in kick magnitudes that may, in general, depend on the past interaction history of the exploding star and thus correlate with the NS mass. We analyze and discuss NS kick directions based on our SN simulations. Finally, we discuss the terminal evolution of close-orbit DNS systems until they merge and possibly produce a short γ-ray burst.

  10. Neutrino Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  11. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Burrows, Adam; Radice, David; Skinner, M. Aaron; Dolence, Joshua

    2018-07-01

    We present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si-O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si-O interface as one key to explosion. Furthermore, we show that all of the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of a few × 1050 erg at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-sustained Asymmetry. Finally, we look at proto-neutron star (PNS) properties and explore the role of dimension in our simulations. We find that convection in the PNS produces larger PNS radii as well as greater `νμ' luminosities in 2D compared to 1D.

  12. Revival of the Fittest: Exploding Core-Collapse Supernovae from 12 to 25 M⊙

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Burrows, Adam; Radice, David; Skinner, M. Aaron; Dolence, Joshua

    2018-03-01

    We present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si-O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si-O interface as one key to explosion. Furthermore, we show that all of the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of few × 1050 ergs at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in Nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-Sustained Asymmetry. Finally, we look at PNS properties and explore the role of dimension in our simulations. We find that convection in the proto-neutron star (PNS) produces larger PNS radii as well as greater "νμ" luminosities in 2D compared to 1D.

  13. SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Li, Weidong; Foley, Ryan J.; Wheeler, J. Craig; Pooley, David; Chornock, Ryan; Filippenko, Alexei V.; Silverman, Jeffrey M.; Quimby, Robert; Bloom, Joshua S.; Hansen, Charles

    2007-09-01

    We report the discovery and early observations of the peculiar Type IIn supernova (SN) 2006gy in NGC 1260. With a peak visual magnitude of about -22, it is the most luminous supernova ever recorded. Its very slow rise to maximum took ~70 days, and it stayed brighter than -21 mag for about 100 days. It is not yet clear what powers the enormous luminosity and the total radiated energy of ~1051 erg, but we argue that any known mechanism-thermal emission, circumstellar interaction, or 56Ni decay-requires a very massive progenitor star. The circumstellar interaction hypothesis would require truly exceptional conditions around the star, which, in the decades before its death, must have experienced a luminous blue variable (LBV) eruption like the 19th century eruption of η Carinae. However, this scenario fails to explain the weak and unabsorbed soft X-rays detected by Chandra. Radioactive decay of 56Ni may be a less objectionable hypothesis, but it would imply a large Ni mass of ~22 Msolar, requiring SN 2006gy to have been a pair-instability supernova where the star's core was obliterated. While this is still uncertain, SN 2006gy is the first supernova for which we have good reason to suspect a pair-instability explosion. Based on a number of lines of evidence, we eliminate the hypothesis that SN 2006gy was a ``Type IIa'' event, that is, a white dwarf exploding inside a hydrogen envelope. Instead, we propose that the progenitor was a very massive evolved object like η Carinae that, contrary to expectations, failed to shed its hydrogen envelope. SN 2006gy implies that some of the most massive stars can explode prematurely during the LBV phase, never becoming Wolf-Rayet stars. SN 2006gy also suggests that they can create brilliant supernovae instead of experiencing ignominious deaths through direct collapse to a black hole. If such a fate is common among the most massive stars, then observable supernovae from Population III stars in the early universe will be more numerous than previously believed.

  14. IUE investigations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1989-01-01

    IUE observations of the SN 1987A began shortly after the discovery and have been frequent through 1988 and 1989, using the fine error sensor for photometry, low dispersion spectra for the supernova spectrum, and high dispersion observations for the interstellar medium when the supernova was bright and for circumstellar gas surrounding the supernova as the initial event faded. The UV data were very useful in determining which star exploded, assessing the ionizing pulse produced as the shock hit the surface of the star, and in constraining the stellar evolution that preceded the explosion through observations of a circumstellar shell.

  15. Supernovae, supernebulae, and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig; Harkness, Robert P.; Barkat, Zalman; Swartz, Douglas

    1986-10-01

    Supernova atmosphere calculations continue to show that variants of previously calculated carbon-deflagration models provide a good representation of the maximum light spectra of classical type Ia supernovae including the ultraviolet deficit. Careful consideration of the conditions leading to central thermonuclear runaway of degenerate carbon shows that runaway can, however, lead to detonation and direct conflict with observations. As witnessed by the spectra of type Ib supernovae, massive stars are expected to be the primary source of oxygen. Estimates of the absolute production of oxygen in massive stars suggest that if all stars more massive than ≡12 M_sun; explode as supernovae, oxygen would be overproduced in the solar neighborhood, an effect exacerbated by the recent increase in the reaction rate for 12C(α, γ)16O.

  16. Chandra X-Ray Observatory (CXO) on Orbit Animation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an on-orbit animation of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the remnants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  17. Shock break-out: how a GRB revealed the beginnings of a supernova.

    PubMed

    Blustin, Alexander J

    2007-05-15

    In February 2006, Swift caught a gamma-ray burst (GRB) in the act of turning into a supernova, and made the first ever direct observations of the break-out and early expansion of a supernova shock wave. GRB 060218 began with an exceptionally long burst of non-thermal gamma-rays, lasting over 2000s, as a jet erupted through the surface of the star. While this was in progress, an optically-thick thermal component from the shock wave of the supernova explosion grew to prominence, and we were able to track the mildly relativistic expansion of this shell as the blackbody peak moved from the X-rays into the UV and optical bands. The initial radius of the shock implied that it was a blue supergiant that had exploded, but the lack of hydrogen emission lines in the supernova spectrum indicated a more compact star. The most likely scenario is that the shock ploughed into the massive stellar wind of a Wolf-Rayet progenitor, with the shock breaking-out and becoming visible to us once it reached the radius where the wind became optically-thin. I present the Swift observations of this landmark event, and discuss the new questions and answers it leaves us with.

  18. Chemical Evolution of Binary Stars

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.

    2013-02-01

    Energy generation by nuclear fusion is the fundamental process that prevents stars from collapsing under their own gravity. Fusion in the core of a star converts hydrogen to heavier elements from helium to uranium. The signature of this nucleosynthesis is often visible in a single star only for a very short time, for example while the star is a red giant or, in massive stars, when it explodes. Contrarily, in a binary system nuclear-processed matter can captured by a secondary star which remains chemically polluted long after its more massive companion star has evolved and died. By probing old, low-mass stars we gain vital insight into the complex nucleosynthesis that occurred when our Galaxy was much younger than it is today. Stellar evolution itself is also affected by the presence of a companion star. Thermonuclear novae and type Ia supernovae result from mass transfer in binary stars, but big questions still surround the nature of their progenitors. Stars may even merge and one of the challenges for the future of stellar astrophysics is to quantitatively understand what happens in such extreme systems. Binary stars offer unique insights into stellar, galactic and extragalactic astrophysics through their plethora of exciting phenomena. Understanding the chemical evolution of binary stars is thus of high priority in modern astrophysics.

  19. Dead Star Rumbles

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Composite of Supernova Remnant Cassiopeia A This Spitzer Space Telescope composite shows the supernova remnant Cassiopeia A (white ball) and surrounding clouds of dust (gray, orange and blue). It consists of two processed images taken one year apart. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Blue represents an earlier time and orange, a later time.

    These observations illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago.

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia.

    An infrared echo is created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. This apparent motion can be seen here by the shift in colored dust clumps.

    Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The earlier Spitzer image was taken on November 30, 2003, and the later, on December 2, 2004.

  20. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vartanyan, David; Burrows, Adam; Radice, David

    Here, we present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si–O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si–O interface as one key to explosion. Furthermore, we show that all ofmore » the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of a few × 10 50 erg at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-sustained Asymmetry. Finally, we look at proto-neutron star (PNS) properties and explore the role of dimension in our simulations. We find that convection in the PNS produces larger PNS radii as well as greater ‘ν μ’ luminosities in 2D compared to 1D.« less

  1. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙

    DOE PAGES

    Vartanyan, David; Burrows, Adam; Radice, David; ...

    2018-03-28

    Here, we present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si–O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si–O interface as one key to explosion. Furthermore, we show that all ofmore » the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of a few × 10 50 erg at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-sustained Asymmetry. Finally, we look at proto-neutron star (PNS) properties and explore the role of dimension in our simulations. We find that convection in the PNS produces larger PNS radii as well as greater ‘ν μ’ luminosities in 2D compared to 1D.« less

  2. Measuring the Progenitor Masses and Dense Circumstellar Material of Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Morozova, Viktoriya; Piro, Anthony L.; Valenti, Stefano

    2018-05-01

    Recent modeling of hydrogen-rich Type II supernova (SN II) light curves suggests the presence of dense circumstellar material (CSM) surrounding the exploding progenitor stars. This has important implications for the activity and structure of massive stars near the end of their lives. Since previous work focused on just a few events, here we expand to a larger sample of 20 well-observed SNe II. For each event we are able to constrain the progenitor zero-age main-sequence (ZAMS) mass, explosion energy, and the mass and radial extent of the dense CSM. We then study the distribution of each of these properties across the full sample of SNe. The inferred ZAMS masses are found to be largely consistent with a Salpeter distribution with minimum and maximum masses of 10.4 and 22.9 M ⊙, respectively. We also compare the individual ZAMS masses we measure with specific SNe II that have pre-explosion imaging to check their consistency. Our masses are generally comparable to or higher than the pre-explosion imaging masses, potentially helping ease the red supergiant problem. The explosion energies vary from (0.1–1.3) × 1051 erg, and for ∼70% of the SNe we obtain CSM masses in the range between 0.18 and 0.83 M ⊙. We see a potential correlation between the CSM mass and explosion energy, which suggests that pre-explosion activity has a strong impact on the structure of the star. This may be important to take into account in future studies of the ability of the neutrino mechanism to explode stars. We also see a possible correlation between the CSM radial extent and ZAMS mass, which could be related to the time with respect to explosion when the CSM is first generated.

  3. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svirski, Gilad; Nakar, Ehud, E-mail: swirskig@post.tau.ac.il

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s{sup –1}) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is foundmore » to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF {sub ν} = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.« less

  4. Confined dense circumstellar material surrounding a regular type II supernova

    DOE PAGES

    Yaron, O.; Perley, D. A.; Gal-Yam, A.; ...

    2017-02-13

    With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, that sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ~3 hr after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 hr post-explosion) spectra, map the distribution of material in the immediate environment (≲ 10 15 cm)more » of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10 -3 solar masses per year. The complete disappearance of flash-ionised emission lines within the first several days requires that the dense CSM be confined to within ≲10 15 cm, consistent with radio non-detections at 70–100 days. The observations indicate that iPTF 13dqy was a regular Type II SN; thus, the finding that the probable red supergiant (RSG) progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.« less

  5. A massive hypergiant star as the progenitor of the supernova SN 2005gl.

    PubMed

    Gal-Yam, A; Leonard, D C

    2009-04-16

    Our understanding of the evolution of massive stars before their final explosions as supernovae is incomplete, from both an observational and a theoretical standpoint. A key missing piece in the supernova puzzle is the difficulty of identifying and studying progenitor stars. In only a single case-that of supernova SN 1987A in the Large Magellanic Cloud-has a star been detected at the supernova location before the explosion, and been subsequently shown to have vanished after the supernova event. The progenitor of SN 1987A was a blue supergiant, which required a rethink of stellar evolution models. The progenitor of supernova SN 2005gl was proposed to be an extremely luminous object, but the association was not robustly established (it was not even clear that the putative progenitor was a single luminous star). Here we report that the previously proposed object was indeed the progenitor star of SN 2005gl. This very massive star was likely a luminous blue variable that standard stellar evolution predicts should not have exploded in that state.

  6. A weight limit emerges for neutron stars

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-02-01

    Astrophysicists have long wondered how massive a neutron star—the corpse of certain exploding stars—could be without collapsing under its own gravity to form a black hole. Now, four teams have independently deduced a mass limit for neutron stars of about 2.2 times the mass of the sun. To do so, all four groups analyzed last year's blockbuster observations of the merger of two neutron stars, spied on 17 September 2017 by dozens of observatories. That approach may seem unpromising, as it might appear that the merging neutron stars would have immediately produced a black hole. However, the researchers argue that the merger first produced a spinning, overweight neutron star momentarily propped up by centrifugal force. They deduce that just before it collapsed, the short-lived neutron star had to be near the maximum mass for one spinning as a solid body. That inference allowed them to use a scaling relationship to estimate the maximum mass of a nonrotating, stable neutron star, starting from the total mass of the original pair and the amount of matter spewed into space.

  7. Multiscale Modeling of Ionospheric Irregularities

    DTIC Science & Technology

    2014-10-22

    REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Taylor (RT) instabilities, occurs in settings that are as varied as exploding stars (supernovae), inertial confinement fusion (ICF) and macroscopic...These global models, together with the large observational data sets that have been accu- mulated over the years, have led to a much greater under

  8. The quest for blue supergiants : The evolution of the progenitor of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira; Heger, Alexander

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.

  9. Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.

  10. BONA FIDE, STRONG-VARIABLE GALACTIC LUMINOUS BLUE VARIABLE STARS ARE FAST ROTATORS: DETECTION OF A HIGH ROTATIONAL VELOCITY IN HR CARINAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groh, J. H.; Damineli, A.; Moises, A. P.

    2009-11-01

    We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si IV lambdalambda4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of v{sub rot} approx = 150 +- 20 km s{sup -1} is needed (assuming an inclination angle of 30 deg.), implying that HR Car rotates at approx =0.88 +- 0.2 of its critical velocity for breakup (v{sub crit}). Our results suggest that fast rotation is typical in all strong-variable, bona fide galacticmore » LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the 'LBV minimum instability strip'). We suggest this region corresponds to where v{sub crit} is reached. To the left of this strip, a forbidden zone with v{sub rot}/v{sub crit}>1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low v{sub rot}, we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase.« less

  11. Supernova Forensics

    NASA Astrophysics Data System (ADS)

    Soderberg, Alicia M.

    2014-01-01

    For decades, the study of stellar explosions -- supernovae -- have focused almost exclusively on the strong optical emission that dominates the bolometric luminosity in the days following the ultimate demise of the star. Yet many of the leading breakthroughs in our understanding of stellar death have been enabled by obtaining data at other wavelengths. For example, I have shown that 1% of all supernovae give rise to powerful relativistic jets, representing the biggest bangs in the Universe since the Big Bang. My recent serendipitous X-ray discovery of a supernova in the act of exploding (“in flagrante delicto”) revealed a novel technique to discover new events and provide clues on the shock physics at the heart of the explosion. With the advent of sensitive new radio telescopes, my research group combines clues from across the electromagnetic spectrum (radio to gamma-ray), leading us to a holistic study of stellar death, the physics of the explosions, and their role in fertilizing the Universe with new elements, by providing the community with cosmic autopsy reports.

  12. OXYGEN-RICH SUPERNOVA REMNANT IN THE LARGE MAGELLANIC CLOUD

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a NASA Hubble Space Telescope image of the tattered debris of a star that exploded 3,000 years ago as a supernova. This supernova remnant, called N132D, lies 169,000 light-years away in the satellite galaxy, the Large Magellanic Cloud. A Hubble Wide Field Planetary Camera 2 image of the inner regions of the supernova remnant shows the complex collisions that take place as fast moving ejecta slam into cool, dense interstellar clouds. This level of detail in the expanding filaments could only be seen previously in much closer supernova remnants. Now, Hubble's capabilities extend the detailed study of supernovae out to the distance of a neighboring galaxy. Material thrown out from the interior of the exploded star at velocities of more than four million miles per hour (2,000 kilometers per second) plows into neighboring clouds to create luminescent shock fronts. The blue-green filaments in the image correspond to oxygen-rich gas ejected from the core of the star. The oxygen-rich filaments glow as they pass through a network of shock fronts reflected off dense interstellar clouds that surrounded the exploded star. These dense clouds, which appear as reddish filaments, also glow as the shock wave from the supernova crushes and heats the clouds. Supernova remnants provide a rare opportunity to observe directly the interiors of stars far more massive than our Sun. The precursor star to this remnant, which was located slightly below and left of center in the image, is estimated to have been 25 times the mass of our Sun. These stars 'cook' heavier elements through nuclear fusion, including oxygen, nitrogen, carbon, iron etc., and the titanic supernova explosions scatter this material back into space where it is used to create new generations of stars. This is the mechanism by which the gas and dust that formed our solar system became enriched with the elements that sustain life on this planet. Hubble spectroscopic observations will be used to determine the exact chemical composition of this nuclear- processed material, and thereby test theories of stellar evolution. The image shows a region of the remnant 50 light-years across. The supernova explosion should have been visible from Earth's southern hemisphere around 1,000 B.C., but there are no known historical records that chronicle what would have appeared as a 'new star' in the heavens. This 'true color' picture was made by superposing images taken on 9-10 August 1994 in three of the strongest optical emission lines: singly ionized sulfur (red), doubly ionized oxygen (green), and singly ionized oxygen (blue). Photo credit: Jon A. Morse (STScI) and NASA Investigating team: William P. Blair (PI; JHU), Michael A. Dopita (MSSSO), Robert P. Kirshner (Harvard), Knox S. Long (STScI), Jon A. Morse (STScI), John C. Raymond (SAO), Ralph S. Sutherland (UC-Boulder), and P. Frank Winkler (Middlebury). Image files in GIF and JPEG format may be accessed via anonymous ftp from oposite.stsci.edu in /pubinfo: GIF: /pubinfo/GIF/N132D.GIF JPEG: /pubinfo/JPEG/N132D.jpg The same images are available via World Wide Web from links in URL http://www.stsci.edu/public.html.

  13. Order Amidst Chaos of Star's Explosion

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Order Amidst Chaos of Star's Explosion

    This artist's animation shows the explosion of a massive star, the remains of which are named Cassiopeia A. NASA's Spitzer Space Telescope found evidence that the star exploded with some degree of order, preserving chunks of its onion-like layers as it blasted apart.

    Cassiopeia A is what is known as a supernova remnant. The original star, about 15 to 20 times more massive than our sun, died in a cataclysmic 'supernova' explosion viewable from Earth about 340 years ago. The remnant is located 10,000 light-years away in the constellation Cassiopeia.

    The movie begins by showing the star before it died, when its layers of elements (shown in different colors) were stacked neatly, with the heaviest at the core and the lightest at the top. The star is then shown blasting to smithereens. Spitzer found evidence that the star's original layers were preserved, flinging outward in all directions, but not at the same speeds. In other words, some chunks of the star sped outward faster than others, as illustrated by the animation.

    The movie ends with an actual picture of Cassiopeia A taken by Spitzer. The colored layers containing different elements are seen next to each other because they traveled at different speeds.

    The infrared observatory was able to see the tossed-out layers because they light up upon ramming into a 'reverse' shock wave created in the aftermath of the explosion. When a massive star explodes, it creates two types of shock waves. The forward shock wave darts out quickest, and, in the case of Cassiopeia A, is now traveling at supersonic speeds up to 7,500 kilometers per second (4,600 miles/second). The reverse shock wave is produced when the forward shock wave slams into a shell of surrounding material expelled before the star died. It tags along behind the forward shock wave at slightly slower speeds.

    Chunks of the star that were thrown out fastest hit the shock wave sooner and have had more time to heat up to scorching temperatures previously detected by X-ray and visible-light telescopes. Chunks of the star that lagged behind hit the shock wave later, so they are cooler and radiate infrared light that was not seen until Spitzer came along. These lagging chunks are seen in false colors in the Spitzer picture of Cassiopeia A. They are made up of gas and dust containing neon, oxygen and aluminum -- elements from the middle layers of the original star.

  14. Smoking Gun Found for Gamma-Ray Burst in Milky Way

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Combined data from NASA's Chandra X-ray Observatory and infrared observations with the Palomar 200-inch telescope have uncovered evidence that a gamma-ray burst, one of nature's most catastrophic explosions, occurred in our Galaxy a few thousand years ago. The supernova remnant, W49B, may also be the first remnant of a gamma-ray burst discovered in the Milky Way. W49B is a barrel-shaped nebula located about 35,000 light years from Earth. The new data reveal bright infrared rings, like hoops around a barrel, and intense X-radiation from iron and nickel along the axis of the barrel. "These results provide intriguing evidence that an extremely massive star exploded in two powerful, oppositely directed jets that were rich in iron," said Jonathan Keohane of NASA's Jet Propulsion Laboratory at a press conference at the American Astronomical Society meeting in Denver. "This makes W49B a prime candidate for being the remnant of a gamma ray burst involving a black hole collapsar." "The nearest known gamma-ray burst to Earth is several million light years away - most are billions of light years distant - so the detection of the remnant of one in our galaxy would be a major breakthrough," said William Reach, one of Keohane's collaborators from the California Institute of Technology. According to the collapsar theory, gamma-ray bursts are produced when a massive star runs out of nuclear fuel and the star's core collapses to form a black hole surrounded by a disk of extremely hot, rapidly rotating, magnetized gas. Much of this gas is pulled into the black hole, but some is flung away in oppositely directed jets of gas traveling at near the speed of light. An observer aligned with one these jets would see a gamma-ray burst, a blinding flash in which the concentrated power equals that of ten quadrillion Suns for a minute or so. The view perpendicular to the jets is a less astonishing, although nonetheless spectacular supernova explosion. For W49B, the jet is tilted out of the plane of the sky by about 20 degrees. W49B Chandra Fe K-line Image of W49B Four rings about 25 light years in diameter can be identified in the infrared image. These rings, which are due to warm gas, were presumably flung out by the rapid rotation of the massive star a few hundred thousand years before the star exploded. The rings were pushed outward by a hot wind from the star a few thousand years before it exploded. Chandra's image and spectral data show that the jets of multimillion-degree-Celsius gas extending along the axis of the barrel are rich in iron and nickel ions, consistent with their being ejected from the center of the star. This distinguishes the explosion from a conventional type II supernova in which most of the Fe and Ni goes into making the neutron star, and the outer part of the star is what is flung out. In contrast, in the collapsar model of gamma ray bursts iron and nickel from the center is ejected along the jet. At the ends of the barrel, the X-ray emission flares out to make a hot cap. The X-ray cap is surrounded by a flattened cloud of hydrogen molecules detected in the infrared. These features indicate that the shock wave produced by the explosion has encountered a large, dense cloud of gas and dust. The scenario that emerges is one in which a massive star formed from a dense cloud of dust, shone brightly for a few million years while spinning off rings of gas and pushing them away, forming a nearly empty cavity around the star. The star then underwent a collapsar-type supernova explosion that resulted in a gamma-ray burst. The observations of W49B may help to resolve a problem that has bedeviled the collapsar model for gamma-ray bursts. On the one hand, the model is based on the collapse of a massive star, which is normally formed from a dense cloud. On the other hand, observations of the afterglow of many gamma-ray bursts indicate that the explosion occurred in a low-density gas. Based on the W49B data, the resolution proposed by Keohane and colleagues is that the star had carved out an extensive low-density cavity in which the explosion subsequently occurred. "This star appears to have exploded inside a bubble it had created," said Keohane. "In a sense, it dug its own grave." NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. The image and additional information are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  15. Astronomers Find the First 'Wind Nebula' Around a Rare Ultra-Magnetic Neutron Star

    NASA Image and Video Library

    2016-06-21

    Astronomers have discovered a vast cloud of high-energy particles called a wind nebula around a rare ultra-magnetic neutron star, or magnetar, for the first time. The find offers a unique window into the properties, environment and outburst history of magnetars, which are the strongest magnets in the universe. A neutron star is the crushed core of a massive star that ran out of fuel, collapsed under its own weight, and exploded as a supernova. Each one compresses the equivalent mass of half a million Earths into a ball just 12 miles (20 kilometers) across, or about the length of New York's Manhattan Island. Neutron stars are most commonly found as pulsars, which produce radio, visible light, X-rays and gamma rays at various locations in their surrounding magnetic fields. When a pulsar spins these regions in our direction, astronomers detect pulses of emission, hence the name. Credit: ESA/XMM-Newton/Younes et al. 2016

  16. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2017-04-01

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is (E NS-spin/E exp) ≈ E exp/1052 erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  17. Fires of Galactic Youth Artist Animation

    NASA Image and Video Library

    2004-12-22

    This artist's animation shows a typical young galaxy, teeming with hot, newborn stars and exploding supernovas. The supernovas are seen as white flashes of light. NASA's Galaxy Evolution Explorer spotted three-dozen young galaxies like the one shown here in our corner of the universe. It was able to see them with the help of its highly sensitive ultraviolet detectors. Because newborn stars radiate ultraviolet light, young galaxies light up brilliantly when viewed in ultraviolet wavelengths. The findings came as a surprise, because astronomers had thought that the universe's "birth-rate" had declined, and that massive galaxies were no longer forming. http://photojournal.jpl.nasa.gov/catalog/PIA07144

  18. Massive Star Burps, Then Explodes

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Berkeley -- In a galaxy far, far away, a massive star suffered a nasty double whammy. On Oct. 20, 2004, Japanese amateur astronomer Koichi Itagaki saw the star let loose an outburst so bright that it was initially mistaken for a supernova. The star survived, but for only two years. On Oct. 11, 2006, professional and amateur astronomers witnessed the star actually blowing itself to smithereens as Supernova 2006jc. Swift UVOT Image Swift UVOT Image (Credit: NASA / Swift / S.Immler) "We have never observed a stellar outburst and then later seen the star explode," says University of California, Berkeley, astronomer Ryan Foley. His group studied the event with ground-based telescopes, including the 10-meter (32.8-foot) W. M. Keck telescopes in Hawaii. Narrow helium spectral lines showed that the supernova's blast wave ran into a slow-moving shell of material, presumably the progenitor's outer layers ejected just two years earlier. If the spectral lines had been caused by the supernova's fast-moving blast wave, the lines would have been much broader. artistic rendering This artistic rendering depicts two years in the life of a massive blue supergiant star, which burped and spewed a shell of gas, then, two years later, exploded. When the supernova slammed into the shell of gas, X-rays were produced. (Credit: NASA/Sonoma State Univ./A.Simonnet) Another group, led by Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., monitored SN 2006jc with NASA's Swift satellite and Chandra X-ray Observatory. By observing how the supernova brightened in X-rays, a result of the blast wave slamming into the outburst ejecta, they could measure the amount of gas blown off in the 2004 outburst: about 0.01 solar mass, the equivalent of about 10 Jupiters. "The beautiful aspect of our SN 2006jc observations is that although they were obtained in different parts of the electromagnetic spectrum, in the optical and in X-rays, they lead to the same conclusions," says Immler. "This event was a complete surprise," added Alex Filippenko, leader of the UC Berkeley/Keck supernova group and a member of NASA'S Swift team. "It opens up a fascinating new window on how some kinds of stars die." All the observations suggest that the supernova's blast wave took only a few weeks to reach the shell of material ejected two years earlier, which did not have time to drift very far from the star. As the wave smashed into the ejecta, it heated the gas to millions of degrees, hot enough to emit copious X-rays. The Swift satellite saw the supernova continue to brighten in X-rays for 100 days, something that has never been seen before in a supernova. All supernovae previously observed in X-rays have started off bright and then quickly faded to invisibility. "You don't need a lot of mass in the ejecta to produce a lot of X-rays," notes Immler. Swift's ability to monitor the supernova's X-ray rise and decline over six months was crucial to his team's mass determination. But he adds that Chandra's sharp resolution enabled his group to resolve the supernova from a bright X-ray source that appears in the field of view of Swift's X-ray Telescope. "We could not have made this measurement without Chandra," says Immler, who will submit his team's paper next week to the Astrophysical Journal. "The synergy between Swift's fast response and its ability to observe a supernova every day for a long period, and Chandra's high spatial resolution, is leading to a lot of interesting results." Foley and his colleagues, whose paper appears in the March 10 Astrophysical Journal Letters, propose that the star recently transitioned from a Luminous Blue Variable (LBV) star to a Wolf-Rayet star. An LBV is a massive star in a brief but unstable phase of stellar evolution. Similar to the 2004 eruption, LBVs are prone to blow off large amounts of mass in outbursts so extreme that they are frequently mistaken for supernovae, events dubbed "supernova impostors." Wolf-Rayet stars are hot, highly evolved stars that have shed their outer envelopes. Swift XRT Image Swift XRT Image (Credit: NASA / GSFC / CXC /S.Immler) Most astronomers did not expect that a massive star would explode so soon after a major outburst, or that a Wolf-Rayet star would produce such a luminous eruption, so SN 2006jc represents a puzzle for theorists. "It challenges some aspects of our current model of stellar evolution," says Foley. "We really don't know what caused this star to have such a large eruption so soon before it went supernova." "SN 2006jc provides us with an important clue that LBV-style eruptions may be related to the deaths of massive stars, perhaps more closely than we used to think," adds coauthor and UC Berkeley astronomer Nathan Smith. "The fact that we have no well-established theory for what actually causes these outbursts is the elephant in the living room that nobody is talking about." SN 2006jc occurred in galaxy UGC 4904, located 77 million light years from Earth in the constellation Lynx. The supernova explosion, a peculiar variant of a Type Ib, was first sighted by Itagaki, American amateur astronomer Tim Puckett and Italian amateur astronomer Roberto Gorelli. See also NASA Goddard press release at: http://www.nasa.gov/centers/goddard/news/topstory/ 2007/supernova_imposter.html

  19. E-Texts for All (Even Lucy): Ebooks and Accessibility

    ERIC Educational Resources Information Center

    Booth, Char

    2010-01-01

    If digital literacy is exploding, the visually disabled are taking the shrapnel. The author wagers that most librarians consider themselves committed to accessibility and make individual and organizational efforts to comply with (and often exceed) the Americans with Disabilities Act (ADA) in their buildings and the Rehabilitation Act Section 508…

  20. The high-redshift gamma-ray burst GRB 140515A

    DOE PAGES

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P. D.; ...

    2015-09-09

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is x HI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded inmore » a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. Furthermore, the possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely.« less

  1. Left Behind: A Bound Remnant from a White Dwarf Supernova?

    NASA Astrophysics Data System (ADS)

    Jha, Saurabh

    2017-08-01

    Type Ia supernovae (SN Ia) have enormous importance to cosmology and astrophysics, but their progenitors and explosion mechanisms are not understood in detail. Recently, observations and theoretical models have suggested that not all thermonuclear white-dwarf supernova explosions are normal SN Ia. In particular, type Iax supernovae (peculiar cousins to SN Ia), are thought to be exploding white dwarfs that are not completely disrupted, leaving behind a bound remnant. In deep and serendipitous HST pre-explosion data, we have discovered a luminous, blue progenitor system for the type Iax SN 2012Z in NGC 1309, which we interpret as a helium-star donor to the exploding white dwarf. HST observations of SN 2012Z in 2016, when the supernova light was expected to have faded away, still show a source at the location, as expected in our model where the pre-explosion flux was coming from the companion. However, the 2016 data also show a surprise: an excess flux compared to the progenitor system. Our proposed observations here will help unravel the mystery of that excess flux: is it from the bound ex-white dwarf remnant? Or is it from the shocked companion star that has been bombarded by supernova ejecta? Either of these possibilities would provide key new evidence as to the nature of these white dwarf supernovae.

  2. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1995-01-14

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  3. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  4. The Hooked Galaxy

    NASA Astrophysics Data System (ADS)

    2006-06-01

    Life is not easy, even for galaxies. Some indeed get so close to their neighbours that they get rather distorted. But such encounters between galaxies have another effect: they spawn new generations of stars, some of which explode. ESO's VLT has obtained a unique vista of a pair of entangled galaxies, in which a star exploded. Because of the importance of exploding stars, and particularly of supernovae of Type Ia [1], for cosmological studies (e.g. relating to claims of an accelerated cosmic expansion and the existence of a new, unknown, constituent of the universe - the so called 'Dark Energy'), they are a preferred target of study for astronomers. Thus, on several occasions, they pointed ESO's Very Large Telescope (VLT) towards a region of the sky that portrays a trio of amazing galaxies. MCG-01-39-003 (bottom right) is a peculiar spiral galaxy, with a telephone number name, that presents a hook at one side, most probably due to the interaction with its neighbour, the spiral galaxy NGC 5917 (upper right). In fact, further enhancement of the image reveals that matter is pulled off MCG-01-39-003 by NGC 5917. Both these galaxies are located at similar distances, about 87 million light-years away, towards the constellation of Libra (The Balance). ESO PR Photo 22/06 ESO PR Photo 22/06 The Hooked Galaxy and its Companion NGC 5917 (also known as Arp 254 and MCG-01-39-002) is about 750 times fainter than can be seen by the unaided eye and is about 40,000 light-years across. It was discovered in 1835 by William Herschel, who strangely enough, seems to have missed its hooked companion, only 2.5 times fainter. As seen at the bottom left of this exceptional VLT image, a still fainter and nameless, but intricately beautiful, barred spiral galaxy looks from a distance the entangled pair, while many 'island universes' perform a cosmic dance in the background. But this is not the reason why astronomers look at this region. Last year, a star exploded in the vicinity of the hook. The supernova, noted SN 2005cf as it was the 84th found that year, was discovered by astronomers Pugh and Li with the robotic KAIT telescope on 28 May. It appeared to be projected on top of a bridge of matter connecting MCG-01-39-003 with NGC5917. Further analysis with the Whipple Observatory 1.5m Telescope showed this supernova to be of the Ia type and that the material was ejected with velocities up to 15 000 km/s (that is, 54 million kilometres per hour!). Immediately after the discovery, the European Supernova Collaboration (ESC [2]), led by Wolfgang Hillebrandt (MPA-Garching, Germany) started an extensive observing campaign on this object, using a large number of telescopes around the world. There have been several indications about the fact that galaxy encounters and/or galaxy activity phenomena may produce enhanced star formation. As a consequence, the number of supernovae in this kind of system is expected to be larger with respect to isolated galaxies. Normally, this scenario should favour mainly the explosion of young, massive stars. Nevertheless, recent studies have shown that such phenomena could increase the number of stars that eventually explode as Type Ia supernovae. This notwithstanding, the discovery of supernovae in tidal tails connecting interacting galaxies remains quite an exceptional event. For this reason, the discovery of SN2005cf close to the 'tidal bridge' between MCG-01-39-002 and MCG-01-39-003 constitutes a very interesting case. The supernova was followed by the ESC team during its whole evolution, from about ten days before the object reached its peak luminosity until more than a year after the explosion. As the SN becomes fainter and fainter, larger and larger telescopes are needed. One year after the explosion, the object is indeed about 700 times fainter than at maximum. The supernova was observed with the VLT equipped with FORS1 by ESO astronomer Ferdinando Patat, who is also member of the team led by Massimo Turatto (INAF-Padua, Italy), and at a latter stage by the Paranal Science Team, with the aim of studying the very late phases of the supernova. These late stages are very important to probe the inner parts of the ejected material, in order to better understand the explosion mechanism and the elements produced during the explosion. The deep FORS1 images reveal a beautiful tidal structure in the form of a hook, with a wealth of details that probably include regions of star formation triggered by the close encounter between the two galaxies. "Curiously, the supernova appears to be outside of the tidal tail", says Ferdinando Patat. "The progenitor system was probably stripped out of one of the two galaxies and exploded far away from the place where it was born." Life may not be easy for galaxies, but it isn't much simpler for stars either. Technical information: ESO PR Photo 22/06 is a composite image based on data acquired with the FORS1 multi-mode instrument in April and May 2006 for the European Supernova Collaboration. The observations were made in four different filters (B, V, R, and I) that were combined to make a colour image. The field of view covers 5.6 x 8.3 arcmin. North is up and East is to the left. The observations were done by Ferdinando Patat and the Paranal Science team (ESO), and the final processing was done by Olivia Blanchemain, Henri Boffin and Haennes Heyer (ESO).

  5. Cosmic ray electrons and positrons from supernova explosions of massive stars.

    PubMed

    Biermann, P L; Becker, J K; Meli, A; Rhode, W; Seo, E S; Stanev, T

    2009-08-07

    We attribute the recently discovered cosmic ray electron and cosmic ray positron excess components and their cutoffs to the acceleration in the supernova shock in the polar cap of exploding Wolf-Rayet and red supergiant stars. Considering a spherical surface at some radius around such a star, the magnetic field is radial in the polar cap as opposed to most of 4pi (the full solid angle), where the magnetic field is nearly tangential. This difference yields a flatter spectrum, and also an enhanced positron injection for the cosmic rays accelerated in the polar cap. This reasoning naturally explains the observations. Precise spectral measurements will be the test, as this predicts a simple E;{-2} spectrum for the new components in the source, steepened to E;{-3} in observations with an E;{-4} cutoff.

  6. A Dead Star's Ghostly Glow

    NASA Image and Video Library

    2017-12-08

    The eerie glow of a dead star, which exploded long ago as a supernova, reveals itself in this NASA Hubble image of the Crab Nebula. But don't be fooled. The ghoulish-looking object still has a pulse. Buried at its center is the star's tell-tale heart, which beats with rhythmic precision. Credits: NASA and ESA, Acknowledgment: M. Weisskopf/Marshall Space Flight Center go.nasa.gov/2faTQ0V Credits: NASA and ESA, Acknowledgment: M. Weisskopf/Marshall Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. The Value of Change: Surprises and Insights in Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Bildsten, Lars

    2018-01-01

    Astronomers with large-format cameras regularly scan the sky many times per night to detect what's changing, and telescopes in space such as Kepler and, soon, TESS obtain very accurate brightness measurements of nearly a million stars over time periods of years. These capabilities, in conjunction with theoretical and computational efforts, have yielded surprises and remarkable new insights into the internal properties of stars and how they end their lives. I will show how asteroseismology reveals the properties of the deep interiors of red giants, and highlight how astrophysical transients may be revealing unusual thermonuclear outcomes from exploding white dwarfs and the births of highly magnetic neutron stars. All the while, stellar science has been accelerated by the availability of open source tools, such as Modules for Experiments in Stellar Astrophysics (MESA), and the nearly immediate availability of observational results.

  8. STELLAR 'FIREWORKS FINALE' CAME FIRST IN EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's impression of how the very early universe (less than 1 billion years old) might have looked when it went through a voracious onset of star formation, converting primordial hydrogen into myriad stars at an unprecedented rate. Back then the sky would have looked markedly different from the sea of quiescent galaxies around us today. The sky is ablaze with primeval starburst galaxies; giant elliptical and spiral galaxies have yet to form. Within the starburst galaxies, bright knots of hot blue stars come and go like bursting fireworks shells. Regions of new starbirth glow intensely red under a torrent of ultraviolet radiation. The most massive stars self-detonate as supernovas, which explode across the sky like a string of firecrackers. A foreground starburst galaxy at lower right is sculpted with hot bubbles from supernova explosions and torrential stellar winds. Unlike today there is very little dust in these galaxies, because the heavier elements have not yet been cooked up through nucleosynthesis in stars. Recent analysis of Hubble Space Telescope deep sky images supports the theory that the first stars in the universe appeared in an abrupt eruption of star formation, rather than at a gradual pace. Painting Credit: Adolf Schaller for STScI

  9. The mystery of a supposed massive star exploding in a brightest cluster galaxy

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin

    2017-08-01

    Most of the diversity of core-collapse supernovae results from late-stage mass loss by their progenitor stars. Supernovae that interact with circumstellar material (CSM) are a particularly good probe of these last stages of stellar evolution. Type Ibn supernovae are a rare and poorly understood class of hydrogen-poor explosions that show signs of interaction with helium-rich CSM. The leading hypothesis is that they are explosions of very massive Wolf-Rayet stars in which the supernova ejecta excites material previously lost by stellar winds. These massive stars have very short lifetimes, and therefore should only found in actively star-forming galaxies. However, PS1-12sk is a Type Ibn supernova found on the outskirts of a giant elliptical galaxy. As this is extraordinary unlikely, we propose to obtain deep UV images of the host environment of PS1-12sk in order to map nearby star formation and/or find a potential unseen star-forming host. If star formation is detected, its amount and location will provide deep insights into the progenitor picture for the poorly-understood Type Ibn class. If star formation is still not detected, these observations would challenge the well-accepted hypothesis that these are core-collapse supernovae at all.

  10. Evolution and fate of very massive stars

    NASA Astrophysics Data System (ADS)

    Yusof, Norhasliza; Hirschi, Raphael; Meynet, Georges; Crowther, Paul A.; Ekström, Sylvia; Frischknecht, Urs; Georgy, Cyril; Abu Kassim, Hasan; Schnurr, Olivier

    2013-08-01

    There is observational evidence that supports the existence of very massive stars (VMS) in the local universe. First, VMS (Mini ≲ 320 M⊙) have been observed in the Large Magellanic Clouds (LMC). Secondly, there are observed supernovae (SNe) that bear the characteristics of pair creation supernovae (PCSNe, also referred to as pair instability SN) which have VMS as progenitors. The most promising candidate to date is SN 2007bi. In order to investigate the evolution and fate of nearby VMS, we calculated a new grid of models for such objects, for solar, LMC and Small Magellanic Clouds (SMC) metallicities, which covers the initial mass range from 120 to 500 M⊙. Both rotating and non-rotating models were calculated using the GENEVA stellar evolution code and evolved until at least the end of helium burning and for most models until oxygen burning. Since VMS have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All the VMS, at all the metallicities studied here, end their life as WC(WO)-type Wolf-Rayet stars. Because of very important mass losses through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 M⊙. A distinctive feature which may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses would be the enhanced abundances of Ne and Mg at the surface of WC stars. This feature is however not always apparent depending on the history of mass loss. At solar metallicity, none of our models is expected to explode as a PCSN. At the metallicity of the LMC, only stars more massive than 300 M⊙ are expected to explode as PCSNe. At the SMC metallicity, the mass range for the PCSN progenitors is much larger and comprises stars with initial masses between about 100 and 290 M⊙. All VMS in the metallicity range studied here produce either a Type Ib SN or a Type Ic SN but not a Type II SN. We estimate that the progenitor of SN 2007bi, assuming a SMC metallicity, had an initial mass between 160 and 175 M⊙. None of models presented in this grid produces gamma-ray bursts or magnetars. They lose too much angular momentum by mass loss or avoid the formation of a black hole by producing a completely disruptive PCSN.

  11. The Chase to Capture Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts are the most powerful explosions in the universe, thought to be the birth cries of black holes. It has taken 40 years of international cooperation and competition to begin to unravel the mystery of their origin. The most recent chapter in this field is being written by the SWIFT mission, a fast-response satellite with 3 power telescopes. An international team from countries all over the world participates in the chase to capture the fading light of bursts detected by SWIFT. This talk will discuss the challenges and excitement of building this space observatory. New results will be presented on our growing understanding of exploding stars and fiery mergers of orbiting stars.

  12. Small Particles, Big Science: The International LBNF/DUNE Project

    ScienceCinema

    None

    2018-06-25

    Neutrinos are the most abundant matter particles in the universe, yet very little is known about them. This animation shows how the Department of Energy’s Long-Baseline Neutrino Facility will power the Deep Underground Neutrino Experiment to help scientists understand the role neutrinos play in the universe. DUNE will also look for the birth of neutron stars and black holes by catching neutrinos from exploding stars. More than 800 scientists from 150 institutions in 27 countries are working on the LBNF/DUNE project, including Armenia, Belgium, Brazil, Bulgaria, Canada, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, Netherlands, Peru, Poland, Romania, Russia, Spain, Switzerland, Turkey, Ukraine, United Kingdom, USA.

  13. Stellar survivor from explosion in 1572 AD

    NASA Astrophysics Data System (ADS)

    2004-10-01

    hi-res Size hi-res: 1051 kb Credits: NASA/ESA, CXO and P. Ruiz-Lapuente (University of Barcelona) Tycho's Supernova, SN 1572A These images show the location of a suspected runaway companion star to a titanic supernova explosion witnessed in the year 1572 by the Danish astronomer Tycho Brahe and other astronomers of that era. This discovery provides the first direct evidence supporting the long-held belief that Type Ia supernovae come from binary star systems containing a normal star and a burned-out white dwarf star. When the dwarf ultimately explodes by being overfueled by the companion star, the companion is slung away from the demised star. The Hubble Space Telescope played a key role by precisely measuring the surviving star's motion against the sky background. Right: A Hubble Space Telescope Wide Field Planetary Camera 2 image of a small section of sky containing the candidate star. The star is like our Sun except several thousand million years older. It is moving through space at three times the speed of the other stars in its neighbourhood. Hubble's sharp view allowed for a measurement of the star's motion, based on images taken in 1999 and 2003. The image consists of a single greyscale Hubble exposure colourised with the help of data from Digitized Sky Survey 2. Left: The Hubble view is superimposed on this wide-field view of the region enveloped by the expanding bubble of the supernova explosion; the bubble and candidate star are at approximately the same distance, 10 000 light-years. The star is noticeably offset from the geometric centre of the bubble. The colours in the Chandra X-Ray image of the hot bubble show different X-ray energies, with red, green and blue representing low, medium and high energies, respectively. (The image is cut off at the bottom because the southernmost region of the remnant fell outside the field of view of the Chandra camera.) hi-res Size hi-res: 1059 kb Credits: NASA/ESA and P. Ruiz-Lapuente (University of Barcelona) The 'runaway' star in Tycho's supernova A Hubble Space Telescope Wide Field Planetary Camera 2 image of a small section of sky containing a suspected runaway companion star to a massive supernova explosion witnessed in the year 1572 by the Danish astronomer Tycho Brahe. The star, just left of centre in this image, is like our Sun except several thousand million years older. It is moving through space at three times the speed of the other stars in its neighbourhood. Hubble's sharp view allowed for a measurement of the star's motion, based on images taken in 1999 and 2003. The image consists of a single greyscale Hubble exposure colourised with the help of data from Digitized Sky Survey 2. hi-res Size hi-res: 400 kb Credits: NASA/ESA, CXO and P. Ruiz-Lapuente (University of Barcelona) Tycho's Supernova, SN 1572A This is a wide-field view of the region around Tycho's Supernova showing the expanding bubble of the supernova explosion. The colours in this Chandra X-Ray image of the hot bubble show different X-ray energies, with red, green and blue representing low, medium and high energies, respectively. (The image is cut off at the bottom because the southernmost region of the remnant fell outside the field of view of the Chandra camera.) hi-res Size hi-res: 2605 kb Credits: NASA/ESA, Digitized Survey 2 and P. Ruiz-Lapuente (University of Barcelona) Area of sky to find Tycho's Supernova, SN 1572A This area, two degrees across, is centred on the area where the famous Tycho's Supernova, also known as SN 1572A, exploded in 1572. The region lies in the constellation of Cassiopeia in the northern sky. The image was composed from two exposure from the Digitized Survey 2. The red exposure is shown in blue and the infrared in red. In this optical and near-infrared image the supernova remnant itself is not visible. A new discovery provides the first direct evidence supporting the long-held belief that Type Ia supernovae originate in binary star systems that contain a normal star and a burned-out 'white dwarf' star. The normal star spills material onto the dwarf, eventually triggering an explosion. The results of this research, led by Pilar Ruiz-Lapuente of the University of Barcelona, Spain, are published in the 28 October issue of the British science journal Nature. "There was no previous evidence pointing to any specific kind of companion star out of the many that had been proposed. Here we have identified a clear path: the feeding star is similar to our sun, but slightly older," said Ruiz-Lapuente. "The high speed of the star called our attention to it," she added. Type Ia supernovae are used to measure the history of the expansion rate of the Universe and so are fundamental in helping astronomers understand the behaviour of 'dark energy', an unknown force that is accelerating the expansion of the Universe. Finding evidence to confirm the theory as to how Type Ia supernovae explode is critical to assuring astronomers that the objects can be better understood as reliable calibrators of the expansion of space. Although today's astronomers are looking at this event 432 years too late, they were still able to see a star rushing away from the location of the explosion (which is now enveloped in a vast bubble of hot gas called 'Tycho's Supernova Remnant'). The runaway star and its surroundings have been studied with a variety of telescopes for the past seven years. The NASA/ESA Hubble Space Telescope played a key role in the process by measuring the star's motion against the sky background precisely. The star is breaking the speed limit for that particular region of the Milky Way Galaxy by moving three times faster than the surrounding stars. When the system was disrupted by the white dwarf's explosion, the companion star went hurtling off into space, like a stone thrown by a sling, retaining the velocity of its orbital motion. However there are alternative explanations for this motion. It could be falling into the region from the galactic halo that surrounds the Milky Way's disk at a high velocity. But spectra obtained with the 4.2-metre William Herschel Telescope in La Palma and the 10-metre WM Keck telescopes in Hawaii show that the star has the high heavy-element content typical of stars that dwell in the Milky Way's disk, not the halo. The star found by the Ruiz-Lapuente team is an aging version of our own Sun. The star has begun to expand in diameter as it progresses toward a 'red giant' phase (the end stage of a Sun-like star's lifetime). The star turns out to fit the profile of those in one of the proposed supernova conjectures. In Type Ia supernova binary systems, the more massive star of the pair will age faster and eventually becomes a white dwarf star. When the slower-evolving companion star subsequently ages to the point where it begins to balloon in size, it spills hydrogen onto the dwarf. The hydrogen accumulates, gradually fusing into heavier elements until it reaches a critical and precise mass threshold, called the 'Chandrasekhar limit', where it explodes like a massive nuclear fusion bomb. The energy output of this explosion is so well known that it can be used as a standard candle for measuring vast astronomical distances (an astronomical 'standard candle' is any type of luminous object whose intrinsic power is so accurately determined that it can be used to make distance measurements based on the rate the light dims over astronomical distances). "Among the various systems containing white dwarfs that receive material from a solar-mass companion, some are believed to be viable progenitors of Type Ia supernovae, on theoretical grounds. A system called U Scorpii has a white dwarf and a star similar to the one found here. These results would confirm that such binaries will end up in an explosion like the one observed by Tycho Brahe, but that would occur several hundreds of thousands of years from now," says Ruiz-Lapuente. An alternative theory of Type Ia supernovae is that two white dwarfs orbit each other, gradually losing energy through the emission of gravitational radiation ('gravity waves'). As they lose energy, they spiral in toward each other and eventually merge, resulting in a white dwarf whose mass reaches the Chandrasekhar limit, and explodes. "Tycho's supernova does not appear to have been produced by this mechanism, since a probable surviving companion has been found," says Alex Filippenko of the University of California at Berkeley, a co-author on this research. He says that, nevertheless, it is still possible there are two different evolutionary paths to Type Ia supernovae. On 11 November 1572, Tycho Brahe noticed a star in the constellation Cassiopeia that was as bright as the planet Jupiter (which was in the night sky in Pisces). No such star had ever been observed at this location before. It soon equalled Venus in brightness (which was at -4.5 magnitude in the predawn sky). For about two weeks the star could be seen in daylight. At the end of November it began to fade and change colour, from bright white to yellow and orange to faint reddish light, finally fading away from visibility in March 1574, having been visible to the naked eye for about 16 months. Tycho's meticulous record of the brightening and dimming of the supernova now allows astronomers to identify its 'light signature' as that of a Type Ia supernova. Tycho Brahe's supernova was very important in that it helped 16th century astronomers abandon the idea of the immutability of the heavens. At the present time, Type Ia supernovae remain key players in the newest cosmological discoveries. To learn more about them and their explosion mechanism, and to make them even more useful as 'cosmological probes', a current Hubble Space Telescope project led by Filippenko is studying a sample of supernovae in other galaxies at the very time they explode.

  14. COLORFUL FIREWORKS FINALE CAPS A STAR'S LIFE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Glowing gaseous streamers of red, white, and blue -- as well as green and pink -- illuminate the heavens like Fourth of July fireworks. The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope were created by one of the biggest firecrackers seen to go off in our galaxy in recorded history, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before our United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This stunning Hubble image of Cas A is allowing astronomers to study the supernova's remains with great clarity, showing for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the supernova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The star that created this colorful show was a big one, about 15 to 25 times more massive than our Sun. Massive stars like the one that created Cas A have short lives. They use up their supply of nuclear fuel in tens of millions of years, 1,000 times faster than our Sun. With their fuel exhausted, heavy stars begin a complex chain of events that lead to the final dramatic explosion. Their cores rapidly collapse, releasing an enormous amount of gravitational energy. This sudden burst of energy reverses the collapse and tosses most of the star's mass into space. The ejected material can travel as fast as 45 million miles per hour (72 million kilometers per hour). The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and the Hubble Heritage Team (STScI/AURA) Acknowledgment: R. Fesen (Dartmouth) and J. Morse (Univ. of Colorado)

  15. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soker, Noam, E-mail: soker@physics.technion.ac.il

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E {sub NS-spin}/ E {sub exp}) ≈ E {sub exp}/10{sup 52} erg;more » It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.« less

  16. Fastest Rotating Star Found in Neighboring Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release December 5, 2011 This is an artist's concept of the fastest rotating star found to date. The massive, bright young star, called VFTS 102, rotates at a million miles per hour, or 100 times faster than our Sun does. Centrifugal forces from this dizzying spin rate have flattened the star into an oblate shape and spun off a disk of hot plasma, seen edge on in this view from a hypothetical planet. The star may have "spun up" by accreting material from a binary companion star. The rapidly evolving companion later exploded as a supernova. The whirling star lies 160,000 light-years away in the Large Magellanic Cloud, a satellite galaxy of our Milky Way. The team will use NASA's Hubble Space Telescope to make precise measurements of the star's proper motion across space. To read more go to: hubblesite.org/newscenter/archive/releases/2011/39/full/ Image Type: Artwork Credit: NASA, ESA, and G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Metal-poor star formation triggered by the feedback effects from Pop III stars

    NASA Astrophysics Data System (ADS)

    Chiaki, Gen; Susa, Hajime; Hirano, Shingo

    2018-04-01

    Metal enrichment by first-generation (Pop III) stars is the very first step of the matter cycle in structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), Mhalo, and Pop III stars, MPopIII. We find that the metal-rich ejecta reach neighbouring haloes and external enrichment (EE) occurs when the H II region expands before the SN explosion. The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta fall back and recollapse to form an enriched cloud, i.e. an internal-enrichment (IE) process takes place. In the case where a Pop III star explodes as a core-collapse SN (CCSN), the MH undergoes IE, and the metallicity in the recollapsing region is -5 ≲ [Fe/H] ≲ -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass ranges of MHs, consistent with the lack of observational signs of PISNe among EMP stars.

  18. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  19. Supernova remnant evolution in wind bubbles: A closer look at Kes 27

    NASA Astrophysics Data System (ADS)

    Dwarkadas, V. V.; Dewey, D.

    2013-03-01

    Massive Stars (>8M⊙) lose mass in the form of strong winds. These winds accumulate around the star, forming wind-blown bubbles. When the star explodes as a supernova (SN), the resulting shock wave expands within this wind-blown bubble, rather than the interstellar medium. The properties of the resulting remnant, its dynamics and kinematics, the morphology, and the resulting evolution, are shaped by the structure and properties of the wind-blown bubble. In this article we focus on Kes 27, a supernova remnant (SNR) that has been proposed by [1] to be evolving in a wind-blown bubble, explore its properties, and investigate whether the X-Ray properties could be ascribed to evolution of a SNR in a wind-blown bubble. Our initial model does not support the scenario proposed by [1], due to the fact that the reflected shock is expanding into much lower densities.

  20. Theories of central engine for long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Nagataki, Shigehiro

    2018-02-01

    Long GRBs are the most powerful explosions in the universe since the Big Bang. At least, some fraction of long GRBs are born from the death of massive stars. Likewise, only some fraction of massive stars that satisfy additional special conditions explode as long GRBs associated with supernovae/hypernovae. In this paper, we discuss the explosion mechanism of long GRBs associated with hypernovae: ‘the central engine of long GRBs’. The central engine of long GRBs is very different from that of core-collapse supernovae, although the mechanism of the engine is still not firmly established. In this paper, we review theoretical studies of the central engine of long GRBs. First, we discuss possible progenitor stars. Then several promising mechanisms of the central engine—such as black hole and magnetar formation—will be reviewed. We will also mention some more exotic models. Finally, we describe prospects for future studies of the central engine of long GRBs.

  1. Supernovae: lights in the darkness

    NASA Astrophysics Data System (ADS)

    Every year, at the end of the summer, the Section of Physics and Technique of the "Institut Menorquí d'Estudis" and the "Societat Catalana de Física" organize the "Trobades Científiques de la Mediterrània" with the support of several academic institutions. The 2007 edition has been devoted to stellar explosions, the true evolutionary engines of galaxies. Whenever a star explodes, it injects into the interstellar medium a kinetic energy of 1051 erg and between one and several solar masses of newly synthesized elements as a result of the thermonuclear reactions that have taken place within the stellar interior. Two mechanisms are able to provide these enormous amounts of energy: one of them thermonuclear and the other, gravitational. Thermonuclear supernovae are the result of the incineration of a carbon-oxygen white dwarf that is the compact star of a binary stellar system. If the two stars are sufficiently close to each other, the white dwarf accretes matter from its companion, approaches the mass of Chandrasekhar, and ends up exploding. The processes previous to the explosion, the explosion itself, as well as the exact nature of the double stellar system that explodes, are still a matter of discussion. This point is particularly important because these explosions, known as Type Ia Supernovae, are very homogenous and can be used to measure cosmological distances. The most spectacular result obtained, is the discovery of the accelerated expansion of the Universe, but it still feels uncomfortable that such a fundamental result is based on a "measuring system" whose origin and behaviour in time is unknown. At the end of their lives, massive stars generate an iron nucleus that gets unstable when approaching the Chandrasekhar mass. Its collapse gives rise to the formation of a neutron star or a black hole, and the external manifestation of the energy that is released, about a 1053 erg, consists of a Type II or Ib/c supernova, of a Gamma Ray Burst (GRB) or even of both things. From the beginning of the nineties, when CGRO discovered the cosmological character of these phenomena, the GRB have constituted one of the most exciting problems of modern Astrophysics. The stellar end products that leave supernovae, are as interesting as supernovae themselves. On one hand, as we previously said, they completely determine the chemical evolution of the Galaxy, which is fundamental for the formation of planets or, even, for the appearance of life. On the other hand, they leave collapsed objects such as neutron stars and black holes that give rise to a wide range of violent phenomena: x-rays eruptions, microquasars, acceleration of particles to high energies, etc. The goal of this workshop was to bring together scientists with a deep insight into these topics and advanced PhD students, with the purpose of discussing in depth the remaining problems. The organizers are specially grateful to DIUE-Generalitat de Catalunya, Ministerio de Educación y Ciencia, Balearic Island University, Barcelona University, Polythecnical University of Catalonia, Valencia University, CSIC and IFAE for their economical support.

  2. Ex-companions of Supernovae Progenitors

    NASA Astrophysics Data System (ADS)

    Xue, Zinchao

    Supernovae (SNe) are titanic explosions that end the life of stars. Fast expanding ejecta can create brightness that is comparable to the entire luminosity of the host galaxy for weeks. Eventually, the ejecta run into the ambient medium, creating the so-called supernova remnant (SNR) that fades away in 10,000 years. SNe come from two completely different mechanisms. The Type Ia SNe (SNIa) are powered by thermonuclear runaway when a white dwarf (WD) in a binary system accretes enough mass from a companion star. The Core Collapse supernovae (CCSNe) are massive stars that run out of fuel at the end of their lives and collapse. The basic scenario for SNIa is well established, but the type of the binary system containing the WD is the long-debated 'Type Ia Progenitor Problem'. (1) Searching for an ex-companion within a SNIa SNR would directly solve this problem as a binary system including two WDs should leave nothing behind, while others should leave a non-degenerate star near the site of the explosion. One of the results from this thesis is the determination of the explosion site of Tycho's SN (SN 1572). From this, I reject popular ex-companion candidates, e.g. Tycho star 'G' and a few other ones as they are too far away from the explosion site I determined. (2) Another attempt to address this problem is carried out by studying a rare kind of Type Ia SNe. Detailed photometric and spectral analysis indicates that ASASSN-14dc resembles features from the so-called SN Ia-CSM, in which, a SNIa explodes inside of dense Hydrogen-rich Circumstellar Material (CSM). The origin of the CSM brings serious questions to the traditional views of SNIa formation as none of them can comfortably explain the derived mass and distribution of the CSM. A recent realization of a particular model might solve a lot of puzzles around this rare class of SNIa. (3) CCSNe are known to be massive stars that rapidly evolve off the main sequence and soon explode. Nearly 80% of such stars have one or more massive companion stars, and these companions will survive the SN event with nearly the same luminosity in most cases. Interestingly, there is a runaway O-type star, Muzzio 10, that sits just 18'' to the north of PSR B1509-58 in SNR G320.4-01.2. This makes Muzzio 10 a remarkable object for an ex-companion candidate. I will present the result from using HST and Chandra to measure both the O star and the pulsar's proper motion and to see whether they came from the same spot.

  3. VLA Observations Confirm Origin of Gamma Ray Bursts in Short-Lived Stars

    NASA Astrophysics Data System (ADS)

    1998-06-01

    Radio telescope studies of the fiery afterglow of a Gamma Ray Burst have provided astronomers with the best clues yet about the origins of these tremendous cosmic cataclysms since their discovery more than 30 years ago. Observations with the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope confirm that a blast seen to occur on March 29 had its origin in a star-forming region in a distant galaxy. "There are two leading theories for the causes of Gamma Ray Bursts," said Dale Frail of the NSF National Radio Astronomy Observatory (NRAO) in Socorro, NM. "According to one theory, the blasts occur in the death throes of pairs of old stars. The other requires them to arise from exploding, massive, short-lived stars that still reside within the star-forming gas and dust from which they formed. The VLA studies of the burst show that at least this one almost certainly occurred within a star-forming region. This result also explains why half of the Gamma Ray Burst afterglows are not detected by optical telescopes." Frail heads a VLA observing team including Greg Taylor, also of NRAO, and Shri Kulkarni of Caltech, that reported its findings to the American Astronomical Society meeting in San Diego, CA. The March 29 burst was seen clearly by radio telescopes (the accompanying image is GRB 980329 as seen by the VLA) but only very faintly with optical instruments. "That is extremely important," said Taylor. "This burst was very faint at visible wavelengths, brighter at infrared wavelengths and brighter still at radio wavelengths. This is a clear indication that the exploding object was surrounded by dust. Dust is most commonly found in star-forming regions." This strongly favors one of the two leading theories about Gamma Ray Bursts over the other. One explanation for these tremendously energetic fireballs is that a pair of superdense neutron stars collides. The other is that a single, very massive star explodes in a "hypernova," more powerful than a supernova, at the end of its normal life. The hypernova explosion, scientists believe, would come only a few million years after the giant star was formed, while it is still within the cloud of gas and dust from which it formed. Neutron stars, on the other hand, are formed by supernova explosions that give a "kick" to the resulting neutron star, propelling it at high speeds. An orbiting pair of neutron stars, astronomers think, would collide only after hundreds of millions of years of orbital decay, by which time they would be far away from the gas and dust of their birthplace. "The observations already have provided crucial insight; we intend to continue observing the relic of the March 29 burst with the VLA, and in the coming months, we will gain new information that will help further refine our ideas about these fireballs," Frail said. "We're going to learn about the size and expansion rate of the fireball and test predictions made by the models." "These observations indicate the extraordinary importance of radio astronomy for providing information that can be gained in no other way about one of the major frontier areas of astrophysics," said Hugh Van Horn, Director of the NSF's Division of Astronomical Sciences. The March 29 burst (GRB 980329) was the second such blast to have its afterglow detected at radio wavelengths. Last year, the VLA made the first radio detection of a GRB afterglow, finding radio emission coming from the location of a Gamma Ray Burst on May 8, 1997 (GRB 970508). "Of the world's radio telescopes, only the VLA has the sensitivity and resolving power to quickly detect these radio afterglows of Gamma Ray Bursts and study them in detail over extended periods of time," Taylor said. "Even so, we only see the brightest one-third of them. With upgraded capabilities at the VLA, as planned by NRAO, we will see them all." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  4. On the formation of black holes

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    The paper explores the consequences of the existence of a burning process beyond ordinary nuclear processes (which stop at iron), involving the 'strange' particles. In effect, this idea has already had considerable discussion within the high energy physics community in terms of 'quark' matter. A possible consequence is that neutron stars may explode rather than collapse to black holes. It should be evident that such a possibility suggests radically new scenarios for activity in galactic nuclei and gamma ray burst sources.

  5. CSI in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2017-02-01

    Supernovae (SNe) explode in environments that have been significantly modified by the SN progenitors. For core-collapse SNe, the massive progenitors ionize the ambient interstellar medium (ISM) via UV radiation and sweep the ambient ISM via fast stellar winds during the main sequence phase, replenish the surroundings with stellar material via slow winds during the luminous blue variable (LBV) or red supergiant (RSG) phase, and sweep up the circumstellar medium (CSM) via fast winds during the Wolf-Rayet (WR) phase. If a massive progenitor was in a close binary system, the binary interaction could have caused mass ejection in certain preferred directions, such as the orbital plane, and even bipolar outflow/jet. As a massive star finally explodes, the SN ejecta interacts first with the CSM that was ejected and shaped by the star itself. As the newly formed supernova remnant (SNR) expands further, it encounters interstellar structures that were shaped by the progenitor from earlier times. Therefore, the structure and evolution of a SNR is largely dependent on the initial mass and close binarity of the SN progenitor. The Large Magellanic Cloud (LMC) has an excellent sample of over 50 confirmed SNRs that are well resolved by Hubble Space Telescope, Chandra X-ray Observatory, and Spitzer Space Telescope. These multi-wavelength observations allow us to conduct stellar forensics in SNRs and understand the wide variety of morphologies and physical properties of SNRs observed.

  6. Origins Of The Elements - An Educational Web Site

    NASA Astrophysics Data System (ADS)

    Samarasingha, Iranga; Ivans, I. I.

    2011-01-01

    This poster introduces a new and unique web site "ORIGINS OF THE ELEMENTS" to the astronomy and physics communities. The main objective of our site is to provide a useful reference guide to the origins of the elements for researchers, educators and students. Only a very few of the lightest elements have their origins at the earliest cosmological ages of the Universe, the Big Bang. Most of the elements found on the Earth, and in the rest of the Universe, owe their primary existence to stellar nucleosynthesis, either during the course of the energy generation lifetimes of stars, or in the exploding supernovae of stars at the end of their lives. A by-product of stellar energy generation and exploding supernovae is alchemy -- the ashes of the energy generation contribution of one element is another, more massive element. Although various reference sources are available to learn about nucleosynthesis, it's a challenging task to uncover appropriate study materials. In this single site, we present both data and recent research results in a concise and attractive structure. Using tables and charts, the material is presented in a multi-level style. For each of the elements in the periodic table, and for each of the stable isotopes in the chart of the nuclides, the site gives a clear visualization of their corresponding nucleosynthetic origins. As a consequence, the charts afford an insight into the patterns of nucleosynthesis. Moreover, the web site provides the student with an intuition to the relative distributions of those elements. Another important feature of our site is that users have direct access to the tabulated elemental abundances (both theoretical and observed) of stars and meteorites.

  7. The Stellar Origins of Supernovae

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schulyer

    2017-08-01

    Supernovae (SNe) have a profound effect on galaxies and have been used as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 10000 classified SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the trends from 15 detections for Type II-Plateau SNe appear to be red supergiant progenitors of relatively low mass (8 to 17 Msun) - although this upper mass limit still requires testing - and warmer, envelope-stripped supergiant progenitors for 5 Type IIb SNe. Additionally, evidence is accumulating that some Type II-narrow SNe may arise from exploding stars in a luminous blue variable phase. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with gamma-ray bursts, still remains ambiguous. Furthermore, we continue in the embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are being used for precision cosmology. In Cycles 16, 17, and 20 through 24 we have had great success with our approved ToO programs. As of this proposal deadline, we have already triggered on SN 2016jbu with our Cycle 24 program. We therefore propose to continue this project in Cycles 25 and 26, to determine the identities of the progenitors of 8 SNe within about 20 Mpc through ToO observations using WFC3/UVIS.

  8. Space Science

    NASA Image and Video Library

    2004-10-07

    Four hundred years ago, sky watchers, including the famous astronomer Johannes Kepler, best known as the discoverer of the laws of planetary motion, were startled by the sudden appearance of a new star in the western sky, rivaling the brilliance of the nearby planets. Modern astronomers, using NASA's three orbiting Great Observatories, are unraveling the mysteries of the expanding remains of Kepler's supernova, the last such object seen to explode in our Milky Way galaxy. When a new star appeared Oct. 9, 1604, observers could use only their eyes to study it. The telescope would not be invented for another four years. A team of modern astronomers has the combined abilities of NASA's Great Observatories, the Spritzer Space Telescope (SST), Hubble Space Telescope (HST), and Chandra X-Ray Observatory (CXO), to analyze the remains in infrared radiation, visible light, and X-rays. Visible-light images from Hubble's Advanced Camera for Surveys reveal where the supernova shock wave is slamming into the densest regions of surrounding gas. The astronomers used the SST to probe for material that radiates in infrared light, which shows heated microscopic dust particles that have been swept up by the supernova shock wave. The CXO data show regions of very hot gas. The combined image unveils a bubble-shaped shroud of gas and dust, 14 light-years wide and expanding at 4 million mph. There have been six known supernovas in our Milky Way over the past 1,000 years. Kepler's is the only one in which astronomers do not know what type of star exploded. By combining information from all three Great Observatories, astronomers may find the clues they need. Project management for both the HST and CXO programs is the responsibility of NASA’s Marshall Space Flight Center in Huntsville, Alabama.

  9. A Quick Look at Supernova 1987A

    NASA Image and Video Library

    2017-02-24

    On February 24, 1987, astronomers in the southern hemisphere saw a supernova in the Large Magellanic Cloud. This new object was dubbed “Supernova 1987A” and was the brightest stellar explosion seen in over four centuries. Chandra has observed Supernova 1987A many times and the X-ray data reveal important information about this object. X-rays from Chandra have shown the expanding blast wave from the original explosion slamming into a ring of material expelled by the star before it exploded. The latest Chandra data reveal the blast wave has moved beyond the ring into a region that astronomers do not know much about. These observations can help astronomers learn how supernovas impact their environments and affect future generations of stars and planets.

  10. Small Particles, Big Science: The International LBNF/DUNE Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Neutrinos are the most abundant matter particles in the universe, yet very little is known about them. This animation shows how the Department of Energy’s Long-Baseline Neutrino Facility will power the Deep Underground Neutrino Experiment to help scientists understand the role neutrinos play in the universe. DUNE will also look for the birth of neutron stars and black holes by catching neutrinos from exploding stars. More than 800 scientists from 150 institutions in 27 countries are working on the LBNF/DUNE project, including Armenia, Belgium, Brazil, Bulgaria, Canada, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, Netherlands,more » Peru, Poland, Romania, Russia, Spain, Switzerland, Turkey, Ukraine, United Kingdom, USA.« less

  11. The Fermi Gamma-Ray Space Telescope discovers the pulsar in the young galactic supernova remnant CTA 1.

    PubMed

    Abdo, A A; Ackermann, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Knödlseder, J; Kocian, M L; Komin, N; Kuehn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Parkinson, P M Saz; Schalk, T L; Sellerholm, A; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M

    2008-11-21

    Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.

  12. A hydrodynamical model of the circumstellar bubble created by two massive stars

    NASA Astrophysics Data System (ADS)

    van Marle, A. J.; Meliani, Z.; Marcowith, A.

    2012-05-01

    Context. Numerical models of the wind-blown bubble of massive stars usually only account for the wind of a single star. However, since massive stars are usually formed in clusters, it would be more realistic to follow the evolution of a bubble created by several stars. Aims: We develop a two-dimensional (2D) model of the circumstellar bubble created by two massive stars, a 40 M⊙ star and a 25 M⊙ star, and follow its evolution. The stars are separated by approximately 16 pc and surrounded by a cold medium with a density of 20 particles per cm3. Methods: We use the MPI-AMRVAC hydrodynamics code to solve the conservation equations of hydrodynamics on a 2D cylindrical grid using time-dependent models for the wind parameters of the two stars. At the end of the stellar evolution (4.5 and 7.0 million years for the 40 and 25 M⊙ stars, respectively), we simulate the supernova explosion of each star. Results: Each star initially creates its own bubble. However, as the bubbles expand they merge, creating a combined, aspherical bubble. The combined bubble evolves over time, influenced by the stellar winds and supernova explosions. Conclusions: The evolution of a wind-blown bubble created by two stars deviates from that of the bubbles around single stars. In particular, once one of the stars has exploded, the bubble is too large for the wind of the remaining star to maintain and the outer shell starts to disintegrate. The lack of thermal pressure inside the bubble also changes the behavior of circumstellar features close to the remaining star. The supernovae are contained inside the bubble, which reflects part of the energy back into the circumstellar medium. Movies are available in electronic form at http://www.aanda.org

  13. NASA and Japanese X-ray observatories Clarify Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Recent observations from NASA and Japanese X-ray observatories have helped clarify one of the long-standing mysteries in astronomy -- the origin of cosmic rays. This image from Japan's Suzaku X-ray observatory shows RXJ1713.7-3946. This supernova remnant is the gaseous remnant of a massive star that exploded. The remnant is about 1,600 years old. The contour lines show where gamma-ray intensity is highest, as measured by the High Energy Stereoscopic System (HESS) in Namibia.

  14. Discovery of Most Recent Supernova in Our Galaxy

    NASA Astrophysics Data System (ADS)

    2008-05-01

    The most recent supernova in our Galaxy has been discovered by tracking the rapid expansion of its remains. This result, using NASA's Chandra X-ray Observatory and NRAO's Very Large Array (VLA), has implications for understanding how often supernovas explode in the Milky Way galaxy. The supernova explosion occurred about 140 years ago, making it the most recent supernova in the Milky Way as measured in Earth's time frame. Previously, the last known galactic supernova occurred around 1680, based on studying the expansion of its remnant Cassiopeia A. X-ray Image Radio and X-ray Images The recent supernova explosion was not seen in optical light about 140 years ago because it occurred close to the center of the Galaxy, and is embedded in a dense field of gas and dust. This made it about a trillion times fainter, in optical light, than an unobscured supernova. However, the supernova remnant it caused, G1.9+0.3, is now seen in X-ray and radio images. "We can see some supernova explosions with optical telescopes across half of the Universe, but when they're in this murk we can miss them in our own cosmic backyard," said Stephen Reynolds of North Carolina State University, who led the Chandra study. "Fortunately, the expanding gas cloud from the explosion shines brightly in radio waves and X-rays for thousands of years. X-ray and radio telescopes can see through all that obscuration and show us what we've been missing." Astronomers regularly observe supernovas in other galaxies like ours, and based on those rates, estimate that about three should explode every century in our Milky Way, although these estimates have large margins of error. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Oldest Known Objects Are Surprisingly Immature Action Replay of Powerful Stellar Explosion Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago "If the supernova rate estimates are correct, there should be the remnants of about 10 supernova explosions that are younger than Cassiopeia A," said David Green of the University of Cambridge in the United Kingdom, who led the VLA study. "It's great to finally track one of them down." The tracking of this source began in 1985 when astronomers, led by Green, used the VLA to identify G1.9+0.3 as the remnant of a supernova explosion near the center of our Galaxy. Based on its small size, it was thought to have resulted from a supernova that exploded about 400 to 1000 years ago. Twenty two years later, Chandra observations of this object revealed that the remnant had expanded by a surprisingly large amount, about 16% since 1985. This indicates that the supernova remnant is much younger than previously thought. The young age was confirmed when new radio observations from the VLA were made just within the past several weeks. This "apples to apples" comparison nails the age of the remnant to be about 140 years (less if it has been slowing down), making it the youngest on record in the Milky Way. Finding such a recent, obscured supernova is a vital first step in making a better estimate of the supernova rate in our Galaxy. Knowing this rate is important because supernovas heat and redistribute large amounts of gas, pump large amounts of heavy elements out into their surroundings, and can trigger the formation of new stars, closing the cycle of stellar death and rebirth. The explosion may also leave behind, in addition to the expanding remnant, a central neutron star or black hole. In addition to being a record holder for youth, G1.9+0.3 is of considerable interest for other reasons. The high expansion velocities and the extreme particle energies that have been generated are unprecedented and should stimulate deeper studies of this object with Chandra and the VLA. "No other object in the Galaxy has properties like this," said Reynolds. "Finding G1.9+0.3 is extremely important for learning more about how some stars explode and what happens in the aftermath. Scientists can also use it to probe the environment into which it exploded. At perhaps only a few thousand light years from the center of the Galaxy, it appears to be embedded in the dense environment near the Milky Way's supermassive black hole. These results will appear in The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  15. Massive Stars and the Energy Balance of the Interstellar Medium. 1; The Impact of an Isolated 60 M. Star

    NASA Technical Reports Server (NTRS)

    Freyer, Tim; Hensler, Gerhard; Yorke, Harold W.

    2003-01-01

    We present results of numerical simulations carried out with a two-dimensional radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M. star. The interaction of the photo- ionized H II region with the stellar wind bubble forms a variety of interesting structures like shells, clouds, fingers, and spokes. These results demonstrate that complex structures found in H II regions are not necessarily relics from the time before the gas became ionized but may result from dynamical processes during the course of the H II region evolution. We have also analyzed the transfer and deposit of the stellar wind and radiation energy into the circumstellar medium until the star explodes as a supernova. Although the total mechanical wind energy supplied by the star is negligible compared to the accumulated energy of the Lyman continuum photons, the kinetic energy imparted to the circumstellar gas over the star s lifetime is 4 times higher than for a comparable windless simulation. Furthermore, the thermal energy of warm photoionized gas is lower by some 55%). Our results document the necessity to consider both ionizing radiation and stellar winds for an appropriate description of the interaction of OB stars with their circumstellar environment.

  16. Asymmetric core collapse of rapidly rotating massive star

    NASA Astrophysics Data System (ADS)

    Gilkis, Avishai

    2018-02-01

    Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.

  17. Dark gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  18. THE PROGENITOR OF GW150914

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woosley, S. E., E-mail: woosley@ucolick.org

    2016-06-10

    The spectacular detection of gravitational waves (GWs) from GW150914 and its reported association with a gamma-ray burst (GRB) offer new insights into the evolution of massive stars. Here, it is shown that no single star of any mass and credible metallicity is likely to produce the observed GW signal. Stars with helium cores in the mass range 35–133 M {sub ⊙} encounter the pair instability and either explode or pulse until the core mass is less than 45 M {sub ⊙}, smaller than the combined mass of the observed black holes. The rotation of more massive helium cores is eithermore » braked by interaction with a slowly rotating hydrogen envelope, if one is present, or by mass loss, if one is not. The very short interval between the GW signal and the observed onset of the putative GRB in GW150914 is also too short to have come from a single star. A more probable model for making the gravitational radiation is the delayed merger of two black holes made by 70 and 90 M {sub ⊙} stars in a binary system. The more massive component was a pulsational-pair instability supernova before making the first black hole.« less

  19. Towards ab initio extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker

    2016-12-01

    Extremely metal-poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal-enriched stars. We simulate the radiative and supernova hydrodynamic feedback of a 60 M⊙ Population III star starting from cosmological initial conditions realizing Gaussian density fluctuations. We follow the gravitational hydrodynamics of the supernova remnant at high spatial resolution through its freely expanding, adiabatic, and radiative phases, until gas, now metal-enriched, has resumed runaway gravitational collapse. Our findings are surprising: while the Population III progenitor exploded with a low energy of 1051 erg and injected an ample metal mass of 6 M⊙, the first cloud to collapse after the supernova explosion is a dense surviving primordial cloud on which the supernova blast wave deposited metals only superficially, in a thin, unresolved layer. The first metal-enriched stars can form at a very low metallicity, of only 2-5 × 10-4 Z⊙, and can inherit the parent cloud's highly elliptical, radially extended orbit in the dark matter gravitational potential.

  20. HD271791: dynamical versus binary-supernova ejection scenario

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2009-05-01

    The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a <~10Msolar black hole) should receive an unrealistically large kick velocity of >=750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.

  1. Helium-Shell Nucleosynthesis and Extinct Radioactivities

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.; The, L.-S.; Clayton, D. D.; ElEid, M. F.

    2004-01-01

    Although the exact site for the origin of the r-process isotopes remains mysterious, most thinking has centered on matter ejected from the cores of massive stars in core-collapse supernovae [13]. In the 1970's and 1980's, however, difficulties in understanding the yields from such models led workers to consider the possibility of r-process nucleosynthesis farther out in the exploding star, in particular, in the helium burning shell [4,5]. The essential idea was that shock passage through this shell would heat and compress this material to the point that the reactions 13C(alpha; n)16O and, especially, 22Ne(alpha; n)25Mg would generate enough neutrons to capture on preexisting seed nuclei and drive an "n process" [6], which could reproduce the r-process abundances. Subsequent work showed that the required 13C and 22Ne abundances were too large compared to the amounts available in realistic models [7] and recent thinking has returned to supernova core material or matter ejected from neutron star-neutron star collisions as the more likely r-process sites.

  2. The binary progenitor of Tycho Brahe's 1572 supernova.

    PubMed

    Ruiz-Lapuente, Pilar; Comeron, Fernando; Méndez, Javier; Canal, Ramon; Smartt, Stephen J; Filippenko, Alexei V; Kurucz, Robert L; Chornock, Ryan; Foley, Ryan J; Stanishev, Vallery; Ibata, Rodrigo

    2004-10-28

    The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion. Unless the companion star is another white dwarf (in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0-G2 star, similar to our Sun in surface temperature and luminosity (but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.

  3. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe.

    PubMed

    Li, Weidong; Bloom, Joshua S; Podsiadlowski, Philipp; Miller, Adam A; Cenko, S Bradley; Jha, Saurabh W; Sullivan, Mark; Howell, D Andrew; Nugent, Peter E; Butler, Nathaniel R; Ofek, Eran O; Kasliwal, Mansi M; Richards, Joseph W; Stockton, Alan; Shih, Hsin-Yi; Bildsten, Lars; Shara, Michael M; Bibby, Joanne; Filippenko, Alexei V; Ganeshalingam, Mohan; Silverman, Jeffrey M; Kulkarni, S R; Law, Nicholas M; Poznanski, Dovi; Quimby, Robert M; McCully, Curtis; Patel, Brandon; Maguire, Kate; Shen, Ken J

    2011-12-14

    Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.

  4. Stellar Forensics with Striking Image from Chandra

    NASA Astrophysics Data System (ADS)

    2007-10-01

    A spectacular new image shows how complex a star's afterlife can be. By studying the details of this image made from a long observation by NASA's Chandra X-ray Observatory, astronomers can better understand how some stars die and disperse elements like oxygen into the next generation of stars and planets. At a distance of about 20,000 light years, G292.0+1.8 is one of only three supernova remnants in the Milky Way known to contain large amounts of oxygen. The image shows a rapidly expanding, intricately structured, debris field that contains, along with oxygen, other elements such as neon and silicon that were forged in the star before it exploded. Hard X-ray Image of G292.0+1.8 Hard X-ray Image of G292.0+1.8 "We are finding that, just like snowflakes, each supernova remnant is complicated and beautiful in its own way," said Sangwook Park of Penn State who led the work, released in conjunction with the "8 Years of Chandra" symposium in Huntsville, Ala. The new, deep Chandra image - equaling nearly 6 days worth of observing time - shows an incredibly complex structure. Understanding the details of G292.0+1.8 is especially important because astronomers have considered it to be a "textbook" case of a supernova created by the death of a massive star. Chandra X-ray Image of G292.0+1.8 Chandra X-ray Image of G292.0+1.8 By mapping the distribution of X-rays in different energy bands, the Chandra image traces the distribution of chemical elements ejected in the supernova. The results imply that the explosion was not symmetrical. For example, blue (silicon and sulfur) and green (magnesium) are seen strongly in the upper right, while yellow and orange (oxygen) dominate the lower left. These elements light up at different temperatures, indicating that the temperature is higher in the upper right portion of G292.0+1.8. Slightly below and to the left of the center of G292.0+1.8 is a pulsar, a dense, rapidly rotating neutron star that remained behind after the original star exploded. Assuming that the pulsar was born at the center of the remnant, it is thought that recoil from the lopsided explosion may have kicked the pulsar in this direction. Pulsar Wind Nebula in G292.0+1.8 Pulsar Wind Nebula in G292.0+1.8 Surrounding the pulsar is a so-called pulsar wind nebula, a magnetized bubble of high-energy particles. The narrow, jet-like feature running from north to south in the image is likely parallel to the spin axis of the pulsar. This structure is most easily seen in high energy X-rays. In the case of G292.0+1.8, the spin direction and the kick direction do not appear to be aligned, in contrast to apparent spin-kick alignments in some other supernova remnants. Another intriguing feature of this remnant is the bright equatorial belt of X-ray emission that extends across the center of the remnant. This structure is thought to have been created when the star - before it died - expelled material from around its equator via winds. The orientation of the equatorial belt suggests that the parent star maintained the same spin axis both before and after it exploded. DSS Optical Image of G292.0+1.8 DSS Optical Image of G292.0+1.8 "The detection of the pulsar and its wind nebula confirms that the supernova that led to G292 produced a neutron star through the collapse of the core of a massive star," said coauthor John Hughes of Rutgers University, "The ability to study the asymmetry of the original explosion using X-ray images of the remnant gives us a powerful new technique for learning about these cataclysmic events." These results will appear in an upcoming issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  5. The Fermi Gamma-Ray Space Telescope Discovers the Pulsar in the Young Galactic Supernova Remnant CTA 1

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Atwood, W. B.; ...

    2008-11-21

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10 -13 s s -1 . Its characteristic age of 10 4 years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma raymore » sources associated with star-forming regions and SNRs are such young pulsars.« less

  6. Music of the Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    Scientists are quite familiar with what a supernova looks like — when these stars are destroyed in the most massive explosions in the universe, they leave their mark as one of the brightest objects in space, at least for several weeks. While the supernova can be seen, it cant be heard, as sound waves cannot travel through space. But what if the light waves emitted by the exploding star and other cosmological phenomena could be translated into sound? That's the idea behind a Rhythms of the Universe, a musical project to sonify the universe by Grateful Dead percussionist and Grammymore » award-winning artist Mickey Hart that caught the attention of Nobel Prize-winning astrophysicist George Smoot of Lawrence Berkeley National Laboratory. Sounds courtesy of Keith Jackson. Images courtesy of NASA.« less

  7. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sourcesmore » associated with star-forming regions and SNRs are such young pulsars.« less

  8. Constraining Core-collapse Supernova Theory Predictions with 400 Progenitor Masses

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremiah

    2017-08-01

    A new era is emerging in which we will have hundreds of progenitor masses for supernovae (SNe) and supernova remnants (SNRs); we propose to develop the statistical and theoretical tools needed to interpret this data. Two of the fundamental predictions of stellar evolution theory are that stars more massive than about 8 solar masses will explode and that some of these stars will not explode and form black holes. These statements are clear and simple, yet constraining them with observations has remained elusive until recently. For many years, the rate of progenitor discovery was steady but slow; each progenitor discovery required rare serendipitous pre-cursor imaging. With this steady drip of direct imaging, the number of progenitor masses numbered no more than 20. Recently, we developed a technique that increased the number of progenitor masses by a factor of 10 or more. In this new technique, we use HST photometry to age-date the stellar populations surrounding SNRs. From this age, we derive a progenitor mass for each SNR. We currently have progenitor masses for 115 SNRs in M31 and M33, soon we will have 300 more from M83, and there are hundreds more SNRs that could be analyzed in other nearby galaxies. To prepare for this watershed, we propose to develop the Bayesian framework needed to properly infer the progenitor mass distribution. This work will culminate in a direct constraint on the predictions of core-collapse supernova theory.

  9. Spacelab

    NASA Image and Video Library

    1989-01-01

    In 1986, NASA introduced a Shuttle-borne ultraviolet observatory called Astro. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Astro-1 used a Spacelab pallet system with an instrument pointing system and a cruciform structure for bearing the three ultraviolet instruments mounted in a parallel configuration. The three instruments were: The Hopkins Ultraviolet Telescope (HUT), which was designed to obtain far-ultraviolet spectroscopic data from white dwarfs, emission nebulae, active galaxies, and quasars; the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) which was to study polarized ultraviolet light from magnetic white dwarfs, binary stars, reflection nebulae, and active galaxies; and the Ultraviolet Imaging Telescope (UIT) which was to record photographic images in ultraviolet light of galaxies, star clusters, and nebulae. The star trackers that supported the instrument pointing system were also mounted on the cruciform. Also in the payload bay was the Broad Band X-Ray Telescope (BBXRT), which was designed to obtain high-resolution x-ray spectra from stellar corona, x-ray binary stars, active galactic nuclei, and galaxy clusters. Managed by the Marshall Space Flight Center, the Astro-1 observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  10. An outburst from a massive star 40 days before a supernova explosion.

    PubMed

    Ofek, E O; Sullivan, M; Cenko, S B; Kasliwal, M M; Gal-Yam, A; Kulkarni, S R; Arcavi, I; Bildsten, L; Bloom, J S; Horesh, A; Howell, D A; Filippenko, A V; Laher, R; Murray, D; Nakar, E; Nugent, P E; Silverman, J M; Shaviv, N J; Surace, J; Yaron, O

    2013-02-07

    Some observations suggest that very massive stars experience extreme mass-loss episodes shortly before they explode as supernovae, as do several models. Establishing a causal connection between these mass-loss episodes and the final explosion would provide a novel way to study pre-supernova massive-star evolution. Here we report observations of a mass-loss event detected 40 days before the explosion of the type IIn supernova SN 2010mc (also known as PTF 10tel). Our photometric and spectroscopic data suggest that this event is a result of an energetic outburst, radiating at least 6 × 10(47) erg of energy and releasing about 10(-2) solar masses of material at typical velocities of 2,000 km s(-1). The temporal proximity of the mass-loss outburst and the supernova explosion implies a causal connection between them. Moreover, we find that the outburst luminosity and velocity are consistent with the predictions of the wave-driven pulsation model, and disfavour alternative suggestions.

  11. Spacelab

    NASA Image and Video Library

    1990-12-02

    Onboard the Space Shuttle Orbiter Columbia (STS-35), the various components of the Astro-1 payload are seen backdropped against dark space. Parts of the Hopkins Ultraviolet Telescope (HUT), Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE) are visible on the Spacelab pallet. The Broad-Band X-Ray Telescope (BBXRT) is behind the pallet and is not visible in this scene. The smaller cylinder in the foreground is the igloo. The igloo was a pressurized container housing the Command Data Management System, that interfaced with the in-cabin controllers to control the Instrument Pointing System (IPS) and the telescopes. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Managed by the Marshall Space Flight Center, the Astro-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  12. Photometry of the Variable Bright Red Supergiant Betelgeuse from the Ground and from Space with the BRITE Nano-satellites

    NASA Astrophysics Data System (ADS)

    Minor, Robert; Guinan, Edward F.

    2016-01-01

    Robert B. Minor, Edward Guinan, Richard Wasatonic Betelgeuse (Alpha Orionis) is a large, luminous semi-regular red supergiant of spectral class M1.5-2Iab. It is the 8th brightest star in the night sky. Betelgeuse is 30,000 times more luminous than the Sun and 700 times larger. It has an estimated age of ~8 +/- 2 Myr. Betelgeuse explode in a Type II supernova (anytime within the next million years). When it explodes, it will shine with about the intensity of a full moon and may be visible during the day. However, it is too far away to cause any major damage to Earth. Photometry of this pre-supernova star has been ongoing at Villanova for nearly 45 years. These observations are being used to define the complex brightness variations of this star. Semi-regular periodic light variations have been found with periods of 385 days up to many years. These light variations are used to study its unstable atmosphere and resulting complex pulsations. Over the last 15 years, it has been observed by Wasatonic who has accumulated a large photometric database. The ground-based observations are limited to precisions of 1.5%, and due to poor weather, limit observations to about 1-2 times per week. However, with the recent successful launch of the BRITE Nano-satellites (http://www.brite-constellation.at) during 2013-14, it is possible to secure high precision photometry of bright stars, including Betelgeuse, continuously for up to 3 months. Villanova has participated in the BRITE guest investigators program and has been awarded observing time and data rights many bright stars, including Betelgeuse. BRITE blue and red observations of Betelgeuse were carried out during the Nov-Feb 2013-14 season and the 2014-15. These datasets were given to Villanova and have been combined with coexistent photometry from Wasatonic. Although BRITE's red data is saturated, the blue data is useable. The BRITE datasets were combined with our ground-based V, red, and near-IR photometry. Problems were uncovered with the some of the BRITE data, but they were resolved for the most part. We present and discuss the results obtained so far.

  13. Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution

    NASA Astrophysics Data System (ADS)

    Lund, Tina; Kneller, James P.

    2013-07-01

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova (ccSN) and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) conversion due to the shock wave passage through the star, and the impact of turbulence. We consider both normal and inverted neutrino mass hierarchies and a value of θ13 close to the current experimental measurements. In the Oxygen-Neon-Magnesium (ONeMg) supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. This is because the shock races through the star extremely quickly and the turbulence amplitude is expected to be small, less than 10%, since these stars do not require multidimensional physics to explode. Thus the spectral features of collective and shock effects in the neutrino signals from Oxygen-Neon-Magnesium supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, which is justified by the requirement of multidimensional physics in order to make these stars explode, the features of collective and shock wave effects in the high (H) density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels—the low (L) density resonance channel and the nonresonant channels—begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of more massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal.

  14. A Massive Star Census of the Starburst Cluster R136

    NASA Astrophysics Data System (ADS)

    Crowther, Paul

    2011-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  15. A Massive Star Census of the Starburst Cluster R136

    NASA Astrophysics Data System (ADS)

    Crowther, Paul

    2012-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  16. Tribal Government Records Management Manual.

    ERIC Educational Resources Information Center

    Reno/Sparks Indian Colony, Reno, NV.

    Following the passage of the 1972 Indian Self-Determination Act, the volume of tribal government records has exploded. This manual is a guide to establishing a system for the effective organization, maintenance, and disposition of such records. Section A discusses the major goals of a records management program, defines relevant terms, suggests…

  17. A Runaway Yellow Supergiant Star in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia I.; Skiff, Brian; Georgy, Cyril

    2018-05-01

    We recently discovered a yellow supergiant (YSG) in the Small Magellanic Cloud (SMC) with a heliocentric radial velocity of ∼300 km s‑1, which is much larger than expected for a star at its location in the SMC. This is the first runaway YSG ever discovered and only the second evolved runaway star discovered in a galaxy other than the Milky Way. We classify the star as G5-8 I and use de-reddened broad-band colors with model atmospheres to determine an effective temperature of 4700 ± 250 K, consistent with what is expected from its spectral type. The star’s luminosity is then log L/L ⊙ ∼ 4.2 ± 0.1, consistent with it being a ∼30 Myr 9 M ⊙ star according to the Geneva evolution models. The star is currently located in the outer portion of the SMC’s body, but if the star’s transverse peculiar velocity is similar to its peculiar radial velocity, in 10 Myr the star would have moved 1.°6 across the disk of the SMC and could easily have been born in one of the SMC’s star-forming regions. Based on its large radial velocity, we suggest it originated in a binary system where the primary exploded as a supernovae, thus flinging the runaway star out into space. Such stars may provide an important mechanism for the dispersal of heavier elements in galaxies given the large percentage of massive stars that are runaways. In the future, we hope to look into additional evolved runaway stars that were discovered as part of our other past surveys. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  18. Exploring the Extreme Universe with the Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Digel, Seth W.; Racusin, Judith L.

    2012-01-01

    In ways similar to experiments in nuclear and particle physics, high-energy astrophysics usesgamma rays and energetic charged particles toprobe processes that involve large energy transfers.Since its launch in 2008, the international Fermi Gamma-Ray Space Telescope has been exploringnatural particle accelerators and the interactionsof high-energy particles in the universe. Withsources ranging from thunderstorms on Earth to galaxies and exploding stars in distant parts of the cosmos, the telescopes subjects of study are almostas diverse as were those of the scientist whose name it bears.

  19. How Turbulence Enables Core-collapse Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Mabanta, Quintin A.; Murphy, Jeremiah W.

    2018-03-01

    An important result in core-collapse supernova (CCSN) theory is that spherically symmetric, one-dimensional simulations routinely fail to explode, yet multidimensional simulations often explode. Numerical investigations suggest that turbulence eases the condition for explosion, but how it does it is not fully understood. We develop a turbulence model for neutrino-driven convection, and show that this turbulence model reduces the condition for explosions by about 30%, in concordance with multidimensional simulations. In addition, we identify which turbulent terms enable explosions. Contrary to prior suggestions, turbulent ram pressure is not the dominant factor in reducing the condition for explosion. Instead, there are many contributing factors, with ram pressure being only one of them, but the dominant factor is turbulent dissipation (TD). Primarily, TD provides extra heating, adding significant thermal pressure and reducing the condition for explosion. The source of this TD power is turbulent kinetic energy, which ultimately derives its energy from the higher potential of an unstable convective profile. Investigating a turbulence model in conjunction with an explosion condition enables insight that is difficult to glean from merely analyzing complex multidimensional simulations. An explosion condition presents a clear diagnostic to explain why stars explode, and the turbulence model allows us to explore how turbulence enables explosion. Although we find that TD is a significant contributor to successful supernova explosions, it is important to note that this work is to some extent qualitative. Therefore, we suggest ways to further verify and validate our predictions with multidimensional simulations.

  20. Perspectives on Intracluster Enrichment and the Stellar Initial Mass Function in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael

    2013-01-01

    The amount of metals in the Intracluster Medium (ICM) in rich galaxy clusters exceeds that expected based on the observed stellar population by a large factor. We quantify this discrepancy--which we term the "cluster elemental abundance paradox"--and investigate the required properties of the ICM-enriching population. The necessary enhancement in metal enrichment may, in principle, originate in the observed stellar population if a larger fraction of stars in the supernova-progenitor mass range form from an initial mass function (IMF) that is either bottom-light or top-heavy, with the latter in some conflict with observed ICM abundance ratios. Other alternatives that imply more modest revisions to the IMF, mass return and remnant fractions, and primordial fraction, posit an increase in the fraction of 3-8 solar mass stars that explode as SNIa or assume that there are more stars than conventionally thought--although the latter implies a high star formation efficiency. We discuss the feasibility of these various solutions and the implications for the diversity of star formation, the process of elliptical galaxy formation, and the nature of this hidden source of ICM metal enrichment in light of recent evidence of an elliptical galaxy IMF that, because it is skewed to low masses, deepens the paradox.

  1. Radiation hydrodynamical instabilities in cosmological and galactic ionization fronts

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel J.; Norman, Michael L.

    2011-11-01

    Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25-500 solar masses, with H(II) regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.

  2. Short Gamma-Ray Bursts from the Merger of Two Black Holes

    NASA Astrophysics Data System (ADS)

    Perna, Rosalba; Lazzati, Davide; Giacomazzo, Bruno

    2016-04-01

    Short gamma-ray bursts (GRBs) are explosions of cosmic origins believed to be associated with the merger of two compact objects, either two neutron stars or a neutron star and a black hole (BH). The presence of at least one neutron star has long been thought to be an essential element of the model: its tidal disruption provides the needed baryonic material whose rapid accretion onto the post-merger BH powers the burst. The recent tentative detection by the Fermi satellite of a short GRB in association with the gravitational wave signal GW150914 produced by the merger of two BHs has challenged this standard paradigm. Here, we show that the evolution of two high-mass, low-metallicity stars with main-sequence rotational speeds a few tens of percent of the critical speed eventually undergoing a weak supernova explosion can produce a short GRB. The outer layers of the envelope of the last exploding star remain bound and circularize at large radii. With time, the disk cools and becomes neutral, suppressing the magnetorotational instability, and hence the viscosity. The disk remains “long-lived dead” until tidal torques and shocks during the pre-merger phase heat it up and re-ignite accretion, rapidly consuming the disk and powering the short GRB.

  3. Ticking Stellar Time Bomb Identified - Astronomers find prime suspect for a Type Ia supernova

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Using ESO's Very Large Telescope and its ability to obtain images as sharp as if taken from space, astronomers have made the first time-lapse movie of a rather unusual shell ejected by a "vampire star", which in November 2000 underwent an outburst after gulping down part of its companion's matter. This enabled astronomers to determine the distance and intrinsic brightness of the outbursting object. It appears that this double star system is a prime candidate to be one of the long-sought progenitors of the exploding stars known as Type Ia supernovae, critical for studies of dark energy. "One of the major problems in modern astrophysics is the fact that we still do not know exactly what kinds of stellar system explode as a Type Ia supernova," says Patrick Woudt, from the University of Cape Town and lead author of the paper reporting the results. "As these supernovae play a crucial role in showing that the Universe's expansion is currently accelerating, pushed by a mysterious dark energy, it is rather embarrassing." The astronomers studied the object known as V445 in the constellation of Puppis ("the Stern") in great detail. V445 Puppis is the first, and so far only, nova showing no evidence at all for hydrogen. It provides the first evidence for an outburst on the surface of a white dwarf [1] dominated by helium. "This is critical, as we know that Type Ia supernovae lack hydrogen," says co-author Danny Steeghs, from the University of Warwick, UK, "and the companion star in V445 Pup fits this nicely by also lacking hydrogen, instead dumping mainly helium gas onto the white dwarf." In November 2000, this system underwent a nova outburst, becoming 250 times brighter than before and ejecting a large quantity of matter into space. The team of astronomers used the NACO adaptive optics instrument [2] on ESO's Very Large Telescope (VLT) to obtain very sharp images of V445 Puppis over a time span of two years. The images show a bipolar shell, initially with a very narrow waist, with lobes on each side. Two knots are also seen at both the extreme ends of the shell, which appear to move at about 30 million kilometres per hour. The shell - unlike any previously observed for a nova - is itself moving at about 24 million kilometres per hour. A thick disc of dust, which must have been produced during the last outburst, obscures the two central stars. "The incredible detail that we can see on such small scales - about hundred milliarcseconds, which is the apparent size of a one euro coin seen from about forty kilometres - is only possible thanks to the adaptive optics technology available on large ground-based telescopes such as ESO's VLT," says Steeghs. A supernova is one way that a star can end its life, exploding in a display of grandiose fireworks. One family of supernovae, called Type Ia supernovae, are of particular interest in cosmology as they can be used as "standard candles" to measure distances in the Universe [3] and so can be used to calibrate the accelerating expansion that is driven by dark energy. One defining characteristic of Type Ia supernovae is the lack of hydrogen in their spectrum. Yet hydrogen is the most common chemical element in the Universe. Such supernovae most likely arise in systems composed of two stars, one of them being the end product of the life of sun-like stars, or white dwarfs. When such white dwarfs, acting as stellar vampires that suck matter from their companion, become heavier than a given limit, they become unstable and explode [4]. The build-up is not a simple process. As the white dwarf cannibalises its prey, matter accumulates on its surface. If this layer becomes too dense, it becomes unstable and erupts as a nova. These controlled, mini-explosions eject part of the accumulated matter back into space. The crucial question is thus to know whether the white dwarf can manage to gain weight despite the outburst, that is, if some of the matter taken from the companion stays on the white dwarf, so that it will eventually become heavy enough to explode as a supernova. Combining the NACO images with data obtained with several other telescopes [5] the astronomers could determine the distance of the system - about 25 000 light-years from the Sun - and its intrinsic brightness - over 10 000 times brighter than the Sun. This implies that the vampire white dwarf in this system has a high mass that is near its fatal limit and is still simultaneously being fed by its companion at a high rate. "Whether V445 Puppis will eventually explode as a supernova, or if the current nova outburst has pre-empted that pathway by ejecting too much matter back into space is still unclear," says Woudt. "But we have here a pretty good suspect for a future Type Ia supernova!" Notes [1] White dwarfs represent the evolutionary end product of stars with initial masses up to a few solar masses. A white dwarf is the burnt-out stellar core that is left behind when a star like the Sun sheds its outer layers towards the end of its active life. It is composed essentially of carbon and oxygen. This process normally also leads to the formation of a surrounding planetary nebula. [2] Adaptive optics is a technique that allows astronomers to obtain an image of an object free from the blurring effect of the atmosphere. See the adaptive optics page at ESO: http://www.eso.org/public/astronomy/technology/adaptive_optics.html [3] See for example http://www.eso.org/~bleibund/papers/EPN/epn.html [4] This Chandrasekhar limit, named after the Indian physicist Subrahmanyan Chandrasekhar, is nearly 1.4 times the mass of the Sun. When a white dwarf reaches a mass above this limit, either by sucking matter from a companion or merging with another white dwarf, it will turn itself into a thermonuclear bomb that will burn carbon and oxygen explosively. [5] The team also used the SOFI instrument on ESO's New Technology Telescope, the IMACS spectrograph on the 6.5-metre Magellan Baade telescope, and the Infrared Survey Facility and the SIRIUS camera at the Sutherland station of the South African Astronomical Observatory. More information This research was presented in a paper to appear in the 20 November 2009 issue of the Astrophysical Journal, vol. 706, p. 738 ("The expanding bipolar shell of the helium nova V445 Puppis", by P. A. Woudt et al.). The team is composed of P. A. Woudt and B. Warner (University of Cape Town, South Africa), D. Steeghs and T. R. Marsh (University of Warwick, UK), M. Karovska and G. H. A. Roelofs (Harvard-Smithsonian Center for Astrophysics, Cambridge MA, USA), P. J. Groot and G. Nelemans (Radboud University Nijmegen, the Netherlands), T. Nagayama (Kyoto University, Japan), D. P. Smits (University of South Africa, South Africa), and T. O'Brien (University of Manchester, UK). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.

    Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only bemore » achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Altogether with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.« less

  5. Interacting supernovae from photoionization-confined shells around red supergiant stars

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V.; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M.-A.; Moriya, Takashi J.; Neilson, Hilding R.

    2014-08-01

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

  6. Interacting supernovae from photoionization-confined shells around red supergiant stars.

    PubMed

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M-A; Moriya, Takashi J; Neilson, Hilding R

    2014-08-21

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

  7. The Third Wave: A Position Paper.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    2000-01-01

    Describes the Third Wave as an "information bomb... exploding in our midst, showering us with a shrapnel of images and drastically changing the way each of us perceives and acts upon our private world." Begins with a description of A. Toffler's Third Wave as an attempt to partially explain what is happening in higher education,…

  8. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  9. Seeing a Stellar Explosion in 3D

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers using ESO's Very Large Telescope have for the first time obtained a three-dimensional view of the distribution of the innermost material expelled by a recently exploded star. The original blast was not only powerful, according to the new results. It was also more concentrated in one particular direction. This is a strong indication that the supernova must have been very turbulent, supporting the most recent computer models. Unlike the Sun, which will die rather quietly, massive stars arriving at the end of their brief life explode as supernovae, hurling out a vast quantity of material. In this class, Supernova 1987A (SN 1987A) in the rather nearby Large Magellanic Cloud occupies a very special place. Seen in 1987, it was the first naked-eye supernova to be observed for 383 years (eso8704), and because of its relative closeness, it has made it possible for astronomers to study the explosion of a massive star and its aftermath in more detail than ever before. It is thus no surprise that few events in modern astronomy have been met with such an enthusiastic response by scientists. SN 1987A has been a bonanza for astrophysicists (eso8711 and eso0708). It provided several notable observational 'firsts', like the detection of neutrinos from the collapsing inner stellar core triggering the explosion, the localisation on archival photographic plates of the star before it exploded, the signs of an asymmetric explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material (eso0708). New observations making use of a unique instrument, SINFONI [1], on ESO's Very Large Telescope (VLT) have provided even deeper knowledge of this amazing event, as astronomers have now been able to obtain the first-ever 3D reconstruction of the central parts of the exploding material. This view shows that the explosion was stronger and faster in some directions than others, leading to an irregular shape with some parts stretching out further into space. The first material to be ejected from the explosion travelled at an incredible 100 million km per hour, which is about a tenth of the speed of light or around 100 000 times faster than a passenger jet. Even at this breakneck speed it has taken 10 years to reach a previously existing ring of gas and dust puffed out from the dying star. The images also demonstrate that another wave of material is travelling ten times more slowly and is being heated by radioactive elements created in the explosion. "We have established the velocity distribution of the inner ejecta of Supernova 1987A," says lead author Karina Kjær. "Just how a supernova explodes is not very well understood, but the way the star exploded is imprinted on this inner material. We can see that this material was not ejected symmetrically in all directions, but rather seems to have had a preferred direction. Besides, this direction is different to what was expected from the position of the ring." Such asymmetric behaviour was predicted by some of the most recent computer models of supernovae, which found that large-scale instabilities take place during the explosion. The new observations are thus the first direct confirmation of such models. SINFONI is the leading instrument of its kind, and only the level of detail it affords allowed the team to draw their conclusions. Advanced adaptive optics systems counteracted the blurring effects of the Earth's atmosphere while a technique called integral field spectroscopy allowed the astronomers to study several parts of the supernova's chaotic core simultaneously, leading to the build-up of the 3D image. "Integral field spectroscopy is a special technique where for each pixel we get information about the nature and velocity of the gas," says Kjær. "This means that besides the normal picture we also have the velocity along the line of sight. Because we know the time that has passed since the explosion, and because the material is moving outwards freely, we can convert this velocity into a distance. This gives us a picture of the inner ejecta as seen straight on and from the side." Notes [1] The team used the SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument mounted on ESO's Very Large Telescope (VLT). SINFONI is a near-infrared (1.1-2.45 µm) integral field spectrograph fed by an adaptive optics module. More information This research will appear in Astronomy and Astrophysics ("The 3-D Structure of SN 1987A's inner Ejecta", by K. Kjær et al.). The team is composed of Karina Kjær (Queen's University Belfast, UK), Bruno Leibundgut and Jason Spyromilio (ESO), and Claes Fransson and Anders Jerkstrand (Stockholm University, Sweden). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  10. Space Science

    NASA Image and Video Library

    2002-01-01

    This is an artist's impression of how the very early universe (less than one billion years old) might have looked when it went through a voracious onset of star formation, converting primordial hydrogen into myriad stars at an unprecedented rate. The deepest views of the cosmos from the Hubble Space Telescope (HST) yield clues that the very first stars may have burst into the universe as brilliantly and spectacularly as a firework finale. Except in this case, the finale came first, long before Earth, the Sun ,and the Milky Way Galaxy formed. Studies of HST's deepest views of the heavens lead to the preliminary conclusion that the universe made a significant portion of its stars in a torrential firestorm of star birth, which abruptly lit up the pitch-dark heavens just a few hundred million years after the "big bang," the tremendous explosion that created the cosmos. Within the starburst galaxies, bright knots of hot blue stars come and go like bursting fireworks shells. Regions of new starbirth glow intensely red under torrent of ultraviolet radiation. The most massive stars self-detonate as supernovas, which explode across the sky like a string of firecrackers. A foreground starburst galaxy at lower right is sculpted with hot bubbles from supernova explosions and torrential stellar winds. Unlike today there is very little dust in these galaxies, because the heavier elements have not yet been cooked up through nucleosynthesis in stars. Recent analysis of HST deep sky images supports the theory that the first stars in the universe appeared in an abrupt eruption of star formation, rather than at a gradual pace. Science Credit: NASA and K. Lanzetta (SUNY). Artwork Credit: Adolf Schaller for STScI.

  11. Artist's Concept of Early Universe

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's impression of how the very early universe (less than one billion years old) might have looked when it went through a voracious onset of star formation, converting primordial hydrogen into myriad stars at an unprecedented rate. The deepest views of the cosmos from the Hubble Space Telescope (HST) yield clues that the very first stars may have burst into the universe as brilliantly and spectacularly as a firework finale. Except in this case, the finale came first, long before Earth, the Sun ,and the Milky Way Galaxy formed. Studies of HST's deepest views of the heavens lead to the preliminary conclusion that the universe made a significant portion of its stars in a torrential firestorm of star birth, which abruptly lit up the pitch-dark heavens just a few hundred million years after the 'big bang,' the tremendous explosion that created the cosmos. Within the starburst galaxies, bright knots of hot blue stars come and go like bursting fireworks shells. Regions of new starbirth glow intensely red under torrent of ultraviolet radiation. The most massive stars self-detonate as supernovas, which explode across the sky like a string of firecrackers. A foreground starburst galaxy at lower right is sculpted with hot bubbles from supernova explosions and torrential stellar winds. Unlike today there is very little dust in these galaxies, because the heavier elements have not yet been cooked up through nucleosynthesis in stars. Recent analysis of HST deep sky images supports the theory that the first stars in the universe appeared in an abrupt eruption of star formation, rather than at a gradual pace. Science Credit: NASA and K. Lanzetta (SUNY). Artwork Credit: Adolf Schaller for STScI.

  12. A very energetic supernova associated with the gamma-ray burst of 29 March 2003.

    PubMed

    Hjorth, Jens; Sollerman, Jesper; Møller, Palle; Fynbo, Johan P U; Woosley, Stan E; Kouveliotou, Chryssa; Tanvir, Nial R; Greiner, Jochen; Andersen, Michael I; Castro-Tirado, Alberto J; Castro Cerón, José María; Fruchter, Andrew S; Gorosabel, Javier; Jakobsson, Páll; Kaper, Lex; Klose, Sylvio; Masetti, Nicola; Pedersen, Holger; Pedersen, Kristian; Pian, Elena; Palazzi, Eliana; Rhoads, James E; Rol, Evert; van den Heuvel, Edward P J; Vreeswijk, Paul M; Watson, Darach; Wijers, Ralph A M J

    2003-06-19

    Over the past five years evidence has mounted that long-duration (>2 s) gamma-ray bursts (GRBs)-the most luminous of all astronomical explosions-signal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova, but now includes the association of GRBs with regions of massive star formation in distant galaxies, the appearance of supernova-like 'bumps' in the optical afterglow light curves of several bursts and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that a very energetic supernova (a hypernova) was temporally and spatially coincident with a GRB at redshift z = 0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs, thereby favouring the 'collapsar' model.

  13. Onboard photo:Astro-1 in Cargo Bay

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Onboard the Space Shuttle Orbiter Columbia (STS-35), the various components of the Astro-1 payload are seen backdropped against dark space. Parts of the Hopkins Ultraviolet Telescope (HUT), Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE) are visible on the Spacelab pallet. The Broad-Band X-Ray Telescope (BBXRT) is behind the pallet and is not visible in this scene. The smaller cylinder in the foreground is the igloo. The igloo was a pressurized container housing the Command Data Management System, that interfaced with the in-cabin controllers to control the Instrument Pointing System (IPS) and the telescopes. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Managed by the Marshall Space Flight Center, the Astro-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  14. Onboard Photo:Astro-1 Ultraviolet Telescope in Cargo Bay

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Onboard the Space Shuttle Orbiter Columbia (STS-35), the various components of the Astro-1 payload are seen backdropped against a blue and white Earth. Parts of the Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE) are visible on the Spacelab pallet. The Broad-Band X-Ray Telescope (BBXRT) is behind the pallet and is not visible in this scene. The smaller cylinder in the foreground is the igloo. The igloo was a pressurized container housing the Command Data Management System, that interfaced with the in-cabin controllers to control the Instrument Pointing System (IPS) and the telescopes. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Managed by the Marshall Space Flight Center, the Astro-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  15. Chandra Reveals Rich Oxygen Supply

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This striking Chandra X-Ray Observatory image of supernova remnant SNR0103-72.6 reveals a nearly perfect ring about 150 light years in diameter surrounding a cloud of gas enriched in oxygen and shock-heated to millions of degrees Celsius. The ring marks the outer limits of a shock wave produced as material ejected in the supernova explosion collides with the interstellar gas. The size of the ring indicates that we see the supernova remnant as it was about 10,000 years after its progenitor star exploded. Located in the Small Magenellanic Cloud (SMC), SNR 0103-72.6 is about 190,000 light years from Earth. The x-rays take about 190,000 years to reach us from the SMC, so the supernova explosion occurred about 200,000 years ago, as measured on Earth. Scientists have know for years that oxygen and many other elements necessary for life are created in massive stars and dispersed in supernova explosions, but few remnants rich in these elements have been observed. This supernova remnant will hence become an important laboratory for studying how stars forge the elements necessary for life.

  16. Spacelab

    NASA Image and Video Library

    1990-12-02

    Onboard the Space Shuttle Orbiter Columbia (STS-35), the various components of the Astro-1 payload are seen backdropped against a blue and white Earth. Parts of the Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE) are visible on the Spacelab pallet. The Broad-Band X-Ray Telescope (BBXRT) is behind the pallet and is not visible in this scene. The smaller cylinder in the foreground is the igloo. The igloo was a pressurized container housing the Command Data Management System, that interfaced with the in-cabin controllers to control the Instrument Pointing System (IPS) and the telescopes. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Managed by the Marshall Space Flight Center, the Astro-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  17. A high-contrast imaging survey of nearby red supergiants

    NASA Astrophysics Data System (ADS)

    Scicluna, Peter; Siebenmorgen, Ralf; Blommaert, Joris; Kemper, Francisca; Wesson, Roger; Wolf, Sebastian

    2017-11-01

    Mass-loss in cool supergiants remains poorly understood, but is one of the key elements in their evolution towards exploding as supernovae. Some show evidence of asymmetric mass loss, discrete mass-ejections and outbursts, with seemingly little to distinguish them from more quiescent cases. To explore the prevalence of discrete ejections and companions we have conducted a high-constrast survey using near-infrared imaging and optical polarimetric imaging of nearby southern and equatorial red supergiants, using the extreme adaptive optics instrument SPHERE, which was designed to image planets around nearby stars. We present the initial results of this survey, including the detection of large (500 nm) dust grains in the ejecta of VY CMa and a candidate dusty torus aligned with the maser ring of VX Sgr. We briefly speculate on the consequences for our understanding of mass loss in these extreme stars.

  18. Red supergiants as supernova progenitors

    NASA Astrophysics Data System (ADS)

    Davies, Ben

    2017-09-01

    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  19. Does thermodynamics require a new expansion after the Big Crunch of our cosmos

    NASA Astrophysics Data System (ADS)

    Recami, E.; Tonin-Zanchin, V.

    Recently, a unifield geometrical approach to gravitational and strong interactions was proposed, based on the methods of General Relativity. According to it, hadrons can be regarded as black-hole type solutions of new field equations describing two tensorial metric-fields (the ordinary gravitational, and the strong one). By extending the Bekenstein-Hawking thermodynamics to those strong black-holes (SBH), it is shown: (1) that SBH thermodynamics seems to require a new expansion of our cosmos after its Big Crunch (this thermodynamical indication being rather unique, up to now, in showing that a recontraction of our cosmos has to be followed by a new creation); and (2) that a collapsing star with mass 2M sub(sun) less than = M less than 15M(sun), once overtaken the neutron-star phase, must re-explode reaching a diameter of at least a few light-days, thus failing to reach the black-hole state.

  20. Red supergiants as supernova progenitors.

    PubMed

    Davies, Ben

    2017-10-28

    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  1. Kepler Beyond Planets: Finding Exploding Stars (Type Ia Supernova from a White Dwarf Merger)

    NASA Image and Video Library

    2018-03-26

    This frame from an animation shows the merger of two white dwarfs. A white dwarf is an extremely dense remnant of a star that can no longer burn nuclear fuel at its core. This is another way that a "type Ia" supernova occurs. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22353

  2. Oscillation effects and time variation of the supernova neutrino signal

    NASA Astrophysics Data System (ADS)

    Kneller, James P.; McLaughlin, Gail C.; Brockman, Justin

    2008-02-01

    The neutrinos detected from the next galactic core-collapse supernova will contain valuable information on the internal dynamics of the explosion. One mechanism leading to a temporal evolution of the neutrino signal is the variation of the induced neutrino flavor mixing driven by changes in the density profile. With one and two-dimensional hydrodynamical simulations we identify the behavior and properties of prominent features of the explosion. Using these results we demonstrate the time variation of the neutrino crossing probabilities due to changes in the Mikheyev-Smirnov-Wolfenstein (MSW) neutrino transformations as the star explodes by using the S-matrix—Monte Carlo—approach to neutrino propagation. After adopting spectra for the neutrinos emitted from the proto-neutron star we calculate for a galactic supernova the evolution of the positron spectra within a water Cerenkov detector and find that this signal allows us to probe of a number of explosion features.

  3. X-rays Provide a New Way to Investigate Exploding Stars

    NASA Astrophysics Data System (ADS)

    2007-05-01

    The European Space Agency's X-ray observatory XMM-Newton has revealed a new class of exploding stars - where the X-ray emission 'lives fast and dies young'. The identification of this particular class of explosion gives astronomers a valuable new constraint to help them understand stellar explosions. Exploding stars called novae remain a puzzle to astronomers. "Modelling these outbursts is very difficult," says Wolfgang Pietsch, Max Planck Institut für Extraterrestrische Physik. Now, ESA's XMM-Newton and NASA's Chandra have provided valuable information about when individual novae emit X-rays. Between July 2004 and February 2005, the X-ray observatories watched the heart of the nearby Andromeda Galaxy, known to astronomers as M31. During that time, Pietsch and his colleagues monitored novae, looking for the X-rays. X-ray Image of Andromeda Galaxy (M31) Chandra X-ray Image of Andromeda Galaxy (M31) They detected that eleven out of the 34 novae that had exploded in the galaxy during the previous year were shining X-rays into space. "X-rays are an important window onto novae. They show the atmosphere of the white dwarf," says Pietsch. White dwarfs are hot stellar corpses left behind after the rest of the star has been ejected into space. A typical white dwarf contains about the mass of the Sun, in a spherical volume little bigger than the Earth. It has a strong pull of gravity and, if it is in orbit around a normal star, can rip gas from it. This material builds up on the surface of the white dwarf until it reaches sufficient density to nuclear detonate. The resultant explosion creates a nova. However, these particular events are not strong enough to destroy the underlying white dwarf. The X-ray emission becomes visible some time after the detonation, when the matter ejected by the nova thins out enough to allow astronomers to peer down to the nuclear burning white dwarf atmosphere beneath. At the end of the process, the X-ray emission stops when the fuel is exhausted. The duration of this X-ray emission traces the amount of material left on the white dwarf after the nova explosion. Optical Image of Andromeda Galaxy (M31) Optical Image of Andromeda Galaxy (M31) A well determined start time of the optical nova outburst and the X-ray turn-on and turn-off times are therefore important benchmarks for replication in computer models of novae. Whilst monitoring the M31 novae, frequently over several months, for the appearance and subsequent disappearance of the X-rays, Pietsch made an important discovery. Some novae start to emit X-rays and then turn them off again within just a few months. "These novae are a new class. They would have been overlooked before," says Pietsch. That's because previous surveys looked only every six months or so. Within that time, the fast X-ray novae could have blinked both on and off. In addition to discovering the short-lived ones, the new survey also confirms that other novae generate X-rays over a much longer time. XMM-Newton detected seven novae that were still shining X-rays into space, up to a decade after the original eruption. The differing lengths of times are thought to reflect the masses of the white dwarfs at the heart of the nova explosion. The fastest evolving novae are thought to be those coming from the most massive white dwarfs. To investigate further, the team have been awarded more XMM-Newton and Chandra observing time. They now plan to monitor M31's novae every ten days for several months, starting in November 2007 to glean more information about these puzzling stellar explosions. Notes for editors: X-ray monitoring of optical novae in M31 from July 2004 to February 2005 by W. Pietsch et al. is published in Astronomy and Astrophysics, 465, 375-392 (2007). For more information: Wolfgang Pietsch wnp@mpe.mpg.de Norbert Schartel Norbert.Schartel@sciops.esa.int

  4. Chromium isotopic anomalies in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.

    1986-01-01

    Abundances of the chromium isotopes in terrestrial and bulk meteorite samples are identical to 0.01 percent. However, Ca-Al-rich inclusions from the Allende meteorite show endemic isotopic anomalies in chromium which require at least three nucleosynthetic components. Large anomalies at Cr-54 in a special class of inclusions are correlated with large anomalies at Ca-48 and Ti-50 and provide strong support for a component reflecting neutron-rich nucleosynthesis at nuclear statistical equilibrium. This correlation suggests that materials from very near the core of an exploding massive star may be injected into the interstellar medium.

  5. Young Star Cluster Found Aglow With Mysterious X-Ray Cloud

    NASA Astrophysics Data System (ADS)

    2002-12-01

    A mysterious cloud of high-energy electrons enveloping a young cluster of stars has been discovered by astronomers using NASA's Chandra X-ray Observatory. These extremely high-energy particles could cause dramatic changes in the chemistry of the disks that will eventually form planets around stars in the cluster. Known as RCW 38, the star cluster covers a region about 5 light years across. It contains thousands of stars formed less than a million years ago and appears to be forming new stars even today. The crowded environment of a star cluster is thought to be conducive to the production of hot gas, but not high-energy particles. Such particles are typically produced by exploding stars, or in the strong magnetic fields around neutron stars or black holes, none of which is evident in RCW 38. "The RCW 38 observation doesn't agree with the conventional picture," said Scott Wolk of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, lead author of an Astrophysical Journal Letters paper describing the Chandra observation. "The data show that somehow extremely high-energy electrons are being produced there, although it is not clear how." RCW 38 RCW 38 X-ray, Radio, Infrared Composite Electrons accelerated to energies of trillions of volts are required to account for the observed X-ray spectrum of the gas cloud surrounding the ensemble of stars, which shows an excess of high-energy X-rays. As these electrons move in the magnetic field that threads the cluster, they produce X-rays. One possible origin for the high-energy electrons is a previously undetected supernova that occurred in the cluster. Although direct evidence for the supernova could have faded away thousands of years ago, a shock wave or a rapidly rotating neutron star produced by the outburst could be acting in concert with stellar winds to produce the high-energy electrons. "Regardless of the origin of the energetic electrons," said Wolk, "their presence would change the chemistry of proto-stellar disks in ways that could still be manifest billions of years later." For example, in our own solar system, we find evidence of certain short-lived radioactive nuclides (Aluminum 26 being the most well known). This implies the existence of a high-energy process late in the evolution of our solar system. If our solar system was immersed for a time in a sea of energetic particles, this could explain the rare nuclides present in meteorites found on the Earth today. RCW 38, at a distance of 6,000 light years from Earth, is one of the nearest star-forming regions with very young, hot stars. Other authors of the paper, which appeared in the 2002 December 1 issue of the Astrophysical Journal Letters, are Tyler Bourke, Randall Smith and Bradley Spitzbart of the Harvard-Smithsonian Center for Astrophysics, and Joao Alves of the European Southern Observatory in Garching, Germany. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science in Washington. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  6. Capturing Neutrinos from a Star's Final Hours

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-04-01

    What happens on the last day of a massive stars life? In the hours before the star collapses and explodes as a supernova, the rapid evolution of material in its core creates swarms of neutrinos. Observing these neutrinos may help us understand the final stages of a massive stars life but theyve never been detected.A view of some of the 1,520 phototubes within the MiniBooNE neutrino detector. Observations from this and other detectors are helping to illuminate the nature of the mysterious neutrino. [Fred Ullrich/FNAL]Silent Signposts of Stellar EvolutionThe nuclear fusion that powers stars generates tremendous amounts of energy. Much of this energy is emitted as photons, but a curious and elusive particle the neutrino carries away most of the energy in the late stages of stellar evolution.Stellar neutrinos can be created through two processes: thermal processesand beta processes. Thermal processes e.g.,pair production, in which a particle/antiparticle pair are created depend on the temperature and pressure of the stellar core. Beta processes i.e.,when a proton converts to a neutron, or vice versa are instead linked to the isotopic makeup of the stars core. This means that, if we can observe them, beta-process neutrinos may be able to tell us about the last steps of stellar nucleosynthesis in a dying star.But observing these neutrinos is not so easilydone. Neutrinos arenearly massless, neutral particles that interact only feebly with matter; out of the whopping 1060neutrinos released in a supernova explosion, even the most sensitive detectors only record the passage of just a few. Do we have a chance of detectingthe beta-process neutrinos that are released in the final few hours of a stars life, beforethe collapse?Neutrino luminosities leading up to core collapse. Shortly before collapse, the luminosity of beta-process neutrinos outshines that of any other neutrino flavor or origin. [Adapted from Patton et al. 2017]Modeling Stellar CoresTo answer this question, Kelly Patton (University of Washington) and collaborators first used a stellar evolution model to explore neutrino production in massive stars. They modeled the evolution of two massive stars 15 and 30 times the mass of our Sun from the onset of nuclear fusion to the moment of collapse.The authors found that in the last few hours before collapse, during which the material in the stars cores is rapidly upcycled into heavier elements, the flux from beta-process neutrinos rivals that of thermal neutrinos and even exceeds it at high energies. So now we know there are many beta-process neutrinos but can we spot them?Neutrino and antineutrino fluxes at Earth from the last 2 hours of a 30-solar-mass stars life compared to the flux from background sources. The rows represent calculations using two different neutrino mass hierarchies. Click to enlarge. [Patton et al. 2017]Observing Elusive NeutrinosFor an imminent supernova at a distance of 1 kiloparsec, the authors find that the presupernova electron neutrino flux rises above the background noise from the Sun, nuclear reactors, and radioactive decay within the Earth in the final two hours before collapse.Based on these calculations, current and future neutrino observatories should be able to detect tens of neutrinos from a supernova within 1 kiloparsec, about 30% of which would be beta-process neutrinos. As the distance to the star increases, the time and energy window within which neutrinos can be observed gradually narrows, until it closes for stars at a distance of about 30 kiloparsecs.Are there any nearby supergiants soon to go supernova so these predictions can be tested? At a distance of only 650 light-years, the red supergiant star Betelgeuse should produce detectable neutrinos when it explodes an exciting opportunity for astronomers in the far future!CitationKelly M. Patton et al 2017ApJ8516. doi:10.3847/1538-4357/aa95c4

  7. FOC Imaging of the Dusty Envelopes of Mass-Losing Supergiants

    NASA Astrophysics Data System (ADS)

    Kastner, Joel

    1996-07-01

    Stars more massive than 10 M_odot are destined to explode as supernovae {SN}. Pre-SN mass loss can prolong core buildup, and the rate and duration of mass loss therefore largely determines a massive star's post-main sequence evolution and its position in the H-R diagram prior to SN detonation. The envelope ejected by a mass-losing supergiant also plays an important role in the formation and evolution of a SN remnant. We propose to investigate these processes with HST. We will use the FOC to image two massive stars that are in different stages of post-main sequence evolution: VY CMa, the prototype for a class of heavily mass-losing OH/IR supergiants, and HD 179821, a post-red supergiant that is likely in transition to the Wolf-Rayet phase. Both are known to possess compact reflection nebulae, but ground-based techniques are unable to separate the inner nebulosities from the PSF of the central stars. We will use the unparalleled resolution of the FOC to probe the structure of these nebulae at subarcsecond scales. These data will yield the mass loss histories of the central stars and will demonstrate the presence or absence of axisymmetric mass loss and circumstellar disks. In so doing, our HST/FOC program will define the role of mass loss in determining the fates of SN progenitors and SN remnants.

  8. Astronomers Find the First 'Wind Nebula' Around a Rare Ultra-Magnetic Neutron Star

    NASA Image and Video Library

    2017-12-08

    Astronomers have discovered a vast cloud of high-energy particles called a wind nebula around a rare ultra-magnetic neutron star, or magnetar, for the first time. The find offers a unique window into the properties, environment and outburst history of magnetars, which are the strongest magnets in the universe. A neutron star is the crushed core of a massive star that ran out of fuel, collapsed under its own weight, and exploded as a supernova. Each one compresses the equivalent mass of half a million Earths into a ball just 12 miles (20 kilometers) across, or about the length of New York's Manhattan Island. Neutron stars are most commonly found as pulsars, which produce radio, visible light, X-rays and gamma rays at various locations in their surrounding magnetic fields. When a pulsar spins these regions in our direction, astronomers detect pulses of emission, hence the name. Read more: go.nasa.gov/28PVUop Credit: ESA/XMM-Newton/Younes et al. 2016 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Eagle Nebula Flaunts its Infrared Feathers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2 Figure 3

    This set of images from NASA's Spitzer Space Telescope shows the Eagle nebula in different hues of infrared light. Each view tells a different tale. The left picture shows lots of stars and dusty structures with clarity. Dusty molecules found on Earth called polycyclic aromatic hydrocarbons produce most of the red; gas is green and stars are blue.

    The middle view is packed with drama, because it tells astronomers that a star in this region violently erupted, or went supernova, heating surrounding dust (orange). This view also reveals that the hot dust is shell shaped, another indication that a star exploded.

    The final picture highlights the contrast between the hot, supernova-heated dust (green) and the cooler dust making up the region's dusty star-forming clouds and towers (red, blue and purple).

    The left image is a composite of infrared light with the following wavelengths: 3.6 microns (blue); 4.5 microns (green); 5.8 microns (orange); and 8 microns (red). The right image includes longer infrared wavelengths, and is a composite of light of 4.5 to 8.0 microns (blue); 24 microns (green); and 70 microns (red). The middle image is made up solely of 24-micron light.

  10. Stellar Evolutionary Effects on the Abundance of PAHS and SN-Condensed Dust in Galaxies

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2007-01-01

    Spectral aid photometric observations of nearby galaxies show a correlation between the strength of their mid-IR aromatic features and their metal abundance, and a deficiency of these features in low-metallicity galaxies. The aromatic features are most commonly attributed to emission from PAH molecules. In this paper, we suggest that the observed correlation represents a trend of PAH abundance with galactic age, reflecting the delayed injection of PAHs and carbon dust into the ISM, by AGB stars in their final, post-AGB phase of their evolution. These AGB stars are the primary sources of PAHs and carbon dust in galaxies, and recycle their ejecta back to the interstellar medium only after a few hundred million years of evolution on the main sequence. In contrast, more massive stars that explode as Type II supernovae inject their metals and dust almost instantaneously after their formation. After determining the PAH abundances in 35 nearby galaxies, we use a chemical evolution model to show that the delayed injection of carbon dust by AGB stars provides a natural explanation to the dependence of the PAH content, in galaxies with metallicity. We also show that larger dust particles giving rise to the far-IR emission follow a distinct evolutionary trend closely related to the injection of dust by massive stars into the ISM.

  11. Stellar Work of Art

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version

    This painterly portrait of a star-forming cloud, called NGC 346, is a combination of multiwavelength light from NASA's Spitzer Space Telescope (infrared), the European Southern Observatory's New Technology Telescope (visible), and the European Space Agency's XMM-Newton space telescope (X-ray).

    The infrared observations highlight cold dust in red, visible data show glowing gas in green, and X-rays show very warm gas in blue. Ordinary stars appear as blue spots with white centers, while young stars enshrouded in dust appear as red spots with white centers.

    The colorful picture demonstrates that stars in this region are being created by two different types of triggered star formation one involving wind, and the other, radiation. Triggered star formation occurs when massive stars spur new, smaller stars into existence. The first radiation-based mechanism is demonstrated near the center of the cloud. There, radiation from the massive stars is eating away at the surrounding dust cloud, creating shock waves that compress gas and dust into new stars. This compressed material appears as an arc-shaped orange-red filament, while the new stars within this filament are still blanketed with dust and cannot be seen.

    The second wind-based mechanism is at play higher up in the cloud. The isolated, pinkish blob of stars at the upper left was triggered by winds from a massive star located to the left of it. This massive star blew up in a supernova explosion 50,000 years ago, but before it died, its winds pushed gas and dust together into new stars. While this massive star cannot be seen in the image, a bubble created when it exploded can be seen near the large, white spot with a blue halo at the upper left (this white spot is actually a collection of three stars).

    NGC 346 is the brightest star-forming region in the Small Magellanic Cloud, an irregular dwarf galaxy that orbits our Milky Way galaxy, 210,000 light-years away.

  12. Yet Another Model for the Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Leonard, P. J. T.

    2000-05-01

    We consider whether a gamma-ray burst can result from a merger between a neutron star and a massive main-sequence star in a binary system following a supernova explosion. The scenario for how this can happen is outlined in Leonard, Hills & Dewey 1994, ApJ, 423, L19-L22. The initially more massive star in a massive binary system evolves and undergoes core collapse to produce a neutron star and supernova. Since the outer layers of the originally more massive star have been transferred to the other star, then the supernova may be hydrogen deficient. The newly-formed neutron star receives a random kick during the explosion. In a small fraction of the cases, the kick has the appropriate direction and amplitude to remove most of the orbital angular momentum of the post-supernova binary system. The result is an orbit with a pericenter smaller than the radius of the non-exploding star. The neutron star rather quickly becomes embedded in the other star, and sinks to its center, giving the envelope of the merged object a lot of rotational angular momentum in the process. Leonard, Hills & Dewey estimate the rate of this process in the Galaxy to be 0.06 per square kpc per Myr for secondaries more massive than 15 solar masses. The fate of the merged object has been the source of much speculation, and we shall assume that a collapsar-like scenario results. That is, the neutron star experiences runaway accretion, collapses into a black hole, which continues to accrete, and produces a pair of jets that bore their way out of the merged object. Observers who lie in the direction of either jet will see a gamma-ray burst. Roughly 1% of supernovae in massive binary systems result in neutron stars quickly becoming embedded in the secondaries, and of those which produce black holes, only 1% would be observable as gamma-ray bursts, if the jets are beamed into 1% of the sky.

  13. Exploding conducting film laser pumping apparatus

    DOEpatents

    Ware, Kenneth D.; Jones, Claude R.

    1986-01-01

    Exploding conducting film laser optical pumping apparatus. The 342-nm molecular iodine and the 1.315-.mu.m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  14. New Hubble Observations of Supernova 1987A Trace Shock Wave

    NASA Image and Video Library

    2017-12-08

    Image release September 2, 2010 ABOUT THIS IMAGE: This image shows the entire region around supernova 1987A. The most prominent feature in the image is a ring with dozens of bright spots. A shock wave of material unleashed by the stellar blast is slamming into regions along the ring's inner regions, heating them up, and causing them to glow. The ring, about a light-year across, was probably shed by the star about 20,000 years before it exploded. An international team of astronomers using the Hubble Space Telescope reports a significant brightening of the emissions from Supernova 1987A. The results, which appear in this week's Science magazine, are consistent with theoretical predictions about how supernovae interact with their immediate galactic environment. The team observed the supernova remnant in optical, ultraviolet, and near-infrared light. They studied the interaction between the ejecta from the stellar explosion and a glowing 6-trillion-mile-diameter ring of gas encircling the supernova remnant. The gas ring was probably shed some 20,000 years before the supernova exploded. Shock waves resulting from the impact of the ejecta onto the ring have brightened 30 to 40 pearl-like "hot spots" in the ring. These blobs likely will grow and merge together in the coming years to form a continuous, glowing circle. "We are seeing the effect a supernova can have in the surrounding galaxy, including how the energy deposited by these stellar explosions changes the dynamics and chemistry of the environment," said University of Colorado at Boulder Research Associate Kevin France of the Center for Astrophysics and Space Astronomy. "We can use these new data to understand how supernova processes regulate the evolution of galaxies." Discovered in 1987, Supernova 1987A is the closest exploding star to Earth to be detected since 1604 and it resides in the nearby Large Magellanic Cloud, a dwarf galaxy adjacent to our own Milky Way Galaxy. Credit: NASA, ESA, K. France (University of Colorado, Boulder), and P. Challis and R. Kirshner (Harvard-Smithsonian Center for Astrophysics) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  15. HUBBLE TARANTULA TREASURY PROJECT. V. THE STAR CLUSTER HODGE 301: THE OLD FACE OF 30 DORADUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cignoni, M.; Sabbi, E.; Marel, R. P. van der

    Based on color–magnitude diagrams (CMDs) from the Hubble Space Telescope  Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 andmore » 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800  M {sub ⊙} and average reddening E ( B − V ) ≈ 0.22–0.24 mag, with a differential reddening δE ( B − V ) ≈ 0.04 mag.« less

  16. Hubble Tarantula Treasury Project V. The Star Cluster Hodge 301: The Old Face of 30 Doradus

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Sabbi, E.; van der Marel, R. P.; Lennon, D. J.; Tosi, M.; Grebel, E. K.; Gallagher, J. S., III; Aloisi, A.; de Marchi, G.; Gouliermis, D. A.; Larsen, S.; Panagia, N.; Smith, L. J.

    2016-12-01

    Based on color-magnitude diagrams (CMDs) from the Hubble Space Telescope Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 and 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800 M ⊙ and average reddening E(B - V) ≈ 0.22-0.24 mag, with a differential reddening δE(B - V) ≈ 0.04 mag. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, R. M.; Hankins, M. J.; Herter, T. L.

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix ismore » a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.« less

  18. A galactic cloak for an exploding star

    NASA Image and Video Library

    2015-02-23

    The galaxy pictured here is NGC 4424, located in the constellation of  Virgo. It is not visible with the naked eye but has been captured here with the NASA/ESA Hubble Space Telescope. Although it may not be obvious from this image, NGC 4424 is in fact a spiral galaxy. In this image it is seen more or less edge on, but from above you would be able to see the arms of the galaxy wrapping around its centre to give the characteristic spiral form . In 2012 astronomers observed a supernova in NGC 4424 — a violent explosion marking the end of a star’s life. During a supernova explosion, a single star can often outshine an entire galaxy. However, the supernova in NGC 4424, dubbed SN 2012cg, cannot be seen here as the image was taken ten years prior to the explosion. Along the central region of the galaxy, clouds of dust block the light from distant stars and create dark patches. To the left of NGC 4424 there are two bright objects in the frame. The brightest is another, smaller galaxy known as LEDA 213994 and the object closer to NGC 4424 is an anonymous star in our Milky Way. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Gilles Chapdelaine.

  19. Milky Way's super-efficient particle accelerators caught in the act

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Thanks to a unique "ballistic study" that combines data from ESO's Very Large Telescope and NASA's Chandra X-ray Observatory, astronomers have now solved a long-standing mystery of the Milky Way's particle accelerators. They show in a paper published today on Science Express that cosmic rays from our galaxy are very efficiently accelerated in the remnants of exploded stars. ESO PR Photo 23a/09 The rim of RCW 86 ESO PR Photo 23b/09 DSS + insert, annotated ESO PR Photo 23c/09 DSS image ESO PR Video 23a/09 Zoom-in RCW 86 During the Apollo flights astronauts reported seeing odd flashes of light, visible even with their eyes closed. We have since learnt that the cause was cosmic rays -- extremely energetic particles from outside the Solar System arriving at the Earth, and constantly bombarding its atmosphere. Once they reach Earth, they still have sufficient energy to cause glitches in electronic components. Galactic cosmic rays come from sources inside our home galaxy, the Milky Way, and consist mostly of protons moving at close to the speed of light, the "ultimate speed limit" in the Universe. These protons have been accelerated to energies exceeding by far the energies that even CERN's Large Hadron Collider will be able to achieve. "It has long been thought that the super-accelerators that produce these cosmic rays in the Milky Way are the expanding envelopes created by exploded stars, but our observations reveal the smoking gun that proves it", says Eveline Helder from the Astronomical Institute Utrecht of Utrecht University in the Netherlands, the first author of the new study. "You could even say that we have now confirmed the calibre of the gun used to accelerate cosmic rays to their tremendous energies", adds collaborator Jacco Vink, also from the Astronomical Institute Utrecht. For the first time Helder, Vink and colleagues have come up with a measurement that solves the long-standing astronomical quandary of whether or not stellar explosions produce enough accelerated particles to explain the number of cosmic rays that hit the Earth's atmosphere. The team's study indicates that they indeed do and it directly tells us how much energy is removed from the shocked gas in the stellar explosion and used to accelerate particles. "When a star explodes in what we call a supernova a large part of the explosion energy is used for accelerating some particles up to extremely high energies", says Helder. "The energy that is used for particle acceleration is at the expense of heating the gas, which is therefore much colder than theory predicts". The researchers looked at the remnant of a star that exploded in AD 185, as recorded by Chinese astronomers. The remnant, called RCW 86, is located about 8200 light-years away towards the constellation of Circinus (the Drawing Compass). It is probably the oldest record of the explosion of a star. Using ESO's Very Large Telescope, the team measured the temperature of the gas right behind the shock wave created by the stellar explosion. They measured the speed of the shock wave as well, using images taken with NASA's X-ray Observatory Chandra three years apart. They found it to be moving at between 10 and 30 million km/h, between 1 and 3 percent the speed of light. The temperature of the gas turned out to be 30 million degrees Celsius. This is quite hot compared to everyday standards, but much lower than expected, given the measured shock wave's velocity. This should have heated the gas up to at least half a billion degrees. "The missing energy is what drives the cosmic rays", concludes Vink. More Information This research was presented in a paper to appear in Science: Measuring the cosmic ray acceleration efficiency of a supernova remnant, by E. A. Helder et al. The team is composed of E.A. Helder, J. Vink and F. Verbunt (Astronomical Institute Utrecht, Utrecht University, The Netherlands), C.G. Bassa and J.A.M. Bleeker (SRON, Netherlands Institute for Space Research, The Netherlands), A. Bamba (ISAS/JAXA Department of High Energy Astrophysics, Kanagawa, Japan), S. Funk (Kavli Institute for Particle Astrophysics and Cosmology, Stanford, USA), P. Ghavamian (Space Telescope Science Institute, Baltimore, USA), K. J. van der Heyden (University of Cape Town, South Africa), and R. Yamazaki (Department of Physical Science, Hiroshima University, Japan). C.G. Bassa is also affiliated with the Radboud University Nijmegen, the Netherlands. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. Dark Secrets: What Science Tells Us About the Hidden Universe (LBNL Science at the Theater)

    ScienceCinema

    Permutter, Saul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)] (ORCID:0000000244364661); Schlegel, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leauthaud, Alexie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-06-12

    No mystery is bigger than dark energy - the elusive force that makes up three-quarters of the Universe and is causing it to expand at an accelerating rate. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who use phenomena such as exploding stars and gravitational lenses to explore the dark cosmos. Saul Perlmutter heads the Supernova Cosmology Project, which pioneered the use of precise observations of exploding stars to study the expansion of the Universe. His international team was one of two groups who independently discovered the amazing phenomenon known as dark energy, and he led a collaboration that designed a satellite to study the nature of this dark force. He is an astrophysicist at Berkeley Lab and a professor of physics at UC Berkeley. David Schlegel is a Berkeley Lab astrophysicist and the principal investigator of Baryon Oscillation Spectroscopic Survey (BOSS), the largest of four night-sky surveys being conducted in the third phase of the Sloan Digital Sky Survey, known as SDSS-III. BOSS will generate a 3-D map of two million galaxies and quasars, using a specially built instrument outfitted with 1,000 optical fibers and mounted on the SDSS telescope in New Mexico. Alexie Leauthaud is Chamberlain Fellow at Berkeley Lab. Her work probes dark matter in the Universe using a technique called gravitational lensing. When gravity from a massive object such as a cluster of galaxies warps space around it, this can distort our view of the light from an even more distant object. The scale and direction of this distortion allows astronomers to directly measure the properties of both dark matter and dark energy.

  1. Two-dimensional Core-collapse Supernova Explosions Aided by General Relativity with Multidimensional Neutrino Transport

    NASA Astrophysics Data System (ADS)

    O’Connor, Evan P.; Couch, Sean M.

    2018-02-01

    We present results from simulations of core-collapse supernovae in FLASH using a newly implemented multidimensional neutrino transport scheme and a newly implemented general relativistic (GR) treatment of gravity. We use a two-moment method with an analytic closure (so-called M1 transport) for the neutrino transport. This transport is multienergy, multispecies, velocity dependent, and truly multidimensional, i.e., we do not assume the commonly used “ray-by-ray” approximation. Our GR gravity is implemented in our Newtonian hydrodynamics simulations via an effective relativistic potential that closely reproduces the GR structure of neutron stars and has been shown to match GR simulations of core collapse quite well. In axisymmetry, we simulate core-collapse supernovae with four different progenitor models in both Newtonian and GR gravity. We find that the more compact proto–neutron star structure realized in simulations with GR gravity gives higher neutrino luminosities and higher neutrino energies. These differences in turn give higher neutrino heating rates (upward of ∼20%–30% over the corresponding Newtonian gravity simulations) that increase the efficacy of the neutrino mechanism. Three of the four models successfully explode in the simulations assuming GREP gravity. In our Newtonian gravity simulations, two of the four models explode, but at times much later than observed in our GR gravity simulations. Our results, in both Newtonian and GR gravity, compare well with several other studies in the literature. These results conclusively show that the approximation of Newtonian gravity for simulating the core-collapse supernova central engine is not acceptable. We also simulate four additional models in GR gravity to highlight the growing disparity between parameterized 1D models of core-collapse supernovae and the current generation of 2D models.

  2. The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae

    NASA Astrophysics Data System (ADS)

    Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim

    2017-04-01

    We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ˜5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.

  3. A galactic nursery

    NASA Image and Video Library

    2015-07-20

    This dramatic image shows the NASA/ESA Hubble Space Telescope’s view of dwarf galaxy known as NGC 1140, which lies 60 million light-years away in the constellation of Eridanus. As can be seen in this image NGC 1140 has an irregular form, much like the Large Magellanic Cloud — a small galaxy that orbits the Milky Way. This small galaxy is undergoing what is known as a starburst. Despite being almost ten times smaller than the Milky Way it is creating stars at about the same rate, with the equivalent of one star the size of the Sun being created per year. This is clearly visible in the image, which shows the galaxy illuminated by bright, blue-white, young stars. Galaxies like NGC 1140 — small, starbursting and containing large amounts of primordial gas with way fewer elements heavier than hydrogen and helium than present in our Sun — are of particular interest to astronomers. Their composition makes them similar to the intensely star-forming galaxies in the early Universe. And these early Universe galaxies were the building blocks of present-day large galaxies like our galaxy, the Milky Way. But, as they are so far away these early Universe galaxies are harder to study so these closer starbursting galaxies are a good substitute for learning more about galaxy evolution . The vigorous star formation will have a very destructive effect on this small dwarf galaxy in its future. When the larger stars in the galaxy die, and explode as supernovae, gas is blown into space and may easily escape the gravitational pull of the galaxy. The ejection of gas from the galaxy means it is throwing out its potential for future stars as this gas is one of the building blocks of star formation. NGC 1140’s starburst cannot last for long.

  4. A Chandrasekhar Mass Progenitor for the Type Ia Supernova Remnant 3C 397 from the Enhanced Abundances of Nickel and Manganese

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; Bravo, Eduardo; Williams, Brian J.; Maeda, Keiichi; Nobukawa, Masayoshi; Eriksen, Kristoffer A.; Brickhouse, Nancy S.; Petre, Robert; hide

    2015-01-01

    Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios - (0.11-0.24 and 0.018-0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only be achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Together with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.

  5. "I Keep Me Safe." Risk and Resilience in Children with Messy Lives

    ERIC Educational Resources Information Center

    Wright, Travis

    2013-01-01

    Though we do our best to protect children from life's underbelly, bad things happen. Hurricanes, school shootings, divorce, exploding crime rates, economic downturns, child abuse, and acts of terror have become reality for many. Sadly, students are not immune from the chaos that often results. If a child worries that he is not safe or thinks…

  6. Predicting Success for College Students Enrolled in an Online, Lab-Based, Biology Course for Non-Majors

    ERIC Educational Resources Information Center

    Foster, Regina

    2012-01-01

    Online education has exploded in popularity. While there is ample research on predictors of traditional college student success, little research has been done on effective methods of predicting student success in online education. In this study, a number of demographic variables including GPA, ACT, gender, age and others were examined to determine…

  7. Neutrino-Driven Explosions

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. Solving this problem is crucial for deciphering the supernova (SN) phenomenon; for predicting its observable signals such as light curves and spectra, nucleosynthesis yields, neutrinos, and gravitational waves; for defining the role of SNe in the dynamical and chemo-dynamical evolution of galaxies; and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the kinetic energy of the SN explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN explosion. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star.

  8. THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perets, Hagai B.; Subr, Ladislav

    2012-06-01

    Runaway stars are stars observed to have large peculiar velocities. Two mechanisms are thought to contribute to the ejection of runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario, a runaway star receives its velocity when its binary massive companion explodes as a supernova (SN). In the alternative dynamical ejection scenario, runaway stars are formed through gravitational interactions between stars and binaries in dense, compact clusters or cluster cores. Here we study the ejection scenario. We make use of extensive N-body simulations of massive clusters, as well as analytic arguments, in order to characterizemore » the expected ejection velocity distribution of runaway stars. We find that the ejection velocity distribution of the fastest runaways (v {approx}> 80 km s{sup -1}) depends on the binary distribution in the cluster, consistent with our analytic toy model, whereas the distribution of lower velocity runaways appears independent of the binaries' properties. For a realistic log constant distribution of binary separations, we find the velocity distribution to follow a simple power law: {Gamma}(v){proportional_to}v{sup -8/3} for the high-velocity runaways and v{sup -3/2} for the low-velocity ones. We calculate the total expected ejection rates of runaway stars from our simulated massive clusters and explore their mass function and their binarity. The mass function of runaway stars is biased toward high masses and strongly depends on their velocity. The binarity of runaways is a decreasing function of their ejection velocity, with no binaries expected to be ejected with v > 150 km s{sup -1}. We also find that hyper-runaways with velocities of hundreds of km s{sup -1} can be dynamically ejected from stellar clusters, but only at very low rates, which cannot account for a significant fraction of the observed population of hyper-velocity stars in the Galactic halo.« less

  9. Dwarf Star Erupts in Giant Flare

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie taken by NASA'S Galaxy Evolution Explorer shows one of the largest flares, or star eruptions, ever recorded at ultraviolet wavelengths. The star, called GJ 3685A, just happened to be in the Galaxy Evolution Explorer's field of view while the telescope was busy observing galaxies. As the movie demonstrates, the seemingly serene star suddenly exploded once, then even more intensely a second time, pouring out in total about one million times more energy than a typical flare from our Sun. The second blast of light constituted an increase in brightness by a factor of at least 10,000.

    Flares are huge explosions of energy stemming from a single location on a star's surface. They are caused by the brief destruction of a star's magnetic fields. Many types of stars experience them, though old, small, rapidly rotating 'red dwarfs' like GJ 3685A tend to flare more frequently and dramatically. These stars, called flare stars, can experience powerful eruptions as often as every few hours. Younger stars, in general, also erupt more often. One of the reasons astronomers study flare stars is to gain a better picture and history of flare events taking place on the Sun.

    A preliminary analysis of the GJ 3685A flare shows that the mechanisms underlying stellar eruptions may be more complex than previously believed. Evidence for the two most popular flare theories was found.

    Though this movie has been sped up (the actual flare lasted about 20 minutes), time-resolved data exist for each one-hundredth of a second. These observations were taken at 2 p.m. Pacific time, April 24, 2004. In the still image, the time sequence starts in the upper left panel, continues in the upper right, then moves to the lower left and ends in the lower right.

    The circular and linear features that appear below and to the right of GJ 3685A during the flare event are detector artifacts caused by the extreme brightness of the flare.

  10. Exploding dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation in one and two spatial dimensions. A review and a perspective

    NASA Astrophysics Data System (ADS)

    Cartes, C.; Descalzi, O.; Brand, H. R.

    2014-10-01

    We review the work on exploding dissipative solitons in one and two spatial dimensions. Features covered include: the transition from modulated to exploding dissipative solitons, the analogue of the Ruelle-Takens scenario for dissipative solitons, inducing exploding dissipative solitons by noise, two classes of exploding dissipative solitons in two spatial dimensions, diffusing asymmetric exploding dissipative solitons as a model for a two-dimensional extended chaotic system. As a perspective we outline the interaction of exploding dissipative solitons with quasi one-dimensional dissipative solitons, breathing quasi one-dimensional solutions and their possible connection with experimental results on convection, and the occurence of exploding dissipative solitons in reaction-diffusion systems. It is a great pleasure to dedicate this work to our long-time friend Hans (Prof. Dr. Hans Jürgen Herrmann) on the occasion of his 60th birthday.

  11. 50th Annual Fuze Conference.Session 3 and 4

    DTIC Science & Technology

    2006-05-11

    Exploding Foil Initiator Research • Research on Explosives • Conclusion Wim Prinse Research Scientist3 TNO has organised...Research Scientist6 Exploding Foil Initiator Research • Electrical circuit • Exploding foil • Velocity of the flyer • Driver Explosive • Secondary...90% efficiency of energy deposited in the exploding foil (50 % other circuits) Wim Prinse Research Scientist8 Exploding foil • Dimension of the foil

  12. Shockwave generation by a semiconductor bridge operation in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvulun, E.; Toker, G.; Gurovich, V. Tz.

    2014-05-28

    A semiconductor bridge (SCB) is a silicon device, used in explosive systems as the electrical initiator element. In recent years, SCB plasma has been extensively studied, both electrically and using fast photography and spectroscopic imaging. However, the value of the pressure buildup at the bridge remains unknown. In this study, we operated SCB devices in water and, using shadow imaging and reference beam interferometry, obtained the velocity of the shock wave propagation and distribution of the density of water. These results, together with a self-similar hydrodynamic model, were used to calculate the pressure generated by the exploding SCB. In addition,more » the results obtained showed that the energy of the water flow exceeds significantly the energy deposited into the exploded SCB. The latter can be explained by the combustion of the aluminum and silicon atoms released in water, which acts as an oxidizing medium.« less

  13. Balloons on Ice: Launch # 2 takes flight in Antarctica

    NASA Image and Video Library

    2017-12-08

    The second of three missions as part of NASA’s Antarctica Long Duration Balloon Flight Campaign was successfully launched at 8:10 a.m. EDT, Dec. 2. The Antarctic Impulsive Transient Antenna (ANITA) from the University of Hawaii at Manoa was launched from Antarctica’s Ross Ice Shelf near McMurdo Station with support from the National Science Foundation’s United States Antarctic Program. Scientists will use ANITA’s instruments to study the reactions in the core of stars and as they explode via the release of neutrinos that travel to Earth and interact with the Antarctica ice. More: go.nasa.gov/2ghR6Le

  14. STS093-S-002

    NASA Image and Video Library

    1998-09-01

    STS093-S-002 (September 1998) --- The five astronauts assigned to fly aboard the Space Shuttle Columbia early next year for the STS-93 mission pose with a small model of their primary payload-the Advanced X-ray Astrophysics Facility (AXAF). From the left are astronauts Eileen M. Collins, mission commander; Steven A. Hawley, mission specialist; Jeffrey S. Ashby, pilot; Michel Tognini and Catherine G. Coleman, both mission specialists. Tognini represents France's Centre National d'Etudes Spatiales (CNES). The scheduled five-day mission will feature the deployment of AXAF, which will enable scientists to conduct comprehensive studies of exotic phenomena in the universe. Among bodies studied will be exploding stars, quasars and black holes.

  15. A youthful cluster

    NASA Image and Video Library

    2015-08-24

    Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope, is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic Cloud, a satellite galaxy of our own galaxy, the Milky Way, in the southern hemisphere constellation of Dorado. First observed by John Herschel in 1835, NGC 1783 is nearly 160 000 light-years from Earth, and has a mass around 170 000 times that of the Sun. Globular clusters are dense collections of stars held together by their own gravity, which orbit around galaxies like satellites. The image clearly shows the symmetrical shape of NGC 1783 and the concentration of stars towards the centre, both typical features of globular clusters. By measuring the colour and brightness of individual stars, astronomers can deduce an overall age for a cluster and a picture of its star formation history. NGC 1783 is thought to be under one and a half billion years old — which is very young for globular clusters, which are typically several billion years old. During that time, it is thought to have undergone at least two periods of star formation, separated by 50 to 100 million years. This ebb and flow of star-forming activity is an indicator of how much gas is available for star formation at any one time. When the most massive stars created in the first burst of formation explode as supernovae they blow away the gas needed to form further stars, but the gas reservoir can later be replenished by less massive stars which last longer and shed their gas less violently. After this gas flows to the dense central regions of the star cluster, a second phase of star formation can take place and once again the short-lived massive stars blow away any leftover gas. This cycle can continue a few times, at which time the remaining gas reservoir is thought to be too small to form any new stars. A version of this image was entered into the Hubble's Hidden Treasures image pr

  16. Cassiopeia A: Death Becomes Her

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This stunning false-color picture shows off the many sides of the supernova remnant Cassiopeia A. It is made up of images taken by three of NASA's Great Observatories, using three different wavebands of light. Infrared data from the Spitzer Space Telescope are colored red; visible data from the Hubble Space Telescope are yellow; and X-ray data from the Chandra X-ray Observatory are green and blue.

    Located 10,000 light-years away in the northern constellation Cassiopeia, Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. The neutron star can be seen in the Chandra data as a sharp turquoise dot in the center of the shimmering shell.

    Each Great Observatory highlights different characteristics of this celestial orb. While Spitzer reveals warm dust in the outer shell about a few hundred degrees Kelvin (80 degrees Fahrenheit) in temperature, Hubble sees the delicate filamentary structures of hot gases about 10,000 degrees Kelvin (18,000 degrees Fahrenheit). Chandra probes unimaginably hot gases, up to about 10 million degrees Kelvin (18 million degrees Fahrenheit). These extremely hot gases were created when ejected material from Cassiopeia A smashed into surrounding gas and dust. Chandra can also see Cassiopeia A's neutron star (turquoise dot at center of shell).

    Blue Chandra data were acquired using broadband X-rays (low to high energies); green Chandra data correspond to intermediate energy X-rays; yellow Hubble data were taken using a 900 nanometer-wavelength filter, and red Spitzer data are from the telescope's 24-micron detector.

    The animation begins with the false-color picture of the supernova remnant Cassiopeia A. It then pans out to show a Spitzer view of Cassiopeia A (yellow ball) and surrounding clouds of dust (reddish orange). Here, the animation flips back and forth between two Spitzer images taken one year apart. A blast of light from Cassiopeia A is seen waltzing through the dusty skies. Called an 'infrared echo,' this dance began when the remnant's dead star erupted, or 'turned in its grave,' about 50 years ago.

    Infrared echoes are created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The earlier Spitzer image was taken on November 30, 2003, and the later, on December 2, 2004.

  17. Tracing Titanium Escape

    NASA Image and Video Library

    2015-05-07

    The plot of data from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR (right), amounts to a "smoking gun" of evidence in the mystery of how massive stars explode. The observations indicate that supernovae belonging to a class called Type II or core-collapse blast apart in a lopsided fashion, with the core of the star hurtling in one direction, and the ejected material mostly expanding the other way (see diagram in Figure 1). NuSTAR made the most precise measurements yet of a radioactive element, called titanium-44, in the supernova remnant called 1987A. NuSTAR sees high-energy X-rays, as shown here in the plot ranging from 60 to more than 80 kiloelectron volts. The spectral signature of titanium-44 is apparent as the two tall peaks. The white line shows where one would expect to see these spectral signatures if the titanium were not moving. The fact that the spectral peaks have shifted to lower energies indicates that the titanium has "redshifted," and is moving way from us. This is similar to what happens to a train's whistle as the train leaves the station. The whistle's sound shifts to lower frequencies. NuSTAR's detection of redshifted titanium reveals that the bulk of material ejected in the 1987A supernova is flying way from us at a velocity of 1.6 million miles per hour (2.6 million kilometers per hour). Had the explosion been spherical in nature, the titanium would have been seen flying uniformly in all directions. This is proof that this explosion occurred in an asymmetrical fashion. http://photojournal.jpl.nasa.gov/catalog/PIA19335

  18. Hydrodynamic simulations of mechanical stellar feedback in a molecular cloud formed by thermal instability

    NASA Astrophysics Data System (ADS)

    Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.

    2017-09-01

    We have used the AMR hydrodynamic code, mg, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechanical energy input from 15, 40, 60 and 120 M⊙ stars into a 100 pc diameter 16 500 M⊙ cloud with a roughly spherical morphology with randomly distributed high-density condensations. The stellar winds are introduced using appropriate non-rotating Geneva stellar evolution models. In the 15 M⊙ star case, the wind has very little effect, spreading around a few neighbouring clumps before becoming overwhelmed by the cloud collapse. In contrast, in the 40, 60 and 120 M⊙ star cases, the more powerful stellar winds create large cavities and carve channels through the cloud, breaking out into the surrounding tenuous medium during the wind phase and considerably altering the cloud structure. After 4.97, 3.97 and 3.01 Myr, respectively, the massive stars explode as supernovae (SNe). The wind-sculpted surroundings considerably affect the evolution of these SN events as they both escape the cloud along wind-carved channels and sweep up remaining clumps of cloud/wind material. The 'cloud' as a coherent structure does not survive the SN from any of these stars, but only in the 120 M⊙ case is the cold molecular material completely destabilized and returned to the unstable thermal phase. In the 40 and 60 M⊙ cases, coherent clumps of cold material are ejected from the cloud by the SN, potentially capable of further star formation.

  19. 50th Annual Fuze Conference Sessions 3 and 4 Held in Norfolk, Virginia on May 9-11, 2006

    DTIC Science & Technology

    2006-05-11

    Exploding Foil Initiator Research • Research on Explosives • Conclusion Wim Prinse Research Scientist3 TNO has organised...Research Scientist6 Exploding Foil Initiator Research • Electrical circuit • Exploding foil • Velocity of the flyer • Driver Explosive • Secondary...90% efficiency of energy deposited in the exploding foil (50 % other circuits) Wim Prinse Research Scientist8 Exploding foil • Dimension of the foil

  20. Exploding conducting film laser pumping apparatus

    DOEpatents

    Ware, K.D.; Jones, C.R.

    1984-04-27

    The 342-nm molecular iodine and the 1.315-..mu..m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  1. A New Paradigm for Creating Amino Acid Chirality

    NASA Astrophysics Data System (ADS)

    Boyd, Richard N.; Famiano, Michael A.; Kajino, Toshitaka; Onaka, Takashi

    2018-06-01

    The Supernova Neutrino Amino Acid Processing (SNAAP) model (1) selects left-handed amino acids via the interaction of electron anti-neutrinos with the N nuclei that have been oriented by the strong magnetic field. Within the amino acid molecules, the shielding tensor alters the local magnetic field, and this tensor is sensitive to the molecular chirality. The astrophysical object (2) that might supply the magnetic field and the neutrinos could be a core-collapse supernova, although there are problems with that site. A more likely candidate would be a close binary system consisting of a Wolf-Rayet star with a neutron star companion. The accretion disk that would form around the neutron star could enable dust formation, as well as meteoroids and planets, and the temperatures in the outer portions would accommodate amino acid formation. When the WR star explodes it provides the intense anti-neutrino flux, while the neutron star and the WR star provide the magnetic field. Quantum molecular calculations that included perturbation effects on the shielding tensor for nitrogen from the reorientation of the molecular electric dipole have been performed. They have found the amino acids moving in an external magnetic field to be physically distinct, so the anti-neutrinos from the WR star interacting with the N nuclei can perform a chirality dependent selection. An enantiomeric excess of a few percent has been found for isovaline in an aqueous environment. Alanine was found to have a comparable, but slightly lower, enantiomeric excess. This model suggests that our Solar System might have been created by a system such as this, as has also been suggested by recent measurements of unstable nuclides in our local environment.M.A. Famiano et al., Astrobiology 18, 190 (2018)R.N. Boyd et al., Astrophys. J. (in press), arXiv.org/abs/a802.08285

  2. On The Origin Of Two-Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-08-01

    It is known that proper motion of massive stars causes them to explode far from the geometric centers of their wind-driven bubbles and thereby affects the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. 3C 400.2, Cygnus Loop, Kes32, etc.), whose unusual morphology is usually treated in terms of the collision (or superposition) of two separate SNRs or breakout phenomena in a region with a density discontinuity. We propose that a SNR of this type is a natural consequence of an off-centered cavity supernova (SN) explosion of a moving massive star, which ended its evolution near the edge of the main-sequence (MS) wind-driven bubble. Our proposal implies that one of the shells is the former MS bubble reenergized by the SN blast wave. The second shell, however, could originate in two somewhat different ways, depending on the initial mass of the SN progenitor star. It could be a shell swept-up by the SN blast wave expanding through the unperturbed ambient interstellar medium if the massive star ends its evolution as a red supergiant (RSG). Or it could be the remainder of a pre-existing shell (adjacent to the MS bubble) swept-up by the fast progenitor's wind during the late evolutionary phases if after the RSG phase the star evolves through the Wolf-Rayet phase. In both cases the resulting (two-shell) SNR should be associated only with one (young) neutron star (thus one can somewhat improve the statistics of neutron star/SNR associations since the two-shell SNRs are quite numerous). We discuss several criteria to discern the SNRs formed by SN explosion after the RSG or WR phase.

  3. Hubble Space Telescope Imaging of the Mass-losing Supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Weintraub, David A.

    1998-04-01

    The highly luminous M supergiant VY CMa is a massive star that appears to be in its final death throes, losing mass at high rate en route to exploding as a supernova. Subarcsecond-resolution optical images of VY CMa, obtained with the Faint Object Camera (FOC) aboard the Hubble Space Telescope, vividly demonstrate that mass loss from VY CMa is highly anisotropic. In the FOC images, the optical ``star'' VY CMa constitutes the bright, well-resolved core of an elongated reflection nebula. The imaged nebula is ~3" (~4500 AU) in extent and is clumpy and highly asymmetric. The images indicate that the bright core, which lies near one edge of the nebula, is pure scattered starlight. We conclude that at optical wavelengths VY CMa is obscured from view along our line of sight by its own dusty envelope. The presence of the extended reflection nebula then suggests that this envelope is highly flattened and/or that the star is surrounded by a massive circumstellar disk. Such axisymmetric circumstellar density structure should have profound effects on post-red supergiant mass loss from VY CMa and, ultimately, on the shaping of the remnant of the supernova that will terminate its post-main-sequence evolution.

  4. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-masswhite dwarf star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, D.Andrew; Sullivan, Mark; Nugent, Peter E.

    2006-02-01

    The acceleration of the expansion of the universe, and theneed for Dark Energy, were inferred from the observations of Type Iasupernovae (SNe Ia) 1;2. There is consensus that SNeIa are thermonuclearexplosions that destroy carbon-oxygen white dwarf stars that accretematter from a companion star3, although the nature of this companionremains uncertain. SNe Ia are thought to be reliable distance indicatorsbecause they have a standard amount of fuel and a uniform trigger theyare predicted to explode when the mass of the white dwarf nears theChandrasekhar mass 4 - 1.4 solar masses. Here we show that the highredshift supernova SNLS-03D3bb has an exceptionallymore » high luminosity andlow kinetic energy that both imply a super-Chandrasekhar mass progenitor.Super-Chandrasekhar mass SNeIa shouldpreferentially occur in a youngstellar population, so this may provide an explanation for the observedtrend that overluminous SNe Ia only occur in young environments5;6. Sincethis supernova does not obey the relations that allow them to becalibrated as standard candles, and since no counterparts have been foundat low redshift, future cosmology studies will have to considercontamination from such events.« less

  5. At the Heart of Blobs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This artist's concept illustrates one possible answer to the puzzle of the 'giant galactic blobs.' These blobs (red), first identified about five years ago, are mammoth clouds of intensely glowing material that surround distant galaxies (white). Astronomers using visible-light telescopes can see the glow of the blobs, but they didn't know what provides the energy to light them up. NASA's Spitzer Space Telescope set its infrared eyes on one well-known blob located 11 billion light-years away, and discovered three tremendously bright galaxies, each shining with the light of more than one trillion Suns, headed toward each other.

    Spitzer also observed three other blobs in the same galactic neighborhood and found equally bright galaxies within them. One of these blobs is also known to contain galaxies merging together. The findings suggest that galactic mergers might be the mysterious source of blobs.

    If so, then one explanation for how mergers produce such large clouds of material is that they trigger intense bursts of star formation. This star formation would lead to exploding massive stars, or supernovae, which would then shoot gases outward in a phenomenon known as superwinds. Blobs produced in this fashion are illustrated in this artist's concept.

  6. Invasion of the Giant X-Ray Bubbles

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2000-01-01

    More bizarre news from the bizarre world of neutron stars: They got dozens of giant X-ray bubbles taller than the Empire State Building forming and popping every second. Yet finding evidence of this bubble blowing was no childish endeavor. It took a team of Berkeley scientists just about all they could muster: three days' worth of observational data and 1,200 hours of number-crunching on the slickest of supercomputers at the Lawrence Livermore National Laboratory (LLNL). Mind you, these are the same powerful computers used to model nuclear reactions and calculate Bill Gates' salary. Neutron stars are already known as the bad boys of the cosmic neighborhood. They are the core remains of exploded stars, with a mass greater than our sun condensed into a sphere no bigger than Manhattan, A teaspoon of its densely-packed surface matter, the analogy goes, would weigh three billion tons back on earth. Its 10 trillion gauss magnetic field could wipe your credit card clean at a distance half-way to the moon. Its intense gravity lures gas from nearby stars, spinning the neutron star to speeds of up to a thousand times a second. But giant X-ray bubbles dancing on the surface? That even freaked out the discoverers. "Early on, I tended to disbelieve what the calculations were telling me," said Richard Klein, who splits his time between Berkeley and LLNL. "The bubbles 'appeared' and I wasn't convinced they were real."

  7. Constraints on core collapse from the black hole mass function

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2015-01-01

    We model the observed black hole mass function under the assumption that black hole formation is controlled by the compactness of the stellar core at the time of collapse. Low-compactness stars are more likely to explode as supernovae and produce neutron stars, while high-compactness stars are more likely to be failed supernovae that produce black holes with the mass of the helium core of the star. Using three sequences of stellar models and marginalizing over a model for the completeness of the black hole mass function, we find that the compactness ξ2.5 above which 50% of core collapses produce black holes is ξ _{2.5}^{50%}=0.24 (0.15 < ξ _{2.5}^{50%} < 0.37 at 90% confidence). The models also predict that f = 0.18 (0.09 < f < 0.39) of core collapses fail. We tested four other criteria for black hole formation based on ξ2.0 and ξ3.0, the compactnesses at enclosed masses of 2.0 or 3.0 rather than 2.5 M⊙, the mass of the iron core MFe, and the mass inside the oxygen burning shell MO. We found that ξ2.0 works as well as ξ2.5, while ξ3.0, MFe and MO are significantly worse. As expected from the high compactness of 20-25 M⊙ stars, black hole formation in this mass range provides a natural explanation of the red supergiant problem.

  8. Uncovering the secrets of the Quintuplet Cluster

    NASA Image and Video Library

    2015-07-13

    Although this cluster of stars gained its name due to its five brightest stars, it is home to hundreds more. The huge number of massive young stars in the cluster is clearly captured in this NASA/ESA Hubble Space Telescope image. The cluster is located close to the Arches Cluster and is just 100 light-years from the centre of our galaxy. The cluster’s proximity to the dust at the centre of the galaxy means that much of its visible light is blocked, which helped to keep the cluster unknown until its discovery in 1990, when it was revealed by observations in the infrared. Infrared images of the cluster, like the one shown here, allow us to see through the obscuring dust to the hot stars in the cluster. The Quintuplet Cluster hosts two extremely rare luminous blue variable stars: the Pistol Star and the lesser known V4650 Sgr. If you were to draw a line horizontally through the centre of this image from left to right, you could see the Pistol Star hovering just above the line about one third of the way along it. The Pistol Star is one of the most luminous known stars in the Milky Way and takes its name from the shape of the Pistol Nebula that it illuminates, but which is not visible in this infrared image. The exact age and future of the Pistol Star are uncertain, but it is expected to end in a supernova or even a hypernova in one to three million years. The cluster also contains a number of red supergiants. These stars are among the largest in the galaxy and are burning their fuel at an incredible speed, meaning they will have a very short lifetime. Their presence suggests an average cluster age of nearly four million years. At the moment these stars are on the verge of exploding as supernovae. During their spectacular deaths they will release vast amounts of energy which, in turn, will heat the material — dust and gas — between the other stars. This observation shows the Quintuplet Cluster in the infrared and demonstrates the leap in Hubble’s performance sinc

  9. On Al-26 and other short-lived interstellar radioactivity

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.; Hartmann, Dieter H.; Leising, Mark D.

    1993-01-01

    Several authors have shown that massive stars exploding at a rate of about three per century can account for a large portion, if not all, of the observed interstellar Al-26. In a separate argument using models of Galactic chemical evolution, Clayton (1984) showed that the Al-26/Al-27 production ratio was not large enough to maintain enough Al-26 in the Galactic disk gas of about 10 exp 10 solar masses having solar composition. We present a resolution of those conflicting arguments. A past history of Galactic infall growing the Galactic disk so dilutes the stable Al-27 concentration that the two approaches can be brought into near agreement. If massive stars dominate the production of Al-26, we suggest that the apparent shortfall of their Al-26/Al-27 yield ratio is to be interpreted as evidence for significant growth of the Galactic disk. We also discuss the implications of these arguments for other extinct radioactivities in meteorites, using I-129 and Sm-146 as examples.

  10. The rotational shear in pre-collapse cores of massive stars

    NASA Astrophysics Data System (ADS)

    Zilberman, Noa; Gilkis, Avishai; Soker, Noam

    2018-02-01

    We evolve stellar models to study the rotational profiles of the pre-explosion cores of single massive stars that are progenitors of core collapse supernovae (CCSNe), and find large rotational shear above the iron core that might play an important role in the jet feedback explosion mechanism by amplifying magnetic fields before and after collapse. Initial masses of 15 and 30 M⊙ and various values of the initial rotation velocity are considered, as well as a reduced mass-loss rate along the evolution and the effect of core-envelope coupling through magnetic fields. We find that the rotation profiles just before core collapse differ between models, but share the following properties. (1) There are narrow zones of very large rotational shear adjacent to convective zones. (2) The rotation rate of the inner core is slower than required to form a Keplerian accretion disc. (3) The outer part of the core and the envelope have non-negligible specific angular momentum compared to the last stable orbit around a black hole (BH). Our results suggest the feasibility of magnetic field amplification which might aid a jet-driven explosion leaving behind a neutron star. Alternatively, if the inner core fails in exploding the star, an accretion disc from the outer parts of the core might form and lead to a jet-driven CCSN which leaves behind a BH.

  11. Spacelab

    NASA Image and Video Library

    1990-12-01

    In this photograph, the instruments of the Astro-1 Observatory are erected in the cargo bay of the Columbia orbiter. Astro-1 was launched aboard the the Space Shuttle Orbiter Columbia (STS-35) mission on December 2, 1990. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Astro-1 used a Spacelab pallet system with an instrument pointing system and a cruciform structure for bearing the three ultraviolet instruments mounted in a parallel configuration. The three instruments were:The Hopkins Ultraviolet Telescope (HUT), the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE), and the Ultraviolet Imaging Telescope (UIT). Also in the payload bay was the Broad Band X-Ray Telescope (BBXRT). Scientific return included approximately 1,000 photographs of the ultraviolet sky in the most extensive ultraviolet imagery ever attempted, the longest ultraviolet spectral observation of a comet ever made, and data never before seen on types of active galaxies called Seyfert galaxies. The mission also provided data on a massive supergiant star captured in outburst and confirmed that a spectral feature observed in the interstellar medium was due to graphite. In addition, Astro-1 acquired superb observations of the Jupiter magnetic interaction with one of its satellites.

  12. A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397 from the enhanced abundances of nickel and manganese

    DOE PAGES

    Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; ...

    2015-03-12

    Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only bemore » achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Altogether with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.« less

  13. Diffusive shock acceleration at non-relativistic highly oblique shocks

    NASA Astrophysics Data System (ADS)

    Meli, Athina; Biermann, P. L.

    2004-10-01

    Our aim here is to evaluate the rate of the maximum energy and the acceleration rate that Cosmic Rays (CRs) acquire in the non-relativistic diffusive shock acceleration as it could apply during their lifetime in various astrophysical sites. We examine numerically (using Monte Carlo simulations) the effect of the diffusion coefficients on the energy gain and the acceleration rate, by testing the role between the obliquity of the magnetic field at the shock normal, and the significance of both perpendicular cross-field diffusion and parallel diffusion coefficients to the aceleration rate. We find (and justify previous analytical work -Jokipii 1987) that in highly oblique shocks the smaller the perpendicular diffusion gets compared to the parallel diffusion coefficient values, the greater the energy gain of the CRs to be obtained. An explanation of the Cosmic Ray Spectrum in High Energies, between 1015 and 1018eV is claimed, as we estimate the upper limit of energy that CRs could gain in plausible astrophysical regimes; interpreted by the scenario of CRs which are injected by three different kind of sources, (i) supernovae (SN) which explode into the interstellar medium (ISM), (ii) Red Supergiants (RSG), and (iii) Wolf-Rayet stars (WR), where the two latter explode into their pre-SN winds Biermann (2001); Sina (2001).

  14. Patterning of Thick Parylene Films by Oxygen Plasma for Application as Exploding Foil Initiator Flyer Material

    DTIC Science & Technology

    2009-09-01

    exploding foil initiator ( EFI ) type fuzes are being explored to...Acronyms Au gold Cr chromium Cu copper EFI exploding foil initiator BOE buffered oxide etch MEMS microelectromechanical systems RIE reactive ion...Patterning of Thick Parylene Films by Oxygen Plasma for Application as Exploding Foil Initiator Flyer Material by Eugene Zakar and Michael

  15. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2004-08-23

    This spectacular Chandra X-Ray Observatory (CXO) image of the supernova remnant Cassiopeia A is the most detailed image ever made of the remains of an exploded star. The one-million-second image shows a bright outer ring (green) 10 light years in diameter that marks the location of a shock wave generated by the supernova explosion. In the upper left corner is a large jet-like structure that protrudes beyond the shock wave, and a counter-jet can be seen on the lower right. The x-ray spectra show that the jets are rich in silicon atoms, and relatively poor in iron atoms. This indicates that the jets formed soon after the initial explosion of the star, otherwise, the jets should have contained large quantities of iron from the star’s central regions. The bright blue areas are composed almost purely of iron gas, which was produced in the central, hottest regions of the star and somehow ejected in a direction almost perpendicular to the jets. The bright source at the center of the image is presumed to be a neutron star created during the supernova. Unlike most others, this neutron star is quiet, faint, and so far shows no evidence of pulsed radiation. A working hypothesis is that the explosion that created Cassiopeia A produced high speed jets similar to, but less energetic than, the hyper nova jets thought to produce gamma-ray bursts. During the explosion, the star may have developed an extremely strong magnetic filed that helped to accelerate the jets and later stifled any pulsar wind activity. CXO project management is the responsibility of NASA’s Marshall Space Flight Center in Huntsville, Alabama.

  16. Supernova 2007bi as a pair-instability explosion.

    PubMed

    Gal-Yam, A; Mazzali, P; Ofek, E O; Nugent, P E; Kulkarni, S R; Kasliwal, M M; Quimby, R M; Filippenko, A V; Cenko, S B; Chornock, R; Waldman, R; Kasen, D; Sullivan, M; Beshore, E C; Drake, A J; Thomas, R C; Bloom, J S; Poznanski, D; Miller, A A; Foley, R J; Silverman, J M; Arcavi, I; Ellis, R S; Deng, J

    2009-12-03

    Stars with initial masses such that 10M[symbol: see text] or= 140M[symbol: see text] (if such exist) develop oxygen cores with masses, M(core), that exceed 50M[symbol: see text], where high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs before oxygen ignition and leads to a violent contraction which triggers a nuclear explosion that unbinds the star in a pair-instability supernova. Transitional objects with 100M[symbol: see text] < M(initial) < 140M[symbol: see text] may end up as iron-core-collapse supernovae following violent mass ejections, perhaps as a result of brief episodes of pair instability, and may already have been identified. Here we report observations of supernova SN 2007bi, a luminous, slowly evolving object located within a dwarf galaxy. We estimate the exploding core mass to be M(core) approximately 100M[symbol: see text], in which case theory unambiguously predicts a pair-instability supernova. We show that >3M[symbol: see text] of radioactive (56)Ni was synthesized during the explosion and that our observations are well fitted by models of pair-instability supernovae. This indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic stellar mass limit, which perhaps result from processes similar to those that created the first stars in the Universe.

  17. Method for making generally cylindrical underground openings

    DOEpatents

    Routh, J.W.

    1983-05-26

    A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

  18. Formation of the first galaxies under Population III stellar feedback

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon

    2015-01-01

    The first galaxies, which formed a few hundred million years after the big bang, are related to important cosmological questions. Given thatthey are thought to be the basic building blocks of large galaxies seen today, understanding their formation and properties is essentialto studying galaxy formation as a whole. In this dissertation talk, I will present the results of our highly-resolved cosmological ab-initio simulations to understand the assembly process of first galaxies under the feedback from the preceding generations of first stars, the so-called Population III (Pop III). The first stars formed at z≲30 in dark matter (DM) minihalos with M_{vir}=10^5-10^6Msun, predominately via molecular hydrogen (H_2) cooling. Radiation from Pop III stars dramatically altered the gas within their host minihalos, through photoionization, photoheating, and photoevaporation. Once a Pop III star explodes as a supernova (SN), heavy elements are dispersed, enriching the interstellar (ISM) and intergalactic medium (IGM), thus initiating the process of chemical evolution. I will begin by presenting how the SN explosion of the first stars influences early cosmic history, specifically assessing the time delay in further star formation and tracing the evolution of metal-enriched gas until the second episode star formation happens. These results will show the role of Pop III supernovae on the star formation transition from Pop III to Population II. Additionally, the more distant, diffuse IGM was heated by X-rays emitted by accreting black holes (BHs), or high-mass X-ray binaries (HMXBs), both remnants of Pop III stars. I will present results of a series of simulations where we study the impact of X-ray feedback from BHs and HMXBs on the star formation history in the early universe, and discuss the resulting implications on reionization. I will also present the role of X-rays on the early BH growth, providing constraints on models for supermassive black hole formation. Finally, I will discuss key physical quantities of the first galaxies derived from our simulations, such as their stellar population mix, star formation rates, metallicities, and resulting broad-band color and recombination spectra.

  19. Gaia TGAS search for Large Magellanic Cloud runaway supergiant stars. Candidate hypervelocity star discovery and the nature of R 71

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel J.; van der Marel, Roeland P.; Ramos Lerate, Mercedes; O'Mullane, William; Sahlmann, Johannes

    2017-07-01

    Aims: Our research aims to search for runaway stars in the Large Magellanic Cloud (LMC) among the bright Hipparcos supergiant stars included in the Gaia DR1 Tycho-Gaia astrometric solution (TGAS) catalogue. Methods: We compute the space velocities of the visually brightest stars in the Large Magellanic Cloud that are included in the TGAS proper motion catalogue. This sample of 31 stars contains a luminous blue variable (LBV), emission line stars, blue and yellow supergiants, and an SgB[e] star. We combine these results with published radial velocities to derive their space velocities, and by comparing with predictions from stellar dynamical models we obtain each star's (peculiar) velocity relative to its local stellar environment. Results: Two of the 31 stars have unusually high proper motions. Of the remaining 29 stars we find that most objects in this sample have velocities that are inconsistent with a runaway nature, being in very good agreement with model predictions of a circularly rotating disk model. Indeed the excellent fit to the model implies that the TGAS uncertainty estimates are likely overestimated. The fastest outliers in this subsample contain the LBV R 71 and a few other well known emission line objects though in no case do we derive velocities consistent with fast ( 100 km s-1) runaways. On the contrary our results imply that R 71 in particular has a moderate deviation from the local stellar velocity field (40 km s-1) lending support to the proposition that this object cannot have evolved as a normal single star since it lies too far from massive star forming complexes to have arrived at its current position during its lifetime. Our findings therefore strengthen the case for this LBV being the result of binary evolution. Of the two stars with unusually high proper motions we find that one, the isolated B1.5 Ia+ supergiant Sk-67 2 (HIP 22237), is a candidate hypervelocity star, the TGAS proper motion implying a very large peculiar transverse velocity ( 360 km s-1) directed radially away from the LMC centre. If confirmed, for example by Gaia Data Release 2, it would imply that this massive supergiant, on the periphery of the LMC, is leaving the galaxy where it will explode as a supernova.

  20. Hubble Looks in on a Galactic Nursery

    NASA Image and Video Library

    2017-12-08

    This dramatic image shows the NASA/ESA Hubble Space Telescope’s view of dwarf galaxy known as NGC 1140, which lies 60 million light-years away in the constellation of Eridanus. As can be seen in this image NGC 1140 has an irregular form, much like the Large Magellanic Cloud — a small galaxy that orbits the Milky Way. This small galaxy is undergoing what is known as a starburst. Despite being almost ten times smaller than the Milky Way it is creating stars at about the same rate, with the equivalent of one star the size of our sun being created per year. This is clearly visible in the image, which shows the galaxy illuminated by bright, blue-white, young stars. Galaxies like NGC 1140 — small, starbursting and containing large amounts of primordial gas with far fewer elements heavier than hydrogen and helium than are present in our sun — are of particular interest to astronomers. Their composition makes them similar to the intensely star-forming galaxies in the early Universe. And these early Universe galaxies were the building blocks of present-day large galaxies like our galaxy, the Milky Way. But, as they are so far away these early Universe galaxies are harder to study so these closer starbursting galaxies are a good substitute for learning more about galaxy evolution. The vigorous star formation will have a very destructive effect on this small dwarf galaxy in its future. When the larger stars in the galaxy die, and explode as supernovae, gas is blown into space and may easily escape the gravitational pull of the galaxy. The ejection of gas from the galaxy means it is throwing out its potential for future stars as this gas is one of the building blocks of star formation. NGC 1140’s starburst cannot last for long. Image credit: ESA/Hubble & NASA

  1. Youngest Stellar Explosion in Our Galaxy Discovered

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Astronomers have found the remains of the youngest supernova, or exploded star, in our Galaxy. The supernova remnant, hidden behind a thick veil of gas and dust, was revealed by the National Science Foundation's Very Large Array (VLA) and NASA's Chandra X-Ray Observatory, which could see through the murk. The object is the first example of a "missing population" of young supernova remnants. 1985 and 2008 VLA Images Move cursor over image to blink. VLA Images of G1.9+0.3 in 1985 and 2008: Circle for size comparison. CREDIT: Green, et al., NRAO/AUI/NSF From observing supernovae in other galaxies, astronomers have estimated that about three such stellar explosions should occur in our Milky Way every century. However, the most recent one known until now occurred around 1680, creating the remnant called Cassiopeia A. The newly-discovered object is the remnant of an explosion only about 140 years ago. "If the supernova rate estimates are correct, there should be the remnants of about 10 supernova explosions in the Milky Way that are younger than Cassiopeia A," said David Green of the University of Cambridge in the UK, who led the VLA study. "It's great to finally track one of them down." Supernova explosions, which mark the violent death of a star, release tremendous amounts of energy and spew heavy elements such as calcium and iron into interstellar space. They thus seed the clouds of gas and dust from which new stars and planets are formed and, through their blast shocks, can even trigger such formation. The lack of evidence for young supernova remnants in the Milky Way had caused astronomers to wonder if our Galaxy, which appears otherwise normal, differed in some unknown way from others. Alternatively, scientists thought that the "missing" Milky Way supernovae perhaps indicated that their understanding of the relationship between supernovae and other galactic processes was in error. The astronomers made their discovery by measuring the expansion of the debris from the star's explosion. They did this by comparing images of the object, called G1.9+0.3, made more than two decades apart. In 1985, astronomers led by Green observed G1.9+0.3 with the VLA and identified it as a supernova remnant. At that time, they estimated its age as between 400 and 1,000 years. It is near the center of our Galaxy, roughly 25,000 light-years from Earth. In 2007, another team of astronomers, led by Stephen Reynolds of North Carolina State University, observed the object with the Chandra X-Ray Observatory. To their surprise, their image showed the object to be about 16 percent larger than in the 1985 VLA image. "This is a huge difference. It means the explosion debris is expanding very quickly, which in turn means the object is much younger than we originally thought," Reynolds explained. However, this expansion measurement came from comparing a radio image to an X-ray image. To make an "apples to apples" comparison, the scientists sought and were quickly granted observing time on the VLA. "I've never seen a large astronomical institution move so fast," said Reynolds. Their new VLA observations confirmed the supernova remnant's rapid expansion. The discovery provides scientists with a valuable source of new information about exploding stars. "Our previous situation was as if someone studying humans could look at babies and at adults, but could not study teenagers. Now, we're filling in that gap," said Reynolds. The object already has provided surprises. The velocities of its explosion debris and extreme energies of its particles are unprecedented. "No other object in the Galaxy has properties like this," said Reynolds. "Finding G1.9+0.3 is extremely important for learning more about how some stars explode and what happens in the aftermath," he added. The discovery was possible because radio and X-ray telescopes, unlike visible-light telescopes, can penetrate the thick clouds of gas and dust in our Galaxy. "Looking out of the Milky Way, we can see some supernova explosions with optical telescopes across half of the Universe, but when they're in this murk, we can miss them in our own cosmic back yard," Reynolds said. "Fortunately, the expanding gas cloud from the explosion shines brightly in radio waves and X-rays for thousands of years. X-ray and radio telescopes can see through all that obscuration and show us what we've been missing," he added. Because of the obscuration, no one could have seen the original explosion 140 years ago. The astronomers are reporting their results in papers published in the Astrophysical Journal Letters and Monthly Notices of the Royal Astronomical Society. Background Information: Supernova Explosions Supernova explosions are the violent death throes of stars. These explosions release in one event as much energy as is being released by all the rest of the stars in a galaxy -- typically 100 billion or so. Supernovae seen in other galaxies can outshine the rest of their galaxy for days. The supernovae that have occurred in our own Galaxy and were not obscured by the gas and dust that obscured G1.9+0.3 have often provided a spectacular sight. Historical records indicate that ancient astronomers noted supernova explosions at least as early as A.D. 393, and probably earlier. The pre-telescopic astronomers Tycho Brahe and Johannes Kepler made extensive observations of supernovae in 1572 and 1604. Chinese astronomers noted that a supernova in 1054 was bright enough to be seen in the daytime. A supernova in 1006 remained visible for two years. Supernovae that result from the deaths of stars much more massive than the Sun enrich the galaxy with chemical elements that are produced in the cores of those stars before they explode. The heavy elements, such as carbon, oxygen, iron, siicon and calcium, that make up planets and their inhabitants were made available by supernova explosions. In addition to enriching the material between stars with heavy elements, supernovae stir up that material through the shock energy of the explosion. This is thought to help trigger the process of star formation in interstellar clouds of gas and dust. Many astronomers believe that our own Solar System is the result of such a supernova shock. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  2. A Stellar Appulse by Exploding Comet 17P/Holmes

    NASA Astrophysics Data System (ADS)

    Lacerda, Pedro; Jewitt, D.

    2012-10-01

    Comet 17P/Holmes suffered a massive outburst in October 2007. Its total brightness increased from about 17th to 2nd magnitude over a period of only two days as 17P released about 1-10% of its mass into space in the form of dust. Several theories have been proposed to explain the event but the exact cause for the outburst remains unknown. 17P had suffered a similar outburst more than one century ago, which led to its discovery. These unusual and violent explosions have rendered this otherwise unremarkable Jupiter family comet an interesting target of study, because it may provide clues to the activity in other comets. On 29 October 2007, the optocenter of outbursting 17P passed within 1" of a background star. We used observations taken at the Univ. of Hawaii 2.2m telescope located atop Mauna Kea to measure the brightness of the star as it crossed the coma of 17P in an attempt to estimate the optical depth of the dust. The time sampling was 10-15 min. In addition, we used two-band photometry to look for colour variation as the star crossed the dust cloud. These measurements place the most stringent constraints on the extinction optical depth of any cometary coma.

  3. At the Heart of Blobs Artist Concept

    NASA Image and Video Library

    2005-01-11

    This artist's concept illustrates one possible answer to the puzzle of the "giant galactic blobs." These blobs (red), first identified about five years ago, are mammoth clouds of intensely glowing material that surround distant galaxies (white). Astronomers using visible-light telescopes can see the glow of the blobs, but they didn't know what provides the energy to light them up. NASA's Spitzer Space Telescope set its infrared eyes on one well-known blob located 11 billion light-years away, and discovered three tremendously bright galaxies, each shining with the light of more than one trillion Suns, headed toward each other. Spitzer also observed three other blobs in the same galactic neighborhood and found equally bright galaxies within them. One of these blobs is also known to contain galaxies merging together. The findings suggest that galactic mergers might be the mysterious source of blobs. If so, then one explanation for how mergers produce such large clouds of material is that they trigger intense bursts of star formation. This star formation would lead to exploding massive stars, or supernovae, which would then shoot gases outward in a phenomenon known as superwinds. Blobs produced in this fashion are illustrated in this artist's concept. http://photojournal.jpl.nasa.gov/catalog/PIA07221

  4. Chandra's Cosmos: Dark Matter, Black Holes, and Other Wonders Revealed by NASA's Premier X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Tucker, Wallace H.

    2017-03-01

    On July 23, 1999, the Chandra X-Ray Observatory, the most powerful X-ray telescope ever built, was launched aboard the space shuttle Columbia. Since then, Chandra has given us a view of the universe that is largely hidden from telescopes sensitive only to visible light. In Chandra's Cosmos, the Smithsonian Astrophysical Observatory's Chandra science spokesperson Wallace H. Tucker uses a series of short, connected stories to describe the telescope's exploration of the hot, high-energy face of the universe. The book is organized in three parts: "The Big," covering the cosmic web, dark energy, dark matter, and massive clusters of galaxies; "The Bad," exploring neutron stars, stellar black holes, and supermassive black holes; and "The Beautiful," discussing stars, exoplanets, and life. Chandra has imaged the spectacular, glowing remains of exploded stars and taken spectra showing the dispersal of their elements. Chandra has observed the region around the supermassive black hole in the center of our Milky Way and traced the separation of dark matter from normal matter in the collision of galaxies, contributing to both dark matter and dark energy studies. Tucker explores the implications of these observations in an entertaining, informative narrative aimed at space buffs and general readers alike.

  5. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star.

    PubMed

    Howell, D Andrew; Sullivan, Mark; Nugent, Peter E; Ellis, Richard S; Conley, Alexander J; Le Borgne, Damien; Carlberg, Raymond G; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook, Isobel M; Hsiao, Eric Y; Neill, James D; Pain, Reynald; Perrett, Kathryn M; Pritchet, Christopher J

    2006-09-21

    The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.

  6. Booming far: the long-range vocal strategy of a lekking bird.

    PubMed

    Cornec, C; Hingrat, Y; Aubin, T; Rybak, F

    2017-08-01

    The pressures of selection acting on transmission of information by acoustic signals are particularly high in long-distance communication networks. Males of the North African houbara bustard ( Chlamydotis undulata undulata ) produce extremely low-frequency vocalizations called 'booms' as a component of their courtship displays. These displays are performed on sites separated by a distance of on average 550 m, constituting exploded leks. Here, we investigate the acoustic features of booms involved in species-specific identity. We first assessed the modifications of acoustic parameters during boom transmission at long range within the natural habitat of the species, finding that the frequency content of booms was reliably transmitted up to 600 m. Additionally, by testing males' behavioural responses to playbacks of modified signals, we found that the presence of the second harmonic and the frequency modulation are the key parameters for species identification, and also that a sequence of booms elicited stronger responses than a single boom. Thus, the coding-decoding process relies on redundant and propagation-resistant features, making the booms particularly well adapted for the long-range transmission of information between males. Moreover, by experimentally disentangling the presentation of visual and acoustic signals, we showed that during the booming phase of courtship, the two sensory modalities act in synergy. The acoustic component is dominant in the context of intra-sexual competition. While the visual component is not necessary to induce agonistic response, it acts as an amplifier and reduces the time of detection of the signaller. The utilization of these adaptive strategies allows houbara males to maximize the active space of vocalizations emitted in exploded leks.

  7. Strategy to Minimize Energetics Contamination at Military Testing/Training Ranges

    DTIC Science & Technology

    2005-09-01

    exploding foil exploding foil initiator ) initiator will minimize the energetic material...i.e., exploding foil initiator P 𔃾 𔃾 𔃾 𔃾 4. Use an electronic S&A; i.e., high voltage driven semi-conductor bridge elements P ’ 𔃾 𔃾 𔃾 5. Use...alternatives Opportunity 1. Eliminate energetics 3. Use an electronic S&A; i.e., exploding foil initiator 1 3 3 -3 2 -6 -2 1 -2 -5 4. Use an

  8. Abundances in the Uranium-rich Star CS 31082-001

    NASA Astrophysics Data System (ADS)

    Qian, Y.-Z.; Wasserburg, G. J.

    2001-05-01

    The recent discovery by Cayrel et al. of U in CS 31082-001 along with Os and Ir at greatly enhanced abundances but with [Fe/H]=-2.9 strongly reinforces the argument that there are at least two kinds of Type II supernova (SN II) sources for r-nuclei. One source is the high-frequency H events responsible for heavy r-nuclei (A>135) but not Fe. The H-yields calculated from data on other ultra-metal-poor stars and the Sun provide a template for quantitatively predicting the abundances of all other r-elements. In CS 31082-001 these should show a significant deficiency at A<135 relative to the solar r-pattern. It is proposed that CS 31082-001 should have had a companion that exploded as an SN II H event. If the binary survived the explosion, this star should now have a compact companion, most likely a stellar-mass black hole. Comparison of abundance data with predicted values and a search for a compact companion should provide a stringent test of the proposed r-process model. The U-Th age determined by Cayrel et al. for CS 31082-001 is, to within substantial uncertainties, in accord with the r-process age determined from solar system data. The time gap between the big bang and the onset of normal star formation allows r-process chronometers to provide only a lower limit on the age of the universe.

  9. FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu

    We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less

  10. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-08-01

    This x-ray image of the Cassiopeia A (CAS A) supernova remnant is the official first light image of the Chandra X-Ray Observatory (CXO). The 5,000-second image was made with the Advanced Charged Coupled Device (CCD) Image Spectrometer (ACIS). Two shock waves are visible: A fast outer shock and a slower irner shock. The inner shock wave is believed to be due to the collision of ejecta from the supernova explosion with a circumstellar shell of material, heating it to a temperature of 10 million-degrees Celsius. The outer shock wave is analogous to an awesome sonic boom resulting from this collision The x-rays reveal a bright object near the center, which may be the long-sought neutron star or black hole remnant of the explosion that produced Cassiopeia A. Cassiopeia A is the 320-year-old remnant of a massive star that exploded. Located in the constellation Cassiopeia, it is 10 light-years across and 10,000 light-years from Earth. A supernova occurs when a massive star has used up its nuclear fuel and the pressure drops in the central core of the star. The matter in the core is crushed by gravity to higher and higher densities, and temperatures reach billions of degrees. Under these extreme conditions, nuclear reactions occur violently and catastrophically, reversing the collapse. A thermonuclear shock wave races through the now expanding stellar debris, fusing lighter elements into heavier ones and producing a brilliant visual outburst.

  11. Heaviest Stellar Black Hole Discovered in Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    2007-10-01

    Astronomers have located an exceptionally massive black hole in orbit around a huge companion star. This result has intriguing implications for the evolution and ultimate fate of massive stars. The black hole is part of a binary system in M33, a nearby galaxy about 3 million light years from Earth. By combining data from NASA's Chandra X-ray Observatory and the Gemini telescope on Mauna Kea, Hawaii, the mass of the black hole, known as M33 X-7, was determined to be 15.7 times that of the Sun. This makes M33 X-7 the most massive stellar black hole known. A stellar black hole is formed from the collapse of the core of a massive star at the end of its life. Chandra X-ray Image of M33 X-7 Chandra X-ray Image of M33 X-7 "This discovery raises all sorts of questions about how such a big black hole could have been formed," said Jerome Orosz of San Diego State University, lead author of the paper appearing in the October 18th issue of the journal Nature. M33 X-7 orbits a companion star that eclipses the black hole every three and a half days. The companion star also has an unusually large mass, 70 times that of the Sun. This makes it the most massive companion star in a binary system containing a black hole. Hubble Optical Image of M33 X-7 Hubble Optical Image of M33 X-7 "This is a huge star that is partnered with a huge black hole," said coauthor Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "Eventually, the companion will also go supernova and then we'll have a pair of black holes." The properties of the M33 X-7 binary system - a massive black hole in a close orbit around a massive companion star - are difficult to explain using conventional models for the evolution of massive stars. The parent star for the black hole must have had a mass greater than the existing companion in order to have formed a black hole before the companion star. Gemini Optical Image of M33 X-7 Gemini Optical Image of M33 X-7 Such a massive star would have had a radius larger than the present separation between the stars, so the stars must have been brought closer while sharing a common outer atmosphere. This process typically results in a large amount of mass being lost from the system, so much that the parent star should not have been able to form a 15.7 solar-mass black hole. The black hole's progenitor must have shed gas at a rate about 10 times less than predicted by models before it exploded. If even more massive stars also lose very little material, it could explain the incredibly luminous supernova seen recently as SN 2006gy. The progenitor for SN 2006gy is thought to have been about 150 times the mass of the Sun when it exploded. Artist's Illustration of M33 X-7 Artist's Illustration of M33 X-7 "Massive stars can be much less extravagant than people think by hanging onto a lot more of their mass toward the end of their lives," said Orosz. "This can have a big effect on the black holes that these stellar time-bombs make." Coauthor Wolfgang Pietsch was also the lead author of an article in the Astrophysical Journal that used Chandra observations to report that M33 X-7 is the first black hole in a binary system observed to undergo eclipses. The eclipsing nature enables unusually accurate estimates for the mass of the black hole and its companion. "Because it's eclipsing and because it has such extreme properties, this black hole is an incredible test-bed for studying astrophysics," said Pietsch. The length of the eclipse seen by Chandra gives information about the size of the companion. The scale of the companion's motion, as inferred from the Gemini observations, gives information about the mass of the black hole and its companion. Other observed properties of the binary were used to constrain the mass estimates. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Gemini is an international partnership managed by the Association of Universities for Research in Astronomy under a cooperative agreement with the National Science Foundation.

  12. Chandra Maps Vital Elements From Supernova

    NASA Astrophysics Data System (ADS)

    1999-12-01

    A team of astronomers led by Dr. John Hughes of Rutgers University in Piscataway, NJ has used observations from NASA's orbital Chandra X-ray Observatory to make an important new discovery that sheds light on how silicon, iron, and other elements were produced in supernova explosions. An X-ray image of Cassiopeia A (Cas A), the remnant of an exploded star, reveals gaseous clumps of silicon, sulfur, and iron expelled from deep in the interior of the star. The findings appear online in the Astrophysical Journal Letters at http://www.journals.uchicago.edu/ and are slated for print publication on Jan. 10, 2000. Authors of the paper, "Nucleosynthesis and Mixing in Cassiopeia A", are Hughes, Rutgers graduate student Cara Rakowski, Dr. David Burrows of the Pennsylvania State University, University Park, PA and Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics, Cambridge, MA. According to Hughes, one of the most profound accomplishments of twentieth century astronomy is the realization that nearly all of the elements other than hydrogen and helium were created in the interiors of stars. "During their lives, stars are factories that take the simplest element, hydrogen, and convert it into heavier ones," he said. "After consuming all the hydrogen in their cores, stars begin to evolve rapidly, until they finally run out of fuel and begin to collapse. In stars ten times or so more massive than our Sun, the central parts of the collapsing star may form a neutron star or a black hole, while the rest of the star is blown apart in a tremendous supernova explosion." Supernovae are rare, occurring only once every 50 years or so in a galaxy like our own. "When I first looked at the Chandra image of Cas A, I was amazed by the clarity and definition," said Hughes. "The image was much sharper than any previous one and I could immediately see lots of new details." Equal in significance to the image clarity is the potential the Chandra data held for measuring the composition of the various knots and filaments of stellar material visible in Cas A. Not only could the astronomers determine the composition of many knots in the remnant from the Chandra data, they were also able to infer where in the exploding star the knots had originated. For example, the most compact and brightest knots were composed mostly of silicon and sulfur, with little or no iron. This pointed to an origin deep in the star's interior where the temperatures had reached three billion degrees during the collapse and resulting supernova. Elsewhere, they found fainter features that contained significant amounts of iron as well as some silicon and sulfur. This material was produced even deeper in the star, where the temperatures during the explosion had reached higher values of four to five billion degrees. When Hughes and his collaborators compared where the compact silicon-rich knots and fainter iron-rich features were located in Cas A, they discovered that the iron-rich features from deepest in the star were near the outer edge of the remnant. This meant that they had been flung the furthest by the explosion that created Cas A. Even now this material appears to be streaming away from the site of the explosion with greater speed than the rest of the remnant. By studying the Cas A Chandra data further, astronomers hope to identify which of the several processes proposed by theoretical studies is likely to be the correct mechanism for explaining supernova explosions, both in terms of the dynamics and elements they produce. "In addition to understanding how iron and the other elements are produced in stars, we also want to learn how it gets out of stars and into the interstellar medium. This is why the study of supernovas and supernova remnants is so important," said Hughes. "Once released from stars, newly-created elements can then participate in the formation of new stars and planets in a great cycle that has gone on numerous times already. It is remarkable to realize that our planet Earth and indeed even humanity itself is part of this vast cosmic cycle." The Chandra observation was taken with the Advanced CCD Imaging Spectrometer (ACIS) on August 19, 1999. ACIS was built by Pennsylvania State University, and the Massachusetts Institute of Technology, Cambridge, MA. Press: Fact Sheet (08/99) To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  13. On the habitability of universes without stable deuterium

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.; Grohs, Evan

    2017-05-01

    In both stars and in the early universe, the production of deuterium is the first step on the way to producing heavier nuclei. If the strong force were slightly weaker, then deuterium would not be stable, and many authors have noted that nuclesynthesis would be compromised so that helium production could not proceed through standard reaction chains. Motivated by the possibility that other regions of space-time could have different values for the fundamental constants, this paper considers stellar evolution in universes without stable deuterium and argues that such universes can remain habitable. Even in universes with no stellar nucleosynthesis, stars can form and will generate energy through gravitational contraction. Using both analytic estimates and a state-of-the-art stellar evolution code, we show that such stars can be sufficiently luminous and long-lived to support life. Stars with initial masses that exceed the Chandrasekhar mass cannot be supported by degeneracy pressure and will explode at the end of their contraction phase. The resulting explosive nucleosynthesis can thus provide the universe with some heavy elements. We also explore the possibility that helium can be produced in stellar cores through a triple-nucleon reaction that is roughly analogous to the triple-alpha reaction that operates in our universe. Stars burning hydrogen through this process are somewhat hotter than those in our universe, but otherwise play the same role. Next we show that with even trace amounts (metallicity Z ∼10-10) of heavy elements - produced through the triple-nucleon process or by explosive nucleosynthesis - the CNO cycle can operate and allow stars to function. Finally, we consider Big Bang Nucleosynthesis without stable deuterium and find that only trace amounts of helium are produced, with even smaller abundances of other nuclei. With stars evolving through gravitational contraction, explosive nucleosynthesis, the triple-nucleon reaction, and the CNO cycle, universes with no stable deuterium are thus potentially habitable, contrary to many previous claims.

  14. The Abundances of the Fe Group Elements in Early B Stars in the Magellanic Clouds and Bridge

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Adelman, Saul J.

    2016-01-01

    The abundances of three Fe Group elements (V, Cr, and Fe) in 9 early main-sequence band B stars in the LMC, 7 in the SMC , and two in the Magellanic Bridge have been determined from archival FUSE observations and the Hubeny/Lanz NLTE programs TLUSTY/SYNSPEC. Lines from the Fe group elements, except for a few weak multiplets of Fe III, are not observable in the optical spectral region. The best set of lines in the FUSE spectral region are Fe III (UV1), V III 1150 Å, and Cr III 1137 Å. The abundances of these elements in early B stars are a marker for recent SNe Ia activity, as a single exploding white dwarf can deliver 0.5 solar masses of Ni-56 that decays into Fe to the ISM. The Fe group abundances in an older population of stars primarily reflect SNe II activity, in which a single explosion delivers only 0.07 solar masses of Ni-56 to the ISM (the rest remains trapped in the neutron star). The abundances of the Fe group elements in early B stars not only track SNe Ia activity but are also important for computing evolutionary tracks for massive stars. In general, the Fe abundance relative to the sun's value is comparable to the mean abundances for the lighter elements in the Clouds/Bridge but the values of [V,Cr/Fe]sun are smaller. This presentation will discuss the spatial distribution of the Fe Group elements in the Magellanic Clouds, and compare it with our galaxy in which the abundance of Fe declines with radial distance from the center. Support from NASA grants NAG5-13212, NNX10AD66G, STScI HST-GO-13346.22, and USC's Women in Science and Engineering (WiSE) program is greatly appreciated.

  15. The Type IIP SN 2005ay: An Extensive Study From UltraViolet To Near-IR

    NASA Astrophysics Data System (ADS)

    Bufano, F. M.; Turatto, M.; Zampieri, L.; Gal-Yam, A.

    2006-08-01

    Several supernova types are thought to explode via the gravitational collapse of the core of massive stars at the end of their lifetimes. The great observational diversity has not been fully understood even if it clearly involves the progenitor masses and configurations at the time of explosion. These Supernovae, called Core Collapse Supernovae (CC SNe), are expected to dominate the counts of SNe observed at high redshifts and to be the only observable probe of the first generation stars (Pop III). Recently indicated as reliable distance indicators (Hamuy 02, Pastorello `03), CC SNe are objects of great interest but significantly less studied in comparison with the Termonuclear ones. With the aim to understand better the reasons of the heterogeneous behaviour , we have started an extensive study of the properties of SN II with different observational features (luminosity, velocity, etc..). Here we present the last results on our first observed target, SN2005ay, a Type IIP supernova observed in an extended way from the Ultraviolet wavelengths, provided by the GALEX , to the Optical and near-IR , obtained with IISP (Italian Intensive Supernova Program).

  16. Cosmic gamma-ray bursts from primordial stars: A new renaissance in astrophysics?

    NASA Astrophysics Data System (ADS)

    Chardonnet, Pascal; Filina, Anastasia; Chechetkin, Valery; Popov, Mikhail; Baranov, Andrey

    2015-10-01

    The cosmic gamma-ray bursts are certainly an enigma in astrophysics. The “standard fireball” scenario developed during many years has provided a possible explanation of this phenomena. The aim of this work is simply to explore a new possible interpretation by developing a coherent scenario inside the global picture of stellar evolution. At the basis of our scenario, is the fact that maybe we have not fully understood how the core of a pair instability supernova explodes. In such way, we have proposed a new paradigm assuming that the core of such massive star, instead of doing a symmetrical explosion, is completely fragmented in hot spots of burning nuclear matter. We have tested our scenario with observational data like GRB spectra, lightcurves, Amati relation and GRB-SN connection, and for each set of data we have proposed a possible physical interpretation. We have also suggested some possible test of this scenario by measurement at high redshifts. If this scenario is correct, it tells us simply that the cosmic gamma-ray bursts are a missing link in stellar evolution, related to an unusual explosion.

  17. The binary progenitors of short and long GRBs and their gravitational-wave emission

    NASA Astrophysics Data System (ADS)

    Rueda, J. A.; Ruffini, R.; Rodriguez, J. F.; Muccino, M.; Aimuratov, Y.; Barres de Almeida, U.; Becerra, L.; Bianco, C. L.; Cherubini, C.; Filippi, S.; Kovacevic, M.; Moradi, R.; Pisani, G. B.; Wang, Y.

    2018-01-01

    We have sub-classified short and long-duration gamma-ray bursts (GRBs) into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS) or neutron star-black hole binaries (NS-BH). Long GRBs are produced via the induced gravitational collapse (IGC) scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore) and a NS companion. The COcore explodes as type Ic supernova (SN) leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1) the role of the NS structure and the nuclear equation of state; 2) the occurrence rates obtained from X and gamma-rays observations; 3) the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.

  18. Aspherical Supernovae: Effects on Early Light Curves

    NASA Astrophysics Data System (ADS)

    Afsariardchi, Niloufar; Matzner, Christopher D.

    2018-04-01

    Early light from core-collapse supernovae, now detectable in high-cadence surveys, holds clues to a star and its environment just before it explodes. However, effects that alter the early light have not been fully explored. We highlight the possibility of nonradial flows at the time of shock breakout. These develop in sufficiently nonspherical explosions if the progenitor is not too diffuse. When they do develop, nonradial flows limit ejecta speeds and cause ejecta–ejecta collisions. We explore these phenomena and their observational implications using global, axisymmetric, nonrelativistic FLASH simulations of simplified polytropic progenitors, which we scale to representative stars. We develop a method to track photon production within the ejecta, enabling us to estimate band-dependent light curves from adiabatic simulations. Immediate breakout emission becomes hidden as an oblique flow develops. Nonspherical effects lead the shock-heated ejecta to release a more constant luminosity at a higher, evolving color temperature at early times, effectively mixing breakout light with the early light curve. Collisions between nonradial ejecta thermalize a small fraction of the explosion energy; we will address emission from these collisions in a subsequent paper.

  19. Herschel Detects a Massive Dust Reservoir in Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Matsuura, M.; Dwek, E.; Meixner, M.; Otsuka, M.; Babler, B.; Barlow, M. J.; Roman-Duval, J.; Engelbracht, C.; Sandstrom K.; Lakicevic, M.; hide

    2011-01-01

    We report far-infrared and submillimeter observations of Supernova 1987A, the star that exploded on February 23, 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of approx.17-23 K at a rate of about 220 stellar luminosity. The intensity and spectral energy distribution of the emission suggests a dust mass of approx.0.4-0.7 stellar mass. The radiation must originate from the SN ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high red shifts.

  20. LISA Pathfinder Spacecraft Artist Concept

    NASA Image and Video Library

    2015-12-03

    This artist's concept shows ESA's LISA Pathfinder spacecraft, which launched on Dec. 3, 2015, from Kourou, French Guiana, will help pave the way for a mission to detect gravitational waves. LISA Pathfinder, led by the European Space Agency (ESA), is designed to test technologies that could one day detect gravitational waves. Gravitational waves, predicted by Einstein's theory of general relativity, are ripples in spacetime produced by any accelerating body. But the waves are so weak that Earth- or space-based observatories would likely only be able to directly detect such signals coming from massive astronomical systems, such as binary black holes or exploding stars. Detecting gravitational waves would be an important piece in the puzzle of how our universe began. http://photojournal.jpl.nasa.gov/catalog/PIA20196

  1. On the Origin of Hard X-ray Structures in the VELA Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    1998-12-01

    We propose an alternative explanation for the origin of two hard X-ray structures recently discovered in the central part of the Vela supernova remnant (SNR) by Willmore et al. (1992, MNRAS, 254, 139) and Markwardt & Ogelman (1995, Nature, 375, 40; 1997, ApJ, 480, L13), and interpreted as a plerion and a pulsar jet respectively. We suggest that the first structure is a dense material shed by the supernova progenitor star during the red supergiant stage, and reheated after the supernova exploded, while the "jet" is simply a dense filament in the Vela SNR's general shell, whose origin is connected with the Rayleigh-Taylor instability in the (main-sequence) wind-driven shell reaccelerated by the supernova blast wave.

  2. A Galactic Spectacle

    NASA Image and Video Library

    2010-08-05

    NASA image release August 5, 2010 A beautiful new image of two colliding galaxies has been released by NASA's Great Observatories. The Antennae galaxies, located about 62 million light-years from Earth, are shown in this composite image from the Chandra X-ray Observatory (blue), the Hubble Space Telescope (gold and brown), and the Spitzer Space Telescope (red). The Antennae galaxies take their name from the long antenna-like "arms," seen in wide-angle views of the system. These features were produced by tidal forces generated in the collision. The collision, which began more than 100 million years ago and is still occurring, has triggered the formation of millions of stars in clouds of dusts and gas in the galaxies. The most massive of these young stars have already sped through their evolution in a few million years and exploded as supernovas. The X-ray image from Chandra shows huge clouds of hot, interstellar gas that have been injected with rich deposits of elements from supernova explosions. This enriched gas, which includes elements such as oxygen, iron, magnesium, and silicon, will be incorporated into new generations of stars and planets. The bright, point-like sources in the image are produced by material falling onto black holes and neutron stars that are remnants of the massive stars. Some of these black holes may have masses that are almost one hundred times that of the Sun. The Spitzer data show infrared light from warm dust clouds that have been heated by newborn stars, with the brightest clouds lying in the overlapping region between the two galaxies. The Hubble data reveal old stars and star-forming regions in gold and white, while filaments of dust appear in brown. Many of the fainter objects in the optical image are clusters containing thousands of stars. The Chandra image was taken in December 1999. The Spitzer image was taken in December 2003. The Hubble image was taken in July 2004, and February 2005. Credit: NASA, ESA, SAO, CXC, JPL-Caltech, and STScI Acknowledgment: G. Fabbiano and Z. Wang (Harvard-Smithsonian CfA), and B. Whitmore (STScI)

  3. Preview of a Forthcoming Supernova

    NASA Image and Video Library

    2017-12-08

    Supernova Supernovae can occur one of two ways. The first occurs when a white dwarf—the vestigial ember of a dead star—passes so close to a living star that its matter leaks into the white dwarf. This causes a catastrophic explosion. However most people understand supernovae as the death of a massive star. When the star runs out of fuel toward the end of its life, the gravity at its heart sucks the surrounding mass into its center. At temperatures rocketing above 100 billion degrees Fahrenheit, all the layers of the star abruptly explode outward. The explosions produced by supernovae are so brilliant that astronomers use their luminosity to measure the distance between galaxies, the scale of the universe and the effects of dark energy. For a short period of time, one dying star can appear to shine as brightly as an entire galaxy. Supernovae are relatively common events, one occurring in our own galaxy once every 100 years. In 2014, a person could see the supernova M82 with a pair of binoculars. The cosmologist Tycho Brahe’s observation of a supernova in 1572 allowed him to disprove Aristotle’s theory that the heavens never changed. After a supernova, material expelled in the explosion can form a nebula—an interstellar pile of gas and dust. Over millions of years, gravity pulls the nebula’s materials into a dense orb called a protostar, which will become a new star. Within a few million years, this new star could go supernova as well. ------------------------------ Original Caption: NASA image release Feb. 24, 2012 At the turn of the 19th century, the binary star system Eta Carinae was faint and undistinguished. In the first decades of the century, it became brighter and brighter, until, by April 1843, it was the second brightest star in the sky, outshone only by Sirius (which is almost a thousand times closer to Earth). In the years that followed, it gradually dimmed again and by the 20th century was totally invisible to the naked eye. The star has continued to vary in brightness ever since, and while it is once again visible to the naked eye on a dark night, it has never again come close to its peak of 1843. NASA's Hubble Telescope captured an image of Eta Carinae. This image consists of ultraviolet and visible light images from the High Resolution Channel of Hubble's Advanced Camera for Surveys. The field of view is approximately 30 arcseconds across. The larger of the two stars in the Eta Carinae system is a huge and unstable star that is nearing the end of its life, and the event that the 19th century astronomers observed was a stellar near-death experience. Scientists call these outbursts supernova impostor events, because they appear similar to supernovae but stop just short of destroying their star. Although 19th century astronomers did not have telescopes powerful enough to see the 1843 outburst in detail, its effects can be studied today. The huge clouds of matter thrown out a century and a half ago, known as the Homunculus Nebula, have been a regular target for Hubble since its launch in 1990. This image, taken with the Advanced Camera for Surveys High Resolution Channel, is the most detailed yet, and shows how the material from the star was not thrown out in a uniform manner, but forms a huge dumbbell shape. Eta Carinae is not only interesting because of its past, but also because of its future. It is one of the closest stars to Earth that is likely to explode in a supernova in the relatively near future (though in astronomical timescales the "near future" could still be a million years away). When it does, expect an impressive view from Earth, far brighter still than its last outburst: SN 2006gy, the brightest supernova ever observed, came from a star of the same type, though from a galaxy over 200 million light-years away. Credit: ESA/NASA More information: www.spacetelescope.org/images/potw1208a/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  5. DUSTY EXPLOSIONS FROM DUSTY PROGENITORS: THE PHYSICS OF SN 2008S AND THE 2008 NGC 300-OT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochanek, C. S.

    2011-11-01

    SN 2008S and the 2008 NGC 300-OT were explosive transients of stars self-obscured by very dense, dusty stellar winds. An explosive transient with an unobserved shock breakout luminosity of order 10{sup 10} L{sub sun} is required to render the transients little obscured and visible in the optical at their peaks. Such a large breakout luminosity then implies that the progenitor stars were cool, red supergiants, most probably {approx}9 M{sub sun} extreme asymptotic giant branch stars. As the shocks generated by the explosions propagate outward through the dense wind, they produce a shock luminosity in soft X-rays that powers the long-livedmore » luminosity of the transients. Unlike typical cases of transients exploding into a surrounding circumstellar medium, the progenitor winds in these systems are optically thick to soft X-rays, easily absorb radio emission, and rapidly reform dust destroyed by the peak luminosity of the transients. As a result, X-rays are absorbed by the gas and the energy is ultimately radiated by the reformed dust. Three years post-peak, both systems are still significantly more luminous than their progenitor stars, but they are again fully shrouded by the reformed dust and only visible in the mid-IR. The high luminosity and heavy obscuration may make it difficult to determine the survival of the progenitor stars for {approx}10 years. However, our model indicates that SN 2008S, but not the NGC 300-OT, should now be a detectable X-ray source. SN 2008S has a higher estimated shock velocity and a lower density wind, so the X-rays begin to escape at a much earlier phase.« less

  6. Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction

    NASA Astrophysics Data System (ADS)

    Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.

    2017-05-01

    Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.

  7. Neutron Star/supernova Remnant Associations

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the (diffuse) supernova remnants (SNRs) can be products of an off-centred supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical centre of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs (e.g. PSR B 1610-50, PSR B 1757-24, SGR 0525-66) through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR. Taking into account of these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of NS/SNR associations. The possibilities of our approach are illustrated with the example of the association between PSR B 1706-44 and SNR G 343.1-2.3. We show that this association could be real if both objects are the remnants of a SN exploded within a mushroom-like cavity (created by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of a much less density). We also show that the SN explosion sites in some middle-aged (shell-like) SNRs could be marked by (compact) nebulae of thermal X-ray emission. The possible detection of such nebulae within middle-aged SNRs could be used for the re-estimation of implied transverse velocities of known NSs or for the search of new stellar remnants possibly associated with these SNRs.

  8. On the radial oxygen distribution in the Galactic disc

    NASA Astrophysics Data System (ADS)

    Mishurov, Yu. N.; Tkachenko, R. V.

    2018-01-01

    The binned oxygen distribution, derived using new Cepheid observations, demonstrates wriggling radial pattern with different gradients in various ranges of Galactic radius, in particular a plateau distribution within 7 ≲ r ≲ 9 kpc (for the solar distance r⊙ = 7.9 kpc) where the mean Galactic abundance is about 0.2 dex higher than the solar one. Our modelling of oxygen synthesis in the Galactic disc is based on the refine theory that takes into account the combined effect of corotation resonance and turbulent diffusion on the disc enrichment. The theory fits to observations best of all if the time-scale (t_f=-f/\\dot{f}) of gas infall rate f(r, t) (where r and t are the Galactocentric radius and time, respectively) on to the disc is tf ∼ 2-3 Gyr whereas the fit is the worst if tf ∼ 6 Gyr (the last means that the high rate of gas infall at present epoch ∼1.5 M⊙ yr-1 does not satisfy the observed oxygen radial distribution). For inside-out scenario, further studies are necessary. Using the derived mean masses of newly synthesized oxygen ejected per core-collapsed supernova and theoretical oxygen yields, we compute the initial upper masses, mU, of stars that can explode as core-collapsed supernovae. Our estimates show that if tf ∼ 2 Gyr in the framework of rotating stars, their mU are no more than 24 M⊙, but if tf ∼ 3 Gyr in model of rotating stars or in the case of non-rotating star mU can be as high as 40-50 M⊙ like Wolf-Rayet stars that are considered as candidates for Types Ib/c supernovae.

  9. Exploding head syndrome is common in college students.

    PubMed

    Sharpless, Brian A

    2015-08-01

    Exploding head syndrome is characterized by the perception of loud noises during sleep-wake or wake-sleep transitions. Although episodes by themselves are relatively harmless, it is a frightening phenomenon that may result in clinical consequences. At present there are little systematic data on exploding head syndrome, and prevalence rates are unknown. It has been hypothesized to be rare and to occur primarily in older (i.e. 50+ years) individuals, females, and those suffering from isolated sleep paralysis. In order to test these hypotheses, 211 undergraduate students were assessed for both exploding head syndrome and isolated sleep paralysis using semi-structured diagnostic interviews: 18.00% of the sample experienced lifetime exploding head syndrome, this reduced to 16.60% for recurrent cases. Though not more common in females, it was found in 36.89% of those diagnosed with isolated sleep paralysis. Exploding head syndrome episodes were accompanied by clinically significant levels of fear, and a minority (2.80%) experienced it to such a degree that it was associated with clinically significant distress and/or impairment. Contrary to some earlier theorizing, exploding head syndrome was found to be a relatively common experience in younger individuals. Given the potential clinical impacts, it is recommended that it be assessed more regularly in research and clinical settings. © 2015 European Sleep Research Society.

  10. United States Seaport Security: Protection Against a Nuclear Device Attack Delivered in a Shipping Cargo Container

    DTIC Science & Technology

    2014-06-13

    exploded due to an initial fire discovered at the pier warehouse. Fragments from the blast were sent as far as Galveston ten miles away. Approximately...the 2009 attempt on Christmas Day involving Umar Farouk Abdulmutallab (the “ underwear bomber”) led to the installation of full-body scanners in nearly...States, such as the Christmas Day 2009 “ underwear bomber” and the 2010 plot to send explosive packages utilizing printer ink cartridges. Acting DHS

  11. Hubble Sees a Youthful Cluster

    NASA Image and Video Library

    2017-12-08

    Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic Cloud, a satellite galaxy of our own galaxy, the Milky Way, in the southern hemisphere constellation of Dorado. First observed by John Herschel in 1835, NGC 1783 is nearly 160,000 light-years from Earth, and has a mass around 170,000 times that of the sun. Globular clusters are dense collections of stars held together by their own gravity, which orbit around galaxies like satellites. The image clearly shows the symmetrical shape of NGC 1783 and the concentration of stars towards the center, both typical features of globular clusters. By measuring the color and brightness of individual stars, astronomers can deduce an overall age for a cluster and a picture of its star formation history. NGC 1783 is thought to be less than one and a half billion years old — which is very young for globular clusters, which are typically several billion years old. During that time, it is thought to have undergone at least two periods of star formation, separated by 50 to 100 million years. This ebb and flow of star-forming activity is an indicator of how much gas is available for star formation at any one time. When the most massive stars created in the first burst of formation explode as supernovae they blow away the gas needed to form further stars, but the gas reservoir can later be replenished by less massive stars which last longer and shed their gas less violently. After this gas flows to the dense central regions of the star cluster, a second phase of star formation can take place and once again the short-lived massive stars blow away any leftover gas. This cycle can continue a few times, at which time the remaining gas reservoir is thought to be too small to form any new stars. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. NASA'S Chandra Finds Superfluid in Neutron Star's Core

    NASA Astrophysics Data System (ADS)

    2011-02-01

    NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities. Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star's core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons. Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period. "This drop in temperature, although it sounds small, was really dramatic and surprising to see," said Dany Page of the National Autonomous University in Mexico, leader of a team with a paper published in the February 25, 2011 issue of the journal Physical Review Letters. "This means that something unusual is happening within this neutron star." Superfluids containing charged particles are also superconductors, meaning they act as perfect electrical conductors and never lose energy. The new results strongly suggest that the remaining protons in the star's core are in a superfluid state and, because they carry a charge, also form a superconductor. "The rapid cooling in Cas A's neutron star, seen with Chandra, is the first direct evidence that the cores of these neutron stars are, in fact, made of superfluid and superconducting material," said Peter Shternin of the Ioffe Institute in St Petersburg, Russia, leader of a team with a paper accepted in the journal Monthly Notices of the Royal Astronomical Society. Both teams show that this rapid cooling is explained by the formation of a neutron superfluid in the core of the neutron star within about the last 100 years as seen from Earth. The rapid cooling is expected to continue for a few decades and then it should slow down. "It turns out that Cas A may be a gift from the Universe because we would have to catch a very young neutron star at just the right point in time," said Page's co-author Madappa Prakash, from Ohio University. "Sometimes a little good fortune can go a long way in science." The onset of superfluidity in materials on Earth occurs at extremely low temperatures near absolute zero, but in neutron stars, it can occur at temperatures near a billion degrees Celsius. Until now there was a very large uncertainty in estimates of this critical temperature. This new research constrains the critical temperature to between one half a billion to just under a billion degrees. Cas A will allow researchers to test models of how the strong nuclear force, which binds subatomic particles, behaves in ultradense matter. These results are also important for understanding a range of behavior in neutron stars, including "glitches," neutron star precession and pulsation, magnetar outbursts and the evolution of neutron star magnetic fields. Small sudden changes in the spin rate of rotating neutron stars, called glitches, have previously given evidence for superfluid neutrons in the crust of a neutron star, where densities are much lower than seen in the core of the star. This latest news from Cas A unveils new information about the ultra-dense inner region of the neutron star. "Previously we had no idea how extended superconductivity of protons was in a neutron star," said Shternin's co-author Dmitry Yakovlev, also from the Ioffe Institute. The cooling in the Cas A neutron star was first discovered by co-author Craig Heinke, from the University of Alberta, Canada, and Wynn Ho from the University of Southampton, UK, in 2010. It was the first time that astronomers have measured the rate of cooling of a young neutron star. Page's co-authors were Prakash, James Lattimer (State University of New York at Stony Brook), and Andrew Steiner (Michigan State University.) Shternin's co-authors were Yakovlev, Heinke, Ho, and Daniel Patnaude (Harvard-Smithsonian Center for Astrophysics.) More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  13. 25 CFR 11.409 - Reckless burning or exploding.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Reckless burning or exploding. 11.409 Section 11.409 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.409 Reckless burning or exploding. A person commits a...

  14. 25 CFR 11.409 - Reckless burning or exploding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Reckless burning or exploding. 11.409 Section 11.409 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.409 Reckless burning or exploding. A person commits a...

  15. 25 CFR 11.409 - Reckless burning or exploding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Reckless burning or exploding. 11.409 Section 11.409 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.409 Reckless burning or exploding. A person commits a...

  16. 25 CFR 11.409 - Reckless burning or exploding.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Reckless burning or exploding. 11.409 Section 11.409 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.409 Reckless burning or exploding. A person commits a...

  17. 25 CFR 11.409 - Reckless burning or exploding.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Reckless burning or exploding. 11.409 Section 11.409 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.409 Reckless burning or exploding. A person commits a...

  18. A New Take on Exploding Carts

    ERIC Educational Resources Information Center

    Broder, Darren; Burleigh, James; Christian, Matthew; Mowry, Shawn; Hassel, George E.

    2017-01-01

    The Exploding Carts is a popular introductory physics activity in which a one-dimensional explosion is simulated utilizing two dynamics carts that are pushed apart by a spring-loaded plunger released from one of the carts. Traditional treatments of the Exploding Carts usually involve multiple trials where the mass of one or both of the carts is…

  19. Hubble snap a beautiful supernova explosion some 160,000 light-years from Earth

    NASA Image and Video Library

    2017-12-08

    Of all the varieties of exploding stars, the ones called Type Ia are perhaps the most intriguing. Their predictable brightness lets astronomers measure the expansion of the universe, which led to the discovery of dark energy. Yet the cause of these supernovae remains a mystery. Do they happen when two white dwarf stars collide? Or does a single white dwarf gorge on gases stolen from a companion star until bursting? If the second theory is true, the normal star should survive. Astronomers used NASA's Hubble Space Telescope to search the gauzy remains of a Type Ia supernova in a neighboring galaxy called the Large Magellanic Cloud. They found a sun-like star that showed signs of being associated with the supernova. Further investigations will be needed to learn if this star is truly the culprit behind a white dwarf's fiery demise. This image, taken with NASA's Hubble Space Telescope, shows the supernova remnant SNR 0509-68.7, also known as N103B. It is located 160,000 light-years from Earth in a neighboring galaxy called the Large Magellanic Cloud. N103B resulted from a Type Ia supernova, whose cause remains a mystery. One possibility would leave behind a stellar survivor, and astronomers have identified a possible candidate. The actual supernova remnant is the irregular shaped dust cloud, at the upper center of the image. The gas in the lower half of the image and the dense concentration of stars in the lower left are the outskirts of the star cluster NGC 1850. The Hubble image combines visible and near-infrared light taken by the Wide Field Camera 3 in June 2014. Credit: NASA, ESA and H.-Y. Chu (Academia Sinica, Taipei) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Triggering Star Formation: From the Pillars of Creation to the Formation of Our Solar System

    NASA Astrophysics Data System (ADS)

    Gritschneder, Matthias; Lin, Douglas N. C.

    We study the evolution of molecular clouds under the influence of ionizing radiation. We propose that the Pipe Nebula is an HII region shell swept up by the B2 IV β Cephei star θ Ophiuchi. After reviewing the recent observations, we perform a series of analytical calculations. We are able to show that the current size, mass and pressure of the region can be explained in this scenario. The Pipe Nebula can be best described by a three phase medium in pressure equilibrium. The pressure support is provided by the ionized gas and mediated by an atomic component to confine the cores at the observed current pressure. We then present simulations on the future evolution as soon as the massive star explodes in a supernova. We show that a surviving core at the border of the HII-region (D = 5 pc) is getting enriched sufficiently with supernova material and is triggered into collapse fast enough to be consistent with the tight constraints put by meteoritic data of e.g.26Al on the formation of our Solar System. We therefore propose that the formation of the Solar System was triggered by the shock wave of a type IIa supernova interacting with surviving cold structures similar to the Pillars of Creation at the border of HII-regions.

  1. Hydro-gravitational-dynamics cosmology is crucial to astrobiology and the biological big bang at two million years

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2015-09-01

    Hydro-Gravitational-Dynamics (HGD) cosmology predicts that the 1012 s (30 Kyr) H-He4 plasma protogalaxies become, by viscous fragmentation, proto-globular-star-cluster PGC clumps of a trillion small planets, at the 1013 s transition to gas. Larger planets and stars result from mergers of these hot 3000 K hydrogen planets in the PGCs. Stardust oxides of life chemicals C, N, O, Fe, Si seed the planets when the stars explode as supernovae. Hydrogen reduces the metal oxides and silicates to metal and rocky planet cores with massive hot water oceans at critical water temperature 647 K in which organic chemistry and life can develop. Because information is continually exchanged between the merging planets, they form a cosmic soup. The biological big bang occurs between 2 Myr when liquid water rains hot deep oceans in the cooling cosmos, and 8 Myr when the oceans freeze6. Thus, HGD cosmology explains the Hoyle/Wickramasinghe concept of cometary panspermia by giving a vast, hot, nourishing, cosmological primordial soup for abiogenesis, and the means for transmitting the resulting life forms and their evolving RNA/DNA mechanisms widely throughout the universe. A primordial astrophysical basis is provided for astrobiology by HGD cosmology. Concordance ΛCDMHC cosmology is rendered obsolete by the observation of complex life on Earth.

  2. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-07-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.

  3. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  4. Modeling Type II-P/II-L Supernovae Interacting with Recent Episodic Mass Ejections from Their Presupernova Stars with MESA and SNEC

    NASA Astrophysics Data System (ADS)

    Das, Sanskriti; Ray, Alak

    2017-12-01

    We show how dense, compact, discrete shells of circumstellar gas immediately outside of red supergiants affect the optical light curves of Type II-P/II-L supernovae (SNe), using the example of SN 2013ej. Earlier efforts in the literature had used an artificial circumstellar medium (CSM) stitched to the surface of an evolved star that had not gone through a phase of late-stage heavy mass loss, which, in essence, is the original source of the CSM. In contrast, we allow enhanced mass-loss rate from the modeled star during the 16O and 28Si burning stages and construct the CSM from the resulting mass-loss history in a self-consistent way. Once such evolved pre-SN stars are exploded, we find that the models with early interaction between the shock and the dense CSM reproduce light curves far better than those without that mass loss and, hence, having no nearby dense CSM. The required explosion energy for the progenitors with a dense CSM is reduced by almost a factor of two compared to those without the CSM. Our model, with a more realistic CSM profile and presupernova and explosion parameters, fits observed data much better throughout the rise, plateau, and radioactive tail phases as compared to previous studies. This points to an intermediate class of supernovae between Type II-P/II-L and Type II-n SNe with the characteristics of simultaneous UV and optical peak, slow decline after peak, and a longer plateau.

  5. Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Yu; Naab, Thorsten; Glover, Simon C. O.; Walch, Stefanie; Clark, Paul C.

    2017-10-01

    We present high-resolution hydrodynamical simulations of isolated dwarf galaxies including self-gravity, non-equilibrium cooling and chemistry, interstellar radiation fields (ISRF) and shielding, star formation, and stellar feedback. This includes spatially and temporally varying photoelectric (PE) heating, photoionization, resolved supernova (SN) blast waves and metal enrichment. A new flexible method to sample the stellar initial mass function allows us to follow the contribution to the ISRF, the metal output and the SN delay times of individual massive stars. We find that SNe play the dominant role in regulating the global star formation rate, shaping the multiphase interstellar medium (ISM) and driving galactic outflows. Outflow rates (with mass-loading factors of a few) and hot gas fractions of the ISM increase with the number of SNe exploding in low-density environments where radiative energy losses are low. While PE heating alone can suppress star formation as efficiently as SNe alone can do, it is unable to drive outflows and reproduce the multiphase ISM that emerges naturally whenever SNe are included. We discuss the potential origins for the discrepancy between our results and another recent study that claimed that PE heating dominates over SNe. In the absence of SNe and photoionization (mechanisms to disperse dense clouds), the impact of PE heating is highly overestimated owing to the (unrealistic) proximity of dense gas to the radiation sources. This leads to a substantial boost of the infrared continuum emission from the UV-irradiated dust and a far-infrared line-to-continuum ratio too low compared to observations.

  6. Exploding Head Syndrome in the Epilepsy Monitoring Unit: Case Report and Literature Review.

    PubMed

    Gillis, Kara; Ng, Marcus C

    2017-01-01

    Diagnosis of paroxysmal events in epilepsy patients is often made through video-telemetry electroencephalography in the epilepsy monitoring unit. This case report describes the first-ever diagnosis of exploding head syndrome in a patient with longstanding epilepsy and novel nocturnal events. In this report, we describe the presentation of exploding head syndrome and its prevalence and risk factors. In addition, the prevalence of newly diagnosed sleep disorders through video-telemetry electroencephalography in the epilepsy monitoring unit is briefly reviewed. This report also illustrates the novel use of clobazam for the treatment of exploding head syndrome.

  7. Topiramate Responsive Exploding Head Syndrome

    PubMed Central

    Palikh, Gaurang M.; Vaughn, Bradley V.

    2010-01-01

    Exploding head syndrome is a rare phenomenon but can be a significant disruption to quality of life. We describe a 39-year-old female with symptoms of a loud bang and buzz at sleep onset for 3 years. EEG monitoring confirmed these events occurred in transition from stage 1 sleep. This patient reported improvement in intensity of events with topiramate medication. Based on these results, topiramate may be an alternative method to reduce the intensity of events in exploding head syndrome. Citation: Palikh GM; Vaughn BV. Topiramate responsive exploding head syndrome. J Clin Sleep Med 2010;6(4):382-383. PMID:20726288

  8. Massive Stars in Interactive Binaries

    NASA Astrophysics Data System (ADS)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when stars occur in bound pairs, groups or tight clusters.

  9. The Dawn of a New Era for Supernova 1987a

    NASA Image and Video Library

    2017-12-08

    Three decades ago, astronomers spotted one of the brightest exploding stars in more than 400 years. The titanic supernova, called Supernova 1987A (SN 1987A), blazed with the power of 100 million suns for several months following its discovery on Feb. 23, 1987. Since that first sighting, SN 1987A has continued to fascinate astronomers with its spectacular light show. Located in the nearby Large Magellanic Cloud, it is the nearest supernova explosion observed in hundreds of years and the best opportunity yet for astronomers to study the phases before, during, and after the death of a star. "The 30 years' worth of observations of SN 1987A are important because they provide insight into the last stages of stellar evolution," said Robert Kirshner of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, and the Gordon and Betty Moore Foundation in Palo Alto, California. The latest data from these powerful telescopes indicate that SN 1987A has passed an important threshold. The supernova shock wave is moving beyond the dense ring of gas produced late in the life of the pre-supernova star when a fast outflow or wind from the star collided with a slower wind generated in an earlier red giant phase of the star's evolution. What lies beyond the ring is poorly known at present, and depends on the details of the evolution of the star when it was a red giant. Read more: go.nasa.gov/2lEgs8M NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Hubble Uncovering the Secrets of the Quintuplet Cluster

    NASA Image and Video Library

    2017-12-08

    Although this cluster of stars gained its name due to its five brightest stars, it is home to hundreds more. The huge number of massive young stars in the cluster is clearly captured in this NASA/ESA Hubble Space Telescope image. The cluster is located close to the Arches Cluster and is just 100 light-years from the center of our galaxy. The cluster’s proximity to the dust at the center of the galaxy means that much of its visible light is blocked, which helped to keep the cluster unknown until its discovery in 1990, when it was revealed by infrared observations. Infrared images of the cluster, like the one shown here, allow us to see through the obscuring dust to the hot stars in the cluster. The Quintuplet Cluster hosts two extremely rare luminous blue variable stars: the Pistol Star and the lesser known V4650 Sgr. If you were to draw a line horizontally through the center of this image from left to right, you could see the Pistol Star hovering just above the line about one third of the way along it. The Pistol Star is one of the most luminous known stars in the Milky Way and takes its name from the shape of the Pistol Nebula that it illuminates, but which is not visible in this infrared image. The exact age and future of the Pistol Star are uncertain, but it is expected to end in a supernova or even a hypernova in one to three million years. The cluster also contains a number of red supergiants. These stars are among the largest in the galaxy and are burning their fuel at an incredible speed, meaning they will have a very short lifetime. Their presence suggests an average cluster age of nearly four million years. At the moment these stars are on the verge of exploding as supernovae. During their spectacular deaths they will release vast amounts of energy which, in turn, will heat the material — dust and gas — between the other stars. This observation shows the Quintuplet Cluster in the infrared and demonstrates the leap in Hubble’s performance since its 1999 image of same object. Credit: ESA/NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. 78 FR 68835 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP14-15-000] Southern Star..., 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky... of the Commission's Regulations under the Natural Gas Act (NGA). Southern Star seeks authorization to...

  12. A Look into the Hellish Cradles of Suns and Solar Systems

    NASA Astrophysics Data System (ADS)

    2009-09-01

    New images released today by ESO delve into the heart of a cosmic cloud, called RCW 38, crowded with budding stars and planetary systems. There, young stars bombard fledgling suns and planets with powerful winds and blazing light, helped in their task by short-lived, massive stars that explode as supernovae. In some cases, this onslaught cooks away the matter that may eventually form new solar systems. Scientists think that our own Solar System emerged from such an environment. The dense star cluster RCW 38 glistens about 5500 light years away in the direction of the constellation Vela (the Sails). Like the Orion Nebula Cluster, RCW 38 is an "embedded cluster", in that the nascent cloud of dust and gas still envelops its stars. Astronomers have determined that most stars, including the low mass, reddish ones that outnumber all others in the Universe, originate in these matter-rich locations. Accordingly, embedded clusters provide scientists with a living laboratory in which to explore the mechanisms of star and planetary formation. "By looking at star clusters like RCW 38, we can learn a great deal about the origins of our Solar System and others, as well as those stars and planets that have yet to come", says Kim DeRose, first author of the new study that appears in the Astronomical Journal. DeRose did her work on RCW 38 as an undergraduate student at the Harvard-Smithsonian Center for Astrophysics, USA. Using the NACO adaptive optics instrument on ESO's Very Large Telescope [1], astronomers have obtained the sharpest image yet of RCW 38. They focused on a small area in the centre of the cluster that surrounds the massive star IRS2, which glows in the searing, white-blue range, the hottest surface colour and temperatures possible for stars. These dramatic observations revealed that IRS2 is actually not one, but two stars - a binary system consisting of twin scorching stars, separated by about 500 times the Earth-Sun distance. In the NACO image, the astronomers found a handful of protostars - the faintly luminous precursors to fully realised stars - and dozens of other candidate stars that have eked out an existence here despite the powerful ultraviolet light radiated by IRS2. Some of these gestating stars may, however, not get past the protostar stage. IRS2's strong radiation energises and disperses the material that might otherwise collapse into new stars, or that has settled into so-called protoplanetary discs around developing stars. In the course of several million years, the surviving discs may give rise to the planets, moons and comets that make up planetary systems like our own. As if intense ultraviolet rays were not enough, crowded stellar nurseries like RCW 38 also subject their brood to frequent supernovae when giant stars explode at the ends of their lives. These explosions scatter material throughout nearby space, including rare isotopes - exotic forms of chemical elements that are created in these dying stars. This ejected material ends up in the next generation of stars that form nearby. Because these isotopes have been detected in our Sun, scientists have concluded that the Sun formed in a cluster like RCW 38, rather than in a more rural portion of the Milky Way. "Overall, the details of astronomical objects that adaptive optics reveals are critical in understanding how new stars and planets form in complex, chaotic regions like RCW 38", says co-author Dieter Nürnberger. Notes [1] The name "NACO" is a combination of the Nasmyth Adaptive Optics System (NAOS) and the Near-Infrared Imager and Spectrograph (CONICA). Adaptive optics cancels out most of the image-distorting turbulence in Earth's atmosphere caused by temperature variations and wind. More information This research was presented in a paper that appeared in the Astronomical Journal: A Very Large Telescope / NACO study of star formation in the massive embedded cluster RCW 38, by DeRose et al. (2009, AJ, 138, 33-45). The team is composed of K.L. DeRose, T.L. Bourke, R.A. Gutermuth and S.J. Wolk (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), S.T. Megeath (Department of Physics and Astronomy, The University of Toledo, USA), J. Alves (Centro Astronómico Hispano Alemán, Almeria, Spain), and D. Nürnberger (ESO). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. Late formation of silicon carbide in type II supernovae

    PubMed Central

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua

    2018-01-01

    We have found that individual presolar silicon carbide (SiC) dust grains from supernovae show a positive correlation between 49Ti and 28Si excesses, which is attributed to the radioactive decay of the short-lived (t½ = 330 days) 49V to 49Ti in the inner highly 28Si-rich Si/S zone. The 49V-49Ti chronometer shows that these supernova SiC dust grains formed at least 2 years after their parent stars exploded. This result supports recent dust condensation calculations that predict a delayed formation of carbonaceous and SiC grains in supernovae. The astronomical observation of continuous buildup of dust in supernovae over several years can, therefore, be interpreted as a growing addition of C-rich dust to the dust reservoir in supernovae. PMID:29376119

  14. VisPort: Web-Based Access to Community-Specific Visualization Functionality [Shedding New Light on Exploding Stars: Visualization for TeraScale Simulation of Neutrino-Driven Supernovae (Final Technical Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, M Pauline

    2007-06-30

    The VisPort visualization portal is an experiment in providing Web-based access to visualization functionality from any place and at any time. VisPort adopts a service-oriented architecture to encapsulate visualization functionality and to support remote access. Users employ browser-based client applications to choose data and services, set parameters, and launch visualization jobs. Visualization products typically images or movies are viewed in the user's standard Web browser. VisPort emphasizes visualization solutions customized for specific application communities. Finally, VisPort relies heavily on XML, and introduces the notion of visualization informatics - the formalization and specialization of information related to the process and productsmore » of visualization.« less

  15. Exploding head syndrome.

    PubMed

    Sharpless, Brian A

    2014-12-01

    Exploding head syndrome is characterized by the perception of abrupt, loud noises when going to sleep or waking up. They are usually painless, but associated with fear and distress. In spite of the fact that its characteristic symptomatology was first described approximately 150 y ago, exploding head syndrome has received relatively little empirical and clinical attention. Therefore, a comprehensive review of the scientific literature using Medline, PsycINFO, Google Scholar, and PubMed was undertaken. After first discussing the history, prevalence, and associated features, the available polysomnography data and five main etiological theories for exploding head syndrome are summarized. None of these theories has yet reached dominance in the field. Next, the various methods used to assess and treat exploding head syndrome are discussed, as well as the limited outcome data. Finally, recommendations for future measure construction, treatment options, and differential diagnosis are provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. THE DEPENDENCE OF THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVAE ON THE EQUATION OF STATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, Sean M., E-mail: smc@flash.uchicago.edu

    2013-03-01

    We study the dependence of the delayed neutrino-heating mechanism for core-collapse supernovae on the equation of state (EOS). Using a simplified treatment of the neutrino physics with a parameterized neutrino luminosity, we explore the relationship between explosion time, mass accretion rate, and neutrino luminosity for a 15 M {sub Sun} progenitor in 1D and 2D. We test the EOS most commonly used in core-collapse simulations: the models of Lattimer and Swesty and the model of Shen et al. We find that for a given neutrino luminosity, 'stiffer' EOS, where stiffness is determined by a combination of nuclear matter properties notmore » just incompressibility, K, explode later than 'softer' EOS. The EOS of Shen et al., being the stiffest EOS, by virtue of larger incompressibility and symmetry energy slope, L, explodes later than any of the Lattimer and Swesty EOS models. Amongst the Lattimer and Swesty EOS that all share the same value of L, the explosion time increases with increasing nuclear incompressibility, K. We find that this holds in both 1D and 2D, while for all of the models, explosions are obtained more easily in 2D than in 1D. We argue that this EOS dependence is due in part to a greater amount of acoustic flux from denser proto-neutron star atmospheres that result from a softer EOS. We also discuss the relevance of approximate instability criteria to realistic simulations.« less

  17. Gamma-ray Bursts May Originate in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    2001-04-01

    New findings from two X-ray satellites suggest that gamma-ray bursts, some of the most intense blasts in the universe, may be created in the same area where stars are born. Dr. Luigi Piro of the Consiglio Nazionale delle Ricerche (CNR) in Rome, Italy, presented data from NASA's Chandra X-ray Observatory and the Italian-Dutch ASI BeppoSAX observatory today at the Gamma Ray 2001 conference in Baltimore, MD. "We know that when a gamma-ray burst explodes, it produces a blast of material called a fireball, which expands at relativistic speeds like a rapidly inflating bubble," said Piro, who works within CNR's Istituto di Astrofisica Spaziale. "Our team found evidence that the blast wave caused by the fireball brakes against a wall of very dense gas, which we believe is the crowded region where stars form." Several theories exist about what causes gamma-ray bursts. Among more popular theories are that gamma-ray bursts come from various combinations of merging neutron stars and black holes, or, from the explosion of massive stars, called hypernovae. "Because gamma-ray bursts are going off in extremely distant galaxies, it is difficult to 'see' the regions that harbor them," said Piro. "We can only gather circumstantial evidence as to where and how they form." Piro's observations support the hypernova model. Scientists believe that within dense star-forming regions, the massive star required for a hypernova explosion evolves extremely rapidly. On astronomical time scales, the supermassive star would evolve over the course of only about one million years. Thus, the hypernova explosion may occur in the same stellar environment that originally produced the massive star itself, and perhaps may trigger even more star formation. The hint that gamma-ray bursts can occur in dense media came during a Chandra observation of an afterglow that occurred on September 26, 2000. Prof. Gordon Garmire of Pennsylvania State University, University Park, PA, found X-ray emission to be greater than that expected by the standard scenario of a fireball in a low-density medium - an important clue that the explosion occurred in a dense region. Next, on February 22, 2001, Piro said that Chandra observations of the burst's afterglow, one of the brightest bursts ever observed by BeppoSAX, provided evidence of a fireball expanding in a very dense gas. These recent results supported data from four other gamma-ray bursts observed by BeppoSAX and Chandra (GRB970508, GRB990705, GRB991216, and GRB000214). In these bursts, Piro and his team found evidence indicating that the burst had encountered an extremely dense gas. The properties of this gas suggest that it originated from a very massive progenitor before it exploded as a gamma-ray burst. A key element in the success of these observations has been the perfect timing and liaison between the two satellites, Chandra and BeppoSAX, according to Piro. Piro is the Mission Scientist for BeppoSAX, the instrument that first detected X-ray afterglows from gamma-ray bursts. Currently, astronomers are not usually notified about gamma-ray bursts until an hour or so after they occur. These bursts last only for a few milliseconds to about a minute, although their afterglow can linger in X-ray and optical light for days or weeks. The HETE-2 satellite, launched in October 2000, and Swift, scheduled for a 2003 launch, will provide nearly instant notification of bursts in action, providing satellites such as Chandra a better opportunity to study the afterglow phenomenon in depth. The ACIS X-ray camera was developed for NASA by Penn State and the Massachusetts Institute of Technology. The High Energy Transmission Grating Spectrometer was built by MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  18. Exploring the universe through discovery science on NIF

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2016-10-01

    New regimes of science are being experimentally studied at high energy density facilities around the world, spanning drive energies from microjoules to megajoules, and time scales from femtoseconds to microseconds. The ability to shock and ramp compress samples to very high pressures and densities allows new states of matter relevant to planetary and stellar interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars (such as supernovae), accreting compact objects (such as white dwarfs, neutron stars, and black holes), and planetary formation dynamics are being probed. The dynamics of magnetized plasmas relevant to astrophysics, both in collisional and collisionless systems, are starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation, the turbulent magnetic dynamo effect, magnetic reconnection, and particle acceleration. And new results from thermonuclear reactions in hot dense plasmas relevant to stellar and big bang nucleosynthesis are starting to emerge. A selection of examples providing a compelling vision for frontier science on NIF in the coming decade will be presented. This work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  19. Exploring the universe through Discovery Science on NIF

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2017-10-01

    New regimes of science are being experimentally studied at high energy density facilities around the world, spanning drive energies from microjoules to megajoules, and time scales from femtoseconds to microseconds. The ability to shock and ramp compress samples to very high pressures and densities allows new states of matter relevant to planetary and stellar interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars (such as supernovae), accreting compact objects (such as white dwarfs, neutron stars, and black holes), and planetary formation dynamics (relevant to the exoplanets) are being probed. The dynamics of magnetized plasmas relevant to astrophysics, both in collisional and collisionless systems, are starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation, the turbulent magnetic dynamo effect, magnetic reconnection, and particle acceleration. And new results from thermonuclear reactions in hot dense plasmas relevant to stellar and big bang nucleosynthesis are starting to emerge. A selection of examples of frontier research through NIF Discovery Science in the coming decade will be presented. This work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  20. Taking Measure of the Universe: How Big? How Old? How Do We Know?

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert

    1997-11-01

    Supernovae, exploding stars that shine as brightly as a billion Suns, areastonishing events which offer the best method for measuring the size andshape of the universe. Professor Kirshner explains how stars explodeand how astronomers piece together clues from these brilliant disastersto understand the age, shape, and fate of the Universe. Click here for more info.Robert P. Kirshner is Professor of Astronomy at Harvard University,where he chaired the department from 1990 to 1997. In Fall 1997 he was onsabbatical at the Institute for Theoretical Physics at the University ofCalifornia, Santa Barbara.Kirshner's scientific work has centered on supernova explosions andtheir application to measuring t he Universe. The author of over 150scientific publications, Kirshner is Principal Investigator for SINS, theSupernova Intensive Study with the Hubble Space Telescope. He is a memberof the American Academy of Arts and Sciences.At Harvard, Kirshner teaches a large core curriculum coursecalled Matter in the Universe. Dubbed "the David Letterman of astronomy"by his colleagues for his entertaining lecture manner, he has writtenpopular articles for National Geographic, ScientificAmerican, Natural History, Sky and Telescope, and theWorld Book Encyclopedia.

  1. SciDAC Computational Astrophysics Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrows, Adam

    Supernova explosions are the central events in nuclear astrophysics. The core-collapse variety is a major source for the universe's heavy elements. The neutron stars, pulsars, and stellar-mass black holes of high-energy astrophysics are their products. Given their prodigious explosion energies, they are the major agencies of change in the interstellar medium, driving star formation and the evolution of galaxies. Their gas remnants are the birthplaces of the cosmic rays. Such is their brightness that they can be used as standard candles to measure the size and geometry of the universe. Recently, there is evidence that gamma-ray bursts (GRBs) originate inmore » a small fraction of core collapses, thereby connecting two of the most energetic phenomena in the universe. However, the mechanism by which core-collapse supernovae explode has not yet been unambiguously determined. Arguably, this is one of the great unsolved problems in modern astrophysics and its investigation draws on nuclear physics, particle physics, radiative transfer, kinetic theory, gravitational physics, thermodynamics, and the numerical arts. Hence, supernovae are unrivaled astrophysical laboratories. It is the quest for the mechanism and new insights our team has recently had that motivate this proposal.« less

  2. Essential Ingredients in Core-collapse Supernovae

    DOE PAGES

    Hix, William Raphael; Lentz, E. J.; Endeve, Eirik; ...

    2014-03-27

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10more » $$^{44}$$ joules of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.« less

  3. X-Ray Illumination of the Ejecta of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Larsson, J.; Fransson, C.; Oestlin, G.; Groeningsson, P.; Jerkstrand, A.; Kozma, C.; Sollerman, J.; Challis, P.; Kirshner, R. P.; Chevalier, R. A.; hide

    2011-01-01

    When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily Ni-56, Ni-57 and Ti-44 are produced. After the initial from shock heating, the light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellan Cloud. From 1994 to 200l, the ejecta faded owing to radioactive decay of Ti-44 as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejects, enabling us to analyse the structure and chemistry of the vanished star.

  4. The high-redshift gamma-ray burst GRB 140515A. A comprehensive X-ray and optical study

    NASA Astrophysics Data System (ADS)

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P.; Sánchez-Ramírez, R.; Nappo, F.; Nava, L.; Japelj, J.; de Ugarte Postigo, A.; Oates, S.; Campana, S.; Covino, S.; D'Elia, V.; Ghirlanda, G.; Gafton, E.; Ghisellini, G.; Gnedin, N.; Goldoni, P.; Gorosabel, J.; Libbrecht, T.; Malesani, D.; Salvaterra, R.; Thöne, C. C.; Vergani, S. D.; Xu, D.; Tagliaferri, G.

    2015-09-01

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. The possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely. Based on observations collected at the European Southern Observatory, ESO, the VLT/Kueyen telescope, Paranal, Chile (proposal code: 093.A-0069), on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias (programme 49-008), and on observations made with the Italian 3.6-m Telescopio Nazionale Galileo (TNG), operated by the Fundación Galileo Galilei of the INAF (Instituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias (programme A26TAC_63).Appendix A is available in electronic form at http://www.aanda.org

  5. Characteristics of the electrical explosion of fine metallic wires in vacuum

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Zhao, Zhigang

    2017-09-01

    The experimental investigations on the electrical explosion of aluminum, silver, tungsten and platinum wires are carried out. The dependence of the parameters related to the specific energy deposition on the primary material properties is investigated. The polyimide coatings are applied to enhance the energy deposition for the exploding wires with percent of vaporized energy less than unit. The characteristics of the exploding wires of different materials with and without insulating coatings are studied. The effect of wire length on the percent of vaporization energy for exploding coated wires is presented. A laser probe is employed to construct the shadowgraphy, schlieren and interferometry diagnostics. The optical diagnostics demonstrate the morphology of the exploding products and structure of the energy deposition. The influence of insulating coatings on different wire materials is analyzed. The expansion trajectories of the exploding wires without and with insulating coatings are estimated from the shadowgram. More specific energy is deposited into the coated wires of shorter wire length, leading to faster expanding velocity of the high-density products.

  6. Neutron Stars Rip Each Other Apart to Form Black Hole

    NASA Image and Video Library

    2014-05-13

    This supercomputer simulation shows one of the most violent events in the universe: a pair of neutron stars colliding, merging and forming a black hole. A neutron star is the compressed core left behind when a star born with between eight and 30 times the sun's mass explodes as a supernova. Neutron stars pack about 1.5 times the mass of the sun — equivalent to about half a million Earths — into a ball just 12 miles (20 km) across. As the simulation begins, we view an unequally matched pair of neutron stars weighing 1.4 and 1.7 solar masses. They are separated by only about 11 miles, slightly less distance than their own diameters. Redder colors show regions of progressively lower density. As the stars spiral toward each other, intense tides begin to deform them, possibly cracking their crusts. Neutron stars possess incredible density, but their surfaces are comparatively thin, with densities about a million times greater than gold. Their interiors crush matter to a much greater degree densities rise by 100 million times in their centers. To begin to imagine such mind-boggling densities, consider that a cubic centimeter of neutron star matter outweighs Mount Everest. By 7 milliseconds, tidal forces overwhelm and shatter the lesser star. Its superdense contents erupt into the system and curl a spiral arm of incredibly hot material. At 13 milliseconds, the more massive star has accumulated too much mass to support it against gravity and collapses, and a new black hole is born. The black hole's event horizon — its point of no return — is shown by the gray sphere. While most of the matter from both neutron stars will fall into the black hole, some of the less dense, faster moving matter manages to orbit around it, quickly forming a large and rapidly rotating torus. This torus extends for about 124 miles (200 km) and contains the equivalent of 1/5th the mass of our sun. Scientists think neutron star mergers like this produce short gamma-ray bursts (GRBs). Short GRBs last less than two seconds yet unleash as much energy as all the stars in our galaxy produce over one year. The rapidly fading afterglow of these explosions presents a challenge to astronomers. A key element in understanding GRBs is getting instruments on large ground-based telescopes to capture afterglows as soon as possible after the burst. The rapid notification and accurate positions provided by NASA's Swift mission creates a vibrant synergy with ground-based observatories that has led to dramatically improved understanding of GRBs, especially for short bursts. This video is public domain and can be downloaded at: : svs.gsfc.nasa.gov/goto?11530

  7. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    NASA Astrophysics Data System (ADS)

    Tartaglia, L.

    2015-02-01

    Violent eruptions, and consequently major mass loss, are a common feature of the so-called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8⊙) exploding in a dense H-rich circumstellar medium (CSM), produced by progenitor's mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ˜3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  8. Metal enrichment of the intracluster medium: SN-driven galactic winds

    NASA Astrophysics Data System (ADS)

    Baumgartner, V.; Breitschwerdt, D.

    2009-12-01

    % We investigate the role of supernova (SN)-driven galactic winds in the chemical enrichment of the intracluster medium (ICM). Such outflows on galactic scales have their origin in huge star forming regions and expel metal enriched material out of the galaxies into their surroundings as observed, for example, in the nearby starburst galaxy NGC 253. As massive stars in OB-associations explode sequentially, shock waves are driven into the interstellar medium (ISM) of a galaxy and merge, forming a superbubble (SB). These SBs expand in a direction perpendicular to the disk plane following the density gradient of the ISM. We use the 2D analytical approximation by Kompaneets (1960) to model the expansion of SBs in an exponentially stratified ISM. This is modified in order to describe the sequence of SN-explosions as a time-dependent process taking into account the main-sequence life-time of the SN-progenitors and using an initial mass function to get the number of massive stars per mass interval. The evolution of the bubble in space and time is calculated analytically, from which the onset of Rayleigh-Taylor instabilities in the shell can be determined. In its further evolution, the shell will break up and high-metallicity gas will be ejected into the halo of the galaxy and even into the ICM. We derive the number of stars needed for blow-out depending on the scale height and density of the ambient medium, as well as the fraction of alpha- and iron peak elements contained in the hot gas. Finally, the amount of metals injected by Milky Way-type galaxies to the ICM is calculated confirming the importance of this enrichment process.

  9. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartaglia, L.

    2015-02-24

    Violent eruptions, and consequently major mass loss, are a common feature of the so–called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8{sub ⊙}) exploding in a dense H–rich circumstellar medium (CSM), produced by progenitor’s mass loss prior to the SN explosion. Although the mechanismsmore » triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ∼3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.« less

  10. Star formation: Sibling rivalry begins at birth

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin M.

    2015-02-01

    High-resolution astronomical observations of a nearby molecular gas cloud have revealed a quadruplet of stars in the act of formation. The system is arguably the youngest multiple star system detected so far. See Letter p.213

  11. Shocked molecular gas and the origin of cosmic rays

    NASA Astrophysics Data System (ADS)

    Reach, William; Gusdorf, Antoine; Richter, Matthew

    2018-06-01

    When massive stars reach the end of their ability to remain stable with core nuclear fusion, they explode in supernovae that drive powerful shocks into their surroundings. Because massive stars form in and remain close to molecular clouds they often drive shocks into dense gas, which is now believed to be the origin of a significant fraction of galactic cosmic rays. The nature of the supernova-molecular cloud interaction is not well understood, though observations are gradually elucidating their nature. The range of interstellar densities, and the inclusion of circumstellar matter from the late-phase mass-loss of the stars before their explosions, leads to a wide range of possible appearances and outcomes. In particular, it is not even clear what speed or physical type of shocks are present: are they dense, magnetically-mediated shocks where H2 is not dissociated, or are they faster shocks that dissociate molecules and destroy some of the grains? SOFIA is observing some of the most significant (in terms of cosmic ray production potential and infrared energy output) supernova-molecular cloud interactions for measurement of the line widths of key molecular shocks tracers: H2, [OI], and CO. The presence of gas at speeds 100 km/s or greater would indicate dissociative shocks, while speeds 30 km/s and slower retain most molecules. The shock velocity is a key ingredient in modeling the interaction between supernovae and molecular clouds including the potential for formation of cosmic rays.

  12. Quark-nova remnants. I. The leftover debris with applications to SGRs, AXPs, and XDINs

    NASA Astrophysics Data System (ADS)

    Ouyed, R.; Leahy, D.; Niebergal, B.

    2007-10-01

    We explore the formation and evolution of debris ejected around quark stars in the Quark Nova scenario, and the application to Soft Gamma-ray Repeaters (SGRs) and Anomolous X-ray Pulsars (AXPs). If an isolated neutron star explodes as a Quark Nova, an iron-rich shell of degenerate matter forms from its crust. This model can account for many of the observed features of SGRs and AXPs such as: (i) the two types of bursts (giant and regular); (ii) the spin-up and spin-down episodes during and following the bursts with associated increases in dot{P}; (iii) the energetics of the boxing day burst, SGR1806+20; (iv) the presence of an iron line as observed in SGR1900+14; (v) the correlation between the far-infrared and the X-ray fluxes during the bursting episode and the quiescent phase; (vi) the hard X-ray component observed in SGRs during the giant bursts, and (vii) the discrepancy between the ages of SGRs/AXPs and their supernova remnants. We also find a natural evolutionary relationship between SGRs and AXPs in our model which predicts that the youngest SGRs/AXPs are the most likely to exhibit strong bursting. Many features of X-ray Dim Isolated Neutron stars (XDINs) are also accounted for in our model such as, (i) the two-component blackbody spectra; (ii) the absorption lines around 300 eV; and (iii) the excess optical emission. Table 1 is only available in electronic form at http://www.aanda.org

  13. Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star

    DOE PAGES

    Tartaglia, L.; Pastorello, A.; Sullivan, M.; ...

    2016-03-23

    Here we report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. Furthermore, the absolute magnitude reached by LSQ13zm during 2013a (MR = -14.87 ± 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M R = -18.46 ± 0.21 mag) is consistent with thosemore » of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s -1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. Our detailed analysis of archival images suggests that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.« less

  14. Computer Simulation of Magnetic Nova Shell Expantion

    NASA Astrophysics Data System (ADS)

    Dudnikova, Galina; Nikitin, Sergei; Snytnikov, Valeri; Vshivkov, Vitali

    2000-10-01

    An asymmetrical character of the shell expantion observed at many Nova may be associated with infuence of an inherent star magnetic field. Magneto-dipole energy of a Nova is much less than a kinetic energy of an exploding envelope. By this reason the conventional hydrodynamic models of point-like explosion with a spherical outward-directed shock wave do not consider effect of star magnetic field on the plasma movement. We used the numerical model based on the system of equations of the hybrid type( MHD approximation for electrons and Vlasov kinetic equations for ions). PIC-method for solving Vlasov equations was used. It gives an opportunaty to consider a complicated multi-flow motion of particles in plasma at super-Alfven velocity. At the beginning there is an immobile (cold) background plasma of a homogeneous concentration in a cylindrical region with a dipole magnetic field. Into the central spherical region of radius R, where the magnetic field remains uniform and constant , the external plasma does not penetrate with elastic reflections of ions at the spherical core surface. This boundary is spaced at r<

  15. Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartaglia, L.; Pastorello, A.; Sullivan, M.

    Here we report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. Furthermore, the absolute magnitude reached by LSQ13zm during 2013a (MR = -14.87 ± 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M R = -18.46 ± 0.21 mag) is consistent with thosemore » of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s -1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. Our detailed analysis of archival images suggests that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.« less

  16. Assisted stellar suicide in V617 Sagittarii

    NASA Astrophysics Data System (ADS)

    Steiner, J. E.; Oliveira, A. S.; Cieslinski, D.; Ricci, T. V.

    2006-02-01

    Context: .V617 Sgr is a V Sagittae star - a group of binaries thought to be the galactic counterparts of the Compact Binary Supersoft X-ray Sources - CBSS. Aims: .To check this hypothesis, we measured the time derivative of its orbital period. Methods: .Observed timings of eclipse minima spanning over 30 000 orbital cycles are presented. Results: .We found that the orbital period evolves quite rapidly: P/dot{P} = 1.1×106 years. This is consistent with the idea that V617 Sgr is a wind driven accretion supersoft source. As the binary system evolves with a time-scale of about one million years, which is extremely short for a low mass evolved binary, it is likely that the system will soon end either by having its secondary completely evaporated or by the primary exploding as a supernova of type Ia. Conclusions: .

  17. Long-lasting but Dim Brethren of Cosmic Flashes

    NASA Astrophysics Data System (ADS)

    2006-08-01

    Astronomers, using ESO's Very Large Telescope, have for the first time made the link between an X-ray flash and a supernova. Such flashes are the little siblings of gamma-ray bursts (GRB) and this discovery suggests the existence of a population of events less luminous than 'classical' GRBs, but possibly much more numerous. "This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin," said Elena Pian, (INAF, Italy), lead-author of one of the four papers related to this event appearing in the 31 August issue of Nature. The event began on 18 February 2006: the NASA/PPARC/ASI Swift satellite detected an unusual gamma-ray burst, about 25 times closer and 100 times longer than the typical gamma-ray burst. GRBs release in a few seconds more energy than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are thus the most powerful events since the Big Bang known in the Universe. ESO PR Photo 33/06 ESO PR Photo 33/06 The Field around SN2006aj The explosion, called GRB 060218 after the date it was discovered, originated in a star-forming galaxy about 440 million light-years away toward the constellation Aries. This is the second-closest gamma-ray burst ever detected. Moreover, the burst of gamma rays lasted for nearly 2,000 seconds; most bursts last a few milliseconds to tens of seconds. The explosion was surprisingly dim, however. A team of astronomers has found hints of a budding supernova. Using, among others, ESO's Very Large Telescope (VLT) in Chile, the scientists have watched the afterglow of this burst grow brighter in optical light. This brightening, along with other telltale spectral characteristics in the light, strongly suggests that a supernova was unfolding. Within days, the supernova became apparent. The observations with the VLT started on 21 February 2006, just three days after the discovery. Spectroscopy was then performed nearly daily for seventeen days, providing the astronomers with a large data set to document this new class of events. The group led by Elena Pian indeed confirmed that the event was tied to a supernova called SN 2006aj a few days later. Remarkable details about the chemical composition of the star debris continue to be analysed. The newly discovered supernova is dimmer than hypernovae associated with normal long gamma-ray bursts by about a factor of two, but it is still a factor of 2-3 more luminous than regular core-collapse supernovae. All together, these facts point to a substantial diversity between supernovae associated with GRBs and supernovae associated with X-ray flashes. This diversity may be related to the masses of the exploding stars. Whereas gamma-ray bursts probably mark the birth of a black hole, X-ray flashes appear to signal the type of star explosion that leaves behind a neutron star. Based on the VLT data, a team led by Paolo Mazzali of the Max Planck Institute for Astrophysics in Garching, Germany, postulate that the 18 February event might have led to a highly magnetic type of neutron star called a magnetar. Mazzali and his team find indeed that the star that exploded had an initial mass of 'only' 20 times the mass of the Sun. This is smaller, by about a factor two at least, than those estimated for the typical GRB-supernovae. "The properties of GRB 060218 suggest the existence of a population of events less luminous than 'classical' GRBs, but possibly much more numerous", said Mazzali. "Indeed, these events may be the most abundant form of X- or gamma-ray bursts in the Universe, but instrumental limits allow us to detect them only locally." The astronomers find that the number of such events could be about 100 times more numerous than typical gamma-ray bursts.

  18. Core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Mueller, Bernhard

    2017-01-01

    Core-collapse supernovae, the deaths of massive stars, are among the most spectacular phenomena in astrophysics: Not only can supernovae outshine their host galaxy for weeks; they are also laboratories for the behavior of matter at supranuclear densities, and one of the few environments where collective neutrino effects can become important. Moreover, supernovae play a central role in the cosmic matter cycle, e.g., as the dominant producers of oxygen in the Universe. Yet the mechanism by which massive stars explode has eluded us for decades, partly because classical astronomical observations across the electromagnetic spectrum cannot directly probe the supernovae ``engine''. Numerical simulations are thus our primary tool for understanding the explosion mechanism(s) of massive stars. Rigorous modeling needs to take a host of important physical ingredients into account, such as the emission and partial reabsorption of neutrinos from the young proto-neutron star, multi-dimensional fluid motions, general relativistic gravity, the equation of state of nuclear matter, and magnetic fields. This is a challenging multi-physics problem that has not been fully solved yet. Nonetheless, as I shall argue in this talk, recent first-principle 3D simulations have gone a long way towards demonstrating the viability of the most popular explosion scenario, the ``neutrino-driven mechanism''. Focusing on successful explosion models of the MPA-QUB-Monash collaboration, I will discuss possible requirements for robust explosions across a wide range of progenitors, such as accurate neutrino opacities, stellar rotation, and seed asymmetries from convective shell burning. With the advent of successful explosion models, supernova theory can also be confronted with astronomical observations. I will show that recent 3D models come closer to matching observed explosion parameters (explosion energies, neutron star kicks) than older 2D models, although there are still discrepancies. This work has been supported by the ARC (grant DE150101145), NSF (PHY-1430152, JINA-CEE) and the supercomputing centers/initiatives NCI, Pawsey, and DiRAC.

  19. Audit Report on "The Department's Management of the ENERGY STAR Program"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-01

    The American Recovery and Reinvestment Act (Recovery Act) authorized about $300 million in consumer rebate incentives for purchases of products rated under the 'ENERGY STAR' Program. ENERGY STAR, a voluntary labeling program established in 1992, provides consumers with energy efficiency data for a range of products so that they can make informed purchase judgments. The overall goal of the program is to encourage consumers to choose energy efficient products, advancing the nationwide goal of reducing energy consumption. The U.S. Environmental Protection Agency (EPA) managed the ENERGY STAR Program on a stand-alone basis until 1996 when it joined forces with themore » Department of Energy (Department). A Memorandum of Cooperation expanded the ENERGY STAR product categories, giving the Department responsibility for overseeing eight product categories such as windows, dishwashers, clothes washers, and refrigerators, while EPA retained responsibility for electronic product categories and heating, ventilating, and cooling equipment. Each agency is responsible for setting product efficiency specifications for those items under its control and for ensuring the proper use of the ENERGY STAR label in the marketplace. In August 2007, the EPA Office of Inspector General issued an audit report identifying significant control weaknesses in EPA's management of ENERGY STAR. The Department, concerned by the findings at EPA and eager to improve its own program, developed an approach to verify adherence to product specifications, ensure proper use of the ENERGY STAR label in the marketplace, and improve the establishment of product specifications. As evidenced by the commitment of $300 million in Recovery Act funds, the ENERGY STAR Program plays an important role in the U.S. efforts to reduce energy consumption. We initiated this audit to determine whether the Department had implemented the actions it announced in 2007 to strengthen the Program. The Department had not implemented planned improvements in the ENERGY STAR Program. Our audit revealed that officials had not: (1) Developed a formal quality assurance program to help ensure that product specifications were adhered to; (2) Effectively monitored the use of the ENERGY STAR label to ensure that only qualifying products were labeled as compliant; and (3) Formalized procedures for establishing and revising product specifications and for documenting decisions regarding those specifications. In our judgment, the delay in the Department's planned improvements in its management of the ENERGY STAR Program could reduce consumer confidence in the integrity of the ENERGY STAR label. Such loss of credibility could reduce energy savings, increase consumer risk, and diminish the value of the recent infusion of $300 million for ENERGY STAR rebates under the Recovery Act.« less

  20. Deepest Image of Exploded Star Uncovers Bipolar Jets

    NASA Astrophysics Data System (ADS)

    2004-08-01

    A spectacular new image of Cassiopeia A from NASA's Chandra X-ray Observatory released today has nearly 200 times more data than the "First Light" Chandra image of this object made five years ago. The new image reveals clues that the initial explosion caused by the collapse of a massive star was far more complicated than suspected. Chandra Broadband Image of Cassiopeia A Chandra Broadband Image of Cassiopeia A "Although this young supernova remnant has been intensely studied for years, this deep observation is the most detailed ever made of the remains of an exploded star," said Martin Laming of the Naval Research Laboratory in Washington, D.C. Laming is part of a team of scientists led by Una Hwang of the Goddard Space Flight Center in Greenbelt, Maryland. "It is a gold mine of data that astronomers will be panning through for years to come." The one-million-second (about 11.5-day) observation of Cassiopeia A uncovered two large, opposed jet-like structures that extend to about 10 light years from the center of the remnant. Clouds of iron that have remained nearly pure for the approximately 340 years since the explosion were also detected. "The presence of the bipolar jets suggests that jets could be more common in relatively normal supernova explosions than supposed by astronomers," said Hwang. A paper by Hwang, Laming and others on the Cassiopeia A observation will appear in an upcoming issue of The Astrophysical Journal Letters. Chandra Enhanced Silicon Image of Cassiopeia A Chandra Enhanced Silicon Image of Cassiopeia A X-ray spectra show that the jets are rich in silicon atoms and relatively poor in iron atoms. In contrast, fingers of almost pure iron gas extend in a direction nearly perpendicular to the jets. This iron was produced in the central, hottest regions of the star. The high silicon and low iron abundances in the jets indicate that massive, matter-dominated jets were not the immediate cause of the explosion, as these should have carried out large quantities of iron from the central regions of the star. A working hypothesis is that the explosion produced high-speed jets similar to those in hypernovae that produce gamma-ray bursts, but in this case, with much lower energies. The explosion also left a faint neutron star at the center of the remnant. Unlike the rapidly rotating neutron stars in the Crab Nebula and Vela supernova remnants that are surrounded by dynamic magnetized clouds of electrons, this neutron star is quiet and faint. Nor has pulsed radiation been detected from it. It may have a very strong magnetic field generated during the explosion that helped to accelerate the jets, and today resembles other strong-field neutron stars (a.k.a. "magnetars") in lacking a wind nebula. Chandra 3-color X-ray Image of Cassiopeia A Chandra 3-color X-ray Image of Cassiopeia A Chandra was launched aboard the Space Shuttle Columbia on July 23, 1999. Less than a month later, it was able to start taking science measurements along with its calibration data. The original Cassiopeia A observation was taken on August 19, 1999, and then released to the scientific community and the public one week later on August 26. At launch, Chandra's original mission was intended to be five years. Having successfully completed that objective, NASA announced last August that the mission would be extended for another five years. The data for this new Cassiopeia A image were obtained by Chandra's Advanced Charged Coupled Device Imaging Spectrometer (ACIS) instrument during the first half of 2004. Due to its value to the astronomical community, this rich dataset was made available immediately to the public. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  1. Young Galaxy Surrounded by Material Needed to Make Stars, VLA Reveals

    NASA Astrophysics Data System (ADS)

    2001-01-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered a massive reservoir of cold gas from which a primeval galaxy formed its first stars. Looking more than 12 billion years into the past, the scientists found that the young galaxy experiencing a "burst" of star formation was surrounded by enough cold molecular gas to make 100 billion suns. Optical and Radio Images of APM 08279+5255 at About the Same Scale "This is the first time anyone has seen the massive reservoir of cold gas required for these incredible 'starbursts' to produce a galaxy," said Chris Carilli, an astronomer at the NSF's National Radio Astronomy Observatory (NRAO) in Socorro, NM. "There is much more gas here than we anticipated," Carilli added. The research team was led by Padeli Papadoupoulos of Leiden Observatory in the Netherlands and also included Rob Ivison of University College London and Geraint Lewis of the Anglo-Australian Observatory in Australia. The scientists reported their findings in the January 4 edition of the journal Nature. The astronomers found the gas when studying a quasar called APM 08279+5255, discovered in 1998. Observations with optical and infrared telescopes revealed that the quasar, a young galaxy with a voracious black hole at its center, was forming new stars rapidly in a starburst. At a distance of more than 12 billion light-years, the quasar is seen as it was more than 12 billion years ago, just a billion or so years after the Big Bang. "This thing is at the edge of the dark ages," before the first stars in the universe were born, said Carilli. The year after its discovery, APM 08279+5255 was found to have warm carbon monoxide (CO) gas near its center, heated by the energy released as the galaxy's black hole devours material. The VLA observations revealed cold CO gas much more widely distributed than its warmer counterpart. Based on observations of closer objects, the astronomers presume the CO gas is accompanied by large amounts of molecular hydrogen gas (H2). Cold CO gas never has been detected before in such a distant object. Though APM 08279+5255 is a young galaxy undergoing its first massive burst of star formation, the CO gas indicates that very massive stars formed quickly, lived through their short lifetimes, and exploded as supernovae. Carbon and Oxygen, the component elements of CO, are formed in the cores of stars, so their presence in the cold gas tells the astronomers that massive, short-lived stars had to have exploded already, spreading these elements throughout the galaxy's interstellar gas. "The original discovery of this quasar was quite a surprise, as observations revealed it is among the most luminous objects known in the universe. The discovery of this massive reservoir of cold gas is equally surprising. It provides vital clues to the birth of galaxies, such as our own Milky Way," Lewis said. Discovery of the gas was made possible by the galaxy's great distance. The expansion of the universe "stretches" light and radio waves to longer wavelengths -- the more distant the object, the more stretching is seen. Radio waves emitted by the cold CO gas originally had wavelengths of about 1.3 and 2.6 millimeters, but were "redshifted" to wavelengths of 7 and 13 millimeters -- wavelengths the VLA can receive. "It took eight years to refine this technique, but the effort has been worthwhile. This is the golden age of cosmology. We are learning more and more about our universe, from the smallest planets to the largest galaxy clusters. This new result is a crucial piece in the jigsaw and may help resolve many misconceptions about how galaxies form and evolve" Ivison said. "Because of its sensitivity and its ability to make detailed images, the VLA is the only telescope able to unveil these large reservoirs of cold molecular gas in the distant universe," Carilli said. "In addition, as we expand the technical capabilities of the VLA in the coming years, making it even more sensitive and able to show more detail, it will become the world's premier tool for studying this vital aspect of the young universe." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  2. A New Mass Criterium for Electron Capture Supernovae

    NASA Astrophysics Data System (ADS)

    Poelarends, Arend

    2016-06-01

    Electron capture supernovae (ECSN) are thought to populate the mass range between massive white dwarf progenitors and core collapse supernovae. It is generally believed that the initial stellar mass range for ECSN from single stars is about 0.5-1.0 M⊙ wide and centered around a value of 8.5 or 9 M⊙, depending on the specifics of the physics of convection and mass loss one applies. Since mass loss in a binary system is able to delay or cancel the second dredge-up, it is also believed that the initial mass range for ECSN in binary systems is wider than in single stars, but an initial mass range has not been defined yet.The last phase of stars in this particular mass range, however, is challenging to compute, either due to recurring Helium shell flashes, or due to convectively bound flames in the degenerate interior of the star. It would be helpful, nevertheless, to know before we enter these computationally intensive phases whether a star will explode as an ECSN or not. The mass of the helium core after helium core burning is one such criterium (Nomoto, 1984), which predicts that ECSN will occur if the helium core mass is between 2.0 M⊙ and 2.5 M⊙. However, since helium cores can be subject to erosion due to mass loss — even during helium core burning, this criterium will not yield accurate predictions for stars in binary systems.We present a dense grid of stellar evolution models that allow us to put constraints on the final fate of their cores, based on a combination of Carbon/Oxygen core mass, the mass of the surrounding Helium layer and C/O abundance. We find that CO cores with masses between 1.365 and 1.420 M⊙ at the end of Carbon burning will result in ECSN, with some minor adjustments of these ranges due to the mass of the Helium layer and the C/O ratio. While detailed models of stars within the ECSN mass range remain necessary to understand the details of pre-ECSN evolution, our research refines the Helium core criterion and provides a useful way to determine the final fate of stars in this complicated mass range early on.

  3. Topiramate responsive exploding head syndrome.

    PubMed

    Palikh, Gaurang M; Vaughn, Bradley V

    2010-08-15

    Exploding head syndrome is a rare phenomenon but can be a significant disruption to quality of life. We describe a 39-year-old female with symptoms of a loud bang and buzz at sleep onset for 3 years. EEG monitoring confirmed these events occurred in transition from stage 1 sleep. This patient reported improvement in intensity of events with topiramate medication. Based on these results, topiramate may be an alternative method to reduce the intensity of events in exploding head syndrome.

  4. 75 FR 13781 - Notice of Lodging of Consent Decree Pursuant to the Clean Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... time tank level information directly to the NuStar's control system. The Department of Justice will... Operating Partnership LP, Civ. A. No. 10-106, was lodged with the United States Court for the District of... Act, 33 U.S.C. 1321, against Defendant NuStar Pipeline Operating Partnership LP. The Complaint alleges...

  5. Bioethanol production from steam-exploded rice husk by recombinant Escherichia coli KO11.

    PubMed

    Tabata, Takamitsu; Yoshiba, Yusuke; Takashina, Tomonori; Hieda, Kazuo; Shimizu, Norio

    2017-03-01

    Rice husk is one of the most abundant types of lignocellulosic biomass. Because of its significant amount of sugars, such as cellulose and hemicellulose, it can be used for the production of biofuels such as bioethanol. However, the complex structure of lignocellulosic biomass, consisting of cellulose, hemicellulose and lignin, is resistant to degradation, which limits biomass utilization for ethanol production. The protection of cellulose by lignin contributes to the recalcitrance of lignocelluloses to hydrolysis. Therefore, we conducted steam-explosion treatment as pretreatment of rice husk. However, recombinant Escherichia coli KO11 did not ferment the reducing sugar solution obtained by enzymatic saccharification of steam-exploded rice husk. When the steam-exploded rice husk was washed with hot water to remove inhibitory substances and M9 medium (without glucose) was used as a fermentation medium, E. coli KO11 completely fermented the reducing sugar solution obtained by enzymatic saccharification of hot water washing-treated steam-exploded rice husk to ethanol. We report here the efficient production of bioethanol using steam-exploded rice husk.

  6. Exploding wires initiation of nitromethane sensitized by diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Ushnurtsev, A. E.; Shilkin, N. S.; Utkin, A. V.; Mintsev, V. B.

    2018-01-01

    Experiments on initiation of nitromethane sensitized by diethylenetriamine in weight proportion 98/2 by exploding wires were conducted. Several conditions of initiation of low speed detonation were determined.

  7. Powerful Nearby Supernova Caught By Web

    NASA Astrophysics Data System (ADS)

    2008-09-01

    One of the nearest supernovas in the last 25 years has been identified over a decade after it exploded. This result was made possible by combining data from the vast online archives from many of the world's premier telescopes. The supernova was first singled out in 2001 by Franz Bauer, then at Penn State and now at Columbia University, who noticed a bright, variable object in the spiral galaxy Circinus using NASA's Chandra X-ray Observatory. Though the source displayed some exceptional properties, at the time Bauer and his Penn State colleagues could not confidently identify its nature. It was not until years later that Bauer and his team were able to confirm this object was a supernova. Clues in a spectrum from the European Southern Observatory's Very Large Telescope (VLT) led the team to search through data from 18 different telescopes, both in space and on the ground, nearly all of which was from archives. Because this object was found in a nearby galaxy, making it relatively easy to study, the public archives of these telescopes contained abundant data on this galaxy. The data show that this supernova, dubbed SN 1996cr, is among the brightest supernovas ever seen in radio and X-rays. It also bears many striking similarities to the famous supernova SN 1987A, which occurred in a galaxy only 160,000 light years from Earth. "This supernova appears to be a wild cousin of SN 1987A," said Bauer. "These two look alike in many ways, except this newer supernova is intrinsically a thousand times brighter in radio and X-rays." Optical images from the archives of the Anglo-Australian Telescope in Australia show that SN 1996cr exploded between February 28, 1995 and March 15, 1996, nearly a decade after SN 1987A. SN 1996cr may not have been noticed by astronomers at the time because it was only visible in the southern hemisphere, which is not as widely monitored as the northern. Among the five nearest supernovas of the last 25 years, it is the only one that was not seen shortly after the explosion. X-rayChandra X-ray Image SN 1996cr was not detected by other major X-ray observatories in orbit - ROSAT and ASCA - around the time of explosion. Rather, it wasn't until several years later that it was detected as an X-ray source by Chandra (launched in 1999), and has become steadily brighter ever since. Previously, SN 1987A had been the only known supernova with an X-ray output observed to increase over time. "Supernovas that are close enough to be studied in detail like this are quite rare and may only appear once a decade, so we don't want to miss such an important opportunity for discovery," said Bauer. "It's a bit of a coup to find SN 1996cr like we did, and we could never have nailed it without the serendipitous data taken by all of these telescopes. We've truly entered a new era of `Internet astronomy'." People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Dark Energy Found Stifling Growth in Universe Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Jet Power and Black Hole Assortment Revealed in New Chandra Image The data, combined with theoretical work, has led the team to the following model. Before it exploded, the parent star cleared out a large cavity around it, either via a fast wind or an outburst from the star late in its life. Then, the blast wave from the explosion expanded relatively unimpeded into this cavity. Once the blast wave hit the dense material surrounding SN1996cr, the impact caused the system to glow brightly in X-ray and radio emission. The X-ray and radio emission from SN 1987A is fainter because the surrounding material is probably less compact. Astronomers think that both SN 1987A and SN 1996cr show evidence for these pre-explosion clear-outs by the star doomed to explode. Having two nearby examples suggests that this type of activity could be relatively common during the death of massive stars. "Not only does our work suggest that SN 1987A isn't as unusual as previously thought, but it also teaches us more about the tremendous upheavals that massive stars can undergo during their lifetime," said co-author Vikram Dwarkadas of the University of Chicago. SN 1996cr, at a distance of about 12 million light years, will be a compelling target for future work because it is nearby and so much brighter than a typical supernova. These results will appear in an upcoming issue of The Astrophysical Journal. Other co-authors on this paper include Niel Brandt (Penn State), Stefan Immler (NASA Goddard Space Flight Center), Norbert Bartel (York University, Canada), and Michael Bietenholz (York University and Hartebeesthoek Radio Observatory, South Africa). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  8. Explodator: A new skeleton mechanism for the halate driven chemical oscillators

    NASA Astrophysics Data System (ADS)

    Noszticzius, Z.; Farkas, H.; Schelly, Z. A.

    1984-06-01

    In the first part of this work, some shortcomings in the present theories of the Belousov-Zhabotinskii oscillating reaction are discussed. In the second part, a new oscillatory scheme, the limited Explodator, is proposed as an alternative skeleton mechanism. This model contains an always unstable three-variable Lotka-Volterra core (the ``Explodator'') and a stabilizing limiting reaction. The new scheme exhibits Hopf bifurcation and limit cycle oscillations. Finally, some possibilities and problems of a generalization are mentioned.

  9. Red Supergiants as Potential Type IIn Supernova Progenitors: Spatially Resolved 4.6 μm CO Emission Around VY CMa and Betelgeuse

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Hinkle, Kenneth H.; Ryde, Nils

    2009-03-01

    We present high-resolution 4.6 μm CO spectra of the circumstellar environments of two red supergiants (RSGs) that are potential supernova (SN) progenitors: Betelgeuse and VY Canis Majoris (VY CMa). Around Betelgeuse, 12CO emission within ±3'' (±12 km s-1) follows a mildly clumpy but otherwise spherical shell, smaller than its ~55'' shell in K I λ7699. In stark contrast, 4.6 μm CO emission around VY CMa is coincident with bright K I in its clumpy asymmetric reflection nebula, within ±5'' (±40 km s-1) of the star. Our CO data reveal redshifted features not seen in K I spectra of VY CMa, indicating a more isotropic distribution of gas punctuated by randomly distributed asymmetric clumps. The relative CO and K I distribution in Betelgeuse arises from ionization effects within a steady wind, whereas in VY CMa, K I is emitted from skins of CO cloudlets resulting from episodic mass ejections 500-1000 yr ago. In both cases, CO and K I trace potential pre-SN circumstellar matter: we conclude that an extreme RSG like VY CMa might produce a Type IIn event like SN 1988Z if it were to explode in its current state, but Betelgeuse will not. VY CMa demonstrates that luminous blue variables are not necessarily the only progenitors of SNe IIn, but it underscores the requirement that SNe IIn suffer enhanced episodic mass loss shortly before exploding. Based on observations obtained at the Gemini Observatory.

  10. First results from GeMS/GSAOI for project SUNBIRD: Supernovae UNmasked By Infra-Red Detection

    NASA Astrophysics Data System (ADS)

    Kool, E. C.; Ryder, S.; Kankare, E.; Mattila, S.; Reynolds, T.; McDermid, R. M.; Pérez-Torres, M. A.; Herrero-Illana, R.; Schirmer, M.; Efstathiou, A.; Bauer, F. E.; Kotilainen, J.; Väisänen, P.; Baldwin, C.; Romero-Cañizales, C.; Alberdi, A.

    2018-02-01

    Core collapse supernova (CCSN) rates suffer from large uncertainties as many CCSNe exploding in regions of bright background emission and significant dust extinction remain unobserved. Such a shortfall is particularly prominent in luminous infrared galaxies (LIRGs), which have high star formation (and thus CCSN) rates and host bright and crowded nuclear regions, where large extinctions and reduced search detection efficiency likely lead to a significant fraction of CCSNe remaining undiscovered. We present the first results of project SUNBIRD (Supernovae UNmasked By Infra-Red Detection), where we aim to uncover CCSNe that otherwise would remain hidden in the complex nuclear regions of LIRGs, and in this way improve the constraints on the fraction that is missed by optical seeing-limited surveys. We observe in the near-infrared 2.15 μm Ks-band, which is less affected by dust extinction compared to the optical, using the multiconjugate adaptive optics imager GeMS/GSAOI on Gemini South, allowing us to achieve a spatial resolution that lets us probe close in to the nuclear regions. During our pilot program and subsequent first full year we have discovered three CCSNe and one candidate with projected nuclear offsets as small as 200 pc. When compared to the total sample of LIRG CCSNe discovered in the near-IR and optical, we show that our method is singularly effective in uncovering CCSNe in nuclear regions and we conclude that the majority of CCSNe exploding in LIRGs are not detected as a result of dust obscuration and poor spatial resolution.

  11. The Evolution of Low-Metallicity Massive Stars

    NASA Astrophysics Data System (ADS)

    Szécsi, Dorottya

    2016-07-01

    Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium - in other words, low-metallicity environments - is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution. Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf-Rayet stars. However, as opposed to Wolf-Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy. On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear burning products in the same ratio as observed today in globular clusters stars. Further elaborating the fast rotating TWUIN star models, we predict that some of them will become Wolf-Rayet stars near the end of their lives. From this we show that our models can self-consistently explain both the high ionizing flux and the number of Wolf-Rayet stars in I Zwicky 18. Moreover, some of our models are predicted to explode as long-duration gamma-ray bursts. Thus, we speculate that the high ionizing flux observed can be a signpost for upcoming gamma-ray bursts in dwarf galaxies. Although our models have been applied to interpret observations of globular clusters and dwarf galaxies, we point out that they could also be used in the context of other low-metallicity environments as well. Understanding the early Universe, for example, requires to have a solid knowledge of how massive stars at low-metallicity live and interact with their environments. Thus, we expect that the models and results presented in this thesis will be beneficial for not only the massive star community, but for the broader astronomy and cosmology community as well.

  12. HUBBLE CAPTURES THE HEART OF STAR BIRTH

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) has captured a flurry of star birth near the heart of the barred spiral galaxy NGC 1808. On the left are two images, one superimposed over the other. The black-and-white picture is a ground-based view of the entire galaxy. The color inset image, taken with the Hubble telescope's Wide Field and Planetary Camera 2 (WFPC2), provides a close-up view of the galaxy's center, the hotbed of vigorous star formation. The ground-based image shows that the galaxy has an unusual, warped shape. Most spiral galaxies are flat disks, but this one has curls of dust and gas at its outer spiral arms (upper right-hand corner and lower left-hand corner). This peculiar shape is evidence that NGC 1808 may have had a close interaction with another nearby galaxy, NGC 1792, which is not in the picture Such an interaction could have hurled gas towards the nucleus of NGC 1808, triggering the exceptionally high rate of star birth seen in the WFPC2 inset image. The WFPC2 inset picture is a composite of images using colored filters that isolate red and infrared light as well as light from glowing hydrogen. The red and infrared light (seen as yellow) highlight older stars, while hydrogen (seen as blue) reveals areas of star birth. Colors were assigned to this false-color image to emphasize the vigorous star formation taking place around the galaxy's center. NGC 1808 is called a barred spiral galaxy because of the straight lines of star formation on both sides of the bright nucleus. This star formation may have been triggered by the rotation of the bar, or by matter which is streaming along the bar towards the central region (and feeding the star burst). Filaments of dust are being ejected from the core into a faint halo of stars surrounding the galaxy's disk (towards the upper left corner) by massive stars that have exploded as supernovae in the star burst region. The portion of the galaxy seen in this 'wide-field' image is about 35,000 light-years across. The right-hand image, taken by WFPC2, provides a closer look at the flurry of star birth at the galaxy's core. The star clusters (blue) can be seen (and many more are likely obscured) amid thick lanes of gas and dust. This image shows that stars are often born in compact clusters within star bursts, and that dense gas and dust heavily obscures the star burst region. The brightest knot of star birth seen here is probably a giant cluster of stars, about 100 light-years in diameter, at the very center of the galaxy. The other star clusters are about 10 to 50 light-years in diameter. The entire star burst region shown here is about 3,000 light-years across. This galaxy is about 40 million light-years away in the southern constellation Columba. The observation was taken Aug. 14, 1997, and was the last of 13 Hubble Space Telescope amateur programs. Credits: Jim Flood, an amateur astronomer affiliated with Sperry Observatory at Union College in New Jersey, and Max Mutchler, a member of the Space Telescope Science Institute staff who volunteered to work with Jim.

  13. Complexion of forces in an anisotropic self-gravitating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandrup, H.E.

    Chandrasekhar and von Neumann developed a completely stochastic formalism to analyze the complexion of forces acting upon a test star situated in an infinite, homogeneous distribution of field stars. This formalism is generalized here to allow for more realistic inhomogeneous and anisotropic systems. It is demonstrated that the forces acting upon a test star decompose ''naturally'' into the incoherent sum of a mean force associated with the average spatial inhomogeneity and a fluctuating force associated with stochastic deviations from these mean conditions. Moreover, as in the special case considered by Chandrasekhar and von Neumann, one can apparently associate the fluctuatingmore » forces with the effects of particularly proximate field stars, thereby motivating the ''nearest neighbor'' interpretation first introduced by Chandrasekhar.« less

  14. Astronomers Discover Fastest-Spinning Pulsar

    NASA Astrophysics Data System (ADS)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar discovered in 1982. For reference, the fastest speeds of common kitchen blenders are 250-500 Hz. The scientists say the object's fast rotation speed means that it cannot be any larger than about 20 miles across. According to Hessels, "If it were any larger, material from the surface would be flung into orbit around the star." The scientists' calculation assumed that the neutron star contains less than two times the mass of the Sun, an assumption that is consistent with the masses of all known neutron stars. The spinning pulsar has a companion star that orbits it once every 26 hours. The companion passes in front of the pulsar, eclipsing the pulsar about 40 percent of the time. The long eclipse period, probably due to bloating of the companion, makes it difficult for the astronomers to learn details of the orbital configuration that would allow them to precisely measure the masses of the pulsar and its companion. "If we could pin down these masses more precisely, we could then get a better limit on the size of the pulsar. That, in turn, would then give us a better figure for the true density inside the neutron star," explained Ingrid Stairs, an assistant professor at the University of British Columbia and another collaborator on the work. Competing theoretical models for the types and distributions of elementary particles inside neutron stars make widely different predictions about the pressure and density of such an object. "We want observational data that shows which models fit the reality of nature," Hessels said. If the scientists can't use PSR J1748-2446ad to do that, they are hopeful some of its near neighbors will yield the data they seek. Using the GBT, the astronomers so far have found 30 new fast "millisecond pulsars" in the cluster Terzan 5, making 33 pulsars known in the cluster in total. This is the largest number of such pulsars ever found in a single globular cluster. Dense globular clusters of stars are excellent places to find fast-rotating millisecond pulsars. Giant stars explode as supernovae and leave rotating pulsars which gradually slow down. However, if a pulsar has a companion star from which it can draw material, that incoming material imparts its spin, or angular momentum, to the pulsar. As a result, the pulsar spins faster. "In a dense cluster, interactions between the stars will create more binary pairs that can yield more fast-rotating pulsars," Ransom said. The great sensitivity of the giant, 100-meter diameter GBT, along with a special signal processor, called the Pulsar Spigot, made possible the discovery of so many millisecond pulsars in Terzan 5. "We think there are many more pulsars to be found in Terzan 5 and other clusters, and given that the fast ones are often hidden by eclipses, some of them may be spinning even faster than this new one," Ransom said. "We're excited about using this outstanding new telescope to answer some important questions about fundamental physics," he said. In addition to Hessels, Ransom and Stairs, the research team includes Paulo Freire of Arecibo Observatory in Puerto Rico, Victoria Kaspi, of McGill University, and Fernando Camilo, of Columbia University. Their report is being published in Science Express, the online version of the journal Science. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The pulsar research also was supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the Quebec Foundation for Research on Nature and Technology, the Canadian Institute for Advanced Research, the Canada Research Chairs Program, and the National Science Foundation..

  15. NASA's Hubble Captures the Beating Heart of the Crab Nebula

    NASA Image and Video Library

    2017-12-08

    Peering deep into the core of the Crab Nebula, this close-up image reveals the beating heart of one of the most historic and intensively studied remnants of a supernova, an exploding star. The inner region sends out clock-like pulses of radiation and tsunamis of charged particles embedded in magnetic fields. The neutron star at the very center of the Crab Nebula has about the same mass as the sun but compressed into an incredibly dense sphere that is only a few miles across. Spinning 30 times a second, the neutron star shoots out detectable beams of energy that make it look like it's pulsating. The NASA Hubble Space Telescope snapshot is centered on the region around the neutron star (the rightmost of the two bright stars near the center of this image) and the expanding, tattered, filamentary debris surrounding it. Hubble's sharp view captures the intricate details of glowing gas, shown in red, that forms a swirling medley of cavities and filaments. Inside this shell is a ghostly blue glow that is radiation given off by electrons spiraling at nearly the speed of light in the powerful magnetic field around the crushed stellar core. The neutron star is a showcase for extreme physical processes and unimaginable cosmic violence. Bright wisps are moving outward from the neutron star at half the speed of light to form an expanding ring. It is thought that these wisps originate from a shock wave that turns the high-speed wind from the neutron star into extremely energetic particles. When this "heartbeat" radiation signature was first discovered in 1968, astronomers realized they had discovered a new type of astronomical object. Now astronomers know it's the archetype of a class of supernova remnants called pulsars - or rapidly spinning neutron stars. These interstellar "lighthouse beacons" are invaluable for doing observational experiments on a variety of astronomical phenomena, including measuring gravity waves. Observations of the Crab supernova were recorded by Chinese astronomers in 1054 A.D. The nebula, bright enough to be visible in amateur telescopes, is located 6,500 light-years away in the constellation Taurus. Credits: NASA and ESA, Acknowledgment: J. Hester (ASU) and M. Weisskopf (NASA/MSFC) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. A Galactic Spectacle

    NASA Image and Video Library

    2017-12-08

    NASA image release August 5, 2010 A beautiful new image of two colliding galaxies has been released by NASA's Great Observatories. The Antennae galaxies, located about 62 million light-years from Earth, are shown in this composite image from the Chandra X-ray Observatory (blue), the Hubble Space Telescope (gold and brown), and the Spitzer Space Telescope (red). The Antennae galaxies take their name from the long antenna-like "arms," seen in wide-angle views of the system. These features were produced by tidal forces generated in the collision. The collision, which began more than 100 million years ago and is still occurring, has triggered the formation of millions of stars in clouds of dusts and gas in the galaxies. The most massive of these young stars have already sped through their evolution in a few million years and exploded as supernovas. The X-ray image from Chandra shows huge clouds of hot, interstellar gas that have been injected with rich deposits of elements from supernova explosions. This enriched gas, which includes elements such as oxygen, iron, magnesium, and silicon, will be incorporated into new generations of stars and planets. The bright, point-like sources in the image are produced by material falling onto black holes and neutron stars that are remnants of the massive stars. Some of these black holes may have masses that are almost one hundred times that of the Sun. The Spitzer data show infrared light from warm dust clouds that have been heated by newborn stars, with the brightest clouds lying in the overlapping region between the two galaxies. The Hubble data reveal old stars and star-forming regions in gold and white, while filaments of dust appear in brown. Many of the fainter objects in the optical image are clusters containing thousands of stars. The Chandra image was taken in December 1999. The Spitzer image was taken in December 2003. The Hubble image was taken in July 2004, and February 2005. To read more go to: www.nasa.gov/mission_pages/chandra/multimedia/antennae.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook Credit: NASA, ESA, SAO, CXC, JPL-Caltech, and STScI Acknowledgment: G. Fabbiano and Z. Wang (Harvard-Smithsonian CfA), and B. Whitmore (STScI)

  17. Born from the Wind

    NASA Astrophysics Data System (ADS)

    2008-10-01

    Telescopes on the ground and in space have teamed up to compose a colourful image that offers a fresh look at the history of the star-studded region NGC 346. This new, ethereal portrait, in which different wavelengths of light swirl together like watercolours, reveals new information about how stars form. Sharpening Up Jupiter ESO PR Photo 34/08 Star-Forming Region NGC 346 The picture combines infrared, visible and X-ray light from NASA's Spitzer Space Telescope, ESO's New Technology Telescope (NTT) and the European Space Agency's XMM-Newton orbiting X-ray telescope, respectively. The NTT visible-light images allowed astronomers to uncover glowing gas in the region and the multi-wavelength image reveals new insights that appear only thanks to this unusual combination of information. NGC 346 is the brightest star-forming region in the Small Magellanic Cloud, an irregular dwarf galaxy that orbits the Milky Way at a distance of 210 000 light-years. "NGC 346 is a real astronomical zoo," says Dimitrios Gouliermis of the Max Planck Institute for Astronomy in Heidelberg, Germany, and lead author of the paper describing the observations. "When we combined data at various wavelengths, we were able to tease apart what's going on in different parts of this intriguing region." Small stars are scattered throughout the NGC 346 region, while massive stars populate its centre. These massive stars and most of the small ones formed at the same time out of one dense cloud, while other less massive stars were created later through a process called "triggered star formation". Intense radiation from the massive stars ate away at the surrounding dusty cloud, triggering gas to expand and create shock waves that compressed nearby cold dust and gas into new stars. The red-orange filaments surrounding the centre of the image show where this process has occurred. But another set of younger low-mass stars in the region, seen as a pinkish blob at the top of the image, couldn't be explained by this mechanism. "We were particularly interested to know what caused this seemingly isolated group of stars to form," says Gouliermis. By combining multi-wavelength data of NGC 346, Gouliermis and his team were able to pinpoint the trigger as a very massive star that blasted apart in a supernova explosion about 50 000 years ago. Fierce winds from the massive dying star, and not radiation, pushed gas and dust together, compressing it into new stars, bringing the isolated young stars into existence. While the remains of this massive star cannot be seen in the image, a bubble created when it exploded can be seen near the large, white spot with a blue halo at the upper left (this white spot is actually a collection of three stars). The finding demonstrates that both wind- and radiation-induced triggered star formation are at play in the same cloud. According to Gouliermis, "the result shows us that star formation is a far more complicated process than we used to think, comprising different competitive or collaborative mechanisms." The analysis was only possible thanks to the combination of information obtained through very different techniques and equipments. It reveals the power of such collaborations and the synergy between ground- and space-based observatories.

  18. The diffuse source at the center of LMC SNR 0509–67.5 is a background galaxy at z = 0.031

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagnotta, Ashley; Walker, Emma S.; Schaefer, Bradley E., E-mail: pagnotta@amnh.org

    2014-06-20

    Type Ia supernovae (SNe Ia) are well-known for their use in the measurement of cosmological distances, but our continuing lack of concrete knowledge about their progenitor stars is both a matter of debate and a source of systematic error. In our attempts to answer this question, we presented unambiguous evidence that LMC SNR 0509–67.5, the remnant of an SN Ia that exploded in the Large Magellanic Cloud 400 ± 50 yr ago, did not have any point sources (stars) near the site of the original supernova explosion, from which we concluded that this particular supernova must have had a progenitormore » system consisting of two white dwarfs. There is, however, evidence of nebulosity near the center of the remnant, which could have been left over detritus from the less massive WD, or could have been a background galaxy unrelated to the supernova explosion. We obtained long-slit spectra of the central nebulous region using GMOS on Gemini South to determine which of these two possibilities is correct. The spectra show Hα emission at a redshift of z = 0.031, which implies that the nebulosity in the center of LMC SNR 0509–67.5 is a background galaxy, unrelated to the supernova.« less

  19. Kepler Supernova Remnant: A View from Spitzer Space Telescope

    NASA Image and Video Library

    2004-10-06

    This Spitzer false-color image is a composite of data from the 24 micron channel of Spitzer's multiband imaging photometer (red), and three channels of its infrared array camera: 8 micron (yellow), 5.6 micron (blue), and 4.8 micron (green). Stars are most prominent in the two shorter wavelengths, causing them to show up as turquoise. The supernova remnant is most prominent at 24 microns, arising from dust that has been heated by the supernova shock wave, and re-radiated in the infrared. The 8 micron data shows infrared emission from regions closely associated with the optically emitting regions. These are the densest regions being encountered by the shock wave, and probably arose from condensations in the surrounding material that was lost by the supernova star before it exploded. The composite above (PIA06908, PIA06909, and PIA06910) represent views of Kepler's supernova remnant taken in X-rays, visible light, and infrared radiation. Each top panel in the composite above shows the entire remnant. Each color in the composite represents a different region of the electromagnetic spectrum, from X-rays to infrared light. The X-ray and infrared data cannot be seen with the human eye. Astronomers have color-coded those data so they can be seen in these images. http://photojournal.jpl.nasa.gov/catalog/PIA06910

  20. The Stellar Origins of Supernovae

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler

    2007-07-01

    Supernovae {SNe} have a profound effect on galaxies, and have been used recently as precise cosmological probes, resulting in the discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with nearly 4000 known SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting new line of study, the emerging trend from 5 detections for Type II-Plateau SNe is that their progenitors appear to be relatively low mass {8 to 20 Msun} red supergiants, although more cases are needed. Nonetheless, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are currently being used for precision cosmology. We propose to confirm the identities of the progenitors of 4 SNe within 17 Mpc, which we expect to occur during Cycle 16, through ToO observations using WFPC2/PC.

  1. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    NASA Astrophysics Data System (ADS)

    Vale, D.; Rauscher, T.; Paar, N.

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  2. Where Galactic Snakes Live

    NASA Image and Video Library

    2006-10-27

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a "snake" (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the "snake's belly" may be harboring beastly stars in the process of forming. The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the "belly" of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars. The red ball at the bottom left is a "supernova remnant," the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake. Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky! Spitzer's view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope to determine if the stars were born in the same way that our low-mass sun was formed - out of a collapsing cloud of gas and dust - or by another mechanism in which the environment plays a larger role. The snake is located about 11,000 light-years away in the constellation Sagittarius. This false-color image is a composite of infrared data taken by Spitzer's infrared array camera and multiband imaging photometer. Blue represents 3.6-micron light; green shows light of 8 microns; and red is 24-micron light. http://photojournal.jpl.nasa.gov/catalog/PIA01318

  3. Where Galactic Snakes Live

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a 'snake' (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the 'snake's belly' may be harboring beastly stars in the process of forming.

    The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the 'belly' of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars.

    The red ball at the bottom left is a 'supernova remnant,' the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake.

    Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky!

    Spitzer's new view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope to determine if the stars were born in the same way that our low-mass sun was formed - out of a collapsing cloud of gas and dust - or by another mechanism in which the environment plays a larger role.

    The snake is located about 11,000 light-years away in the constellation Sagittarius.

    This false-color image is a composite of infrared data taken by Spitzer's infrared array camera and multiband imaging photometer. Blue represents 3.6-micron light; green shows light of 8 microns; and red is 24-micron light.

  4. HUBBLE VIEWS A STARRY RING WORLD BORN IN A HEAD-ON COLLISION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Right] - A rare and spectacular head-on collision between two galaxies appears in this NASA Hubble Space Telescope true-color image of the Cartwheel Galaxy, located 500 million light-years away in the constellation Sculptor. The new details of star birth resolved by Hubble provide an opportunity to study how extremely massive stars are born in large fragmented gas clouds. The striking ring-like feature is a direct result of a smaller intruder galaxy -- possibly one of two objects to the right of the ring -- that careened through the core of the host galaxy. Like a rock tossed into a lake, the collision sent a ripple of energy into space, plowing gas and dust in front of it. Expanding at 200,000 miles per hour, this cosmic tsunami leaves in its wake a firestorm of new star creation. Hubble resolves bright blue knots that are gigantic clusters of newborn stars and immense loops and bubbles blown into space by exploding stars (supernovae) going off like a string of firecrackers. The Cartwheel Galaxy presumably was a normal spiral galaxy like our Milky Way before the collision. This spiral structure is beginning to re-emerge, as seen in the faint arms or spokes between the outer ring and bulls-eye shaped nucleus. The ring contains at least several billion new stars that would not normally have been created in such a short time span and is so large (150,000 light-years across) our entire Milky Way Galaxy would fit inside. Hubble's new view does not solve the mystery as to which of the two small galaxies might have been the intruder. The blue galaxy is disrupted and has new star formation which strongly suggests it is the interloper. However, the smoother-looking companion has no gas, which is consistent with the idea that gas was stripped out of it during passage through the Cartwheel Galaxy. [Top Left] - Hubble's detailed view shows the knot-like structure of the ring, produced by large clusters of new star formation. Hubble also resolves the effects of thousands of supernovae on the ring structure. One flurry of explosions blew a hole in the ring and formed a giant bubble of hot gas. Secondary star formation on the edge of this bubble appears as an arc extending beyond the ring. [Bottom Left] - Hubble resolves remarkable new detail in the galaxy's core. The reddish color of this region indicates that it contains a tremendous amount of dust and embedded star formation. Bright pinpoints of light are gigantic young star clusters. The picture was taken with the Wide Field Planetary Camera-2 on October 16, 1994. It is a combination of two images, taken in blue and near-infrared light. Credit: Kirk Borne (ST ScI), and NASA

  5. The bright optical afterglow of the nearby gamma-ray burst of 29 March 2003.

    PubMed

    Price, P A; Fox, D W; Kulkarni, S R; Peterson, B A; Schmidt, B P; Soderberg, A M; Yost, S A; Berger, E; Djorgovski, S G; Frail, D A; Harrison, F A; Sari, R; Blain, A W; Chapman, S C

    2003-06-19

    Past studies of cosmological gamma-ray bursts (GRBs) have been hampered by their extreme distances, resulting in faint afterglows. A nearby GRB could potentially shed much light on the origin of these events, but GRBs with a redshift z

  6. Supernovae and gamma-ray bursts: The moment of the formation of a black hole and a newly born neutron star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffini, Remo, E-mail: ruffini@icra.it; ICRANet, Piazzale della Repubblica 10, I-65122 Pescara; Université de Nice Sophie Antipolis, Nice, CEDEX 2 Grand Château Parc Valros

    2014-01-14

    We review recent progress in our understanding of the nature of gamma ray bursts (GRBs) and in particular, in the relationship between the short GRBs and the long GRBs. The coincidental occurence of a GRB with a Supernova (SN) is explained within the Induced Gravitational Collapse (IGC) paradigm, following the sequence: 1) an initial binary system consists in a compact Carbon-Oxygen (CO) core and a NS; 2) the CO core explodes giving origin to a SN and part of the SN ejecta accretes onto the NS which reaches its critical mass and collapses to a BH giving rise to amore » long GRB; 3) a new NS is generated by the SN as a remnant. The observational consequences of this scenario are outlined. The first example of a short GRB is given.« less

  7. Circumstellar Interaction in Supernovae in Dense Environments—An Observational Perspective

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam

    2018-02-01

    In a supernova explosion, the ejecta interacting with the surrounding circumstellar medium (CSM) give rise to variety of radiation. Since CSM is created from the mass loss from the progenitor, it carries footprints of the late time evolution of the star. This is one of the unique ways to get a handle on the nature of the progenitor system. Here, I will focus mainly on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe. Radio and X-ray emission from this class of SNe have revealed important modifications in their radiation properties, due to the presence of high density CSM. Forward shock dominance in the X-ray emission, internal free-free absorption of the radio emission, episodic or non-steady mass loss rate, and asymmetry in the explosion seem to be common properties of this class of SNe.

  8. A midsummer-night's shock wave

    NASA Astrophysics Data System (ADS)

    Hargather, Michael; Liebner, Thomas; Settles, Gary

    2007-11-01

    The aerial pyrotechnic shells used in professional display fireworks explode a bursting charge at altitude in order to disperse the ``stars'' of the display. The shock wave from the bursting charge is heard on the ground as a loud report, though it has by then typically decayed to a mere sound wave. However, viewers seated near the standard safety borders can still be subjected to weak shock waves. These have been visualized using a large, portable, retro-reflective ``Edgerton'' shadowgraph technique and a high-speed digital video camera. Images recorded at 10,000 frames per second show essentially-planar shock waves from 10- and 15-cm firework shells impinging on viewers during the 2007 Central Pennsylvania July 4th Festival. The shock speed is not measurably above Mach 1, but we nonetheless conclude that, if one can sense a shock-like overpressure, then the wave motion is strong enough to be observed by density-sensitive optics.

  9. Characterization of explosive devices in luggage: Initial results of the ART-IIC test series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerman, M.A.; Kass, M.D.; Clough, B.T.

    1993-12-31

    Characteristics and damage associated with exploded luggage aboard aircraft are presented in this paper. Plastic-sided suitcases filled with typical travel possessions were exploded inside the fuselage of decomissioned B-52 aircraft. Multilayered shield panels, mounted to one side of the fuselage, served to protect the aircraft body and flight system components from both the blast wave and exploded fragments. The resulting damage produced by the explosions was characterized and the absorbing characteristics of the shielding were evaluated. In addition, the energy of the luggage fragments was estimated.

  10. 76 FR 35468 - Star-Spangled Banner National Historic Trail Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... DEPARTMENT OF THE INTERIOR National Park Service Star-Spangled Banner National Historic Trail... the Advisory Committee on the Star-Spangled Banner National Historic Trail will hold a meeting. Designated through an amendment to the National Trails System Act (16 U.S.C. 1241), the trail consists of...

  11. The Candidate Progenitor of the Type IIn SN 2010jl Is Not an Optically Luminous Star

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Van Dyk, Schuyler D.; Dwek, Eli; Smith, Nathan; Filippenko, Alexei V.; Andrews, Jennifer; Arendt, Richard G.; Foley, Ryan J.; Kelly, Patrick L.; Miller, Adam; hide

    2017-01-01

    A blue source in pre-explosion Hubble Space Telescope (HST)/Wide-Field Planetary Camera 2 (WFPC2) images falls within the 5 Sigma astrometric error circle (approx. 0." 24) derived from post-explosion ground-based imaging of SN 2010jl. At the time the ground-based astrometry was published, however, the SN had not faded sufficiently forpost-explosion HST follow-up observations to determine a more precise astrometric solution and/or confirm if the pre-explosion source had disappeared, both of which are necessary to ultimately disentangle the possible progenitor scenarios. Here we present HST/WFC3 imaging of the SN 2010jl field obtained in 2014, 2015, and 2016 when the SN had faded sufficiently to allow for new constraints on the progenitor. The SN, which is still detected in the new images, is offset by 0."061(+/-) 0."008 (15 +/- 2 pc) from the underlying and extended source ofemission that contributes at least partially, if not entirely, to the blue source previously suggested as the candidate progenitor in the WFPC2 data. This point alone rules out the possibility that the blue source in the pre-explosion images is the exploding star, but may instead suggest an association with a young (less than 56 Myr) cluster and still argues for a massive (greater than 30 solar mass) progenitor. We obtain new upper limits on the flux from a single star at the SN position in the pre-explosion WFPC2 and Spitzer/IRAC images that may ultimately be used to constrain the progenitor properties.

  12. Teaching Chemistry through Observation--The Exploding Can Demonstration.

    ERIC Educational Resources Information Center

    Golestaneh, Kamran

    1998-01-01

    Describes procedures for a demonstration that features an exploding can. This demonstration prompts students to critically analyze the release of energy in an exothermic reaction, the work done in such a reaction, and the enthalpy. (DDR)

  13. Flame Deflector Section, Elevation, Water Supply Flow Diagram, Exploded ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Flame Deflector - Section, Elevation, Water Supply Flow Diagram, Exploded Deflector Manifolds, and Interior Perspective - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL

  14. Laser detonator development for test-firing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munger, A. C.; Thomas, K. A.; Kennedy, J. E.

    2004-01-01

    Los Alamos National Laboratory has historically fielded two types of electro-explosive detonators. The exploding-bridgewire detonator (EBW) has an exploding wire as the initiating element, a low-density transfer charge and a high-density output pellet. The slapper detonator, or exploding-foil initiator (EFI), utilizes an exploding foil to drive a flying plate element into a high-density output pellet. The last twenty years has seen various research and development activities from many laboratories and manufacturing facilities around the world to develop laser-driven analogs of these devices, but to our knowledge none of those is in general use. Los Alamos is currently committed to designmore » and manufacture a laser analog to the long-standing, generic, general-purpose SE-1 EBW detonator, which is intended to provide increased safety in large-scale test-firing operations. This paper will discuss the major design parameters of this laser detonator and present some preliminary testing results.« less

  15. Stellar Rubble May be Planetary Building Blocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for animation Birth of 'Phoenix' Planets?

    This artist's concept depicts a type of dead star called a pulsar and the surrounding disk of rubble discovered by NASA's Spitzer Space Telescope. The pulsar, called 4U 0142+61, was once a massive star until about 100,000 years ago when it blew up in a supernova explosion and scattered dusty debris into space. Some of that debris was captured into what astronomers refer to as a 'fallback disk,' now circling the remaining stellar core, or pulsar. The disk resembles protoplanetary disks around young stars, out of which planets are thought to be born.

    Supernovas are a source of iron, nitrogen and other 'heavy metals' in the universe. They spray these elements out into space, where they eventually come together in clouds that give rise to new stars and planets. The Spitzer finding demonstrates that supernovas might also contribute heavy metals to their own planets, a possibility that was first suggested when astronomers discovered planets circling a pulsar called PSR B1257+12 in 1992.

    Birth of 'Phoenix' Planets? About the Movie This artist's animation depicts the explosive death of a massive star, followed by the creation of a disk made up of the star's ashes. NASA's Spitzer Space Telescope was able to see the warm glow of such a dusty disk using its heat-seeking infrared vision. Astronomers believe planets might form in this dead star's disk, like the mythical Phoenix rising up out of the ashes.

    The movie begins by showing a dying massive star called a red giant. This bloated star is about 15 times more massive than our sun, and approximately 40 times bigger in diameter. When the star runs out of nuclear fuel, it collapses and ultimately blows apart in what is called a supernova. A lone planet around the star is shown being incinerated by the fiery blast. Astronomers do not know if stars of this heft host planets, but if they do, the planets would probably be destroyed when the stars explode.

    All that remains of the dead star is its shrunken corpse, called a neutron star. Neutron stars are incredibly dense, with masses nearly one-and-one-half times that of our sun squeezed into bodies roughly 10 miles wide (16 kilometers). They are so dense that their gravity causes light to bend and warp around them. The particular neutron star depicted here, called a pulsar, spins and pulses with X-ray radiation.

    Some debris, or ashes, from the supernova can be seen settling into a disk in orbit around the pulsar. This material never reached the velocity needed to escape the gravity of the pulsar, and can be thought of as falling back toward the star. The resulting 'fallback disk' resembles protoplanetary disks around young stars, out of which planets are thought to form.

    The pulsar observed by Spitzer, called 4U 0142+61, is13,000 light-years away in the northern constellation Cassiopeia. Its disk orbits about 1 million miles (1.6 million kilometers) away from it, and probably contains about 10 Earth-masses of material -- only a few millionths of the mass of the material expelled in the supernova.

    At the end of the movie, small asteroids begin to form within the disk. This first step towards planet formation might be happening in this system already.

  16. A Probability Problem from Real Life: The Tire Exploded.

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    1993-01-01

    Discusses the probability of seeing a tire explode or disintegrate while traveling down the highway. Suggests that a person observing 10 hours a day would see a failure on the average of once every 300 years. (MVL)

  17. NASA's Great Observatories May Unravel 400-Year Old Supernova Mystery

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Four hundred years ago, sky watchers, including the famous astronomer Johannes Kepler, best known as the discoverer of the laws of planetary motion, were startled by the sudden appearance of a "new star" in the western sky, rivaling the brilliance of the nearby planets. Kepler's Supernova Remnant Multiple Images of Kepler's Supernova Remnant Modern astronomers, using NASA's three orbiting Great Observatories, are unraveling the mysteries of the expanding remains of Kepler's supernova, the last such object seen to explode in our Milky Way galaxy. When a new star appeared Oct. 9, 1604, observers could use only their eyes to study it. The telescope would not be invented for another four years. A team of modern astronomers has the combined abilities of NASA's Great Observatories, the Spitzer Space Telescope (SST), Hubble Space Telescope (HST), and Chandra X-ray Observatory, to analyze the remains in infrared radiation, visible light, and X-rays. Ravi Sankrit and William Blair of the Johns Hopkins University in Baltimore lead the team. The combined image unveils a bubble-shaped shroud of gas and dust, 14 light-years wide and expanding at 4 million mph. Observations from each telescope highlight distinct features of the supernova, a fast-moving shell of iron-rich material, surrounded by an expanding shock wave sweeping up interstellar gas and dust. Interview with Dr. Ravi Sankrit Interview with Dr. Ravi Sankrit "Multi-wavelength studies are absolutely essential for putting together a complete picture of how supernova remnants evolve," Sankrit said. Sankrit is an associate research scientist, Center for Astrophysical Sciences at Hopkins and lead for HST astronomer observations. "For instance, the infrared data are dominated by heated interstellar dust, while optical and X-ray observations sample different temperatures of gas," Blair added. Blair is a research professor, Physics and Astronomy Department at Hopkins and lead astronomer for SST observations. "A range of observations is needed to help us understand the complex relationship that exists among the various components," Blair said. The explosion of a star is a catastrophic event. The blast rips the star apart and unleashes a roughly spherical shock wave that expands outward at more than 22 million mph like an interstellar tsunami. The shock wave spreads out into surrounding space, sweeping up any tenuous interstellar gas and dust into an expanding shell. The stellar ejecta from the explosion initially trail behind the shock wave. It eventually catches up with the inner edge of the shell and is heated to X-ray temperatures. Kepler's Supernova Remnant Hubble Optical Image of Kepler's Supernova Remnant Visible-light images from Hubble's Advanced Camera for Surveys reveal where the supernova shock wave is slamming into the densest regions of surrounding gas. The bright glowing knots are dense clumps that form behind the shock wave. Sankrit and Blair compared their HST observations with those taken with ground-based telescopes to obtain a more accurate distance to the supernova remnant of about 13,000 light-years. Kepler's Supernova Remnant Spitzer Infrared Image of Kepler's Supernova Remnant The astronomers used the SST to probe for material that radiates in infrared light, which shows heated microscopic dust particles that have been swept up by the supernova shock wave. SST is sensitive enough to detect both the densest regions seen by HST and the entire expanding shock wave, a spherical cloud of material. Instruments on SST also reveal information about the chemical composition and physical environment of the expanding clouds of gas and dust ejected into space. This dust is similar to dust which was part of the cloud of dust and gas that formed the sun and planets in our solar system. Interview with Dr. William Blair Interview with Dr. William Blair The Chandra X-ray data show regions of very hot gas. The hottest gas, higher-energy X-rays, is located primarily in the regions directly behind the shock front. These regions also show up in the HST observations and also align with the faint rim of material seen in the SST data. Cooler X-ray gas, lower-energy X-rays, resides in a thick interior shell and marks the location of the material expelled from the exploded star. There have been six known supernovas in our Milky Way over the past 1,000 years. Kepler's is the only one, which astronomers do not know what type of star exploded. By combining information from all three Great Observatories, astronomers may find the clues they need. "It's really a situation where the total is greater than the sum of the parts," Blair said. "When the analysis is complete, we will be able to answer several questions about this enigmatic object." Information and images from this research is available on the Web at: http://www.nasa.gov http://hubblesite.org/newscenter/newsdesk/archive/releases/2004/29/ http://chandra.harvard.edu and http://www.spitzer.caltech.edu/

  18. Star Shows It Has The Right Stuff

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Astronomers have used an observation by NASA's Chandra X-ray Observatory to make the best case yet that a star can be engulfed by its companion star and survive. This discovery will help astronomers better understand how closely coupled stars, and perhaps even stars and planets, evolve when one of the stars expands enormously in its red giant phase. The binary star system known as V471 Tauri comprises a white dwarf star (the primary) in a close orbit -- one thirtieth of the distance between Mercury and the Sun -- with a normal Sun-like star (the secondary). Chandra's data showed that the hot upper atmosphere of the secondary star has a deficit of carbon atoms relative to nitrogen atoms. "This deficit of carbon atoms is the first clear observational evidence that the normal star was engulfed by its companion in the past," according to Jeremy Drake of the Smithsonian Astrophysical Observatory in Cambridge, MA, who coauthored an article on V471 in The Astrophysical Journal Letters with Marek Sarna of the N. Copernicus Astronomical Center in Poland. The white dwarf star was once a star several times as massive as the Sun. Nuclear fusion reactions in the core of such a star convert carbon into nitrogen over a period of about a billion years. When the fuel in the core of the star is exhausted, the core collapses, triggering more energetic nuclear reactions that cause the star to expand and transform into a red giant before eventually collapsing to become a white dwarf. The carbon-poor material in the core of the red giant is mixed with outer part of the star, so its atmosphere shows a deficit of carbon, as compared with Sun-like stars. The X-ray spectra of a red giant star (top panel) and a Sun-like star (bottom panel) show the large difference in the peaks due to carbon atoms in the two stars. Theoretical calculations indicate that a red giant in a binary system can completely envelop its companion star and dramatically affect its evolution. During this common envelope phase, friction causes the companion star to spiral inward rapidly where it will either be destroyed by the red giant, or it will survive when much of the envelope is spun away. If the companion star manages to survive, it will bear the marks of its ordeal in the form of contamination by carbon-poor material that it accreted while it was inside the red giant envelope. The X-ray spectrum of V471 Tauri in the middle panel shows just this effect - the carbon peak is intermediate between that of a Sun-like star and an isolated red giant star. The data indicate that about 10 percent of the star's mass has been accreted from the red giant. In the future the companion star can return the favor when it expands and dumps material back onto the white dwarf. If enough material is dumped on the white dwarf, it could cause the white dwarf to explode as a supernova. "It's a dog-eat-dog world out there," observed Drake. V471 Tau was observed for approximately one day by Chandra using the Low Energy Transmission Grating and High Resolution Camera on January 24-25, 2002. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  19. Initial Development of an Exploding Aerosol Can Simulator

    DOT National Transportation Integrated Search

    1998-04-01

    A device was constructed to simulate an exploding aerosol can. The device consisted of a cylindrical pressure vessel for storage of flammable propellants and base product and a high-rate discharge (HRD) valve for quick release of the constituents. Si...

  20. LOFT. "Exploded view" of loft containment building (TAN650), including control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. "Exploded view" of loft containment building (TAN-650), including control building (TAN-630). EG&G. February 1979. INEEL index code no. 036-010-65-220-209565 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. Exploding and Imaging of Electron Bubbles in Liquid Helium

    NASA Astrophysics Data System (ADS)

    Yadav, Neha; Vadakkumbatt, Vaisakh; Maris, Humphrey J.; Ghosh, Ambarish

    2017-06-01

    An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than -1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.

  2. Effect of poultry litter biochar on Saccharomyces cerevisiae growth and ethanol production from steam-exploded poplar and corn stover

    NASA Astrophysics Data System (ADS)

    Diallo, Oumou

    The use of ethanol produced from lignocellulosic biomass for transportation fuel offers solutions in reducing environmental emission and the use of non-renewable fuels. However, lignocellulosic ethanol production is still hampered by economic and technical obstacles. For instance, the inhibitory effect of toxic compounds produced during biomass pretreatment was reported to inhibit the fermenting microorganisms, hence there was a decrease in ethanol yield and productivity. Thus, there is a need to improve the bioconversion of lignocellulosic biomass to ethanol in order to promote its commercialization. The research reported here investigated the use of poultry litter biochar to improve the ethanol production from steam-exploded poplar and corn stover. The effect of poultry litter biochar was first studied on Saccharomyces cerevisiae ATCC 204508/S288C growth, and second on the enzyme hydrolysis and fermentation of two steam-exploded biomasses: (poplar and corn stover). The third part of the study investigated optimal process parameters (biochar loading, biomass loading, and enzyme loading) on the reducing sugars production, and ethanol yield from steam-exploded corn stover. In this study, it has been shown that poultry litter biochar improved the S. cerevisiae growth and ethanol productivity; therefore poultry litter biochar could potentially be used to improve the ethanol production from steam-exploded lignocellulosic biomass.

  3. Spectral shifting strongly constrains molecular cloud disruption by radiation pressure on dust

    NASA Astrophysics Data System (ADS)

    Reissl, Stefan; Klessen, Ralf S.; Mac Low, Mordecai-Mark; Pellegrini, Eric W.

    2018-03-01

    Aim. We aim to test the hypothesis that radiation pressure from young star clusters acting on dust is the dominant feedback agent disrupting the largest star-forming molecular clouds and thus regulating the star-formation process. Methods: We performed multi-frequency, 3D, radiative transfer calculations including both scattering and absorption and re-emission to longer wavelengths for model clouds with masses of 104-107 M⊙, containing embedded clusters with star formation efficiencies of 0.009-91%, and varying maximum grain sizes up to 200 μm. We calculated the ratio between radiative and gravitational forces to determine whether radiation pressure can disrupt clouds. Results: We find that radiation pressure acting on dust almost never disrupts star-forming clouds. Ultraviolet and optical photons from young stars to which the cloud is optically thick do not scatter much. Instead, they quickly get absorbed and re-emitted by the dust at thermal wavelengths. As the cloud is typically optically thin to far-infrared radiation, it promptly escapes, depositing little momentum in the cloud. The resulting spectrum is more narrowly peaked than the corresponding Planck function, and exhibits an extended tail at longer wavelengths. As the opacity drops significantly across the sub-mm and mm wavelength regime, the resulting radiative force is even smaller than for the corresponding single-temperature blackbody. We find that the force from radiation pressure falls below the strength of gravitational attraction by an order of magnitude or more for either Milky Way or moderate starbust conditions. Only for unrealistically large maximum grain sizes, and star formation efficiencies far exceeding 50% do we find that the strength of radiation pressure can exceed gravity. Conclusions: We conclude that radiation pressure acting on dust does not disrupt star-forming molecular clouds in any Local Group galaxies. Radiation pressure thus appears unlikely to regulate the star-formation process on either local or global scales.

  4. The evolution of massive stars: bridging the gap in the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Neugent, Kathryn F.; Levesque, Emily M.

    2017-09-01

    The nearby galaxies of the Local Group can act as our laboratories in helping to bridge the gap between theory and observations. In this review, we will describe the complications of identifying samples of OB stars, yellow and red supergiants, and Wolf-Rayet stars, and what we have so far learned from these studies. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  5. EVIDENCE THAT GAMMA-RAY BURST 130702A EXPLODED IN A DWARF SATELLITE OF A MASSIVE GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.

    2013-09-20

    GRB 130702A is a nearby long-duration gamma-ray burst (LGRB) discovered by the Fermi satellite whose associated afterglow was detected by the Palomar Transient Factory. Subsequent photometric and spectroscopic monitoring has identified a coincident broad-lined Type Ic supernova (SN), and nebular emission detected near the explosion site is consistent with a redshift of z = 0.145. The SN-GRB exploded at an offset of {approx}7.''6 from the center of an inclined r = 18.1 mag red disk-dominated galaxy, and {approx}0.''6 from the center of a much fainter r = 23 mag object. We obtained Keck-II DEIMOS spectra of the two objects andmore » find a 2{sigma} upper limit on their line-of-sight velocity offset of {approx}<60 km s{sup -1}. If we calculate the inclination angle of the massive red galaxy from its axis ratio and assume that its light is dominated by a very thin disk, the explosion would have a {approx}60 kpc central offset, or {approx}9 times the galaxy's half-light radius. A significant bulge or a thicker disk would imply a higher inclination angle and greater central offset. The substantial offset suggests that the faint source is a separate dwarf galaxy. The star-formation rate of the dwarf galaxy is {approx}0.05 M{sub Sun} yr{sup -1}, and we place an upper limit on its oxygen abundance of 12 + log(O/H) < 8.16 dex. The identification of an LGRB in a dwarf satellite of a massive, metal-rich primary galaxy suggests that recent detections of LGRBs spatially coincident with metal-rich galaxies may be, in some cases, superpositions.« less

  6. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  7. Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community.

    PubMed

    Liu, Zhidan; Zhang, Chong; Wang, Linjun; He, Jianwei; Li, Baoming; Zhang, Yuanhui; Xing, Xin-Hui

    2015-01-01

    Understanding the role of furan derivatives, furfural (FUR) and 5-hydroxymethyl furfural (HMF), is important for biofuel production from lignocellulosic biomass. In this study, the effects of furan derivatives on hydrogen fermentation from wet steam-exploded cornstalk were investigated. The control experiments with only seed sludge indicated that HMF addition of up to 1g/L stimulated hydrogen production. Similar results were obtained using steam-exploded cornstalk as the feedstock. Hydrogen productivity was increased by up to 40% with the addition of HMF. In addition, over 90% of furan derivatives with an initial concentration below 1g/L were degraded. Pyosequencing showed that the addition of HMF and FUR resulted in different microbial communities. HMF led to a higher proportion of the genera Clostridium and Ruminococcaceae, supporting the increased hydrogen production. This study suggested that hydrogen fermentation could be a detoxifying step for steam-exploded cornstalk, and HMF and FUR exhibited different functions for hydrogen fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Numerical simulation of exploding pusher targets

    NASA Astrophysics Data System (ADS)

    Atzeni, S.; Rosenberg, M. J.; Gatu Johnson, M.; Petrasso, R. D.

    2017-10-01

    Exploding pusher targets, i.e. gas-filled large aspect-ratio glass or plastic shells, driven by a strong laser-generated shock, are widely used as pulsed sources of neutrons and fast charged particles. Recent experiments on exploding pushers provided evidence for the transition from a purely fluid behavior to a kinetic one. Indeed, fluid models largely overpredict yield and temperature as the Knudsen number Kn (ratio of ion mean-free path to compressed gas radius) is comparable or larger than one. At Kn = 0.3 - 1, fluid codes reasonably estimate integral quantities as yield and neutron-averaged temperatures, but do not reproduce burn radii, burn profiles and DD/DHe3 yield ratio. This motivated a detailed simulation study of intermediate-Kn exploding pushers. We will show how simulation results depend on models for laser-interaction, electron conductivity (flux-limited local vs nonlocal), viscosity (physical vs artificial), and ion mixing. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), and Eurofusion Project AWP17-ENR-IFE-CEA-01.

  9. Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.

    2016-05-01

    This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.

  10. Blue Star/Gold Star Flag Act of 2011

    THOMAS, 112th Congress

    Sen. Webb, Jim [D-VA

    2011-02-17

    Senate - 02/17/2011 Read twice and referred to the Committee on Banking, Housing, and Urban Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  11. Fastest Pulsar Speeding Out of Galaxy, Astronomers Discover

    NASA Astrophysics Data System (ADS)

    2005-08-01

    A speeding, superdense neutron star somehow got a powerful "kick" that is propelling it completely out of our Milky Way Galaxy into the cold vastness of intergalactic space. Its discovery is puzzling astronomers who used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to directly measure the fastest speed yet found in a neutron star. Pulsar's Path Across Sky Over about 2.5 million years, Pulsar B1508+55 has moved across about a third of the night sky as seen from Earth. CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version 67 KB) The neutron star is the remnant of a massive star born in the constellation Cygnus that exploded about two and a half million years ago in a titanic explosion known as a supernova. Ultra-precise VLBA measurements of its distance and motion show that it is on course to inevitably leave our Galaxy. "We know that supernova explosions can give a kick to the resulting neutron star, but the tremendous speed of this object pushes the limits of our current understanding," said Shami Chatterjee, of the National Radio Astronomy Observatory (NRAO) and the Harvard-Smithsonian Center for Astrophysics. "This discovery is very difficult for the latest models of supernova core collapse to explain," he added. Chatterjee and his colleagues used the VLBA to study the pulsar B1508+55, about 7700 light-years from Earth. With the ultrasharp radio "vision" of the continent-wide VLBA, they were able to precisely measure both the distance and the speed of the pulsar, a spinning neutron star emitting powerful beams of radio waves. Plotting its motion backward pointed to a birthplace among groups of giant stars in the constellation Cygnus -- stars so massive that they inevitably explode as supernovae. "This is the first direct measurement of a neutron star's speed that exceeds 1,000 kilometers per second," said Walter Brisken, an NRAO astronomer. "Most earlier estimates of neutron-star speeds depended on educated guesses about their distances. With this one, we have a precise, direct measurement of the distance, so we can measure the speed directly," Brisken said. The VLBA measurements show the pulsar moving at nearly 1100 kilometers (more than 670 miles) per second -- about 150 times faster than an orbiting Space Shuttle. At this speed, it could travel from London to New York in five seconds. In order to measure the pulsar's distance, the astronomers had to detect a "wobble" in its position caused by the Earth's motion around the Sun. That "wobble" was roughly the length of a baseball bat as seen from the Moon. Then, with the distance determined, the scientists could calculate the pulsar's speed by measuring its motion across the sky. "The motion we measured with the VLBA was about equal to watching a home run ball in Boston's Fenway Park from a seat on the Moon," Chatterjee explained. "However, the pulsar took nearly 22 months to show that much apparent motion. The VLBA is the best possible telescope for tracking such tiny apparent motions." The star's presumed birthplace among giant stars in the constellation Cygnus lies within the plane of the Milky Way, a spiral galaxy. The new VLBA observations indicate that the neutron star now is headed away from the Milky Way's plane with enough speed to take it completely out of the Galaxy. Since the supernova explosion nearly 2 and a half million years ago, the pulsar has moved across about a third of the night sky as seen from Earth. "We've thought for some time that supernova explosions can give a kick to the resulting neutron star, but the latest computer models of this process have not produced speeds anywhere near what we see in this object," Chatterjee said. "This means that the models need to be checked, and possibly corrected, to account for our observations," he said. "There also are some other processes that may be able to add to the speed produced by the supernova kick, but we'll have to investigate more thoroughly to draw any firm conclusions," said Wouter Vlemmings of the Jodrell Bank Observatory in the UK and Cornell University in the U.S. The observations of B1508+55 were part of a larger project to use the VLBA to measure the distances and motions of numerous pulsars. "This is the first result of this long-term project, and it's pretty exciting to have something so spectacular come this early," Brisken said. The VLBA observations were made at radio frequencies between 1.4 and 1.7 GigaHertz. Chatterjee, Vlemmings and Brisken worked with Joseph Lazio of the Naval Research Laboratory, James Cordes of Cornell University, Miller Goss of NRAO, Stephen Thorsett of the University of California, Santa Cruz, Edward Fomalont of NRAO, Andrew Lyne and Michael Kramer, both of Jodrell Bank Observatory. The scientists presented their findings in the September 1 issue of the Astrophysical Journal Letters. The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in space. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  12. Star Cluster Buzzing With Pulsars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes as a supernova at the end of its life. The pulsars in Terzan 5 are the product of a complex history. The stars in the cluster formed about 10 billion years ago, the astronomers say. Some of the most massive stars in the cluster exploded and left the neutron stars as their remnants after only a few million years. Normally, these neutron stars would no longer be seen as swiftly-rotating pulsars: their spin would have slowed because of the "drag" of their intense magnetic fields until the "lighthouse" effect is no longer observable. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) However, the dense concentration of stars in the cluster gave new life to the pulsars. In the core of a globular cluster, as many as a million stars may be packed into a volume that would fit easily between the Sun and our nearest neighbor star. In such close quarters, stars can pass near enough to form new binary pairs, split apart such pairs, and binary systems even can trade partners, like an elaborate cosmic square dance. When a neutron star pairs up with a "normal" companion star, its strong gravitational pull can draw material off the companion onto the neutron star. This also transfers some of the companion's spin, or angular momentum, to the neutron star, thereby "recycling" the neutron star into a rapidly-rotating millisecond pulsar. In Terzan 5, all the pulsars discovered are rotating rapidly as a result of this process. Astronomers previously had discovered three pulsars in Terzan 5, some 28,000 light-years distant in the constellation Sagittarius, but suspected there were more. On July 17, 2004, Ransom and his colleagues used the GBT, and, in a 6-hour observation, found 14 new pulsars, the most ever found in a single observation. "This was possible because of the great sensitivity of the GBT and the new capabilities of our backend processor," said Ingrid Stairs, a professor at the University of British Columbia in Vancouver. The processor, named, appropriately, the Pulsar Spigot, was built in a collaboration between the NRAO and the California Institute of Technology. The processor, which generates almost 100 GigaBytes of data per hour, allowed the astronomers to gather and analyze radio waves over a wide range of frequencies (1650-2250 MegaHertz), adding to the sensitivity of their system. Eight more observations between July and November of 2004 discovered seven additional pulsars in Terzan 5. In addition, the astronomers' data show evidence for several more pulsars that still need to be confirmed. Future studies of the pulsars in Terzan 5 will help scientists understand the nature of the cluster and the complex interactions of the stars at its dense core. Also, several of the pulsars offer a rich yield of new scientific information. The scientists suspect that one pulsar, which shows strange eclipses of its radio emission, has recently traded its original binary companion for another, and two others have white-dwarf companions that they believe may have been produced by the collision of a neutron star and a red-giant star. Subtle effects seen in these two systems can be explained by Einstein's general relativistic theory of gravity, and indicate that the neutron stars are more massive than some theories allow. The material in a neutron star is as dense as that in an atomic nucleus, so that fact has implications for nuclear physics as well as astrophysics. "Finding all these pulsars has been extremely exciting, but the excitement really has just begun," Ransom said. "Now we can start to use them as a rich and valuable cosmic laboratory," he added. In addition to Ransom, Hessels and Stairs, the research team included Paulo Freire of Arecibo Observatory in Puerto Rico, Fernando Camilo of Columbia University, Victoria Kaspi of McGill University, and David Kaplan of the Massachusetts Institute of Technology. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The pulsar research also was supported by the Canada Foundation for Innovation, Science and Engineering Research Canada, the Quebec Foundation for Research on Nature and Technology, the Canadian Institute for Advanced Research, Canada Research Chairs Program, and the National Science Foundation.

  13. The evolution of massive stars: bridging the gap in the Local Group.

    PubMed

    Massey, Philip; Neugent, Kathryn F; Levesque, Emily M

    2017-10-28

    The nearby galaxies of the Local Group can act as our laboratories in helping to bridge the gap between theory and observations. In this review, we will describe the complications of identifying samples of OB stars, yellow and red supergiants, and Wolf-Rayet stars, and what we have so far learned from these studies.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  14. HUBBLE SPIES HUGE CLUSTERS OF STARS FORMED

    NASA Technical Reports Server (NTRS)

    2002-01-01

    BY ANCIENT ENCOUNTER This stunningly beautiful image [right] taken with the NASA Hubble Space Telescope shows the heart of the prototypical starburst galaxy M82. The ongoing violent star formation due to an ancient encounter with its large galactic neighbor, M81, gives this galaxy its disturbed appearance. The smaller picture at upper left shows the entire galaxy. The image was taken in December 1994 by the Kitt Peak National Observatory's 0.9-meter telescope. Hubble's view is represented by the white outline in the center. In the Hubble image, taken by the Wide Field and Planetary Camera 2, the huge lanes of dust that crisscross M82's disk are another telltale sign of the flurry of star formation. Below the center and to the right, a strong galactic wind is spewing knotty filaments of hydrogen and nitrogen gas. More than 100 super star clusters -- very bright, compact groupings of about 100,000 stars -- are seen in this detailed Hubble picture as white dots sprinkled throughout M82's central region. The dark region just above the center of the picture is a huge dust cloud. A collaboration of European and American scientists used these clusters to date the ancient interaction between M82 and M81. About 600 million years ago, a region called 'M82 B' (the bright area just below and to the left of the central dust cloud) exploded with new stars. Scientists have discovered that this ancient starburst was triggered by the violent encounter with M81. M82 is a bright (eighth magnitude), nearby (12 million light-years from Earth) galaxy in the constellation Ursa Major (the Great Bear). The Hubble picture was taken Sept. 15, 1997. The natural-color composite was constructed from three Wide Field and Planetary Camera 2 exposures, which were combined in chromatic order: 4,250 seconds through a blue filter (428 nm); 2,800 seconds through a green filter (520 nm); and 2,200 seconds through a red (820 nm) filter. Credits for Hubble image: NASA, ESA, R. de Grijs (Institute of Astronomy, Cambridge, UK) Credits for ground-based picture: N.A. Sharp (Association of Universities for Research in Astronomy, National Optical Astronomy Observatories, National Science Foundation)

  15. Ultra-stripped supernovae: progenitors and fate

    NASA Astrophysics Data System (ADS)

    Tauris, Thomas M.; Langer, Norbert; Podsiadlowski, Philipp

    2015-08-01

    The explosion of ultra-stripped stars in close binaries can lead to ejecta masses <0.1 M⊙ and may explain some of the recent discoveries of weak and fast optical transients. In Tauris et al., it was demonstrated that helium star companions to neutron stars (NSs) may experience mass transfer and evolve into naked ˜1.5 M⊙ metal cores, barely above the Chandrasekhar mass limit. Here, we elaborate on this work and present a systematic investigation of the progenitor evolution leading to ultra-stripped supernovae (SNe). In particular, we examine the binary parameter space leading to electron-capture (EC SNe) and iron core-collapse SNe (Fe CCSNe), respectively, and determine the amount of helium ejected with applications to their observational classification as Type Ib or Type Ic. We mainly evolve systems where the SN progenitors are helium star donors of initial mass MHe = 2.5-3.5 M⊙ in tight binaries with orbital periods of Porb = 0.06-2.0 d, and hosting an accreting NS, but we also discuss the evolution of wider systems and of both more massive and lighter - as well as single - helium stars. In some cases, we are able to follow the evolution until the onset of silicon burning, just a few days prior to the SN explosion. We find that ultra-stripped SNe are possible for both EC SNe and Fe CCSNe. EC SNe only occur for MHe = 2.60-2.95 M⊙ depending on Porb. The general outcome, however, is an Fe CCSN above this mass interval and an ONeMg or CO white dwarf for smaller masses. For the exploding stars, the amount of helium ejected is correlated with Porb - the tightest systems even having donors being stripped down to envelopes of less than 0.01 M⊙. We estimate the rise time of ultra-stripped SNe to be in the range 12 h-8 d, and light-curve decay times between 1 and 50 d. A number of fitting formulae for our models are provided with applications to population synthesis. Ultra-stripped SNe may produce NSs in the mass range 1.10-1.80 M⊙ and are highly relevant for LIGO/VIRGO since most (possibly all) merging double NS systems have evolved through this phase. Finally, we discuss the low-velocity kicks which might be imparted on these resulting NSs at birth.

  16. [Self-immolation as an effort of self-rescue during a psychotic episode].

    PubMed

    Niethammer, Rainer; Breitmaier, Jörg

    2005-07-01

    Self-immolation as reported in the literature usually happens in the context of suicide acts or political martyrdom. We report a case in which a patient during a first psychotic episode attempted to immolate herself: she covered her legs with pieces of clothing and set them a fire. Severe burning made amputation of both her legs necessary, one above, one below the knee. The patient had not acted in this way in order to die, but to save herself from the impending end of the world. She was convinced the earth was going to explode, and she would only be able to flee to Venus by self-immolation. She acted under the influence of imperative acoustic hallucinations encouraging her and pressing her to proceed. Antipsychotic treatment with clozapine resulted in complete remission of all psychotic symptoms. Other than during psychosis the patient didn't believe in life on other planets, had no fantasies about the end of the earth, no contact with sects and no religious or cultural motives for self-immolation.

  17. IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Thomas; Girichidis, Philipp; Gatto, Andrea

    2015-11-10

    The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less

  18. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  19. The Candidate Progenitor of the Type IIn SN 2010jl Is Not an Optically Luminous Star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Ori D.; Dyk, Schuyler D. Van; Dwek, Eli

    A blue source in pre-explosion Hubble Space Telescope ( HST )/Wide-Field Planetary Camera 2 (WFPC2) images falls within the 5 σ astrometric error circle (∼0.″24) derived from post-explosion ground-based imaging of SN 2010jl. At the time the ground-based astrometry was published, however, the SN had not faded sufficiently for post-explosion HST follow-up observations to determine a more precise astrometric solution and/or confirm if the pre-explosion source had disappeared, both of which are necessary to ultimately disentangle the possible progenitor scenarios. Here we present HST /WFC3 imaging of the SN 2010jl field obtained in 2014, 2015, and 2016 when the SNmore » had faded sufficiently to allow for new constraints on the progenitor. The SN, which is still detected in the new images, is offset by 0.″061 ± 0.″008 (15 ± 2 pc) from the underlying and extended source of emission that contributes at least partially, if not entirely, to the blue source previously suggested as the candidate progenitor in the WFPC2 data. This point alone rules out the possibility that the blue source in the pre-explosion images is the exploding star, but may instead suggest an association with a young (<5–6 Myr) cluster and still argues for a massive (>30 M {sub ⊙}) progenitor. We obtain new upper limits on the flux from a single star at the SN position in the pre-explosion WFPC2 and Spitzer /IRAC images that may ultimately be used to constrain the progenitor properties.« less

  20. The Stellar Origins of Supernovae

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler

    2015-10-01

    Supernovae (SNe) have a profound effect on galaxies, and have been used as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 6400 IAU-designated SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, we have learned that Type II-Plateau SNe appear to primarily arise from relatively low mass (8 to 20 Msun) red supergiants, leaving a puzzle as to what is happening to more massive stars. Additionally, evidence is accumulating that the progenitors of Type II-narrow SNe may be related to luminous blue variables. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are being used for precision cosmology. In previous Cycles we have had great success with our approved ToO programs. As of this proposal deadline, we have had one trigger (SN 2014dt) completed so far and one pending (SN 2015G) with our Cycle 22 program. The compelling scientific questions lead us to continue this project to determine the identities of the progenitors of 4 SNe within, generally, about 20 Mpc, which we expect during Cycle 23, through ToO observations using WFC3/UVIS.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Bernhard; Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de

    Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ☉}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ν-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ≳ 10 M {sub ☉} as observed in previous 1D and 2D simulations with state-of-the-artmore » neutrino transport. We establish a roughly linear scaling of 〈E{sub ν-bar{sub e}}〉 with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ∼10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.« less

  2. Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders

    2007-01-01

    Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide range of latent variable models. Applications considered include survival or duration models, models for rankings, small area estimation with census information, models for ordinal responses, item response models with guessing, randomized response models,…

  3. PHYSICAL AND OPTICAL PROPERTIES OF STEAM-EXPLODED LASER-PRINTED PAPER

    EPA Science Inventory

    Laser-printed paper was pulped by the steam-explosion process. A full-factorial experimental design was applied to determine the effects of key operating variables on the properties of steam-exploded pulp. The variables were addition level for pulping chemicals (NaOH and/or Na2SO...

  4. The Stellar Origins of Supernovae

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler

    2009-07-01

    Supernovae {SNe} have a profound effect on galaxies, and have been used recently as precise cosmological probes, resulting in the discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with nearly 4000 known SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting new line of study, the emerging trend from 5 detections for Type II-Plateau SNe is that their progenitors appear to be relatively low mass {8 to 20 Msun} red supergiants, although more cases are needed. Nonetheless, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are currently being used for precision cosmology. In Cycle 16 we have triggered on the Type Ic SN 2007gr and Type IIb SN 2008ax so far. We propose to determine the identities of the progenitors of 4 SNe within 17 Mpc, which we expect to occur during Cycle 17, through ToO observations using ACS/HRC.

  5. Neutron Star Discovered Where a Black Hole Was Expected

    NASA Astrophysics Data System (ADS)

    2005-11-01

    A very massive star collapsed to form a neutron star and not a black hole as expected, according to new results from NASA's Chandra X-ray Observatory. This discovery shows that nature has a harder time making black holes than previously thought. Scientists found this neutron star -- a dense whirling ball of neutrons about 12 miles in diameter -- in an extremely young star cluster. Astronomers were able to use well-determined properties of other stars in the cluster to deduce that the progenitor of this neutron star was at least 40 times the mass of the Sun. ESO Optical Image of Westerlund 1 ESO Optical Image of Westerlund 1 "Our discovery shows that some of the most massive stars do not collapse to form black holes as predicted, but instead form neutron stars," said Michael Muno, a UCLA postdoctoral Hubble Fellow and lead author of a paper to be published in The Astrophysical Journal Letters. When very massive stars make neutron stars and not black holes, they will have a greater influence on the composition of future generations of stars. When the star collapses to form the neutron star, more than 95% of its mass, much of which is metal-rich material from its core, is returned to the space around it. "This means that enormous amounts of heavy elements are put back into circulation and can form other stars and planets," said J. Simon Clark of the Open University in the United Kingdom. Animation: Dissolve from Optical to X-ray Image of Westerlund 1 Animation: Dissolve from Optical to X-ray Image of Westerlund 1 Astronomers do not completely understand how massive a star must be to form a black hole rather than a neutron star. The most reliable method for estimating the mass of the progenitor star is to show that the neutron star or black hole is a member of a cluster of stars, all of which are close to the same age. Because more massive stars evolve faster than less massive ones, the mass of a star can be estimated from if its evolutionary stage is known. Neutron stars and black holes are the end stages in the evolution of a star, so their progenitors must have been among the most massive stars in the cluster. Muno and colleagues discovered a pulsing neutron star in a cluster of stars known as Westerlund 1. This cluster contains a hundred thousand or more stars in a region only 30 light years across, which suggests that all the stars were born in a single episode of star formation. Based on optical properties such as brightness and color some of the normal stars in the cluster are known to have masses of about 40 suns. Since the progenitor of the neutron star has already exploded as a supernova, its mass must have been more than 40 solar masses. 2MASS Infrared Image of Westerlund 1 2MASS Infrared Image of Westerlund 1 Introductory astronomy courses sometimes teach that stars with more than 25 solar masses become black holes -- a concept that until recently had no observational evidence to test it. However, some theories allow such massive stars to avoid becoming black holes. For example, theoretical calculations by Alexander Heger of the University of Chicago and colleagues indicate that extremely massive stars blow off mass so effectively during their lives that they leave neutron stars when they go supernovae. Assuming that the neutron star in Westerlund 1 is one of these, it raises the question of where the black holes observed in the Milky Way and other galaxies come from. Other factors, such as the chemical composition of the star, how rapidly it is rotating, or the strength of its magnetic field might dictate whether a massive star leaves behind a neutron star or a black hole. The theory for stars of normal chemical composition leaves a small window of initial masses - between about 25 and somewhat less than 40 solar masses - for the formation of black holes from the evolution of single massive stars. The identification of additional neutron stars or the discovery of black holes in young star clusters should further constrain the masses and properties of neutron star and black hole progenitors. The work described by Muno was based on two Chandra observations on May 22 and June 18, 2005. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  6. Neutron Stars Rip Each Other Apart to Form Black Hole

    NASA Image and Video Library

    2014-05-13

    Simulation frames from this NASA Goddard neutron star merger animation: bit.ly/1jolBYY Credit: NASA's Goddard Space Flight Center This supercomputer simulation shows one of the most violent events in the universe: a pair of neutron stars colliding, merging and forming a black hole. A neutron star is the compressed core left behind when a star born with between eight and 30 times the sun's mass explodes as a supernova. Neutron stars pack about 1.5 times the mass of the sun — equivalent to about half a million Earths — into a ball just 12 miles (20 km) across. As the simulation begins, we view an unequally matched pair of neutron stars weighing 1.4 and 1.7 solar masses. They are separated by only about 11 miles, slightly less distance than their own diameters. Redder colors show regions of progressively lower density. As the stars spiral toward each other, intense tides begin to deform them, possibly cracking their crusts. Neutron stars possess incredible density, but their surfaces are comparatively thin, with densities about a million times greater than gold. Their interiors crush matter to a much greater degree densities rise by 100 million times in their centers. To begin to imagine such mind-boggling densities, consider that a cubic centimeter of neutron star matter outweighs Mount Everest. By 7 milliseconds, tidal forces overwhelm and shatter the lesser star. Its superdense contents erupt into the system and curl a spiral arm of incredibly hot material. At 13 milliseconds, the more massive star has accumulated too much mass to support it against gravity and collapses, and a new black hole is born. The black hole's event horizon — its point of no return — is shown by the gray sphere. While most of the matter from both neutron stars will fall into the black hole, some of the less dense, faster moving matter manages to orbit around it, quickly forming a large and rapidly rotating torus. This torus extends for about 124 miles (200 km) and contains the equivalent of 1/5th the mass of our sun. Scientists think neutron star mergers like this produce short gamma-ray bursts (GRBs). Short GRBs last less than two seconds yet unleash as much energy as all the stars in our galaxy produce over one year. The rapidly fading afterglow of these explosions presents a challenge to astronomers. A key element in understanding GRBs is getting instruments on large ground-based telescopes to capture afterglows as soon as possible after the burst. The rapid notification and accurate positions provided by NASA's Swift mission creates a vibrant synergy with ground-based observatories that has led to dramatically improved understanding of GRBs, especially for short bursts. This video is public domain and can be downloaded at: svs.gsfc.nasa.gov/vis/a010000/a011500/a011530/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Neutron Stars Rip Each Other Apart to Form Black Hole

    NASA Image and Video Library

    2017-12-08

    Simulation frames from this NASA Goddard neutron star merger animation: bit.ly/1jolBYY Credit: NASA's Goddard Space Flight Center This supercomputer simulation shows one of the most violent events in the universe: a pair of neutron stars colliding, merging and forming a black hole. A neutron star is the compressed core left behind when a star born with between eight and 30 times the sun's mass explodes as a supernova. Neutron stars pack about 1.5 times the mass of the sun — equivalent to about half a million Earths — into a ball just 12 miles (20 km) across. As the simulation begins, we view an unequally matched pair of neutron stars weighing 1.4 and 1.7 solar masses. They are separated by only about 11 miles, slightly less distance than their own diameters. Redder colors show regions of progressively lower density. As the stars spiral toward each other, intense tides begin to deform them, possibly cracking their crusts. Neutron stars possess incredible density, but their surfaces are comparatively thin, with densities about a million times greater than gold. Their interiors crush matter to a much greater degree densities rise by 100 million times in their centers. To begin to imagine such mind-boggling densities, consider that a cubic centimeter of neutron star matter outweighs Mount Everest. By 7 milliseconds, tidal forces overwhelm and shatter the lesser star. Its superdense contents erupt into the system and curl a spiral arm of incredibly hot material. At 13 milliseconds, the more massive star has accumulated too much mass to support it against gravity and collapses, and a new black hole is born. The black hole's event horizon — its point of no return — is shown by the gray sphere. While most of the matter from both neutron stars will fall into the black hole, some of the less dense, faster moving matter manages to orbit around it, quickly forming a large and rapidly rotating torus. This torus extends for about 124 miles (200 km) and contains the equivalent of 1/5th the mass of our sun. Scientists think neutron star mergers like this produce short gamma-ray bursts (GRBs). Short GRBs last less than two seconds yet unleash as much energy as all the stars in our galaxy produce over one year. The rapidly fading afterglow of these explosions presents a challenge to astronomers. A key element in understanding GRBs is getting instruments on large ground-based telescopes to capture afterglows as soon as possible after the burst. The rapid notification and accurate positions provided by NASA's Swift mission creates a vibrant synergy with ground-based observatories that has led to dramatically improved understanding of GRBs, especially for short bursts. This video is public domain and can be downloaded at: svs.gsfc.nasa.gov/vis/a010000/a011500/a011530/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Wheelbarrow tire explosion causing trauma to the forearm and hand: a case report

    PubMed Central

    2009-01-01

    Introduction Tire explosion injuries are rare, but they may result in a severe injury pattern. Case reports and statistics from injuries caused by exploded truck tires during servicing are established, but trauma from exploded small tires seems to be unknown. Case presentation A 47-year-old german man inflated a wheelbarrow tire. The tire exploded during inflation and caused an open, multiple forearm and hand injury. Conclusion Even small tires can cause severe injury patterns in the case of an explosion. High inflating pressures and low safety distances are the main factors responsible for this occurrence. Broad safety information and suitable filling devices are indispensable for preventing these occurrences. PMID:19946543

  9. Modeling Initiation in Exploding Bridgewire Detonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrousis, C A

    2005-05-18

    One- and two-dimensional models of initiation in detonators are being developed for the purpose of evaluating the performance of aged and modified detonator designs. The models focus on accurate description of the initiator, whether it be an EBW (exploding bridgewire) that directly initiates a high explosive powder or an EBF (exploding bridgefoil) that sends an inert flyer into a dense HE pellet. The explosion of the initiator is simulated using detailed MHD equations of state as opposed to specific action-based phenomenological descriptions. The HE is modeled using the best available JWL equations of state. Results to date have been promising,more » however, work is still in progress.« less

  10. Blue Star/Gold Star Flag Act of 2010

    THOMAS, 111th Congress

    Rep. Boccieri, John A. [D-OH-16

    2009-05-21

    Senate - 05/20/2010 Received in the Senate and Read twice and referred to the Committee on Banking, Housing, and Urban Affairs. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  11. Clinical features of the exploding head syndrome.

    PubMed

    Pearce, J M

    1989-07-01

    Fifty patients suffering from the "exploding head syndrome" are described. This hitherto unreported syndrome is characterised by a sense of an explosive noise in the head usually in the twilight stage of sleep. The associated symptoms are varied, but the benign nature of the condition is emphasised and neither extensive investigation nor treatment are indicated.

  12. Exploding Boxes

    ERIC Educational Resources Information Center

    Kinney; Jan

    2011-01-01

    How do you teach the "same old, same old" in an interesting and inexpensive way? Art teachers are forever looking for new angles on the good-old elements and principles. And, as budgets tighten, they are trying to be as frugal as possible while still holding their students' attention. Enter exploding boxes! In conceptualizing the three types of…

  13. The Exploding and Explosive Two-Year College.

    ERIC Educational Resources Information Center

    McPherson, Elisabeth

    Junior and community colleges must explode many traditional notions about education in order to fulfill their promises to poor and disadvantaged students. The number of junior and community colleges and the number of students attending them have increased rapidly in the past few years. But many communities think that community colleges didn't keep…

  14. Nearby star cluster yields insights into early universe

    NASA Astrophysics Data System (ADS)

    1998-07-01

    The nebula offers a unique opportunity for a close-up glimpse of the "firestorm" accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. "This is giving us new insights into the physical mechanisms governing star formation in far away galaxies that existed long ago," says Mohammad Heydari-Malayeri (Paris Observatory, France), who headed the international team of astronomers who made the discovery using Hubble's Wide Field and Planetary Camera 2. Because these stars are deficient in heavier elements, they also evolve much like the universe's earliest stars, which were made almost exclusively of the primordial elements hydrogen and helium that were created in the big bang. The Small Magellanic Cloud is a unique laboratory for studying star formation in the early universe since it is the closest and best seen galaxy containing so-called "metal-poor" first- and second -generation type stars. These observations show that massive stars may form in groups. "As a result, it is more likely some of these stars are members of double and multiple star systems," says Heydari-Malayeri. "The multiple systems will affect stellar evolution considerably by ejecting a great deal of matter into space." This furious rate of mass loss from these stars is evident in the Hubble picture, which reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. "This implies a very turbulent environment typical of young star formation regions," Heydari-Malayeri adds. He believes one of the members of the cluster may be an extremely rare and short-lived class of super-hot star (50,000 degrees Kelvin) called a Wolf-Rayet. This star represents a violent, transitional phase in the final years of a massive star's existence - before it ultimately explodes as a supernova. "If confirmed by future Hubble observations, this finding will have a far-reaching impact on stellar evolutionary models," says Heydari-Malayeri. "That's because the Wolf-Rayet candidate is fainter than other such stars in that galaxy, in contrast with the predictions of these models." Hubble's resolution allows astronomers to pinpoint 50 separate stars tightly packed in the nebula's core within a 10 light-year diameter -- slightly more than twice the distance between Earth and the nearest star to our sun. The closest pair of stars is only one-third of a light-year apart. Before the Hubble observations, N81 was simply dubbed, "The Blob" because its features were indistinguishable by other telescopes. The Hubble observations of N81 were conducted by the European astronomers Mohammed Heydari-Malayeri (Paris Observatory, France) and co-investigators Michael Rosa (Space Telescope-European Coordinating Facility, European Southern Observatory, Germany), Hans Zinnecker (Astrophysics Institute, Potsdam, Germany), Lise Deharveng (Marseille Observatory, France), and Vassilis Charmandaris (Paris Observatory). Their work will be shortly submitted for publication in the European journal Astronomy and Astrophysics. The Hubble Space Telescope is a project of international cooperation between ESA and NASA. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. for NASA, under contract with NASA's Goddard Space Flight Center, Greenbelt, MD. Note to editors: A photo and caption associated with this release are available via the World-Wide Web at: http://oposite.stsci.edu/1998/25 or via links in: http://oposite.stsci.edu/pubinfo/latest.html or http://oposite.stsci.edu/pubinfo/pictures.html. Further information is available from: Mohammad Heydari-Malayeri Paris Observatory, Paris, France (Phone: 33-1-40-51-20-76)

  15. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    NASA Technical Reports Server (NTRS)

    Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M. J.; Baes, M.; Bouchet, P.; Burrows, D. N.; Chevalier, R.; Clayton, G. C.; hide

    2014-01-01

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/ Submillimeter Array to observe SN1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 µm, 870 µm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 Solar Mass). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  16. Science & Art in Motion: Visualizing the X-ray Universe

    NASA Astrophysics Data System (ADS)

    Hobart, A. J.; Arcand, K. K.; Edmonds, P. D.; Tucker, W. H.

    2005-12-01

    Since its launch in 1999, the Chandra X-ray Observatory has probed regions around black holes, traced the debris of exploded stars, and helped to elucidate the formation of galaxy clusters, the largest bound structures in the Universe. Conveying Chandra's exciting, though often complicated, high-energy results to the public and the media poses certain visual challenges, such as photon-starved observational data, spectra, and esoteric concepts. This poster will demonstrate some of the techniques developed to present visuals by way of motion graphics in X-ray astronomy. Some tricks of the trade will be highlighted, including establishing texture libraries, using particle or paint effects, and modeling stock objects. Topics unique to animating scientific concepts for public consumption will also be discussed, such as addressing public perception versus scientists' findings, keeping a high standard of accuracy while leaving room for visual excitement, communicating with scientists for revisions, and creative ways to interact with and educate the public. Developed with funding from NASA under Contract NAS8-39073.

  17. Early ⁵⁶Ni decay gamma rays from SN2014J suggest an unusual explosion.

    PubMed

    Diehl, Roland; Siegert, Thomas; Hillebrandt, Wolfgang; Grebenev, Sergei A; Greiner, Jochen; Krause, Martin; Kromer, Markus; Maeda, Keiichi; Röpke, Friedrich; Taubenberger, Stefan

    2014-09-05

    Type Ia supernovae result from binary systems that include a carbon-oxygen white dwarf, and these thermonuclear explosions typically produce 0.5 solar mass of radioactive (56)Ni. The (56)Ni is commonly believed to be buried deeply in the expanding supernova cloud. In SN2014J, we detected the lines at 158 and 812 kiloelectron volts from (56)Ni decay (time ~8.8 days) earlier than the expected several-week time scale, only ~20 days after the explosion and with flux levels corresponding to roughly 10% of the total expected amount of (56)Ni. Some mechanism must break the spherical symmetry of the supernova and at the same time create a major amount of (56)Ni at the outskirts. A plausible explanation is that a belt of helium from the companion star is accreted by the white dwarf, where this material explodes and then triggers the supernova event. Copyright © 2014, American Association for the Advancement of Science.

  18. Enigma of Runaway Stars Solved

    NASA Astrophysics Data System (ADS)

    1997-01-01

    Supernova Propels Companion Star through Interstellar Space The following success story is a classical illustration of scientific progress through concerted interplay of observation and theory. It concerns a 35-year old mystery which has now been solved by means of exciting observations of a strange double star. An added touch is the successive involvement of astronomers connected to the European Southern Observatory. For many years, astronomers have been puzzled by the fact that, among the thousands of very young, hot and heavy stars which have been observed in the Milky Way, there are some that move with exceptionally high velocities. In some cases, motions well above 100 km/sec, or ten times more than normal for such stars, have been measured. How is this possible? Which mechanism is responsible for the large amounts of energy needed to move such heavy bodies at such high speeds? Could it be that these stars are accelerated during the powerful explosion of a companion star as a supernova? Such a scenario was proposed in 1961 by Adriaan Blaauw [1], but until now, observational proof has been lacking. Now, however, strong supporting evidence for this mechanism has become available from observations obtained at the ESO La Silla observatory. The mysterious runaway stars OB-runaway stars [2] are heavy stars that travel through interstellar space with an anomalously high velocity. They have been known for several decades, but it has always been a problem to explain their high velocities. Although most OB-runaway stars are located at distances of several thousands of lightyears, their high velocity results in a measurable change in position on sky photos taken several years apart. The velocity component in the direction of the Earth can be measured very accurately from a spectrogram. From a combination of such observations, it is possible to measure the space velocity of OB-runaways. Bow shocks reveal runaway stars It has also been found that some OB-runaways display bow shocks of compressed matter, which look very much like the bow wave around a boat crossing the ocean. They are of the same physical nature as a bow shock created by a jet-fighter in the air. The explanation is similar: when an OB-runaway star plows through the interstellar medium (a very thin mixture of gas and dust particles) with supersonic velocity [3], interstellar matter is swept up in a bow shock. Stars of low velocity do not create bow shocks. Thus, the detection of a bow shock around a particular OB star indicates that it must have a supersonic velocity, thereby securely identifying it as a runaway star, even if its velocity has not been measured directly. Runaway stars come from stellar groups When a star's direction of motion in space is known, it is possible to reconstruct its previous path and, even more interestingly, to find the place where the star originally came from. It turns out that the paths of many OB-runaways can be traced back to socalled OB-associations , that is groups of 10 to 100 OB-type stars which are located in the spiral arms of our galaxy. About fifty OB-associations are known in the Milky Way. In fact, the majority of all known OB stars are members of an OB-association. Therefore, it is not very surprising that OB-runaway stars should also originate from OB-associations. This is also how they got their name: at some moment, they apparently left the association in which they were formed. The ejection mechanism But why were the OB-runaway stars kicked out of the OB-association and how did they achieve such high speeds? One possibility is that some OB stars in an OB-association are ejected due to strong gravitational effects at the time of close encounters between the members of the group. Complicated computer simulations show that this is in principle possible. Nevertheless, since many years, most astronomers think that a more likely scenario is that of violent supernova explosions, first proposed in 1961 by Adriaan Blaauw. Stellar evolution theory predicts that all OB stars will end their life in a supernova explosion. The heavier the OB star, the shorter its life. For instance, an OB star with a mass of 25 times that of the Sun, will explode after only 10 million years, compared to an expected life-time of about 13,000 million years for the Sun (which is not an OB star and will not become a supernova). Blaauw suggested that when an OB star is bound to another OB star in a binary system (a `double star'), the supernova explosion of one of the stars (the heaviest of the two would explode first) results in the rapid acceleration (in astronomical terminology, a `kick') of the other one. The reason for this is as follows. When two heavy stars orbit each other at high velocity, they are held together by their mutual gravitational attraction. But after the supernova explosion, one of the stars has lost most of its mass and there is no force to hold back the remaining OB star. The OB-star therefore immediately leaves its orbit and continues in a straight line while preserving its high orbital velocity. The effect is the same as when cutting a swinging rope with a stone attached to the end. Soon thereafter, this star will escape from the OB-association and start its journey through interstellar space as a new OB-runaway. Stellar evolution in a binary system About half of the known OB stars are members of a binary system. Modern evolutionary scenarios for such systems were developed by Edward van den Heuvel [4]. He realized that during the evolution of a close binary system, a phase of intensive mass transfer occurs, whereby matter flows from the heavier star towards its lighter companion. This has important consequences for the further evolution of the system. The mass transfer happens, after a few million years or even less, when the heaviest and therefore most rapidly evolving star increases in size and becomes a supergiant , many times larger than our Sun. The rate of mass transfer can become so large that this initially heaviest star eventually becomes lighter than its companion. This phase of mass transfer will not change the ultimate fate of the supergiant star and it will still be the first of the two to explode as a supernova. An important result of the mass transfer process is, however, that the central remnant of the supernova explosion, i.e. a neutron star or a black hole will remain gravitationally bound in an orbit around the companion OB star, also after it has received a high kick velocity. Compact companions of runaway stars Thus, from what is known about the evolution of heavy stars in binary systems, an OB-runaway that is expelled from an OB-association by a supernova explosion should be accompanied by a compact star. However, many astronomers have in the past looked carefully for the presence of a neutron star or a black hole around the known OB-runaway stars, but none was ever found. That negative observational result obviously did not lend support to the supernova scenario. This was a long-standing enigma. Fortunately, it now appears that it has finally been solved. Based on new observations, a group of astronomers [5], headed by Lex Kaper of ESO, has found that a well-known binary system of an OB-star and a compact neutron star possesses all the charateristics of a bona-fide runaway star. Vela X-1 is the brightest X-ray source in the Vela constellation. It consists of a so-called X-ray pulsar [6] which is definitely a neutron star produced by a supernova explosion and an OB star as companion. Detection of a bow shock around Vela X-1 ESO Press Photo 02/97 Caption to ESO PR Photo 02/97 [JPG, 184k] An image (ESO Press Photo 02/97) of the surroundings of the comparatively bright OB star HD77581 and its (optically invisible) companion Vela X-1 was obtained with the 1.54-m Danish telescope at La Silla, through a narrow-band H-alpha filter. It clearly shows the presence of a typical bow shock, thus immediately confirming the runaway status of this system. In fact, this is one of the most `perfect' bow shocks of parabolic form ever observed around an OB-runaway. Moreover, the orientation of the bow shock indicates that the system is moving towards the north; its origin must therefore lie somewhere south of its present position in the sky. It also turns out that the accordingly deduced path of HD77581 crosses a well-known OB-association with the designation Vel OB1 . At the measured distance of Vel OB1 of about 6000 lightyears, the observed proper motion and radial velocity of HD77581 indicate a space velocity of 90 km/sec. With this velocity, it would have taken HD77581 and its compact companion about 2.5 million years to travel the distance between Vel OB1 and its present position. This corresponds exactly to the expected time that has passed since the supernova explosion of the progenitor star of Vela~X-1, as deduced from the observed properties of the binary system. The puzzle comes together Now everything fits! The observation of a bow shock around the OB star HD77581 and its compact companion Vela X-1 supports the scenario originally proposed by Blaauw to create OB-runaway stars by the supernova explosion of the binary companion. Following back the path of the system resulted in the discovery of the place where it was born and from where it escaped after the violent supernova explosion which produced the neutron star that now manifests itself as the strong X-ray source known as Vela X-1. More information about this research project This research project is described in ESO Preprint no.~1199 and will appear shortly as a Letter to the Editor in `Astrophysical Journal' (ApJ 475, L37-L40). Notes: [1] Professor Adriaan Blaauw is a well-known Dutch astronomer (Leiden and Groningen). He participated very actively in the build-up of ESO in the 1950's and 60's and he was ESO Director General from 1970 - 1974. He is the author of ` ESO's Early History - The European Southern Observatory from concept to reality ' (1991). [2] The designation OB refers to the classification of their spectra which mostly show absorption lines of hydrogen and helium. Their high surface temperature, in some cases up to 50,000 o C, and large masses, from 10 to 50 times that of the Sun, are deduced by analysis of their spectra. [3] The term supersonic means that the velocity of the moving object is higher than that of the velocity of sound in the surrounding medium. While it is about 330 m/sec in the Earth's lower atmosphere, it is about 10 km/sec in the nearly empty interstellar space. [4] Professor Edward van den Heuvel works at the University of Amsterdam and is a member of the ESO Council, the highest authority of this Organisation. [5] The group members are Lex Kaper, Jacco van Loon, Thomas Augusteijn, Paul Goodfrooij, Ferdinando Patat, Albert Zijlstra (ESO) and Rens Waters (Astronomical Institute, Amsterdam, The Netherlands). [6] In 1971, the current Director General of ESO, Professor Riccardo Giacconi , was one of the first to propose that `X-ray pulsars' are rapidly rotating neutron stars. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  19. How Much Mass Makes a Black Hole? - Astronomers Challenge Current Theories

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Using ESO's Very Large Telescope, European astronomers have for the first time demonstrated that a magnetar - an unusual type of neutron star - was formed from a star with at least 40 times as much mass as the Sun. The result presents great challenges to current theories of how stars evolve, as a star as massive as this was expected to become a black hole, not a magnetar. This now raises a fundamental question: just how massive does a star really have to be to become a black hole? To reach their conclusions, the astronomers looked in detail at the extraordinary star cluster Westerlund 1 [1], located 16 000 light-years away in the southern constellation of Ara (the Altar). From previous studies (eso0510), the astronomers knew that Westerlund 1 was the closest super star cluster known, containing hundreds of very massive stars, some shining with a brilliance of almost one million suns and some two thousand times the diameter of the Sun (as large as the orbit of Saturn). "If the Sun were located at the heart of this remarkable cluster, our night sky would be full of hundreds of stars as bright as the full Moon," says Ben Ritchie, lead author of the paper reporting these results. Westerlund 1 is a fantastic stellar zoo, with a diverse and exotic population of stars. The stars in the cluster share one thing: they all have the same age, estimated at between 3.5 and 5 million years, as the cluster was formed in a single star-formation event. A magnetar (eso0831) is a type of neutron star with an incredibly strong magnetic field - a million billion times stronger than that of the Earth, which is formed when certain stars undergo supernova explosions. The Westerlund 1 cluster hosts one of the few magnetars known in the Milky Way. Thanks to its home in the cluster, the astronomers were able to make the remarkable deduction that this magnetar must have formed from a star at least 40 times as massive as the Sun. As all the stars in Westerlund 1 have the same age, the star that exploded and left a magnetar remnant must have had a shorter life than the surviving stars in the cluster. "Because the lifespan of a star is directly linked to its mass - the heavier a star, the shorter its life - if we can measure the mass of any one surviving star, we know for sure that the shorter-lived star that became the magnetar must have been even more massive," says co-author and team leader Simon Clark. "This is of great significance since there is no accepted theory for how such extremely magnetic objects are formed." The astronomers therefore studied the stars that belong to the eclipsing double system W13 in Westerlund 1 using the fact that, in such a system, masses can be directly determined from the motions of the stars. By comparison with these stars, they found that the star that became the magnetar must have been at least 40 times the mass of the Sun. This proves for the first time that magnetars can evolve from stars so massive we would normally expect them to form black holes. The previous assumption was that stars with initial masses between about 10 and 25 solar masses would form neutron stars and those above 25 solar masses would produce black holes. "These stars must get rid of more than nine tenths of their mass before exploding as a supernova, or they would otherwise have created a black hole instead," says co-author Ignacio Negueruela. "Such huge mass losses before the explosion present great challenges to current theories of stellar evolution." "This therefore raises the thorny question of just how massive a star has to be to collapse to form a black hole if stars over 40 times as heavy as our Sun cannot manage this feat," concludes co-author Norbert Langer. The formation mechanism preferred by the astronomers postulates that the star that became the magnetar - the progenitor - was born with a stellar companion. As both stars evolved they would begin to interact, with energy derived from their orbital motion expended in ejecting the requisite huge quantities of mass from the progenitor star. While no such companion is currently visible at the site of the magnetar, this could be because the supernova that formed the magnetar caused the binary to break apart, ejecting both stars at high velocity from the cluster. "If this is the case it suggests that binary systems may play a key role in stellar evolution by driving mass loss - the ultimate cosmic 'diet plan' for heavyweight stars, which shifts over 95% of their initial mass," concludes Clark. Notes [1] The open cluster Westerlund 1 was discovered in 1961 from Australia by Swedish astronomer Bengt Westerlund, who later moved from there to become ESO Director in Chile (1970-74). This cluster is behind a huge interstellar cloud of gas and dust, which blocks most of its visible light. The dimming factor is more than 100 000, and this is why it has taken so long to uncover the true nature of this particular cluster. Westerlund 1 is a unique natural laboratory for the study of extreme stellar physics, helping astronomers to find out how the most massive stars in our Milky Way live and die. From their observations, the astronomers conclude that this extreme cluster most probably contains no less than 100 000 times the mass of the Sun, and all of its stars are located within a region less than 6 light-years across. Westerlund 1 thus appears to be the most massive compact young cluster yet identified in the Milky Way galaxy. All stars so far analysed in Westerlund 1 have masses at least 30-40 times that of the Sun. Because such stars have a rather short life - astronomically speaking - Westerlund 1 must be very young. The astronomers determine an age somewhere between 3.5 and 5 million years. So, Westerlund 1 is clearly a "newborn" cluster in our galaxy. More information The research presented in this ESO Press Release will soon appear in the research journal Astronomy and Astrophysics ("A VLT/FLAMES survey for massive binaries in Westerlund 1: II. Dynamical constraints on magnetar progenitor masses from the eclipsing binary W13", by B. Ritchie et al.). The same team published a first study of this object in 2006 ("A Neutron Star with a Massive Progenitor in Westerlund 1", by M.P. Muno et al., Astrophysical Journal, 636, L41). The team is composed of Ben Ritchie and Simon Clark (The Open University, UK), Ignacio Negueruela (Universidad de Alicante, Spain), and Norbert Langer (Universität Bonn, Germany, and Universiteit Utrecht, the Netherlands). The astronomers used the FLAMES instrument on ESO's Very Large Telescope at Paranal, Chile to study the stars in the Westerlund 1 cluster. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. Three Great Eyes on Kepler's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Composite

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Chandra X-Ray Data (blue) Chandra X-Ray Data (green)Hubble Telescope (visible-light)Spitzer Telescope (infrared)

    NASA's three Great Observatories -- the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory -- joined forces to probe the expanding remains of a supernova, called Kepler's supernova remnant, first seen 400 years ago by sky watchers, including astronomer Johannes Kepler.

    The combined image unveils a bubble-shaped shroud of gas and dust that is 14 light-years wide and is expanding at 4 million miles per hour (2,000 kilometers per second). Observations from each telescope highlight distinct features of the supernova remnant, a fast-moving shell of iron-rich material from the exploded star, surrounded by an expanding shock wave that is sweeping up interstellar gas and dust.

    Each color in this image represents a different region of the electromagnetic spectrum, from X-rays to infrared light. These diverse colors are shown in the panel of photographs below the composite image. The X-ray and infrared data cannot be seen with the human eye. By color-coding those data and combining them with Hubble's visible-light view, astronomers are presenting a more complete picture of the supernova remnant.

    Visible-light images from the Hubble telescope (colored yellow) reveal where the supernova shock wave is slamming into the densest regions of surrounding gas. The bright glowing knots are dense clumps from instabilities that form behind the shock wave. The Hubble data also show thin filaments of gas that look like rippled sheets seen edge-on. These filaments reveal where the shock wave is encountering lower-density, more uniform interstellar material.

    The Spitzer telescope shows microscopic dust particles (colored red) that have been heated by the supernova shock wave. The dust re-radiates the shock wave's energy as infrared light. The Spitzer data are brightest in the regions surrounding those seen in detail by the Hubble telescope.

    The Chandra X-ray data show regions of very hot gas, and extremely high-energy particles. The hottest gas (higher-energy X-rays, colored blue) is located primarily in the regions directly behind the shock front. These regions also show up in the Hubble observations, and also align with the faint rim of glowing material seen in the Spitzer data. The X-rays from the region on the lower left (colored blue) may be dominated by extremely high-energy electrons that were produced by the shock wave and are radiating at radio through X-ray wavelengths as they spiral in the intensified magnetic field behind the shock front. Cooler X-ray gas (lower-energy X-rays, colored green) resides in a thick interior shell and marks the location of heated material expelled from the exploded star.

    Kepler's supernova, the last such object seen to explode in our Milky Way galaxy, resides about 13,000 light-years away in the constellation Ophiuchus.

    The Chandra observations were taken in June 2000, the Hubble in August 2003; and the Spitzer in August 2004.

  1. Carbon Atmosphere Discovered On Neutron Star

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Evidence for a thin veil of carbon has been found on the neutron star in the Cassiopeia A supernova remnant. This discovery, made with NASA's Chandra X-ray Observatory, resolves a ten-year mystery surrounding this object. "The compact star at the center of this famous supernova remnant has been an enigma since its discovery," said Wynn Ho of the University of Southampton and lead author of a paper that appears in the latest issue of Nature. "Now we finally understand that it can be produced by a hot neutron star with a carbon atmosphere." By analyzing Chandra's X-ray spectrum - akin to a fingerprint of energy - and applying it to theoretical models, Ho and his colleague Craig Heinke, from the University of Alberta, determined that the neutron star in Cassiopeia A, or Cas A for short, has an ultra-thin coating of carbon. This is the first time the composition of an atmosphere of an isolated neutron star has been confirmed. The Chandra "First Light" image of Cas A in 1999 revealed a previously undetected point-like source of X-rays at the center. This object was presumed to be a neutron star, the typical remnant of an exploded star, but researchers were unable to understand its properties. Defying astronomers' expectations, this object did not show any X-ray or radio pulsations or any signs of radio pulsar activity. By applying a model of a neutron star with a carbon atmosphere to this object, Ho and Heinke found that the region emitting X-rays would uniformly cover a typical neutron star. This would explain the lack of X-ray pulsations because -- like a lightbulb that shines consistently in all directions -- this neutron star would be unlikely to display any changes in its intensity as it rotates. Scientists previously have used a neutron star model with a hydrogen atmosphere giving a much smaller emission area, corresponding to a hot spot on a typical neutron star, which should produce X-ray pulsations as it rotates. Interpreting the hydrogen atmosphere model without pulsations would require a tiny size, consistent only with exotic stars made of strange quark matter. "Our carbon veil solves one of the big questions about the neutron star in Cas A," said Craig Heinke. "People have been willing to consider some weird explanations, so it's a relief to discover a less peculiar solution." Unlike most astronomical objects, neutron stars are small enough to understand on a human scale. For example, neutron stars typically have a diameter of about 14 miles, only slightly longer than a half-marathon. The atmosphere of a neutron star is on an even smaller scale. The researchers calculate that the carbon atmosphere is only about 4 inches thick, because it has been compressed by a surface gravity that is 100 billion times stronger than on Earth. "For people who are used to hearing about immense sizes of things in space, it might be a surprise that we can study something so small," said Ho. "It's also funny to think that such a thin veil over this star played a key role in frustrating researchers." In Earth's time frame, the estimated age of the neutron star in Cas A is only several hundred years, making it about ten times younger than other neutron stars with detected surface emission. Therefore, the Cas A neutron star gives a unique window into the early life of a cooling neutron star. The carbon itself comes from a combination of material that has fallen back after the supernova, and nuclear reactions on the hot surface of the neutron star which convert hydrogen and helium into carbon. The X-ray spectrum and lack of pulsar activity suggest that the magnetic field on the surface of this neutron star is relatively weak. Similarly low magnetic fields are implied for several other young neutron stars by study of their weak X-ray pulsations. It is not known whether these neutron stars will have low magnetic fields for their entire lives, and never become radio pulsars, or whether processes in their interior will lead to the development of stronger magnetic fields as they age. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

  2. Stellar Firework in a Whirlwind

    NASA Astrophysics Data System (ADS)

    2007-09-01

    VLT Image of Supernova in Beautiful Spiral Galaxy NGC 1288 Stars do not like to be alone. Indeed, most stars are members of a binary system, in which two stars circle around each other in an apparently never-ending cosmic ballet. But sometimes, things can go wrong. When the dancing stars are too close to each other, one of them can start devouring its partner. If the vampire star is a white dwarf - a burned-out star that was once like our Sun - this greed can lead to a cosmic catastrophe: the white dwarf explodes as a Type Ia supernova. In July 2006, ESO's Very Large Telescope took images of such a stellar firework in the galaxy NGC 1288. The supernova - designated SN 2006dr - was at its peak brightness, shining as bright as the entire galaxy itself, bearing witness to the amount of energy released. ESO PR Photo 39/07 ESO PR Photo 39/07 SN 2006dr in NGC 1288 NGC 1288 is a rather spectacular spiral galaxy, seen almost face-on and showing multiple spiral arms pirouetting around the centre. Bearing a strong resemblance to the beautiful spiral galaxy NGC 1232, it is located 200 million light-years away from our home Galaxy, the Milky Way. Two main arms emerge from the central regions and then progressively split into other arms when moving further away. A small bar of stars and gas runs across the centre of the galaxy. The first images of NGC 1288, obtained during the commissioning period of the FORS instrument on ESO's VLT in 1998, were of such high quality that they have allowed astronomers [1] to carry out a quantitative analysis of the morphology of the galaxy. They found that NGC 1288 is most probably surrounded by a large dark matter halo. The appearance and number of spiral arms are indeed directly related to the amount of dark matter in the galaxy's halo. The supernova was first spotted by amateur astronomer Berto Monard. On the night of 17 July 2006, Monard used his 30-cm telescope in the suburbs of Pretoria in South Africa and discovered the supernova as an apparent 'new star' close to the centre of NGC 1288, which was then designated SN 2006dr. The supernova reached magnitude 16, that is, it was about 10 000 times fainter than what the unaided eye can see. Using spectra obtained with the Keck telescope on 26 July 2006, astronomers from the University of California found SN 2006dr to be a Type Ia supernova [2] that expelled material with speeds up to 10 000 km/s.

  3. Starbursts in blue compact dwarf galaxies

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh Xuan

    1987-01-01

    All the arguments for a bursting mode of star formation in blue compact dwarf galaxies (BCD) are summarized. It is shown that spectral synthesis of far-ultraviolet spectra of BCDs constitutes a powerful way to study the star formation history in these galaxies. BCD luminosity functions show jumps and discontinuities. These jumps act like fossil records of the star-forming bursts, aiding in the counting and dating of the bursts.

  4. Misconceptions in the Exploding Flask Demonstration Resolved through Students' Critical Thinking

    ERIC Educational Resources Information Center

    Spierenburg, Rick; Jacobse, Leon; de Bruin, Iris; van den Bos, Daan J.; Vis, Dominique M.; Juurlink, Ludo B. F.

    2017-01-01

    As it connects to a large set of important fundamental ideas in chemistry and analytical techniques discussed in high school chemistry curricula, we review the exploding flask demonstration. In this demonstration, methanol vapor is catalytically oxidized by a Pt wire catalyst in an open container. The exothermicity of reactions occurring at the…

  5. Clinical features of the exploding head syndrome.

    PubMed Central

    Pearce, J M

    1989-01-01

    Fifty patients suffering from the "exploding head syndrome" are described. This hitherto unreported syndrome is characterised by a sense of an explosive noise in the head usually in the twilight stage of sleep. The associated symptoms are varied, but the benign nature of the condition is emphasised and neither extensive investigation nor treatment are indicated. PMID:2769286

  6. New Evidence Links Stellar Remains to Oldest Recorded Supernova

    NASA Astrophysics Data System (ADS)

    2006-09-01

    Recent observations have uncovered evidence that helps to confirm the identification of the remains of one of the earliest stellar explosions recorded by humans. The new study shows that the supernova remnant RCW 86 is much younger than previously thought. As such, the formation of the remnant appears to coincide with a supernova observed by Chinese astronomers in 185 A.D. The study used data from NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory, "There have been previous suggestions that RCW 86 is the remains of the supernova from 185 A.D.," said Jacco Vink of University of Utrecht, the Netherlands, and lead author of the study. "These new X-ray data greatly strengthen the case." When a massive star runs out of fuel, it collapses on itself, creating a supernova that can outshine an entire galaxy. The intense explosion hurls the outer layers of the star into space and produces powerful shock waves. The remains of the star and the material it encounters are heated to millions of degrees and can emit intense X-ray radiation for thousands of years. Animation of a Massive Star Explosion Animation of a Massive Star Explosion In their stellar forensic work, Vink and colleagues studied the debris in RCW 86 to estimate when its progenitor star originally exploded. They calculated how quickly the shocked, or energized, shell is moving in RCW 86, by studying one part of the remnant. They combined this expansion velocity with the size of the remnant and a basic understanding of how supernovas expand to estimate the age of RCW 86. "Our new calculations tell us the remnant is about 2,000 years old," said Aya Bamba, a coauthor from the Institute of Physical and Chemical Research (RIKEN), Japan. "Previously astronomers had estimated an age of 10,000 years." The younger age for RCW 86 may explain an astronomical event observed almost 2000 years ago. In 185 AD, Chinese astronomers (and possibly the Romans) recorded the appearance of a new bright star. The Chinese noted that it sparkled like a star and did not appear to move in the sky, arguing against it being a comet. Also, the observers noticed that the star took about eight months to fade, consistent with modern observations of supernovas. RCW 86 had previously been suggested as the remnant from the 185 AD event, based on the historical records of the object's position. However, uncertainties about the age provided significant doubt about the association. "Before this work I had doubts myself about the link, but our study indicates that the age of RCW 86 matches that of the oldest known supernova explosion in recorded history," said Vink. "Astronomers are used to referencing results from 5 or 10 years ago, so it's remarkable that we can build upon work from nearly 2000 years ago." The smaller age estimate for the remnant follows directly from a higher expansion velocity. By examining the energy distribution of the X-rays, a technique known as spectroscopy, the team found most of the X-ray emission was caused by high-energy electrons moving through a magnetic field. This is a well-known process that normally gives rise to low-energy radio emission. However, only very high shock velocities can accelerate the electrons to such high energies that X-ray radiation is emitted. "The energies reached in this supernova remnant are extremely high," said Andrei Bykov, another team member from the Ioffe Institute, St. Peterburg, Russia. "In fact, the particle energies are greater than what can be achieved by the most modern particle accelerators." The difference in age estimates for RCW 86 is due to differences in expansion velocities measured for the supernova remnant. The authors speculate that these variations arise because RCW 86 is expanding into an irregular bubble blown by a wind from the progenitor star before it exploded. In some directions, the shock wave has encountered a dense region outside the bubble and slowed down, whereas in other regions the shock remains inside the bubble and is still moving rapidly. These regions give the most accurate estimate of the age. The study describing these results appeared in the September 1 issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory, Cambridge, Mass., controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. XMM-Newton is an European Space Agency science mission managed at the European Space Research and Technology Centre, Noordwijk, the Netherlands for the Directorate of the Scientific Programme. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  7. Deflagration-to-detonation characteristics of a laser exploding bridge detonator

    NASA Astrophysics Data System (ADS)

    Welle, E. J.; Fleming, K. J.; Marley, S. K.

    2006-08-01

    Evaluation of laser initiated explosive trains has been an area of extreme interest due to the safety benefits of these systems relative to traditional electro-explosive devices. A particularly important difference is these devices are inherently less electro-static discharge (ESD) sensitive relative to traditional explosive devices due to the isolation of electrical power and associated materials from the explosive interface. This paper will report work conducted at Sandia National Laboratories' Explosive Components Facility, which evaluated the initiation and deflagration-to-detonation characteristics of a Laser Driven Exploding Bridgewire detonator. This paper will report and discuss characteristics of Laser Exploding Bridgewire devices loaded with hexanitrohexaazaisowurtzitane (CL-20) and tetraammine-cis-bis-(5-nitro-2H-tetrazolato-N2) cobalt (III) perchlorate (BNCP).

  8. Ultraviolet properties of IRAS-selected Be stars

    NASA Technical Reports Server (NTRS)

    Bjorkman, Karen S.; Snow, Theodore P.

    1988-01-01

    New IUE observations were obtained of 35 Be stars from a list of stars which show excess infrared fluxes in IRAS data. The IRAS-selected Be stars show larger C IV and Si IV equivalent widths than other Be stars. Excess C IV and Si IV absorption seems to be independent of spectral type for IRAS-selected Be stars later than spectral type B4. This is interpreted as evidence for a possible second mechanism acting in conjunction with radiation pressure for producing the winds in Be stars. No clear correlation of IR excess of v sin i with C IV or Si IV equivalent widths is seen, although a threshold for the occurrence of excess C IV and Si IV absorption appears at a v sin i of 150 km/sec.

  9. Small cell foams and blends and a process for their preparation

    DOEpatents

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-07

    Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents. These modified dense star polymers or dendrimers are particularly effective for the production of small cell foams.

  10. Small cell foams and blends and a process for their preparation

    DOEpatents

    Hedstrand, David M.; Tomalia, Donald A.

    1995-01-01

    Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents. These modified dense star polymers or dendrimers are particularly effective for the production of small cell foams.

  11. Method for detection of nuclear-plasma interactions in a 134Xe-doped exploding pusher at the National Ignition Facility

    DOE PAGES

    Bleuel, Daniel L.; Bernstein, Lee A.; Brand, Christopher A.; ...

    2016-06-10

    Angular momentum changes due to nuclear-plasma interactions on highly-excited nuclei in high energy density plasmas created at the National Ignition Facility can be measured through a change in isomer feeding following gamma emission. Here, we propose an experiment to detect these effects in 133Xe* in exploding pusher capsules.

  12. EBW's and EFI's: The other electric detonators

    NASA Technical Reports Server (NTRS)

    Varosh, Ron

    1994-01-01

    Exploding Bridgewire Detonators (EBW) and Exploding Foil Initiators (EFI) which were originally developed for military applications, have found numerous uses in the non-military commercial market while still retaining their military uses. While not as common as the more familiar hot wire initiators, EBW's and EFI's have definite advantages in certain applications. These advantages, and disadvantages, are discussed for typical designs.

  13. Method for detection of nuclear-plasma interactions in a 134Xe-doped exploding pusher at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleuel, Daniel L.; Bernstein, Lee A.; Brand, Christopher A.

    Angular momentum changes due to nuclear-plasma interactions on highly-excited nuclei in high energy density plasmas created at the National Ignition Facility can be measured through a change in isomer feeding following gamma emission. Here, we propose an experiment to detect these effects in 133Xe* in exploding pusher capsules.

  14. The exploding head syndrome.

    PubMed

    Green, M W

    2001-06-01

    This article reviews the features of an uncommon malady termed "the exploding head syndrome." Sufferers describe terrorizing attacks of a painless explosion within their head. Attacks tend to occur at the onset of sleep. The etiology of attacks is unknown, although they are considered to be benign. Treatment with clomipramine has been suggested, although most sufferers require only reassurance that the spells are benign in nature.

  15. EIA: A splintering, exploding discipline with a massive new constituency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

    2015-02-15

    After serving 18 years as Editor-in-Chief of Environmental Impact Assessment Review, the author observes that the period 1997–2014, the discipline of EIA: splintered, exploded and saw the rise of the developing-world authors. Publishing has also changed, with shifts from quantity to quality, the rise of open access, and an ever-increasing shortage of reviewers.

  16. Caught in the Act: Gas and Stellar Velocity Dispersions in a Fast Quenching Compact Star-Forming Galaxy at z~1.7

    NASA Astrophysics Data System (ADS)

    Barro, Guillermo; Faber, Sandra M.; Dekel, Avishai; Pacifici, Camilla; Pérez-González, Pablo G.; Toloba, Elisa; Koo, David C.; Trump, Jonathan R.; Inoue, Shigeki; Guo, Yicheng; Liu, Fengshan; Primack, Joel R.; Koekemoer, Anton M.; Brammer, Gabriel; Cava, Antonio; Cardiel, Nicolas; Ceverino, Daniel; Eliche, Carmen; Fang, Jerome J.; Finkelstein, Steven L.; Kocevski, Dale D.; Livermore, Rachael C.; McGrath, Elizabeth

    2016-04-01

    We present Keck I MOSFIRE spectroscopy in the Y and H bands of GDN-8231, a massive, compact, star-forming galaxy at a redshift of z ˜ 1.7. Its spectrum reveals both Hα and [N II] emission lines and strong Balmer absorption lines. The Hα and Spitzer MIPS 24 μm fluxes are both weak, thus indicating a low star-formation rate of SFR ≲ 5{--}10 {M}⊙ yr-1. This, added to a relatively young age of ˜700 Myr measured from the absorption lines, provides the first direct evidence for a distant galaxy being caught in the act of rapidly shutting down its star formation. Such quenching allows GDN-8231 to become a compact, quiescent galaxy, similar to three other galaxies in our sample, by z ˜ 1.5. Moreover, the color profile of GDN-8231 shows a bluer center, consistent with the predictions of recent simulations for an early phase of inside-out quenching. Its line-of-sight velocity dispersion for the gas, {σ }{{{LOS}}}{{gas}} = 127 ± 32 km s-1, is nearly 40% smaller than that of its stars, {σ }{{{LOS}}}\\star = 215 ± 35 km s-1. High-resolution hydro-simulations of galaxies explain such apparently colder gas kinematics of up to a factor of ˜1.5 with rotating disks being viewed at different inclinations and/or centrally concentrated star-forming regions. A clear prediction is that their compact, quiescent descendants preserve some remnant rotation from their star-forming progenitors.

  17. Type Ia supernovae: explosions and progenitors

    NASA Astrophysics Data System (ADS)

    Kerzendorf, Wolfgang Eitel

    2011-08-01

    Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests that they somehow need to acquire mass if they are to explode as SN Ia. Currently there are two major scenarios for this mass acquisition. In the favoured single degenerate scenario the white dwarf accretes matter from a companion star which is much younger in its evolutionary state. The less favoured double degenerate scenario sees the merger of two white dwarfs (with a total combined mass of more than 1.38 Msun). This thesis has tried to answer the question about the mass acquisition in two ways. First the single degenerate scenario predicts a surviving companion post-explosion. We undertook an observational campaign to find this companion in two ancient supernovae (SN 1572 and SN 1006). Secondly, we have extended an existing code to extract the elemental and energy yields of SNe Ia spectra by automating spectra fitting to specific SNe Ia. This type of analysis, in turn, help diagnose to which of the two major progenitor scenarios is right.

  18. Stars Form Surprisingly Close to Milky Way's Black Hole

    NASA Astrophysics Data System (ADS)

    2005-10-01

    The supermassive black hole at the center of the Milky Way has surprisingly helped spawn a new generation of stars, according to observations from NASA's Chandra X-ray Observatory. This novel mode of star formation may solve several mysteries about the supermassive black holes that reside at the centers of nearly all galaxies. "Massive black holes are usually known for violence and destruction," said Sergei Nayakshin of the University of Leicester, United Kingdom, and coauthor of a paper on this research in an upcoming issue of the Monthly Notices of the Royal Astronomical Society. "So it's remarkable that this black hole helped create new stars, not just destroy them." Black holes have earned their fearsome reputation because any material -- including stars -- that falls within the so-called event horizon is never seen again. However, these new results indicate that the immense disks of gas known to orbit many black holes at a "safe" distance from the event horizon can help nurture the formation of new stars. Animation of Stars Forming Around Black Hole Animation of Stars Forming Around Black Hole This conclusion came from new clues that could only be revealed in X-rays. Until the latest Chandra results, astronomers have disagreed about the origin of a mysterious group of massive stars discovered by infrared astronomers to be orbiting less than a light year from the Milky Way's central black hole, a.k.a. Sagittarius A*, or Sgr A*. At such close distances to Sgr A*, the standard model for star formation predicts that gas clouds from which stars form should have been ripped apart by tidal forces from the black hole. Two models to explain this puzzle have been proposed. In the disk model, the gravity of a dense disk of gas around Sgr A* offsets the tidal forces and allows stars to form; in the migration model, the stars formed in a star cluster far away from the black hole and migrated in to form the ring of massive stars. The migration scenario predicts about a million low mass, sun-like stars in and around the ring, whereas in the disk model, the number of low mass stars could be much less. Nayakshin and his coauthor, Rashid Sunyaev of the Max Plank Institute for Physics in Garching, Germany, used Chandra observations to compare the X-ray glow from the region around Sgr A* to the X-ray emission from thousands of young stars in the Orion Nebula star cluster. They found that the Sgr A* star cluster contains only about 10,000 low mass stars, thereby ruling out the migration model. "We can now say that the stars around Sgr A* were not deposited there by some passing star cluster, rather they were born there," said Sunyaev . "There have been theories that this was possible, but this is the first real evidence. Many scientists are going to be very surprised by these results." Because the Galactic Center is shrouded in dust and gas, it has not been possible to look for the low-mass stars in optical observations. In contrast, X-ray data have allowed astronomers to penetrate the veil of gas and dust and look for these low mass stars. Scenario Dismissed by Chandra Results Scenario Dismissed by Chandra Results "In one of the most inhospitable places in our Galaxy, stars have prevailed," said Nayakshin. "It appears that star formation is much more tenacious than we previously believed." The results suggest that the "rules" of star formation change when stars form in the disk of a giant black hole. Because this environment is very different from typical star formation regions, there is a change in the proportion of stars that form. For example, there is a much higher percentage of massive stars in the disks around black holes. And, when these massive stars explode as supernovae, they will "fertilize" the region with heavy elements such as oxygen. This may explain the large amounts of such elements observed in the disks of young supermassive black holes. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  19. Plasma Properties of an Exploding Semiconductor Igniter

    NASA Astrophysics Data System (ADS)

    McGuirk, J. S.; Thomas, K. A.; Shaffer, E.; Malone, A. L.; Baginski, T.; Baginski, M. E.

    1997-11-01

    Requirements by the automotive industry for low-cost, pyrotechnic igniters for automotive airbags have led to the development of several semiconductor devices. The properties of the plasma produced by the vaporization of an exploding semiconductor are necessary in order to minimize the electrical energy requirements. This work considers two silicon-based semiconductor devices: the semiconductor bridge (SCB) and the semiconductor junction igniter both consisting of etched silicon with vapor deposited aluminum structures. Electrical current passing through the device heats a narrow junction region to the point of vaporization creating an aluminum and silicon low-temperature plasma. This work will investigate the electrical characteristics of both devices and infer the plasma properties. Furthermore optical spectral measurements will be taken of the exploding devices to estimate the temperature and density of the plasma.

  20. VizieR Online Data Catalog: OB association members in ACT+TRC Catalogs (Hoogerwerf, 2000)

    NASA Astrophysics Data System (ADS)

    Hoogerwerf, R.

    2000-05-01

    The Hipparcos Catalogue (Cat. I/239) contains members of nearby OB associations brighter than 12th magnitude in V. However, membership lists are complete only to magnitude V=7.3. In this paper we discuss whether proper motions listed in the `Astrographic Catalogue+Tycho' reference catalogue (ACT, Cat. I/246) and the Tycho Reference Catalogue (TRC, Cat. I/250), which are complete to V~10.5mag, can be used to find additional association members. Proper motions in the ACT/TRC have an average accuracy of ~3mas/yr. We search for ACT/TRC stars which have proper motions consistent with the spatial velocity of the Hipparcos members of the nearby OB associations already identified by de Zeeuw et al. (1999, Cat. J/AJ/117/354). These stars are first selected using a convergent-point method, and then subjected to further constraints on the proper-motion distribution, magnitude and colour to narrow down the final number of candidate members. Monte Carlo simulations show that the proper-motion distribution, magnitude, and colour constraints remove ~97% of the field stars, while at the same time retain more than 90% of the cluster stars. The procedure has been applied to five nearby associations: the three subgroups of Sco OB2, plus Per OB3 and Cep OB6. In all cases except Cep OB6, we find evidence for new association members fainter than the completeness limit of the Hipparcos Catalogue. However, narrow-band photometry and/or radial velocities are needed to pinpoint the cluster members, and to study their physical characteristics. (1 data file).

  1. 75 FR 37463 - Official Trail Marker for the Star-Spangled Banner National Historic Trail

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... DEPARTMENT OF THE INTERIOR National Park Service Official Trail Marker for the Star-Spangled Banner National Historic Trail AGENCY: National Parks Service, Interior. ACTION: Official Insignia, Designation. Authority: National Trails System Act, 16 U.S.C. 124(a) and 1246(c) and Protection of Official...

  2. Stellar family in crowded, violent neighbourhood proves to be surprisingly normal

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Using ESO's Very Large Telescope, astronomers have obtained one of the sharpest views ever of the Arches Cluster -- an extraordinary dense cluster of young stars near the supermassive black hole at the heart of the Milky Way. Despite the extreme conditions astronomers were surprised to find the same proportions of low- and high-mass young stars in the cluster as are found in more tranquil locations in our Milky Way. ESO PR Photo 21a/09 The Arches Cluster ESO PR Photo 21b/09 The Centre of the Milky Way ESO PR Photo 21c/09 Around the Arches Cluster ESO PR Video 21a/09 A voyage to the heart of the Milky Way The massive Arches Cluster is a rather peculiar star cluster. It is located 25 000 light-years away towards the constellation of Sagittarius (the Archer), and contains about a thousand young, massive stars, less than 2.5 million years old [1]. It is an ideal laboratory to study how massive stars are born in extreme conditions as it is close to the centre of our Milky Way, where it experiences huge opposing forces from the stars, gas and the supermassive black hole that reside there. The Arches Cluster is ten times heavier than typical young star clusters scattered throughout our Milky Way and is enriched with chemical elements heavier than helium. Using the NACO adaptive optics instrument on ESO's Very Large Telescope, located in Chile, astronomers scrutinised the cluster in detail. Thanks to adaptive optics, astronomers can remove most of the blurring effect of the atmosphere, and so the new NACO images of the Arches Cluster are even crisper than those obtained with telescopes in space. Observing the Arches Cluster is very challenging because of the huge quantities of absorbing dust between Earth and the Galactic Centre, which visible light cannot penetrate. This is why NACO was used to observe the region in near-infrared light. The new study confirms the Arches Cluster to be the densest cluster of massive young stars known. It is about three light-years across with more than a thousand stars packed into each cubic light-year -- an extreme density a million times greater than in the Sun's neighbourhood. Astronomers studying clusters of stars have found that higher mass stars are rarer than their less massive brethren, and their relative numbers are the same everywhere, following a universal law. For many years, the Arches Cluster seemed to be a striking exception. "With the extreme conditions in the Arches Cluster, one might indeed imagine that stars won't form in the same way as in our quiet solar neighbourhood," says Pablo Espinoza, the lead author of the paper reporting the new results. "However, our new observations showed that the masses of stars in this cluster actually do follow the same universal law". In this image the astronomers could also study the brightest stars in the cluster. "The most massive star we found has a mass of about 120 times that of the Sun," says co-author Fernando Selman. "We conclude from this that if stars more massive than 130 solar masses exist, they must live for less than 2.5 million years and end their lives without exploding as supernovae, as massive stars usually do." The total mass of the cluster seems to be about 30 000 times that of the Sun, much more than was previously thought. "That we can see so much more is due to the exquisite NACO images," says co-author Jorge Melnick. Note [1] The name "Arches" does not come from the constellation the cluster is located in (Sagittarius, i.e., the Archer), but because it is located next to arched filaments detected in radio maps of the centre of the Milky Way.

  3. NICER Eyes on Bursting Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    What happens to a neutron stars accretion disk when its surface briefly explodes? A new instrument recently deployed at the International Space Station (ISS) is now watching bursts from neutron stars and reporting back.Deploying a New X-Ray MissionLaunch of NICER aboard a Falcon 9 rocket in June 2017. [NASA/Tony Gray]In early June of 2017, a SpaceX Dragon capsule on a Falcon 9 rocket launched on a resupply mission to the ISS. The pressurized interior of the Dragon contained the usual manifest of crew supplies, spacewalk equipment, and vehicle hardware. But the unpressurized trunk of the capsule held something a little different: the Neutron star Interior Composition Explorer (NICER).In the two weeks following launch, NICER was extracted from the SpaceX Dragon capsule and installed on the ISS. And by the end of the month, the instrument was already collecting its first data set: observations of a bright X-ray burst from Aql X-1, a neutron star accreting matter from a low-mass binary companion.Impact of BurstsNICERs goal is to provide a new view of neutron-star physics at X-ray energies of 0.212 keV a window that allows us to explore bursts of energy that neutron stars sometimes emit from their surfaces.Artists impression of an X-ray binary, in which a compact object accretes material from a companion star. [ESA/NASA/Felix Mirabel]In X-ray burster systems, hydrogen- and helium-rich material from a low-mass companion star piles up in an accretion disk around the neutron star. This material slowly funnels onto the neutron stars surface, forming a layer that gravitationally compresses and eventually becomes so dense and hot that runaway nuclear fusion ignites.Within seconds, the layer of material is burned up, producing a burst of emission from the neutron star that outshines even the inner regions of the hot accretion disk. Then more material funnels onto the neutron star and the process begins again.Though we have a good picture of the physics that causes these bursts, we dont yet understand the impact that these X-ray flashes have on the accretion disk and the environment surrounding the neutron star. In a new study led by Laurens Keek (University of Maryland), a team of scientists now details what NICER has learned on this subject.Extra X-RaysLight curve (top) and hardness ratio (bottom) for the X-ray burst from Aql X-1 captured by NICER on 3 July 2017. [Keek et al. 2018]In addition to thermal emission from the neutron star, NICER revealed an excess of soft X-ray photons below 1 keV during Aql X-1s burst. The authors propose two possible models for this emission:The burst radiation from the neutron stars surface was reprocessed i.e., either scattered or absorbed and re-emitted by the accretion disk.The persistent, usual accretion flow was enhanced as a result of the bursts radiation drag on the disk, briefly bumping up the disks X-ray flux.While we cant yet conclusively statewhich mechanismdominates, NICERs observations do show that bursts have a substantial impact on their accretion environment. And, as there are over 100 such X-ray burster systems in our galaxy, we can expect that NICER will allow us to better explore the effect of X-ray bursts on neutron-star disks and their surroundings inmany different systems in the future.BonusCheck out the awesome gif below, provided by NASA, which shows NICER being extracted fromthe Dragon capsules trunk by a robotic arm.CitationL. Keek et al 2018 ApJL 855 L4. doi:10.3847/2041-8213/aab104

  4. Exciting Message from a Dying Monster Star

    NASA Astrophysics Data System (ADS)

    1996-03-01

    SEST Discovers First Extra-galactic SiO Maser With the help of a new and more sensitive receiver, recently installed on the 15-metre Swedish-ESO Submillimetre Telescope (SEST) at the European Southern Observatory on the La Silla mountain in Chile, a team of European astronomers [1] has succeeded in discovering the first extra-galactic silicon-monoxide (SiO) maser . It is located in the atmosphere of the largest known star in the Large Magellanic Cloud, a satellite galaxy to the Milky Way. This observational feat now opens new, exciting possibilities for the study of individual stars in other galaxies in the Local Group. The continued search for extra-galactic SiO masers is a joint project of European and Australian astronomers, to be carried on with even more advanced instruments that will become available in the near future. What is a maser ? The fact that masers exist in the Universe is one of the most unexpected discoveries made by astronomers in this century. They function according to the same principles as the better known lasers . Lasers (Light Amplified Stimulated Emission Radiators) are becoming more and more common in our daily life, for instance to read discs in CD players and to cut steel plates. Inside a laser, molecules act as an enormously powerful amplifier for light of a specific wavelength (`colour') [2]. However, this only happens when we subject the molecules to special conditions, much unlike those they would normally experience in nature. Nevertheless, exotic places do exist in the Universe where conditions are similar to those in lasers. In the 1960s, astronomers discovered that some celestial objects emit abnormally strong radio waves at a particular wavelength. In the beginning, they thought that this emission was coming from an unknown molecule they called `Mysterium'. Later it turned out that it originated in already known, and rather ordinary, OH-molecules of oxygen and hydrogen. In some places in space, these molecules experience the same conditions as in lasers. However, the emission that is amplified in this case is not visible light as in lasers, but rather microwave radiation [3]. They are therefore known under the name masers or Microwave Amplified Stimulated Emission Radiators. This radiation is not visible to the human eye or optical astronomical detectors, but must be captured with astronomical radio telescopes. Later, silicon-monoxide (SiO) masers were discovered in which the molecules that amplify the microwave emission are made up of equal proportions of silicon (Si) and oxygen (O). The discovery of the first extra-galactic SiO maser In May 1995, new state-of-the-art receivers were installed on the Swedish-ESO Submillimetre Telescope (SEST) , a radio dish measuring 15 metres across at the ESO La Silla Observatory in Chile. The great technical improvement of the receivers and the excellent quality of this observing site and of the telescope itself make it one of the world's most powerful instruments for this type of research. And indeed, immediately after the installation of the new receivers, the first observations bore fruit. The astronomers decided to look with the telescope at the Large Magellanic Cloud (LMC), a satellite galaxy to the Milky Way galaxy in which we live. On a dark night in the Southern Hemisphere, one can easily spot the LMC with the naked eye as a little `cloud', seen in the direction of the southern constellation of Doradus (The Goldfish). Although much smaller than the Milky Way, it still contains many millions of stars. The astronomers chose to observe the largest known star in the LMC and they registered its microwave radiation for no less than 26 hours. Most of the observing was done during daytime, which is possible with this type of instrument: at microwave wavelengths, the sky appears dark even during the day. The astronomers were delighted to see the star shining at microwave wavelengths, cf. ESO Press Photo 16/96. The measured wavelength leaves no doubt that this is radiation from a SiO maser in the atmosphere of the star. If it would not have been a maser, it would have been far too weak to have been detected. Although we know several hundred masers of this type in the Milky Way, this is the first discovery of a SiO maser in another galaxy than our own . Since then, the observations have been continued in collaboration with Australian astronomers, using radio telescopes at Parkes and Mopra on that continent. A most unusual star When Swedish astronomer Bengt Westerlund and his colleagues first observed this LMC maser star in 1981 with optical telescopes, they thought that it was a rather normal, cool and not particularly bright star. However, a few years later, the Dutch-British-USA InfraRed Astronomical Satellite (IRAS) revealed its true nature. The IRAS measurements showed that the star radiates most of its light in the form of infrared radiation [4], making it one of the most powerful stars in the LMC; in fact, it emits about half a million times more energy than the Sun. On this occasion, it was given the designation IRAS 04553-6825 , the number indicating its position in the sky. IRAS 04553-6825 is unusual in other ways. It is some fifty times as heavy as our Sun, and it is the biggest known star in the LMC: if it were to take the place of our Sun, it would fill the solar system out to the planet Neptune, thirty times the distance from the Earth to the Sun. It is rather cool when compared to other stars - although it still has a temperature of about 2,000 C - and it therefore has a very red colour [5]. This Press Release is accompanied by ESO Press Photo 15/96 which demonstrates that while the star is hardly visible in blue light, it shines brightly in red and infrared light. Stars like IRAS 04553-6825 are known as red supergiants. It has been unofficially dubbed `The Monster', and having reached the end of a short and hectic life, it is now dying. The nuclear reactions deep inside are undergoing important changes at an ever-increasing rate and in the course of this process the star has swollen to its present, enormous size. Moreover, IRAS 04553-6825 is now blowing away its atmosphere. It loses material at a prodigious rate: each month, the equivalent of one Earth mass disappears into the surrounding space, at velocities of up to 25 kilometers per second. Were the mass-loss to continue in this way, the star would soon evaporate completely. It may never get that far, though. There is little doubt that, much before, it will end its life by exploding as a bright supernova. In February 1987, another star in the LMC exploded as a supernova, becoming as bright as the combined light of all the stars in the entire LMC. In fact, IRAS 04553-6825 might already have exploded some time ago, but due to the finite velocity of light - it takes the light 170,000 years to travel the distance from the LMC to us - the message about its fiery death may not have reached us yet. Our Sun is not expected to die this way; the death as a brilliant supernova is reserved for much heavier stars. Stellar dust and the existence of life Billions of years ago, the silicate-rich minerals that now make up most of the rocks and sand on Earth surrounded another dying star, similar to IRAS 04553-6825 . These minerals contain the silicon-oxide molecules which were then illuminated by the light of the red supergiant star and had shone brightly as SiO masers before they condensed into dust and were blown away into space. After many millions, perhaps even billions of years, they finally ended up in the rocks of planet Earth. Not only rocks and sand, but all things we use in daily life ultimately owe their existence to stars like IRAS 04553-6825 , ranging from the food we eat to the air we breathe, from the bicycle we drive to the brain in our head. This is because massive stars such as IRAS 04553-6825 produce heavy elements like oxygen, iron and carbon. We consist of these elements, and almost everything we use is made up of these elements as well. IRAS 04553-6825 is now blowing away matter from its atmosphere and thereby enriches the Universe with heavy elements. The outflowing gas gradually cools, and at a certain distance from the star it begins to condense into dust grains, a process that resembles the formation of droplets in clouds in the Earth's atmosphere. In particular, the SiO molecules in the atmosphere end up in dust grains in this way. The gas and dust expelled by IRAS 04553-6825 is then mixed with the material in the space between the stars. From this material, new stars form. Around some of these young stars planets will form. It is not excluded that some of these planets may be similar to the Earth, and may even harbour life. On the accompanying ESO Press Photo 15/96 , we see huge nebulae near the maser star; they are interstellar gas clouds that shine by the light of the embedded stars. IRAS 04553-6825 was born a few million years ago of the material in one of these nebulae. Now the rapidly outflowing material from this star (the stellar wind) is mixing with the gas cloud. This may trigger the formation of new stars a bit further away in the brightest parts of the nebulae. Dying stars like IRAS 04553-6825 are the main factories of dust in the Universe. It is an interesting thought that without these stars, there would be no dust. Without dust, there would be no planets. Without planets, there would be no life. We therefore owe our very existence to the mass-loss from these big, cool, dying stars. What does the study of SiO masers tell us ? We do not yet fully understand the processes by which a star like IRAS 04553-6825 loses its material into space. The mechanism that is responsible for the mass loss must be active near the surface of the star. However, mass-losing stars are very difficult to observe in visible light, because they quickly become obscured by the dust forming in their own stellar wind. Blue and yellow light is more absorbed than red light and therefore penetrates less through this dust. The absorbed energy is re-radiated by the dust as infrared radiation; this is why IRAS 04553-6825 shines so brightly in the infrared spectral region, resulting in its detection by IRAS. SiO maser radiation originates from close to the stellar surface, where the matter is being ejected by the star. The maser radiation is intense, and we can observe it because the surrounding dust is nearly transparent at microwave wavelengths. By observing the SiO maser radiation we can therefore study how the star expels its material. SiO masers emit the amplified radiation at a specific wavelength. However, if the molecules are moving towards us or away from us, we receive this radiation at a slightly different wavelength. This is the usual Doppler effect, analogous to the change in sound pitch you hear when a train or an ambulance approaches and then recedes. By measuring very accurately the wavelength of a SiO maser, it is therefore possible to determine with high precision the velocity of the material. With modern instruments, an accuracy of about 100 metres per second may be reached. This may not seem very much, but there are no other methods to measure the velocity in a star inside a dense dust cloud with such a precision. Moreover, when compared with the velocity of the outflowing material - typically between one and thirty kilometres per second - this accuracy is still quite sufficient to study the motion of the material close to the stellar surface in great detail. Future observations In the future, the 26-hour observation of the first extra-galactic SiO maser is expected to be followed by the discovery of many other SiO masers in galaxies in the Local Group, especially as the instrumentation continues to improve. By combining several telescopes into an array, the observational limit may be pushed to stars at a distance of about 2 million light-years, i.e. just about to the distance of the Andromeda nebula, a galaxy that is similar to the Milky Way. Plans for this are being elaborated in Australia with the Australia Telescope (a combination of many single radio telescopes like at Mopra), as well as within ESO. When more SiO masers in the LMC will have been discovered, we will be able to study how the mass loss differs from star to star. This will help us to learn how the mass loss depends on the overall characteristics of the star, for instance its brightness or its mass. Strangely enough, it is easier to do this type of study with stars in another galaxy, despite the fact that they are much more distant than the maser stars in the Milky Way. The main reason is that it is very difficult to measure distances to individual stars in our own galaxy. And if the distance to a star is not known, many other characteristics of the star will not be known either, e.g. its total energy production (intrinsic brightness) or its mass. However, as we know the distance to the LMC, about 170,000 light-years, we also know the distance to all the maser stars, which will be detected in this small galaxy. SiO masers are extremely powerful velocity indicators for celestial objects. We can therefore use them, not only to measure the motion of the molecules in the atmospheres of stars, but also to measure the velocities of the stars themselves. A study of the velocities of many SiO masers in the Milky Way indicates how the stars move through our galaxy. From this we gain a better understanding of how the Milky Way was formed; this is one of the great mysteries present-day astronomers are very eager to solve. And in the future, we may extend this type of study to other nearby galaxies. There is indeed a great potential for important new knowledge in this exciting area of modern astronomical research ! Notes: [1] The team consists of Jacco Th. van Loon and Albert A. Zijlstra (ESO/Garching), Lars-Ake Nyman (ESO/La Silla), and Valentin Bujarrabal (Observatorio Astronomico Nacional, Madrid, Spain). [2] Depending on the wavelength (and therefore on the energy it carries), electromagnetic radiation may take form of long and short radio waves, microwave radiation, infrared radiation, visible light, ultraviolet radiation, X-rays or gamma-rays. [3] Microwave radiation is for instance used to cook meals in microwave ovens. The heating effect occurs when the radiation energy is absorbed by the water molecules in the food. [4] Infrared radiation is what we experience as `heat': we feel it, but we cannot see it. [5] Stars with different temperatures have different colours. The Sun has a temperature of about 5,500 C and looks yellow, while hotter stars look blue and cooler stars are red. Analogously, when a metal bar is heated, it first will glow reddish, then become yellow, and eventually it will shine bluish.

  5. Scientists Track Collision of Powerful Stellar Winds

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have tracked the motion of a violent region where the powerful winds of two giant stars slam into each other. The collision region moves as the stars, part of a binary pair, orbit each other, and the precise measurement of its motion was the key to unlocking vital new information about the stars and their winds. WR 140 Image Sequence Motion of Wind Collision Region Graphic superimposes VLBA images of wind collision region on diagram of orbit of Wolf-Rayet (WR) star and its giant (O) companion. Click on image for larger version (412K) CREDIT: Dougherty et al., NRAO/AUI/NSF In Motion: Shockwave File Animated Gif File AVI file Both stars are much more massive than the Sun -- one about 20 times the mass of the Sun and the other about 50 times the Sun's mass. The 20-solar-mass star is a type called a Wolf-Rayet star, characterized by a very strong wind of particles propelled outward from its surface. The more massive star also has a strong outward wind, but one less intense than that of the Wolf-Rayet star. The two stars, part of a system named WR 140, circle each other in an elliptical orbit roughly the size of our Solar System. "The spectacular feature of this system is the region where the stars' winds collide, producing bright radio emission. We have been able to track this collision region as it moves with the orbits of the stars," said Sean Dougherty, an astronomer at the Herzberg Institute for Astrophysics in Canada. Dougherty and his colleagues presented their findings in the April 10 edition of the Astrophysical Journal. The supersharp radio "vision" of the continent-wide VLBA allowed the scientists to measure the motion of the wind collision region and then to determine the details of the stars' orbits and an accurate distance to the system. "Our new calculations of the orbital details and the distance are vitally important to understanding the nature of these Wolf-Rayet stars and of the wind-collision region," Dougherty said. The stars in WR 140 complete an orbital cycle in 7.9 years. The astronomers tracked the system for a year and a half, noting dramatic changes in the wind collision region. "People have worked out theoretical models for these collision regions, but the models don't seem to fit what our observations have shown," said Mark Claussen, of the National Radio Astronomy Observatory in Socorro, New Mexico. "The new data on this system should provide the theorists with much better information for refining their models of how Wolf-Rayet stars evolve and how wind-collision regions work," Claussen added. The scientists watched the changes in the stellar system as the star's orbits carried them in paths that bring them nearly as close to each other as Mars is to the Sun and as far as Neptune is from the Sun. Their detailed analysis gave them new information on the Wolf-Rayet star's strong wind. At some points in the orbit, the wind collision region strongly emitted radio waves, and at other points, the scientists could not detect the collison region. Wolf-Rayet stars are giant stars nearing the time when they will explode as supernovae. "No other telescope in the world can see the details revealed by the VLBA," Claussen said. "This unmatched ability allowed us to determine the masses and other properties of the stars, and will help us answer some basic questions about the nature of Wolf-Rayet stars and how they develop." he added. The astronomers plan to continue observing WR 140 to follow the system's changes as the two massive stars continue to circle each other. Dougherty and Claussen worked with Anthony Beasley of the Atacama Large Millimeter Array office, Ashley Zauderer of the University of Maryland and Nick Bolingbroke of the University of Victoria, British Columbia. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  6. Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin; Sand, David J.; Valenti, Stefano; Brown, Peter; Howell, D. Andrew; McCully, Curtis; Kasen, Daniel; Arcavi, Iair; Azalee Bostroem, K.; Tartaglia, Leonardo; Hsiao, Eric Y.; Davis, Scott; Shahbandeh, Melissa; Stritzinger, Maximilian D.

    2017-08-01

    We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U, B, and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 R ⊙ from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon (C II λ6580) absorption up through day -13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.

  7. Evidence for Two Neutrino Bursts from SN1987A

    NASA Astrophysics Data System (ADS)

    Valentim, Rodolfo; Horvath, Jorge E.; Rangel, Eraldo M.

    The SN1987A in the Giant Magellanic Cloud was an amazing and extraordinary event because it was detected in real time for different neutrinos experiments (νs) around the world. Approximate ˜ 25 events were observed in three different experiments: Kamiokande II (KII) ˜ 12, Irvine-Michigan-Brookhaven (IMB) ˜ 8 e Baksan ˜ 5, plus a contrived burst at Mont Blanc (Liquid Scintillator Detector - LSD) later dismissed because of energetic requirements (Aglietta et al. 1988). The neutrinos have an important play role into the neutron star newborn: at the moment when the supernova explodes the compact object remnant is freezing by neutrinos ( ˜ 99% energy is lost in the few seconds of the explosion). The work is motivated by neutrinos’ event in relation arrival times where there is a temporal gap between set of events ( ˜ 6s). The first part of dataset came from the ordinary mechanism of freezing and the second part suggests different mechanism of neutrinos production. We tested two models of cooling for neutrinos from SN1987A: 1st an exponential cooling is an ordinary model of cooling and 2nd a two-step temperature model that it considers two bursts separated with temporal gap. Our analysis was done with Bayesian tools (Bayesian Information Criterion - BIC) The result showed strong evidence in favor of a two-step model against one single exponential cooling (ln Bij > 5.0), and suggests the existence of two neutrino bursts at the moment the neutron star was born.

  8. A primordial origin for misalignments between stellar spin axes and planetary orbits.

    PubMed

    Batygin, Konstantin

    2012-11-15

    The existence of gaseous giant planets whose orbits lie close to their host stars ('hot Jupiters') can largely be accounted for by planetary migration associated with viscous evolution of proto-planetary nebulae. Recently, observations of the Rossiter-McLaughlin effect during planetary transits have revealed that a considerable fraction of hot Jupiters are on orbits that are misaligned with respect to the spin axes of their host stars. This observation has cast doubt on the importance of disk-driven migration as a mechanism for producing hot Jupiters. Here I show that misaligned orbits can be a natural consequence of disk migration in binary systems whose orbital plane is uncorrelated with the spin axes of the individual stars. The gravitational torques arising from the dynamical evolution of idealized proto-planetary disks under perturbations from massive distant bodies act to misalign the orbital planes of the disks relative to the spin poles of their host stars. As a result, I suggest that in the absence of strong coupling between the angular momentum of the disk and that of the host star, or of sufficient dissipation that acts to realign the stellar spin axis and the planetary orbits, the fraction of planetary systems (including systems of 'hot Neptunes' and 'super-Earths') whose angular momentum vectors are misaligned with respect to their host stars will be commensurate with the rate of primordial stellar multiplicity.

  9. Sparse and Large-Scale Learning Models and Algorithms for Mining Heterogeneous Big Data

    ERIC Educational Resources Information Center

    Cai, Xiao

    2013-01-01

    With the development of PC, internet as well as mobile devices, we are facing a data exploding era. On one hand, more and more features can be collected to describe the data, making the size of the data descriptor larger and larger. On the other hand, the number of data itself explodes and can be collected from multiple resources. When the data…

  10. A census of the Carina Nebula - II. Energy budget and global properties of the nebulosity

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Brooks, Kate J.

    2007-08-01

    The first paper in this series took a direct census of energy input from the known OB stars in the Carina Nebula, and in this paper we study the global properties of the surrounding nebulosity. This detailed comparison may prove useful for interpreting observations of extragalactic giant HII regions and ultraluminous infrared (IR) galaxies. We find that the total IR luminosity of Carina is about 1.2 × 107Lsolar, accounting for only about 50-60 per cent of the known stellar luminosity from Paper I. Similarly, the ionizing photon luminosity derived from the integrated radio continuum is about 7 × 1050 s-1, accounting for ~75 per cent of the expected Lyman continuum from known OB stars. The total kinetic energy of the nebula is about 8 × 1051 erg, or ~30 per cent of the mechanical energy from stellar winds over the lifetime of the nebula, so there is no need to invoke a supernova (SN) explosion based on energetics. Warm dust grains residing in the HII region interior dominate emission at 10-30μm, but cooler grains at 30-40K dominate the IR luminosity and indicate a likely gas mass of ~106Msolar. We find an excellent correlation between the radio continuum and 20-25μm emission, consistent with the idea that the ~80-K grain population is heated by trapped Lyα photons. Similarly, we find a near perfect correlation between the far-IR optical depth map of cool grains and 8.6-μm hydrocarbon emission, indicating that most of the nebular mass resides as atomic gas in photodissociation regions and not in dense molecular clouds. Synchronized star formation around the periphery of Carina provides a strong case that star formation here was indeed triggered by stellar winds and ultraviolet radiation. This second generation appears to involve a cascade toward preferentially intermediate- and low-mass stars, but this may soon change when ηCarinae and its siblings explode. If the current reservoir of atomic and molecular gas can be tapped at that time, massive star formation may be rejuvenated around the periphery of Carina much as if it were a young version of Gould's Belt. Furthermore, when these multiple SNe occur, the triggered second generation will be pelted repeatedly with SN ejecta bearing short-lived radioactive nuclides. Carina may therefore represent the most observable analogue to the cradle of our own Solar system.

  11. Galaxy M82

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A colorful image showing violent star formation triggered when two galaxies bumped into each other has been captured by NASA's Hubble Space Telescope.

    In the image, the starburst galaxy M82 has a disturbed appearance caused by violent activity after an ancient encounter with its large galactic neighbor, M81. The image, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is online at http://www.jpl.nasa.gov/pictures/wfpc .

    The huge lanes of dust that crisscross M82's disk are another telltale sign of the flurry of star formation. Below the center and to the right, a strong galactic wind is spewing knotty filaments of hydrogen and nitrogen gas. More than 100 super star clusters -- very bright, compact groupings of about 100,000 stars -- appear as white dots sprinkled throughout the galaxy's central area. The dark area just above center is a huge dust cloud.

    A collaboration of European and American scientists used these clusters to date the interaction between M82 and M81 to about 600 million years ago, when a region called M82 B (the bright area just below and to the left of the central dust cloud) exploded with new stars. Scientists have found that this ancient starburst was triggered by the encounter with M81. The results are published in the February 2001 issue of the Astronomical Journal.

    This discovery provides evidence linking the birth of super star clusters to violent interaction between galaxies. These clusters also provide insight into the rough-and-tumble universe of long ago, when galaxies bumped into each other more frequently.

    M82 is located 12 million light-years from Earth in the constellation Ursa Major. The picture was taken Sept. 15, 1997. The natural-color composite was constructed from three exposures taken with blue, green and red filters.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The Institute is operated by the Association of Universities for Research in Astronomy Inc., for NASA under contract with NASA's Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.

    Additional information about the Hubble Space Telescope is available at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is available at http://wfpc2.jpl.nasa.gov.

  12. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis.

    PubMed

    Castillo, Ana F; Orlando, Ulises; Helfenberger, Katia E; Poderoso, Cecilia; Podesta, Ernesto J

    2015-06-15

    The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Theory for the Origin and Evolution of Stars and Planets, Including Earth

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2001-05-01

    In this paper we present a novel hypothesis for the formation and evolution of galaxies, stars (including black holes (BHs), giant, mid-size, dwarf, dying and dead stars), planets (including earth), and moons. Present day phenomenon will be used to substantiate the validity of this hypothesis. Every `body' is a multiple type of star, generated from pieces called particle proliferators, of a dislodged/expanded BH which explodes due to a collision with another expanded BH. This includes the sun, and the planet earth, which is a type of dead star. Such that, if we remove layers of the earth, starting with the crust, we will find evidence of each preceding star formation, such as a brown star, a red star, a white star, a blue star, and the remains of the particle proliferator as the innermost core is reached. We intend to show that the hypothesis is consistent with both the available astronomical data regarding stellar evolution and planetary formation; as well as the evolution of the earth itself, by considerations of the available geophysical data. Where data is not available, reasonably simple experiments will be suggested to demonstrate further the consistency and viability of the hypothesis. Theories are presented to help define and explain phenomenon such as how two (or more) BHs expand and collide to form a small `big bang' (it is postulated that there was a small big bang to form each galaxy). This in turn afforded the material/matter to form all the galactic bodies, including the dark matter. The start and development of the planet earth, initially as an emergent piece from the colliding BHs, is given special attention to explain the continuing expansion/growth that takes place in all stars and planets. Also, to explain the formation of the land, the growing/expanding earth (proportional to the ocean bed growth), the division of the continents, and the formation of the ocean beds (possibly long before the oceans existed). Attempts will be made to explain the source of the supply of water on earth. Theories are presented to help explain phenomenon such as how/why the earth is growing/expanding (not based on current plate tectonic theory)causing it to retard its rotation. Also, why the oceans are different sizes (the Pacific is about twice the Atlantic); why the masses at the poles are shifting into the Atlantic Ocean (may provide an alternative explanation for the ice ages); why various types of earthquakes occur (a new source is presented), and why volcanoes occur (two types are discussed), possibly lead to improved prediction methods for earthquakes and volcanic eruptions. We present a new cross section of the earth (as a dead star). Although the dimensions of the inner core, outer core, and the mantle (inner and outer) are about the same as presently known, new insight is given to their formation, evolution and composition. We will show that our hypothesis leads to a consistent theory and a better understanding for: - The making/forming of the mountains from bending and compression buckling, and shear failures of the outer surfaces of the earth's brittle outer skin of the 1st crust (and also from eruptions) due to reduction in curvature - Crevice/fault failures from tension at the inner surface of the 1st crust, some form inland-sea beds and lake beds - How the oceans formed over the 2nd crust due to water forming (and condensing).

  14. 76 FR 79218 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Network Centric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... Production Act of 1993--Network Centric Operations Industry Consortium, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Network Centric Operations Industry Consortium, Inc. (``NCOIC... circumstances. Specifically, Mangin, Inc., Arroyo Grande, CA; NorthStar Group, LLC, Washington, DC; and...

  15. 75 FR 65511 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Network Centric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... Production Act of 1993--Network Centric Operations Industry Consortium, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Network Centric Operations Industry Consortium, Inc. (``NCOIC... circumstances. Specifically, Mosaic ATM, Leesburg, VA; NorthStar Group, LLC, Washington, DC; Luciad, Leuven...

  16. Ocular injuries from exploding glass-bottled Coca-Cola® drinks in Port Harcourt, Nigeria

    PubMed Central

    Pedro-Egbe, Chinyere Nnenne; Ejimadu, Chibuike Sydney; Nwachukwu, Henrietta

    2011-01-01

    Background: Eye injuries and subsequent loss of vision from the glass and caps of exploding pressurized bottled drinks have been well reported, and as a result most developed countries now use mainly plastic bottles. In Nigeria, however, most drinks are still sold in glass bottles and ocular injuries from this source are therefore not uncommon. Aim: To retrospectively analyze ocular injuries resulting from exploding glass-bottled Coca-Cola® and propose ways of eliminating such injuries in future. Setting: Eye Clinic, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria. Materials and methods: The medical records of all cases of ocular injury that presented at the Eye Clinic of the University of Port Harcourt Teaching Hospital over a 5-year period (January 2006 to December 2010) were retrieved and relevant data including age, sex, occupation, events surrounding bottle explosion, and type of ocular injury sustained were extracted. Results: A total of 426 cases of ocular injuries was seen during the period under review. There were 335 (78.6%) males and 91 (21.4%) females. Six patients had ocular injury from exploding glass-bottled Coca-Cola®, giving an incidence of 1.4%. The presenting visual acuities (VA) were light perception (2 cases), counting fingers (2 cases), and 1 VA of 6/24 and 1 VA of 6/12. There were 4 (66.7%) cases of corneoscleral laceration with uveal prolapse and 1 case of total hyphema. Conclusion: Because pressurized glass-bottles can explode with normal handling, legislation to ban the use of glass containers for bottling carbonated drinks will go a long way to reducing ocular morbidity from this source. Plastic bottles should be introduced as an alternative. PMID:21629570

  17. Ocular injuries from exploding glass-bottled Coca-Cola® drinks in Port Harcourt, Nigeria.

    PubMed

    Pedro-Egbe, Chinyere Nnenne; Ejimadu, Chibuike Sydney; Nwachukwu, Henrietta

    2011-01-01

    Eye injuries and subsequent loss of vision from the glass and caps of exploding pressurized bottled drinks have been well reported, and as a result most developed countries now use mainly plastic bottles. In Nigeria, however, most drinks are still sold in glass bottles and ocular injuries from this source are therefore not uncommon. To retrospectively analyze ocular injuries resulting from exploding glass-bottled Coca-Cola® and propose ways of eliminating such injuries in future. Eye Clinic, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria. The medical records of all cases of ocular injury that presented at the Eye Clinic of the University of Port Harcourt Teaching Hospital over a 5-year period (January 2006 to December 2010) were retrieved and relevant data including age, sex, occupation, events surrounding bottle explosion, and type of ocular injury sustained were extracted. A total of 426 cases of ocular injuries was seen during the period under review. There were 335 (78.6%) males and 91 (21.4%) females. Six patients had ocular injury from exploding glass-bottled Coca-Cola®, giving an incidence of 1.4%. The presenting visual acuities (VA) were light perception (2 cases), counting fingers (2 cases), and 1 VA of 6/24 and 1 VA of 6/12. There were 4 (66.7%) cases of corneoscleral laceration with uveal prolapse and 1 case of total hyphema. Because pressurized glass-bottles can explode with normal handling, legislation to ban the use of glass containers for bottling carbonated drinks will go a long way to reducing ocular morbidity from this source. Plastic bottles should be introduced as an alternative.

  18. 3D NLTE analysis of the most iron-deficient star, SMSS0313-6708

    NASA Astrophysics Data System (ADS)

    Nordlander, T.; Amarsi, A. M.; Lind, K.; Asplund, M.; Barklem, P. S.; Casey, A. R.; Collet, R.; Leenaarts, J.

    2017-01-01

    Context. Models of star formation in the early universe require a detailed understanding of accretion, fragmentation and radiative feedback in metal-free molecular clouds. Different simulations predict different initial mass functions of the first stars, ranging from predominantly low-mass (0.1-10 M⊙), to massive (10-100 M⊙), or even supermassive (100-1000 M⊙). The mass distribution of the first stars should lead to unique chemical imprints on the low-mass second and later generation metal-poor stars still in existence. The chemical composition of SMSS0313-6708, which has the lowest abundances of Ca and Fe of any star known, indicates it was enriched by a single massive supernova. Aims: The photospheres of metal-poor stars are relatively transparent in the UV, which may lead to large three-dimensional (3D) effects as well as departures from local thermodynamical equilibrium (LTE), even for weak spectral lines. If 3D effects and departures from LTE (NLTE) are ignored or treated incorrectly, errors in the inferred abundances may significantly bias the inferred properties of the polluting supernovae. We redetermine the chemical composition of SMSS0313-6708by means of the most realistic methods available, and compare the results to predicted supernova yields. Methods: A 3D hydrodynamical Staggermodel atmosphere and 3D NLTE radiative transfer were applied to obtain accurate abundances for Li, Na, Mg, Al, Ca and Fe. The model atoms employ realistic collisional rates, with no calibrated free parameters. Results: We find significantly higher abundances in 3D NLTE than 1D LTE by 0.8 dex for Fe, and 0.5 dex for Mg, Al and Ca, while Li and Na are unaffected to within 0.03 dex. In particular, our upper limit for [Fe/H] is now a factor ten larger, at [Fe/H] < -6.53 (3σ), than previous estimates based on ⟨ 3D ⟩NLTE (I.e., using averaged 3D models). This higher estimate is due to a conservative upper limit estimation, updated NLTE data, and 3D-⟨ 3D ⟩NLTE differences, all of which lead to a higher abundance determination. Conclusions: We find that supernova yields for models in a wide range of progenitor masses reproduce the revised chemical composition. In addition to massive progenitors of 20-60 M⊙ exploding with low energies (1-2 B, where 1 B = 1051 erg), we also find good fits for progenitors of 10 M⊙, with very low explosion energies (<1 B). We cannot reconcile the new abundances with supernovae or hypernovae with explosion energies above 2.5 B, nor with pair-instability supernovae.

  19. Competency Development Detonator Development and Design

    DTIC Science & Technology

    2007-09-01

    required. Exploding foil initiators ( EFI or Slapper) - The benefits of using an EFI is that the metal bridge is separated from the explosive, the explosive...to the materials ignition temperature to begin a burning reaction that propagates to the next material in the initiator . Exploding bridgewire (EBW...principles "* Initiation capabilities of the MEMS scale detonator DETONATOR BACKGROUND In a typical detonator, an explosive train is used. The explosive train

  20. Type Ia Supernova Rate Measurements to Redshift 2.5 from Candles: Searching for Prompt Explosions in the Early Universe

    NASA Technical Reports Server (NTRS)

    Rodney, Steven A.; Riess, Adam G.; Strogler, Louis-Gregory; Dahlen, Tomas; Graur, Or; Casertano, Stefano; Dickinson, Mark E.; Ferguson, Henry C.; Garnavich, Peter; Cenko, Stephen Bradley

    2014-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope(HST) that surveyed a total area of approx. 0.25 deg(sup 2) with approx.900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z approx. 2.5. We classify approx. 24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only approx. 3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction isfP0.530.09stat0.100.10sys0.26, consistent with a delay time distribution that follows a simplet1power law for all timest40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20 of all SN Ia explosions though further analysis and larger samples will be needed to examine that suggestion.

  1. Type Ia Supernova Rate Measurements to Redshift 2.5 from CANDELS: Searching for Prompt Explosions in the Early Universe

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.; Riess, Adam G.; Strolger, Louis-Gregory; Dahlen, Tomas; Graur, Or; Casertano, Stefano; Dickinson, Mark E.; Ferguson, Henry C.; Garnavich, Peter; Hayden, Brian; Jha, Saurabh W.; Jones, David O.; Kirshner, Robert P.; Koekemoer, Anton M.; McCully, Curtis; Mobasher, Bahram; Patel, Brandon; Weiner, Benjamin J.; Cenko, S. Bradley; Clubb, Kelsey I.; Cooper, Michael; Filippenko, Alexei V.; Frederiksen, Teddy F.; Hjorth, Jens; Leibundgut, Bruno; Matheson, Thomas; Nayyeri, Hooshang; Penner, Kyle; Trump, Jonathan; Silverman, Jeffrey M.; U, Vivian; Azalee Bostroem, K.; Challis, Peter; Rajan, Abhijith; Wolff, Schuyler; Faber, S. M.; Grogin, Norman A.; Kocevski, Dale

    2014-07-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ~0.25 deg2 with ~900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z ~ 2.5. We classify ~24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only ~3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is f_{P}\\,{=}\\,0.53^{\\ \\,\\, +/- 0.09}_{stat0.10} {}^{\\ \\, +/- 0.10}_{sys 0.26}, consistent with a delay time distribution that follows a simple t -1 power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions—though further analysis and larger samples will be needed to examine that suggestion.

  2. GRB 980425 host: [C II], [O I], and CO lines reveal recent enhancement of star formation due to atomic gas inflow

    NASA Astrophysics Data System (ADS)

    Michałowski, M. J.; Castro Cerón, J. M.; Wardlow, J. L.; Karska, A.; Messias, H.; van der Werf, P.; Hunt, L. K.; Baes, M.; Castro-Tirado, A. J.; Gentile, G.; Hjorth, J.; Le Floc'h, E.; Pérez-Martínez, R.; Nicuesa Guelbenzu, A.; Rasmussen, J.; Rizzo, J. R.; Rossi, A.; Sánchez-Portal, M.; Schady, P.; Sollerman, J.; Xu, D.

    2016-11-01

    Context. Accretion of gas from the intergalactic medium is required to fuel star formation in galaxies. We have recently suggested that this process can be studied using host galaxies of gamma-ray bursts (GRBs). Aims: Our aim is to test this possibility by studying in detail the properties of gas in the closest galaxy hosting a GRB (980425). Methods: We obtained the first ever far-infrared (FIR) line observations of a GRB host, namely Herschel/PACS resolved [C II] 158 μm and [O I] 63 μm spectroscopy, and an APEX/SHeFI CO(2-1) line detection and ALMA CO(1-0) observations of the GRB 980425 host. Results: The GRB 980425 host has elevated [C II]/FIR and [O I]/FIR ratios and higher values of star formation rates (SFR) derived from line ([C II], [O I], Hα) than from continuum (UV, IR, radio) indicators. [C II] emission exhibits a normal morphology, peaking at the galaxy centre, whereas [O I] is concentrated close to the GRB position and the nearby Wolf-Rayet region. The high [O I] flux indicates that there is high radiation field and high gas density at these positions, as derived from modelling of photo-dissociation regions. The [C II]/CO luminosity ratio of the GRB 980425 host is close to the highest values found for local star-forming galaxies. Indeed, its CO-derived molecular gas mass is low given its SFR and metallicity, but the [C II]-derived molecular gas mass is close to the expected value. Conclusions: The [O I] and H I concentrations and the high radiation field and density close to the GRB position are consistent with the hypothesis of a very recent (at most a few tens of Myr ago) inflow of atomic gas triggering star formation. In this scenario dust has not had time to build up (explaining high line-to-continuum ratios). Such a recent enhancement of star formation activity would indeed manifest itself in high SFRline/SFRcontinuum ratios because the line indicators are sensitive only to recent (≲10 Myr) activity, whereas the continuum indicators measure the SFR averaged over much longer periods ( 100 Myr). Within a sample of 32 other GRB hosts, 20 exhibit SFRline/SFRcontinuum> 1 with a mean ratio of 1.74 ± 0.32. This is consistent with a very recent enhancement of star formation that is common among GRB hosts, so galaxies that have recently experienced inflow of gas may preferentially host stars exploding as GRBs. Therefore GRBs may be used to select a unique sample of galaxies that is suitable for the investigation of recent gas accretion. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Gravitational microlensing by double stars and planetary systems

    NASA Technical Reports Server (NTRS)

    Mao, Shunde; Paczynski, Bohdan

    1991-01-01

    Almost all stars are in binary systems. When the separation between the two components is comparable to the Einstein ring radius corresponding to the combined mass of the binary acting as a gravitational lens, then an extra pair of images can be created, and the light curve of a lensed source becomes complicated. It is estimated that about 10 percent of all lensing episodes of the Galactic bulge stars will strongly display the binary nature of the lens. The effect is strong even if the companion is a planet. A massive search for microlensing of the Galactic bulge stars may lead to a discovery of the first extrasolar planetary systems.

  4. NASA Unveils First Images From Chandra X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability to precisely measure these X-rays tells how much of each element is present. With this information, astronomers can investigate how the elements necessary for life are created and spread throughout the galaxy by exploding stars. "Chandra will help to confirm one of the most fascinating theories of modern science -- that we came from the stars," said Professor Robert Kirshner of Harvard University. "Its ability to make X-ray images of comparable quality to optical images will have an impact on virtually every area of astronomy." Chandra also imaged a distant and very luminous quasar -- a single star-like object -- sporting a powerful X-ray jet blasting into space. The quasar radiates with the power of 10 trillion suns, energy which scientists believe comes from a supermassive black hole at its center. Chandra's image, combined with radio telescope observations, should provide insight into the process by which supermassive black holes can produce such cosmic jets. "Chandra has allowed NASA to seize the opportunity to put the U.S. back in the lead of observational X-ray astronomy," said Dr. Edward Weiler, Associate Administrator of Space Science, NASA Headquarters, Washington, DC. "History teaches us that whenever you develop a telescope 10 times better than what came before, you will revolutionize astronomy. Chandra is poised to do just that." The Chandra X-ray observatory was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar. NASA's Marshall Space Flight Center manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Press: Fact Sheet The first Chandra images will be posted to the Internet at: http://chandra.nasa.gov and http://chandra.harvard.edu NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the message (not the subject line) users should type the words "subscribe press-release" (no quotes). The system will reply with a confirmation via E-mail of each subscription. A second automatic message will include additional information on the service. NASA releases also are available via CompuServe using the command GO NASA. To unsubscribe from this mailing list, address an E-mail message to domo@hq.nasa.gov, leave the subject blank, and type only "unsubscribe press-release" (no quotes) in the body of the message.

  5. White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.

    2014-10-01

    White dwarfs are the evolutionary endpoint for nearly 95% of all stars born in our Galaxy, the final stages of evolution of all low- and intermediate mass stars, i.e., main sequence stars with masses below (8.5± 1.5) M_{odot}, depending on metallicity of the progenitor, mass loss and core overshoot. Massive white dwarfs are intrinsically rare objects, tand produce a gap in the determination of the initial vs. final mass relation at the high mass end (e.g. Weidemann 2000 A&A, 363, 647; Kalirai et al. 2008, ApJ, 676, 594; Williams, Bolte & Koester 2009, ApJ, 693, 355). Main sequences stars with higher masses will explode as SNII (Smartt S. 2009 ARA&A, 47, 63), but the limit does depend on the metallicity of the progenitor. Massive white dwarfs are probably SNIa progenitors through accretion or merger. They are rare, being the final product of massive stars (less common) and have smaller radius (less luminous). Kepler et al. 2007 (MNRAS, 375, 1315), Kleinman et al. 2013 (ApJS, 204, 5) estimate only 1-2% white dwarfs have masses above 1 M_{odot}. The final stages of evolution after helium burning are a race between core growth and loss of the H-rich envelope in a stellar wind. When the burning shell is exposed, the star rapidly cools and burning ceases, leaving a white dwarf. As they cool down, the magnetic field freezes in, ranging from a few kilogauss to a gigagauss. Peculiar type Ia SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg suggest progenitors in the range 2.4-2.8 M_{odot}, and Das U. & Mukhopadhyay B. (2012, Phys. Rev. D, 86, 042001) estimate that the Chandrasekhar limit increases to 2.3-2.6 M_{odot} for extremely high magnetic field stars, but differential rotation induced by accretion could also increase it, according to Hachisu I. et al. 2012 (ApJ, 744, 69). García-Berro et al. 2012, ApJ, 749, 25, for example, proposes double degenerate mergers are the progenitors of high-field magnetic white dwarfs. We propose magnetic fields enhance the line broadening in WDs, causing an overestimated surface gravity, and ultimately determine if these magnetic fields are likely developed through the star's own surface convection zone, or inherited from massive Ap/Bp progenitors. We discovered around 20 000 spectroscopic white dwarfs with the Sloan Digital Sky Survey (SDSS), with a corresponding increase in relatively rare varieties of white dwarfs, including the massive ones (Kleinman et al. 2013, ApJS, 204, 5, Kepler et al. 2013, MNRAS, 439, 2934). The mass distributions of the hydrogen-rich (DA) measured from fitting the spectra with model atmospheres calculated using unidimensinal mixing lenght-theory (MLT) shows the average mass (as measured by the surface gravity) increases apparently below 13 000K for DAs (e.g. Bergeron et al. 1991, ApJ, 367, 253; Tremblay et al. 2011, ApJ, 730, 128; Kleinman et al. 2013). Only with the tridimensional (3D) convection calculations of Tremblay et al. 2011 (A&A, 531, L19) and 2013 (A&A, 552, 13; A&A, 557, 7; arXiv 1309.0886) the problem has finally been solved, but the effects of magnetic fields are not included yet in the mass determinations. Pulsating white dwarf stars are used to measure their interior and envelope properties through seismology, and together with the luminosity function of white dwarf stars in clusters and around the Sun are valuable tools for the study of high density physics, and the history of stellar formation.

  6. 23. "A CAPTIVE ATLAS MISSILE EXPLODED DURING THE TEST ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. "A CAPTIVE ATLAS MISSILE EXPLODED DURING THE TEST ON TEST STAND 1-A, 27 MARCH 1959, PUTTING THAT TEST STAND OUT-OF-COMMISSION. STAND WAS NOT REPAIRED FOR THE ATLAS PROGRAM BUT TRANSFERRED TO ROCKETDYNE AND MODIFIED FOR THE F-l ENGINE PROGRAM." - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  7. [The exploding head syndrome].

    PubMed

    Bongers, K M; ter Bruggen, J P; Franke, C L

    1991-04-06

    The case is reported of a 47-year old female suffering from the exploding head syndrome. This syndrome consists of a sudden awakening due to a loud noise shortly after falling asleep, sometimes accompanied by a flash of light. The patient is anxious and experiences palpitations and excessive sweating. Most patients are more than fifty years of age. Further investigations do not reveal any abnormality. The pathogenesis is unknown, and no therapy other than reassurance is necessary.

  8. Exploding head syndrome followed by sleep paralysis: a rare migraine aura.

    PubMed

    Evans, Randolph W

    2006-04-01

    A 26-year-old patient is described with a unique migraine aura. She described an 8-year history of episodes occurring 1 to 2 times yearly of exploding head syndrome followed by sleep paralysis followed by a migraine headache. She also had identical headaches without aura about once per week. Both aura symptoms, which may occur in the brainstem, resulted in activation of the trigeminovascular system through an unknown mechanism.

  9. Effect of thickness of insulation coating on temperature of electrically exploded tungsten wires in vacuum

    NASA Astrophysics Data System (ADS)

    Shi, Huantong; Zou, Xiaobing; Wang, Xinxin

    2017-07-01

    This paper reports an interesting observation of great differences in the temperature of exploded wires with insulation coating of different thicknesses. Two kinds of polyimide-coated tungsten wires were used with the same conductive diameter 12.5 μm but a different thickness of coating, 0.75-2.25 μm and 2.25-4.25 μm, respectively. The specific energy reconstructed from the current and voltage signals was quite close for the tested wires. However, the exploding scenario, obtained from Mach-Zehnder interferograms, showed great differences: a neutral outer-layer was observed around the thick-coated wire, which was absent for the thin-coated wire; and the calculated electron density and local thermal equilibrium temperature were much higher for thick-coated wires. The heat-preserving neutral layer formed by the decomposition of the insulation was supposed to be the cause of this phenomenon.

  10. High fidelity studies of exploding foil initiator bridges, Part 3: ALEGRA MHD simulations

    NASA Astrophysics Data System (ADS)

    Neal, William; Garasi, Christopher

    2017-01-01

    Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, and predict a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this third paper of a three part study, the experimental results presented in part 2 are compared against 3-dimensional MHD simulations. This improved experimental capability, along with advanced simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.

  11. High fidelity studies of exploding foil initiator bridges, Part 2: Experimental results

    NASA Astrophysics Data System (ADS)

    Neal, William; Bowden, Mike

    2017-01-01

    Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA MHD, it is now possible to simulate these components in three dimensions and predict greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this second paper of a three part study, data is presented from a flexible foil EFI header experiment. This study has shown that there is significant bridge expansion before time of peak voltage and that heating within the bridge material is spatially affected by the microstructure of the metal foil.

  12. Structure and dynamics of star-forming galaxies across the history of the Universe using GRBs

    NASA Astrophysics Data System (ADS)

    Thöne, Christina; Fynbo, Johan; de Ugarte Postigo, Antonio

    2015-08-01

    Gamma-ray bursts are exploding massive stars and some of the most luminous explosions in the Universe. They can serve as powerful light houses that probe the structure and abundances of the dense ISM in their hosts at almost any redshift and not accessible by other types of observations, e.g. using quasars. Since 2009 our collaboration has collected UV to nIR medium-resolution spectra of over 70 GRB afterglows using the ESO/VLT X-shooter spectrograph. Our sample covers a redshift range from 0.06 to 6.3 allowing us to study the dynamics of the ISM in star-forming galaxies from the nearby Universe out to the epoch of reionization and for the first time in a statistically sound way. Absorption lines usually show a rich structure of different components due to galaxy dynamics, turbulences or in-/outflows and different ionization levels seem to arise from different regions in the host. Fine-structure lines some of which are uniquely observed in GRB hosts are excited in the dense regions close to the GRB site itself. For some host with z < 3 we can also simultaenously observe emission lines from the hot ISM, comparing the origin of hot and cold gas within the same galaxy. The large wavelength coverage of the sample gives us the unique opportunity to study the evolution of gas dynamics across most of the time galaxies have existed, how the gas structure changed over time and what is the importance and consistency of in- and ouflows. Here we will present the X-shooter GRB afterglow sample, our results on the study of absorption and emission line features and compare the observed structures with theoretical models of galaxies to get a unique insight on the distrubution and dynamics of the ISM in starforming galaxies at any redshift.

  13. Handbook of Supernovae

    NASA Astrophysics Data System (ADS)

    Athem Alsabti, Abdul

    2015-08-01

    Since the discovery of pulsars in 1967, few celestial phenomena have fascinated amateur and professional astronomers, and the public, more than supernovae - dying stars that explode spectacularly and, in so doing, may outshine a whole galaxy. Thousands of research papers, reviews, monographs and books have been published on this subject. These publications are often written either for a highly specific level of expertise or education, or with respect to a particular aspect of supernovae research. However, the study of supernovae is a very broad topic involving many integral yet connected aspects, including physics, mathematics, computation, history, theoretical studies and observation. More specifically, areas of study include historical supernovae, the different types and light curves, nucleosynthesis, explosion mechanisms, formation of black holes, neutron stars, cosmic rays, neutrinos and gravitational waves. Related questions include how supernovae remnants interact with interstellar matter nearby and how do these events affect the formation of new stars or planetary systems? Could they affect existing planetary systems? Closer to home, did any supernovae affect life on earth in the past or could they do so in the future? And on the larger scale, how did supernovae observations help measure the size and expansion of the universe? All these topics, and more, are to be covered in a new reference work, consisting of more than 100 articles and more than 1700 pages. It is intended to cover all the main facets of current supernovae research. It will be pitched at or above the level of a new postgraduate student, who will have successfully studied physics (or a similar scientific subject) to Bachelor degree level. It will be available in both print and electronic (updatable) formats, with the exception of the first section, which will consist of a review of all the topics of the handbook at a level that allows anyone with basic scientific knowledge to grasp the subject. This work is contracted with Springer to be published by end of 2016.

  14. Star-pseudopolyrotaxane organized in nanoplatelets for poly(ε-caprolactone)-based nanofibrous scaffolds with enhanced surface reactivity.

    PubMed

    Oster, Murielle; Hébraud, Anne; Gallet, Sébastien; Lapp, Alain; Pollet, Eric; Avérous, Luc; Schlatter, Guy

    2015-02-01

    Herein, it is demonstrated that star pseudopolyrotaxanes (star-pPRs) obtained from the inclusion complexation of α-cyclodextrin (CD) and four-branched star poly(ε-caprolactone) (star-PCL) organize into nanoplatelets in dimethyl sulfoxide at 35 °C. This peculiar property, not observed for linear pseudopolyrotaxanes, allows the processing of star-pPRs while preserving their supramolecular assembly. Thus, original PCL:star-pPR core:shell nanofibers are elaborated by coaxial electrospinning. The star-pPR shell ensures the presence of available CD hydroxyl functions on the fiber surface allowing its postfunctionalization. As proof of concept, fluorescein isothiocyanate is grafted. Moreover, the morphology of the fibers is maintained due to the star-pPR shell that acts as a shield, preventing the fiber dissolution during chemical modification. The proposed strategy is simple and avoids the synthesis of polyrotaxanes, i.e., pPR end-capping to prevent the CD dethreading. As PCL is widely used for biomedical applications, this strategy paves the way for simple functionalization with any bioactive molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Modeling the Evolution of Disk Galaxies. I. The Chemodynamical Method and the Galaxy Model

    NASA Astrophysics Data System (ADS)

    Samland, M.; Hensler, G.; Theis, Ch.

    1997-02-01

    Here we present our two-dimensional chemodynamical code CoDEx, which we developed for the purpose of modeling the evolution of galaxies in a self-consistent manner. The code solves the hydrodynamical and momentum equations for three stellar components and the multiphase interstellar medium (clouds and intercloud medium), including star formation, Type I and Type II supernovae, planetary nebulae, stellar winds, evaporation and condensation, drag, cloud collisions, heating and cooling, and stellar nucleosynthesis. These processes are treated simultaneously, coupling a large range in temporal and spatial scales, to account for feedback and self-regulation processes, which play an extraordinarily important role in the galactic evolution. The evolution of galaxies of different masses and angular momenta is followed through all stages from the initial protogalactic clouds until now. In this first paper we present a representative model of the Milky Way and compare it with observations. The capability of chemodynamical models is convincingly proved by the excellent agreement with various observations. In addition, well-known problems (the G-dwarf problem, the discrepancy between local effective yields, etc.), which so far could be only explained by artificial constraints, are also solved in the global scenario. Starting from a rotating protogalactic gas cloud in virial equilibrium, which collapses owing to dissipative cloud-cloud collisions, we can follow the galactic evolution in detail. Owing to the collapse, the gas density increases, stars are forming, and the first Type II supernovae explode. The collapse time is 1 order of magnitude longer than the dynamical free-fall time because of the energy release by Type II supernovae. The supernovae also drive hot metal-rich gas ejected from massive stars into the halo, and as a consequence, the clouds in the star-forming regions have lower metallicities than the clouds in the halo. The observed negative metallicity gradients do not form before t = 6 × 109 yr. These outward gas flows prevent any clear correlation between local star formation rate and enrichment and also prevent a unique age-metallicity relation. The situation, however, is even more complicated, because the mass return of intermediate-mass stars (Type I supernovae and planetary nebulae) is delayed depending on the type of precursor. Since our chemodynamical model includes all these processes, we can calculate, e.g., the [O/H] distribution of stars and find good agreement everywhere in bulge, disk, and halo. From the galactic oxygen to iron ratio, we can determine the supernovae ([II + Ib]/Ia) ratio for different types of Type Ia supernovae (such as carbon deflagration or sub-Chandrasekhar models) and find that the ratio should be in the range 1.0-3.8. The chemodynamical model also traces other chemical elements (e.g., N + C), density distributions, gas flows, velocity dispersions of the stars and clouds, star formation, planetary nebula rates, cloud collision, condensation and evaporation rates, and the cooling due to radiation. The chemodynamical treatment of galaxy evolution should be envisaged as a necessary development, which takes those processes into account that affect the dynamical, energetical, and chemical evolution.

  16. Gamma-ray bursts appear simpler than expected?

    NASA Astrophysics Data System (ADS)

    Chardonnet, P.; Filina, A. A.; Popov, M. V.; Chechetkin, V. M.; Baranov, A. A.

    The cosmic gamma-ray bursts are certainly an enigma in astrophysics. The "standard fireball" scenario developed during many years has provided a possible explanation of this phenomenon. The aim of this work is simply to explore a new possible interpretation by developing a coherent scenario inside the global picture of stellar evolution. At the basis of our scenario is the fact that maybe we have not fully understood how the core of a pair instability supernovae explode. In such a way, we have proposed a new paradigm assuming that the core of such massive star, instead of doing a symmetrical explosion, is completely fragmented in hot spots of burning nuclear matter. We have tested our scenario using some observational data like GRB spectrum, light curves, Amati relation and GRB-SN connection, and for each set of data we have proposed a possible physical interpretation. We have also suggested some possible tests of this scenario by measurement at high redshift. If this scenario is correct, it tells us simply that cosmic gamma-ray bursts are simply a missing link in stellar evolution.

  17. Radical formation, chemical processing, and explosion of interstellar grains

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1976-01-01

    The ultraviolet radiation in interstellar space is shown to create a sufficient steady-state density of free radicals in the grain mantle material consisting of oxygen, carbon, nitrogen, and hydrogen to satisfy the critical condition for initiation of chain reactions. The criterion for minimum critical particle size for maintaining the chain reaction is of the order of the larger grain sizes in a distribution satisfying the average extinction and polarization measures. The triggering of the explosion of interstellar grains leading to the ejection of complex interstellar molecules is shown to be most probable where the grains are largest and where radiation is suddenly introduced; i.e., in regions of new star formation. Similar conditions prevail at the boundaries between very dark clouds and H II regions. When the energy released by the chemical activity of the free radicals is inadequate to explode the grain, the resulting mantle material must consist of extremely large organic molecules which are much more resistant to the hostile environment of H II regions than the classical dirty-ice mantles made up of water, methane, and ammonia.

  18. Supermassive population III supernovae and the birth of the first quasars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, Daniel J.; Smidt, Joseph; Even, Wesley

    2013-11-20

    The existence of supermassive black holes as early as z ∼ 7 is one of the great, unsolved problems in cosmological structure formation. One leading theory argues that they are born during catastrophic baryon collapse in z ∼ 15 protogalaxies that form in strong Lyman-Werner UV backgrounds. Atomic line cooling in such galaxies fragments baryons into massive clumps that are thought to directly collapse to 10{sup 4}-10{sup 5} M {sub ☉} black holes. We have now discovered that some of these fragments can instead become supermassive stars that eventually explode as thermonuclear supernovae (SNe) with energies of ∼10{sup 55} erg,more » the most energetic explosions in the universe. We have calculated light curves and spectra for supermassive Pop III SNe with the Los Alamos RAGE and SPECTRUM codes. We find that they will be visible in near-infrared all-sky surveys by Euclid out to z ∼ 10-15 and by WFIRST and WISH out to z ∼ 15-20, perhaps revealing the birthplaces of the first quasars.« less

  19. Simulations of Rayleigh Taylor Instabilities in the presence of a Strong Radiative shock

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Shvarts, Dov; Drake, R. P.

    2016-10-01

    Recent Supernova Rayleigh Taylor experiments on the National Ignition Facility (NIF) are relevant to the evolution of core-collapse supernovae in which red supergiant stars explode. Here we report simulations of these experiments using the CRASH code. The CRASH code, developed at the University of Michigan to design and analyze high-energy-density experiments, is an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction. We explore two cases, one in which the shock is strongly radiative, and another with negligible radiation. The experiments in all cases produced structures at embedded interfaces by the Rayleigh Taylor instability. The weaker shocked environment is cooler and the instability grows classically. The strongly radiative shock produces a warm environment near the instability, ablates the interface, and alters the growth. We compare the simulated results with the experimental data and attempt to explain the differences. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  20. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  1. Numerical simulations of the convective flame in white dwarfs

    NASA Technical Reports Server (NTRS)

    Livne, Eli

    1993-01-01

    A first step toward better understanding of the mechanism driving convective flames in exploding white dwarfs is presented. The propagation of the convective flame is examined using a two-dimensional implicit hydrodynamical code. The large scales of the instability are captured by the grid while the scales that are smaller than the grid resolution are approximated by a mixing-length approximation. It is found that largescale perturbations (of order of the pressure scale height) do grow significantly during the expansion, leading to a very nonspherical burning front. The combustion rate is strongly enhanced (compared to the unperturbed case) during the first second, but later the expansion of the star suppresses the flame speed, leading to only partial incineration of the nuclear fuel. Our results imply that large-scale perturbations by themselves are not enough to explain the mechanism by which convective flames are driven, and a study of the whole spectrum of relevant perturbations is needed. The implications of these preliminary results on future simulations, in the context of current models for Type Ia supernovae, are discussed.

  2. Closed and Not Closed: Mitigating a Mystery on Chandra's Door

    NASA Technical Reports Server (NTRS)

    Odom, Brian

    2015-01-01

    The Chandra X-ray Observatory is part of NASA's fleet of "Great Observatories" along with the Hubble Space Telescope, the Spitzer Space Telescope, and the now deorbited Compton Gamma Ray Observatory. The observatory was designed to detect x-ray emissions from some of the hottest regions of the galaxy including exploded stars, clusters of galaxies, and matter around black holes. One of the observatory's key scientific instruments is the Advanced CCD Imaging Spectrometer (ACIS), which is one of four primary and two focal plane instruments. Due to the sensitivity of the charged coupled devices (CCD's), an aperture door was designed and built by Lockheed-Martin that protected the instrument during testing and the time leading up to launch. The design called for a system of wax actuators (manufactured by STARSYS Corp) to be used as components in a rotary actuator that would open and close the door during ground testing and on-orbit operations. Another feature of the design was an internal shear disc located in each actuator to prevent excessive internal pressure and to shield other components from damage.

  3. Transparent Helium in Stripped Envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  4. Chandra X-Ray Observatory High Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  5. History of satellite break-ups in space

    NASA Technical Reports Server (NTRS)

    Gabbard, J.

    1985-01-01

    By 28 June 1961 the 1st Aerospace Control Squadron had cataloged 115 Earth orbiting satellites from data supplied by a rather diverse collection of radar and optical sensors. On 29 June 1961, the Able Star rocket of the 1961 Omicron launch exploded causing a quantum jump in the number of Earth orbiting objects. Since that time there have been 69 Earth orbiting satellites break up in space whose debris remained in orbit long enough for orbital elements to be developed. A list of the 69 breakups is provided. The debris from some of the lower altitude breakups has all decayed. Among the 69 breakups, 44 have cataloged debris remaining in orbit. As of 1 July 1982, the size of the cataloged orbiting population was exactly 4700. Forty-nine percent of these objects are fragments of the forty-four breakups. For each breakup the various orbits of its debris represent a family of orbits that are related in characteristics due to their common impulse launch. A few examples are shown of how the families are oriented in space.

  6. Multi-D Full Boltzmann Neutrino Hydrodynamic Simulations in Core Collapse Supernovae and their detailed comparison with Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Nagakura, Hiroki; Richers, Sherwood; Ott, Christian; Iwakami, Wakana; Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2017-01-01

    We have developed a multi-d radiation-hydrodynamic code which solves first-principles Boltzmann equation for neutrino transport. It is currently applicable specifically for core-collapse supernovae (CCSNe), but we will extend their applicability to further extreme phenomena such as black hole formation and coalescence of double neutron stars. In this meeting, I will discuss about two things; (1) detailed comparison with a Monte-Carlo neutrino transport (2) axisymmetric CCSNe simulations. The project (1) gives us confidence of our code. The Monte-Carlo code has been developed by Caltech group and it is specialized to obtain a steady state. Among CCSNe community, this is the first attempt to compare two different methods for multi-d neutrino transport. I will show the result of these comparison. For the project (2), I particularly focus on the property of neutrino distribution function in the semi-transparent region where only first-principle Boltzmann solver can appropriately handle the neutrino transport. In addition to these analyses, I will also discuss the ``explodability'' by neutrino heating mechanism.

  7. Supernova shock breakout through a wind

    NASA Astrophysics Data System (ADS)

    Balberg, Shmuel; Loeb, Abraham

    2011-06-01

    The breakout of a supernova shock wave through the progenitor star's outer envelope is expected to appear as an X-ray flash. However, if the supernova explodes inside an optically thick wind, the breakout flash is delayed. We present a simple model for estimating the conditions at shock breakout in a wind based on the general observable quantities in the X-ray flash light curve; the total energy EX, and the diffusion time after the peak, tdiff. We base the derivation on the self-similar solution for the forward-reverse shock structure expected for an ejecta plowing through a pre-existing wind at large distances from the progenitor's surface. We find simple quantitative relations for the shock radius and velocity at breakout. By relating the ejecta density profile to the pre-explosion structure of the progenitor, the model can also be extended to constrain the combination of explosion energy and ejecta mass. For the observed case of XRO08109/SN2008D, our model provides reasonable constraints on the breakout radius, explosion energy and ejecta mass, and predicts a high shock velocity which naturally accounts for the observed non-thermal spectrum.

  8. President Signs STAR Act for Kids' Cancers.

    PubMed

    2018-06-07

    On June 5, President Donald Trump signed the Childhood Cancer Survivorship, Treatment, Access and Research Act, which aims to support pediatric cancer research by expanding the collection of patient biospecimens and records, improving surveillance, and investigating pediatric survivorship. ©2018 American Association for Cancer Research.

  9. An analytically soluble problem in fully nonlinear statistical gravitational lensing

    NASA Technical Reports Server (NTRS)

    Schneider, P.

    1987-01-01

    The amplification probability distribution p(I)dI for a point source behind a random star field which acts as the deflector exhibits a I exp-3 behavior for large amplification, as can be shown from the universality of the lens equation near critical lines. In this paper it is shown that the amplitude of the I exp-3 tail can be derived exactly for arbitrary mass distribution of the stars, surface mass density of stars and smoothly distributed matter, and large-scale shear. This is then compared with the corresponding linear result.

  10. De novo disruption of promoter and exon 1 of STAR gene reveals essential role for gonadal development

    PubMed Central

    Piya, Anil; Kaur, Jasmeet; Rice, Alan M

    2017-01-01

    Summary Cholesterol transport into the mitochondria is required for synthesis of the first steroid, pregnenolone. Cholesterol is transported by the steroidogenic acute regulatory protein (STAR), which acts at the outer mitochondrial membrane prior to its import. Mutations in the STAR protein result in lipoid congenital adrenal hyperplasia (CAH). Although the STAR protein consists of seven exons, biochemical analysis in nonsteroidogenic COS-1 cells showed that the first two were not essential for pregnenolone synthesis. Here, we present a patient with ambiguous genitalia, salt-lossing crisis within two weeks after birth and low cortisol levels. Sequence analysis of the STAR, including the exon–intron boundaries, showed the complete deletion of exon 1 as well as more than 50 nucleotides upstream of STAR promoter. Mitochondrial protein import with the translated protein through synthesis cassette of the mutant STAR lacking exon 1 showed protein translation, but it is less likely to have synthesized without a promoter in our patient. Thus, a full-length STAR gene is necessary for physiological mitochondrial cholesterol transport in vivo. Learning points: STAR exon 1 deletion caused lipoid CAH. Exon 1 substitution does not affect biochemical activity. StAR promoter is responsible for gonadal development. PMID:28458886

  11. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Elmegreen, B. G.; Calzetti, D.; Adamo, A.; Aloisi, A.; Bright, S. N.; Cook, D. O.; Dale, D. A.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grebel, E. K.; Kahre, L.; Kim, H.; Krumholz, M. R.; Lee, J. C.; Messa, M.; Ryon, J. E.; Ubeda, L.

    2017-06-01

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25-0.6 power, and that the maximum size over which star formation is physically correlated ranges from ˜200 pc to ˜1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  12. Reading Results: A Critical Look at Standardized Testing and the Linguistic Minority

    ERIC Educational Resources Information Center

    Shannon, Joanie

    2008-01-01

    A critical look into assessing the Standardized Test and Reporting (STAR) test data among English language learners gives educators a chance to examine the cultural biases present within the standardized test movement started by the No Child Left Behind Act of 2001. In particular, The STAR test results seem to reflect that the test is geared…

  13. 78 FR 4879 - Nine Mile Point 3 Nuclear Project, LLC and UniStar Nuclear Operating Services, LLC Combined...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... Analysis Report (FSAR). On December 1, 2009, UniStar Nuclear Energy (UNE), acting on behalf of the COL... Exclusion From Environmental Review With respect to the exemption's impact on the quality of the human... relation to security issues. Therefore, the common defense and security is not impacted by this exemption...

  14. The role of non-ionizing radiation pressure in star formation: the stability of cores and filaments

    NASA Astrophysics Data System (ADS)

    Seo, Young Min; Youdin, Andrew N.

    2016-09-01

    Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (I.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, ˜103 cm-3, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of stability thresholds requires stronger irradiation, as can be found closer to the Galactic centre or near stellar associations. Even when strong sources of ionizing radiation are absent or extincted, our study shows that interstellar irradiation can significantly influence the star formation process.

  15. ESA's new view of the Milky Way - in gamma rays!

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Integral's gamma-ray map of the galaxy hi-res Size hi-res: 430 kb Credits: ESA/SPI team A portion of Integral's gamma-ray map of the galaxy A portion of Integral's gamma-ray map of the galaxy. This false colour picture was taken by the spectrometer on board Integral (SPI) between December 2002 and March 2003. The yellow dots correspond to bright known gamma-rays sources, whilst blue areas indicate regions of low emission. Data similar to these, but in a higher energy range, have been used to study where aluminium and iron are produced in the Galaxy. Since its formation from a cloud of hydrogen and helium gas, around 12 000 million years ago, the Milky Way has gradually been enriched with heavier chemical elements. This has allowed planets and, indeed, life on Earth to form. Today, one of those heavier elements - radioactive aluminium - is spread throughout the Galaxy and, as it decays into magnesium, gives out gamma rays with a wavelength known as the '1809 keV line'. Integral has been mapping this emission with the aim of understanding exactly what is producing all this aluminium. In particular, Integral is looking at the aluminium 'hot spots' that dot the Galaxy to determine whether these are caused by individual celestial objects or the chance alignment of many objects. Astronomers believe that the most likely sources of the aluminium are supernovae (exploding high-mass stars) and, since the decay time of the aluminium is around one million years, Integral's map shows how many stars have died in recent celestial history. Other possible sources of the aluminium include 'red giant' stars or hot blue stars that give out the element naturally. To decide between these options, Integral is also mapping radioactive iron, which is only produced in supernovae. Theories suggest that, during a supernova blast, aluminium and iron should be produced together in the same region of the exploding star. Thus, if the iron's distribution coincides with that of the aluminium, it will prove that the overwhelming majority of aluminium comes indeed from supernovae. These measurements are difficult and have not been possible so far, since the gamma-ray signature of radioactive iron is about six times fainter than that of the aluminium. However, as ESA's powerful Integral observatory accumulates more data in the course of the next year, it will finally be possible to reveal the signature of radioactive iron. This test will tell astronomers whether their theories of how elements form are correct. In addition to these maps, Integral is also looking deeply into the centre of the Galaxy, to make the most detailed map ever of 'antimatter' there. Antimatter is like a mirror image to normal matter and is produced during extremely energetic atomic processes: for example, the radioactive decay of aluminium. Its signature is known as the '511 keV line.' Even though Integral's observations are not yet complete, they show that there is too much antimatter in the centre of the Galaxy to be coming from aluminium decay alone. They also show clearly that there must be many sources of antimatter because it is not concentrated around a single point. There are many possible sources for this antimatter. As well as supernovae, old red stars and hot blue stars, there are jets from neutron stars and black holes, stellar flares, gamma-ray bursts and interaction between cosmic rays and the dusty gas clouds of interstellar space. Chris Winkler, Integral's Project Scientist, says: "We have collected excellent data in the first few months of activity but we can and will do much more in the next year. Integral's accuracy and sensitivity have already exceeded our expectations and, in the months to come, we could get the answers to some of astronomy's most intriguing questions." Note to editors: These and other preliminary results, plus a thorough description of the Integral spacecraft and mission are published this month in a dedicated issue of the journal Astronomy and Astrophysics. At its 105th meeting on 6 October 2003, ESA's Science Programme Committee unanimously decided to extend the Integral mission until December 2008. The International Gamma Ray Astrophysics Laboratory (Integral) is the first space observatory that can simultaneously observe celestial objects in gamma rays, X-rays and visible light. Integral was launched on a Russian Proton rocket on 17 October 2002 into a highly elliptical orbit around Earth. Its principal targets include regions of the galaxy where chemical elements are being produced and compact objects, such as black holes. SPI measures the energy of incoming gamma rays with extraordinary accuracy. It is more sensitive to faint radiation than any previous gamma ray instrument and allows the precise nature of gamma ray sources to be determined. SPI's Principal Investigators are: J.-P. Roques, (CESR Toulouse, France), V. Schönfelder (MPE Garching, Germany).

  16. The Thousand-Ruby Galaxy

    NASA Astrophysics Data System (ADS)

    2008-09-01

    ESO's Wide Field Imager has captured the intricate swirls of the spiral galaxy Messier 83, a smaller look-alike of our own Milky Way. Shining with the light of billions of stars and the ruby red glow of hydrogen gas, it is a beautiful example of a barred spiral galaxy, whose shape has led to it being nicknamed the Southern Pinwheel. Messier 83, M83 ESO PR Photo 25/08 Spiral Galaxy Messier 83 This dramatic image of the galaxy Messier 83 was captured by the Wide Field Imager at ESO's La Silla Observatory, located high in the dry desert mountains of the Chilean Atacama Desert. Messier 83 lies roughly 15 million light-years away towards the huge southern constellation of Hydra (the sea serpent). It stretches over 40 000 light-years, making it roughly 2.5 times smaller than our own Milky Way. However, in some respects, Messier 83 is quite similar to our own galaxy. Both the Milky Way and Messier 83 possess a bar across their galactic nucleus, the dense spherical conglomeration of stars seen at the centre of the galaxies. This very detailed image shows the spiral arms of Messier 83 adorned by countless bright flourishes of ruby red light. These are in fact huge clouds of glowing hydrogen gas. Ultraviolet radiation from newly born, massive stars is ionising the gas in these clouds, causing the great regions of hydrogen to glow red. These star forming regions are contrasted dramatically in this image against the ethereal glow of older yellow stars near the galaxy's central hub. The image also shows the delicate tracery of dark and winding dust streams weaving throughout the arms of the galaxy. Messier 83 was discovered by the French astronomer Nicolas Louis de Lacaille in the mid 18th century. Decades later it was listed in the famous catalogue of deep sky objects compiled by another French astronomer and famous comet hunter, Charles Messier. Recent observations of this enigmatic galaxy in ultraviolet light and radio waves have shown that even its outer desolate regions (farther out than those seen in this image) are populated with baby stars. X-ray observations of the heart of Messier 83 have shown that its centre is a hive of vigorous star formation, held deep within a cloud of superheated gas, with temperatures of 7 million degrees Celsius. Messier 83 is also one of the most prolific producers of supernovae, that is, exploding stars: this is one of the two galaxies, which had 6 supernovae in the past 100 years. One of these, SN 1957D was observable for 30 years! The Wide Field Imager (WFI) is a specialised astronomical camera attached to the 2.2-metre Max-Planck Society/ESO telescope, sited at the La Silla observatory in Chile. Located nearly 2400 m above sea level, atop the mountains of the Atacama Desert, ESO's La Silla enjoys some of the clearest and darkest skies on the whole planet, making the site ideally suited for studying the farthest depths of the Universe. To make this image, the WFI stared at M83 for roughly 100 minutes through a series of specialist filters, allowing the faint detail of the galaxy to reveal itself. The brighter stars in the foreground are stars in our own galaxy, whilst behind M83 the darkness is peppered with the faint smudges of distant galaxies.

  17. SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant

    NASA Astrophysics Data System (ADS)

    Huang, F.; Wang, X.-F.; Hosseinzadeh, G.; Brown, P. J.; Mo, J.; Zhang, J.-J.; Zhang, K.-C.; Zhang, T.-M.; Howell, D.-A.; Arcavi, I.; McCully, C.; Valenti, S.; Rui, L.-M.; Song, H.; Xiang, D.-F.; Li, W.-X.; Lin, H.; Wang, L.-F.

    2018-04-01

    We present extensive ultraviolet (UV) and optical photometry, as well as dense optical spectroscopy, for type II Plateau (IIP) supernova SN 2016X that exploded in the nearby (˜15 Mpc) spiral galaxy UGC 08041. The observations span the period from 2 to 180 d after the explosion; in particular, the Swift UV data probably captured the signature of shock breakout associated with the explosion of SN 2016X. It shows very strong UV emission during the first week after explosion, with a contribution of ˜20-30 per cent to the bolometric luminosity (versus ≲15 per cent for normal SNe IIP). Moreover, we found that this supernova has an unusually long rise time of about 12.6 ± 0.5 d in the R band (versus ˜7.0 d for typical SNe IIP). The optical light curves and spectral evolution are quite similar to the fast-declining type IIP object SN 2013ej, except that SN 2016X has a relatively brighter tail. Based on the evolution of photospheric temperature as inferred from the Swift data in the early phase, we derive that the progenitor of SN 2016X has a radius of about 930 ± 70 R⊙. This large-size star is expected to be a red supergiant star with an initial mass of ≳19-20 M⊙ based on the mass-radius relation of the Galactic red supergiants, and it represents one of the most largest and massive progenitors found for SNe IIP.

  18. Stellar Origins of Supernovae

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler

    2012-10-01

    Supernovae {SNe} have a profound effect on galaxies, and have been used recently as precise cosmological probes, resulting in the Nobel-recognized discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 5900 known SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the emerging trend from 7 detections for Type II-Plateau SNe is that their progenitors appear to be relatively low mass {8 to 20 Msun} red supergiants, although more cases are needed. Additionally, we have identified the possibly yellow supergiant progenitors of two likely Type II-Linear SNe. Also, one case indicates that the progenitors of Type II-narrow SNe may be related to luminous blue variables. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are currently being used for precision cosmology. In Cycles 16 and 17 we had great success with our approved ToO programs. We therefore propose to build on that success by determining the identities of the progenitors of 4 SNe within, generally, about 20 Mpc, which we expect to occur during Cycle 20, through ToO observations using WFC3/UVIS.

  19. The Stellar Origins of Supernovae

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler

    2013-10-01

    Supernovae {SNe} have a profound effect on galaxies, and have been used recently as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 6100 known SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the emerging trend from 9 detections for Type II-Plateau SNe is that their progenitors appear to be relatively low mass {8 to 20 Msun} red supergiants, although more cases are needed. Additionally, evidence is growing that the progenitors of Type II-narrow SNe may be related to luminous blue variables. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are currently being used for precision cosmology. In Cycles 16 and 17 we had great success with our approved ToO programs. As of this proposal deadline, we had not yet triggered our Cycle 20 program. We therefore propose to continue this project to determine the identities of the progenitors of 4 SNe within, generally, about 20 Mpc, which we expect to occur during Cycle 21, through ToO observations using WFC3/UVIS.

  20. Observation of 23 supernovae that exploded <300 pc from Earth during the past 300 kyr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firestone, R. B., E-mail: rbfirestone@lbl.gov

    2014-07-01

    Four supernovae (SNe), exploding ≤300 pc from Earth, were recorded 44, 37, 32, and 22 kyr ago in the radiocarbon ({sup 14}C) record during the past 50 kyr. Each SN left a nearly identical signature in the record, beginning with an initial sudden increase in atmospheric radiocarbon, when the SN exploded, followed by a hiatus of 1500 yr, and concluding with a sustained 2000 yr increase in global radiocarbon due to γ-rays produced by diffusive shock in the SN remnant (SNR). For the past 18 kyr excess radiocarbon has decayed with the {sup 14}C half-life. SN22kyrBP, is identified as themore » Vela SN that exploded 250 ± 30 pc from Earth. These SN are confirmed in the {sup 10}Be, {sup 26}Al, {sup 36}Cl, and NO{sub 3}{sup −} geologic records. The rate of near-Earth SNe is consistent with the observed rate of historical SNe giving a galactic rate of 14 ± 3 kyr{sup –1} assuming the Chandra Galactic Catalog SNR distribution. The Earth has been used as a calorimeter to determine that ≈2 × 10{sup 49} erg were released as γ-rays at the time of each SN explosion and ≈10{sup 50} erg in γ-rays following each SN. The background rate of {sup 14}C production by cosmic rays has been determined as 1.61 atoms cm{sup –2} s{sup –1}. Approximately 1/3 of the cosmic ray energy produced by diffusive shock in the SNR was observed to be emitted as high-energy γ-rays. Analysis of the {sup 10}Be/{sup 9}Be ratio in marine sediment identified 19 additional near-Earth SNe that exploded 50-300 kyr ago. Comparison of the radiocarbon record with global temperature variations indicated that each SN explosion is correlated with a concurrent global warming of ≈3°C-4°C.« less

Top