Science.gov

Sample records for star formation galaxies

  1. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  2. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  3. Star formation in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Dong, Shawfeng

    In this thesis, we examine the star formation history and stellar feedback effects of dwarf galaxies under the influence of extragalactic ultraviolet radiation, as well as the evolution of residual gas within tidally-limited dwarf galaxies and globular clusters. Previous work has indicated that the background UV flux can easily ionize the gas within typical dwarf galaxies, delaying or even preventing cooling and star formation within them. Many dwarf galaxies within the Local Group are, however, observed to contain multiple generations of stars, the oldest of which formed in the early epochs of cosmic evolution, when the background UV flux was intense. In order to address this paradox, we consider the dynamical evolution of gas in dwarf galaxies using a one-dimensional, spherically symmetric, Lagrangian numerical scheme which also computes the effects of radiative transfer and photoionization. We include in the scheme a physically-motivated star formation recipe and consider the effects of feedback. This scheme allows us to follow the history of the gas and of star formation within dwarf galaxies, as influenced by both external and internal UV radiation. Our results indicate that star formation in the severe environment of dwarf galaxies is a difficult and inefficient process. In potentials with total mass less than a few 106 M⊙ , and velocity dispersion less than a few km s-1 , residual gas is efficiently photoionized by cosmic background UV radiation. For intermediate mass systems, such as the dSphs around the Galaxy, star formation can proceed within early cosmic epochs despite the intense background UV flux. Triggering processes such as merger events, collisions, and tidal disturbance can lead to density enhancements, reducing the recombination timescale, allowing gas to cool and star formation to proceed. However, the star formation and gas retention efficiency may vary widely in galaxies with similar dark matter potentials, because they depend on many

  4. Star Formation for Predictive Primordial Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Milosavljević, Miloš; Safranek-Shrader, Chalence

    The elegance of inflationary cosmology and cosmological perturbation theory ends with the formation of the first stars and galaxies, the initial sources of light that launched the phenomenologically rich process of cosmic reionization. Here we review the current understanding of early star formation, emphasizing unsolved problems and technical challenges. We begin with the first generation of stars to form after the Big Bang and trace how they influenced subsequent star formation. The onset of chemical enrichment coincided with a sharp increase in the overall physical complexity of star forming systems. Ab-initio computational treatments are just now entering the domain of the predictive and are establishing contact with local observations of the relics of this ancient epoch.

  5. Measuring star formation rates in blue galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Hunter, Deidre A.

    1987-01-01

    The problems associated with measurements of star formation rates in galaxies are briefly reviewed, and specific models are presented for determinations of current star formation rates from H alpha and Far Infrared (FIR) luminosities. The models are applied to a sample of optically blue irregular galaxies, and the results are discussed in terms of star forming histories. It appears likely that typical irregular galaxies are forming stars at nearly constant rates, although a few examples of systems with enhanced star forming activity are found among HII regions and luminous irregular galaxies.

  6. The void galaxy survey: Star formation properties

    NASA Astrophysics Data System (ADS)

    Beygu, B.; Kreckel, K.; van der Hulst, J. M.; Jarrett, T. H.; Peletier, R.; van de Weygaert, R.; van Gorkom, J. H.; Aragon-Calvo, M. A.

    2016-05-01

    We study the star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Current star formation rates are derived from H α and recent star formation rates from near-UV imaging. In addition, infrared 3.4, 4.6, 12 and 22 μm Wide-field Infrared Survey Explorer emission is used as star formation and mass indicator. Infrared and optical colours show that the VGS sample displays a wide range of dust and metallicity properties. We combine these measurements with stellar and H I masses to measure the specific SFRs (SFR/M*) and star formation efficiencies ({SFR/{M }_H I}). We compare the star formation properties of our sample with galaxies in the more moderate density regions of the cosmic web, `the field'. We find that specific SFRs of the VGS galaxies as a function of stellar and H I mass are similar to those of the galaxies in these field regions. Their SFR α is slightly elevated than the galaxies in the field for a given total H I mass. In the global star formation picture presented by Kennicutt-Schmidt, VGS galaxies fall into the regime of low average star formation and correspondingly low H I surface density. Their mean {SFR α /{M}_{H I} and SFR α/M* are of the order of 10- 9.9 yr- 1. We conclude that while the large-scale underdense environment must play some role in galaxy formation and growth through accretion, we find that even with respect to other galaxies in the more mildly underdense regions, the increase in star formation rate is only marginal.

  7. Star formation regions in galaxies: Star complexes and spiral arms

    NASA Astrophysics Data System (ADS)

    Efremov, Iurii N.

    This book describes observational data on star formation regions (from young star clusters to spiral arms) in the Milky Way and other galaxies. It is concluded that not only high-luminosity stars but also star clusters and associations are forming together in vast complexes. It is claimed that these complexes are the primary, fundamental entities of star formation.

  8. Star Formation and Feedback in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Dong, Shawfeng; Lin, D. N. C.; Murray, S. D.

    2003-10-01

    We examine the star formation history and stellar feedback effects of dwarf galaxies under the influence of extragalactic ultraviolet radiation. Previous work has indicated that the background UV flux can easily ionize the gas within typical dwarf galaxies, delaying or even preventing cooling and star formation within them. Many dwarf galaxies within the Local Group are, however, observed to contain multiple generations of stars, the oldest of which formed in the early epochs of cosmic evolution, when the background UV flux was intense. In order to address this paradox, we consider the dynamical evolution of gas in dwarf galaxies using a one-dimensional, spherically symmetric, Lagrangian numerical scheme to compute the effects of radiative transfer and photoionization. We include a physically motivated star formation recipe and consider the effects of feedback. This scheme allows us to follow the history of the gas and of star formation within dwarf galaxies, as influenced by both external and internal UV radiation. Our results indicate that star formation in the severe environment of dwarf galaxies is a difficult and inefficient process. In potentials with total mass less than a few times 106 Msolar and velocity dispersion less than a few kilometers per second, residual gas is efficiently photoionized by cosmic background UV radiation. Since the density scale height of the gas within these galaxies is comparable to their size, gas may be tidally removed from them, leaving behind starless residual dark matter clumps. For intermediate-mass systems, such as the dSphs around the Galaxy, star formation can proceed within early cosmic epochs despite the intense background UV flux. Triggering processes such as merger events, collisions, and tidal disturbance can lead to density enhancements, reducing the recombination timescale, allowing gas to cool and star formation to proceed. However, the star formation and gas retention efficiency may vary widely in galaxies with

  9. Central star formation in S0 galaxies

    NASA Technical Reports Server (NTRS)

    Dressel, L. L.; Oconnell, R. W.; Telesco, C. M.

    1990-01-01

    As a class, S0 galaxies are characterized by a lack of resolved bright stars in the disk. However, several lines of evidence support the hypothesis that a high rate of star formation is occurring at the centers of some S0 galaxies. Many of the warmest, most powerful far infrared sources in nearby bright galaxies occur in S0 galaxies. (Dressel 1988, Ap. J., 329, L69). The ratios of radio continuum flux to far infrared flux for these S0 galaxies are comparable to the ratios found for spiral galaxy disks and for star-burst galaxies. Very Large Array (VLA) maps of some of these S0 galaxies show that the radio continuum emission originates in the central few kiloparsecs. It is diffuse or clumpy, unlike the radio sources in active S0 galaxies, which are either extremely compact or have jet-lobe structures. Imaging of some of these galaxies at 10.8 microns shows that the infrared emission is also centrally concentrated. Many of the infrared-powerful S0 galaxies are Markarian galaxies. In only one case in this sample is the powerful ultraviolet emission known to be generated by a Seyfert nucleus. Optical spectra of the central few kiloparsecs of these S0 galaxies generally show deep Balmer absorption lines characteristic of A stars, and H beta emission suggestive of gas heated by O stars. A key question to our understanding of these galaxies is whether they really are S0 galaxies, or at least would have been recognized as S0 galaxies before the episode of central star formation began. Some of Nilson's classifications (used here) have been confirmed by Sandage or de Vaucouleurs and collaborators from better plates; some of the galaxies may be misclassified Sa galaxies (the most frequent hosts of central star formation); some are apparently difficult to classify because of mixed characteristics, faint non-S0 features, or peculiarities. More optical imaging is needed to characterize the host galaxies and to study the evolution of their star-forming regions.

  10. Star Formation Properties of Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; Elmegreen, B. G.

    2003-12-01

    What regulates star formation in gas-rich dwarf galaxies on global and local scales? To address this question, we have conducted a survey of a large sample of reasonably normal, relatively nearby, non-interacting galaxies without spiral arms. The sample includes 94 Im galaxies, 26 Blue Compact Dwarfs, and 20 Sm systems. The data consist of UBV and Hα images for the entire sample, and JHK images, HI maps, CO observations, and HII region spectrophotometry for a sub-sample. The Hα , UBV, and JHK image sets act as probes of star formation on three different times scales: Hα images trace the most recent star formation (≤10 Myrs) through the ionization of natal clouds by the short-lived massive stars; UBV, while a more complicated clue, integrates over the past Gyr; and JHK integrates over the lifetime of the galaxy where even in Im galaxies global JHK colors are characteristic of old stellar populations. These data are being used to determine the nature and distribution of the star formation activity, to characterize the interstellar medium out of which the clouds and stars are forming, and to develop models that describe the important processes that drive star formation in these tiny systems. Here we present the Hα data: integrated star formation rates, azimuthally-averaged Hα surface brightnesses, and extents of star formation, and explore the relationship of the star formation properties to other integrated parameters of the galaxies. One TI CCD used in this work was provided to Lowell by the National Science Foundation and another was on loan from the U. S. Naval Observatory in Flagstaff. The Hα filters were purchased with funds provided by a Small Research Grant from the American Astronomical Society, National Science Foundation grant AST-9022046, and grant 960355 from JPL. Funding for carrying out this work was provided by the Lowell Research Fund and by the National Science Foundation through grants AST-0204922 to DAH and AST-0205097 to BGE.

  11. Star Formation History In Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Chien, Li-Hsin

    2009-01-01

    Interacting and merging galaxies are believed to play an important role in many aspects of galactic evolution. Their violent interactions can trigger starbursts, which lead to formation of young globular clusters. Therefore the ages of these young globular clusters can be interpreted to yield the timing of interaction-triggered events, and thus provide a key to reconstruct the star formation history in merging galaxies. The link between galaxy interaction and star formation is well established, but the triggers of star formation in interacting galaxies are still not understood. To date there are two competing formulas that describe the star formation mechanism--density-dependent and shock-induced rules. Numerical models implementing the two rules predict significantly different star formation histories in merging galaxies. My dissertation combines these two distinct areas of astrophysics, stellar evolution and galactic dynamics, to investigate the star formation history in galaxies at various merging stages. Begin with NGC 4676 as an example, I will briefly describe its model and illustrate the idea of using the ages of clusters to constrain the modeling. The ages of the clusters are derived from spectra that were taken with multi-object spectroscopy on Keck. Using NGC 7252 as a second example, I will present a state of the art dynamical model which predicts NGC7252's star formation history and other properties. I will then show a detailed comparison and analysis between the clusters and the modeling. In the end, I will address this important link as the key to answer the fundamental question of my thesis: what is the trigger of star formation in merging galaxies?

  12. Star formation history in forming dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Berczik, P.; Kravchuk, S. G.

    The processes of formation and evolution of isolated dwarf galaxies over the Hubble timescale is followed by means of SPH techniques. As an initial protogalaxy perturbation we consider an isolated, uniform, solid -- body rotated sphere involved into the Hubble flow and made of dark and baryonic matter in a 10:1 ratio. The simulations are carried out for the set of models having spin parameters lambda in the range from 0.01 to 0.08 and the total mass of dark matter 1011 M_odot . Our model includes gasdynamics, radiative processes, star formation, supernova feedback and simplified chemistry. The application of modified star formation criterion which accounts for chaotic motions and the time lag between initial development of suitable conditions for star formation and star formation itself (Berczik P.P, Kravchuk S.G. 1997, Ap.Sp.Sci.) provides the realistic description of the process of galaxy formation and evolution. Two parameters: total mass and initial angular momentum of the dwarf protogalaxy play the crucial role in its star formation activity. After the 15 Gyr of the evolution the rapidly rotated dwarf galaxies manifest themselves as an extremly gasrich, heavy element deficient objects showing the initial burst of star formation activity in several spatially separated regions. Slowly rotating objects manifest themselves finally as typical evolved dwarf galaxies.

  13. Killing Star Formation in Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    When a dwarf galaxy falls into the halo of a large galaxy like the Milky Way, how is star formation in the dwarf affected? A collaboration led by Andrew Wetzel (California Institute of Technology and Carnegie Observatories) recently set out to answer this question using observations of nearby galaxies and simulations of the infall process. Observed Quenching: Isolated dwarf galaxies tend to be gas-rich and very actively star-forming. In contrast, most dwarf galaxies within 300 kpc of us (the Milky Way's virial radius) contain little or no cold gas, and they're quiescent: there's not much star formation happening. And this isn't just true of the Milky Way; we observe the same difference in the satellite galaxies surrounding Andromeda galaxy. Once a dwarf galaxy has moved into the gravitational realm of a larger galaxy, the satellite's gas vanishes rapidly and its star formation is shut off — but how, and on what timescale? The known dwarf galaxies in the Local Group (out to 1.6 Mpc) are plotted by their distance from their host vs. their stellar mass. Blue stars indicate actively star-forming dwarfs and red circles indicate quiescent ones. Credit: Wetzel et al. 2015. Timescales for Quiescence: To answer these questions, the authors explored the process of galaxy infall using Exploring the Local Volume in Simulations (ELVIS), a suite of cosmological N-body simulations intended to explore the Local Group. They combined the infall times from the simulations with observational knowledge of the fraction of nearby galaxies that are currently quiescent, in order to determine what timescales are required for different processes to deplete the gas in the dwarf galaxies and quench star formation. Based on their results, two types of quenching culprits are at work: gas consumption (where a galaxy simply uses up its immediate gas supply and doesn't have access to more) and gas stripping (where external forces like ram pressure remove gas from the galaxy). These processes

  14. STAR FORMATION IN TWO LUMINOUS SPIRAL GALAXIES

    SciTech Connect

    Hunter, Deidre A.; Ashburn, Allison; Wright, Teresa; Elmegreen, Bruce G.; Rubin, Vera C.; Józsa, Gyula I. G.; Struve, Christian

    2013-10-01

    We examined star formation in two very luminous (M{sub V} = –22 to –23) Sc-type spiral galaxies, NGC 801 and UGC 2885, using ultra-deep Hα images. We combine these Hα images with UBV and Two-Micron All-Sky Survey JHK images and H I maps to explore the star formation characteristics of disk galaxies at high luminosity. Hα traces star formation in these galaxies to 4-6 disk scale lengths, but the lack of detection of Hα further out is likely due to the loss of Lyman continuum photons. Considering gravitational instabilities alone, we find that the gas and stars in the outer regions are marginally stable in an average sense, but considering dissipative gas and radial and azimuthal forcing, the outer regions are marginally unstable to forming spiral arms. Star formation is taking place in spiral arms, which are regions of locally higher gas densities. Furthermore, we have traced smooth exponential stellar disks over four magnitudes in V-band surface brightness and 4-6 disk scale lengths, in spite of a highly variable gravitational instability parameter. Thus, gravitational instability thresholds do not seem relevant to the stellar disk. One possibility for creating an exponential disk is that the molecular cloud densities and star formation rates have exponential profiles and this fact forces the stellar disk to build up such a profile. Another possibility is that the stellar disk is continuously adjusted to an exponential shape regardless of the star formation profile, for example, through global dynamical processes that scatter stars. However, such scattering processes are only known to operate in spiral systems, in which case they cannot explain the same dilemma of smooth exponential disks observed in dwarf irregular galaxies.

  15. High mass star formation in the galaxy

    NASA Technical Reports Server (NTRS)

    Scoville, N. Z.; Good, J. C.

    1987-01-01

    The Galactic distributions of HI, H2, and HII regions are reviewed in order to elucidate the high mass star formation occurring in galactic spiral arms and in active galactic nuclei. Comparison of the large scale distributions of H2 gas and radio HII regions reveals that the rate of formation of OB stars depends on (n sub H2) sup 1.9 where (n sub H2) is the local mean density of H2 averaged over 300 pc scale lengths. In addition the efficiency of high mass star formation is a decreasing function of cloud mass in the range 200,000 to 3,000,000 solar mass. These results suggest that high mass star formation in the galactic disk is initiated by cloud-cloud collisions which are more frequent in the spiral arms due to orbit crowding. Cloud-cloud collisions may also be responsible for high rates of OB star formation in interacting galaxies and galactic nuclei. Based on analysis of the Infrared Astronomy Satellite (IRAS) and CO data for selected GMCs in the Galaxy, the ratio L sub IR/M sub H2 can be as high as 30 solar luminosity/solar mass for GMCs associated with HII regions. The L sub IR/M sub H2 ratios and dust temperature obtained in many of the high luminosity IRAS galaxies are similar to those encountered in galactic GMCs with OB star formation. High mass star formation is therefore a viable explanation for the high infrared luminosity of these galaxies.

  16. Star Formation in the First Galaxies

    NASA Astrophysics Data System (ADS)

    Bromm, V.

    2016-05-01

    The formation of the first stars and galaxies mark the end of the cosmic dark ages, thus transforming the universe from its initial, pristine state into one of increasing complexity. We will review the current understanding, based on numerical simulations, of this crucial transition in early cosmic history. Specifically, the epoch of first light is predicted to be a two-stage process, where predominantly massive Population III stars form out of pure hydrogen-helium gas in small dark-matter minihalos, followed by Population II stars out of already metal-enriched material inside more massive host halos. Observations with upcoming next-generation telescopes promise to test our emerging theoretical picture of star formation in the first galaxies in ever inceasing detail.

  17. Star-forming galaxy models: Blending star formation into TREESPH

    NASA Technical Reports Server (NTRS)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  18. Quenching star formation in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Taranu, Dan S.; Hudson, Michael J.; Balogh, Michael L.; Smith, Russell J.; Power, Chris; Oman, Kyle A.; Krane, Brad

    2014-05-01

    In order to understand the processes that quench star formation in cluster galaxies, we construct a library of subhalo orbits drawn from Λ cold dark matter cosmological N-body simulations of four rich clusters. We combine these orbits with models of star formation followed by environmental quenching, comparing model predictions with observed bulge and disc colours and stellar absorption line-strength indices of luminous cluster galaxies. Models in which the bulge stellar populations depend only on the galaxy subhalo mass while the disc is quenched upon infall are acceptable fits to the data. An exponential disc quenching time-scale of 3-3.5 Gyr is preferred. Quenching in lower mass groups prior to infall (`pre-processing') provides better fits, with similar quenching time-scales. Models with short (≲1 Gyr) quenching time-scales yield excessively steep cluster-centric gradients in disc colours and Balmer line indices, even if quenching is delayed for several Gyr. The data slightly prefer models where quenching occurs only for galaxies falling within ˜0.5r200. These results imply that the environments of rich clusters must impact star formation rates of infalling galaxies on relatively long time-scales, indicative of gentler quenching mechanisms such as slow `strangulation' over more rapid ram-pressure stripping.

  19. Hierarchical Star Formation in Nearby LEGUS Galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Adamo, Angela; Aloisi, Alessandra; Andrews, Jennifer; Annibali, Francesca; Bright, Stacey N.; Calzetti, Daniela; Cignoni, Michele; Evans, Aaron S.; Gallagher, John S., III; Gouliermis, Dimitrios A.; Grebel, Eva K.; Hunter, Deidre A.; Johnson, Kelsey; Kim, Hwihyun; Lee, Janice; Sabbi, Elena; Smith, Linda J.; Thilker, David; Tosi, Monica; Ubeda, Leonardo

    2014-05-01

    Hierarchical structure in ultraviolet images of 12 late-type LEGUS galaxies is studied by determining the numbers and fluxes of nested regions as a function of size from ~1 to ~200 pc, and the number as a function of flux. Two starburst dwarfs, NGC 1705 and NGC 5253, have steeper number-size and flux-size distributions than the others, indicating high fractions of the projected areas filled with star formation. Nine subregions in seven galaxies have similarly steep number-size slopes, even when the whole galaxies have shallower slopes. The results suggest that hierarchically structured star-forming regions several hundred parsecs or larger represent common unit structures. Small galaxies dominated by only a few of these units tend to be starbursts. The self-similarity of young stellar structures down to parsec scales suggests that star clusters form in the densest parts of a turbulent medium that also forms loose stellar groupings on larger scales. The presence of super star clusters in two of our starburst dwarfs would follow from the observed structure if cloud and stellar subregions more readily coalesce when self-gravity in the unit cell contributes more to the total gravitational potential.

  20. HIERARCHICAL STAR FORMATION IN NEARBY LEGUS GALAXIES

    SciTech Connect

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Adamo, Angela; Gouliermis, Dimitrios A.; Aloisi, Alessandra; Bright, Stacey N.; Cignoni, Michele; Lee, Janice; Sabbi, Elena; Andrews, Jennifer; Calzetti, Daniela; Annibali, Francesca; Evans, Aaron S.; Johnson, Kelsey; Gallagher III, John S.; Grebel, Eva K.; Hunter, Deidre A.; Kim, Hwihyun; Smith, Linda J.; Thilker, David; and others

    2014-05-20

    Hierarchical structure in ultraviolet images of 12 late-type LEGUS galaxies is studied by determining the numbers and fluxes of nested regions as a function of size from ∼1 to ∼200 pc, and the number as a function of flux. Two starburst dwarfs, NGC 1705 and NGC 5253, have steeper number-size and flux-size distributions than the others, indicating high fractions of the projected areas filled with star formation. Nine subregions in seven galaxies have similarly steep number-size slopes, even when the whole galaxies have shallower slopes. The results suggest that hierarchically structured star-forming regions several hundred parsecs or larger represent common unit structures. Small galaxies dominated by only a few of these units tend to be starbursts. The self-similarity of young stellar structures down to parsec scales suggests that star clusters form in the densest parts of a turbulent medium that also forms loose stellar groupings on larger scales. The presence of super star clusters in two of our starburst dwarfs would follow from the observed structure if cloud and stellar subregions more readily coalesce when self-gravity in the unit cell contributes more to the total gravitational potential.

  1. Galaxies: Interactions and Induced Star Formation

    NASA Astrophysics Data System (ADS)

    Kennicutt, R. C., Jr.; Schweizer, F.; Barnes, J. E.; Friedli, D.; Martinet, L.; Pfenniger, D.

    This volume contains the written version of the lectures given at the 26th course of the renowned Saas-Fee series. The book represents a comprehensive and up-to-date review of the field of galaxy interactions. Nowadays, galaxies are no longer seen as immutable objects: they evolve, interact, merge, blaze, and reshape. Dynamical forces can induce powerful stellar activity able to transform the matter composition and morphology of galaxies. With the aim at better understanding and explaining these remarkable and fascinating phenomena, three outstanding lecturers covered the following topics: ``Induced Star Formation" by Robert C. Kennicutt, ``Observational Evidence for Interactions and Mergers" by François Schweizer, and ``Dynamics of Galaxy Interactions" by Joshua E. Barnes. Though the book is intended for graduate students and young post-docs in astrophysics, it contains more advanced and original material, as well as historical perspectives which certainly will be of great interest also for experts and astronomy teachers.

  2. Turbulence and Star Formation in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hollyday, Gigja; Hunter, Deidre Ann; Little Things Team

    2015-01-01

    We are interested in understanding the nature and role of turbulence in the interstellar medium of dwarf irregular galaxies. Turbulence, resulting from a variety of processes, is a potential source for cloud formation, and thus star formation. We have undertaken an indirect analysis of turbulence via the third (skewness) and fourth (kurtosis) moments of the distribution of atomic hydrogen gas densities using the LITTLE THINGS data for a 40-count sample of nearby (<10.3 Mpc) dwarf galaxies. We followed the formulism used by Burkhart et al. (2010) in a study of the SMC. We found that there is evidence of turbulence in dwarf galaxies at a level comparable to that found in the SMC, but we have found no correlation between integrated star formation rates and integrated kurtosis values nor a clear correlation between kurtosis as a function of radius with gas surface density and star formation profiles. We are grateful for a summer internship provided by the Research Experiences for Undergraduates program at Northern Arizona University, run by Dr. Kathy Eastwood and Dr. David Trilling and funded by the National Science Foundation through grant AST-1004107.

  3. Reconstructing Star Formation Histories of Galaxies

    NASA Astrophysics Data System (ADS)

    Fritze-v. Alvensleben, U.; Lilly, T.

    2007-12-01

    We present a methodological study to find out how far back and to what precision star formation histories of galaxies can be reconstructed from CMDs, from integrated spectra and Lick indices, and from integrated multi-band photometry. Our evolutionary synthesis models GALEV allow to describe the evolution of galaxies in terms of all three approaches and we have assumed typical observational uncertainties for each of them and then investigated to what extent and accuracy different star formation histories can be discriminated. For a field in the LMC bar region with both a deep CMD from HST observations and a trailing slit spectrum across exactly the same field of view we could test our modelling results against real data.

  4. A GALAXY BLAZES WITH STAR FORMATION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Most galaxies form new stars at a fairly slow rate, but members of a rare class known as 'starburst' galaxies blaze with extremely active star formation. Scientists using NASA's Hubble Space Telescope are perfecting a technique to determine the history of starburst activity in galaxies by using the colors of star clusters. Measuring the clusters' colors yields information about stellar temperatures. Since young stars are blue, and older stars redder, the colors can be related to the ages, somewhat similar to counting the rings in a fallen tree trunk in order to determine the tree's age. The galaxy NGC 3310 is forming clusters of new stars at a prodigious rate. Astronomer Gerhardt Meurer of The Johns Hopkins University leads a team of collaborators who are studying several starburst galaxies, including NGC 3310, which is showcased in this month's Hubble Heritage image. There are several hundred star clusters in NGC 3310, visible in the Heritage image as the bright blue diffuse objects that trace the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young, luminous stars can be seen throughout the galaxy. Once formed, the star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show that they have ages ranging from about one million up to more than one hundred million years. This suggests that the starburst 'turned on' over 100 million years ago. It may have been triggered when a companion galaxy collided with NGC 3310. These observations may change astronomers' view of starbursts. Starbursts were once thought to be brief episodes, resulting from catastrophic events like a galactic collision. However, the wide range of cluster ages in NGC 3310 suggests that the starbursting can continue for an extended interval, once

  5. Hierarchical Star Formation in LEGUS Galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra M.; Elmegreen, Bruce

    2014-06-01

    Star formation generally follows a hierarchical distribution in galaxies from kpc scales in giant star complexes down to sub-pc scales in embedded clusters. This hierarchy corresponds to a power law distribution function for the number of star forming regions as a function of size or luminosity. Using the Legacy ExtraGalactic Ultraviolet Survey (LEGUS), we examine six galaxies, NGC 1566, NGC 1705, NGC 2500, NGC 5253, NGC 5477, and IC 4247, which span types from grand design and flocculent spirals to irregulars and starburst irregulars. Power law size and luminosity distributions were measured from Gaussian-blurred images in the NUV and UV using SExtractor. Slopes ranged from -1 to -1.8, with the steepest slopes corresponding to the starburst galaxies. The slopes did not vary from the NUV to the UV. The fraction of light contained within the largest scales ranged from 85 to 95 percent, independent of galaxy type. We acknowledge support from grant HST-GO-13364.

  6. Star formation and substructure in galaxy clusters

    SciTech Connect

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-03-10

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M{sub r}{sup 0.1}<−20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2σ, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  7. Star Formation from Galaxies to Globules

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2002-09-01

    result from turbulence compression in a self-gravitating gas, in which case their mass fraction can be estimated from the density distribution function that results from turbulence. For Wada & Norman's lognormal function that arises in whole-galaxy simulations, the theoretically predicted mass fraction of star-forming material is the same as that observed directly from the galactic Schmidt law and is ~10-4. The unified view explains how independent star formation processes can combine into the empirical laws while preserving the fractal nature of interstellar gas and the pressurized, wind-swept appearance of most small-scale clouds. Likely variations in the relative roles of these processes from region to region should not affect the large-scale average star formation rate. Self-regulation by spiral instabilities and star formation ensures that most regions are in a marginally stable state in which turbulence limits the mass available for star formation and the overall rate is independent of the nature of the energy sources. In this sense, star formation is saturated to its largest possible value given the fractal nature of the interstellar medium. Invited paper, based on the Heineman Prize lecture presented at the 199th meeting of the American Astronomical Society in 2002 January.

  8. Star formation enhancement characteristics in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Zaragoza-Cardiel, J.; Beckman, J. E.; Font, J.; Camps-Fariña, A.; García-Lorenzo, B.; Erroz-Ferrer, S.

    2015-02-01

    We have observed 12 interacting galaxies using the Fabry-Perot interferometer GHαFaS (Galaxy Hα Fabry-Perot system) on the 4.2m William Herschel Telescope (La Palma). We have extracted the physical properties (sizes, Hα luminosity and velocity dispersion) of 236 HII regions for the full sample of interacting galaxies. We have derived the physical properties of 664 HII regions for a sample of 28 isolated galaxies observed with the same instrument in order to compare both populations of HII regions, finding that there are brighter and denser star forming regions in the interacting galaxies compared with the isolated galaxies sample.

  9. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses <10(sup 7.7) solar mass and Hi line widths <80 kilometers per second. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  10. Star Formation in Dwarf Galaxies: Life in a Rough Neighborhood

    SciTech Connect

    Murray, S

    2003-10-16

    Star formation within dwarf galaxies is governed by several factors. Many of these factors are external, including ram-pressure stripping, tidal stripping, and heating by external UV radiation. The latter, in particular, may prevent star formation in the smallest systems. Internal factors include negative feedback in the form of UV radiation, winds and supernovae from massive stars. These act to reduce the star formation efficiency within dwarf systems, which may, in turn, solve several theoretical and observational problems associated with galaxy formation. In this contribution, we discuss our recent work being done to examine the importance of the many factors in the evolution of dwarf galaxies.

  11. Star Formation and Gas Accretion in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Yim, Kijeong; van der Hulst, J. M.

    2016-08-01

    In order to quantify the relationship between gas accretion and star formation, we analyse a sample of 29 nearby galaxies from the WHISP survey which contains galaxies with and without evidence for recent gas accretion. We compare combined radial profiles of FUV (GALEX) and IR 24 μm (Spitzer) characterizing distributions of recent star formation with radial profiles of CO (IRAM, BIMA, or CARMA) and H I (WSRT) tracing molecular and atomic gas contents to examine star formation efficiencies in symmetric (quiescent), asymmetric (accreting), and interacting (tidally disturbed) galaxies. In addition, we investigate the relationship between star formation rate and H I in the outer discs for the three groups of galaxies. We confirm the general relationship between gas surface density and star formation surface density, but do not find a significant difference between the three groups of galaxies.

  12. Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik

    2016-01-01

    We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.

  13. TESTING HOMOGENEITY WITH GALAXY STAR FORMATION HISTORIES

    SciTech Connect

    Hoyle, Ben; Jimenez, Raul; Tojeiro, Rita; Maartens, Roy; Heavens, Alan; Clarkson, Chris

    2013-01-01

    Observationally confirming spatial homogeneity on sufficiently large cosmological scales is of importance to test one of the underpinning assumptions of cosmology, and is also imperative for correctly interpreting dark energy. A challenging aspect of this is that homogeneity must be probed inside our past light cone, while observations take place on the light cone. The star formation history (SFH) in the galaxy fossil record provides a novel way to do this. We calculate the SFH of stacked luminous red galaxy (LRG) spectra obtained from the Sloan Digital Sky Survey. We divide the LRG sample into 12 equal-area contiguous sky patches and 10 redshift slices (0.2 < z < 0.5), which correspond to 120 blocks of volume {approx}0.04 Gpc{sup 3}. Using the SFH in a time period that samples the history of the universe between look-back times 11.5 and 13.4 Gyr as a proxy for homogeneity, we calculate the posterior distribution for the excess large-scale variance due to inhomogeneity, and find that the most likely solution is no extra variance at all. At 95% credibility, there is no evidence of deviations larger than 5.8%.

  14. Gas, Stars, and Star Formation in ALFALFA Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-06-01

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses <107.7 M ⊙ and H I line widths <80 km s-1. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M *) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M * obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M * <~ 108 M ⊙ is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M * than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones. Based on observations made with the Arecibo Observatory and the NASA Galaxy Evolution Explorer (GALEX). The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Méndez-Universidad Metropolitana and

  15. Low surface brightness galaxies and tidally triggered star formation

    NASA Technical Reports Server (NTRS)

    Zaritsky, Dennis; Lorrimer, Stephen J.

    1993-01-01

    Counts of companions to low surface brightness (LSB) galaxies are presented and these are compared to counts of companions to normal galaxies obtained with the same techniques and criteria. Our results are consistent with LSB's having no clustered companions and support the hypothesis that LSB galaxies have low star-formation rates because they lack external tidal triggering.

  16. Molecular Gas and Star Formation in Void Galaxies

    NASA Astrophysics Data System (ADS)

    Das, M.; Saito, T.; Iono, D.; Honey, M.; Ramya, S.

    2016-10-01

    We present the detection of molecular gas using CO(1-0) line emission and followup Hα imaging observations of galaxies located in nearby voids. The CO(1-0) observations were done using the 45m telescope of the Nobeyama Radio Observatory (NRO) and the optical observations were done using the Himalayan Chandra Telescope (HCT). Although void galaxies lie in the most underdense parts of our universe, a significant fraction of them are gas rich, spiral galaxies that show signatures of ongoing star formation. Not much is known about their cold gas content or star formation properties. In this study we searched for molecular gas in five void galaxies using the NRO. The galaxies were selected based on their relatively higher IRAS fluxes or Hα line luminosities. CO(1-0) emission was detected in four galaxies and the derived molecular gas masses lie between (1 - 8)×109 M⊙. The Hα imaging observations of three galaxies detected in CO emission indicates ongoing star formation and the derived star formation rates vary between from 0.2 - 1.0 M7odot; yr -1, which is similar to that observed in local galaxies. Our study shows that although void galaxies reside in underdense regions, their disks may contain molecular gas and have star formation rates similar to galaxies in denser environments.

  17. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    SciTech Connect

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-08-20

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  18. The Star Formation Properties of Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Moorman, Crystal; Vogeley, Michael S.

    2016-01-01

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on time scales of 10 Myr and 100 Myr, using Ha emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable S/N HI detections from ALFALFA. For the HI detected sample, SSFRs are similar regardless of large-scale environment. Investigating only the HI detected dwarf galaxies reveals a trend towards higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit HI mass, known as the star formation efficiency (SFE) of a galaxy, as a function of environment. For the overall HI detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies again reveals a trend towards higher SFEs in voids. These results suggest that void environments provide a nurturing environment for dwarf galaxy evolution.

  19. PRECIPITATION-REGULATED STAR FORMATION IN GALAXIES

    SciTech Connect

    Voit, G. Mark; O’Shea, Brian W.; Donahue, Megan; Bryan, Greg L.

    2015-07-20

    Galaxy growth depends critically on the interplay between radiative cooling of cosmic gas and the resulting energetic feedback that cooling triggers. This interplay has proven exceedingly difficult to model, even with large supercomputer simulations, because of its complexity. Nevertheless, real galaxies are observed to obey simple scaling relations among their primary observable characteristics. Here we show that a generic emergent property of the interplay between cooling and feedback can explain the observed scaling relationships between a galaxy's stellar mass, its total mass, and its chemical enrichment level, as well as the relationship between the average orbital velocity of its stars and the mass of its central black hole. These relationships naturally result from any feedback mechanism that strongly heats a galaxy's circumgalactic gas in response to precipitation of colder clouds out of that gas, because feedback then suspends the gas in a marginally precipitating state.

  20. The Void Galaxy Survey: Morphology and Star Formation Properties of Void Galaxies

    NASA Astrophysics Data System (ADS)

    Beygu, Burcu; Kreckel, Kathryn; van der Hulst, Thijs; Peletier, Reynier; Jarrett, Tom; van de Weygaert, Rien; van Gorkom, Jacqueline H.; Aragón-Calvo, Miguel

    2016-10-01

    We present the structural and star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Our aim is to study in detail the physical properties of these void galaxies and study the effect of the void environment on galaxy properties. We use Spitzer 3.6μ and B-band imaging to study the morphology and color of the VGS galaxies. For their star formation properties, we use Hα and GALEX near-UV imaging. We compare our results to a range of galaxies of different morphologies in higher density environments. We find that the VGS galaxies are in general disk dominated and star forming galaxies. Their star formation rates are, however, often less than 1 M⊙ yr-1. There are two early-type galaxies in our sample as well. In re versus MB parameter space, VGS galaxies occupy the same space as dwarf irregulars and spirals.

  1. Galaxies on FIRE: Stellar Feedback Explains Inefficient Star Formation

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2014-06-01

    Many of the most fundamental unsolved questions in star and galaxy formation revolve around star formation and "feedback" from both massive stars and accretion onto super-massive black holes. I'll present new simulations which attempt to realistically model the diverse physics of the interstellar medium, star formation, and feedback from stellar radiation pressure, supernovae, stellar winds, and photo-ionization. These mechanisms lead to 'self-regulated' galaxy and star formation, in which global correlations such as the Schmidt-Kennicutt law and the global inefficiency of star formation -- the stellar mass function -- emerge naturally. Within galaxies, feedback regulates the structure of the interstellar medium, and many observed properties of the ISM, star formation, and galaxies can be understood as a fundamental consequence of super-sonic turbulence in a rapidly cooling, self-gravitating medium. But feedback also produces galactic super-winds that can dramatically alter the cosmological evolution of galaxies, their behavior in galaxy mergers, and structure of the inter-galactic medium: these winds depend non-linearly on multiple feedback mechanisms in a way that explains why they have been so difficult to model in previous "sub-grid" approaches.

  2. Star formation rates and abundance gradients in disk galaxies

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, Joseph

    1989-01-01

    Analytic models for the evolution of disk galaxies are presented, placing special emphasis on the radial properties. These models are straightforward extensions of the original Schmidt (1959, 1963) models, with a dependence of star formation rate on gas density. The models provide successful descriptions of several measures of galactic disk evolution, including solar neighborhood chemical evolution, the presence and amplitude of metallicity and color gradients in disk galaxies, and the global rates of star formation in disk galaxies, and aid in the understanding of the apparent connection between young and old stellar populations in spiral galaxies.

  3. Recent Galaxy Mergers and Residual Star Formation of Red Sequence Galaxies in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Sheen, Yun-Kyeong; Yi, Sukyoung K.; Ree, Chang H.; Jaffé, Yara; Demarco, Ricardo; Treister, Ezequiel

    2016-08-01

    This study explored the Galaxy Evolution Explorer ultraviolet (UV) properties of optical red sequence galaxies in four rich Abell clusters at z≤slant 0.1. In particular, we tried to find a hint of merger-induced recent star formation (RSF) in red sequence galaxies. Using the NUV - r\\prime colors of the galaxies, RSF fractions were derived based on various criteria for post-merger galaxies and normal galaxies. Following k-correction, about 36% of the post-merger galaxies were classified as RSF galaxies with a conservative criterion (NUV - r\\prime ≤slant 5), and that number was doubled (˜72%) when using a generous criterion (NUV - r\\prime ≤slant 5.4). The trend was the same when we restricted the sample to galaxies within 0.5 × R 200. Post-merger galaxies with strong UV emission showed more violent, asymmetric features in the deep optical images. The RSF fractions did not show any trend along the clustocentric distance within R 200. We performed a Dressler–Shectman test to check whether the RSF galaxies had any correlation with the substructures in the galaxy clusters. Within R 200 of each cluster, the RSF galaxies did not appear to be preferentially related to the clusters’ substructures. Our results suggested that only 30% of RSF red sequence galaxies show morphological hints of recent galaxy mergers. This implies that internal processes (e.g., stellar mass loss or hot gas cooling) for the supply of cold gas to early-type galaxies may play a significant role in the residual star formation of early-type galaxies at a recent epoch.

  4. Recent Galaxy Mergers and Residual Star Formation of Red Sequence Galaxies in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Sheen, Yun-Kyeong; Yi, Sukyoung K.; Ree, Chang H.; Jaffé, Yara; Demarco, Ricardo; Treister, Ezequiel

    2016-08-01

    This study explored the Galaxy Evolution Explorer ultraviolet (UV) properties of optical red sequence galaxies in four rich Abell clusters at z≤slant 0.1. In particular, we tried to find a hint of merger-induced recent star formation (RSF) in red sequence galaxies. Using the NUV - r\\prime colors of the galaxies, RSF fractions were derived based on various criteria for post-merger galaxies and normal galaxies. Following k-correction, about 36% of the post-merger galaxies were classified as RSF galaxies with a conservative criterion (NUV - r\\prime ≤slant 5), and that number was doubled (˜72%) when using a generous criterion (NUV - r\\prime ≤slant 5.4). The trend was the same when we restricted the sample to galaxies within 0.5 × R 200. Post-merger galaxies with strong UV emission showed more violent, asymmetric features in the deep optical images. The RSF fractions did not show any trend along the clustocentric distance within R 200. We performed a Dressler-Shectman test to check whether the RSF galaxies had any correlation with the substructures in the galaxy clusters. Within R 200 of each cluster, the RSF galaxies did not appear to be preferentially related to the clusters’ substructures. Our results suggested that only 30% of RSF red sequence galaxies show morphological hints of recent galaxy mergers. This implies that internal processes (e.g., stellar mass loss or hot gas cooling) for the supply of cold gas to early-type galaxies may play a significant role in the residual star formation of early-type galaxies at a recent epoch.

  5. Star Formation History of the Fornax Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Del Pino, A.; Aparicio, A.; Gallart, C.; Hidalgo, S.

    2011-07-01

    We present color-magnitude diagrams (CMD) reaching the oldest main sequence turn offs for three fields in the Fornax dwarf spheroidal galaxy, obtained with FORS1 at the VLT. One of them is situated at the center of the galaxy while the other two are located at a distance of 10' form the center. We determine the full star formation history (SFH) of the central field, extending to the first star formation events.

  6. A WISE VIEW OF STAR FORMATION IN LOCAL GALAXY CLUSTERS

    SciTech Connect

    Chung, Sun Mi; Gonzalez, Anthony H.; Eisenhardt, Peter R.; Stern, Daniel; Stanford, Spencer A.; Brodwin, Mark; Jarrett, Thomas

    2011-12-10

    We present results from a systematic study of star formation in local galaxy clusters using 22 {mu}m data from the Wide-field Infrared Survey Explorer (WISE). The 69 systems in our sample are drawn from the Cluster Infall Regions Survey, and all have robust mass determinations. The all-sky WISE data enable us to quantify the amount of star formation, as traced by 22 {mu}m, as a function of radius well beyond R{sub 200}, and investigate the dependence of total star formation rate upon cluster mass. We find that the fraction of star-forming galaxies increases with cluster radius but remains below the field value even at 3R{sub 200}. We also find that there is no strong correlation between the mass-normalized total specific star formation rate and cluster mass, indicating that the mass of the host cluster does not strongly influence the total star formation rate of cluster members.

  7. Star Formation Histories of Dwarf Galaxies: Keys to Galaxy Formation and Dark Matter Structure

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael

    2014-10-01

    We propose to perform a suite of hydrodynamical simulations in order to understand the connection between dwarf galaxy star formation histories, stellar content, and central dark matter densities. This will leverage one of HST's unique and enduring scientific contributions, deep and uniform photometry of nearby dwarf galaxies that enables reconstructions of their ancient {z 6-10} star formation histories, to shed light on some of the main problems in galaxy formation and cosmology.Analysis of HST observations has definitively shown that dwarfs exhibit a surprising variety of star formation histories: some dwarfs host nearly purely ancient populations, while others have formed 90% of their stars after redshift 1. This diversity is unexpected in current theoretical models, which predict primarily old stellar populations in low-mass objects. The topic of star formation histories of dwarfs has also received significant attention recently in the context of possible small-scale problems of the LCDM model: if episodic bursts of star formation inject energy into dwarfs' dark matter halos, it may provide a natural explanation of the observed low densities of dwarf galaxies within LCDM.Our simulations will adopt physically-motivated, explicit feedback prescriptions that are fixed by our knowledge of stellar evolution. We will choose halos having diverse mass assembly histories within a narrow range of mass and compare their star formation histories to HST observations of nearby isolated dwarf galaxies, thereby testing fundamental aspects of galaxy formation modeling and dark matter astrophysics. Data from our simulations will be publicly released via a dedicated website.

  8. New View of Distant Galaxy Reveals Furious Star Formation

    NASA Astrophysics Data System (ADS)

    2007-12-01

    A furious rate of star formation discovered in a distant galaxy shows that galaxies in the early Universe developed either much faster or in a different way from what astronomers have thought. "This galaxy is forming stars at an incredible rate," said Wei-Hao Wang, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The galaxy, Wang said, is forming the equivalent of 4,000 Suns a year. This is a thousand times more violent than our own Milky Way Galaxy. Location of Distant Galaxy Visible-light, left (from HST) and Infrared, right, (from Spitzer) Images: Circles indicate location of GOODS 850-5. CREDIT: Wang et al., STScI, Spitzer, NASA, NRAO/AUI/NSF Click on image for high-resolution file (1 MB) The galaxy, called GOODS 850-5, is 12 billion light-years from Earth, and thus is seen as it was only about 1.5 billion years after the Big Bang. Wang and his colleagues observed it using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) on Mauna Kea in Hawaii. Young stars in the galaxy were enshrouded in dust that was heated by the stars and radiated infrared light strongly. Because of the galaxy's great distance from Earth, the infrared light waves have been stretched out to submillimeter-length radio waves, which are seen by the SMA. The waves were stretched or "redshifted," as astronomers say, by the ongoing expansion of the Universe. "This evidence for prolific star formation is hidden by the dust from visible-light telescopes," Wang explained. The dust, in turn, was formed from heavy elements that had to be built up in the cores of earlier stars. This indicates, Wang said, that significant numbers of stars already had formed, then spewed those heavy elements into interstellar space through supernova explosions and stellar winds. "Seeing the radiation from this heated dust revealed star formation we could have found in no other way," Wang said. Similar dusty galaxies in the early Universe may contain most of the

  9. Connecting Galaxies, Halos, and Star Formation Rates Across Cosmic Time

    SciTech Connect

    Conroy, Charlie; Wechsler, Risa H.

    2008-06-02

    A simple, observationally-motivated model is presented for understanding how halo masses, galaxy stellar masses, and star formation rates are related, and how these relations evolve with time. The relation between halo mass and galaxy stellar mass is determined by matching the observed spatial abundance of galaxies to the expected spatial abundance of halos at multiple epochs--i.e. more massive galaxies are assigned to more massive halos at each epoch. This 'abundance matching' technique has been shown previously to reproduce the observed luminosity- and scale-dependence of galaxy clustering over a range of epochs. Halos at different epochs are connected by halo mass accretion histories estimated from N-body simulations. The halo-galaxy connection at fixed epochs in conjunction with the connection between halos across time provides a connection between observed galaxies across time. With approximations for the impact of merging and accretion on the growth of galaxies, one can then directly infer the star formation histories of galaxies as a function of stellar and halo mass. This model is tuned to match both the observed evolution of the stellar mass function and the normalization of the observed star formation rate--stellar mass relation to z {approx} 1. The data demands, for example, that the star formation rate density is dominated by galaxies with M{sub star} {approx} 10{sup 10.0-10.5} M{sub {circle_dot}} from 0 < z < 1, and that such galaxies over these epochs reside in halos with M{sub vir} {approx} 10{sup 11.5-12.5} M{sub {circle_dot}}. The star formation rate--halo mass relation is approximately Gaussian over the range 0 < z < 1 with a mildly evolving mean and normalization. This model is then used to shed light on a number of issues, including (1) a clarification of 'downsizing', (2) the lack of a sharp characteristic halo mass at which star formation is truncated, and (3) the dominance of star formation over merging to the stellar build-up of galaxies

  10. Inefficient star formation in extremely metal poor galaxies.

    PubMed

    Shi, Yong; Armus, Lee; Helou, George; Stierwalt, Sabrina; Gao, Yu; Wang, Junzhi; Zhang, Zhi-Yu; Gu, Qiusheng

    2014-10-16

    The first galaxies contain stars born out of gas with few or no 'metals' (that is, elements heavier than helium). The lack of metals is expected to inhibit efficient gas cooling and star formation, but this effect has yet to be observed in galaxies with an oxygen abundance (relative to hydrogen) below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon monoxide emission is unreliable as a tracer of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially resolved infrared observations of two galaxies with oxygen abundances below ten per cent of the solar value, and show that stars formed very inefficiently in seven star-forming clumps in these galaxies. The efficiencies are less than a tenth of those found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.

  11. Inefficient star formation in extremely metal poor galaxies.

    PubMed

    Shi, Yong; Armus, Lee; Helou, George; Stierwalt, Sabrina; Gao, Yu; Wang, Junzhi; Zhang, Zhi-Yu; Gu, Qiusheng

    2014-10-16

    The first galaxies contain stars born out of gas with few or no 'metals' (that is, elements heavier than helium). The lack of metals is expected to inhibit efficient gas cooling and star formation, but this effect has yet to be observed in galaxies with an oxygen abundance (relative to hydrogen) below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon monoxide emission is unreliable as a tracer of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially resolved infrared observations of two galaxies with oxygen abundances below ten per cent of the solar value, and show that stars formed very inefficiently in seven star-forming clumps in these galaxies. The efficiencies are less than a tenth of those found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe. PMID:25318522

  12. Testing the THINGS Star Formation Law in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Meurer, Gerhardt R.; Zheng, Z.; Zwaan, M.; Knezek, P.

    2010-01-01

    The star formation law (SFL) is an essential tool for understanding galaxy evolution. However, the star formation process is not well understood and the broadly used Schmidt-Kennicutt SFL is based on a biased sample of bright nearby spirals. Here we derive a star formation recipe based on the THINGS SFL of Leroy et. al (2008) and Bigiel et al.(2009), which can predict the star formation rate using the rotation curve and stellar mass profile as an input. We use optical and radio rotation curves combined with optical broad band images of HI selected galaxies to make predicted star formation profiles using this prescription which are then compared to our UV and H-alpha images from the SINGG and SUNGG surveys. We look at how the predictions compare to the observations in the two different tracers especially in the outer disks which were not accounted for when the THINGS SFL was derived.

  13. Turbulence and Star Formation in a Sample of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Maier, Erin; Chien, Li-Hsin; Hunter, Deidre A.

    2016-11-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

  14. Sites of star formation in galaxies: star complexes and spiral arms.

    NASA Astrophysics Data System (ADS)

    Efremov, Yu. N.

    This book describes observational data concerning the regions in our Galaxy and other ones where star formation is going on - from young star clusters and associations to the spiral arms. The synthesis of these data is carried out. The author concludes that not only high-luminosity stars, but also star clusters and associations are forming together in vast complexes. These complexes are primary, fundamental entities of star formation. Contents: 1. Introduction: Star groupings and gaseous clouds. 2. The scale of distances. 3. The scale of ages. 4. Young stellar groupings in the Galaxy. 5. Clusters, associations, and complexes in irregular galaxies. 6. Young star groupings in M31 and M33. 7. The problem of spiral structure. 8. The structure of spiral arms in the Andromeda galaxy. 9. The spiral arms of the Galaxy. 10. The origin of clusters and associations. 11. The nature of star complexes. 12. Star complexes and spiral structure.

  15. Star formation in quasar and active galaxy environments

    NASA Astrophysics Data System (ADS)

    Coldwell, Georgina V.; Lambas, Diego G.

    2003-09-01

    We use the 2dF public 100 K data release of galaxies and samples of quasars and active galaxies taken from the Véron-Cetty and Véron catalogue to study the nature of galaxies in the surroundings of active objects with redshifts in the range 0.1 < z < 0.2. We explore the distribution of neighbour 2dF galaxy spectral types, η, at different projected distances from the quasars and active galaxies with radial velocity difference ΔV= 500 km s-1. For comparison, we perform a similar analysis on the environment of typical galaxies in the 2dF catalogue, a sample of bright early-type galaxies, i.e. η < -1.4 and MbJ < -21, and also on a sample of 2dF galaxy groups. We find a higher relative fraction of emission-line galaxies, i.e. with 2dF spectral type indices η >3.5, in the vicinity of quasars and active galaxies compared to that in the neighbourhood of typical galaxies, bright early types and groups. This effect extends up to projected distance rp~ 1 h-1 Mpc for active galaxies and rp~ 3 h-1 Mpc for quasars. We also find a tendency for companion galaxies of quasars to be brighter than the neighbours of active galaxies within rp~ 3 h-1 Mpc. We estimate average star-formation rates for objects at different distances from quasars, active galaxies, galaxies and groups. We find a significantly higher star-formation activity within ~2.0 h-1 Mpc from quasars with respect to typical galaxies, which reinforces the idea that star formation is enhanced in the neighbourhood of quasars. Our tests with the group environment provide evidence against quasars being associated with groups. Also, our analysis of the neighbours of bright early types shows that although these galaxies are typical hosts of quasars, their companion galaxies are significantly different in terms of the star-formation activity.

  16. ORIGIN OF THE GALAXY MASS-METALLICITY-STAR FORMATION RELATION

    SciTech Connect

    Harwit, Martin; Brisbin, Drew

    2015-02-20

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 ≤ z ≤ 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 10{sup 9} to 6 × 10{sup 10} M {sub ☉}. This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established.

  17. Bursts of star formation in computer simulations of dwarf galaxies

    SciTech Connect

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing bursts rather than continuous, nonbursting low-level star formation activity.

  18. ON THE TIMESCALE FOR STAR FORMATION IN GALAXIES

    SciTech Connect

    Wong, Tony

    2009-11-01

    The timescale for star formation, a measure of how quickly neutral gas is being converted to stars, is considerably longer than typical dynamical timescales associated with a galactic disk. For purposes of modeling galaxy evolution, however, it would be extremely attractive if the star formation timescale was proportional to an easily derived dynamical timescale. We compare estimates of the star formation timescale within nearby galaxies, based on the work of Leroy et al. and existing BIMA Survey of Nearby Galaxies CO data, with three simple forms of the dynamical time: the orbital time; the free-fall time at the midplane density; and the disk Jeans time (the growth time for gravitational instabilities in a disk). When taking into account the gravity of the stellar disk in an approximate way, all three timescales show correlations with the star formation timescale, though none of the correlations can be accurately described as linear. Systematic errors in estimating appropriate gas masses and the stellar velocity dispersion may obscure an underlying correlation, but we focus instead on a model where the timescale for H{sub 2} formation from H I is decoupled from the timescale for star formation from H{sub 2}. The Jeans time correlates well with the first of these timescales, but the relationship is still non-linear and requires a characteristic giant molecular cloud lifetime that increases toward galaxy centers.

  19. Star formation bimodality in early-type galaxies

    SciTech Connect

    Amblard, A.; Riguccini, L.; Temi, P.; Im, S.; Fanelli, M.; Serra, P.

    2014-03-10

    We compute the properties of a sample of 221 local, early-type galaxies with a spectral energy distribution (SED) modeling software, CIGALEMC. Concentrating on the star-forming (SF) activity and dust contents, we derive parameters such as the specific star formation rate (sSFR), the dust luminosity, dust mass, and temperature. In our sample, 52% is composed of elliptical (E) galaxies and 48% of lenticular (S0) galaxies. We find a larger proportion of S0 galaxies among galaxies with a large sSFR and large specific dust emission. The stronger activity of S0 galaxies is confirmed by larger dust masses. We investigate the relative proportion of active galactic nuclei (AGNs) and SF galaxies in our sample using spectroscopic Sloan Digital Sky Survey data and near-infrared selection techniques, and find a larger proportion of AGN-dominated galaxies in the S0 sample than the E one. This could corroborate a scenario where blue galaxies evolve into red ellipticals by passing through an S0 AGN active period while quenching its star formation. Finally, we find a good agreement comparing our estimates with color indicators.

  20. FUEL EFFICIENT GALAXIES: SUSTAINING STAR FORMATION WITH STELLAR MASS LOSS

    SciTech Connect

    Leitner, Samuel N.; Kravtsov, Andrey V.

    2011-06-10

    We examine the importance of secular stellar mass loss for fueling ongoing star formation in disk galaxies during the late stages of their evolution. For a galaxy of a given stellar mass, we calculate the total mass loss rate of its entire stellar population using star formation histories derived from the observed evolution of the M{sub *}-star formation rate (SFR) relation, along with the predictions of standard stellar evolution models for stellar mass loss for a variety of initial stellar mass functions. Our model shows that recycled gas from stellar mass loss can provide most or all of the fuel required to sustain the current level of star formation in late-type galaxies. Stellar mass loss can therefore remove the tension between the low gas infall rates that are derived from observations and the relatively rapid star formation occurring in disk galaxies. For galaxies where cold gas infall rates have been estimated, we demonstrate explicitly that stellar mass loss can account for most of the deficit between their SFR and infall rate.

  1. Assessing and understanding diversity in galaxy star formation histories

    NASA Astrophysics Data System (ADS)

    Abramson, Louis Evan

    Galaxy star formation histories (SFHs) form a central thread of the cosmological narrative. Assessing and understanding them is therefore a central mission of the study of galaxy evolution. Although an ever-better picture is emerging of the build-up of the stellar mass of the average galaxy over time, the relevance of this track to the growth of individual galaxies is unclear. Largely, this ambiguity is due to the availability of only loose, ensemble-level constraints at any redshift appreciably greater than zero. In this thesis, I outline how these constraints --- principally the cosmic star formation rate density, stellar mass function, and the star formation rate/stellar mass relation --- shape empirically based SFH models, especially in terms of the diversity of paths leading to a given end-state. Along the way, I show that three models propose very different answers to this question, corresponding (largely) to three different interpretations of the scatter in instantaneous galaxy growth rates at fixed stellar mass. I describe how these interpretations affect one's stance on the fundamental importance of so-called galaxy "bimodality" and quenching mechanisms, the influence of environment, and the role starbursts play in galaxy evolution. Ultimately, I conclude that there is insufficient evidence at present to select one interpretation over all others, but suggest that the situation might soon be resolved by upcoming observations that could clearly identify which model (or hybrid) is the most accurate description of galaxy growth.

  2. The SAMI Galaxy Survey: Spatially resolving the environmental quenching of star formation in GAMA galaxies

    NASA Astrophysics Data System (ADS)

    Schaefer, A. L.; Croom, S. M.; Allen, J. T.; Brough, S.; Medling, A. M.; Ho, I.-T.; Scott, N.; Richards, S. N.; Pracy, M. B.; Gunawardhana, M. L. P.; Norberg, P.; Alpaslan, M.; Bauer, A. E.; Bekki, K.; Bland-Hawthorn, J.; Bloom, J. V.; Bryant, J. J.; Couch, W. J.; Driver, S. P.; Fogarty, L. M. R.; Foster, C.; Goldstein, G.; Green, A. W.; Hopkins, A. M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, A. R.; Lorente, N. P. F.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.; van de Sande, J.; Walcher, C. J.; Wong, O. I.

    2016-09-01

    We use data from the Sydney-AAO Multi-Object Integral Field Spectrograph (SAMI) Galaxy Survey and the Galaxy And Mass Assembly (GAMA) survey to investigate the spatially-resolved signatures of the environmental quenching of star formation in galaxies. Using dust-corrected measurements of the distribution of Hα emission we measure the radial profiles of star formation in a sample of 201 star-forming galaxies covering three orders of magnitude in stellar mass ({M}_{*}; 108.1-1010.95 M⊙) and in 5th nearest neighbour local environment density (Σ5; 10-1.3- 102.1 Mpc-2). We show that star formation rate gradients in galaxies are steeper in dense (log10(Σ5/Mpc2) > 0.5) environments by 0.58 ± 0.29 dex re-1 in galaxies with stellar masses in the range 1010 < M★/M⊙ < 1011 and that this steepening is accompanied by a reduction in the integrated star formation rate. However, for any given stellar mass or environment density the star-formation morphology of galaxies shows large scatter. We also measure the degree to which the star formation is centrally concentrated using the unitless scale-radius ratio (r50, Hα/r50, cont), which compares the extent of ongoing star formation to previous star formation. With this metric we find that the fraction of galaxies with centrally concentrated star formation increases with environment density, from ˜5 ± 4% in low-density environments (log10(Σ5/Mpc2) < 0.0) to 30 ± 15% in the highest density environments (log10(Σ5/Mpc2) > 1.0). These lines of evidence strongly suggest that with increasing local environment density the star formation in galaxies is suppressed, and that this starts in their outskirts such that quenching occurs in an outside-in fashion in dense environments and is not instantaneous.

  3. Star formation in the outer disks of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Barnes, Kate Lynn

    I present results from a multi-wavelength study of star formation and the gaseous content in the outer disks of a sample of eight nearby spiral galaxies. In particular, the study focuses on galaxies with typical HI-to-optical sizes of ˜1--2, to provide a comparison to studies of galaxies with star formation occurring in extended gas disks. The study features new, ultra-deep ground-based H-alpha imaging and deep ultraviolet (UV) imaging from the GALEX space telescope to trace the recent star formation. I find that star formation typically extends through most (>85%) of the gas disk, with an outermost star forming regime characterized by low covering fractions and low star formation rate surface densities. The result that star formation extends through most of the gas disk regardless of the HI-to-optical size implies that it is important to further our understanding of the formation of extended gas disks to fully understand the implications of extended star forming disks. I find that the outer gaseous disks are gravitationally stable, which is in agreement with the lower level of star formation. I use ultraviolet and H-alpha colors to probe the recent star formation in the outer disks and find significant variations between colors of young stellar clusters. I run stellar population synthesis models to show how episodic star formation histories (SFHs) with periods of 100--250 Myr could cause similar color variations as are seen in outer disks. An episodic SFH would have implications for the gas depletion time and chemical evolution of spiral galaxies. In addition to an episodic SFH, the observed ultraviolet and H-alpha colors of young stellar clusters in the outer disks of galaxies in our sample are also in agreement with recently published models of a stochastically sampled initial mass function (IMF). Therefore, there remains some uncertainty for the possible cause of this observational result. Finally, we present a pilot study of deep, near infrared (NIR) imaging

  4. Radial Star Formation Histories in 15 Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Dale, Daniel A.; Beltz-Mohrmann, Gillian D.; Egan, Arika A.; Hatlestad, Alan J.; Herzog, Laura J.; Leung, Andrew S.; McLane, Jacob N.; Phenicie, Christopher; Roberts, Jareth S.; Barnes, Kate L.; Boquien, Médéric; Calzetti, Daniela; Cook, David O.; Kobulnicky, Henry A.; Staudaher, Shawn M.; van Zee, Liese

    2016-01-01

    New deep optical and near-infrared imaging is combined with archival ultraviolet and infrared data for 15 nearby galaxies mapped in the Spitzer Extended Disk Galaxy Exploration Science survey. These images are particularly deep and thus excellent for studying the low surface brightness outskirts of these disk-dominated galaxies with stellar masses ranging between 108 and {10}11 {M}⊙ . The spectral energy distributions derived from this data set are modeled to investigate the radial variations in the galaxy colors and star formation histories. Taken as a whole, the sample shows bluer and younger stars for larger radii until reversing near the optical radius, whereafter the trend is for redder and older stars for larger galacto-centric distances. These results are consistent with an inside-out disk formation scenario coupled with an old stellar outer disk population formed through radial migration and/or the cumulative history of minor mergers and accretions of satellite dwarf galaxies. However, these trends are quite modest and the variation from galaxy to galaxy is substantial. Additional data for a larger sample of galaxies are needed to confirm or dismiss these modest sample-wide trends.

  5. Dynamical trigger of star formation in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    The relationship between dynamical phenomena and starbursts in spiral galaxies is discussed. It is noted that interactions between galaxies or the presence of a bar in the center of a spiral can induce two-arm density waves in a galactic disk. It is suggested that the increase in interstellar cloud collisions, the formation of giant molecular clouds giving birth to stars, and the formation of rings by angular momentum transfer which result from these waves could explain the starburst phenomenon. NIR and mm CO observations of Arp 299, NGC 3628, ring galaxies, and barred galaxies are examined to determine the location of starbursts within a galaxy. It is concluded that a passing-by companion which reinforces bar action might play an important role in starburst galaxies.

  6. Spectroscopic Observations of the Star Formation Regions in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Kong, X.; Lin, L.; Li, J. R.; Zhou, X.; Zou, H.; Li, H. Y.; Chen, F. Z.; Du, W.; Fan, Z.; Mao, Y. W.; Wang, J.; Zhu, Y. N.; Zhou, Z. M.

    2014-01-01

    During the late 1990s and the first decade of the 21st century, the 8˜10 m scale ground-based telescopes are helping astronomers learn much more about how galaxies develop. The existing 2˜4 m scale telescopes become less important for astrophysical researches. To use the existing 2˜4 m scale telescopes to address important issues in cosmology and extragalactic and galactic astronomy, we have to consider very carefully which kind of things we can do, and which we can not. For this reason, the Time Allocation Committee (TAC) of the National Astronomical Observatories of China (NAOC) 2.16 m telescope decides to support some key projects since 2013. Nearby galaxies supply us with the opportunity to study galaxy dynamics and star formation on large scales, yet are close enough to reveal the details. Star formation regions in nearby galaxies provide an excellent laboratory to study the star formation processes, the evolution of massive stars, and the properties of the surrounding interstellar medium. A wealth of information can be obtained from the spectral analysis of the bright emission lines and the stellar continuum. Considering these, we proposed a long-term project ``Spectroscopic Observations of the Star Formation Regions in Nearby Galaxies'', and it becomes the key project of the NAOC 2.16 m telescope since 2013, supported with 30 dark/grey nights per year. The primary goal of this project is to observe the spectroscopy of star formation regions in 20 nearby galaxies, with the NAOC 2.16 m telescope and the Hectospec/MMT (Multiple Mirror Telescope) multifiber spectrograph by Telescope Access Program (TAP). With the spectra of a large sample of star formation regions, combining multi-wavelength data from UV to IR, we can investigate, understand, and quantify the nature of the deviation from the starbursts' IRX-β (the IR/UV ratio ``IRX'' versus the UV color ``β'') correlation. It will be important for a better understanding of the interaction of dust and

  7. Star formation triggered by galaxy interactions in modified gravity

    NASA Astrophysics Data System (ADS)

    Renaud, Florent; Famaey, Benoit; Kroupa, Pavel

    2016-09-01

    Together with interstellar turbulence, gravitation is one key player in star formation. It acts both at galactic scales in the assembly of gas into dense clouds, and inside those structures for their collapse and the formation of pre-stellar cores. To understand to what extent the large scale dynamics govern the star formation activity of galaxies, we present hydrodynamical simulations in which we generalise the behaviour of gravity to make it differ from Newtonian dynamics in the low acceleration regime. We focus on the extreme cases of interacting galaxies, and compare the evolution of galaxy pairs in the dark matter paradigm to that in the Milgromian Dynamics (MOND) framework. Following up on the seminal work by Tiret & Combes, this paper documents the first simulations of galaxy encounters in MOND with a detailed Eulerian hydrodynamical treatment of baryonic physics, including star formation and stellar feedback. We show that similar morphologies of the interacting systems can be produced by both the dark matter and MOND formalisms, but require a much slower orbital velocity in the MOND case. Furthermore, we find that the star formation activity and history are significantly more extended in space and time in MOND interactions, in particular in the tidal debris. Such differences could be used as observational diagnostics and make interacting galaxies prime objects in the study of the nature of gravitation at galactic scales.

  8. The spatial extent of star formation in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Moreno, Jorge

    2015-08-01

    We employ a suite of 75 simulations of galaxies in idealized major mergers (stellar mass ratio ˜2.5:1), with a wide range of orbital parameters, to investigate the spatial extent of interaction-induced star formation. Although the total star formation in galaxy encounters is generally elevated relative to isolated galaxies, we find that this elevation is a combination of intense enhancements within the central kpc and moderately suppressed activity at larger galactocentric radii. The radial dependence of the star formation enhancement is stronger in the less massive galaxy than in the primary, and is also more pronounced in mergers of more closely aligned disc spin orientations. Conversely, these trends are almost entirely independent of the encounter’s impact parameter and orbital eccentricity. Our predictions of the radial dependence of triggered star formation, and specifically the suppression of star formation beyond kpc-scales, will be testable with the next generation of integral-field spectroscopic surveys.Co-authors: Paul Torrey, Sara Ellison, David Patton, Asa Bluck, Gunjan Bansal & Lars Hernquist

  9. Decreased specific star formation rates in AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Shimizu, T. Taro; Mushotzky, Richard F.; Meléndez, Marcio; Koss, Michael; Rosario, David J.

    2015-09-01

    We investigate the location of an ultra-hard X-ray selected sample of active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) catalogue with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and M*'s from Sloan Digital Sky Survey photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and M* as the Swift/BAT AGN. We find that a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (CO Legacy Database for GALEX Arecibo SDSS Survey, COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high-mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itself.

  10. The evolution of star formation in galaxies across cosmic time

    NASA Astrophysics Data System (ADS)

    Bunker, Andrew

    2015-08-01

    I will discuss the evolution of the global star formation rate density over cosmic time, focussing on work at z~1 based on H-alpha from the slitless spectroscopic survey WISP (The WFC3 Infrared Spectroscopic Parallel survey) on HST and at higher redshifts from imaging surveys for Lyman break galaxies. The fitted star formation luminosity function tells us the distribution of star formation rates, which appears to evolve rapidly over cosmic time, notably a steeper faint end slope at higher redshifts and a peak of star formation activity at redshifts between 1 and 2. Using multi-object integral field spectroscopy with the new KMOS near-IR on VLT, we are able to determine the distribution of star forming regions within individual z~1 galaxies through their spatially-resolved H-alpha emission, and I will discuss recent results from the GTO programme KROSS (KMOS Redshift One Spectroscopic Survey) on the evolution of star formation in galaxies over cosmic time.

  11. ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES

    SciTech Connect

    Elmegreen, Bruce G.

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, there is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.

  12. On the Star Formation Law for Spiral and Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, there is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.

  13. STAR FORMATION IN NUCLEAR RINGS OF BARRED GALAXIES

    SciTech Connect

    Seo, Woo-Young; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2013-06-01

    Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study the temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely by a bar potential. The star formation recipes include a density threshold, an efficiency, conversion of gas to star particles, and delayed momentum feedback via supernova explosions. We find that the star formation rate (SFR) in a nuclear ring is roughly equal to the mass inflow rate to the ring, while it has a weak dependence on the total gas mass in the ring. The SFR typically exhibits a strong primary burst followed by weak secondary bursts before declining to very small values. The primary burst is associated with the rapid gas infall to the ring due to the bar growth, while the secondary bursts are caused by re-infall of the ejected gas from the primary burst. While star formation in observed rings persists episodically over a few Gyr, the duration of active star formation in our models lasts for only about half of the bar growth time, suggesting that the bar potential alone is unlikely to be responsible for gas supply to the rings. When the SFR is low, most star formation occurs at the contact points between the ring and the dust lanes, leading to an azimuthal age gradient of young star clusters. When the SFR is large, on the other hand, star formation is randomly distributed over the whole circumference of the ring, resulting in no apparent azimuthal age gradient. Since the ring shrinks in size with time, star clusters also exhibit a radial age gradient, with younger clusters found closer to the ring. The cluster mass function is well described by a power law, with a slope depending on the SFR. Giant gas clouds in the rings have supersonic internal velocity dispersions and are gravitationally bound.

  14. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    NASA Technical Reports Server (NTRS)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  15. THE CURRENT STAR FORMATION RATE OF K+A GALAXIES

    SciTech Connect

    Nielsen, Danielle M.; Ridgway, Susan E.; De Propris, Roberto; Goto, Tomotsugu

    2012-12-20

    We derive the stacked 1.4 GHz flux from the FIRST survey for 811 K+A galaxies selected from the Sloan Digital Sky Survey Data Release 7. For these objects we find a mean flux density of 56 {+-} 9 {mu}Jy. A similar stack of radio-quiet white dwarfs yields an upper limit of 43 {mu}Jy at a 5{sigma} significance to the flux in blank regions of the sky. This implies an average star formation rate of 1.6 {+-} 0.3 M{sub Sun} yr{sup -1} for K+A galaxies. However, the majority of the signal comes from {approx}4% of K+A fields that have aperture fluxes above the 5{sigma} noise level of the FIRST survey. A stack of the remaining galaxies shows little residual flux consistent with an upper limit on star formation of 1.3 M{sub Sun} yr{sup -1}. Even for a subset of 456 'young' (spectral ages <250 Myr) K+A galaxies, we find that the stacked 1.4 GHz flux is consistent with no current star formation. Our data suggest that the original starburst has been terminated in the majority of K+A galaxies, but that this may represent part of a duty cycle where a fraction of these galaxies may be active at a given moment with dusty starbursts and active galactic nuclei being present.

  16. Cold gas and star formation in a merging galaxy sequence

    NASA Astrophysics Data System (ADS)

    Georgakakis, Antonis; Forbes, Duncan A.; Norris, Ray P.

    2000-10-01

    We explore the evolution of the cold gas (molecular and neutral hydrogen) and star formation activity during galaxy interactions, using a merging galaxy sequence comprising both pre- and post-merger candidates. Data for this study come from the literature, but are supplemented by some new radio observations presented here. First, we confirm that the ratio of far-infrared luminosity to molecular hydrogen mass (LFIRM(H2); star formation efficiency) increases close to nuclear coalescence. After the merging of the two nuclei there is evidence that the star formation efficiency declines again to values typical of ellipticals. This trend can be attributed to M(H2) depletion arising from interaction induced star formation. However, there is significant scatter, likely to arise from differences in the interaction details (e.g., disc-to-bulge ratio, geometry) of individual systems. Secondly, we find that the central molecular hydrogen surface density, ΣH2, increases close to the final stages of the merging of the two nuclei. Such a trend, indicating gas inflows caused by gravitational instabilities during the interaction, is also predicted by numerical simulations. Furthermore, there is evidence for a decreasing fraction of cold gas mass from early interacting systems to merger remnants, attributed to neutral hydrogen conversion into other forms (e.g., stars, hot gas) and molecular hydrogen depletion resulting from ongoing star formation. The evolution of the total-radio to blue-band luminosity ratio, reflecting the total (disc and nucleus) star formation activity, is also investigated. Although this ratio is on average higher than that for isolated spirals, we find a marginal increase along the merging sequence, attributed to the relative insensitivity of disc star formation to interactions. However, a similar result is also obtained for the nuclear radio emission, although galaxy interactions are believed to significantly affect the activity (star formation, AGN) in the

  17. Star formation along the Hubble sequence. Radial structure of the star formation of CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    González Delgado, R. M.; Cid Fernandes, R.; Pérez, E.; García-Benito, R.; López Fernández, R.; Lacerda, E. A. D.; Cortijo-Ferrero, C.; de Amorim, A. L.; Vale Asari, N.; Sánchez, S. F.; Walcher, C. J.; Wisotzki, L.; Mast, D.; Alves, J.; Ascasibar, Y.; Bland-Hawthorn, J.; Galbany, L.; Kennicutt, R. C.; Márquez, I.; Masegosa, J.; Mollá, M.; Sánchez-Blázquez, P.; Vílchez, J. M.

    2016-05-01

    The spatially resolved stellar population content of today's galaxies holds important information for understanding the different processes that contribute to the star formation and mass assembly histories of galaxies. The aim of this paper is to characterize the radial structure of the star formation rate (SFR) in galaxies in the nearby Universe as represented by a uniquely rich and diverse data set drawn from the CALIFA survey. The sample under study contains 416 galaxies observed with integral field spectroscopy, covering a wide range of Hubble types and stellar masses ranging from M⋆ ~ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to derive 2D maps and radial profiles of the intensity of the star formation rate in the recent past (ΣSFR), as well as related properties, such as the local specific star formation rate (sSFR), defined as the ratio between ΣSFR and the stellar mass surface density (μ⋆). To emphasize the behavior of these properties for galaxies that are on and off the main sequence of star formation (MSSF), we stack the individual radial profiles in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd), and several stellar masses. Our main results are: (a) the intensity of the star formation rate shows declining profiles that exhibit very small differences between spirals with values at R = 1 half light radius (HLR) within a factor two of ΣSFR ~ 20 M⊙Gyr-1pc-2. The dispersion in the ΣSFR(R) profiles is significantly smaller in late type spirals (Sbc, Sc, Sd). This confirms that the MSSF is a sequence of galaxies with nearly constant ΣSFR. (b) sSFR values scale with Hubble type and increase radially outward with a steeper slope in the inner 1 HLR. This behavior suggests that galaxies are quenched inside-out and that this process is faster in the central, bulge-dominated part than in the disks. (c) As a whole and at all radii, E and S0 are off the MSSF with SFR much smaller than spirals of the

  18. The Hα Galaxy survey. V. The star formation history of late-type galaxies

    NASA Astrophysics Data System (ADS)

    James, P. A.; Prescott, M.; Baldry, I. K.

    2008-06-01

    Aims: This study of 117 low-redshift Im and Sm galaxies investigates the star formation rates of late-type galaxies, to determine whether they are quasi-continuous or dominated by bursts with quiescent interludes. Methods: We analyse the distribution of star formation timescales (stellar masses/star formation rates) for the entire sample, and of gas depletion timescales for those galaxies with gas mass measurements. Results: We find that, on average, the late-type galaxies studied could have produced their total stellar masses by an extrapolation of their current star formation activity over a period of just under a Hubble time. This is not the case for a comparison sample of earlier-type galaxies, even those with disk-dominated morphologies and similar total stellar masses to the late-type galaxies. The earlier-type galaxies are on average forming their stars more slowly at present than the average rate over their past histories. No totally quiescent Im or Sm galaxies are found, and although some evidence of intrinsic variation in the star formation rate with time is found, this is typically less than a factor of 2 increase or decrease relative to the mean level. The Im and Sm galaxies have extensive gas reservoirs and can maintain star formation at the current rate for more than another Hubble time. The average spatial distribution of star formation in the Im galaxies, and to a lesser extent the Sm galaxies, is very similar to that of the older stellar population traced by the red light. Conclusions: Late type, bulge-free galaxies have a predominantly continuous mode of star formation, and could have assembled their stellar masses through continued star formation over a Hubble time with the currently-observed rate and spatial distribution. There is little evidence in this sample of predominantly isolated field galaxies of significant star formation through brief but intense starburst phases. Based on observations made with the Jacobus Kapteyn Telescope operated

  19. Resolved Star Formation Law In Nearby Infrared-bright Galaxies

    NASA Astrophysics Data System (ADS)

    Rahman, Nurur; Bolatto, A.; Wong, T.; Leroy, A.; Ott, J.; Calzetti, D.; Blitz, L.; Walter, F.; Rosolowsky, E.; West, A.; Vogel, S.; Bigiel, F.; Xue, R.

    2009-05-01

    An accurate knowledge of star formation law is crucial to make progress in understanding galaxy formation and evolution. We are studying this topic using CARMA STING (Survey Toward Infrared-bright Nearby Galaxies), an interferometric CO survey of a sample of 27 star-forming nearby galaxies with a wealth of multi-wavelength data designed to study star formation in environments throughout the blue sequence at sub-kpc scales. We present results for NGC 4254 (M99), one of our sample galaxies. We construct star formation rate surface density (SFRSD) and gas (atomic and molecular) surface density indicators using a combination of high resolution data from CARMA, KPNO, Spitzer, IRAM and VLA. We find a tight correlation between SFRSD and molecular gas surface density (MGSD), whereas the relation between atomic gas surface density and SFRSD shows very large scatter. Within the central 6 kpc (radius) where CARMA is the most sensitive the MGSD derived from CO(1-0) and CO(2-1) shows similar trend, however, in the extended disk the slope, derived from CO(2-1) data alone, gets steeper.

  20. Chemical complexity and star-formation in merging galaxies

    NASA Astrophysics Data System (ADS)

    Davis, T. A.; Heiderman, A.; Iono, D.; VIXENS Team

    2013-03-01

    When galaxies merge the resulting conditions are some of the most extreme found anywhere in nature. Large gas flows, shocks and active black holes all can affect the ISM. Nearby merging galaxies with strong starbursts are the only places where we can conduct detailed study of star formation in conditions that mimic those under which the majority of stars in the universe formed. Here we study molecular gas tracers in 8 galaxies selected from the VIRUS-P Investigation of the eXtreme ENvironments of Starbursts (VIXENS) survey. Each galaxy has also been observed using the integral field unit spectrograph VIRUS-P, allowing us to investigate the relation between the chemical state of the gas, star formation and total gas content. Full details can be found in Heiderman et al. (2011). Here we report on new results obtained from IRAM-30m/NRO-45m 3mm line surveys towards 14 positions in these 8 merging galaxies. We detect ≈ 25 different molecular transitions towards these objects, many which have never been observed in these galaxies before. Our measurements show that the mean fraction of dense gas increases in later-stage mergers (Fig. 1, left), as does the average optical depth of the gas. Molecular diagnostic diagrams (Fig. 1, right) show that molecular regions we probe are, in general, UV photon dominated. Triggered AGN activity, and/or cosmic ray ionisation (from SNe II in the starburst) are not yet energetically important in determining the state of the gas.

  1. Morphology, star formation, and nuclear activity in void galaxies

    NASA Astrophysics Data System (ADS)

    Wiedmann, Sophia; Miller, Brendan; Gallo, Elena; Pazar, Beni; Alfvin, Erik

    2015-01-01

    We report on new Chandra observations of six early-type galaxies located within cosmic voids, from a program examining the influence of Mpc-scale environment upon star formation and low-level supermassive black hole activity. Simple feedback prescriptions are predicted to operate independently of the surrounding density once outside the dark matter halo, and further link star formation quenching to black hole activity. Alternatively, mediation of the cold gas supply by the large-scale environment, for example through increased cold-stream accretion and reduced harassment or stripping within more isolated regions, could mutually enhance star formation and (perhaps indirectly) low-level supermassive black hole activity. The six targeted early-type galaxies have comparable stellar masses of 6-9e10 solar, chosen to be near the predicted "critical value" for efficient feedback, but span a wide range of star-formation rates. Specifically, they have SFRs of 6.5, 1.4, 0.45, 0.10, 0.04, and 0.03 solar masses per year. All galaxies are detected in the Chandra ACIS-S observations with 0.3-8 keV X-ray luminosities ranging from 2e39 to 1e41 erg/s. Specifically, they have log Lx values of 40.4, 41.1, 41.1, 39.3, 39.2, and 39.2, again ordered by decreasing SFR. The three galaxies with moderate-to-high star formation rates have nuclear X-ray luminosities that are significantly greater than those of the three galaxies with low star formation rates. This result is more consistent with a symbiotic relationship between current low-level star formation and supermassive black hole activity than with simple feedback quenching models. We additionally situate these galaxies in the context of void and cluster galaxies in the local universe, model their optical surface brightness profiles and color gradients, discuss caveats including the possibility of X-ray binary contamination, and consider other supermassive black hole activity indicators.

  2. Star Formation in the Central Regions of Galaxies

    NASA Astrophysics Data System (ADS)

    Tsai, Mengchun

    2015-08-01

    The galactic central region connects the galactic nucleus to the host galaxy. If the central black hole co-evolved with the host galaxies, there should be some evidence left in the central region. We use the environmental properties in the central regions such as star-forming activity, stellar population and molecular abundance to figure out a possible scenario of the evolution of galaxies. In this thesis at first we investigated the properties of the central regions in the host galaxies of active and normal galaxies. We used radio emission around the nuclei of the host galaxies to represent activity of active galactic nuclei (AGNs), and used infrared ray (IR) emission to represent the star-forming activity and stellar population of the host galaxies. We determined that active galaxies have higher stellar masses (SMs) within the central kiloparsec radius than normal galaxies do independent of the Hubble types of the host galaxies; but both active and normal galaxies exhibit similar specific star formation rates (SSFRs). We also discovered that certain AGNs exhibit substantial inner stellar structures in the IR images; most of the AGNs with inner structures are Seyferts, whereas only a few LINERs exhibit inner structures. We note that the AGNs with inner structures show a positive correlation between the radio activity of the AGNs and the SFRs of the host galaxies, but the sources without inner structures show a negative correlation between the radio power and the SFRs. These results might be explained with a scenario of starburst-AGN evolution. In this scenario, AGN activities are triggered following a nuclear starburst; during the evolution, AGN activities are accompanied by SF activity in the inner regions of the host galaxies; at the final stage of the evolution, the AGNs might transform into LINERs, exhibiting weak SF activity in the central regions of the host galaxies. For further investigation about the inner structure, we choose the most nearby and luminous

  3. Hubble studies generations of star formation in neighbouring galaxy

    NASA Astrophysics Data System (ADS)

    2004-07-01

    N11B Credits: NASA/ESA and the Hubble Heritage Team (AURA/STScI)/HEIC The iridescent tapestry of star birth The NASA/ESA Hubble Space Telescope captures the iridescent tapestry of star birth in a neighbouring galaxy in this panoramic view of glowing gas, dark dust clouds, and young, hot stars. The star-forming region, catalogued as N11B lies in the Large Magellanic Cloud (LMC), located only 160 000 light-years from Earth. With its high resolution, the Hubble Space Telescope is able to view details of star formation in the LMC as easily as ground-based telescopes are able to observe stellar formation within our own Milky Way galaxy. One neighbouring galaxy, the Large Magellanic Cloud (LMC), lies in the constellation of Dorado and contains a number of regions harbouring recent and ongoing star formation. One of these star-forming region, N11B, is shown in this Hubble image. It is a subregion within a larger area of star formation called N11. N11 is the second largest star-forming region in LMC. It is only surpassed in the size and activity by ‘the king of stellar nurseries’, 30 Doradus, located at the opposite side of LMC. N11B Credits: NASA/ESA and the Hubble Heritage Team (AURA/STScI)/HEIC A view of star formation The NASA/ESA Hubble Space Telescope captures the iridescent tapestry of star birth in a neighbouring galaxy in this panoramic view of glowing gas, dark dust clouds, and young, hot stars. The star-forming region, catalogued as N11B lies in the Large Magellanic Cloud (LMC), located only 160 000 light-years from Earth. With its high resolution, the Hubble Space Telescope is able to view details of star formation in the LMC as easily as ground-based telescopes are able to observe stellar formation within our own Milky Way galaxy. One neighbouring galaxy, the Large Magellanic Cloud (LMC), lies in the constellation of Dorado and contains a number of regions harbouring recent and ongoing star formation. One of these star-forming regions, N11B, is shown in

  4. Star Formation Rates of dS galaxies

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.; Vega-Acevedo, I.; Magaña-Serrano, M. A.

    2014-10-01

    The Star Formation Rate of a sample of nine dwarf spiral galaxies and ten late-type Sm is determined from the Hα luminosity. The main interest was to check if these two kind of late-type galaxies have similar SFR or not. The images were acquired at the 1.5m telescope of the SPM-OAN and they were reduced with the software MIDAS. The values of the SFR are very similar for both type of galaxies and also similar to other Sm galaxies. The main result is that the dwarf spiral galaxies are more efficient when forming stars than the Sm galaxies because the SFR per are are lower for the latter with the same gas density than for dwarf spirals. However, the SFRs are larger in the Sm galaxies. In addition, the SFR per area were compared with global properties of the galaxies. There is only a relationship between the SFR and the surface brightness as well as with the absolute blue magnitude, but no relationship with the optical radius. A larger sample is needed in order to obtain a more conclusive answer.

  5. The era of star formation in galaxy clusters

    SciTech Connect

    Brodwin, M.; Stanford, S. A.; Gonzalez, Anthony H.; Mancone, C. L.; Gettings, D. P.; Zeimann, G. R.; Snyder, G. F.; Ashby, M. L. N.; Pope, A.; Alberts, S.; Eisenhardt, P. R.; Stern, D.; Moustakas, L. A.; Brown, M. J. I.; Chary, R.-R.; Dey, Arjun; Galametz, A.; Jannuzi, B. T.; Miller, E. D.; Moustakas, J.

    2013-12-20

    We analyze the star formation properties of 16 infrared-selected, spectroscopically confirmed galaxy clusters at 1 < z < 1.5 from the Spitzer/IRAC Shallow Cluster Survey (ISCS). We present new spectroscopic confirmation for six of these high-redshift clusters, five of which are at z > 1.35. Using infrared luminosities measured with deep Spitzer/Multiband Imaging Photometer for Spitzer observations at 24 μm, along with robust optical + IRAC photometric redshifts and spectral-energy-distribution-fitted stellar masses, we present the dust-obscured star-forming fractions, star formation rates, and specific star formation rates in these clusters as functions of redshift and projected clustercentric radius. We find that z ∼ 1.4 represents a transition redshift for the ISCS sample, with clear evidence of an unquenched era of cluster star formation at earlier times. Beyond this redshift, the fraction of star-forming cluster members increases monotonically toward the cluster centers. Indeed, the specific star formation rate in the cores of these distant clusters is consistent with field values at similar redshifts, indicating that at z > 1.4 environment-dependent quenching had not yet been established in ISCS clusters. By combining these observations with complementary studies showing a rapid increase in the active galactic nucleus (AGN) fraction, a stochastic star formation history, and a major merging episode at the same epoch in this cluster sample, we suggest that the starburst activity is likely merger-driven and that the subsequent quenching is due to feedback from merger-fueled AGNs. The totality of the evidence suggests we are witnessing the final quenching period that brings an end to the era of star formation in galaxy clusters and initiates the era of passive evolution.

  6. Bimodal star formation - Constraints from galaxy colors at high redshift

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, Joseph

    1987-01-01

    The possibility that at early epochs the light from elliptical galaxies is dominated by stars with an initial mass function (IMF) which is deficient in low-mass stars, relative to the solar neighborhood is investigated. V-R colors for the optical counterparts of 3CR radio sources offer the most severe constraints on the models. Reasonable fits are obtained to both the blue, high-redshift colors and the redder, low-redshift colors with a model galaxy which forms with initially equal star formation rates in each of two IMF modes: one lacking low-mass stars, and one with stars of all masses. The net effect is that the time-integrated IMF has twice as many high-mass stars as the solar neighborhood IMF, relative to low mass stars. A conventional solar neighborhood IMF does not simultaneously account for both the range in colors at high redshift and the redness of nearby ellipticals, with any single star formation epoch. Models with a standard IMF require half the stellar population to be formed in a burst at low redshift z of about 1.

  7. A STAR FORMATION LAW FOR DWARF IRREGULAR GALAXIES

    SciTech Connect

    Elmegreen, Bruce G.; Hunter, Deidre A. E-mail: dah@lowell.edu

    2015-06-01

    The radial profiles of gas, stars, and far-ultraviolet radiation in 20 dwarf Irregular galaxies are converted to stability parameters and scale heights for a test of the importance of two-dimensional (2D) instabilities in promoting star formation. A detailed model of this instability involving gaseous and stellar fluids with self-consistent thicknesses and energy dissipation on a perturbation crossing time gives the unstable growth rates. We find that all locations are effectively stable to 2D perturbations, mostly because the disks are thick. We then consider the average volume densities in the midplanes, evaluated from the observed H i surface densities and calculated scale heights. The radial profiles of the star-formation rates are equal to about 1% of the H i surface densities divided by the free fall times at the average midplane densities. This 1% resembles the efficiency per unit free fall time commonly found in other cases. There is a further variation of this efficiency with radius in all of our galaxies, following the exponential disk with a scale length equal to about twice the stellar mass scale length. This additional variation is modeled by the molecular fraction in a diffuse medium using radiative transfer solutions for galaxies with the observed dimensions and properties of our sample. We conclude that star formation is activated by a combination of three-dimensional gaseous gravitational processes and molecule formation. Implications for outer disk structure and formation are discussed.

  8. A Star Formation Law for Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.; Hunter, Deidre A.

    2015-06-01

    The radial profiles of gas, stars, and far-ultraviolet radiation in 20 dwarf Irregular galaxies are converted to stability parameters and scale heights for a test of the importance of two-dimensional (2D) instabilities in promoting star formation. A detailed model of this instability involving gaseous and stellar fluids with self-consistent thicknesses and energy dissipation on a perturbation crossing time gives the unstable growth rates. We find that all locations are effectively stable to 2D perturbations, mostly because the disks are thick. We then consider the average volume densities in the midplanes, evaluated from the observed H i surface densities and calculated scale heights. The radial profiles of the star-formation rates are equal to about 1% of the H i surface densities divided by the free fall times at the average midplane densities. This 1% resembles the efficiency per unit free fall time commonly found in other cases. There is a further variation of this efficiency with radius in all of our galaxies, following the exponential disk with a scale length equal to about twice the stellar mass scale length. This additional variation is modeled by the molecular fraction in a diffuse medium using radiative transfer solutions for galaxies with the observed dimensions and properties of our sample. We conclude that star formation is activated by a combination of three-dimensional gaseous gravitational processes and molecule formation. Implications for outer disk structure and formation are discussed.

  9. Star Formation in Partially Gas-Depleted Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Rose, James A.; Robertson, Paul; Miner, Jesse; Levy, Lorenza

    2010-02-01

    Broadband B and R and Hα images have been obtained with the 4.1 m SOAR telescope atop Cerro Pachon, Chile, for 29 spiral galaxies in the Pegasus I galaxy cluster and for 18 spirals in non-cluster environments. Pegasus I is a spiral-rich cluster with a low-density intracluster medium and a low galaxy velocity dispersion. When combined with neutral hydrogen (H I) data obtained with the Arecibo 305 m radio telescope, acquired by Levy et al. (2007) and by Springob et al. (2005b), we study the star formation rates in disk galaxies as a function of their H I deficiency. To quantify H I deficiency, we use the usual logarithmic deficiency parameter, DEF. The specific star formation rate (SSFR) is quantified by the logarithmic flux ratio of Hα flux to R-band flux, and thus roughly characterizes the logarithmic SFR per unit stellar mass. We find a clear correlation between the global SFR per unit stellar mass and DEF, such that the SFR is lower in more H I-deficient galaxies. This correlation appears to extend from the most gas-rich to the most gas-poor galaxies. We also find a correlation between the central SFR per unit mass relative to the global values, in the sense that the more H I-deficient galaxies have a higher central SFR per unit mass relative to their global SFR values than do gas-rich galaxies. In fact, approximately half of the H I-depleted galaxies have highly elevated SSFRs in their central regions, indicative of a transient evolutionary state. In addition, we find a correlation between gas depletion and the size of the Hα disk (relative to the R-band disk); H I-poor galaxies have truncated disks. Moreover, aside from the elevated central SSFR in many gas-poor spirals, the SSFR is otherwise lower in the Hα disks of gas-poor galaxies than in gas-rich spirals. Thus, both disk truncation and lowered SSFR levels within the star-forming part of the disks (aside from the enhanced nuclear SSFR) correlate with H I deficiency, and both phenomena are found to

  10. Disc galaxies: Molecular hydrogen, star formation and radial migration

    NASA Astrophysics Data System (ADS)

    Halle, A.; Combes, F.; Di Matteo, P.; Haywood, M.

    2014-12-01

    We show the importance of molecular hydrogen to simulate the evolution of disc galaxies with improved realistic interstellar medium and stellar formation. The inclusion of H_2 cooling is especially important in the low-metallicity regions such as the outer parts of discs, in which it allows for some slow star formation. We study the evolution of the obtained stellar components of these galaxies and focus on the radial migration that occurs due to the resonances of the bar and transient spiral arms in the disc.

  11. Star Formation Quenching and Identifying AGN in Galaxies

    NASA Astrophysics Data System (ADS)

    Mendez, Alexander; Coil, A. L.; Lotz, J. M.; Aird, J.; Diamond-Stanic, A. M.; Moustakas, J.; Salim, S.; Simard, L.; Blanton, M. R.; Eisenstein, D.; Wong, K. C.; Cool, R. J.; Zhu, G.; PRIMUS; AEGIS

    2014-01-01

    I will discuss two observational projects related to galaxy and active galactic nuclei (AGN) evolution at z < 1. First I will present a statistical study of the morphologies of galaxies in which star formation is being shut down or quenched; this has implications for how red, elliptical galaxies are formed. I will discuss the physical processes behind star formation quenching from the morphological transformations that galaxies undergo during this process. Then I will focus on multi-wavelength AGN selection methods and tie together disparate results in the literature. Several IR-AGN selection methods have been developed using Spitzer/IRAC data in order to supplement traditional X-ray AGN selection; I will characterize the uniqueness and complementarity of these methods as a function of both IR and X-ray depth. I will use data from the PRIsm MUlti-object Survey (PRIMUS) to compare the efficiency of IR and X-ray AGN selection and discuss the properties of the AGN and host galaxy populations of each. Finally, I will briefly mention ongoing work to compare the clustering of observed IR and X-ray AGN samples relative to stellar mass-matched galaxy samples.

  12. Star Formation in the Outer Disk of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Barnes, Kate L.; van Zee, Liese; Côté, Stéphanie; Schade, David

    2012-09-01

    We combine new deep and wide field of view Hα imaging of a sample of eight nearby (d ≈ 17 Mpc) spiral galaxies with new and archival H I and CO imaging to study the star formation and the star formation regulation in the outer disk. We find that, in agreement with previous studies, star formation in the outer disk has low covering fractions, and star formation is typically organized into spiral arms. The star formation in the outer disk is at extremely low levels, with typical star formation rate surface densities of ~10-5 to 10-6 M ⊙ yr-1 kpc-2. We find that the ratio of the radial extent of detected H II regions to the radius of the H I disk is typically gsim85%. This implies that in order to further our understanding of the implications of extended star formation, we must further our understanding of the formation of extended H I disks. We measure the gravitational stability of the gas disk, and find that the outer gaseous disk is typically a factor of ~2 times more stable than the inner star-forming disk. We measure the surface density of outer disk H I arms, and find that the disk is closer to gravitational instability along these arms. Therefore, it seems that spiral arms are a necessary, but not sufficient, requirement for star formation in the outer disk. We use an estimation of the flaring of the outer gas disk to illustrate the effect of flaring on the Schmidt power-law index; we find that including flaring increases the agreement between the power-law indices of the inner and outer disks.

  13. Fast outflows and star formation quenching in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2016-06-01

    Negative feedback from active galactic nuclei (AGN) is considered a key mechanism in shaping galaxy evolution. Fast, extended outflows are frequently detected in the AGN host galaxies at all redshifts and luminosities, both in ionised and molecular gas. However, these outflows are only potentially able to quench star formation, and we are still lacking decisive evidence of negative feedback in action. Here we present observations obtained with the Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) H- and K-band integral-field of two quasars at z ~ 2.4 that are characterised by fast, extended outflows detected through the [Oiii]λ5007 line. The high signal-to-noise ratio of our observations allows us to identify faint narrow (FWHM< 500 km s-1) and spatially extended components in [Oiii]λ5007 and Hα emission associated with star formation in the host galaxy. This star formation powered emission is spatially anti-correlated with the fast outflows. The ionised outflows therefore appear to be able to suppress star formation in the region where the outflow is expanding. However, the detection of narrow spatially extended Hα emission indicates star formation rates of at least ~50-90 M⊙ yr-1, suggesting either that AGN feedback does not affect the whole galaxy or that many feedback episodes are required before star formation is completely quenched. On the other hand, the narrow Hα emission extending along the edges of the outflow cone may also lead also to a positive feedback interpretation. Our results highlight the possible double role of galaxy-wide outflows in host galaxy evolution. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, P.ID: 086.B-0579(A) and 091.A-0261(A).The reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A28

  14. Star formation and chemical abundances in clumpy irregular galaxies

    SciTech Connect

    Boesgaard, A.M.; Edwards, S.; Heidmann, J.

    1982-01-15

    Clumpy irregular galaxies consist of several bright clumps which are huge H II complexes (about 100 times brighter and more massive than 30 Doradus) and contain about 10/sup 5/ O and B stars. Image-tube spectrograms with 1--3 A resolution have been obtained of the brightest emission regions of three clumpy galaxies and one candidate clumpy galaxy with the Mauna Kea 2.24 m telescope. The electron temperatures were found to be in the range 7000--9000 K and electron densities a few hundred cm/sup 3/: quite typical for normal H II regions. The abundances of O, N. S in Mrk 432 are comparable to those in Orion, while the three clumpy galaxies are slightly deficient in O and S (by factors of 2 to 4) and N (by factors of 3 to 6). The galaxies appear to be normal (like Sc galaxies) in mass and composition. Supernovae remnants are indicated by the high (S II)/H..cap alpha.. ratio. Possible triggering mechanisms for the exceptional star formation activity are discussed.

  15. Star Formation at Low Metallicity in Local Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce; Hunter, Deidre Ann; Rubio, Monica; Brinks, Elias; Cortés, Juan R.; Cigan, Phil

    2016-01-01

    The radial profiles of star formation rates and surface mass densities for gas and stars have been compiled for 20 local dwarf irregular galaxies and converted into disk scale heights and Toomre Q values. The scale heights are relatively large compared to the galaxy sizes (~0.6 times the local radii) and generally increase with radius in a flare. The gaseous Q values are high, ~4, at most radii and even higher for the stars. Star formation proceeds even with these high Q values in a normal exponential disk as viewed in the far ultraviolet. Such normal star formation suggests that Q is not relevant to star formation in dIrrs. The star formation rate per unit area always equals approximately the gas surface density divided by the midplane free fall time with an efficiency factor of about 1% that decreases systematically with radius in approximate proportion to the gas surface density. We view this efficiency variation as a result of a changing molecular fraction in a disk where atomic gas dominates both stars and molecules. In a related study, CO observations with ALMA of star-forming regions at the low metallicities of these dwarfs, which averages 13% solar, shows, in the case of the WLM galaxy, tiny CO clouds inside much larger molecular and atomic hydrogen envelopes. The CO cloud mass fraction within the molecular region is only one percent or so. Nevertheless, the CO clouds have properties that are similar to solar neighborhood clouds: they satisfy the size-linewidth relation observed in the LMC, SMC, and other local dwarfs where CO has been observed, and the same virial mass versus luminosity relation. This uniforming of CO cloud properties seems to be the result of a confining pressure from the weight of the overlying molecular and atomic shielding layers. Star formation at low metallicity therefore appears to be a three dimensional process independent of 2D instabilities involving Q, in highly atomic gas with relatively small CO cores, activated at a rate

  16. Star formation in nuclear rings of barred-spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Seo, Woo-Young

    2015-08-01

    Barred-spiral galaxies contain star-forming nuclear rings at their centers. Some rings show a well-defined azimuthal age gradient of star clusters along a ring, while others do not. Using hydrodynamic simulations with the prescriptions of star formation and feedback included, we study what control star formation occurring in the nuclear rings. In models without spiral arms, the star formation rate (SFR) in a ring exhibits a strong burst at early time and declines to small values at late time. The early burst is caused by a rapid gas infall along due to the bar growth, consuming most of the gas inside the bar region. On the other hand, models with spiral arms outside the bar region show multiple starburst activities at late time caused by arm-induced gas inflows, provided that the arm pattern speed is slower than that of the bar. The SFR in models with spirals is larger by a factor of ~ 1.4-4.0 than that in the bar-only models, with larger values corresponding to stronger and slower arms. In all models, young star clusters in nuclear ring show an azimuthal age gradient only when the SFR is small, such that younger clusters tend to locate closer to the contact points, since star formation occurs preferentially in the contact points between a ring and dust lanes.

  17. Star Formation Rate in Holmberg IX Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Andjelic, M. M.

    2011-12-01

    In this paper we use previously determined Hα fluxes for dwarf galaxy Holmberg IX (Arbutina et al. 2009) to calculate star formation rate (SFR) in this galaxy. We discuss possible contaminations of Hα flux and, for the first time, we take into account optical emission from supernova remnants (SNRs) as a possible source of contamination of Hα flux. Derived SFR for Holmberg IX is 3.4×10-4M_{⊙} yr-1. Our value is lower then in previous studies, due to luminous shock-heated source M&H 9-10, possible hypernova remnant, which we excluded from the total Hα flux in our calculation of SFR.

  18. Star formation and mass assembly in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z < 2.5) galaxies from their IR emission using the 24 μm band of MIPS-Spitzer. Methods: We used an updated version of the GOODS-MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions

  19. Topics in Galaxy Evolution: Early Star Formation and Quenching

    NASA Astrophysics Data System (ADS)

    Goncalves, Thiago Signorini

    In this thesis, we present three projects designed to shed light on yet unanswered questions on galaxy formation and evolution. The first two concern a sample of UV-bright starburst galaxies in the local universe (z ˜0.2). These objects are remarkably similar to star-forming galaxies that were abundant at high redshifts (2 < z < 3)---the Lyman break galaxies---and can help explain the very distinctive properties observed at such epochs. Thus, these galaxies are denominated Lyman break analogs, or LBAs. First, we describe a survey of kinematics of the nebular gas in such objects, and how that can help explain the formation process, including gas assembly, in these starbursts. We show strong evidence that the gas kinematics resemble those observed at high redshifts. However, by artificially manipulating our observations to mimic our objects at greater distances, we show how low resolution and signal-to-noise ratios can lead to erroneous conclusions, in particular when attempting to diagnose mergers as the origin of the starburst. Then, we present results from a pilot survey to study the cold, molecular gas reservoir in such objects. Again, we show that the observed properties are analogous to those observed at high redshift, in particular with respect to baryonic gas fractions in the galaxy, higher than normally found in low-extinction objects in the local universe. Furthermore, we show how gas surface density and star-formation surface density follow the same relation as local galaxies, albeit at much higher values. Finally, we discuss an observational project designed to measure the mass flux density from the blue sequence to the red sequence across the so-called green valley. We obtain the deepest spectra ever observed of green valley galaxies at intermediate redshifts (z˜0.8) in order to measure spectral features from which we can measure the star formation histories of individual galaxies. We measure a mass flux ratio that is higher than observed in the local

  20. Spatially Resolved Star Formation Main Sequence of Galaxies

    NASA Astrophysics Data System (ADS)

    Cano-Díaz, M.; Sánchez, S. F.; Zibetti, S.; Ascaribar, Y.; Bland-Hawthorn, J.; Ziegler, B.; González-Delgado, R. M.; Walcher, C. J.; García-Benito, R.; Mast, D.; Mendoza-Pérez, M. A.; Falcón-Barroso, J.; Galbany, L.; Husemann, B.; Kehring, C.; Marino, R. A.; Sánchez-Blázquez, P.; López-Cobá, C.; López-Sánchez, A. R.; Vilchez, J. M.

    2016-06-01

    The relation known as Star Formation Main Sequence (SFMS) of galaxies is defined in terms of stellar mass and star formation rate. This approximately linear relation has been proven to be tight and holds for several star formation indicators at local and at high redshifts. In this talk I will show recent results about our first attempts to study the Spatially Resolved SFMS, using integral field spectroscopic data, coming primarily from the CALIFA survey. I will present as a main result that a local SFMS is found with a slope and zero point of 0.72 +/ 0.04, and -7.95 +/ 0.29 respectively. I will also discuss the influence of characteristics such as environment and morphology in the relation. Finally I will present some extensions of these results for data com in from the MaNGA survey.

  1. Star formation and evolution in spiral galaxies.

    NASA Technical Reports Server (NTRS)

    Quirk, W. J.; Tinsley, B. M.

    1973-01-01

    Evolutionary models for regions of M31 and M33 and the solar neighborhood are based on a stellar birthrate suggested by the dynamics of spiral structure: we assume that stars are formed very efficiently until the gas content reaches equilibrium at its present value, which takes about 1 b.y.; thereafter, the birthrate just equals the rate at which gas enters the system from stellar mass-loss or infall of intergalactic matter. Each model represents an average around a cylindrical-shell-shaped region, which is homogeneous and closed except for possible infall. The disk and spiral-arm populations only are considered. Each star is followed in the H-R diagram from the main sequence to death as an invisible remnant. Integrated magnitudes, colors, mass-to-light ratio (M/L), gas content, helium and metal abundance (Z), are computed in steps of 1 b.y.

  2. Mapping Extinction and Star Formation Rates of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ridenour, Anthony; Takamiya, M.

    2010-01-01

    Star Formation Rate (SFR) is a physical characteristic of galaxies vital to our understanding of such problems as the evolution of the Universe. In computing SFRs obscuring dust systematically lowers them at shorter wavelengths compared to longer wavelengths. This issue of dust extinction has been handled well by multi-wavelength studies of nearby galaxies. Star Formation Rate measurements of distant galaxies are currently reliant on the emission of visible spectroscopic lines like Hα and [OII] after correction for extinction. However, if the visible light is completely obscured an incorrect assumption may be drawn; namely that there is neither SFR nor extinction. The work purposed here is to calibrate the SFR ascertained from Hα emission in nearby galaxies and compare it to radio and infrared emission. The Balmer decrement, or the ratio of Hβ to Hα emission, used to determine extinction, will also be studied and compared to infrared images. 30 nearby galaxies will be sampled and 2-D maps and Balmer decrements will be formed to do two things: measure SFRs and determine differences between Hα and infrared emission, and explore in what ways this difference corresponds with such things as the radio SFR, galaxy luminosity and morphological type. The accuracy of Hα as a SFR indicator and its determination as a sound tool in measuring SFRs of distant galaxies can both be quantified by interpreting these maps. Dr. Marianne Takamiya, the principal investigator and my mentor, secured funds through a grant to the University of Hawai'i at Hilo from The Research Corporation for Science Advancement Cottrell College Science Awards for this research.

  3. VARIABILITY AND STAR FORMATION IN LEO T, THE LOWEST LUMINOSITY STAR-FORMING GALAXY KNOWN TODAY

    SciTech Connect

    Clementini, Gisella; Cignoni, Michele; Ramos, Rodrigo Contreras; Federici, Luciana; Tosi, Monica; Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria E-mail: rodrigo.contreras@oabo.inaf.it E-mail: monica.tosi@oabo.inaf.it E-mail: ripepi@na.astro.it E-mail: ilaria@na.astro.it

    2012-09-10

    We present results from the first combined study of variable stars and star formation history (SFH) of the Milky Way 'ultra-faint' dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy. They include one fundamental-mode RR Lyrae star and 11 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, of which one about 10 Gyr ago produced the RR Lyrae star. A new estimate of the distance to Leo T of 409{sup +29}{sub -27} kpc (distance modulus of 23.06 {+-} 0.15 mag) was derived from the galaxy's RR Lyrae star. Our V, V - I color-magnitude diagram (CMD) of Leo T reaches V {approx} 29 mag and shows features typical of a galaxy in transition between dwarf irregular and dwarf spheroidal types. A quantitative analysis of the SFH, based on the comparison of the observed V, V - I CMD with the expected distribution of stars for different evolutionary scenarios, confirms that Leo T has a complex SFH dominated by two enhanced periods about 1.5 and 9 Gyr ago, respectively. The distribution of stars and gas shows that the galaxy has a fairly asymmetric structure.

  4. The case against bimodal star formation in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Gibson, B. K.

    1996-02-01

    We consider the present-day photometric and chemical properties of elliptical galaxies, adopting the bimodal star formation scenario of Elbaz, Arnaud & Vangioni-Flam. These models utilize an initial mass function (IMF) biased heavily toward massive stars during the early phases of galactic evolution, leading to early Type II supernovae-driven galactic winds. A subsequent lengthy, milder star formation phase with a normal IMF ensues, supposedly responsible for the stellar population observed today. Based upon chemical evolution arguments alone, this scenario has been invoked to explain the observed metal mass, and their abundance ratios, in the intracluster medium of galaxy clusters. Building upon the recent compilations of metallicity-dependent isochrones for simple stellar populations, we have constructed a coupled photometric and chemical evolution package for composite stellar populations in order to quantify the effects of such a model upon the photochemical properties of the resultant elliptical galaxies. We demonstrate that these predicted properties are incompatible with those observed at the current epoch.

  5. Hierarchical star formation across the ring galaxy NGC 6503

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Thilker, David; Elmegreen, Bruce G.; Elmegreen, Debra M.; Calzetti, Daniela; Lee, Janice C.; Adamo, Angela; Aloisi, Alessandra; Cignoni, Michele; Cook, David O.; Dale, Daniel A.; Gallagher, John S.; Grasha, Kathryn; Grebel, Eva K.; Davó, Artemio Herrero; Hunter, Deidre A.; Johnson, Kelsey E.; Kim, Hwihyun; Nair, Preethi; Nota, Antonella; Pellerin, Anne; Ryon, Jenna; Sabbi, Elena; Sacchi, Elena; Smith, Linda J.; Tosi, Monica; Ubeda, Leonardo; Whitmore, Brad

    2015-10-01

    We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep Hubble Space Telescope photometry obtained with the Legacy ExtraGalactic UV Survey. We apply a contour-based map analysis technique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95 per cent being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviours, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of ˜1.7 for length-scales between ˜20 pc and 2.5 kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5 kpc. About 60 per cent of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behaviour in a time-scale of ˜60 Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.

  6. Gravitational star formation thresholds and gas density in three galaxies

    NASA Technical Reports Server (NTRS)

    Oey, M. S.; Kennicutt, R. C., Jr.

    1990-01-01

    It has long been held that the star formation rate (SFR) may be described as a power law of the gas density, p(exp n), as given by Schmidt (1959). However, this relation has as yet remained poorly defined and is likewise poorly understood. In particular, most studies have been investigations of global gas and star formation properties of galaxies, due to lack of adequate high-resolution data for detailed studies of individual galaxies. The three spiral galaxies in this study have published maps of both H2 (as traced by CO), and HI, thereby enabling the authors to investigate the relationship between total gas surface density and SFR. The purpose of the present investigation is the comparison of spatially-resolved total surface gas density in three galaxies (NGC 6946, M51, and M83) to sigma sub c as given by the above model. CO, HI and H alpha data for NGC 6946 were taken from Tacconi-Garman (1988), and for M51 and M83 from Lord (1987). The authors used a CO-H2 conversion of N(H2)/I sub CO(exp cos i = 2.8 x 10(exp 20) atoms cm(-2)/(K kms(-1), and summed the H2 and HI data for each galaxy to obtain the total hydrogen gas density. This total was then multiplied by a factor of 1.36 to include the contribution of helium to the total surface gas density. The authors assumed distances to NGC 6946, M51, and M83 to be 6.0, 9.6, and 8.9 Mpc respectively, with inclination angles of 30, 20, and 26 degrees. H alpha flux was used as the measure of SFR for NGC 6946, and SFR for the remaining two galaxies was taken directly from Lord as computed from H alpha measurements. The results of these full-disk studies thus show a remarkable correlation between the total gas density and the threshold densities given by the gravitational stability criterion. In particular, the threshold density appears to mark a lower boundary to the range of gas densities in these galaxies, which may have consequence in determining appropriate models for star formation and gas dynamics. More evidence is

  7. Photoionising feedback and the star formation rates in galaxies

    NASA Astrophysics Data System (ADS)

    MacLachlan, J. M.; Bonnell, I. A.; Wood, K.; Dale, J. E.

    2015-01-01

    Aims: We investigate the effects of ionising photons on accretion and stellar mass growth in a young star forming region, using a Monte Carlo radiation transfer code coupled to a smoothed particle hydrodynamics (SPH) simulation. Methods: We introduce the framework with which we correct stellar cluster masses for the effects of photoionising (PI) feedback and compare to the results of a full ionisation hydrodynamics code. Results: We present results of our simulations of star formation in the spiral arm of a disk galaxy, including the effects of photoionising radiation from high mass stars. We find that PI feedback reduces the total mass accreted onto stellar clusters by ≈23% over the course of the simulation and reduces the number of high mass clusters, as well as the maximum mass attained by a stellar cluster. Mean star formation rates (SFRs) drop from SFRcontrol = 4.2 × 10-2 M⊙ yr-1 to SFRMCPI = 3.2 × 10-2 M⊙ yr-1 after the inclusion of PI feedback with a final instantaneous SFR reduction of 62%. The overall cluster mass distribution appears to be affected little by PI feedback. Conclusions: We compare our results to the observed extra-galactic Schmidt-Kennicutt relation and the observed properties of local star forming regions in the Milky Way and find that internal photoionising (PI) feedback is unlikely to reduce SFRs by more than a factor of ≈2 and thus may play only a minor role in regulating star formation.

  8. Far-infrared emission and star formation in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Bandiera, R.

    1989-01-01

    The correlations between the emission in the far-IR, H-alpha, and blue in a sample of normal spiral galaxies are investigated. It is found that the luminosities in these three bands are all tightly correlated, although both the strength of the correlations and their functional dependencies are a function of the galaxies' morphological types. The best-fit power laws to these correlations are different for the comparison of different quantities and deviate significantly from linearity in some cases, implying the presence of additional emission mechanisms not related to the general increase of luminosity with galactic mass. Clear evidence is found of two independent effects in the incidence of warm far-IR emission in late-type spirals. One is a luminosity effect shown by the presence of excess far-IR relative to H-alpha or optical emission in the more luminous galaxies. The other is a dependence on widespread star-formation activity.

  9. Galaxy Structure as a Driver of the Star Formation Sequence Slope and Scatter

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Franx, Marijn; Bezanson, Rachel; Brammer, Gabriel B.; van Dokkum, Pieter G.; Kriek, Mariska T.; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Rigby, Jane R.; Rix, Hans-Walter; Skelton, Rosalind E.; van der Wel, Arjen; Wuyts, Stijn

    2015-09-01

    It is well established that (1) star-forming galaxies follow a relation between their star formation rate (SFR) and stellar mass ({M}\\star ), the “star formation sequence,” and (2) the SFRs of galaxies correlate with their structure, where star-forming galaxies are less concentrated than quiescent galaxies at fixed mass. Here, we consider whether the scatter and slope of the star formation sequence is correlated with systematic variations in the Sérsic indices, n, of galaxies across the SFR-{M}\\star plane. We use a mass-complete sample of 23,848 galaxies at 0.5 < z < 2.5 selected from the 3D-HST photometric catalogs. Galaxy light profiles parameterized by n are based on Hubble Space Telescope Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey near-infrared imaging. We use a single SFR indicator empirically calibrated from stacks of Spitzer/MIPS 24 μm imaging, adding the unobscured and obscured star formation. We find that the scatter of the star formation sequence is related in part to galaxy structure; the scatter due to variations in n at fixed mass for star-forming galaxies ranges from 0.14 ± 0.02 dex at z ˜ 2 to 0.30 ± 0.04 dex at z < 1. While the slope of the {log} {SFR}-{log} {M}\\star relation is of order unity for disk-like galaxies, galaxies with n > 2 (implying more dominant bulges) have significantly lower {SFR}/{M}\\star than the main ridgeline of the star formation sequence. These results suggest that bulges in massive z ˜ 2 galaxies are actively building up, where the stars in the central concentration are relatively young. At z < 1, the presence of older bulges within star-forming galaxies lowers global {SFR}/{M}\\star , decreasing the slope and contributing significantly to the scatter of the star formation sequence.

  10. STAR FORMATION ACTIVITY IN CLASH BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-10

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M{sub ⊙} yr{sup −1}. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ∼350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ∼0.5–1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions.

  11. Jet induced star formation in centrally dominant galaxies?

    NASA Technical Reports Server (NTRS)

    Mcnamara, Brian R.

    1993-01-01

    Using U-I CCD color maps of two centrally dominant cluster galaxies, we find unusual color structures which may be due to star formation which has been induced by their radio sources. These objects, located in the clusters A1795 and A2597, have blue central colors to radii of 20 kpc, spatially extended emission-line structures, and powerful radio sources. They reside at the centers of cooling flows with mass-accretion rates which are estimated to be approximately greater than 300 solar mass/yr. The regions of bluest local color are superposed on or along their radio-source structures. Our observations suggest that the radio sources associated with these objects may be inducing massive star formation in their central 20 kpc. The star formation may be the result of the radio plasma interacting with the warm emission-line gas and dense, x-ray emitting filaments similar to those recently discovered in two other clusters with the ROSAT Observatory. Since radio jets are likely to be transient, this may help to explain the scatter in the correlations between color and mass-accretion rate, although other factors may also contribute. Alternatively, scattered radiation from a hidden active nucleus or recent mergers may be responsible for the color structure. The color and radio properties of these objects are qualitatively similar but smaller in luminosity and spatial extent to those found in high redshift radio galaxies. Our observations of galaxies at z approximately = 0.06-0.1 show that processes similar to 'the alignment effect' found in high redshift radio galaxies occur at more recent epochs.

  12. Star Formation Efficiency in the Cool Cores of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    McDonald, Michael; Veilleux, Sylvain; Rupke, David S. N.; Mushotzky, Richard; Reynolds, Christopher

    2011-06-01

    We have assembled a sample of high spatial resolution far-UV (Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel) and Hα (Maryland-Magellan Tunable Filter) imaging for 15 cool core galaxy clusters. These data provide a detailed view of the thin, extended filaments in the cores of these clusters. Based on the ratio of the far-UV to Hα luminosity, the UV spectral energy distribution, and the far-UV and Hα morphology, we conclude that the warm, ionized gas in the cluster cores is photoionized by massive, young stars in all but a few (A1991, A2052, A2580) systems. We show that the extended filaments, when considered separately, appear to be star forming in the majority of cases, while the nuclei tend to have slightly lower far-UV luminosity for a given Hα luminosity, suggesting a harder ionization source or higher extinction. We observe a slight offset in the UV/Hα ratio from the expected value for continuous star formation which can be modeled by assuming intrinsic extinction by modest amounts of dust (E(B - V) ~ 0.2) or a top-heavy initial mass function in the extended filaments. The measured star formation rates vary from ~0.05 M sun yr-1 in the nuclei of non-cooling systems, consistent with passive, red ellipticals, to ~5 M sun yr-1 in systems with complex, extended, optical filaments. Comparing the estimates of the star formation rate based on UV, Hα, and infrared luminosities to the spectroscopically determined X-ray cooling rate suggests a star formation efficiency of 14+18 - 8%. This value represents the time-averaged fraction, by mass, of gas cooling out of the intracluster medium, which turns into stars and agrees well with the global fraction of baryons in stars required by simulations to reproduce the stellar mass function for galaxies. This result provides a new constraint on the efficiency of star formation in accreting systems.

  13. The history of star formation in nearby dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel Ray

    2010-11-01

    We present detailed analysis of color-magnitude diagrams (CMDs) of resolved stellar populations in nearby dwarf galaxies based on observations taken with the Hubble Space Telescope (HST). From the positions of individual stars on a CMD, we are able to derive the star formation histories (SFHs), i.e., the star formation rate (SFR) as a function of time and metallicity, of the observed stellar populations. Specifically, we apply this technique to a number of nearby dwarf galaxies to better understand the mechanisms driving their evolution. The ACS Nearby Galaxy Survey Treasury program (ANGST) provides multi-color photometry of resolved stars in ˜ 60 nearby dwarf galaxies from images taken with HST. This sample contains 12 dSph, 5 dwarf spiral, 28 dIrr, 12 dSph/dIrr (transition), and 3 tidal dwarf galaxies. The sample spans a range of ˜ 10 in MB and covers a wide range of environments, from highly interacting to truly isolated. From the best fit lifetime SFHs we find three significant results: (1) the average dwarf galaxy formed ˜ 60% of its stars by z ˜ 2 and 70% of its stars by z ˜ 1, regardless of morphological type, (2) the only statistically significant difference between the SFHs of different morphological types is within the most recent 1 Gyr (excluding tidal dwarf galaxies), and (3) the SFHs are complex and the mean values are inconsistent with simple SFH models, e.g., single epoch SF or constant SFH. We then present the recent ( ≲ 1 Gyr) SFHs of nine M81 Group Dwarf Galaxies. Comparing the SFHs, birthrate parameters, fraction of stars formed per time interval, and spatial distribution of stellar components as a function of luminosity, we find only minor differences in SF characteristics among the M81 Group dIs despite a wide range of physical properties. We extend our comparison to select dIs in the Local Group (LG), with similar quality photometry, and again find only minor differences in SF parameters. The lack of a clear trend in SF parameters over

  14. Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2008-12-01

    Preface; SOC and LOC; Participants; Life at the conference; Conference photo; Session I. Population III and Metal-Free Star Formation: 1. Open questions in the study of population III star formation S. C. O. Glover, P. C. Clark, T. H. Greif, J. L. Johnson, V. Bromm, R. S. Klessen and A. Stacy; 2. Protostar formation in the early universe Naoki Yoshida; 3. Population III.1 stars: formation, feedback and evolution of the IMF Jonathan C. Tan; 4. The formation of the first galaxies and the transition to low-mass star formation T. H. Greif, D. R. G. Schleicher, J. L. Johnson, A.-K. Jappsen, R. S. Klessen, P. C. Clark, S. C. O. Glover, A. Stacy and V. Bromm; 5. Low-metallicity star formation: the characteristic mass and upper mass limit Kazuyuki Omukai; 6. Dark stars: dark matter in the first stars leads to a new phase of stellar evolution Katherine Freese, Douglas Spolyar, Anthony Aguirre, Peter Bodenheimer, Paolo Gondolo, J. A. Sellwood and Naoki Yoshida; 7. Effects of dark matter annihilation on the first stars F. Iocco, A. Bressan, E. Ripamonti, R. Schneider, A. Ferrara and P. Marigo; 8. Searching for Pop III stars and galaxies at high redshift Daniel Schaerer; 9. The search for population III stars Sperello di Serego Alighieri, Jaron Kurk, Benedetta Ciardi, Andrea Cimatti, Emanuele Daddi and Andrea Ferrara; 10. Observational search for population III stars in high-redshift galaxies Tohru Nagao; Session II. Metal Enrichment, Chemical Evolution, and Feedback: 11. Cosmic metal enrichment Andrea Ferrara; 12. Insights into the origin of the galaxy mass-metallicity relation Henry Lee, Eric F. Bell and Rachel S. Somerville; 13. LSD and AMAZE: the mass-metallicity relation at z > 3 F. Mannucci and R. Maiolino; 14. Three modes of metal-enriched star formation at high redshift Britton D. Smith, Matthew J. Turk, Steinn Sigurdsson, Brian W. O'Shea and Michael L. Norman; 15. Primordial supernovae and the assembly of the first galaxies Daniel Whalen, Bob Van Veelen, Brian W. O

  15. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    SciTech Connect

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. We find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r-.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  16. The star formation rates of active galactic nuclei host galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  17. The evolution of galaxies. III - Metal-enhanced star formation

    NASA Technical Reports Server (NTRS)

    Talbot, R. J., Jr.; Arnett, W. D.

    1973-01-01

    The problem of the paucity of low-metal-abundance low-mass stars is discussed. One alternative to the variable-initial-mass-function (VIMF) solution is proposed. It is shown that this solution - metal-enhanced star formation - satisfies the classical test which prompted the VIMF hypothesis. Furthermore, with no additional parameters it provides improved fits to other tests - e.g., inhomogeneities in the abundances in young stars, concordance of all nucleo-cosmochronologies, and a required yield of heavy-element production which is consistent with current stellar evolution theory. In this model the age of the Galaxy is 18.6 plus or minus 5.7 b.y.

  18. BURST OF STAR FORMATION DRIVES BUBBLE IN GALAXY'S CORE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These NASA Hubble Space Telescope snapshots reveal dramatic activities within the core of the galaxy NGC 3079, where a lumpy bubble of hot gas is rising from a cauldron of glowing matter. The picture at left shows the bubble in the center of the galaxy's disk. The structure is more than 3,000 light-years wide and rises 3,500 light-years above the galaxy's disk. The smaller photo at right is a close-up view of the bubble. Astronomers suspect that the bubble is being blown by 'winds' (high-speed streams of particles) released during a burst of star formation. Gaseous filaments at the top of the bubble are whirling around in a vortex and are being expelled into space. Eventually, this gas will rain down upon the galaxy's disk where it may collide with gas clouds, compress them, and form a new generation of stars. The two white dots just above the bubble are probably stars in the galaxy. The close-up reveals that the bubble's surface is lumpy, consisting of four columns of gaseous filaments that tower above the galaxy's disk. The filaments disperse at a height of 2,000 light-years. Each filament is about 75 light-years wide. Velocity measurements taken by the Canada-France-Hawaii Telescope in Hawaii show that the gaseous filaments are ascending at more than 4 million miles an hour (6 million kilometers an hour). According to theoretical models, the bubble formed when ongoing winds from hot stars mixed with small bubbles of very hot gas from supernova explosions. Observations of the core's structure by radio telescopes indicate that those processes are still active. The models suggest that this outflow began about a million years ago. They occur about every 10 million years. Eventually, the hot stars will die, and the bubble's energy source will fade away. Astronomers have seen evidence of previous outbursts from radio and X-ray observations. Those studies show rings of dust and gas and long plumes of material, all of which are larger than the bubble. NGC 3079 is 50

  19. The history of star formation in nearby dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel Ray

    2010-11-01

    We present detailed analysis of color-magnitude diagrams (CMDs) of resolved stellar populations in nearby dwarf galaxies based on observations taken with the Hubble Space Telescope (HST). From the positions of individual stars on a CMD, we are able to derive the star formation histories (SFHs), i.e., the star formation rate (SFR) as a function of time and metallicity, of the observed stellar populations. Specifically, we apply this technique to a number of nearby dwarf galaxies to better understand the mechanisms driving their evolution. The ACS Nearby Galaxy Survey Treasury program (ANGST) provides multi-color photometry of resolved stars in ˜ 60 nearby dwarf galaxies from images taken with HST. This sample contains 12 dSph, 5 dwarf spiral, 28 dIrr, 12 dSph/dIrr (transition), and 3 tidal dwarf galaxies. The sample spans a range of ˜ 10 in MB and covers a wide range of environments, from highly interacting to truly isolated. From the best fit lifetime SFHs we find three significant results: (1) the average dwarf galaxy formed ˜ 60% of its stars by z ˜ 2 and 70% of its stars by z ˜ 1, regardless of morphological type, (2) the only statistically significant difference between the SFHs of different morphological types is within the most recent 1 Gyr (excluding tidal dwarf galaxies), and (3) the SFHs are complex and the mean values are inconsistent with simple SFH models, e.g., single epoch SF or constant SFH. We then present the recent ( ≲ 1 Gyr) SFHs of nine M81 Group Dwarf Galaxies. Comparing the SFHs, birthrate parameters, fraction of stars formed per time interval, and spatial distribution of stellar components as a function of luminosity, we find only minor differences in SF characteristics among the M81 Group dIs despite a wide range of physical properties. We extend our comparison to select dIs in the Local Group (LG), with similar quality photometry, and again find only minor differences in SF parameters. The lack of a clear trend in SF parameters over

  20. Are We Correctly Measuring the Star Formation in Galaxies?

    NASA Astrophysics Data System (ADS)

    McQuinn, K. B. W.; Skillman, E. D.; Dolphin, A. E.; Mitchell, N. P.

    2016-06-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV-SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is 53% larger than previous relations.

  1. The anatomy of a star-forming galaxy: pressure-driven regulation of star formation in simulated galaxies

    NASA Astrophysics Data System (ADS)

    Benincasa, S. M.; Wadsley, J.; Couchman, H. M. P.; Keller, B. W.

    2016-11-01

    We explore the regulation of star formation in star-forming galaxies through a suite of high-resolution isolated galaxy simulations. We use the smoothed particle hydrodynamics code GASOLINE, including photoelectric heating and metal cooling, which produces a multi-phase interstellar medium (ISM). We show that representative star formation and feedback sub-grid models naturally lead to a weak, sub-linear dependence between the amount of star formation and changes to star formation parameters. We incorporate these sub-grid models into an equilibrium pressure-driven regulation framework. We show that the sub-linear scaling arises as a consequence of the non-linear relationship between scaleheight and the effective pressure generated by stellar feedback. Thus, simulated star formation regulation is sensitive to how well vertical structure in the ISM is resolved. Full galaxy discs experience density waves which drive locally time-dependent star formation. We develop a simple time-dependent, pressure-driven model that reproduces the response extremely well.

  2. StarPy: Quenched star formation history parameters of a galaxy using MCMC

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Marshall, P. J.; Bamford, S.; Fortson, L.; Kaviraj, S.; Masters, K. L.; Melvin, T.; Nichol, R. C.; Skibba, R. A.; Willett, K. W.

    2016-09-01

    StarPy derives the quenching star formation history (SFH) of a single galaxy through the Bayesian Markov Chain Monte Carlo method code emcee (ascl:1303.002). The sample function implements the emcee EnsembleSampler function for the galaxy colors input. Burn-in is run and calculated for the length specified before the sampler is reset and then run for the length of steps specified. StarPy provides the ability to use the look-up tables provided or creating your own.

  3. Galaxy Zoo and ALFALFA: atomic gas and the regulation of star formation in barred disc galaxies

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.; Nichol, Robert C.; Haynes, Martha P.; Keel, William C.; Lintott, Chris; Simmons, Brooke; Skibba, Ramin; Bamford, Steven; Giovanelli, Riccardo; Schawinski, Kevin

    2012-08-01

    We study the observed correlation between atomic gas content and the likelihood of hosting a large-scale bar in a sample of 2090 disc galaxies. Such a test has never been done before on this scale. We use data on morphologies from the Galaxy Zoo project and information on the galaxies' H I content from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) blind H I survey. Our main result is that the bar fraction is significantly lower among gas-rich disc galaxies than gas-poor ones. This is not explained by known trends for more massive (stellar) and redder disc galaxies to host more bars and have lower gas fractions: we still see at fixed stellar mass a residual correlation between gas content and bar fraction. We discuss three possible causal explanations: (1) bars in disc galaxies cause atomic gas to be used up more quickly, (2) increasing the atomic gas content in a disc galaxy inhibits bar formation and (3) bar fraction and gas content are both driven by correlation with environmental effects (e.g. tidal triggering of bars, combined with strangulation removing gas). All three explanations are consistent with the observed correlations. In addition our observations suggest bars may reduce or halt star formation in the outer parts of discs by holding back the infall of external gas beyond bar co-rotation, reddening the global colours of barred disc galaxies. This suggests that secular evolution driven by the exchange of angular momentum between stars in the bar, and gas in the disc, acts as a feedback mechanism to regulate star formation in intermediate-mass disc galaxies. This publication has been made possible by the participation of more than 200 000 volunteers in the Galaxy Zoo project. Their contributions are individually acknowledged at South East Physics Network, E-mail: karen.masters@port.ac.ukEinstein fellow.

  4. A Test of Star Formation Laws in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan C.

    2010-02-01

    We use observations of the radial profiles of the mass surface density of total, Σ g , and molecular, ΣH2, gas rotation velocity and star formation rate surface density, Σsfr, of the molecular dominated regions of 12 disk galaxies from Leroy et al. to test several star formation laws: a "Kennicutt-Schmidt power law," Σsfr = Ag Σ1.5 g,2; a "constant molecular law," Σsfr = A H2ΣH2,2 the "turbulence-regulated laws" of Krumholz & McKee (KM) and Krumholz, McKee, & Tumlinson (KMT), a "gas-Ω law," Σsfr = B ΩΣ g Ω and a shear-driven "giant molecular cloud (GMC) collisions law," Σsfr = B CCΣ g Ω(1 - 0.7β), where β ≡ d ln v circ/d ln r. We find the constant molecular law, KMT turbulence law, and GMC collision law are the most accurate, with an rms error of a factor of 1.5 if the normalization constants are allowed to vary between galaxies. Of these three laws, the GMC collision law does not require a change in physics to account for the full range of star formation activity seen from normal galaxies to circumnuclear starbursts. A single global GMC collision law with B CC = 8.0 × 10-3, i.e., a gas consumption time of 20 orbital times for β = 0, yields an rms error of a factor of 1.8.

  5. A TEST OF STAR FORMATION LAWS IN DISK GALAXIES

    SciTech Connect

    Tan, Jonathan C.

    2010-02-10

    We use observations of the radial profiles of the mass surface density of total, {sigma} {sub g}, and molecular, {sigma}{sub H2}, gas rotation velocity and star formation rate surface density, {sigma}{sub sfr}, of the molecular dominated regions of 12 disk galaxies from Leroy et al. to test several star formation laws: a 'Kennicutt-Schmidt power law', {sigma}{sub sfr} = A{sub g} {sigma}{sup 1.5} {sub g,2}; a 'constant molecular law', {sigma}{sub sfr} = A {sub H2}{sigma}{sub H2,2}; the 'turbulence-regulated laws' of Krumholz and McKee (KM) and Krumholz, McKee, and Tumlinson (KMT), a 'gas-{omega} law', {sigma}{sub sfr} = B {sub {omega}}{sigma} {sub g}{omega}; and a shear-driven 'giant molecular cloud (GMC) collisions law', {sigma}{sub sfr} = B {sub CC}{sigma} {sub g}{omega}(1 - 0.7{beta}), where {beta} {identical_to} d ln v {sub circ}/d ln r. We find the constant molecular law, KMT turbulence law, and GMC collision law are the most accurate, with an rms error of a factor of 1.5 if the normalization constants are allowed to vary between galaxies. Of these three laws, the GMC collision law does not require a change in physics to account for the full range of star formation activity seen from normal galaxies to circumnuclear starbursts. A single global GMC collision law with B {sub CC} = 8.0 x 10{sup -3}, i.e., a gas consumption time of 20 orbital times for {beta} = 0, yields an rms error of a factor of 1.8.

  6. STAR FORMATION AND RELAXATION IN 379 NEARBY GALAXY CLUSTERS

    SciTech Connect

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.

    2015-06-10

    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M{sub r} < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters.

  7. ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z {approx} 3

    SciTech Connect

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Lutz, Dieter; Nordon, Raanan; Berta, Stefano; Genzel, Reinhard; Magnelli, Benjamin; Poglitsch, Albrecht; Altieri, Bruno; Andreani, Paola; Aussel, Herve; Daddi, Emanuele; Elbaz, David; Cimatti, Andrea; Koekemoer, Anton M.; Maiolino, Roberto; McGrath, Elizabeth J.

    2011-09-01

    We compare multi-wavelength star formation rate (SFR) indicators out to z {approx} 3 in the GOODS-South field. Our analysis uniquely combines U to 8 {mu}m photometry from FIREWORKS, MIPS 24 {mu}m and PACS 70, 100, and 160 {mu}m photometry from the PEP, and H{alpha} spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosity-independent conversion from 24 {mu}m to total infrared luminosity yields estimates of L{sub IR} that are in the median consistent with the L{sub IR} derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low-to-intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SFR{sub IR}/SFR{sub UV} ratios, typically occuring at the highest SFRs (SFR{sub UV+IR} {approx}> 100 M{sub sun} yr{sup -1}) and redshifts (z {approx}> 2.5) probed. Finally, we confirm that H{alpha}-based SFRs at 1.5 < z < 2.6 are consistent with SFR{sub SED} and SFR{sub UV+IR} provided extra attenuation toward H II regions is taken into account (A{sub V,neb} = A{sub V,continuum}/0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from spectral energy distribution (SED) modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backward in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations and reduces toward older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.

  8. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    SciTech Connect

    Cole, Andrew A.; Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; McConnachie, Alan W.; Brooks, Alyson M.; Leaman, Ryan E-mail: drw@ucsc.edu E-mail: skillman@astro.umn.edu E-mail: abrooks@physics.rutgers.edu

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  9. Self-regulated star formation in the galaxy

    NASA Technical Reports Server (NTRS)

    Franco, J.; Cox, D. P.

    1983-01-01

    Assuming that star formation regions are supported against gravity by winds from low mass young objects, the stellar birthrate obtained for winds interacting in the momentum conservation stage is correlated with the molecular gas density of the parent fragment as n to the 13/8 power or n to the 5/8 power, respectively, for rates/unit volume or rates/unit mass. Birthrates derived from protostellar rotationally driven winds are in good agreement with the observed star production in the cloud B18. With the aid of observed Taurus-Auriga complex properties, the present model is extrapolated to the Galaxy as a whole, yielding a Milky Way predicted average rate that is in good agreement with standard estimates based on observations of the solar neighborhood.

  10. ACTIVE GALACTIC NUCLEI AND THE TRUNCATION OF STAR FORMATION IN K+A GALAXIES

    SciTech Connect

    Brown, Michael J. I.; Palamara, David; Moustakas, John; Caldwell, Nelson; Cool, Richard J.; Zaritsky, Dennis; Dey, Arjun; Jannuzi, Buell T.; Hickox, Ryan C.; Murray, Stephen S.

    2009-09-20

    We have searched for active galactic nuclei (AGNs) in K+A galaxies, using multiwavelength imaging and spectroscopy in the Booetes field of the NOAO Deep Wide-Field Survey. The K+A galaxies, which have had their star formation rapidly truncated, are selected via their strong Balmer absorption lines and weak Halpha emission. Our sample consists of 24 K+A galaxies selected from 6594 0.10 < z < 0.35 galaxies brighter than I = 20 with optical spectroscopy from the AGN and Galaxy Evolution Survey. Two thirds of the K+A galaxies are likely ongoing galaxy mergers, with nearby companion galaxies or tidal tails. Galaxy mergers may be responsible for the truncation of star formation, or we are observing the aftermath of merger triggered starbursts. As expected, the optical colors of K+A galaxies largely fall between blue galaxies with ongoing star formation and red passive galaxies. However, only 1% of the galaxies with colors between the red and blue populations are K+A galaxies, and we conclude that the truncation of star formation in K+A galaxies must have been unusually abrupt ({approx}<100 Myr). We examined the AGN content of K+A galaxies with both optical emission-line ratios (BPT diagrams) and Chandra X-ray imaging. At least half of all K+A galaxies display the optical emission-line ratios of AGNs, and a third of M{sub R} < -22 K+A galaxies host AGNs with X-ray luminosities of {approx}10{sup 42} erg s{sup -1}. The faintest K+A galaxies do not show clear evidence for hosting AGNs, having emission-line ratios consistent with photoionization by massive stars and few X-ray detections. We speculate that two mechanisms may be responsible for the truncation of star formation in K+A galaxies, with AGN feedback only playing a role in M{sub R} {approx}< -20.5 galaxies.

  11. Star Formation in Low-Mass Star-Forming Galaxies at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Gallego, Jesus; Rodriguez-Muñoz, Lucía; Pacifici, Camilla; Tresse, Laurence; Charlot, Stéphane; Gil de Paz, Armando; Gomez-Guijarro, Carlos

    2015-08-01

    Dwarf galaxies play a key role in galaxy formation and evolution: (1) hierarchical models predict that low-mass systems merged to form massive galaxies (building block paradigm; Dekel & Silk 1986); (2) dwarf systems might have been responsible for the reionization of the Universe (Wyithe & Loeb 2006); (3) theoretical models are particularly sensitive to the density of low-mass systems at diferent redshifts (Mamon et al. 2011), being one of the key science cases for the future E-ELT (Evans et al. 2013). While the history of low-mass dark matter halos is relatively well understood, the formation history of dwarf galaxies is still poorly reproduced by the models due to the distinct evolution of baryonic and dark matter.We present Star Formation properties of a sample of low-mass Star-Forming Galaxies (LMSFGs; 7.3 < log M∗/Mo < 8.0, at 0.3 < zspec < 0.9) selected by photometric stellar mass and apparent magnitude. The SFRs and overall properties were obtained through the analysis of their spectral energy distributions based on (1) HST and ground-based multi-broadband photometry and (2) deep spectroscopy from VLT and GTC telescopes.The SFRs and stellar masses derived for both samples place our targets on the standard main sequence of star-forming galaxies, but extending the sequence at least one dex to low mass systems.

  12. Star Formation Activity in CLASH Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  13. A study of star formation in the disks of Sa galaxies

    SciTech Connect

    Caldwell, N.; Kennicutt, R.; Phillips, A.C.; Schommer, R.A. Steward Observatory, Tucson, AZ Washington Univ., Seattle Rutgers Univ., Piscataway, NJ )

    1991-04-01

    This paper compares the luminosity functions of the H II regions in several Sa galaxies with those of later-type galaxies. Broad UV measurements confirm expectations that the knots associated with the regions are very blue; the converse is also true. The H II region luminosity functions are very steep. The total H-alpha luminosities for the galaxies are computed and used to derive the current star-formation rates. It is found that, in contrast to the late-type galaxies, the current star-formation rates in Sa disks are less than one-tenth of the average rate over the last 15 Gyr. The formal depletion times of gas through star formation are longer than a Hubble time. If the star formation in late-type galaxies takes on the character of that currently seen in the Sas, star formation in such galaxies could continue for much longer than the usual estimate of 5 Gyr. 35 refs.

  14. Star Formation in Galaxy Clusters Over the Past 10 Billion Years

    NASA Astrophysics Data System (ADS)

    Tran, Kim-Vy

    2012-01-01

    Galaxy clusters are the largest gravitationally bound systems in the universe and include the most massive galaxies in the universe; this makes galaxy clusters ideal laboratories for disentangling the nature versus nurture aspect of how galaxies evolve. Understanding how galaxies form and evolve in clusters continues to be a fundamental question in astronomy. The ages and assembly histories of galaxies in rich clusters test both stellar population models and hierarchical formation scenarios. Is star formation in cluster galaxies simply accelerated relative to their counterparts in the lower density field, or do cluster galaxies assemble their stars in a fundamentally different manner? To answer this question, I review multi-wavelength results on star formation in galaxy clusters from Coma to the most distant clusters yet discovered at look-back times of 10 billion years (z 2).

  15. CALIBRATING UV STAR FORMATION RATES FOR DWARF GALAXIES FROM STARBIRDS

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Mitchell, Noah P.; Dolphin, Andrew E.

    2015-08-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color–magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV–SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ∼53% larger than previous relations.

  16. The formation of cluster elliptical galaxies as revealed by extensive star formation.

    PubMed

    Stevens, J A; Ivison, R J; Dunlop, J S; Smail, Ian R; Percival, W J; Hughes, D H; Röttgering, H J A; Van Breugel, W J M; Reuland, M

    2003-09-18

    The most massive galaxies in the present-day Universe are found to lie in the centres of rich clusters. They have old, coeval stellar populations suggesting that the bulk of their stars must have formed at early epochs in spectacular starbursts, which should be luminous phenomena when observed at submillimetre wavelengths. The most popular model of galaxy formation predicts that these galaxies form in proto-clusters at high-density peaks in the early Universe. Such peaks are indicated by massive high-redshift radio galaxies. Here we report deep submillimetre mapping of seven high-redshift radio galaxies and their environments. These data confirm not only the presence of spatially extended regions of massive star-formation activity in the radio galaxies themselves, but also in companion objects previously undetected at any wavelength. The prevalence, orientation, and inferred masses of these submillimetre companion galaxies suggest that we are witnessing the synchronous formation of the most luminous elliptical galaxies found today at the centres of rich clusters of galaxies.

  17. Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Melnyk, O.; Karachentseva, V.; Karachentsev, I.

    2015-08-01

    We have considered the star formation properties of 1616 isolated galaxies from the 2MASS XSC (Extended Source Catalog) selected sample (2MIG) with the far-ultraviolet GALEX magnitudes. This sample was then compared with corresponding properties of isolated galaxies from the Local Orphan Galaxies (LOG) catalogue and paired galaxies. We found that different selection algorithms define different populations of isolated galaxies. The population of the LOG catalogue, selected from non-clustered galaxies in the Local Supercluster volume, mostly consists of low-mass spiral and late-type galaxies. The specific star formation rate (SSFR) upper limit in isolated and paired galaxies does not exceed the value of ˜dex(-9.4). This is probably common for galaxies of differing activity and environment (at least at z < 0.06). The fractions of quenched galaxies are nearly twice as high in the paired galaxy sample as in the 2MIG isolated galaxy sample. From the behaviour of (S)SFR versus M* relations we deduced that the characteristic value influencing evolutionary processes is the galaxy mass. However, the environmental influence is notable: paired massive galaxies with logM* > 11.5 have higher (S)SFR than isolated galaxies. Our results suggest that the environment helps to trigger the star formation in the highest mass galaxies. We found that the fraction of AGN in the paired sample is only a little higher than in our isolated galaxy sample. We assume that AGN phenomenon is probably defined by secular galaxy evolution.

  18. Star Formation Histories across the Interacting Galaxy NGC 6872, the Largest-known Spiral

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.; Dwek, Eli; Arendt, Richard G.; de Mello, Duilia F.; Gadotti, Dimitri A.; Urrutia-Viscarra, Fernanda; Mendes de Oliveira, Claudia; Benford, Dominic J.

    2014-11-01

    NGC 6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 μm) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  19. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    NASA Technical Reports Server (NTRS)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  20. Star formation histories across the interacting galaxy NGC 6872, the largest-known spiral

    SciTech Connect

    Eufrasio, Rafael T.; De Mello, Duilia F.; Dwek, Eli; Arendt, Richard G.; Benford, Dominic J.; Gadotti, Dimitri A.; Urrutia-Viscarra, Fernanda; De Oliveira, Claudia Mendes

    2014-11-01

    NGC 6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 μm) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  1. THE STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES IN THE NEARBY UNIVERSE

    SciTech Connect

    Torres-Papaqui, J. P.; Coziol, R.; Ortega-Minakata, R. A.; Neri-Larios, D. M. E-mail: rcoziol@astro.ugto.mx E-mail: daniel@astro.ugto.mx

    2012-08-01

    We have determined the metallicity (O/H) and nitrogen abundance (N/O) of a sample of 122,751 star-forming galaxies (SFGs) from the Data Release 7 of the Sloan Digital Sky Survey. For all these galaxies we have also determined their morphology and obtained a comprehensive picture of their star formation history (SFH) using the spectral synthesis code STARLIGHT. The comparison of the chemical abundance with the SFH allows us to describe the chemical evolution of the SFGs in the nearby universe (z {<=} 0.25) in a manner consistent with the formation of their stellar populations and morphologies. A high fraction (45%) of the SFGs in our sample show an excess abundance of nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen-rich and nitrogen-poor SFGs. Our analysis suggests that they all form their stars through a succession of bursts of star formation extended over a period of few Gyr. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, and have more massive bulges and earlier morphologies than those showing no excess. Contrary to expectation, we find no evidence that the starburst wind efficiency decreases with the mass of the galaxies. As a possible explanation we propose that the loss of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more

  2. Galaxy Structure as a Driver of the Star Formation Sequence Slope and Scatter

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; 3D-HST Collaboration

    2016-01-01

    It is well established that (1) star-forming galaxies follow a relation between their star formation rate (SFR) and stellar mass (M*), the "star formation sequence," and (2) the SFRs of galaxies correlate with their structure, where star-forming galaxies are less concentrated than quiescent galaxies at fixed mass. In this talk, we consider whether the scatter and slope of the star formation sequence is correlated with systematic variations in the Sérsic indices, n, of galaxies across the SFR-M* plane. Using a mass-complete sample of 23,848 galaxies at 0.5 < z < 2.5 selected from the 3D-HST photometric catalogs, we find that the scatter of the star formation sequence is related in part to galaxy structure; the scatter due to variations in n at fixed mass for star-forming galaxies ranges from 0.14 ± 0.02 dex at z ˜ 2 to 0.30 ± 0.04 dex at z < 1. While the slope of the log(SFR)-log(M*) relation is of order unity for disk-like galaxies, galaxies with n > 2 (implying more dominant bulges) have significantly lower SFR/M* than the main ridgeline of the star formation sequence. These results suggest that bulges in massive z ˜ 2 galaxies are actively building up, where the stars in the central concentration are relatively young. At z < 1, the presence of older bulges within star-forming galaxies lowers global SFR/M*, decreasing the slope and contributing significantly to the scatter of the star formation sequence.

  3. The relationship of galaxy morphology to nuclear star formation in non-interacting spiral galaxies

    SciTech Connect

    Pompea, S.M.

    1989-01-01

    Three specific questions concerning the relationship between galactic morphology and infrared properties were addressed for noninteracting galaxies: (1) the scarcity of high infrared luminosity Sa galaxies compared to Sb and Sc; (2) the relationship between the bulge to total luminosity and the infrared properties of early type spirals; and (3) nuclear star formation processes in noninteracting galaxies. These questions were answered using IRAS data, CO (1 to 0) measurements, 2 micron, 10 micron, and visible CCD observations. Only four percent of Sa's in the Revised Shapley-Ames Catalog (RSAC) with B(gamma) is less than 12 have infrared luminosities 1/6th of the ratio for Sb's and Sc's. Less than three Sa's of 166 in the RSAC have nuclear starbursts not associated with interactions or active nuclei. A comparison of neutral hydrogen fluxes and CO fluxes with infrared fluxes implies that molecular cloud formation is inhibited in Sa's, leading to the lack of infrared activity. An investigation of the role of bulges in suppressing star formation in Sa through Sb spirals relied on the photometric observations of Kent, Kodaira, and Cornell and on IRAS infrared observatories. The results indicate that disk star formation is relatively unaffected by bulge size. The hypothesis that high far-infrared luminosities in noninteracting galaxies are dependent on material fed into the nuclei by bars was tested by near infrared imaging of a sample of 15 optically unbarred galaxies in a search for hidden bars. At least 8 of these galaxies do not appear to have bars. Strong bars therefore are not an absolute requirement for high infrared luminosity.

  4. On the Interplay between Star Formation and Feedback in Galaxy Formation Simulations

    NASA Astrophysics Data System (ADS)

    Agertz, Oscar; Kravtsov, Andrey V.

    2015-05-01

    We investigate the star formation-feedback cycle in cosmological galaxy formation simulations, focusing on the progenitors of Milky Way (MW)-sized galaxies. We find that in order to reproduce key properties of the MW progenitors, such as semi-empirically derived star formation histories (SFHs) and the shape of rotation curves, our implementation of star formation and stellar feedback requires (1) a combination of local early momentum feedback via radiation pressure and stellar winds, and subsequent efficient supernovae feedback, and (2) an efficacy of feedback that results in the self-regulation of the global star formation rate on kiloparsec scales. We show that such feedback-driven self-regulation is achieved globally for a local star formation efficiency per free fall time of {{ɛ }ff}≈ 10%. Although this value is larger that the {{ɛ }ff}˜ 1% value usually inferred from the Kennicutt-Schmidt (KS) relation, we show that it is consistent with direct observational estimates of {{ɛ }ff} in molecular clouds. Moreover, we show that simulations with local efficiency of {{ɛ }ff}≈ 10% reproduce the global observed KS relation. Such simulations also reproduce the cosmic SFH of the MW-sized galaxies and satisfy a number of other observational constraints. Conversely, we find that simulations that a priori assume an inefficient mode of star formation, instead of achieving it via stellar feedback regulation, fail to produce sufficiently vigorous outflows and do not reproduce observations. This illustrates the importance of understanding the complex interplay between star formation and feedback, and the detailed processes that contribute to the feedback-regulated formation of galaxies.

  5. Berkeley Prize: Mapping the Fuel for Star Formation in Early Universe Galaxies

    NASA Astrophysics Data System (ADS)

    Tacconi, Linda

    2012-01-01

    Stars form from cold molecular interstellar gas, which is relatively rare in galaxies like the Milky Way, which form only a few new stars per year. Massive galaxies in the distant universe formed stars much more rapidly. Was star formation more efficient in the past, and/or were early galaxies richer in molecular gas? The answer was elusive when our instruments could probe molecules only in the most luminous and rare objects such as mergers and quasars. But a new survey of molecular gas in typical massive star-forming galaxies at redshifts from about 1.2 to 2.3 (corresponding to when the universe was 24% to 40% of its current age) reveals that distant star-forming galaxies were indeed molecular-gas rich and that the star-formation efficiency is not strongly dependent on cosmic epoch.

  6. Infrared galaxies - Evolutionary stages of massive star formation

    NASA Technical Reports Server (NTRS)

    Harwit, M.; Pacini, F.

    1975-01-01

    We cite evidence which indicates that infrared galaxies may represent evolutionary stages during which a large number of massive stars are being formed. The lifetimes of these stars would be rather short (1-10 million years), and the resulting supernova explosions could account for the level of nonthermal activity which often accompanies the thermal infrared emission.

  7. DUST-OBSCURED STAR FORMATION IN INTERMEDIATE REDSHIFT GALAXY CLUSTERS

    SciTech Connect

    Finn, Rose A.; Desai, Vandana; Rudnick, Gregory; Poggianti, Bianca; Bell, Eric F.; Hinz, Joannah; Zaritsky, Dennis; Jablonka, Pascale; Milvang-Jensen, Bo; Moustakas, John; Rines, Kenneth E-mail: jmoustakas@ucsd.ed

    2010-09-01

    We present Spitzer MIPS 24 {mu}m observations of sixteen 0.4 < z < 0.8 galaxy clusters drawn from the ESO Distant Cluster Survey. This is the first large 24 {mu}m survey of clusters at intermediate redshift. The depth of our imaging corresponds to a total IR luminosity of 8 x 10{sup 10} L{sub sun}, just below the luminosity of luminous infrared galaxies (LIRGs), and 6{sup +1}{sub -1}% of M{sub V} < -19 cluster members show 24 {mu}m emission at or above this level. We compare with a large sample of coeval field galaxies and find that while the fraction of cluster LIRGs lies significantly below that of the field, the IR luminosities of the field and cluster galaxies are consistent. However, the stellar masses of the EDisCS LIRGs are systematically higher than those of the field LIRGs. A comparison with optical data reveals that {approx}80% of cluster LIRGs are blue and the remaining 20% lie on the red sequence. Of LIRGs with optical spectra, 88{sup +4} {sub -5}% show [O II] emission with EW([O II]) > 5 A, and {approx}75% exhibit optical signatures of dusty starbursts. On average, the fraction of cluster LIRGs increases with projected clustercentric radius but remains systematically lower than the field fraction over the area probed (<1.5x R {sub 200}). The amount of obscured star formation declines significantly over the 2.4 Gyr interval spanned by the EDisCS sample, and the rate of decline is the same for the cluster and field populations. Our results are consistent with an exponentially declining LIRG fraction, with the decline in the field delayed by {approx}1 Gyr relative to the clusters.

  8. The evolution of star formation in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Serjeant, Stephen; Hatziminaoglou, Evanthia

    2009-07-01

    We have used far-infrared data from IRAS, Infrared Space Observatory (ISO), Spitzer Wide-Area Infrared Extragalactic (SWIRE), Submillimetre Common User Bolometer Array (SCUBA) and Max-Planck Millimetre Bolometer (MAMBO) to constrain statistically the mean far-infrared luminosities of quasars. Our quasar compilation at redshifts 0 < z < 6.5 and I-band luminosities -20 < IAB < -32 is the first to distinguish evolution from quasar luminosity dependence in such a study. We carefully cross-calibrate IRAS against Spitzer and ISO, finding evidence that IRAS 100-μm fluxes at <1Jy are overestimated by ~30 per cent. We find evidence for a correlation between star formation in quasar hosts and the quasar optical luminosities, varying as star formation rate (SFR) ~ L0.44+/-0.07opt at any fixed redshift below z = 2. We also find evidence for evolution of the mean SFR in quasar host galaxies, scaling as (1 + z)1.6+/-0.3 at z < 2 for any fixed quasar I-band absolute magnitude fainter than -28. We find no evidence for any correlation between SFR and black hole mass at 0.5 < z < 4. Our data are consistent with feedback from black hole accretion regulating stellar mass assembly at all redshifts.

  9. Stellar velocity dispersion in dissipative galaxy mergers with star formation

    SciTech Connect

    Stickley, Nathaniel R.; Canalizo, Gabriela

    2014-05-01

    In order to better understand stellar dynamics in merging systems, such as NGC 6240, we examine the evolution of central stellar velocity dispersion (σ{sub *}) in dissipative galaxy mergers using a suite of binary disk merger simulations that include feedback from stellar formation and active galactic nuclei (AGNs). We find that σ{sub *} undergoes the same general stages of evolution that were observed in our previous dissipationless simulations: coherent oscillation, then phase mixing, followed by dynamical equilibrium. We also find that measurements of σ{sub *} that are based only upon the youngest stars in simulations consistently yield lower values than measurements based upon the total stellar population. This finding appears to be consistent with the so-called 'σ{sub *} discrepancy', observed in real galaxies. We note that quasar-level AGN activity is much more likely to occur when σ{sub *} is near its equilibrium value rather than during periods of extreme σ{sub *}. Finally, we provide estimates of the scatter inherent in measuring σ{sub *} in ongoing mergers.

  10. Star formation laws in the Andromeda galaxy: gas, stars, metals and the surface density of star formation

    NASA Astrophysics Data System (ADS)

    Rahmani, S.; Lianou, S.; Barmby, P.

    2016-03-01

    We use hierarchical Bayesian regression analysis to investigate star formation laws in the Andromeda galaxy (M31) in both local (30, 155 and 750 pc) and global cases. We study and compare the well-known Kennicutt-Schmidt law, the extended Schmidt law and the metallicity/star formation correlation. Using a combination of Hα and 24 μm emission, a combination of far-ultraviolet and 24 μm, and the total infrared emission, we estimate the total star formation rate (SFR) in M31 to be between 0.35 ± 0.04 and 0.4 ± 0.04 M⊙ yr-1. We produce a stellar mass surface density map using IRAC 3.6 μm emission and measured the total stellar mass to be 6.9 × 1010 M⊙. For the Kennicutt-Schmidt law in M31, we find the power-law index N to be between 0.49 and 1.18; for all the laws, the power-law index varies more with changing gas tracer than with SFR tracer. The power-law index also changes with distance from the centre of the galaxy. We also applied the commonly used ordinary least-squares fitting method and showed that using different fitting methods leads to different power-law indices. There is a correlation between the surface density of SFR and the stellar mass surface density, which confirms that the Kennicutt-Schmidt law needs to be extended to consider the other physical properties of galaxies. We found a weak correlation between metallicity, the SFR and the stellar mass surface density.

  11. CHARACTERIZING THE STAR FORMATION OF THE LOW-MASS SHIELD GALAXIES FROM HUBBLE SPACE TELESCOPE IMAGING

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Simones, Jacob E.; Cannon, John M.; Dolphin, Andrew E.; Haynes, Martha P.; Giovanelli, Riccardo; Salzer, John J.; Adams, Elizabeth A. K.; Elson, Ed C.; Ott, Jürgen

    2015-03-20

    The Survey of Hi in Extremely Low-mass Dwarfs is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ∼10% of the Hi Arecibo Legacy Fast ALFA survey based on their low Hi mass and low baryonic mass. Here, we measure the star formation properties from optically resolved stellar populations for 12 galaxies using a color–magnitude diagram fitting technique. We derive lifetime average star formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, the recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dwarf irregulars. We do not find a correlation between the recent star formation activity and the distance to the nearest neighboring galaxy, suggesting that the star formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star formation process.

  12. A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES

    SciTech Connect

    Chen, Chien-Ting J.; Hickox, Ryan C.; Alberts, Stacey; Pope, Alexandra; Brodwin, Mark; Jones, Christine; Forman, William R.; Goulding, Andrew D.; Murray, Stephen S.; Alexander, David M.; Mullaney, James R.; Assef, Roberto J.; Gorjian, Varoujan; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.; Le Floc'h, Emeric

    2013-08-10

    We present a measurement of the average supermassive black hole accretion rate (BHAR) as a function of the star formation rate (SFR) for galaxies in the redshift range 0.25 < z < 0.8. We study a sample of 1767 far-IR-selected star-forming galaxies in the 9 deg{sup 2} Booetes multi-wavelength survey field. The SFR is estimated using 250 {mu}m observations from the Herschel Space Observatory, for which the contribution from the active galactic nucleus (AGN) is minimal. In this sample, 121 AGNs are directly identified using X-ray or mid-IR selection criteria. We combined these detected AGNs and an X-ray stacking analysis for undetected sources to study the average BHAR for all of the star-forming galaxies in our sample. We find an almost linear relation between the average BHAR (in M{sub Sun} yr{sup -1}) and the SFR (in M{sub Sun} yr{sup -1}) for galaxies across a wide SFR range 0.85 < log SFR < 2.56: log BHAR = (- 3.72 {+-} 0.52) + (1.05 {+-} 0.33)log SFR. This global correlation between SFR and average BHAR is consistent with a simple picture in which SFR and AGN activity are tightly linked over galaxy evolution timescales.

  13. CEPHEID VARIABLE STARS IN THE PEGASUS DWARF IRREGULAR GALAXY: CONSTRAINTS ON THE STAR FORMATION HISTORY

    SciTech Connect

    Meschin, I.; Gallart, C.; Aparicio, A.; Rosenberg, A.; Cassisi, S. E-mail: carme@iac.es E-mail: alf@iac.es

    2009-03-15

    Observations of the resolved stars obtained over a period of 11 years in the Local Group dwarf irregular galaxy Pegasus have been used to search for Cepheid variable stars. Images were obtained in 55 epochs in the V band and in 24 epochs in the I band. We have identified 26 Cepheids and have obtained their light curves and periods. On the basis of their position in the period-luminosity (PL) diagram, we have classified them as 18 fundamental modes and eight first overtone Cepheids. Two PL relations for Cepheids have been used to derive the distance, resulting in 1.07 {+-} 0.05 Mpc. We present the VARFINDER code which finds the variable stars and their predicted periods in a given synthetic color-magnitude diagram computed with IAC-star and we propose the use of the Cepheid population as a constraint of the star formation history of Pegasus.

  14. Mapping galaxy encounters in numerical simulations: the spatial extent of induced star formation

    NASA Astrophysics Data System (ADS)

    Moreno, Jorge; Torrey, Paul; Ellison, Sara L.; Patton, David R.; Bluck, Asa F. L.; Bansal, Gunjan; Hernquist, Lars

    2015-04-01

    We employ a suite of 75 simulations of galaxies in idealized major mergers (stellar mass ratio ˜2.5:1), with a wide range of orbital parameters, to investigate the spatial extent of interaction-induced star formation. Although the total star formation in galaxy encounters is generally elevated relative to isolated galaxies, we find that this elevation is a combination of intense enhancements within the central kpc and moderately suppressed activity at larger galactocentric radii. The radial dependence of the star formation enhancement is stronger in the less massive galaxy than in the primary, and is also more pronounced in mergers of more closely aligned disc spin orientations. Conversely, these trends are almost entirely independent of the encounter's impact parameter and orbital eccentricity. Our predictions of the radial dependence of triggered star formation, and specifically the suppression of star formation beyond kpc-scales, will be testable with the next generation of integral-field spectroscopic surveys.

  15. Stellar and Gas Phase Metallicity of Low Surface Brighness Galaxies: Implication on Star Formation Process within Young Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon

    2015-08-01

    Low surface brightness (LSB) galaxies, whose central surface brightness, μB, is fainter than 23 mag/arcsec2 in the B-band, have been one of the most intriguing galaxy populations. Their unique characteristics, such as blue colors in optical and near-infrared light, low metallicity, low stellar and gas surface densities, low dust content, and high gas mass fraction (up to 90%), resemble physical conditions of young galaxies of the early Universe whose interstellar medium (ISM) has not been enriched before major star formation activities initiated and should provide a testbed for star formation process at the exremly low surface density regime. Given that their star formation histories are still poorly constrained, LSB galaxies are known to have large specific star formation rates (sSFRs) with large gas fractions. There is also a correlation between their sSFRs and gas fractions. One of plausible scenarios is that the star formation efficiency may be an increasing funtion of time, perhaps due in part to the slow build up of metals and dust. Moreover, it is suspected that, being located in low number density area in terms of galaxy environment, LSB galaxies may receive additional gas to fuel their star formation activity via sporadic cold gas accretion, especially toward their outskirt regions analogous to extended ultraviolet disks. Due to their relatively isolated nature without having endured much interactions, LSB galaxies can mimic star formation processes of disk galaxies of the early Universe within their interstellar media (ISM). We present preliminary results based on stellar and gas phase metallicity of LSB galaxies along with their environment parameters to show how star-forming ISM of young disk galaxies before metal enrichment.

  16. MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES

    SciTech Connect

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos; Walter, Fabian; Sandstrom, Karin; Meidt, Sharon; Rix, Hans-Walter; Schinnerer, Eva; Schruba, Andreas; Bigiel, Frank; Bolatto, Alberto; Brinks, Elias; De Blok, W. J. G.; Rosolowsky, Erik; Schuster, Karl-Friedrich; Usero, Antonio

    2013-08-01

    We compare molecular gas traced by {sup 12}CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between {Sigma}{sub mol} and {Sigma}{sub SFR} but also find important second-order systematic variations in the apparent molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}. At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed {alpha}{sub CO} equivalent to the Milky Way value, our data yield a molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}{approx}2.2 Gyr with 0.3 dex 1{sigma} scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, {Sigma}{sub SFR}{proportional_to}{Sigma}{sub mol}{sup N}. We find N = 1 {+-} 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between {tau}{sub dep}{sup mol} and other local and global quantities. The strongest of these are a decreased {tau}{sub dep}{sup mol} in low-mass, low-metallicity galaxies and a correlation of the kpc-scale {tau}{sub dep}{sup mol} with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H{sub 2} conversion factor ({alpha}{sub CO}) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed {tau}{sub dep}{sup mol} trends. After applying a D/G-dependent {alpha}{sub CO}, some weak correlations between {tau}{sub dep

  17. Accretion-driven star formation in central dominant galaxies in X-ray clusters

    NASA Astrophysics Data System (ADS)

    Sarazin, C. L.; Oconnell, R. W.

    1983-05-01

    Analytical and observational evidence for the formation of low-mass stars in the gas accreting in the central dominant galaxies in clusters is presented. Observations of the (U-V) and (K-V) color gradients in accreting galaxies are suggested to reveal colors altered by the appearance of young stars, e.g., the excess blue and the A star spectrum detected in NGC 1275. Low-temperature X ray line emissions from accreting galaxies have been partially surveyed with the result that 10 pct of the brightest cluster galaxies in a magnitude-limited sample show evidence of significant accretion. Photometric data from the quasar 3C 48, located in a galaxy with a very blue population, also suggests low-mass star formation, especially when compared to measurements of NGC 1275, which has the highest accretion rate among observed central dominant cluster galaxies. The quasar, however, would not be accreting interstellar gas.

  18. Sustaining Star Formation Rates in Spiral Galaxies Supernova-driven Turbulent Accretion Disk Models Applied to THINGS Galaxies

    NASA Astrophysics Data System (ADS)

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-01

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M ⊙) <~ 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  19. The Mass Dependence of Star Formation Histories in Barred Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Carles, Christian; Martel, Hugo; Ellison, Sara L.; Kawata, Daisuke

    2016-08-01

    We performed a series of 29 gasdynamical simulations of disc galaxies, barred and unbarred, with various stellar masses, to study the impact of the bar on star formation history. Unbarred galaxies evolve very smoothly, with a star formation rate (SFR) that varies by at most a factor of three over a period of 2 Gyr. The evolution of barred galaxies is much more irregular, especially at high stellar masses. In these galaxies, the bar drives a substantial amount of gas toward the centre, resulting in a high SFR, and producing a starburst in the most massive galaxies. Most of the gas is converted into stars, and gas exhaustion leads to a rapid drop of star formation after the starburst. In massive barred galaxies (stellar mass M★ > 2 × 1010 M⊙) the large amount of gas funnelled toward the centre is completely consumed by the starburst, while in lower-mass barred galaxies it is only partially consumed. Gas concentration is thus higher in lower-mass barred galaxies than it is in higher-mass ones. Even though unbarred galaxies funnelled less gas toward their centre, the lower SFR allows this gas to accumulate. At late times, the star formation efficiency is higher in barred galaxies than unbarred ones, enabling these galaxies to maintain a higher SFR with a smaller gas supply. Several properties, such as the global SFR, central SFR, or central gas concentration, vary monotonically with time for unbarred galaxies, but not for barred galaxies. Therefore one must be careful when comparing barred and unbarred galaxies that share one observational property, since these galaxies might be at very different stages of their respective evolution.

  20. The mass dependence of star formation histories in barred spiral galaxies

    NASA Astrophysics Data System (ADS)

    Carles, Christian; Martel, Hugo; Ellison, Sara L.; Kawata, Daisuke

    2016-11-01

    We performed a series of 29 gas dynamical simulations of disc galaxies, barred and unbarred, with various stellar masses, to study the impact of the bar on star formation history. Unbarred galaxies evolve very smoothly, with a star formation rate (SFR) that varies by at most a factor of 3 over a period of 2 Gyr. The evolution of barred galaxies is much more irregular, especially at high stellar masses. In these galaxies, the bar drives a substantial amount of gas towards the centre, resulting in a high SFR, and producing a starburst in the most massive galaxies. Most of the gas is converted into stars, and gas exhaustion leads to a rapid drop of star formation after the starburst. In massive barred galaxies (stellar mass M_{ast }>2{×} 10^{10} {M_{⊙}}) the large amount of gas funnelled towards the centre is completely consumed by the starburst, while in lower mass barred galaxies it is only partially consumed. Gas concentration is thus higher in lower mass barred galaxies than it is in higher mass ones. Even though unbarred galaxies funnelled less gas towards their centre, the lower SFR allows this gas to accumulate. At late times, the star formation efficiency is higher in barred galaxies than unbarred ones, enabling these galaxies to maintain a higher SFR with a smaller gas supply. Several properties, such as the global SFR, central SFR, or central gas concentration, vary monotonically with time for unbarred galaxies, but not for barred galaxies. Therefore one must be careful when comparing barred and unbarred galaxies that share one observational property, since these galaxies might be at very different stages of their respective evolution.

  1. Mass distributions of star clusters for different star formation histories in a galaxy cluster environment

    NASA Astrophysics Data System (ADS)

    Schulz, C.; Pflamm-Altenburg, J.; Kroupa, P.

    2015-10-01

    Clusters of galaxies usually contain rich populations of globular clusters (GCs). We investigate how different star formation histories (SFHs) shape the final mass distribution of star clusters. We assumed that every star cluster population forms during a formation epoch of length δt at a constant star-formation rate (SFR). The mass distribution of such a population is described by the embedded cluster mass function (ECMF), which is a pure power law extending to an upper limit Mmax. Since the SFR determines Mmax, the ECMF implicitly depends on the SFR. Starting with different SFHs, the time-evolution of the SFR, each SFH is divided into formation epochs of length δt at different SFRs. The requested mass function arises from the superposition of the star clusters of all formation epochs. An improved optimal sampling technique is introduced that allows generating number and mass distributions, both of which accurately agree with the ECMF. Moreover, for each SFH the distribution function of all involved SFRs, F(SFR), is computed. For monotonically decreasing SFHs, we found that F(SFR) always follows a power law. With F(SFR), we developed the theory of the integrated galactic embedded cluster mass function (IGECMF). The latter describes the distribution function of birth stellar masses of star clusters that accumulated over a formation episode much longer than δt. The IGECMF indeed reproduces the mass distribution of star clusters created according to the superposition principle. Interestingly, all considered SFHs lead to a turn-down with increasing star cluster mass in their respective IGECMFs in a similar way as is observed for GC systems in different galaxy clusters, which offers the possibility of determining the conditions under which a GC system was assembled. Although assuming a pure power-law ECMF, a Schechter-like IGECMF emerges from the superposition principle. In the past decade, a turn-down at the high-mass end has been observed in the cluster initial

  2. A Comparative Study of Knots of Star Formation in Interacting versus Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Beverly J.; Zaragoza-Cardiel, Javier; Struck, Curtis; Olmsted, Susan; Jones, Keith

    2016-03-01

    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.

  3. Environmental Effects on the ISM and Star Formation Properties of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, Christine

    2015-08-01

    We present the results from a sample of HI flux-selected spiral galaxies within 25 Mpc from the JCMT Nearby Galaxies Legacy Survey (NGLS), subdivided into isolated, group, and Virgo cluster samples. The CO J=3-2 line was observed with the James Clerk Maxwell Telescope (JCMT), a tracer for the dense molecular gas linked to star formation. We combine the CO data with integrated star formation rates using H-alpha measurements and stellar masses from the S4G Survey in order to study the link between the gas and stars inside these galaxies. We find that while the mean atomic gas mass is lower for the Virgo galaxies compared to the isolated galaxies, the distributions of molecular gas masses are not significantly different between the three samples. The specific star formation rate is also lower for the Virgo sample, followed by the group and isolated galaxies. Finally, the molecular gas depletion time is longer for the Virgo galaxies compared to the group and isolated galaxies, which suggests the possible effects of environment on the galaxy's star formation properties.

  4. DWARF GALAXY FORMATION WITH H{sub 2}-REGULATED STAR FORMATION

    SciTech Connect

    Kuhlen, Michael; Krumholz, Mark R.; Madau, Piero; Smith, Britton D.; Wise, John

    2012-04-10

    We describe cosmological galaxy formation simulations with the adaptive mesh refinement code Enzo that incorporate a star formation prescription regulated by the local abundance of molecular hydrogen. We show that this H{sub 2}-regulated prescription leads to a suppression of star formation in low-mass halos (M{sub h} {approx}< 10{sup 10} M{sub Sun }) at z > 4, alleviating some of the dwarf galaxy problems faced by theoretical galaxy formation models. H{sub 2} regulation modifies the efficiency of star formation of cold gas directly, rather than indirectly reducing the cold gas content with 'supernova feedback'. We determine the local H{sub 2} abundance in our most refined grid cells (76 proper parsec in size at z = 4) by applying the model of Krumholz, McKee, and Tumlinson, which is based on idealized one-dimensional radiative transfer calculations of H{sub 2} formation-dissociation balance in {approx}100 pc atomic-molecular complexes. Our H{sub 2}-regulated simulations are able to reproduce the empirical (albeit lower z) Kennicutt-Schmidt relation, including the low {Sigma}{sub gas} cutoff due to the transition from atomic to molecular phase and the metallicity dependence thereof, without the use of an explicit density threshold in our star formation prescription. We compare the evolution of the luminosity function, stellar mass density, and star formation rate density from our simulations to recent observational determinations of the same at z = 4-8 and find reasonable agreement between the two.

  5. Retired galaxies: not to be forgotten in the quest of the star formation - AGN connection

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Costa-Duarte, M. V.; Vale Asari, N.; Cid Fernandes, R.; Sodré, L.

    2015-05-01

    We propose a fresh look at the Main Galaxy Sample of the Sloan Digital Sky Survey by packing the galaxies in stellar mass and redshift bins. We show how important it is to consider the emission-line equivalent widths, in addition to the commonly used emission-line ratios, to properly identify retired galaxies (i.e. galaxies that have stopped forming stars and are ionized by their old stellar populations) and not mistake them for galaxies with low-level nuclear activity. We find that the proportion of star-forming galaxies decreases with decreasing redshift in each mass bin, while that of retired galaxies increases. Galaxies with M⋆ > 1011.5 M⊙ have formed all their stars at redshift larger than 0.4. The population of AGN hosts is never dominant for galaxy masses larger than 1010 M⊙. We warn about the effects of stacking galaxy spectra to discuss galaxy properties. We estimate the lifetimes of active galactic nuclei (AGN) relying entirely on demographic arguments - i.e. without any assumption on the AGN radiative properties. We find upper-limit lifetimes of about 1-5 Gyr for detectable AGN in galaxies with masses between 1010-1012 M⊙. The lifetimes of the AGN-dominated phases are a few 108 yr. Finally, we compare the star formation histories of star-forming, AGN and retired galaxies as obtained by the spectral synthesis code STARLIGHT. Once the AGN is turned on, it inhibits star formation for the next ˜0.1 Gyr in galaxies with masses around 1010 M⊙, ˜ 1 Gyr in galaxies with masses around 1011 M⊙.

  6. Tidally triggered star formation in gravitationally interacting galaxies and selected work in optical instrumentation

    NASA Astrophysics Data System (ADS)

    Woods, Deborah Freedman

    In the first part of this thesis I present studies of tidally triggered star formation in pairs of gravitationally interacting galaxies. I use spectroscopic and photometric observations of local systems to demonstrate that triggered star formation depends both on intrinsic galaxy properties and on relative properties of the system. Minor galaxy interactions, where the luminosity ratio of the galaxies exceeds about six, produce triggered star formation only in the lower luminosity companion. In interactions between galaxies of similar luminosity, the blue galaxies exhibit tidally triggered star formation, but the red galaxies do not. I measure the strength, frequency, and timescale of gravitational tidal interactions between galaxy pairs in a complete spectroscopic survey at redshifts 0.08 to 0.38. A third of the galaxies with young stellar populations interacting with a companion of similar luminosity experience enhanced star formation activity. However, the most extreme bursts of triggered star formation are rare and short lived. The typical duration for enhanced star formation in interacting galaxies is of order 300 Myr. In the second part of this thesis I describe the development of optical instrumentation in support of large spectroscopic surveys. I analyze the effects of flexure in the Binospec spectrograph, a multi-object spectrograph for the 6.5-meter MMT telescope at Mt. Hopkins, AZ. I design the active flexure control system and the calibration system, two physically distinct systems that together will enable accurate and stable spectro-photometric calibration. Improvements to telescope collimation and mirror support provide additional benefit to spectroscopic surveys through superior image quality and spectrograph efficiency. I design and build a Shack-Hartmann wavefront sensor for the 1.5-meter Tillinghast telescope at Mount Hopkins, AZ. The wavefront sensor and accompanying software serve as valuable tools for measuring and correcting for optical

  7. The rarity of star formation in brightest cluster galaxies as measured by WISE

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin A.

    2014-10-01

    We present the mid-infrared star formation rates of 245 X-ray selected, nearby (z < 0.1) brightest cluster galaxies (BCGs). A homogeneous and volume limited sample of BCGs was created by X-ray selecting clusters with Lx > 1 × 1044 erg s- 1. The Wide-Field Infrared Survey Explorer (WISE) All WISE Data Release provides the first measurement of the 12 μm star formation indicator for all BCGs in the nearby Universe. Perseus A and Cygnus A are the only galaxies in our sample to have star formation rates of > 40 M⊙ yr- 1, indicating that these two galaxies are highly unusual at current times. Stellar populations of 99 ± 0.6 per cent of local BCGs are (approximately) passively evolving, with star formation rates of < 10 M⊙ yr- 1. We find that in general, star formation produces only modest BCG growth at the current epoch.

  8. Dynamical Properties of z ~ 2 Star-forming Galaxies and a Universal Star Formation Relation

    NASA Astrophysics Data System (ADS)

    Bouché, N.; Cresci, G.; Davies, R.; Eisenhauer, F.; Förster Schreiber, N. M.; Genzel, R.; Gillessen, S.; Lehnert, M.; Lutz, D.; Nesvadba, N.; Shapiro, K. L.; Sternberg, A.; Tacconi, L. J.; Verma, A.; Cimatti, A.; Daddi, E.; Renzini, A.; Erb, D. K.; Shapley, A.; Steidel, C. C.

    2007-12-01

    We present the first comparison of the dynamical properties of different samples of z~1.4-3.4 star-forming galaxies from spatially resolved imaging spectroscopy from SINFONI/VLT integral field spectroscopy and IRAM CO millimeter interferometry. Our samples include 16 rest-frame UV-selected, 16 rest-frame optically selected, and 13 submillimeter galaxies (SMGs). We find that rest-frame UV and optically bright (K<20) z~2 star forming galaxies are dynamically similar, and follow the same velocity-size relation as disk galaxies at z~0. In the theoretical framework of rotating disks forming from dissipative collapse in dark matter halos, the two samples require a spin parameter <λ> ranging from 0.06 to 0.2. In contrast, bright SMGs (S850μm>=5 mJy) have larger velocity widths and are much more compact. Hence, SMGs have lower angular momenta and higher matter densities than either the UV or optically selected populations. This indicates that dissipative major mergers may dominate the SMGs population, resulting in early spheroids, and that a significant fraction of the UV/optically bright galaxies have evolved less violently, either in a series of minor mergers, or in rapid dissipative collapse from the halo, given that either process may leads to the formation of early disks. These early disks may later evolve into spheroids via disk instabilities or mergers. Because of their small sizes and large densities, SMGs lie at the high surface density end of a universal (out to z=2.5) ``Schmidt-Kennicutt'' relation between gas surface density and star formation rate surface density. The best-fit relation suggests that the star formation rate per unit area scales as the surface gas density to a power of ~1.7, and that the star formation efficiency increases by a factor of 4 between non-starbursts and strong starbursts. Based on observations at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile, under programs GTO 073.B-9018, 074.A-9011

  9. Galactic Scale Flows and the Triggering of Star Formation in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ramón-Fox, F. G.; Bonnell, I. A.

    2016-06-01

    Galactic scale gas flows feed the growth of molecular clouds where stars form in high-density cores. Large scale flows also play a role in injecting the energy that drives the internal dynamics of these clouds, which affects their overall stability and star formation activity. The triggering of star formation involves a connection between large and small-scale dynamical processes in galaxies, which can be explored using high-resolution hydrodynamical simulations. We present results of current work in high-resolution N-body and Smoothed Particle Hydrodynamics simulations of a model spiral galaxy with a realistic spiral arm morphology. These simulations allow to study gas flows in a self-consistent galaxy and their role on molecular cloud formation and growth. They also provide a ground for studying molecular cloud properties in different environments of a galaxy, the effects of spiral arms on large scale flows and for understanding global star formation relations.

  10. star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    SciTech Connect

    Zeimann, Gregory R.; Stanford, S. A.; Brodwin, Mark; Gonzalez, Anthony H.; Mancone, Conor; Snyder, Gregory F.; Stern, Daniel; Eisenhardt, Peter; Dey, Arjun; Moustakas, John

    2013-12-20

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 galaxy clusters as well as in field galaxies. We find a large cluster-to-cluster scatter in the star formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M {sub *} < 10.0 M {sub ☉}). We therefore conclude that environmental effects are still important at 1.0 star-forming galaxies in galaxy clusters with log M {sub *} ≲ 10.0 M {sub ☉}.

  11. ENVIRONMENTAL DEPENDENCE OF OTHER GALAXY PROPERTIES FOR THE SAME STAR FORMATION ACTIVITIES

    SciTech Connect

    Deng Xinfa; Bei Yang; He Jizhou; Tang Xiaoxun

    2010-01-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 above and below the value of M*, we have investigated the environmental dependence of other galaxy properties for the same star formation activities. Only in the luminous passive class, a strong environmental dependence of the g - r color is observed, but the environmental dependence of other properties in this class is very weak. In other classes, we can conclude that the local density dependence of luminosity, g - r color, concentration index ci, and morphologies for star-forming galaxies and passive ones is much weaker than that obtained in the volume-limited Main galaxy samples. This suggests that star formation activity is a galaxy property very predictive of the local environment. In addition, we also note that passive galaxies are more luminous, redder, highly concentrated, and preferentially 'early type'.

  12. Radio constraints on heavily obscured star formation within dark gamma-ray burst host galaxies

    SciTech Connect

    Perley, D. A.; Perley, R. A.

    2013-12-01

    Highly dust-obscured starbursting galaxies (submillimeter galaxies and their ilk) represent the most extreme sites of star formation in the distant universe and contribute significantly to overall cosmic star formation beyond z > 1.5. Some stars formed in these environments may also explode as gamma-ray bursts (GRBs) and contribute to the population of 'dark' bursts. Here we present Very Large Array wideband radio-continuum observations of 15 heavily dust-obscured Swift GRBs to search for radio synchrotron emission associated with intense star formation in their host galaxies. Most of these targets (11) are not detected. Of the remaining four objects, one detection is marginal, and for two others we cannot yet rule out the contribution of a long-lived radio afterglow. The final detection is secure, but indicates a star formation rate (SFR) roughly consistent with the dust-corrected UV-inferred value. Most galaxies hosting obscured GRBs are therefore not forming stars at extreme rates, and the amount of optical extinction seen along a GRB afterglow sightline does not clearly correlate with the likelihood that the host has a sufficiently high SFR to be radio-detectable. While some submillimeter galaxies do readily produce GRBs, these GRBs are often not heavily obscured—suggesting that the outer (modestly obscured) parts of these galaxies overproduce GRBs and the inner (heavily obscured) parts underproduce GRBs relative to their respective contributions to star formation, hinting at strong chemical or initial mass function gradients within these systems.

  13. Intense star formation within resolved compact regions in a galaxy at z = 2.3.

    PubMed

    Swinbank, A M; Smail, I; Longmore, S; Harris, A I; Baker, A J; De Breuck, C; Richard, J; Edge, A C; Ivison, R J; Blundell, R; Coppin, K E K; Cox, P; Gurwell, M; Hainline, L J; Krips, M; Lundgren, A; Neri, R; Siana, B; Siringo, G; Stark, D P; Wilner, D; Younger, J D

    2010-04-01

    Massive galaxies in the early Universe have been shown to be forming stars at surprisingly high rates. Prominent examples are dust-obscured galaxies which are luminous when observed at sub-millimetre wavelengths and which may be forming stars at a rate of 1,000 solar masses (M(middle dot in circle)) per year. These intense bursts of star formation are believed to be driven by mergers between gas-rich galaxies. Probing the properties of individual star-forming regions within these galaxies, however, is beyond the spatial resolution and sensitivity of even the largest telescopes at present. Here we report observations of the sub-millimetre galaxy SMMJ2135-0102 at redshift z = 2.3259, which has been gravitationally magnified by a factor of 32 by a massive foreground galaxy cluster lens. This magnification, when combined with high-resolution sub-millimetre imaging, resolves the star-forming regions at a linear scale of only 100 parsecs. We find that the luminosity densities of these star-forming regions are comparable to the dense cores of giant molecular clouds in the local Universe, but they are about a hundred times larger and 10(7) times more luminous. Although vigorously star-forming, the underlying physics of the star-formation processes at z approximately 2 appears to be similar to that seen in local galaxies, although the energetics are unlike anything found in the present-day Universe.

  14. Observational probes of the connection between Star Formation Efficiency and Dark Matter halo mass of galaxies

    NASA Astrophysics Data System (ADS)

    Kalinova, Veselina; Colombo, Dario; Rosolowsky, Erik

    2015-08-01

    Modern simulations predict that the stellar mass and the star formation efficiency of a galaxy are tightly linked to the dark matter (DM) halo mass of that galaxy. This prediction relies on a specific model of galaxy evolution and so testing this prediction directly tests our best models of galaxy formation and evolution. Recent DM numerical studies propose relationships between star formation efficiency and the DM halo mass with two domains based on SF feedback (low-mass) vs. AGN feedback (high-mass), see Moster et al. (2013). The observational probe of such parameters in the relationship imply globally important physics that are fundamental as, e.g., the star formation law (e.g., Kennicutt et al., 1998), the universal depletion time (Leroy et al. 2008), and the origin of the cold gas phase with respect to the stellar disc (Davis et al.2011). Thus, we can directly measure whether this parameterization is correct by estimating the stellar mass, star formation efficiency and dynamical (DM) mass for a set of galaxies at strategically selected points to test if they fall on the predicted relationship.We use CO data from the Extragalactic Database for Galaxy Evolution survey (EDGE) in conjunction with archival 21-cm data and spectroscopic data from Calar Alto Legacy Integral Field spectroscopy Area survey (CALIFA) to measure the stellar vs. halo mass and star-formation-efficiency vs. halo mass relations of the galaxies. We also analyze archival 21-cm spectra to estimate rotation speeds, atomic gas masses and halo masses for a set of EDGE galaxies. Data from CALIFA are used for high quality star formation efficiency and stellar mass measurements. By linking these three parameters - stellar mass, star formation efficiency (SFE) and DM halo mass - we can test the simulation models of how the gas is cooling in the potential wells of the dark matter halos and then forms stars.

  15. Disentangling star formation and AGN activity in powerful infrared luminous radio galaxies at 1 < z < 4

    NASA Astrophysics Data System (ADS)

    Drouart, G.; Rocca-Volmerange, B.; De Breuck, C.; Fioc, M.; Lehnert, M.; Seymour, N.; Stern, D.; Vernet, J.

    2016-09-01

    High-redshift radio galaxies present signs of both star formation and AGN activity, making them ideal candidates to investigate the connection and coevolution of AGN and star formation in the progenitors of present-day massive galaxies. We make use of a sample of 11 powerful radio galaxies spanning 1 star formation by combining the galaxy evolution code PÉGASE.3 with an AGN torus model. We find that three components are necessary to reproduce the observed SEDs: an evolved and massive stellar component, a submm bright young starburst, and an AGN torus. We find that powerful radio galaxies form at very high-redshift, but experience episodic and important growth at 1 star formation differ from source to source, indicating no general trend of the star formation properties in the most infrared luminous high-redshift radio galaxies and no correlation with the AGN bolometric luminosity. Moreover, we find that AGN scattered light have a very limited impact on broad-band SED fitting on our sample. Finally, our analysis also suggests a wide range in origins for the observed star formation,which we partially constrain for some sources.

  16. Star formation in cooling flows in clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Mcnamara, Brian R.; O'Connell, Robert W.

    1989-01-01

    Spectrophotometry (wavelength = 3400-5100 A) has been obtained for the nuclei of 13 cD galaxies in cooling flows. Spectral anomalies are found in 8 of the objects, consisting of abnormally strong forbidden O II emission or excess flux effects. Consideration is given to metallicity effects, the relationship between UV excesses and the presence of massive OB stars formed from the cooling flows, and low-level effects related to accretion.

  17. The Star Formation Histories of z ~ 2 Dust-obscured Galaxies and Submillimeter-selected Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Armus, L.; Brown, M. J. I.; Desai, V.; Gonzalez, A. H.; Jannuzi, B. T.; Melbourne, J.; Soifer, B. T.

    2012-01-01

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z ~ 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M *) of two populations of Spitzer-selected ULIRGs that have extremely red R - [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 μm associated with stellar emission ("bump DOGs"), while the other set of 51 DOGs have power-law mid-IR SEDs that are typical of obscured active galactic nuclei ("power-law DOGs"). We measure M * by applying Charlot & Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M * values for SMGs, bump DOGs, and power-law DOGs are log(M */M ⊙) = 10.42+0.42 - 0.36, 10.62+0.36 - 0.32, and 10.71+0.40 - 0.34, respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z ~ 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z ~ 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M *, a situation that arises more naturally in major mergers than in smooth accretion-powered systems.

  18. Galaxy Mergers with Adaptive Mesh Refinement: Star Formation and Hot Gas Outflow

    SciTech Connect

    Kim, Ji-hoon; Wise, John H.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2011-06-22

    In hierarchical structure formation, merging of galaxies is frequent and known to dramatically affect their properties. To comprehend these interactions high-resolution simulations are indispensable because of the nonlinear coupling between pc and Mpc scales. To this end, we present the first adaptive mesh refinement (AMR) simulation of two merging, low mass, initially gas-rich galaxies (1.8 x 10{sup 10} M{sub {circle_dot}} each), including star formation and feedback. With galaxies resolved by {approx} 2 x 10{sup 7} total computational elements, we achieve unprecedented resolution of the multiphase interstellar medium, finding a widespread starburst in the merging galaxies via shock-induced star formation. The high dynamic range of AMR also allows us to follow the interplay between the galaxies and their embedding medium depicting how galactic outflows and a hot metal-rich halo form. These results demonstrate that AMR provides a powerful tool in understanding interacting galaxies.

  19. Surface Brightness Profiles and Star Formation Rates of Galaxies in NRGb054

    NASA Astrophysics Data System (ADS)

    Hansen, Ellen; Koopmann, Rebecca A.; Miller, Brendan; Durbala, Adriana; Fitzgerald, Garrett

    2016-01-01

    We present new optical R and H-alpha images of the galaxy group NRGb054, obtained with the WIYN 0.9m telescope at KPNO using the MOSAIC camera. This group was studied as part of the larger Undergraduate ALFALFA Team project investigating the effects of a group environment on star formation. The stacked H-alpha image was continuum subtracted by the removal of a scaled and stacked R image. Surface photometry was performed on R and continuum-subtracted H-alpha cutouts of 20 covered galaxies to determine the surface brightness as a function of radius. Integrating the continuum-subtracted H-alpha surface brightness profile provides the total star formation within that galaxy, while the shape of the profile illustrates how star formation is spread throughout the galaxy. We provide a catalog of surface brightness profiles and integrated star formation rates for NRGb054. We consider star formation as a function of galaxy-galaxy separation and galaxy location within the group, and discuss our findings in the context of the wider study. This work has been supported by NSF grant AST-1211005.

  20. Slow Quenching of Star Formation in OMEGAWINGS Clusters: Galaxies in Transition in the Local Universe

    NASA Astrophysics Data System (ADS)

    Paccagnella, A.; Vulcani, B.; Poggianti, B. M.; Moretti, A.; Fritz, J.; Gullieuszik, M.; Couch, W.; Bettoni, D.; Cava, A.; D'Onofrio, M.; Fasano, G.

    2016-01-01

    The star formation quenching depends on environment, but a full understanding of what mechanisms drive it is still missing. Exploiting a sample of galaxies with masses {M}*\\gt {10}9.8{M}⊙ , drawn from the WIde-field Nearby Galaxy-cluster Survey (WINGS) and its recent extension OMEGAWINGS, we investigate the star formation rate (SFR) as a function of stellar mass (M{}*) in galaxy clusters at 0.04\\lt z\\lt 0.07. We use non-member galaxies at 0.02 < z < 0.09 as a field control sample. Overall, we find agreement between the SFR-M{}* relation in the two environments, but detect a population of cluster galaxies with reduced SFRs, which is rare in the field. These transition galaxies are mainly found within the cluster virial radius (R200), but they impact on the SFR-M{}* relation only within 0.6R200. The ratio of transition to pure star-forming galaxies strongly depends on environment, being larger than 0.6 within 0.3R200 and rapidly decreasing with distance, while it is almost flat with M*. As galaxies move downward from the SFR-M{}* main sequence, they become redder and present older luminosity- and mass-weighted ages. These trends, together with the analysis of the star formation histories, suggest that transition galaxies have had a reduced SFR for the past 2-5 Gyr. Our results are consistent with the hypothesis that the interaction of galaxies with the intracluster medium via strangulation causes a gradual shut down of star formation, giving birth to an evolved population of galaxies in transition from being star forming to becoming passive.

  1. Hα imaging survey of Wolf-Rayet galaxies: morphologies and star formation rates

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Omar, A.

    2016-10-01

    The Hα and optical broad-band images of 25 nearby Wolf-Rayet (WR) galaxies are presented. The WR galaxies are known to have a recent (≤10 Myr) and massive star formation episode. The photometric Hα fluxes are estimated and corrected for extinction and line contamination in the filter pass-bands. The star formation rates (SFRs) are estimated using Hα images and from archival data in the far-ultraviolet (FUV), far-infrared (FIR) and 1.4-GHz radio continuum wavebands. A comparison of SFRs estimated from different wavebands is made after including similar data available in the literature for other WR galaxies. The Hα-based SFRs are found to be tightly correlated with SFRs estimated from the FUV data. The correlations also exist with SFR estimates based on the radio and FIR data. The WR galaxies also follow the radio-FIR correlation known for normal star-forming galaxies, although it is seen here that the majority of dwarf WR galaxies have a radio deficiency. An analysis using the ratio of non-thermal to thermal radio continuum and the ratio of the FUV to Hα SFRs indicates that WR galaxies have lower non-thermal radio emission compared to normal galaxies, most likely due to a lack of supernovae in the very young star formation episode in the WR galaxies. The morphologies of 16 galaxies in our sample are highly suggestive of an ongoing tidal interaction or a past merger in these galaxies. This survey strengthens the conclusions obtained from previous similar studies indicating the importance of tidal interactions in triggering star-formation in WR galaxies.

  2. Tracing recent star formation of red early-type galaxies out to z ∼ 1

    SciTech Connect

    Ko, Jongwan; Lee, Jong Chul; Hwang, Ho Seong; Im, Myungshin; Le Borgne, Damien; Elbaz, David

    2014-08-20

    We study the mid-infrared (IR) excess emission of early-type galaxies (ETGs) on the red sequence at z < 1 using a spectroscopic sample of galaxies in the fields of Great Observatories Origins Deep Survey (GOODS). In the mass-limited sample of 1025 galaxies with M {sub star} > 10{sup 10.5} M {sub ☉} and 0.4 < z < 1.05, we identify 696 Spitzer 24 μm detected (above the 5σ) galaxies and find them to have a wide range of NUV-r and r-[12 μm] colors despite their red optical u – r colors. Even in the sample of very massive ETGs on the red sequence with M {sub star} > 10{sup 11.2} M {sub ☉}, more than 18% show excess emission over the photospheric emission in the mid-IR. The combination with the results of red ETGs in the local universe suggests that the recent star formation is not rare among quiescent, red ETGs at least out to z ∼ 1 if the mid-IR excess emission results from intermediate-age stars or/and from low-level ongoing star formation. Our color-color diagram including near-UV and mid-IR emissions are efficient not only for identifying ETGs with recent star formation, but also for distinguishing quiescent galaxies from dusty star-forming galaxies.

  3. The relation between atomic gas and star formation rate densities in faint dwarf irregular galaxies

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Sambit; Chengalur, Jayaram N.; Kaisin, Serafim S.; Karachentsev, Igor D.

    2014-12-01

    We use data for faint (MB > -14.5) dwarf irregular galaxies drawn from the Faint Irregular Galaxy GMRT Survey to study the correlation between the surface densities of atomic gas (Σgas,atomic) and star formation rate (ΣSFR) in the galaxies. The estimated gas-phase metallicity of our sample galaxies is Z ˜ 0.1 Z⊙. Understanding star formation in such molecule-poor gas is of particular importance since it is likely to be of direct relevance to simulations of early galaxy formation. For about 20 per cent (9/43) of our sample galaxies, we find that the H I distribution is significantly disturbed, with little correspondence between the optical and H I distributions. We exclude these galaxies from the comparison. We also exclude galaxies with very low star formation rates, for which stochastic effects make it difficult to estimate the true star formation rates. For the remaining galaxies, we compute the Σgas,atomic and ΣSFR averaged over the entire star-forming disc of the galaxy. For these galaxies, we find a nearly linear relation between the star formation rate and the atomic gas density, namely {log Σ _{SFR} = 0.91^{+0.23}_{-0.25} log Σ _{gas,atomic} - 3.84^{+0.15}_{-0.19}}. The corresponding gas consumption time-scale is ˜10 Gyr, i.e. significantly smaller than the ˜100 Gyr estimated for the outer regions of spiral galaxies. We also estimate the gas consumption time-scale computed using the global gas content and the global star formation rate for all galaxies with a reliable measurement of the star formation rate, regardless of whether the H I distribution is disturbed or not. The mean gas consumption time-scale computed using this entire gas reservoir is ˜18 Gyr, i.e. still significantly smaller than that estimated for the outer parts of spirals. The gas consumption time-scale for dwarfs is intermediate between the values of ˜100 and ˜2 Gyr estimated for the outer molecule-poor and inner molecule-rich regions of spiral discs.

  4. Star Formation as a Function of Neutral Hydrogen Gas Density in Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Carlson, Erika K.; Madore, Barry F.; Freedman, Wendy L.

    2016-06-01

    We present a study of the efficiency and timescales of star formation as a function of local neutral hydrogen gas density in four Local Group galaxies: M33, NGC 6822, the LMC, and the SMC. In this work, we conceptualize the process of star formation as a cycle of two major phases - (1) a gas dynamics phase in which neutral hydrogen gas coalesces into clouds, and (2) a stellar phase in which stars have formed and interrupt further gas coalescence during their active lifetimes. By examining the spatial distribution and number densities of stars on maps of neutral hydrogen, we estimate the timescale of the gas coalescence phase relative to the timescale of the stellar phase and infer an efficiency of star formation as a function of neutral hydrogen gas density. From these timescales and efficiencies, we will calculate star formation rates as a function of neutral hydrogen gas density in these galaxies.

  5. The JCMT nearby galaxies legacy survey - X. Environmental effects on the molecular gas and star formation properties of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, C. D.; Golding, J.; Warren, B. E.; Israel, F. P.; Serjeant, S.; Knapen, J. H.; Sánchez-Gallego, J. R.; Barmby, P.; Bendo, G. J.; Rosolowsky, E.; van der Werf, P.

    2016-03-01

    We present a study of the molecular gas properties in a sample of 98 H I - flux selected spiral galaxies within ˜25 Mpc, using the CO J = 3 - 2 line observed with the James Clerk Maxwell Telescope. We use the technique of survival analysis to incorporate galaxies with CO upper limits into our results. Comparing the group and Virgo samples, we find a larger mean H2 mass in the Virgo galaxies, despite their lower mean H I mass. This leads to a significantly higher H2 to H I ratio for Virgo galaxies. Combining our data with complementary Hα star formation rate measurements, Virgo galaxies have longer molecular gas depletion times compared to group galaxies, due to their higher H2 masses and lower star formation rates. We suggest that the longer depletion times may be a result of heating processes in the cluster environment or differences in the turbulent pressure. From the full sample, we find that the molecular gas depletion time has a positive correlation with the stellar mass, indicative of differences in the star formation process between low- and high-mass galaxies, and a negative correlation between the molecular gas depletion time and the specific star formation rate.

  6. The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Wong, O. I.; Braine, J.; Chung, A.; Kenney, J. D. P.

    2012-07-01

    The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data based on the 8, 24, 70, and 160 μm data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies (NGC 4430, NGC 4501, and NGC 4522), possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies (NGC 4330, NGC 4438, and NGC 4522) shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. We found two such regions of low star formation efficiency in the more face-on galaxies NGC 4501 and NGC 4654 which are both undergoing ram pressure stripping. These regions show low radio continuum emission or unusually steep radio spectral index. However, the stripped extraplanar gas in one highly inclined

  7. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    NASA Astrophysics Data System (ADS)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely

  8. STAR FORMATION MODELS FOR THE DWARF GALAXIES NGC 2915 AND NGC 1705

    SciTech Connect

    Elson, E. C.; De Blok, W. J. G.; Kraan-Korteweg, R. C.

    2012-01-15

    Crucial to a quantitative understanding of galaxy evolution are the properties of the interstellar medium that regulate galactic-scale star formation activity. We present here the results of a suite of star formation models applied to the nearby blue compact dwarf galaxies NGC 2915 and NGC 1705. Each of these galaxies has a stellar disk embedded in a much larger, essentially starless H I disk. These atypical stellar morphologies allow for rigorous tests of star formation models that examine the effects on star formation of the H I, stellar, and dark matter mass components, as well as the kinematics of the gaseous and stellar disks. We use far-ultraviolet and 24 {mu}m images from the Galaxy Evolution Explorer and the Spitzer Infrared Nearby Galaxies Survey, respectively, to map the spatial distribution of the total star formation rate surface density within each galaxy. New high-resolution H I line observations obtained with the Australia Telescope Compact Array are used to study the distribution and dynamics of each galaxy's neutral interstellar medium. The standard Toomre Q parameter is unable to distinguish between active and non-active star-forming regions, predicting the H I disks of the dwarfs to be sub-critical. Two-fluid instability models incorporating the stellar and dark matter components of each galaxy, in addition to the gaseous component, yield unstable portions of the inner disk. Finally, a formalization in which the H I kinematics are characterized by the rotational shear of the gas produces models that very accurately match the observations. This suggests the time available for perturbations to collapse in the presence of rotational shear to be an important factor governing galactic-scale star formation.

  9. Star Formation Models for the Dwarf Galaxies NGC 2915 and NGC 1705

    NASA Astrophysics Data System (ADS)

    Elson, E. C.; de Blok, W. J. G.; Kraan-Korteweg, R. C.

    2012-01-01

    Crucial to a quantitative understanding of galaxy evolution are the properties of the interstellar medium that regulate galactic-scale star formation activity. We present here the results of a suite of star formation models applied to the nearby blue compact dwarf galaxies NGC 2915 and NGC 1705. Each of these galaxies has a stellar disk embedded in a much larger, essentially starless H I disk. These atypical stellar morphologies allow for rigorous tests of star formation models that examine the effects on star formation of the H I, stellar, and dark matter mass components, as well as the kinematics of the gaseous and stellar disks. We use far-ultraviolet and 24 μm images from the Galaxy Evolution Explorer and the Spitzer Infrared Nearby Galaxies Survey, respectively, to map the spatial distribution of the total star formation rate surface density within each galaxy. New high-resolution H I line observations obtained with the Australia Telescope Compact Array are used to study the distribution and dynamics of each galaxy's neutral interstellar medium. The standard Toomre Q parameter is unable to distinguish between active and non-active star-forming regions, predicting the H I disks of the dwarfs to be sub-critical. Two-fluid instability models incorporating the stellar and dark matter components of each galaxy, in addition to the gaseous component, yield unstable portions of the inner disk. Finally, a formalization in which the H I kinematics are characterized by the rotational shear of the gas produces models that very accurately match the observations. This suggests the time available for perturbations to collapse in the presence of rotational shear to be an important factor governing galactic-scale star formation.

  10. Panel Discussion I. Star Formation in Galaxies: How Do We Continue?

    NASA Astrophysics Data System (ADS)

    Knapen, J. H.

    2008-06-01

    This is the written account of the first of two panel discussions, on Star formation in galaxies: how do we continue? The chair of the panel was Phil James, and panel members were John Beckman, Torsten Böker, Daniela Calzetti, Angeles Díaz, and Rob Kennicutt. The panel and audience discussed the following four questions: 1) What are the most critically needed techniques to give accurate measurements of total rates and efficiencies of star formation? 2) Do we understand the form of the initial mass function and its variation as a function of redshift and environment? 3) Are there multiple modes of star formation in galaxies (bulge vs disk, burst vs continuous) or does the Schmidt law explain everything? 4) How do we bring together our understanding of star formation in our Galaxy and in external systems?

  11. Feedback in the local Universe: Relation between star formation and AGN activity in early type galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher; Baum, Stefi; Jones, Christine; Forman, William; Whitmore, Samantha; Ahmed, Rabeea; Pierce, Katherine; Leary, Sara

    2015-08-01

    Aim: We address the relation between star formation and AGN activity in a large sample of nearby early type (E and S0) galaxies. The redshift range of the galaxies is 0.0002star formation and thus the process of galaxy evolution and formation. Evidence of AGN feedback is found in massive galaxies in galaxy clusters. However, how common AGN feedback is in the local universe and in small scale systems is still not evident.Methods: To answer this question, we carried out a multiple wavelength study of a sample of 231 early type galaxies which were selected to have an apparent K-band magnitude brighter than 13.5 and whose positions correlate with Chandra ACIS-I and ACIS-S sources. The galaxies in the sample are unbiased regarding their star formation and radio source properties. Using the archival observations at radio, IR and UV from VLA, WISE and GALEX respectively, we obtained the radio power, estimate FUV star formation rate (SFR) and other galaxy properties to study AGN activity and ongoing star formation.Results: The relationship between radio power and stellar mass shows that there is an upper envelope of radio power that is a steep function of stellar luminosity. This suggests that less massive galaxies have low radio power while massive galaxies are capable of hosting powerful radio sources. The Radio-MIR relation shows that galaxies with P>=1022 WHz-1 are potential candidates for being AGN. About ~ 7% of the sample show evidence of ongoing star formation with SFR ranging from 10-3 to 1 M⊙yr-1. These are also less massive and radio faint suggesting the absence of active accretion. There is nearly equal fraction of star forming galaxies in radio faint (P<1022 WHz-1) and radio bright galaxies (P>=1022 WHz-1) . Only ~ 5% of the galaxies in our sample have P>=1022 WHz-1 and most of them do not show evidence of bright accretion disks. We see a weak correlation and a dispersion of

  12. The link between galaxy structure and star formation across cosmic time

    NASA Astrophysics Data System (ADS)

    Fang, Jerome Joseph

    The processes that fuel and quench star formation in galaxies are expected to leave imprints on their structure. Moreover, these imprints can serve as signposts to identify galaxies at various stages of their evolution. In this dissertation, we describe our efforts to characterize changes in galaxy structure (1) as star formation is going out, (2) after star formation has ostensibly quenched, and (3) during active star formation, with the goal of elucidating the relevant processes that regulate star formation in each case. In Chapter 2, we use a local (z ˜ 0) sample of galaxies drawn from the Sloan Digital Sky Survey (SDSS) to investigate the first two cases. We find that, as galaxies quench, their outer stellar mass density profiles remain essentially constant. However, their inner stellar mass density (within 1 kpc) increases, even while galaxies are still star-forming, until it reaches a mass-dependent threshold, at which point quenching can occur. The existence of this threshold indicates that quenching is connected with processes that grow bulges. In Chapter 3, we then study the morphologies and color profiles of 19 z ˜ 0 early-type galaxies located in the green valley. Combining high-resolution Hubble ultraviolet images with SDSS optical photometry, we find that these objects harbor low-level star formation that is clearly detectable in the ultraviolet. Moreover, the recently formed stars are distributed in symmetric rings that often span the entire optical extent of the galaxy. The presence of an old underlying population in their outer parts suggests that star formation in these galaxies is either gradually fading out or possibly rejuvenated by smooth accretion from the intergalactic medium. Such galaxies comprise ≈13% of green valley galaxies of similar mass and color, and they may linger in the green valley for several Gyr. Finally, in Chapter 4, we focus on the evolution of star-forming galaxies since z = 2.5, leveraging the rich multi

  13. STELLAR POPULATIONS AND THE STAR FORMATION HISTORIES OF LOW SURFACE BRIGHTNESS GALAXIES. II. H II REGIONS

    SciTech Connect

    Schombert, James; McGaugh, Stacy; Maciel, Tamela E-mail: stacy.mcgaugh@case.edu

    2013-08-01

    The luminosities, colors, and H{alpha} emission for 429 H II regions in 54 low surface brightness (LSB) galaxies are presented. While the number of H II regions per galaxy is lower in LSB galaxies compared to star-forming irregulars and spirals, there is no indication that the size or luminosity function of H II regions differs from other galaxy types. The lower number of H II regions per galaxy is consistent with their lower total star formation rates. The fraction of the total L{sub H{alpha}} contributed by H II regions varies from 10% to 90% in LSB galaxies (the rest of the H{alpha} emission being associated with a diffuse component) with no correlation with galaxy stellar or gas mass. Bright H II regions have bluer colors, similar to the trend in spirals; their number and luminosities are consistent with the hypothesis that they are produced by the same H II luminosity function as spirals. Comparison with stellar population models indicates that the brightest H II regions in LSB galaxies range in cluster mass from a few 10{sup 3} M{sub Sun} (e.g., {rho} Oph) to globular-cluster-sized systems (e.g., 30 Dor) and that their ages are consistent with clusters from 2 to 15 Myr old. The faintest H II regions are comparable to those in the LMC powered by a single O or B star. Thus, star formation in LSB galaxies covers the full range of stellar cluster mass.

  14. The Relation between Luminous AGNs and Star Formation in Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Rieke, G. H.; Egami, E.; Haines, C. P.; Pereira, M. J.; Smith, G. P.

    2015-08-01

    We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes (˜ 3× {10}8{M}⊙ ) accreting at ˜10% of the Eddington rate and residing in galaxies with stellar mass \\gt 3× {10}10{M}⊙ ; those detected with Herschel have IR luminosity from star formation in the range of {L}{SF,{IR}}˜ {10}10-{10}12{L}⊙ . We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.

  15. DETECTION OF MOLECULAR GAS IN VOID GALAXIES: IMPLICATIONS FOR STAR FORMATION IN ISOLATED ENVIRONMENTS

    SciTech Connect

    Das, M.; Honey, M.; Saito, T.; Iono, D.; Ramya, S.

    2015-12-10

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1–0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1–0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 10{sup 8} and 10{sup 9} M{sub ⊙}. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M{sub ⊙} yr{sup −1}; which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  16. Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback

    NASA Astrophysics Data System (ADS)

    Forbes, John C.; Krumholz, Mark R.; Goldbaum, Nathan J.; Dekel, Avishai

    2016-07-01

    Photoelectric heating—heating of dust grains by far-ultraviolet photons—has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity—as is expected with photoelectric heating, but not with supernovae—reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space- and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time, suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.

  17. Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback.

    PubMed

    Forbes, John C; Krumholz, Mark R; Goldbaum, Nathan J; Dekel, Avishai

    2016-07-28

    Photoelectric heating--heating of dust grains by far-ultraviolet photons--has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity--as is expected with photoelectric heating,but not with supernovae--reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time,suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.

  18. Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback.

    PubMed

    Forbes, John C; Krumholz, Mark R; Goldbaum, Nathan J; Dekel, Avishai

    2016-07-28

    Photoelectric heating--heating of dust grains by far-ultraviolet photons--has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity--as is expected with photoelectric heating,but not with supernovae--reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time,suppressing the rate by more than an order of magnitude relative to simulations with only supernovae. PMID:27350244

  19. The formation of the first stars and galaxies.

    PubMed

    Bromm, Volker; Yoshida, Naoki; Hernquist, Lars; McKee, Christopher F

    2009-05-01

    Observations made using large ground-based and space-borne telescopes have probed cosmic history from the present day to a time when the Universe was less than one-tenth of its present age. Earlier still lies the remaining frontier, where the first stars, galaxies and massive black holes formed. They fundamentally transformed the early Universe by endowing it with the first sources of light and chemical elements beyond the primordial hydrogen and helium produced in the Big Bang. The interplay of theory and upcoming observations promises to answer the key open questions in this emerging field.

  20. The formation of the first stars and galaxies.

    PubMed

    Bromm, Volker; Yoshida, Naoki; Hernquist, Lars; McKee, Christopher F

    2009-05-01

    Observations made using large ground-based and space-borne telescopes have probed cosmic history from the present day to a time when the Universe was less than one-tenth of its present age. Earlier still lies the remaining frontier, where the first stars, galaxies and massive black holes formed. They fundamentally transformed the early Universe by endowing it with the first sources of light and chemical elements beyond the primordial hydrogen and helium produced in the Big Bang. The interplay of theory and upcoming observations promises to answer the key open questions in this emerging field. PMID:19424148

  1. Stellar Populations and the Star Formation Histories of LSB Galaxies: III. Stellar Population Models

    NASA Astrophysics Data System (ADS)

    Schombert, James; McGaugh, Stacy

    2014-09-01

    A series of population models are designed to explore the star formation history of gas-rich, low surface brightness (LSB) galaxies. LSB galaxies are unique in having properties of very blue colors, low Hα emission and high gas fractions that indicated a history of constant star formation (versus the declining star formation models used for most spirals and irregulars). The model simulations use an evolving multi-metallicity composite population that follows a chemical enrichment scheme based on Milky Way observations. Color and time sensitive stellar evolution components (i.e., BHB, TP-AGB and blue straggler stars) are included, and model colors are extended into the Spitzer wavelength regions for comparison to new observations. In general, LSB galaxies are well matched to the constant star formation scenario with the variation in color explained by a fourfold increase/decrease in star formation over the last 0.5 Gyrs (i.e., weak bursts). Early-type spirals, from the S4G sample, are better fit by a declining star formation model where star formation has decreased by 40% in the last 12 Gyrs.

  2. Star formation and environmental quenching of GEEC2 group galaxies at z ˜ 1

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Balogh, Michael L.; McGee, Sean L.; Wilman, David J.; Finoguenov, Alexis; Tanaka, Masayuki; Bower, Richard G.; Hou, Annie; Mulchaey, John S.; Parker, Laura C.

    2014-03-01

    We present new analysis from the Group Environment Evolution Collaboration 2 (GEEC2) spectroscopic survey of galaxy groups at 0.8 < z < 1. Our previous work revealed an intermediate population between the star-forming and quiescent sequences and a strong environmental dependence in the fraction of quiescent galaxies. Only ˜5 per cent of star-forming galaxies in both the group and field sample show a significant enhancement in star formation, which suggests that quenching is the primary process in the transition from the star-forming to the quiescent state. To model the environmental quenching scenario, we have tested the use of different exponential quenching time-scales and delays between satellite accretion and the onset of quenching. We find that with no delay, the quenching time-scale needs to be long in order to match the observed quiescent fraction, but then this model produces too many intermediate galaxies. Fixing a delay time of 3 Gyr, as suggested from the local Universe, produces too few quiescent galaxies. The observed fractions are best matched with a model that includes a delay that is proportional to the dynamical time and a rapid quenching time-scale (˜0.25 Gyr), but this model also predicts intermediate galaxies Hδ strength higher than that observed. Using stellar synthesis models, we have tested other scenarios, such as the rejuvenation of star formation in early-type galaxies and a portion of quenched galaxies possessing residual star formation. If environment quenching plays a role in the GEEC2 sample, then our work suggests that only a fraction of intermediate galaxies may be undergoing this transition and that quenching occurs quite rapidly in satellite galaxies (≲0.25 Gyr).

  3. Star formation thresholds in H II galaxies with H I companions

    NASA Technical Reports Server (NTRS)

    Taylor, Christopher L.; Brinks, Elias; Pogge, Richard W.; Skillman, Evan D.

    1994-01-01

    We present high resolution Very Large Array (VLA) 21 cm line observations of five H II galaxies combined with previous lower resolution data from Taylor et al. (1993) and optical broadband R and H-alpha Charge Coupled Device (CCD) images of the systems. Following Kennicutt (1989) we calculated the threshold H I surface density for star formation for the H II galaxies and compared the location and shape of this predicted threshold density contour with the optical shape of the galaxies. We find generally a good correlation between these two, although a constant density contour of 10(exp 21)/sq cm fits the images of the optical galaxies equally as well. The H I synthesis observations have revealed that the H II galaxies have sharply peaked H I radial profiles, in contrast to the relatively flattened profiles of low surface brightness (LSB) galaxies, suggesting that large central concentrations of gas are a necessary condition for the occurrence of bursts of massive star formation seen in H II galaxies. These observations are consistent with the hypothesis that LSB galaxies represent the quiescent phase of H II galaxies, if a suitable mechanism exists (such as galaxy interactions) to cause H I to concentrate at the center of LSB galaxies prior to the onset of the burst of star formation. However, it is noted that the H II galaxies (and dwarf galaxies in general) span a relatively large range in mass. Since many properties correlate with mass (e.g., gas mass fraction), we point out that great care needs to be taken in choosing the proper comparison samples of LSB and H II galaxies.

  4. Are passive red spirals truly passive?. The current star formation activity of optically red disc galaxies

    NASA Astrophysics Data System (ADS)

    Cortese, L.

    2012-07-01

    We used GALEX ultraviolet and WISE 22 μm observations to investigate the current star formation activity of the optically red spirals recently identified as part of the Galaxy Zoo project. These galaxies were accurately selected from the Sloan Digital Sky Survey as pure discs with low or no current star formation activity, representing one of the best optically selected samples of candidate passive spirals. However, we show that these galaxies are not only still forming stars at a significant rate (≳1 M⊙ yr-1) but, more importantly, their star formation activity is not different from that of normal star-forming discs of the same stellar mass (M∗ ≳ 1010.2 M⊙). Indeed, these systems lie on the UV-optical blue sequence, even without any corrections for internal dust attenuation, and they follow the same specific star formation rate vs. stellar mass relation of star-forming galaxies. Our findings clearly show that at high stellar masses, optical colours do not allow to distinguish between actively star-forming and truly quiescent systems.

  5. The formation and assembly of a typical star-forming galaxy at redshift z approximately 3.

    PubMed

    Stark, Daniel P; Swinbank, A Mark; Ellis, Richard S; Dye, Simon; Smail, Ian R; Richard, Johan

    2008-10-01

    Recent studies of galaxies approximately 2-3 Gyr after the Big Bang have revealed large, rotating disks, similar to those of galaxies today. The existence of well-ordered rotation in galaxies during this peak epoch of cosmic star formation indicates that gas accretion is likely to be the dominant mode by which galaxies grow, because major mergers of galaxies would completely disrupt the observed velocity fields. But poor spatial resolution and sensitivity have hampered this interpretation; such studies have been limited to the largest and most luminous galaxies, which may have fundamentally different modes of assembly from those of more typical galaxies (which are thought to grow into the spheroidal components at the centres of galaxies similar to the Milky Way). Here we report observations of a typical star-forming galaxy at z = 3.07, with a linear resolution of approximately 100 parsecs. We find a well-ordered compact source in which molecular gas is being converted efficiently into stars, likely to be assembling a spheroidal bulge similar to those seen in spiral galaxies at the present day. The presence of undisrupted rotation may indicate that galaxies such as the Milky Way gain much of their mass by accretion rather than major mergers.

  6. Probing dust-obscured star formation in the most massive gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Greiner, Jochen; Michałowski, Michał J.; Klose, Sylvio; Hunt, Leslie K.; Gentile, Gianfranco; Kamphuis, Peter; Herrero-Illana, Rubén; Wieringa, Mark; Krühler, Thomas; Schady, Patricia; Elliott, Jonathan; Graham, John F.; Ibar, Eduardo; Knust, Fabian; Nicuesa Guelbenzu, Ana; Palazzi, Eliana; Rossi, Andrea; Savaglio, Sandra

    2016-08-01

    Context. As a result of their relation to massive stars, long-duration gamma-ray bursts (GRBs) allow the pinpointing of star formation in galaxies independent of redshift, dust obscuration, or galaxy mass/size, thus providing a unique tool to investigate star formation history over cosmic time. Aims: About half of the optical afterglows of long-duration GRBs are missed owing to dust extinction and are primarily located in the most massive GRB hosts. It is important to investigate the amount of obscured star formation in these GRB host galaxies to understand this bias. Methods: Radio emission of galaxies correlates with star formation, but does not suffer extinction as do the optical star formation estimators. We selected 11 GRB host galaxies with either large stellar mass or large UV-based and optical-based star formation rates (SFRs) and obtained radio observations of these with the Australia Telescope Compact Array and the Karl Jansky Very Large Array. Results: Despite intentionally selecting GRB hosts with expected high SFRs, we do not find any radio emission related to star formation in any of our targets. Our upper limit for GRB 100621A implies that the earlier reported radio detection was due to afterglow emission. We detect radio emission from the position of GRB 020819B, but argue that it is in large part, if not completely, due to afterglow contamination. Conclusions: Half of our sample has radio-derived SFR limits, which are only a factor 2-3 above the optically measured SFRs. This supports other recent studies that the majority of star formation in GRB hosts is not obscured by dust. Based on observations collected with ATCA under ID C2718, and at VLA under ID 13B-017.

  7. Astrochemistry and star formation in nearby galaxies: from galaxy disks to hot nuclei

    NASA Astrophysics Data System (ADS)

    Aalto, S.

    2016-05-01

    Studying the molecular phase of the interstellar medium in galaxies is fundamental for the understanding of the onset and evolution of compact and extended star formation, and of the growth of supermassive black holes. Molecular line emission is an excellent tracer of chemical, physical and dynamical conditions in the cold neutral gas. Key molecules in extragalactic studies are e.g. HCN, HCO+, HC3N, SiO, CH3OH, H2O. Furthermore, we can use IR excited molecular emission to probe the very inner regions of luminous infrared galaxies allowing us to get past the optically thick dust barrier of the compact obscured nuclei where lines of CO, HCN and HCO+ in their vibrational ground state (ν=0) may be self-absorbed. Finally, molecular outflows and their chemistry are briefly discussed - including new ALMA results on for example the outflow of the lenticular galaxy NGC1377 and a study of the chemistry of the outflow of the quasar Mrk231.

  8. The SAMI Galaxy Survey: extraplanar gas, galactic winds and their association with star formation history

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting; Medling, Anne M.; Bland-Hawthorn, Joss; Groves, Brent; Kewley, Lisa J.; Kobayashi, Chiaki; Dopita, Michael A.; Leslie, Sarah K.; Sharp, Rob; Allen, James T.; Bourne, Nathan; Bryant, Julia J.; Cortese, Luca; Croom, Scott M.; Dunne, Loretta; Fogarty, L. M. R.; Goodwin, Michael; Green, Andy W.; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Lorente, Nuria P. F.; Owers, Matt S.; Richards, Samuel; Sweet, Sarah M.; Tescari, Edoardo; Valiante, Elisabetta

    2016-04-01

    We investigate a sample of 40 local, main-sequence, edge-on disc galaxies using integral field spectroscopy with the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey to understand the link between properties of the extraplanar gas and their host galaxies. The kinematics properties of the extraplanar gas, including velocity asymmetries and increased dispersion, are used to differentiate galaxies hosting large-scale galactic winds from those dominated by the extended diffuse ionized gas. We find rather that a spectrum of diffuse gas-dominated to wind-dominated galaxies exist. The wind-dominated galaxies span a wide range of star formation rates (SFRs; -1 ≲ log (SFR/M⊙ yr-1) ≲ 0.5) across the whole stellar mass range of the sample (8.5 ≲ log (M*/M⊙) ≲ 11). The wind galaxies also span a wide range in SFR surface densities (10- 3-10- 1.5 M⊙ yr- 1 kpc- 2) that is much lower than the canonical threshold of 0.1 M⊙ yr- 1 kpc- 2. The wind galaxies on average have higher SFR surface densities and higher HδA values than those without strong wind signatures. The enhanced HδA indicates that bursts of star formation in the recent past are necessary for driving large-scale galactic winds. We demonstrate with Sloan Digital Sky Survey data that galaxies with high SFR surface density have experienced bursts of star formation in the recent past. Our results imply that the galactic winds revealed in our study are indeed driven by bursts of star formation, and thus probing star formation in the time domain is crucial for finding and understanding galactic winds.

  9. The dynamical masses, densities, and star formation scaling relations of Lyα galaxies

    SciTech Connect

    Rhoads, James E.; Malhotra, Sangeeta; Richardson, Mark L. A.; McLinden, Emily M.; Finkelstein, Steven L.; Fynbo, Johan P. U.; Tilvi, Vithal S.

    2014-01-01

    We present the first dynamical mass measurements for Lyα galaxies at high redshift, based on velocity dispersion measurements from rest-frame optical emission lines and size measurements from Hubble Space Telescope imaging, for nine galaxies drawn from four surveys. We use these measurements to study Lyα galaxies in the context of galaxy scaling relations. The resulting dynamical masses range from 10{sup 9} to 10{sup 10} M {sub ☉}. We also fit stellar population models to our sample and use them to place the Lyα sample on a stellar mass versus line width relation. The Lyα galaxies generally follow the same scaling relation as star-forming galaxies at lower redshift, although, lower stellar mass fits are also acceptable in ∼1/3 of the Lyα galaxies. Using the dynamical masses as an upper limit on gas mass, we show that Lyα galaxies have unusually active star formation for their gas mass surface density. This behavior is consistent with what is observed in starburst galaxies, despite the typically smaller masses and sizes of the Lyα galaxy population. Finally, we examine the mass densities of these galaxies and show that their future evolution likely requires dissipational ('wet') merging. In short, we find that Lyα galaxies are low-mass cousins of larger starbursts.

  10. A WISE Survey of Star Formation in the Milky Way: New Insight into Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Koenig, Xavier

    We propose to measure the recent star formation rate (SFR) in the Perseus Arm of the Milky Way galaxy and its relation to the surface density of gas, whether molecular or atomic on a range of scales from star forming clusters through large star forming complexes to the full scale of the Galactic Arm. We will test the connection between the SFR-gas relationship in the Galaxy and comparable measurements made in external galaxies in order to probe its origin and better understand the role and contribution of star formation to cosmological galaxy evolution. We also propose to study star formation that has been triggered by the recent formation of massive star clusters in order to discern the mechanisms of triggering that may be operating on super bubble size scales of more than 100 parsecs. This study will allow us to understand one of the key factors that sets the efficiency with which gas becomes stars as galaxies evolve with time. In order to achieve these goals, we will carry out a census of young stellar objects in the outer Milky Way Perseus Arm, using data gathered by the WISE and 2MASS all-sky surveys, with additional use of archival data from the Spitzer Space Telescope. We will develop and refine a young star finding algorithm that uses WISE and 2MASS photometry to identify and classify young stars and filters out contaminating objects such as background galaxies. We will measure the gas content with extinction maps made with data from 2MASS. We will test the triggered star formation models by analyzing the spatial distributions of young stars in super-bubbles and massive star forming regions in the Perseus Arm. This study will produce a key, like-for-like comparison between the extragalactic star formation rate-molecular gas relation and the Galactic relation and will advance the progress in linking Galactic and extragalactic studies of star formation, studying massive star forming regions that are representative of the major mode of star formation. The

  11. Star formation and galaxy evolution since z˜2: Results from multiwavelength surveys

    NASA Astrophysics Data System (ADS)

    Brisbin, Drew

    Our recent studies in galaxy evolution have revealed a surprising new paradigm of star formation. Contrary to the notion that major mergers play an increasingly dominant role going backwards in cosmic history, we find that over the last ˜10 Gyr, much of star formation has been fueled by accreting cold gas from the cosmic web. Accretion rates were presumably larger in the past, so star forming systems may have very different properties in the early Universe and today. Large scale astronomical surveys, such as the Herschel Multi-Tiered Extragalactic Survey (HerMES), and the Sloan Digital Sky Survey (SDSS) have provided a wealth of extragalactic data covering a statistically large number of sources. Targeted, niche surveys, like our fine structure line survey of star forming galaxies in the early Universe observed with the redshift (z) Early Universe Spectrometer (ZEUS) have provided detailed observations of high interest sources. We have made use of this diverse set of data to study galaxy evolution from the epoch of peak star formation at z=1-2 up to the present. Data from HerMES is a reliable probe of infrared emission, particularly useful for characterizing the far infrared dust peak, and therefore determining star formation rates out to redshifts of a few. Deep integrations with the Herschel SPIRE photometer rapidly reach the confusion limit, tempering its utility in studying faint high redshift galaxies. With appropriate care taken to identify blended sources, however, HerMES data is useful in identifying bright, redshifted, star forming sources. We have compiled spectral energy distributions from HerMES and ancillary data and found that, even sources at high redshift are well fit by local star forming galaxy templates. In the local Universe, spectroscopic SDSS data has allowed us to estimate crucial galaxy properties on ˜105 sources, providing an opportunity to observe general statistical trends, and constrain theories of galaxy evolution. A toy model of cold

  12. Cosmic web and star formation activity in galaxies at z ∼ 1

    SciTech Connect

    Darvish, B.; Mobasher, B.; Sales, L. V.; Sobral, D.; Scoville, N. Z.; Best, P.; Smail, I.

    2014-11-20

    We investigate the role of the delineated cosmic web/filaments on star formation activity by exploring a sample of 425 narrow-band selected Hα emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large-scale structure at z = 0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments, and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific SFR, the mean SFR-mass relation, and its scatter for both Hα emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of Hα emitters varies with environment and is enhanced in filamentary structures at z ∼ 1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of Hα star-forming galaxies in filaments. Our results show that filaments are the likely physical environments that are often classed as the 'intermediate' densities and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.

  13. Episodic Model For Star Formation History and Chemical Abundances in Giant and Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Debsarma, Suma; Chattopadhyay, Tanuka; Das, Sukanta; Pfenniger, Daniel

    2016-08-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic halos, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The observed periods of oscillation vary in the range (0.1 - 3.0) × 107 yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies is responsible for variation in metallicity in dwarf galaxies of similar masses as suggested by various authors.

  14. Episodic model for star formation history and chemical abundances in giant and dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Debsarma, Suma; Chattopadhyay, Tanuka; Das, Sukanta; Pfenniger, Daniel

    2016-11-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic haloes, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The derived periods of oscillation vary in the range (0.1-3.0) × 107 yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies is responsible for variation in metallicity in dwarf galaxies of similar masses as suggested by various authors.

  15. THE RELATIONSHIP BETWEEN BLACK HOLE GROWTH AND STAR FORMATION IN SEYFERT GALAXIES

    SciTech Connect

    Diamond-Stanic, Aleksandar M.; Rieke, George H.

    2012-02-20

    We present estimates of black hole accretion rates (BHARs) and nuclear, extended, and total star formation rates for a complete sample of Seyfert galaxies. Using data from the Spitzer Space Telescope, we measure the active galactic nucleus (AGN) luminosity using the [O IV] {lambda}25.89 {mu}m emission line and the star-forming luminosity using the 11.3 {mu}m aromatic feature and extended 24 {mu}m continuum emission. We find that black hole growth is strongly correlated with nuclear (r < 1 kpc) star formation, but only weakly correlated with extended (r > 1 kpc) star formation in the host galaxy. In particular, the nuclear star formation rate (SFR) traced by the 11.3 {mu}m aromatic feature follows a relationship with the BHAR of the form SFR{proportional_to} M-dot{sub BH}{sup 0.8}, with an observed scatter of 0.5 dex. This SFR-BHAR relationship persists when additional star formation in physically matched r = 1 kpc apertures is included, taking the form SFR{proportional_to} M-dot{sub BH}{sup 0.6}. However, the relationship becomes almost indiscernible when total SFRs are considered. This suggests a physical connection between the gas on sub-kiloparsec and sub-parsec scales in local Seyfert galaxies that is not related to external processes in the host galaxy. It also suggests that the observed scaling between star formation and black hole growth for samples of AGNs will depend on whether the star formation is dominated by a nuclear or an extended component. We estimate the integrated black hole and bulge growth that occurs in these galaxies and find that an AGN duty cycle of 5%-10% would maintain the ratio between black hole and bulge masses seen in the local universe.

  16. Star Formation and Dense Gas in Galaxy Mergers from the VIXENS Survey

    NASA Astrophysics Data System (ADS)

    Heiderman, Amanda L.; VIXENS Team

    2016-01-01

    We present our λ= 3 mm IRAM and NRO single dish line survey for a sample of 15 interacting galaxies in the VIRUS-P Investigation of the eXtreme ENvironments of Starbursts (VIXENS) survey. Our sample of merging galaxies range from early to late interaction stages (close pairs to merger remnants, respectively). A variety of molecular lines are detected including dense gas tracers HCN, HCO+, HNC, CS, CN (and others) as well as 12CO and 13CO. We compare the dense gas fractions with 12CO and 13CO as well as star formation efficiencies defined by infrared-to-dense gas tracer luminosity ratio and discuss trends with interaction stage. We also investigate relations between star formation and dense gas content in our merger sample and compare them to non-interacting star forming galaxies and Galactic star forming regions in the Milky Way.

  17. Fireworks of Star Formation Light Up a Galaxy

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Located some 13 million light-years from Earth, NGC 4214 is currently forming clusters of new stars from its interstellar gas and dust. In this Hubble image, we can see a sequence of steps in the formation and evolution of stars and star clusters. The picture was created from exposures taken in several color filters with Hubble's Wide Field Planetary Camera 2. NGC 4214 contains a multitude of faint stars covering most of the frame, but the picture is dominated by filigreed clouds of glowing gas surrounding bright stellar clusters. The youngest of these star clusters are located at the lower right of the picture, where they appear as about half a dozen bright clumps of glowing gas. Young, hot stars have a whitish to bluish color in the Hubble image, because of their high surface temperatures, ranging from 10,000 up to about 50,000 degrees Celsius. The radiation and wind forces from the young stars literally blow bubbles in the gas. Over millions of years, the bubbles increase in size as the stars inside them grow older. Moving to the lower left from the youngest clusters, we find an older star cluster, around which a gas bubble has inflated to the point that there is an obvious cavity around the central cluster. The most spectacular feature in the Hubble picture lies near the center of NGC 4214. This object is a cluster of hundreds of massive blue stars, each of them more than 10,000 times brighter than our own Sun. A vast heart-shaped bubble, inflated by the combined stellar winds and radiation pressure, surrounds the cluster. The expansion of the bubble is augmented as the most massive stars in the center reach the ends of their lives and explode as supernovae. The principal astronomers are: John MacKenty, Jesus Maiz-Apellaniz (Space Telescope Science Institute), Colin Norman (Johns Hopkins University), Nolan Walborn (Space Telescope Science Institute), Richard Burg (Johns Hopkins University), Richard Griffiths (Carnegie Mellon University), and Rosemary Wyse

  18. The interstellar medium and star formation in nearby galaxies. Ludwig Biermann Award Lecture 2013

    NASA Astrophysics Data System (ADS)

    Bigiel, F.; Cormier, D.; Schmidt, T.

    In this overview article we present some of the key projects we pursue in our Emmy Noether group. Our work is focused on nearby galaxies, where we use multi-wavelength, state-of-the-art survey data to probe distribution, abundance and properties of gas and dust in the interstellar medium (ISM) on [Si II] kpc scales. We study the average, radial distributions of atomic (H I) and molecular hydrogen (H2) across the disks of spiral galaxies and assess local (on 1 kpc scales) correlations between H I, H2 and star formation rate (SFR) surface densities across the inner, optical disks of our sample of [Si II] 30 spiral galaxies. The short H2 depletion times ([Si II] 2 Gyr) we find raises the question of if and how star formation is refueled in galactic disks. We look for such signatures of radial gas flows in our H I data and find compelling evidence at least in one case. We extend and compare our gas-SFR studies to the outer disks of galaxies, where conditions change significantly in the ISM, e.g., low metallicity and dust abundance. We focus on star formation at low-metallicity further with detailed ISM studies in dwarf galaxies, where we combine spectroscopic observations in the infrared with detailed modelling to learn about composition and detailed physical properties of the ISM. Of particular interest is the question of what drives large scale star formation in galaxies at low metallicity.

  19. Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties

    SciTech Connect

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li; Zhou, Xu E-mail: yuanqirong@njnu.edu.cn

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time

  20. The bursting nature of star formation in compact star-forming galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Guseva, N. G.; Fricke, K. J.; Henkel, C.

    2016-08-01

    We study integrated characteristics of ˜ 14000 low-redshift (0 < z < 1) compact star-forming galaxies (SFGs) selected from the Data Release 12 of the Sloan Digital Sky Survey. It is found that emission of these galaxies is dominated by strong young bursts of star formation, implying that their luminosities experience rapid variations on a time scale of a few Myr. Reducing integrated characteristics of these galaxies to zero burst age would result in a considerably tighter and almost linear relation between stellar mass and star formation rate (SFR). The same correction implies that the specific star formation rate (the ratio of SFR and stellar mass) is not dependent on the galaxy stellar mass. We conclude that the correction for rapid luminosity evolution must be taken into account in a similar way when comparing different samples of low- and high-redshift SFGs. If the bursting nature of star formation and young burst ages are characteristics of the galaxies selected at high redshifts, the age correction of observed SFRs derived from the Hβ emission line or UV continua would modify the derived SFR densities in the early universe.

  1. The bursting nature of star formation in compact star-forming galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Guseva, N. G.; Fricke, K. J.; Henkel, C.

    2016-11-01

    We study integrated characteristics of ˜14 000 low-redshift (0 < z < 1) compact star-forming galaxies (SFGs) selected from the Data Release 12 of the Sloan Digital Sky Survey. It is found that emission of these galaxies is dominated by strong young bursts of star formation, implying that their luminosities experience rapid variations on a time-scale of a few Myr. Reducing integrated characteristics of these galaxies to zero burst age would result in a considerably tighter and almost linear relation between stellar mass and star formation rate (SFR). The same correction implies that the specific star formation rate (the ratio of SFR and stellar mass) is not dependent on the galaxy stellar mass. We conclude that the correction for rapid luminosity evolution must be taken into account in a similar way when comparing different samples of low- and high-redshift SFGs. If the bursting nature of star formation and young burst ages are characteristics of the galaxies selected at high redshifts, the age correction of observed SFRs derived from the Hβ emission line or UV continua would modify the derived SFR densities in the early universe.

  2. Mechanisms for quenching star formation activities in green valley galaxies and its depends on morphologies

    NASA Astrophysics Data System (ADS)

    Kong, Xu; Pan, Zhizheng; Lian, Jianhui

    2015-08-01

    Galaxies are categorized into two main populations, red quiescent galaxies and blue star-forming galaxies. One of the key questions is which physical mechanisms are responsible for quenching star formation activities in blue galaxies and the resulting transformation? In this talk, we present research on the morphologies, spectra, and environments of "green valley" galaxies in the COSMOS field and low redshift "green valley" galaxies in SDSS. Our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M* < 10^10.0 Msun blue galaxies into red galaxies, especially at z < 0.5. Using image from SDSS and GALEX, we analyze the radial ultraviolet-optical color distributions in a sample of low redshift green valley galaxies, and investigate how quenching is processing in a galaxy. The early-type "green valley" galaxies (ETGs) have dramatically different radial NUV-r color distributions compared to late-type "green valley" galaxies (LTGs), most of ETGs have blue cores, nearly all LTGs have uniform color profiles that can be well-interpreted as red bulges plus blue disk components. These results suggest that the LTGs follow a general model by which quenching first occurs in the core regions, and then finally extend to the rest of the galaxy; for ETGs, their star formations are centrally concentrated. Our results can be re-examined and have important implications for the IFU surveys, such as MaNGA and SAMI (2013ApJ...776...14P, 2014ApJ...792L...4P, 2015MNRAS.446.1449L).

  3. Constraints on the star formation efficiency of galaxies during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Sun, G.; Furlanetto, S. R.

    2016-07-01

    Reionization is thought to have occurred in the redshift range of 6 < z < 9, which is now being probed by both deep galaxy surveys and CMB observations. Using halo abundance matching over the redshift range 5 < z < 8 and assuming smooth, continuous gas accretion, we develop a model for the star formation efficiency f⋆ of dark matter haloes at z > 6 that matches the measured galaxy luminosity functions at these redshifts. We find that f⋆ peaks at ˜30 per cent at halo masses M ˜ 1011-1012 M⊙, in qualitative agreement with its behaviour at lower redshifts. We then investigate the cosmic star formation histories and the corresponding models of reionization for a range of extrapolations to small halo masses. We use a variety of observations to further constrain the characteristics of the galaxy populations, including the escape fraction of UV photons. Our approach provides an empirically calibrated, physically motivated model for the properties of star-forming galaxies sourcing the epoch of reionization. In the case where star formation in low-mass haloes is maximally efficient, an average escape fraction ˜0.1 can reproduce the optical depth reported by Planck, whereas inefficient star formation in these haloes requires either about twice as many UV photons to escape, or an escape fraction that increases towards higher redshifts. Our models also predict how future observations with James Webb Space Telescope can improve our understanding of these galaxy populations.

  4. THE ACS NEARBY GALAXY SURVEY TREASURY. X. QUANTIFYING THE STAR CLUSTER FORMATION EFFICIENCY OF NEARBY DWARF GALAXIES

    SciTech Connect

    Cook, David O.; Dale, Daniel A.; Seth, Anil C.; Johnson, L. Clifton; Weisz, Daniel R.; Fouesneau, Morgan; Dalcanton, Julianne J.; Olsen, Knut A. G.; Engelbracht, Charles W.

    2012-06-01

    We study the relationship between the field star formation and cluster formation properties in a large sample of nearby dwarf galaxies. We use optical data from the Hubble Space Telescope and from ground-based telescopes to derive the ages and masses of the young (t{sub age} {approx}< 100 Myr) cluster sample. Our data provide the first constraints on two proposed relationships between the star formation rate (SFR) of galaxies and the properties of their cluster systems in the low SFR regime. The data show broad agreement with these relationships, but significant galaxy-to-galaxy scatter exists. In part, this scatter can be accounted for by simulating the small number of clusters detected from stochastically sampling the cluster mass function. However, this stochasticity does not fully account for the observed scatter in our data, suggesting that there may be true variations in the fraction of stars formed in clusters in dwarf galaxies. Comparison of the cluster formation and the brightest cluster in our sample galaxies also provide constraints on cluster destruction models.

  5. Star Formation in the Infrared Space Observatory Atlas of Bright Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bendo, George J.; Joseph, Robert D.; Wells, Martyn; Gallais, Pascal; Haas, Martin; Heras, Ana M.; Klaas, Ulrich; Laureijs, René J.; Leech, Kieron; Lemke, Dietrich; Metcalfe, Leo; Rowan-Robinson, Michael; Schulz, Bernhard; Telesco, Charles

    2002-09-01

    We investigate star formation along the Hubble sequence using the Infrared Space Observatory Atlas of Bright Spiral Galaxies. Using mid-infrared and far-infrared flux densities normalized by K-band flux densities as indicators of recent star formation, we find several trends. First, star formation activity is stronger in late-type (Sc-Scd) spirals than in early-type (Sa-Sab) spirals. This trend is seen both in nuclear and disk activity. These results confirm several previous optical studies of star formation along the Hubble sequence but conflict with the conclusions of most of the previous studies using IRAS data, and we discuss why this might be so. Second, star formation is significantly more extended in later type spirals than in early-type spirals. We suggest that these trends in star formation are a result of differences in the gas content and its distribution along the Hubble sequence, and it is these differences that promote star formation in late-type spiral galaxies. We also search for trends in nuclear star formation related to the presence of a bar or nuclear activity. The nuclear star formation activity is not significantly different between barred and unbarred galaxies. We do find that star formation activity appears to be inhibited in low ionization nuclear emission regions and transition objects compared with H II galaxies. The mean star formation rate in the sample is 1.4 Msolar yr-1, based on global far-infrared fluxes. Combining these data with CO data gives a mean gas consumption time of 6.4×108 yr, which is ~5 times lower than the values found in other studies. Finally, we find excellent support for the Schmidt law in the correlation between molecular gas masses and recent star formation in this sample of spiral galaxies. Based on observations with the Infrared Space Observatory, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the

  6. Suppressing star formation in quiescent galaxies with supermassive black hole winds

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Bundy, Kevin; SDSS-IV/MaNGA

    2016-01-01

    In the last 10 billion years (i.e., since redshift z ~2) the number of quiescent galaxies with little to no ongoing star formation has grown by a factor ~25. This is challenging to understand since galaxy formation models predict that these galaxies will continue to accrete fresh gas over their lifetimes, relatively little of which is required to reignite measurable star formation. It is thought that feedback from fresh gas accreting onto a central active galactic nucleus (AGN) might help such galaxies maintain their quiescence, but observational evidence for such ``maintenance mode feedback'' remains sparse. Using novel imaging spectroscopy from the SDSS-IV MaNGA Survey (Sloan Digital Sky Survey IV: Mapping Nearby Galaxies at Apache Point Observatory), we present evidence for a new maintenance mode phenomenon we term ``red geysers,'' a potentially episodic but relatively low-power AGN driven wind present in typical quiescent field galaxies of moderate mass and spheroidal morphology. We examine an archetypal red geyser that appears to be accreting gas from a low-mass companion but has no corresponding star formation. Instead, we find evidence for a galaxy-scale ionized wind with outflow velocities reaching more than 300 km/s and high velocity dispersions. We also detect a narrow biconical pattern of strong emission line equivalent widths consistent with fast shocks. Given additional confirmation of a radio AGN present in the galaxy, we propose that red geysers such as this may be a common mode in which gas accretion activates an ionized wind feedback mechanism that prevents star formation and helps moderate luminosity quiescent galaxies maintain their quiescence.

  7. Strangulation as the primary mechanism for shutting down star formation in galaxies.

    PubMed

    Peng, Y; Maiolino, R; Cochrane, R

    2015-05-14

    Local galaxies are broadly divided into two main classes, star-forming (gas-rich) and quiescent (passive and gas-poor). The primary mechanism responsible for quenching star formation in galaxies and transforming them into quiescent and passive systems is still unclear. Sudden removal of gas through outflows or stripping is one of the mechanisms often proposed. An alternative mechanism is so-called "strangulation", in which the supply of cold gas to the galaxy is halted. Here we report an analysis of the stellar metallicity (the fraction of elements heavier than helium in stellar atmospheres) in local galaxies, from 26,000 spectra, that clearly reveals that strangulation is the primary mechanism responsible for quenching star formation, with a typical timescale of four billion years, at least for local galaxies with a stellar mass less than 10(11) solar masses. This result is further supported independently by the stellar age difference between quiescent and star-forming galaxies, which indicates that quiescent galaxies of less than 10(11) solar masses are on average observed four billion years after quenching due to strangulation.

  8. Strangulation as the primary mechanism for shutting down star formation in galaxies.

    PubMed

    Peng, Y; Maiolino, R; Cochrane, R

    2015-05-14

    Local galaxies are broadly divided into two main classes, star-forming (gas-rich) and quiescent (passive and gas-poor). The primary mechanism responsible for quenching star formation in galaxies and transforming them into quiescent and passive systems is still unclear. Sudden removal of gas through outflows or stripping is one of the mechanisms often proposed. An alternative mechanism is so-called "strangulation", in which the supply of cold gas to the galaxy is halted. Here we report an analysis of the stellar metallicity (the fraction of elements heavier than helium in stellar atmospheres) in local galaxies, from 26,000 spectra, that clearly reveals that strangulation is the primary mechanism responsible for quenching star formation, with a typical timescale of four billion years, at least for local galaxies with a stellar mass less than 10(11) solar masses. This result is further supported independently by the stellar age difference between quiescent and star-forming galaxies, which indicates that quiescent galaxies of less than 10(11) solar masses are on average observed four billion years after quenching due to strangulation. PMID:25971510

  9. Mass Transport and Turbulence in Gravitationally Unstable Disk Galaxies. II: The Effects of Star Formation Feedback

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C.

    2016-08-01

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ˜1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ˜5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ˜ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  10. THE SUPPRESSION OF STAR FORMATION AND THE EFFECT OF THE GALAXY ENVIRONMENT IN LOW-REDSHIFT GALAXY GROUPS

    SciTech Connect

    Rasmussen, Jesper; Mulchaey, John S.; Bai, Lei; Ponman, Trevor J.; Raychaudhury, Somak; Dariush, Ali

    2012-10-01

    Understanding the interaction between galaxies and their surroundings is central to building a coherent picture of galaxy evolution. Here we use Galaxy Evolution Explorer imaging of a statistically representative sample of 23 galaxy groups at z Almost-Equal-To 0.06 to explore how local and global group environments affect the UV properties and dust-corrected star formation rates (SFRs) of their member galaxies. The data provide SFRs out to beyond 2R{sub 200} in all groups, down to a completeness limit and limiting galaxy stellar mass of 0.06 M{sub Sun} yr{sup -1} and 1 Multiplication-Sign 10{sup 8} M{sub Sun }, respectively. At fixed galaxy stellar mass, we find that the fraction of star-forming group members is suppressed relative to the field out to an average radius of R Almost-Equal-To 1.5 Mpc Almost-Equal-To 2R{sub 200}, mirroring results for massive clusters. For the first time, we also report a similar suppression of the specific SFR within such galaxies, on average by 40% relative to the field, thus directly revealing the impact of the group environment in quenching star formation within infalling galaxies. At fixed galaxy density and stellar mass, this suppression is stronger in more massive groups, implying that both local and global group environments play a role in quenching. The results favor an average quenching timescale of {approx}> 2 Gyr and strongly suggest that a combination of tidal interactions and starvation is responsible. Despite their past and ongoing quenching, galaxy groups with more than four members still account for at least {approx}25% of the total UV output in the nearby universe.

  11. GMC evolution in a barred spiral galaxy with star formation and thermal feedback

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yusuke; Bryan, Greg L.; Tasker, Elizabeth J.; Habe, Asao; Simpson, Christine M.

    2016-09-01

    We explore the impact of star formation and thermal stellar feedback on the giant molecular cloud population forming in a M83-type barred spiral galaxy. We compare three high-resolution simulations (1.5 pc cell size) with different star formation/feedback models: one with no star formation, one with star formation but no feedback, and one with star formation and thermal energy injection. We analyse the resulting population of clouds, finding that we can identify the same population of massive, virialized clouds and transient, low-surface density clouds found in our previous work (that did not include star formation or feedback). Star formation and feedback can affect the mix of clouds we identify. In particular, star formation alone simply converts dense cloud gas into stars with only a small change to the cloud populations, principally resulting in a slight decrease in the transient population. Feedback, however, has a stronger impact: while it is not generally sufficient to entirely destroy the clouds, it does eject gas out of them, increasing the gas density in the intercloud region. This decreases the number of massive clouds, but substantially increases the transient cloud population. We also find that feedback tends to drive a net radial inflow of massive clouds, leading to an increase in the star formation rate in the bar region. We examine a number of possible reasons for this and conclude that it is possible that the drag force from the enhanced intercloud density could be responsible.

  12. Molecular Gas and Star Formation in Local Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Bureau, M.; Davis, T. A.; Alatalo, K.; Crocker, A. F.; Blitz, L.; Young, L. M.; Combes, F.; Bois, M.; Bournaud, F.; Cappellari, M.; Davies, R. L.; de Zeeuw, P. T.; Duc, P.-A.; Emsellem, E.; Khochfar, S.; Krajnović, D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.

    2011-12-01

    The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the ATLAS3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in normal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.

  13. The interstellar medium and star formation in local galaxies: Variations of the star formation law in simulations

    SciTech Connect

    Becerra, Fernando; Escala, Andrés

    2014-05-01

    We use the adaptive mesh refinement code Enzo to model the interstellar medium (ISM) in isolated local disk galaxies. The simulation includes a treatment for star formation and stellar feedback. We get a highly supersonic turbulent disk, which is fragmented at multiple scales and characterized by a multi-phase ISM. We show that a Kennicutt-Schmidt relation only holds when averaging over large scales. However, values of star formation rates and gas surface densities lie close in the plot for any averaging size. This suggests an intrinsic relation between stars and gas at cell-size scales, which dominates over the global dynamical evolution. To investigate this effect, we develop a method to simulate the creation of stars based on the density field from the snapshots, without running the code again. We also investigate how the star formation law is affected by the characteristic star formation timescale, the density threshold, and the efficiency considered in the recipe. We find that the slope of the law varies from ∼1.4 for a free-fall timescale, to ∼1.0 for a constant depletion timescale. We further demonstrate that a power law is recovered just by assuming that the mass of the new stars is a fraction of the mass of the cell m {sub *} = ερ{sub gas}Δx {sup 3}, with no other physical criteria required. We show that both efficiency and density threshold do not affect the slope, but the right combination of them can adjust the normalization of the relation, which in turn could explain a possible bi-modality in the law.

  14. ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION RATE, SPECIFIC STAR FORMATION RATE, AND THE PRESENCE OF ACTIVE GALACTIC NUCLEI FOR HIGH STELLAR MASS AND LOW STELLAR MASS GALAXIES

    SciTech Connect

    Deng Xinfa; Song Jun; Chen Yiqing; Jiang Peng; Ding Yingping

    2012-07-10

    Using two volume-limited main galaxy samples of the Sloan Digital Sky Survey Data Release 8 (SDSS DR8), we explore the environmental dependence of the star formation rate (SFR), specific star formation rate (SSFR), and the presence of active galactic nuclei (AGNs) for high stellar mass (HSM) and low stellar mass (LSM) galaxies. It is found that the environmental dependence of the SFR and SSFR for luminous HSM galaxies and faint LSM ones remains very strong: galaxies in the lowest density regime preferentially have higher SFR and SSFR than galaxies in the densest regime, while the environmental dependence of the SFR and SSFR for luminous LSM galaxies is substantially reduced. Our result also shows that the fraction of AGNs in HSM galaxies decreases as a function of density, while the one in LSM galaxies depends very little on local density. In the faint LSM galaxy sample, the SFR and SSFR of galaxies strongly decrease with increasing density, but the fraction of AGNs depends very little on local density. Such a result can rule out that AGNs are fueled by the cold gas in the disk component of galaxies that is also driving the star formation of those galaxies.

  15. Effects of secular evolution on the star formation history of galaxies

    NASA Astrophysics Data System (ADS)

    Lorenzo, M. Fernández; Sulentic, J.; Verdes-Montenegro, L.; Argudo-Fernández, M.; Ruiz, J. E.; Sabater, J.; Sánchez-Expósito, S.

    2015-03-01

    We report the study performed as part of the AMIGA (Analysis of the interstellar Medium of Isolated GAlaxies; http://www.amiga.iaa.es) project, focused on the SDSS (g-r) colors of the sample. Assuming that color is an indicator of star formation history, this work better records the signature of passive star formation via pure secular evolution. Median values for each morphological type in AMIGA were compared with equivalent measures for galaxies in denser environments. We found a tendency for AMIGA spiral galaxies to be redder than galaxies in close pairs, but no clear difference when we compare with galaxies in other (e.g. group) environments. The (g-r) color of isolated galaxies presents a Gaussian distribution, as indicative of pure secular evolution, and a smaller median absolute deviation (almost half) compared to both wide and close pairs. This redder color and lower color dispersion of AMIGA spirals compared with close pairs is likely due to a more passive star formation in very isolated galaxies. In Fig. 1, we represent the size versus stellar mass for early and late-type galaxies of our sample, compared with the local relations of Shen et al. (2003). The late-type isolated galaxies are ~1.2 times larger or have less stellar mass than local spirals in other environments. The latter would be in agreement with the passive star formation found in the previous part. We acknowledge Grant AYA2011-30491-C02-01, P08-FQM-4205 and TIC-114.

  16. The distribution of star formation and metals in the low surface brightness galaxy UGC 628

    NASA Astrophysics Data System (ADS)

    Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.

    2015-09-01

    We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.

  17. Interactions and star-formation activity in Wolf-Rayet galaxies

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Ángel R.; Esteban, César

    2009-12-01

    We present the main results of the Ph.D. thesis carried out by López-Sánchez (Ph.D. thesis, 2006), in which a detailed morphological, photometric and spectroscopic analysis of a sample of 20 Wolf-Rayet (WR) galaxies was performed. The main aims are the study of the star formation and O and WR stellar populations in these galaxies, and the role that interactions between low surface brightness companion objects have in the triggering of the bursts. We analyze the morphology, stellar populations, physical conditions, chemical abundances and kinematics of the ionized gas, as well as the star-formation activity of each system.

  18. Is main-sequence galaxy star formation controlled by halo mass accretion?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Puebla, Aldo; Primack, Joel R.; Behroozi, Peter; Faber, S. M.

    2016-01-01

    The galaxy stellar-to-halo mass relation (SHMR) is nearly time-independent for z < 4. We therefore construct a time-independent SHMR model for central galaxies, wherein the in situ star formation rate (SFR) is determined by the halo mass accretion rate (MAR), which we call stellar halo accretion rate coevolution (SHARC). We show that the ˜0.3 dex dispersion of the halo MAR matches the observed dispersion of the SFR on the star formation main sequence (MS). In the context of `bathtub'-type models of galaxy formation, SHARC leads to mass-dependent constraints on the relation between SFR and MAR. Despite its simplicity and the simplified treatment of mass growth from mergers, the SHARC model is likely to be a good approximation for central galaxies with M* = 109-1010.5 M⊙ that are on the MS, representing most of the star formation in the Universe. SHARC predictions agree with observed SFRs for galaxies on the MS at low redshifts, agree fairly well at z ˜ 4, but exceed observations at z ≳ 4. Assuming that the interstellar gas mass is constant for each galaxy (the `equilibrium condition' in bathtub models), the SHARC model allows calculation of net mass loading factors for inflowing and outflowing gas. With assumptions about preventive feedback based on simulations, SHARC allows calculation of galaxy metallicity evolution. If galaxy SFRs indeed track halo MARs, especially at low redshifts, that may help explain the success of models linking galaxy properties to haloes (including age-matching) and the similarities between two-halo galaxy conformity and halo mass accretion conformity.

  19. Star formation associated with neutral hydrogen in the outskirts of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Yldz, Mustafa K.; Serra, Paolo; Peletier, Reynier F.; Oosterloo, Tom A.; Duc, Pierre-Alain

    2016-09-01

    About 20 percent of all nearby early-type galaxies (M⋆ ≳ ~6~ × 109~M⊙) outside the Virgo cluster are surrounded by a disc or ring of low-column-density neutral hydrogen (H I) gas with typical radii of tens of kpc, much larger than the stellar body. In order to understand the impact of these gas reservoirs on the host galaxies, we analyse the distribution of star formation out to large radii as a function of H I properties using GALEX UV and SDSS optical images. Our sample consists of 18 H I-rich galaxies as well as 55 control galaxies where no H I has been detected. In half of the H I-rich galaxies the radial UV profile changes slope at the position of the H I radial profile peak. To study the stellar populations, we calculate the FUV-NUV and UV-optical colours in two apertures, 1-3 and 3-10 Reff. We find that H I-rich galaxies are on average 0.5 and 0.8 mag bluer than the H I-poor ones, respectively. This indicates that a significant fraction of the UV emission traces recent star formation and is associated with the H I gas. Using FUV emission as a proxy for star formation, we estimate the integrated star formation rate in the outer regions (R > 1Reff) to be on average ˜ 6× 10-3 M⊙~yr-1 for the H I-rich galaxies. This rate is too low to build a substantial stellar disc and, therefore, change the morphology of the host. We find that the star formation efficiency and the gas depletion time are similar to those at the outskirts of spirals.

  20. High star formation rates as the origin of turbulence in early and modern disk galaxies.

    PubMed

    Green, Andrew W; Glazebrook, Karl; McGregor, Peter J; Abraham, Roberto G; Poole, Gregory B; Damjanov, Ivana; McCarthy, Patrick J; Colless, Matthew; Sharp, Robert G

    2010-10-01

    Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies, with the remainder being less massive non-rotating objects. The line-of-sight-averaged velocity dispersions are typically five times higher than in today's disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. These accreting flows, however, have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.

  1. BUILDING LATE-TYPE SPIRAL GALAXIES BY IN-SITU AND EX-SITU STAR FORMATION

    SciTech Connect

    Pillepich, Annalisa; Madau, Piero; Mayer, Lucio

    2015-02-01

    We analyze the formation and evolution of the stellar components in ''Eris'', a 120 pc resolution cosmological hydrodynamic simulation of a late-type spiral galaxy. The simulation includes the effects of a uniform UV background, a delayed-radiative-cooling scheme for supernova feedback, and a star formation recipe based on a high gas density threshold. It allows a detailed study of the relative contributions of ''in-situ'' (within the main host) and ''ex-situ'' (within satellite galaxies) star formation to each major Galactic component in a close Milky Way analog. We investigate these two star-formation channels as a function of galactocentric distance, along different lines of sight above and along the disk plane, and as a function of cosmic time. We find that: (1) approximately 70% of today's stars formed in-situ; (2) more than two thirds of the ex-situ stars formed within satellites after infall; (3) the majority of ex-situ stars are found today in the disk and in the bulge; (4) the stellar halo is dominated by ex-situ stars, whereas in-situ stars dominate the mass profile at distances ≲ 5 kpc from the center at high latitudes; and (5) approximately 25% of the inner, r ≲ 20 kpc, halo is composed of in-situ stars that have been displaced from their original birth sites during Eris' early assembly history.

  2. The Sagittarius dwarf irregular galaxy (SagDIG): distance and star formation history

    NASA Astrophysics Data System (ADS)

    Karachentsev, I.; Aparicio, A.; Makarova, L.

    1999-12-01

    The distance, star formation history and global properties of the Local Group dIrr galaxy SagDIG are derived based on an [I-(V-I)] colour-magnitude diagram of ~ 1550 stars. A distance of 1.06+/- 0.10 Mpc is obtained from the I magnitude of the TRGB. This corresponds to 1.17 Mpc to the barycenter of the Local Group and 1.34 to M 31, being DDO 210, at 0.35 Mpc, the nearest galaxy to SagDIG. The metallicity is estimated from the colour of the RGB to be [Fe/H] =-2.45+/- 0.25. SagDIG is hence a probable member of the Local Group and a candidate for the lowest-metallicity star forming galaxy known. The radial density profile of the galaxy has been obtained together with other integrated properties (magnitude, colour and central surface density). The galaxy density profile is fitted by an exponential law of scale length 27farcs1 , corresponding to 140 pc. The star formation history of SagDIG has been analysed, based on synthetic colour-magnitude diagrams. The galaxy is currently in a high star formation activity epoch, forming stars at a rate about 10 times greater than the average for its entire life. This is a common feature of galaxies classified as dIrrs. Based on observations made with the 2.5 m Nordic Optical Telescope operated on the island of La Palma by NOT S.A. in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrof\\'\\i sica de Canarias.

  3. Suppression of star formation in early-type galaxies by feedback from supermassive black holes.

    PubMed

    Schawinski, Kevin; Khochfar, Sadegh; Kaviraj, Sugata; Yi, Sukyoung K; Boselli, Alessandro; Barlow, Tom; Conrow, Tim; Forster, Karl; Friedman, Peter G; Martin, D Chris; Morrissey, Patrick; Neff, Susan; Schiminovich, David; Seibert, Mark; Small, Todd; Wyder, Ted K; Bianchi, Luciana; Donas, Jose; Heckman, Tim; Lee, Young-Wook; Madore, Barry; Milliard, Bruno; Rich, R Michael; Szalay, Alex

    2006-08-24

    Detailed high-resolution observations of the innermost regions of nearby galaxies have revealed the presence of supermassive black holes. These black holes may interact with their host galaxies by means of 'feedback' in the form of energy and material jets; this feedback affects the evolution of the host and gives rise to observed relations between the black hole and the host. Here we report observations of the ultraviolet emissions of massive early-type galaxies. We derive an empirical relation for a critical black-hole mass (as a function of velocity dispersion) above which the outflows from these black holes suppress star formation in their hosts by heating and expelling all available cold gas. Supermassive black holes are negligible in mass compared to their hosts but nevertheless seem to play a critical role in the star formation history of galaxies.

  4. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    SciTech Connect

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  5. Molecular Gas, Giant Molecular Clouds, and Star Formation in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Bureau, Martin

    2015-08-01

    I will first briefly review the molecular gas content of early-type galaxies, revealing that they unexpectedly harbour much cold gas, with a variety of morphologies. Second, I will show that the star formation efficiency (Kennicutt-Schmidt relation) of early-type galaxies is lower than that of spirals, and will discuss possible dynamical causes. Third, I will discuss the molecular line ratios of early-type galaxies (multiple transitions, isotopologues, and molecular tracers) and their implications (via modeling) for the physical conditions in the gas, revealing unexpected correlations with galaxy properties and both small-scale (e.g. star formation density) and large-scale (e.g. galaxy environment) dependencies. Last, I will present the first study of individually-resolved molecular clouds in an early-type galaxy (e.g. Larson's relations), again revealing differences with respect to standard star-forming late-type galaxies, in particular more luminous, denser, and higher velocity dispersion clouds associated with a gas higher surface density.

  6. GAS RESERVOIRS AND STAR FORMATION IN A FORMING GALAXY CLUSTER AT zbsime0.2

    SciTech Connect

    Jaffe, Yara L.; Poggianti, Bianca M.; Verheijen, Marc A. W.; Deshev, Boris Z.; Van Gorkom, Jacqueline H.

    2012-09-10

    We present first results from the Blind Ultra-Deep H I Environmental Survey of the Westerbork Synthesis Radio Telescope. Our survey is the first direct imaging study of neutral atomic hydrogen gas in galaxies at a redshift where evolutionary processes begin to show. In this Letter we investigate star formation, H I content, and galaxy morphology, as a function of environment in Abell 2192 (at z = 0.1876). Using a three-dimensional visualization technique, we find that Abell 2192 is a cluster in the process of forming, with significant substructure in it. We distinguish four structures that are separated in redshift and/or space. The richest structure is the baby cluster itself, with a core of elliptical galaxies that coincides with (weak) X-ray emission, almost no H I detections, and suppressed star formation. Surrounding the cluster, we find a compact group where galaxies pre-process before falling into the cluster, and a scattered population of 'field-like' galaxies showing more star formation and H I detections. This cluster proves to be an excellent laboratory to understand the fate of the H I gas in the framework of galaxy evolution. We clearly see that the H I gas and the star formation correlate with morphology and environment at z {approx} 0.2. In particular, the fraction of H I detections is significantly affected by the environment. The effect starts to kick in in low-mass groups that pre-process the galaxies before they enter the cluster. Our results suggest that by the time the group galaxies fall into the cluster, they are already devoid of H I.

  7. Gas Reservoirs and Star Formation in a Forming Galaxy Cluster at zbsime0.2

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Poggianti, Bianca M.; Verheijen, Marc A. W.; Deshev, Boris Z.; van Gorkom, Jacqueline H.

    2012-09-01

    We present first results from the Blind Ultra-Deep H I Environmental Survey of the Westerbork Synthesis Radio Telescope. Our survey is the first direct imaging study of neutral atomic hydrogen gas in galaxies at a redshift where evolutionary processes begin to show. In this Letter we investigate star formation, H I content, and galaxy morphology, as a function of environment in Abell 2192 (at z = 0.1876). Using a three-dimensional visualization technique, we find that Abell 2192 is a cluster in the process of forming, with significant substructure in it. We distinguish four structures that are separated in redshift and/or space. The richest structure is the baby cluster itself, with a core of elliptical galaxies that coincides with (weak) X-ray emission, almost no H I detections, and suppressed star formation. Surrounding the cluster, we find a compact group where galaxies pre-process before falling into the cluster, and a scattered population of "field-like" galaxies showing more star formation and H I detections. This cluster proves to be an excellent laboratory to understand the fate of the H I gas in the framework of galaxy evolution. We clearly see that the H I gas and the star formation correlate with morphology and environment at z ~ 0.2. In particular, the fraction of H I detections is significantly affected by the environment. The effect starts to kick in in low-mass groups that pre-process the galaxies before they enter the cluster. Our results suggest that by the time the group galaxies fall into the cluster, they are already devoid of H I.

  8. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    SciTech Connect

    Silk, Joseph

    2013-08-01

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis.

  9. Resolved H I imaging of a population of massive H I-rich galaxies with suppressed star formation

    SciTech Connect

    Lemonias, Jenna J.; Schiminovich, David; Catinella, Barbara; Heckman, Timothy M.; Moran, Sean M.

    2014-07-20

    Despite the existence of well-defined relationships between cold gas and star formation, there is evidence that some galaxies contain large amounts of H I that do not form stars efficiently. By systematically assessing the link between H I and star formation within a sample of galaxies with extremely high H I masses (log M{sub H{sub I}}/M{sub ☉} > 10), we uncover a population of galaxies with an unexpected combination of high H I masses and low specific star formation rates that exists primarily at stellar masses greater than log M{sub *}/M{sub ☉} ∼ 10.5. We obtained H I maps of 20 galaxies in this population to understand the distribution of the H I and the physical conditions in the galaxies that could be suppressing star formation in the presence of large quantities of H I. We find that all of the galaxies we observed have low H I surface densities in the range in which inefficient star formation is common. The low H I surface densities are likely the main cause of the low specific star formation rates, but there is also some evidence that active galactic nuclei or bulges contribute to the suppression of star formation. The sample's agreement with the global star formation law highlights its usefulness as a tool for understanding galaxies that do not always follow expected relationships.

  10. The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Lagos, Claudia del P.; Theuns, Tom; Schaye, Joop; Furlong, Michelle; Bower, Richard G.; Schaller, Matthieu; Crain, Robert A.; Trayford, James W.; Matthee, Jorryt

    2016-07-01

    We investigate correlations between different physical properties of star-forming galaxies in the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) cosmological hydrodynamical simulation suite over the redshift range 0 ≤ z ≤ 4.5. A principal component analysis reveals that neutral gas fraction (fgas,neutral), stellar mass (Mstellar) and star formation rate (SFR) account for most of the variance seen in the population, with galaxies tracing a two-dimensional, nearly flat, surface in the three-dimensional space of fgas, neutral-Mstellar-SFR with little scatter. The location of this plane varies little with redshift, whereas galaxies themselves move along the plane as their fgas, neutral and SFR drop with redshift. The positions of galaxies along the plane are highly correlated with gas metallicity. The metallicity can therefore be robustly predicted from fgas, neutral, or from the Mstellar and SFR. We argue that the appearance of this `Fundamental Plane of star formation' is a consequence of self-regulation, with the plane's curvature set by the dependence of the SFR on gas density and metallicity. We analyse a large compilation of observations spanning the redshift range 0 ≲ z ≲ 3, and find that such a plane is also present in the data. The properties of the observed Fundamental Plane of star formation are in good agreement with EAGLE's predictions.

  11. Ultraviolet Morphology and Unobscured UV Star Formation Rates of CLASH Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Donahue, Megan; Connor, Thomas; Fogarty, Kevin; Li, Yuan; Voit, G. Mark; Postman, Marc; Koekemoer, Anton; Moustakas, John; Bradley, Larry; Ford, Holland

    2015-06-01

    Brightest cluster galaxies (BCGs) are usually quiescent, but many exhibit star formation. Here we exploit the opportunity provided by rest-frame UV imaging of galaxy clusters in the Cluster Lensing and Supernovae with Hubble (CLASH) Multi-Cycle Treasury Project to reveal the diversity of UV morphologies in BCGs and to compare them with recent simulations of the cool, star-forming gas structures produced by precipitation-driven feedback. All of the CLASH BCGs are detected in the rest-frame UV (280 nm), regardless of their star formation activity, because evolved stellar populations produce a modest amount of UV light that traces the relatively smooth, symmetric, and centrally peaked stellar distribution seen in the near infrared. Ultraviolet morphologies among the BCGs with strong UV excesses exhibit distinctive knots, multiple elongated clumps, and extended filaments of emission that distinctly differ from the smooth profiles of the UV-quiet BCGs. These structures, which are similar to those seen in the few star-forming BCGs observed in the UV at low redshift, are suggestive of bi-polar streams of clumpy star formation, but not of spiral arms or large, kiloparsec-scale disks. Based on the number of streams and lack of culprit companion galaxies, these streams are unlikely to have arisen from multiple collisions with gas-rich galaxies. These star-forming UV structures are morphologically similar to the cold-gas structures produced in simulations of precipitation-driven active galactic nucleus feedback in which jets uplift low-entropy gas to greater altitudes, causing it to condense. Unobscured star formation rates estimated from CLASH UV images using the Kennicutt relation range up to 80 {{M}⊙ } y{{r}-1} in the most extended and highly structured systems. The circumgalactic gas-entropy threshold for star formation in CLASH BCGs at z ˜ 0.2-0.5 is indistinguishable from that for clusters at z\\lt 0.2.

  12. Star formation and accretion in the circumnuclear disks of active galaxies

    NASA Astrophysics Data System (ADS)

    Wutschik, Stephanie; Schleicher, Dominik R. G.; Palmer, Thomas S.

    2013-12-01

    Aims: We explore the evolution of supermassive black holes (SMBH) centered in a circumnuclear disk (CND) as a function of the mass supply from the host galaxy and considering different star formation laws, which may give rise to a self-regulation via the injection of supernova-driven turbulence. Methods: A system of equations describing star formation, black hole accretion and angular momentum transport in the disk was solved self-consistently for an axisymmetric disk in which the gravitational potential includes contributions from the black hole, the disk and the hosting galaxy. Our model extends the framework provided by Kawakatu & Wada (2008, ApJ, 681, 73), by separately considering the inner and outer part of the disk, and by introducing a potentially non-linear dependence of the star formation rate on the gas surface density and the turbulent velocity. The star formation recipes are calibrated using observational data for NGC 1097, while the accretion model is based on turbulent viscosity as a source of angular momentum transport in a thin viscous accretion disk. Results: We find that current data provide no strong constraint on the star formation recipe, and can in particular not distinguish between models entirely regulated by the surface density, and models including a dependence on the turbulent velocity. The evolution of the black hole mass, on the other hand, strongly depends on the applied star formation law, as well as the mass supply from the host galaxy. We suggest to explore the star formation process in local AGN with high-resolution ALMA observations to break the degeneracy between different star formation models.

  13. The SAMI Galaxy Survey: can we trust aperture corrections to predict star formation?

    NASA Astrophysics Data System (ADS)

    Richards, S. N.; Bryant, J. J.; Croom, S. M.; Hopkins, A. M.; Schaefer, A. L.; Bland-Hawthorn, J.; Allen, J. T.; Brough, S.; Cecil, G.; Cortese, L.; Fogarty, L. M. R.; Gunawardhana, M. L. P.; Goodwin, M.; Green, A. W.; Ho, I.-T.; Kewley, L. J.; Konstantopoulos, I. S.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.

    2016-01-01

    In the low-redshift Universe (z < 0.3), our view of galaxy evolution is primarily based on fibre optic spectroscopy surveys. Elaborate methods have been developed to address aperture effects when fixed aperture sizes only probe the inner regions for galaxies of ever decreasing redshift or increasing physical size. These aperture corrections rely on assumptions about the physical properties of galaxies. The adequacy of these aperture corrections can be tested with integral-field spectroscopic data. We use integral-field spectra drawn from 1212 galaxies observed as part of the SAMI Galaxy Survey to investigate the validity of two aperture correction methods that attempt to estimate a galaxy's total instantaneous star formation rate. We show that biases arise when assuming that instantaneous star formation is traced by broad-band imaging, and when the aperture correction is built only from spectra of the nuclear region of galaxies. These biases may be significant depending on the selection criteria of a survey sample. Understanding the sensitivities of these aperture corrections is essential for correct handling of systematic errors in galaxy evolution studies.

  14. Neutral hydrogen gas, past and future star formation in galaxies in and around the `Sausage' merging galaxy cluster

    NASA Astrophysics Data System (ADS)

    Stroe, Andra; Oosterloo, Tom; Röttgering, Huub J. A.; Sobral, David; van Weeren, Reinout; Dawson, William

    2015-09-01

    CIZA J2242.8+5301 (z = 0.188, nicknamed `Sausage') is an extremely massive (M200 ˜ 2.0 × 1015 M⊙), merging cluster with shock waves towards its outskirts, which was found to host numerous emission line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope H I observations of the `Sausage' cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission line galaxies in the `Sausage' cluster have, on average, as much H I gas as field galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large H I reservoirs are expected to be consumed within ˜0.75-1.0 Gyr by the vigorous SF and active galactic nuclei activity and/or driven out by the outflows we observe. We find that the star formation rate (SFR) in a large fraction of H α emission line cluster galaxies correlates well with the radio broad-band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. This fully supports the interpretation proposed by Stroe et al. and Sobral et al. that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock.

  15. Star formation in infrared bright and infrared faint starburst interacting galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.; Bushouse, Howard A.; Towns, John W.

    1990-01-01

    Short wavelength IUE spectra of Arp 248b and UGC 8315N are combined with optical spectra and interpreted using a combination of spectrum synthesis and spectral diagnostics to place constraints on the massive star populations of the central regions of these galaxies and to deduce information about the star formation histories in the last 10(exp 8) years. The authors find that both galaxies have substantial fractions of their optical light coming from massive stars and that Arp 248b may be dominated in the UV by WR stars. The UV spectra are dominated by radiation from evolved massive stars and the authors place and age on the burst in Arp 248b of a few tens of millions of years.

  16. A Multi-Wavelength Investigation of the Star Formation Processes in the SHIELD Galaxies

    NASA Astrophysics Data System (ADS)

    Teich, Yaron G.; McNichols, Andrew Thomas; Cannon, John M.

    2015-08-01

    We analyze the relationships between HI mass surface density and star formation in the 12 galaxies that comprise the Survey of HI in Extremely Low-Mass Dwarfs (SHIELD). The SHIELD galaxies were selected from the first ~10% of data from the Arecibo Legacy Fast ALFA (ALFALFA) survey; they harbor low-mass HI reservoirs (6.6 < log(M(HI)) < 7.8) that make them critical testbeds for our understanding of the process of star formation in shallow potential wells. Using HI imaging from the VLA, Hα imaging from the WIYN 3.5m telescope, and archival GALEX imaging (available for most sample members), we compare the locations and intensities of star formation with the properties of the neutral ISM. Despite the low HI column densities observed in these systems, each SHIELD galaxy has a significant blue stellar population; there is ongoing star formation in all but one of the galaxies. We find that the regions of Hα emission are co-located with regions of high HI column densities. We compare the degree of overlap of HI dense knots with local UV maxima, with the goal of identifying whether Hα or UV emission more strongly correlates with regions of high HI column density. We calculate the specific SFR and SFR density for the galaxies in the sample, and examine the relationships of HI mass and SFR (from Hα, UV, and averaged from both) for selected sources. We also calculate the star formation efficiency (SFE) for each galaxy in the sample (total SFR / total gas mass) and note its dependence on HI column density.This work is a result of collaboration with the SHIELD Team and is supported by NSF grant 1211683.

  17. Delayed star formation in high-redshift stream-fed galaxies

    NASA Astrophysics Data System (ADS)

    Gabor, J. M.; Bournaud, Frédéric

    2014-01-01

    We propose that star formation (SF) is delayed relative to the inflow rate in rapidly accreting galaxies at very high redshift (z > 2) because of the energy conveyed by the accreting gas. Accreting gas streams provide fuel for SF, but they stir the disc and increase turbulence above the usual levels compatible with gravitational instability, reducing the SF efficiency in the available gas. After the specific inflow rate has sufficiently decreased - typically at z < 3 - galaxies settle in a self-regulated regime with efficient SF. An analytic model shows that this interaction between infalling gas and young galaxies can significantly delay SF and maintain high gas fractions (>40 per cent) down to z ≈ 2, in contrast to other galaxy formation models. Idealized hydrodynamic simulations of infalling gas streams on to primordial galaxies confirm the efficient energetic coupling at z > 2 and suggest that this effect is largely under-resolved in existing cosmological simulations.

  18. Star Formation Activity in a Young Galaxy Cluster at Z = 0.866

    NASA Astrophysics Data System (ADS)

    Laganá, T. F.; Ulmer, M. P.; Martins, L. P.; da Cunha, E.

    2016-07-01

    The galaxy cluster RX J1257+4738 at z = 0.866 is one of the highest redshift clusters with a richness of multi-wavelength data, and is thus a good target to study the star formation-density relation at early epochs. Using a sample of spectroscopically confirmed cluster members, we derive the star-formation rates (SFRs) of our galaxies using two methods: (1) the relation between SFR and total infrared luminosity extrapolated from the observed Spitzer Multiband Imaging Photometer for Spitzer 24 μm imaging data; and (2) spectral energy distribution fitting using the MAGPHYS code, including eight different bands. We show that, for this cluster, the SFR-density relation is very weak and seems to be dominated by the two central galaxies and the SFR presents a mild dependence on stellar mass, with more massive galaxies having higher SFR. However, the specific SFR (SSFR) decreases with stellar mass, meaning that more massive galaxies are forming fewer stars per unit of mass, and thus suggesting that the increase in star-forming members is driven by cluster assembly and infall. If the environment is somehow driving the star formation, one would expect a relation between the SSFR and the cluster centric distance, but that is not the case. A possible scenario to explain this lack of correlation is the contamination by infalling galaxies in the inner part of the cluster, which may be on their initial pass through the cluster center. As these galaxies have higher SFRs for their stellar mass, they enhance the mean SSFR in the center of the cluster.

  19. Star Formation and Dust Obscuration at z ≈ 2: Galaxies at the Dawn of Downsizing

    NASA Astrophysics Data System (ADS)

    Pannella, M.; Carilli, C. L.; Daddi, E.; McCracken, H. J.; Owen, F. N.; Renzini, A.; Strazzullo, V.; Civano, F.; Koekemoer, A. M.; Schinnerer, E.; Scoville, N.; Smolčić, V.; Taniguchi, Y.; Aussel, H.; Kneib, J. P.; Ilbert, O.; Mellier, Y.; Salvato, M.; Thompson, D.; Willott, C. J.

    2009-06-01

    We present first results of a study aimed to constrain the star formation rate (SFR) and dust content of galaxies at z ≈ 2. We use a sample of BzK-selected star-forming galaxies, drawn from the Cosmic Evolution Survey, to perform a stacking analysis of their 1.4 GHz radio continuum as a function of different stellar population properties, after cleaning the sample from contamination by active galactic nuclei. Dust unbiased SFRs are derived from radio fluxes assuming the local radio-IR correlation. The main results of this work are: (1) specific star formation rate (SSFR)s are constant over about 1 dex in stellar mass and up to the highest stellar mass probed, (2) the dust attenuation is a strong function of galaxy stellar mass with more massive galaxies being more obscured than lower mass objects, (3) a single value of the UV extinction applied to all galaxies would lead to a gross underestimate of the SFR in massive galaxies, (4) correcting the observed UV luminosities for dust attenuation based on the Calzetti recipe provides results in very good agreement with the radio derived ones, (5) the mean SSFR of our sample steadily decreases by a factor of ~4 with decreasing redshift from z = 2.3 to 1.4 and a factor of ~40 down the local universe. These empirical SFRs would cause galaxies to dramatically overgrow in mass if maintained all the way to low redshifts; we suggest that this does not happen because star formation is progressively quenched, likely starting from the most massive galaxies. Based on observations collected, within the COSMOS Legacy Survey, at the HST, Chandra, XMM, Keck, NRAO-VLA, Subaru, KPNO, CTIO, CFHT, and ESO observatories. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  20. Explaining the Three-decade Correlation between Star Formation Rate and Stellar Mass in Galaxies at z~1

    NASA Astrophysics Data System (ADS)

    Gawiser, Eric J.; Kurczynski, Peter; Acquaviva, Viviana; UVUDF Team, CANDELS Team

    2016-01-01

    In star-forming galaxies across cosmic time, a correlation has been found between the mass of stars already assembled and its time derivative, the star formation rate. This surprising correlation was not predicted by theory, but it can be reproduced within cosmological hydrodynamics simulations and semi-analytical models of galaxy formation. Here we use SpeedyMC, a Markov Chain Monte Carlo code for Spectral Energy Distribution fitting, to measure the star formation rates and stellar masses of 800 galaxies from the Ultraviolet Ultradeep Field (UVUDF) and CANDELS/GOODS-S field at redshift 1 < z < 1.5. This galaxy sample leverages the deepest images taken with the Hubble Space Telescope to extend the SFR-M* correlation a factor of 10-100X lower in M* than previous studies, down to values of 10^7 M_sun comparable to present-day dwarf galaxies. Accounting for each galaxy's parameter uncertainties, including their covariances, yields a power-law correlation across three decades with intrinsic scatter of 0.2 dex. Having assumed realistic star formation histories that can rise and fall with time, we are able to measure star formation rates on timescales varying from instantaneous to the "lifetime" average for each galaxy. As the timescale over which star formation rate is averaged increases, the power-law exponent of the correlation with stellar mass increases to unity, and the scatter decreases to 0.05 dex. We conclude that the observed correlation between star formation rate and stellar mass results from a tight correlation between recent and lifetime-average star formation rates and a narrow spread of galaxy ages at a given star formation rate. The resulting correlation provides crucial evidence that galaxy formation proceeds through self-regulated star formation. We gratefully acknowledge support from NSF grant AST-1055919 and grants from NASA via the Space Telescope Science Institute in support of programs 12060.57, 12445.56, and GO-12534.

  1. An Intermittent Star Formation History in a "Normal" Disk Galaxy: The Milky Way.

    PubMed

    Rocha-Pinto; Scalo; Maciel; Flynn

    2000-03-10

    The star formation rate history of the Milky Way is derived using the chromospheric age distribution for 552 stars in the solar neighborhood. The stars' sample birth sites are distributed over a very large range of distances because of orbital diffusion and so give an estimate of the global star formation rate history. The derivation incorporates the metallicity dependence of chromospheric emission at a given age and corrections to account for incompleteness, scale height-age correlations, and stellar evolutionary effects. We find fluctuations in the global star formation rate with amplitudes greater than a factor of 2-3 on timescales less than 0.2-1 Gyr. The actual history is likely to be more bursty than found here because of the smearing effect of age uncertainties. There is some evidence for a slow secular increase in the star formation rate, perhaps a record of the accumulation history of our Galaxy. A smooth, nearly constant star formation rate history is strongly ruled out, confirming the result first discovered by Barry using a smaller sample and a different age calibration. This result suggests that galaxies can fluctuate coherently on large scales.

  2. CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT z {approx} 2

    SciTech Connect

    Lee, Bomee; Giavalisco, Mauro; Williams, Christina C.; Guo Yicheng; Faber, S. M.; Van der Wel, Arjen; Kocevski, Dale; Conselice, Christopher J.; Wuyts, Stijn; Dekel, Avishai; Kartaltepe, Jeyhan; Bell, Eric F.

    2013-09-01

    We discuss the state of the assembly of the Hubble sequence in the mix of bright galaxies at redshift 1.4 < z {<=} 2.5 with a large sample of 1671 galaxies down to H{sub AB} {approx} 26, selected from the HST/ACS and WFC3 images of the GOODS-South field obtained as part of the GOODS and CANDELS observations. We investigate the relationship between the star formation properties and morphology using various parametric diagnostics, such as the Sersic light profile, Gini (G), M{sub 20}, concentration (C), asymmetry (A), and multiplicity ({Psi}) parameters. Our sample clearly separates into massive, red, and passive galaxies versus less massive, blue, and star-forming ones, and this dichotomy correlates very well with the galaxies' morphological properties. Star-forming galaxies show a broad variety of morphological features, including clumpy structures and bulges mixed with faint low surface brightness features, generally characterized by disky-type light profiles. Passively evolving galaxies, on the other hand, very often have compact light distribution and morphology typical of today's spheroidal systems. We also find that artificially redshifted local galaxies have a similar distribution with z {approx} 2 galaxies in a G-M{sub 20} plane. Visual inspection between the rest-frame optical and UV images show that there is a generally weak morphological k-correction for galaxies at z {approx} 2, but the comparison with non-parametric measures show that galaxies in the rest-frame UV are somewhat clumpier than rest-frame optical. Similar general trends are observed in the local universe among massive galaxies, suggesting that the backbone of the Hubble sequence was already in place at z {approx} 2.

  3. Linking star formation and galaxy kinematics in the massive cluster Abell 2163

    NASA Astrophysics Data System (ADS)

    Menacho, Veronica; Verdugo, Miguel

    2015-02-01

    The origin of the morphology-density relation is still an open question in galaxy evolution. It is most likely driven by the combination of the efficient star formation in the highest peaks of the mass distribution at high-z and the transformation by environmental processes at later times as galaxies fall into more massive halos. To gain additional insights about these processes we study the kinematics, star formation and structural properties of galaxies in Abell 2163 a very massive (~4×1015 M⊙, Holz & Perlmutter 2012) merging cluster at z = 0.2. We use high resolution spectroscopy with VLT/VIMOS to derive rotation curves and dynamical masses for galaxies that show regular kinematics. Galaxies that show irregular rotation are also analysed to study the origin of their distortion. This information is combined with stellar masses and structural parameters obtained from high quality CFHT imaging. From narrow band photometry (2.2m/WFI), centered on the redshifted Hα line, we obtain star formation rates. Although our sample is still small, field and cluster galaxies lie in a similar Tully-Fisher relation as local galaxies. Controlling by additional parameters like SFRs or bulge-to-disk ratio do not affect this result. We find however that ~50% of the cluster galaxies display irregular kinematics in contrast to what is found in the field at similar redshifts (~30%, Böhm et al. 2004) and in agreement with other studies in clusters (e.g. Bösch et al. 2013, Kutdemir et al. 2010) which points out to additional processes operating in clusters that distort the galaxy kinematics.

  4. THE STELLAR POPULATION AND STAR FORMATION PROPERTIES OF BLUE COMPACT DWARF GALAXIES

    SciTech Connect

    Zhao Yinghe; Gao Yu; Gu Qiusheng E-mail: yugao@pmo.ac.cn

    2011-02-15

    We study stellar populations, star formation histories (SFHs), and star formation properties for a sample of blue compact dwarf galaxies (BCDs) selected by cross-correlating the Gil de Paz et al. sample with the Sloan Digital Sky Survey Data Release 6. The sample includes 31 BCDs, which span a large range of galactic parameters. Using a stellar population synthesis method, we derive stellar populations and reconstruct SFHs for these BCDs. Our studies confirm that BCDs are not young systems experiencing their first star formation, but old systems undergoing a starburst activity. The stellar mass-weighted ages can be up to 10 Gyr, while the luminosity-weighted ages might be up to approximately three orders of magnitude younger ({approx}10 Myr) for most galaxies. Based on multiwavelength data, we also study the integrated star formation properties. The star formation rate (SFR) for our sample galaxies spans nearly three orders of magnitude, from a few 10{sup -3} to {approx}1 M{sub sun} yr{sup -1}, with a median value of {approx}0.1 M{sub sun} yr{sup -1}. We find that about 90% of BCDs in our sample have their birthrate parameter (the ratio of the current SFR to the averaged past SFR) b>2-3. We further discuss correlations of the current SFR with the integrated galactic stellar mass and explore the connection between SFR and metallicity.

  5. The Star Formation History of read and dead galaxies at z=[1.0--1.5

    NASA Astrophysics Data System (ADS)

    Domínguez Sánchez, H.; Pérez González, P.; Esquej, P.; Eliche Moral, C.; Alcalde Pampliega, B.; SHARDS Team

    2015-05-01

    We analyse the star formation histories (SFH) of M > 10^{10} M_⊙ read and dead galaxies at intermediate redshift (z=1.0-1.5). Current hierarchical models of galaxy formation predict many less massive high-z systems than observed. By combining SHARDS deep spectro-photometric optical data (25 contiguous OSIRIS/GTC medium band filters with R ˜ 50 at 4500-900 nm) with HST-WFC3 grism in the NIR (G141, 1.1-1.6 μm) and broad-band photometry (from FUV to FIR) we construct well-sampled optical SEDs with up to 150 photometric points and sufficient spectral resolution to obtain reliable stellar population parameters such as ages, star formation timescales, dust extinctions and metallicities. We define a complete and uncontaminated sample of red & dead galaxies by combining the color-color UVJ selection with a cut in sSFR (SFR/Mass). We check the robustness of the results depending on different stellar population models (Bruzual & Charlot 2003, Maraston 2005), SED fitting-codes (synthesizer, FAST) or star formation histories (exp{-t/τ}, t exp{-t/τ}). Finally, the dependence of the SFH with the galaxy stellar mass will be studied, to actually measure if more massive galaxies are formed earlier and more rapidly as downsizing suggests.

  6. The imprint of rapid star formation quenching on the spectral energy distributions of galaxies

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Boselli, A.; Elbaz, D.; Boissier, S.; Buat, V.; Charmandaris, V.; Schreiber, C.; Béthermin, M.; Baes, M.; Boquien, M.; De Looze, I.; Fernández-Ontiveros, J. A.; Pappalardo, C.; Spinoglio, L.; Viaene, S.

    2016-01-01

    In high density environments, the gas content of galaxies is stripped, leading to a rapid quenching of their star formation activity. This dramatic environmental effect, which is not related to typical passive evolution, is generally not taken into account in the star formation histories (SFHs) usually assumed to perform spectral energy distribution (SED) fitting of these galaxies, yielding a poor fit of their stellar emission and, consequently, biased estimate of the star formation rate (SFR). In this work, we aim at reproducing this rapid quenching using a truncated delayed SFH that we implemented in the SED fitting code CIGALE. We show that the ratio between the instantaneous SFR and the SFR just before the quenching (rSFR) is well constrained as long as rest-frame UV data are available. This SED modeling is applied to the Herschel Reference Survey (HRS) containing isolated galaxies and sources falling in the dense environment of the Virgo cluster. The latter are Hi-deficient because of ram pressure stripping. We show that the truncated delayed SFH successfully reproduces their SED, while typical SFH assumptions fail. A good correlation is found between rSFR and Hi-def, the parameter that quantifies the gas deficiency of cluster galaxies, meaning that SED fitting results can be used to provide a tentative estimate of the gas deficiency of galaxies for which Hi observations are not available. The HRS galaxies are placed on the SFR-M∗ diagram showing that the Hi-deficient sources lie in the quiescent region, thus confirming previous studies. Using the rSFR parameter, we derive the SFR of these sources before quenching and show that they were previously on the main sequence relation. We show that the rSFR parameter is also recovered well for deeply obscured high redshift sources, as well as in the absence of IR data. SED fitting is thus a powerful tool for identifying galaxies that underwent a rapid star formation quenching.

  7. The Turbulent ISM of Galaxies 10 Gyrs ago: Star Formation, Gas Accretion, and IMF

    NASA Astrophysics Data System (ADS)

    Le Tiran, Loïc; Lehnert, Matthew D.

    2011-12-01

    The utilization of integral-field spectroscopy has led us to a new understanding of the physical conditions in galaxies within the first few billion years after the Big Bang. In this proceedings, we analyze observations of ~50 massive galaxies as seen as they were 10 Gyrs ago using SINFONI from the ESO-VLT. We show that the large line width they exhibit can be explained by the intense mechanical energy output from the young stars. We also study the influence of cold gas accretion upon these galaxies: We show that an unrealistic amount of shocked gas would be needed in order to explain the Hα emission from these galaxies through shocks from gas accretion with velocity about the Hα line widths of these galaxies. We also use DEEP2 photometric measurements for a sub-sample of 10 of these galaxies to evaluate their ratio of Hα to FUV flux as a function of their Hα and R-band luminosity surface brightnesses. Our data suggests that perhaps their initial mass function (IMF) is flatter than Salpeter at the high mass end, as has been suggested recently for some local galaxies. It may be that high turbulence is responsible for skewing the IMF towards more massive stars as suggested by some theories of star-formation. Much work is however needed to accredit this hypothesis.

  8. Star formation history of And XVIII: a dwarf spheroidal galaxy in isolation

    NASA Astrophysics Data System (ADS)

    Makarova, L. N.; Makarov, D. I.; Karachentsev, I. D.; Tully, R. B.; Rizzi, L.

    2016-10-01

    We present a photometric study of the Andromeda XVIII dwarf spheroidal galaxy associated with M31, and situated well outside of the virial radius of the M31 halo. The galaxy was resolved into stars with Hubble Space Telescope/Advanced Camera for Surveys revealing the old red giant branch and red clump. With the new observational data we determined the Andromeda XVIII distance to be D = 1.33_{-0.09}^{+0.06} Mpc using the tip of red giant branch method. Thus, the dwarf is situated at the distance of 579 kpc from M31. We model the star formation history of Andromeda XVIII from the stellar photometry and Padova theoretical stellar isochrones. An ancient burst of star formation occurred 12-14 Gyr ago. There is no sign of recent/ongoing star formation in the last 1.5 Gyr. The mass fractions of the ancient and intermediate age stars are 34 and 66 per cent, respectively, and the total stellar mass is 4.2 × 106 M⊙. It is probable that the galaxy has not experienced an interaction with M31 in the past. We also discuss star formation processes of dSphs KKR 25, KKs 03, as well as dTr KK 258. Their star formation histories were uniformly measured by us from HST/ACS observations. All the galaxies are situated well beyond the Local Group and the two dSphs KKR 25 and KKs 03 are extremely isolated. Evidently, the evolution of these objects has proceeded without influence of neighbours.

  9. Star-formation rates, molecular clouds, and the origin of the far-infrared luminosity of isolated and interacting galaxies

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Sage, L. J.

    1988-01-01

    The CO luminosities of 93 galaxies have been determined and are compared with their IRAS FIR luminosities. Strongly interacting/merging galaxies have L(FIR)/L(CO) substantially higher than that of isolated galaxies or galactic giant molecular clouds (GMCs). Galaxies with tidal tails/bridges are the most extreme type with L(FIR)/L(CO) nine times as high as isolated galaxies. Interactions between close pairs of galaxies do not have much effect on the molecular content and global star-formation rate. If the high ratio L(FIR)/L(CO) in strongly interacting galaxies is due to star formation then the efficiency of this process is higher than that of any galactic GMC. Isolated galaxies, distant pairs, and close pairs have an FIR/CO luminosity ratio which is within a factor of two of galactic GMCs with H II regions. The CO luminosities of FIR-luminous galaxies are among the highest observed for any spiral galaxies.

  10. Non-parametric star formation histories for four dwarf spheroidal galaxies of the Local Group

    NASA Astrophysics Data System (ADS)

    Hernandez, X.; Gilmore, Gerard; Valls-Gabaud, David

    2000-10-01

    We use recent Hubble Space Telescope colour-magnitude diagrams of the resolved stellar populations of a sample of local dSph galaxies (Carina, Leo I, Leo II and Ursa Minor) to infer the star formation histories of these systems, SFR(t). Applying a new variational calculus maximum likelihood method, which includes a full Bayesian analysis and allows a non-parametric estimate of the function one is solving for, we infer the star formation histories of the systems studied. This method has the advantage of yielding an objective answer, as one need not assume a priori the form of the function one is trying to recover. The results are checked independently using Saha's W statistic. The total luminosities of the systems are used to normalize the results into physical units and derive SN type II rates. We derive the luminosity-weighted mean star formation history of this sample of galaxies.

  11. The Role of Star Formation in Radio-Loud Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Wilcots, E.; Hess, K.

    2010-01-01

    X-ray observations have shown that additional non-gravitational processes are required to explain the heating of the intergalactic medium in galaxy groups. The two most likely processes are galactic outflows from starbursts and feedback from AGN. Here, we look at star formation as a possible additional heating mechanism in X-ray luminous groups such as NGC 741, NGC 1052, NGC 524, and NGC 1587. We report on the results of optical imaging of these groups carried out using the WIYN 3.5m telescope with a specific emphasis on measuring the star formation rates of the resident galaxies in each group and estimating the impact of that star formation on the thermodynamics of the intragroup medium.

  12. Quantifying Star Formation in Early-Type Galaxies using Spatially-Resolved UV-Optical Photometry

    NASA Astrophysics Data System (ADS)

    Kaviraj, Sugata

    2013-01-01

    Our understanding of star formation in nearby early-type galaxies (ETGs) has evolved rapidly in recent years, due to new UV data from GALEX and HST. Contrary to the classical notion of them being old, passively-evolving systems, recent work has demonstrated widespread late-epoch star formation in ETGs, which builds ~20% of their stellar mass after 1, via minor mergers between ETGs and gas-rich dwarfs. While survey data from GALEX has indicated the average properties of star formation in the ETG population as a whole, I demonstrate how spatially-resolved UV studies can offer detailed insights into the star formation histories of individual galaxies, using an HST-WFC3 case study of NGC 4150. Using a pixel-by-pixel analysis in 5 WFC3 filters, spanning UV to i-band, reveals a central 0.9 Gyr old young stellar population, with a median metallicity of 0.5 solar, that contributes around 3% of the stellar mass and coincides spatially with a small, kinematically-decoupled core (indicating a recent minor merger). Assuming that the metallicity of the young stars traces the gas-phase metallicity of the satellite that fuels the star formation, we use the mass-metallicity relation to estimate the mass ratio of the merger to be ~1:20. An WFC3 study of globular clusters reveals a substantial population of young star clusters coincident with the central region of star formation and indicates that the bulk of the stellar mass in this galaxy probably formed 6-8 Gyrs in the past. This study demonstrates the utility of high-resolution imaging from future instruments such as the extremely large telescopes. (Based on Early Release Science observations by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program.)

  13. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    SciTech Connect

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  14. Extraordinary views of ordinary galaxies: Multiwavelength measures of star formation and attenuation

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin D.

    2008-01-01

    The meaningful comparison of models of galaxy evolution to observations is critically dependent on the accurate treatment of dust attenuation. To investigate dust absorption and emission in galaxies we have assembled a sample of ~1000 galaxies from the ultrviolet (UV) through the Infrared (IR) by the GALEX, SDSS, and Spitzer observatories. The ratio of IR to UV emission (IRX) is used to constrain the dust attenuation in galaxies. We consider this measure in optically red galaxies making several simplfying assumptions we estimate the fraction of IR emission due to the heating of by old stars to be as much as 99%. We use the 4000Å break as a robust and useful, though coarse, indicator of star formation history (SFH). Dust attenuation and star formation history (SFH) are the dominant factors affecting the color of galaxies. We explore the empirical relation between SFH, attenuation, and color (especially the UV color) for a wide range of galaxies, including early types. This relation is compared to models that separately predict the effects of dust and SFH on color. We perform fits to the relation between SFH, attenuation, and color, which links the production of starlight and its absorption by dust to the subsequent reemmision of the absorbed light in the IR. Galaxy models that self-consistently treat dust absorption and emission as well as stellar populations will need to reproduce these fitted relations in the low-redshift universe. We construct estimates of dust attenuation and star formation rate (SFR) from the UV and IR photmetry and compare them to optical indicators, including the SFR b of Brinchmann et al. (2004). We find that there is a significant trend of the ratio of SFR b to the IR+UV luminosity with D n (4000) that cannot be explained as due to the additional IR emission from dust heatred by old stars. We find that the dust attenuation inferred from the ratio of optical emission lines is ~ 2-3 times higher than that inferred from IRX for a wide range

  15. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    SciTech Connect

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon; Trichas, Markos; Goto, Tomo; Malkan, Matt; Ruiz, Angel; Lee, Hyung Mok; Kim, Seong Jin; Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke; Shim, Hyunjin; Hanami, Hitoshi; Serjeant, Stephen; White, Glenn J.; and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (star formation in the host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  16. Physical parameters of galaxies with star formation through mid-infrared SED models

    NASA Astrophysics Data System (ADS)

    Ramos P., A. F.; Martínez-Galarza, J. R.; Higuera-G., M. A.; Quintero, S.

    2014-10-01

    We present a mid-infrared study of a sample of 19 Starburst galaxies in the local (z<0.2) universe. We derive physical parameters such as Metallicity, Interstellar Medium Pressure, Compactness Parameter C (related to the dust heating flux), PDR Fraction f_{PDR} and Extinction A_{V} by fitting the Spitzer-IRS spectra of these systems using state-of-the-art radiative transfer models and Bayesian techniques. Our results are fundamental in the understanding of massive star formation in the local counterparts of intermediate and high redshift Ultra Luminous Infrared Galaxies (ULIRGs). We reconstruct the star forming histories of these systems by obtaining posterior probability distribution functions (PDFs) for the star formation rates in different epochs an estimate the contribution to the bolometric luminosity from very recent (< 1 Myr) star formation events, and the contribution of Polycyclic Aromatic Hydrocarbons, which is significant in some cases. By comparing the derived PDFs with particular spectral signatures, such as the nebular emission of atomic species like [NeII] and [NeIII], and the H_{2} temperatures we also relate the global pattern of star formation in Starburst galaxies with the internal physics of the ISM.

  17. The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology.

    PubMed

    Brinchmann; Ellis

    2000-06-20

    We discuss a new method for inferring the stellar mass of a distant galaxy of known redshift based on the combination of a near-IR luminosity and multiband optical photometry. The typical uncertainty for field galaxies with I<22 in the redshift range 0galaxies with redshifts and Hubble Space Telescope morphologies enabling us to construct the stellar mass density associated with various morphologies as a function of redshift. We find a marked decline with time in the stellar mass associated with peculiar galaxies accompanied by a modest rise in that observed for elliptical galaxies. The result suggests that peculiar galaxies decline in abundance because they transform and merge into regular systems. The star formation rate per unit stellar mass indicates that massive systems completed the bulk of their star formation before redshift 1, whereas dwarf galaxies continue to undergo major episodes of activity until the present epoch. PMID:10859122

  18. The ultraviolet and infrared star formation rates of compact group galaxies: an expanded sample

    NASA Astrophysics Data System (ADS)

    Lenkić, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Hornschemeier, Ann E.; Durrell, Pat R.; Gronwall, Caryl

    2016-07-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 μm photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 μm photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-`red'), also have bluer UV colours, higher specific SFRs, and tend to lie in H I-rich groups, while galaxies that are MIR-inactive (MIR-`blue') have redder UV colours, lower specific SFRs, and tend to lie in H I-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M⊙ yr-1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  19. Suppressing star formation in quiescent galaxies with supermassive black hole winds.

    PubMed

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-05-26

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation. PMID:27225122

  20. Suppressing star formation in quiescent galaxies with supermassive black hole winds.

    PubMed

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-05-25

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

  1. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-06-01

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012 M ⊙ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  2. Nature or nurture? Clues from the distribution of specific star formation rates in SDSS galaxies

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; Gavilán, M.; Terlevich, R.; Terlevich, E.; Hoyos, C.; Díaz, A. I.

    2015-07-01

    This work investigates the main mechanism(s) that regulate the specific star formation rate (SSFR) in nearby galaxies, cross-correlating two proxies of this quantity - the equivalent width of the Hα line and the (u - r) colour - with other physical properties (mass, metallicity, environment, morphology, and the presence of close companions) in a sample of ˜82 500 galaxies extracted from the Sloan Digital Sky Survey. The existence of a relatively tight `ageing sequence' in the colour-equivalent width plane favours a scenario where the secular conversion of gas into stars (i.e. nature) is the main physical driver of the instantaneous SSFR and the gradual transition from a `chemically primitive' (metal-poor and intensely star-forming) state to a `chemically evolved' (metal-rich and passively evolving) system. Nevertheless, environmental factors (i.e. nurture) are also important. In the field, galaxies may be temporarily affected by discrete `quenching' and `rejuvenation' episodes, but such events show little statistical significance in a probabilistic sense, and we find no evidence that galaxy interactions are, on average, a dominant driver of star formation. Although visually classified mergers tend to display systematically higher EW(Hα) and bluer (u - r) colours for a given luminosity, most galaxies with high SSFR have uncertain morphologies, which could be due to either internal or external processes. Field galaxies of early and late morphological types are consistent with the gradual `ageing' scenario, with no obvious signatures of a sudden decrease in their SSFR. In contrast, star formation is significantly reduced and sometimes completely quenched on a short time-scale in dense environments, where many objects are found on a `quenched sequence' in the colour-equivalent width plane.

  3. ULTRA-FAINT DWARF GALAXIES AS A TEST OF EARLY ENRICHMENT AND METALLICITY-DEPENDENT STAR FORMATION

    SciTech Connect

    Tassis, Konstantinos; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-20

    The close relation of star formation with molecular gas indicated by observations and assumed in recent models implies that the efficiency with which galaxies convert their gas into stars depends on gas metallicity. This is because abundance of molecular hydrogen is sensitive to abundance of dust, which catalyzes formation of H{sub 2} and helps to shield it from dissociating radiation. In this study, we point out that in the absence of significant pre-enrichment by Population III stars forming out of zero metallicity gas, such H{sub 2}-based star formation is expected to leave an imprint in the form of bi-modality in the metallicity distribution among dwarf galaxies and in the metallicity distribution of stars within individual galaxies. The bi-modality arises because when gas metallicity (and dust abundance) is low, formation of molecular gas is inefficient, the gas consumption timescale is long, and star formation and metal enrichment proceed slowly. When metallicity reaches a critical threshold value star formation and enrichment accelerate, which leads to rapid increase in both stellar mass and metallicity of galaxies. We demonstrate this process both using a simple analytical model and full cosmological simulations. In contrast, the observed metallicity distributions of dwarf galaxies or stars within them are not bi-modal. We argue that this discrepancy points to substantial early stochastic pre-enrichment by Population III stars to levels Z {approx} 10{sup -2} Z{sub Sun} in dense, star-forming regions of early galaxies.

  4. Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy

    2015-05-01

    We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.

  5. Star formation in gravitationally unstable disk galaxies: From clouds to disks

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.

    In Part I, I examine the dynamics of giant molecular clouds through simplified semianalytic models. I focus on the growth of clouds as they accrete gas. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds: clouds attain virial equilibrium and grow maintaining roughly constant surface densities, Sigma ≃ 50--200 M[special character omitted]pc-2 and that clouds grow along the well-known linewidth-size relation. We compare our models to observations of giant molecular clouds and associated young star clusters in the Large Magellanic Cloud, finding good agreement between our models and the relationship between H ii regions, young star clusters, and giant molecular clouds. The role of gravitational-instability driven turbulence in determining the structure and evolution of disk galaxies, and the extent to which gravity rather than feed- back can explain galaxy properties, remains an open question. To address it, in Part II I present high resolution adaptive mesh refinement simulations of Milky Way-like isolated disk galaxies, including realistic heating and cooling rates and a physically motivated prescription for star formation. The simulations resolve densities typical of the transition from atomic to molecular hydrogen, capturing the formation of gravitationally bound clouds. We present simulations both with and without stellar feedback from Type II supernova blast waves. We find gravitational instability alone can drive substantial turbulence in galactic disks and reproduce some properties of nearby star forming galaxies: Qtotal [special character omitted] 1, ceff ˜ 10 km/s, without stellar feedback. Including feedback produces an ISM with a structure similar to observed disks, with the bulk of the gas in the warm or cold atomic phase, and the remainder locked up in short-lived gravitationally bound clouds. We investigate radial flows of gas and find that radial migration of gas due to gravitational instability can

  6. Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Cox, Thomas J.; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C.; Murray, Norman

    2013-04-01

    We use hydrodynamic simulations with detailed, explicit models for stellar feedback to study galaxy mergers. These high-resolution (˜1 pc) simulations follow the formation and destruction of individual giant molecular clouds (GMC) and star clusters. We find that the final starburst is dominated by in situ star formation, fuelled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self-gravitating, and forms massive (≲1010 M⊙) GMC and subsequently super star clusters (with masses up to 108 M⊙). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in super-clusters which then sink to the centre of the galaxy. This is because feedback efficiently disperses GMC after they turn several per cent of their mass into stars. In other words, most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from infrared photons, extend, with no fine-tuning, over seven decades in star formation rate (SFR) to regulate star formation in the most extreme starburst systems with densities ≳104 M⊙ pc-2. This feedback also drives super-winds with large mass-loss rates; however, a significant fraction of the wind material falls back on to the discs at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. This suggests that strong active galactic nucleus feedback may be required to explain the sharp cut-offs in SFR that are observed in post-merger galaxies. We compare the results to those from simulations with no explicit resolution of GMC or feedback [`effective equation-of-state' (EOS) models]. We find that global galaxy properties

  7. Dissecting galaxies: spatial and spectral separation of emission excited by star formation and AGN activity

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Groves, Brent; Kewley, Lisa J.; Dopita, Michael A.; Hampton, Elise J.; Shastri, Prajval; Scharwächter, Julia; Sutherland, Ralph; Kharb, Preeti; Bhatt, Harish; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-10-01

    The optical spectra of Seyfert galaxies are often dominated by emission lines excited by both star formation and active galactic nucleus (AGN) activity. Standard calibrations (such as for the star formation rate) are not applicable to such composite (mixed) spectra. In this paper, we describe how integral field data can be used to spectrally and spatially separate emission associated with star formation from emission associated with accretion on to an AGN. We demonstrate our method using integral field data for two AGN host galaxies (NGC 5728 and NGC 7679) from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). The spectra of NGC 5728 and NGC 7679 form clear sequences of AGN fraction on standard emission line ratio diagnostic diagrams. We show that the emission line luminosities of the majority (>85 per cent) of spectra along each AGN fraction sequence can be reproduced by linear superpositions of the emission line luminosities of one AGN dominated spectrum and one star formation dominated spectrum. We separate the Hα, Hβ, [N II]λ6583, [S II]λλ6716, 6731, [O III]λ5007 and [O II]λλ3726, 3729 luminosities of every spaxel into contributions from star formation and AGN activity. The decomposed emission line images are used to derive the star formation rates and AGN bolometric luminosities for NGC 5728 and NGC 7679. Our calculated values are mostly consistent with independent estimates from data at other wavelengths. The recovered star-forming and AGN components also have distinct spatial distributions which trace structures seen in high-resolution imaging of the galaxies, providing independent confirmation that our decomposition has been successful.

  8. Evolution and constrains in the star formation histories of IR-bright star forming galaxies at high redshift

    NASA Astrophysics Data System (ADS)

    Sklias, Panos; Schaerer, Daniel; Elbaz, David

    2015-08-01

    Understanding and constraining the early cosmic star formation history of the Universe is a key question of galaxy evolution. A large fraction of star formation is dust obscured, so it is crucial to have access to the IR emission of galaxies to properly study them.Utilizing the multi-wavelength photometry from GOODS-Herschel, we perform SED fitting with different variable star formation histories (SFHs), which we constrain thanks to the observed IR luminosities, on a large sample of individually IR-detected sources from z~1 to 4. We explore how (and to which extent) constraining dust attenuation thanks to the IR luminosities allows to reduce the scatter (expected when using variable SFHs, in contrast to IR+UV standard calibrations) in physical properties and relations such as mass-SFR and the so-called star-forming Main Sequence (MS).Although limited at the high-z end, our analysis shows a change of trends in SFHs between low and high z, that follows the established cosmic SFR density, with galaxies found to prefer rising SFRs at z~3-4, and declining SFRs at z≤1. We show that a fraction of galaxies (~20%), mainly at z≤2, can have lower SFRs than IR-inferred, but still being compatible with the observations, indicative of being post-starbursts/undergoing quenching while bright in the IR, in agreement with theoretical work. The IR-constrained stellar population models we obtain also indicate that the two main modes of star formation - MS and starburst - evolve differently with time, with the former being mostly slow evolving and lying on the MS for long lasting periods, and the latter being very recent, rapidly increasing bursts (or on the decline, when belonging to the aforementioned "quenched" category). Finally, we illustrate how spectroscopic observation of nebular emission lines further enables as to constrain effectively the SFHs of galaxies.

  9. THE NATURE OF STARBURSTS. I. THE STAR FORMATION HISTORIES OF EIGHTEEN NEARBY STARBURST DWARF GALAXIES

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Stark, David; Weisz, Daniel; Cannon, John M.; Dalcanton, Julianne; Williams, Benjamin; Dolphin, Andrew; Hidalgo-RodrIguez, Sebastian

    2010-09-20

    We use archival Hubble Space Telescope observations of resolved stellar populations to derive the star formation histories (SFHs) of 18 nearby starburst dwarf galaxies. In this first paper, we present the observations, color-magnitude diagrams (CMDs), and the SFHs of the 18 starburst galaxies, based on a homogeneous approach to the data reduction, differential extinction, and treatment of photometric completeness. We adopt a star formation rate (SFR) threshold normalized to the average SFR of the individual system as a metric for classifying starbursts in SFHs derived from resolved stellar populations. This choice facilitates finding not only the currently bursting galaxies but also 'fossil' bursts increasing the sample size of starburst galaxies in the nearby (D < 8 Mpc) universe. Thirteen of the eighteen galaxies are experiencing ongoing bursts and five galaxies show fossil bursts. From our reconstructed SFHs, it is evident that the elevated SFRs of a burst are sustained for hundreds of Myr with variations on small timescales. A long >100 Myr temporal baseline is thus fundamental to any starburst definition or identification method. The longer lived bursts rule out rapid 'self-quenching' of starbursts on global scales. The bursting galaxies' gas consumption timescales are shorter than the Hubble time for all but one galaxy confirming the short-lived nature of starbursts based on fuel limitations. Additionally, we find that the strength of the H{alpha} emission usually correlates with the CMD-based SFR during the last 4-10 Myr. However, in four cases, the H{alpha} emission is significantly less than what is expected for models of starbursts; the discrepancy is due to the SFR changing on timescales of a few Myr. The inherently short timescale of the H{alpha} emission limits identifying galaxies as starbursts based on the current characteristics which may or may not be representative of the recent SFH of a galaxy.

  10. THE SPITZER INTERACTING GALAXIES SURVEY: A MID-INFRARED ATLAS OF STAR FORMATION

    SciTech Connect

    Brassington, N. J.; Zezas, A.; Ashby, M. L. N.; Lanz, L.; Smith, Howard A.; Willner, S. P.; Klein, C.

    2015-05-15

    The Spitzer Interacting Galaxies Survey is a sample of 103 nearby galaxies in 48 systems, selected using association likelihoods and therefore free from disturbed morphology biases. All galaxies have been observed with Infrared Array Camera and MIPS 24 μm bands from the Spitzer Space Telescope. This catalog presents the global flux densities and colors of all systems and correlations between the interacting systems and their specific star formation rate (sSFR). This sample contains a wide variety of galaxy interactions with systems ranging in mass, mass ratios, and gas-content as well as interaction strength. This study seeks to identify the process of triggering star formation in galaxy interactions, therefore, we focus on the non-active galactic nucleus spiral galaxies only. From this subset of 70 spiral galaxies we have determined that this sample has enhanced sSFR compared to a sample of non-interacting field galaxies. Through optical data we have classified each system by “interaction strength”; the strongly interacting (Stage 4) galaxies have higher sSFR values than the weakly (Stage 2) and moderately (Stage 3) interacting systems. However, the Stage 2 and 3 systems have statistically identical sSFR properties, despite the lack of optical interaction signatures exhibited by the Stage 2 galaxies. We suggest that the similarity of sSFR in these stages could be a consequence of some of these Stage 2 systems actually being post-perigalactic and having had sufficient time for their tidal features to fade to undetectable levels. This interpretation is consistent with the correlation of sSFR with separation, which we have determined to have little variation up to 100 kpc.

  11. The Spitzer Interacting Galaxies Survey: A Mid-infrared Atlas of Star Formation

    NASA Astrophysics Data System (ADS)

    Brassington, N. J.; Zezas, A.; Ashby, M. L. N.; Lanz, L.; Smith, Howard. A.; Willner, S. P.; Klein, C.

    2015-05-01

    The Spitzer Interacting Galaxies Survey is a sample of 103 nearby galaxies in 48 systems, selected using association likelihoods and therefore free from disturbed morphology biases. All galaxies have been observed with Infrared Array Camera and MIPS 24 μm bands from the Spitzer Space Telescope. This catalog presents the global flux densities and colors of all systems and correlations between the interacting systems and their specific star formation rate (sSFR). This sample contains a wide variety of galaxy interactions with systems ranging in mass, mass ratios, and gas-content as well as interaction strength. This study seeks to identify the process of triggering star formation in galaxy interactions, therefore, we focus on the non-active galactic nucleus spiral galaxies only. From this subset of 70 spiral galaxies we have determined that this sample has enhanced sSFR compared to a sample of non-interacting field galaxies. Through optical data we have classified each system by “interaction strength” the strongly interacting (Stage 4) galaxies have higher sSFR values than the weakly (Stage 2) and moderately (Stage 3) interacting systems. However, the Stage 2 and 3 systems have statistically identical sSFR properties, despite the lack of optical interaction signatures exhibited by the Stage 2 galaxies. We suggest that the similarity of sSFR in these stages could be a consequence of some of these Stage 2 systems actually being post-perigalactic and having had sufficient time for their tidal features to fade to undetectable levels. This interpretation is consistent with the correlation of sSFR with separation, which we have determined to have little variation up to 100 kpc.

  12. Hubble Space Telescope Observations of Accretion-Induced Star Formation in the Tadpole Galaxy Kiso 5639

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Mendez-Abreu, Jairo; Gallagher, John S.; Rafelski, Marc; Filho, Mercedes; Ceverino, Daniel

    2016-07-01

    The tadpole galaxy Kiso 5639 has a slowly rotating disk with a drop in metallicity at its star-forming head, suggesting that star formation was triggered by the accretion of metal-poor gas. We present multi-wavelength Hubble Space Telescope Wide Field Camera 3 images of UV through I band plus Hα to search for peripheral emission and determine the properties of various regions. The head has a mass in young stars of ˜ {10}6 {M}⊙ and an ionization rate of 6.4× {10}51 s-1, equivalent to ˜2100 O9-type stars. There are four older star-forming regions in the tail, and an underlying disk with a photometric age of ˜1 Gyr. The mass distribution function of 61 star clusters is a power law with a slope of -1.73 ± 0.51. Fourteen young clusters in the head are more massive than {10}4 {M}⊙ , suggesting a clustering fraction of 30%-45%. Wispy filaments of Hα emission and young stars extend away from the galaxy. Shells and holes in the head H ii region could be from winds and supernovae. Gravity from the disk should limit the expansion of the H ii region, although hot gas might escape through the holes. The star formation surface density determined from Hα in the head is compared to that expected from likely pre-existing and accreted gas. Unless the surface density of the accreted gas is a factor of ˜3 or more larger than what was in the galaxy before, the star formation rate has to exceed the usual Kennicutt-Schmidt rate by a factor of ≥slant 5.

  13. Hubble Space Telescope Observations of Accretion-Induced Star Formation in the Tadpole Galaxy Kiso 5639

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Mendez-Abreu, Jairo; Gallagher, John S.; Rafelski, Marc; Filho, Mercedes; Ceverino, Daniel

    2016-07-01

    The tadpole galaxy Kiso 5639 has a slowly rotating disk with a drop in metallicity at its star-forming head, suggesting that star formation was triggered by the accretion of metal-poor gas. We present multi-wavelength Hubble Space Telescope Wide Field Camera 3 images of UV through I band plus Hα to search for peripheral emission and determine the properties of various regions. The head has a mass in young stars of ˜ {10}6 {M}ȯ and an ionization rate of 6.4× {10}51 s‑1, equivalent to ˜2100 O9-type stars. There are four older star-forming regions in the tail, and an underlying disk with a photometric age of ˜1 Gyr. The mass distribution function of 61 star clusters is a power law with a slope of ‑1.73 ± 0.51. Fourteen young clusters in the head are more massive than {10}4 {M}ȯ , suggesting a clustering fraction of 30%–45%. Wispy filaments of Hα emission and young stars extend away from the galaxy. Shells and holes in the head H ii region could be from winds and supernovae. Gravity from the disk should limit the expansion of the H ii region, although hot gas might escape through the holes. The star formation surface density determined from Hα in the head is compared to that expected from likely pre-existing and accreted gas. Unless the surface density of the accreted gas is a factor of ˜3 or more larger than what was in the galaxy before, the star formation rate has to exceed the usual Kennicutt–Schmidt rate by a factor of ≥slant 5.

  14. Pitfalls when observationally characterizing the relative formation rates of stars and stellar clusters in galaxies

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik; Bastian, Nate

    2016-03-01

    Stars generally form in aggregates, some of which are bound (`clusters') while others are unbound and disperse on short ({˜ }10 { Myr}) time-scales (`associations'). The fraction of stars forming in bound clusters (Γ) is a fundamental outcome of the star formation process. Recent observational and theoretical work has suggested that Γ increases with the gas surface density (Σ) or star formation rate (SFR) surface density (ΣSFR), both within galaxies and between different ones. However, a recent paper by Chandar et al. has challenged these results, showing that the total number of stellar aggregates per unit SFR does not vary systematically with the host galaxy's absolute SFR. In this Letter, we show that no variations are expected when no distinction is made between bound and unbound aggregates, because the sum of these two fractions should be close to unity. We also demonstrate that any scaling of Γ with the absolute SFR is much weaker than with ΣSFR, due to the mass-radius-SFR relation of star-forming `main-sequence' galaxies. The environmental variation of Γ should therefore be probed as a function of area-normalized quantities, such as Σ or ΣSFR. We present a set of guidelines for meaningful observational tests of cluster formation theories and show that these resolve the reported discrepancy.

  15. A connection between star formation activity and cosmic rays in the starburst galaxy M82.

    PubMed

    2009-12-10

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse gamma-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of gamma-ray emission. Here we report the detection of >700-GeV gamma-rays from M82. From these data we determine a cosmic-ray density of 250 eV cm(-3) in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

  16. A connection between star formation activity and cosmic rays in the starburst galaxy M82

    NASA Astrophysics Data System (ADS)

    VERITAS Collaboration; Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Celik, O.; Cesarini, A.; Chow, Y. C.; Ciupik, L.; Cogan, P.; Colin, P.; Cui, W.; Dickherber, R.; Duke, C.; Fegan, S. J.; Finley, J. P.; Finnegan, G.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gibbs, K.; Gillanders, G. H.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Horan, D.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Kildea, J.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Lebohec, S.; Maier, G.; McArthur, S.; McCann, A.; McCutcheon, M.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nagai, T.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pizlo, F.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Smith, A. W.; Steele, D.; Swordy, S. P.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wagner, R. G.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wissel, S.; Wood, M.; Zitzer, B.

    2009-12-01

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse γ-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of γ-ray emission. Here we report the detection of >700-GeV γ-rays from M82. From these data we determine a cosmic-ray density of 250eVcm-3 in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

  17. Ultrafaint dwarfs—star formation and chemical evolution in the smallest galaxies

    SciTech Connect

    Webster, David; Bland-Hawthorn, Joss; Sutherland, Ralph

    2014-11-20

    In earlier work, we showed that a dark matter halo with a virial mass of 10{sup 7} M {sub ☉} can retain a major part of its baryons in the face of the pre-ionization phase and supernova (SN) explosion from a 25 M {sub ☉} star. Here, we expand on the results of that work, investigating the star formation and chemical evolution of the system beyond the first SN. In a galaxy with a mass M {sub vir} = 10{sup 7} M {sub ☉}, sufficient gas is retained by the potential for a second period of star formation to occur. The impact of a central explosion is found to be much stronger than that of an off-center explosion both in blowing out the gas and in enriching it, as in the off-center case most of the SN energy and metals escape into the intergalactic medium. We model the star formation and metallicity, given the assumption that stars form for 100, 200, 400, and 600 Myr, and discuss the results in the context of recent observations of very low-mass galaxies. We show that we can account for most features of the observed relationship between [α/Fe] and [Fe/H] in ultra-faint dwarf galaxies with the assumption that the systems formed at a low mass, rather than being remnants of much larger systems.

  18. HELP*: star formation as a function of galaxy environment with Herschel†

    NASA Astrophysics Data System (ADS)

    Duivenvoorden, S.; Oliver, S.; Buat, V.; Darvish, B.; Efstathiou, A.; Farrah, D.; Griffin, M.; Hurley, P. D.; Ibar, E.; Jarvis, M.; Papadopoulos, A.; Sargent, M. T.; Scott, D.; Scudder, J. M.; Symeonidis, M.; Vaccari, M.; Viero, M. P.; Wang, L.

    2016-10-01

    The Herschel Extragalactic Legacy Project (HELP) brings together a vast range of data from many astronomical observatories. Its main focus is on the Herschel data, which maps dust-obscured star formation over 1300 deg2. With this unprecedented combination of data sets, it is possible to investigate how the star formation versus stellar mass relation (main sequence) of star-forming galaxies depends on environment. In this pilot study, we explore this question within 0.1 < z < 3.2 using data in the COSMOS field. We estimate the local environment from a smoothed galaxy density field using the full photometric redshift probability distribution. We estimate star formation rates by stacking the SPIRE data from the Herschel Multi-tiered Extragalactic Survey. Our analysis rules out the hypothesis that the main sequence for star-forming systems is independent of environment at 1.5 < z < 2, while a simple model in which the mean specific star formation rate declines with increasing environmental density gives a better description. However, we cannot exclude a simple hypothesis in which the main sequence for star-forming systems is independent of environment at z < 1.5 and z > 2. We also estimate the evolution of the star formation rate density in the COSMOS field, and our results are consistent with previous measurements at z < 1.5 and z > 2 but we find a 1.4^{+0.3}_{-0.2} times higher peak value of the star formation rate density at z ˜ 1.9.

  19. Galaxy Zoo: evidence for diverse star formation histories through the green valley

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Marshall, P. J.; Bamford, S.; Fortson, L.; Kaviraj, S.; Masters, K. L.; Melvin, T.; Nichol, R. C.; Skibba, R. A.; Willett, K. W.

    2015-06-01

    Does galaxy evolution proceed through the green valley via multiple pathways or as a single population? Motivated by recent results highlighting radically different evolutionary pathways between early- and late-type galaxies, we present results from a simple Bayesian approach to this problem wherein we model the star formation history (SFH) of a galaxy with two parameters, [t, τ] and compare the predicted and observed optical and near-ultraviolet colours. We use a novel method to investigate the morphological differences between the most probable SFHs for both disc-like and smooth-like populations of galaxies, by using a sample of 126 316 galaxies (0.01 < z < 0.25) with probabilistic estimates of morphology from Galaxy Zoo. We find a clear difference between the quenching time-scales preferred by smooth- and disc-like galaxies, with three possible routes through the green valley dominated by smooth- (rapid time-scales, attributed to major mergers), intermediate- (intermediate time-scales, attributed to minor mergers and galaxy interactions) and disc-like (slow time-scales, attributed to secular evolution) galaxies. We hypothesize that morphological changes occur in systems which have undergone quenching with an exponential time-scale τ < 1.5 Gyr, in order for the evolution of galaxies in the green valley to match the ratio of smooth to disc galaxies observed in the red sequence. These rapid time-scales are instrumental in the formation of the red sequence at earlier times; however, we find that galaxies currently passing through the green valley typically do so at intermediate time-scales.†

  20. Star Formation in Damped Lyman-alpha systems and the Outskirts of Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc Alexander

    In this thesis we begin to unify two pictures of the high redshift universe: absorption line systems such as damped Lyman alpha systems (DLAs) that provide the fuel for star formation, and compact star forming regions such as Lyman break galaxies (LBGs) which form the majority of stars. Wolfe & Chen (2006) find that the in situ star formation in DLAs is less than 5% of what is expected from the Kennicutt-Schmidt (KS) relation, but they do not constrain DLAs associated with bright star-forming regions such as LBGs. In this work we search for spatially-extended star formation in the outskirts of LBGs at z ∼3. To this end, we create a sample of z ∼3 LBGs in the Hubble Ultra Deep Field (UDF) by using photometric redshifts enabled by the introduction of an extremely deep u -band image. By stacking these galaxies, we find spatially extended low surface brightness emission around LBGs in the V -band image of the UDF, corresponding to the z ∼3 rest-frame far-ultraviolet light, which is a sensitive measure of star formation rates (SFRs). We connect this emission around LBGs to the expected emission from DLAs, and the results suggest that the SFR efficiency in such gas at z ∼3 is between factors of 10 and 50 lower than predictions based on the KS relation. This decreased efficiency is likely due to the lower metallicity of DLA gas. In addition, we measure the metallicity evolution of DLAs out to z ∼5, and find a continued decrease of metallicity with increasing redshift and a metallicity "floor"' around one thousandth of the solar value. We also compare the metallicity distribution and chemistry of DLAs and halo stars, and find that they are not inconsistent. Lastly, we study the photometric variability of stars in the Galactic center in order to further our understanding of the massive young stars forming in the presence of a super massive black hole. All together, these results improve our understanding of star formation and provide constraints for models and

  1. A parsec-resolution simulation of the Antennae galaxies: formation of star clusters during the merger

    NASA Astrophysics Data System (ADS)

    Renaud, Florent; Bournaud, Frédéric; Duc, Pierre-Alain

    2015-01-01

    We present a hydrodynamical simulation of an Antennae-like galaxy merger at parsec resolution, including a multicomponent model for stellar feedback and reaching numerical convergence in the global star formation rate for the first time. We analyse the properties of the dense stellar objects formed during the different stages of the interaction. Each galactic encounter triggers a starburst activity, but the varying physical conditions change the triggering mechanism of each starburst. During the first two pericentre passages, the starburst is spatially extended and forms many star clusters. However, the starburst associated with the third, final passage is more centrally concentrated: stars form almost exclusively in the galactic nucleus and no new star cluster is formed. The maximum mass of stars clusters in this merger is more than 30 times higher than those in a simulation of an isolated Milky Way-like galaxy. Antennae-like mergers are therefore a formation channel of young massive clusters possibly leading to globular clusters. Monitoring the evolution of a few clusters reveals the diversity of formation scenarios including the gathering and merger of gas clumps, the monolithic formation and the hierarchical formation in sub-structures inside a single cloud. Two stellar objects formed in the simulation yield the same properties as ultracompact dwarf galaxies. They share the same formation scenario than the most massive clusters, but have a larger radius either since birth, or get it after a violent interaction with the galactic centre. The diversity of environments across space and time in a galaxy merger can account for the diversity of the stellar objects formed, both in terms of mass and size.

  2. Variations in the Star Formation Efficiency of the Dense Molecular Gas across the Disks of Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Usero, Antonio; Leroy, Adam K.; Walter, Fabian; Schruba, Andreas; García-Burillo, Santiago; Sandstrom, Karin; Bigiel, Frank; Brinks, Elias; Kramer, Carsten; Rosolowsky, Erik; Schuster, Karl-Friedrich; de Blok, W. J. G.

    2015-10-01

    We present a new survey of HCN(1–0) emission, a tracer of dense molecular gas, focused on the little-explored regime of normal star-forming galaxy disks. Combining HCN, CO, and infrared (IR) emission, we investigate the role of dense gas in star formation, finding systematic variations in both the apparent dense gas fraction (traced by the HCN-to-CO ratio) and the apparent star formation efficiency of dense gas (traced by the IR-to-HCN ratio). The latter may be unexpected, given the recent popularity of gas density threshold models to explain star formation scaling relations. Our survey used the IRAM 30 m telescope to observe HCN(1–0), CO(1–0), and several other emission lines across 29 nearby disk galaxies whose CO(2–1) emission has previously been mapped by the HERACLES survey. We detected HCN in 48 out of 62 observed positions. Because our observations achieve a typical resolution of ∼1.5 kpc and span a range of galaxies and galactocentric radii (56% lie at {r}{gal}\\gt 1 kpc), we are able to investigate the properties of the dense gas as a function of local conditions in a galaxy disk. We focus on how the ratios IR-to-CO, HCN-to-CO, and IR-to-HCN (observational cognates of the star formation efficiency, dense gas fraction, and dense gas star formation efficiency) depend on the stellar surface density, {{{Σ }}}{star}, and the molecular-to-atomic gas ratio, {{{Σ }}}{mol}/{{{Σ }}}{atom}. The HCN-to-CO ratio is low, often ∼1/30, and correlates tightly with both the molecular-to-atomic ratio and the stellar mass surface density across a range of 2.1 dex (factor of ≈125) in both parameters. Thus for the assumption of fixed CO-to-H2 and HCN-to-dense gas conversion factors, the dense gas fraction depends strongly on location in the disk, being higher in the high surface density, highly molecular parts of galaxies. At the same time, the IR-to-HCN ratio (closely related to the star formation efficiency of dense molecular gas) decreases systematically

  3. Star formation in the merging Galaxy NGC3256

    NASA Technical Reports Server (NTRS)

    Graham, James R.; Wright, G. S.; Joseph, R. D.; Frogel, J. A.; Phillips, M. M.; Meikle, W. P. S.

    1987-01-01

    The central 5 kpc of the ultra-luminous merging galaxy NGC 3256 was mapped at J, H, K, L, and 10 micrometer, and a 2 micrometer spectra of the nuclear region was obtained. This data was used to identify and characterize the super starburst which has apparently been triggered and fuelled by the merger of two gas rich galaxies. It is also shown that the old stellar population has relaxed into a single spheroidal system, and that a supernova driven wind might eventually drive any remaining gas from the system to leave a relic which will be indistinguishable from an elliptical galaxy.

  4. Suppressing star formation in quiescent galaxies with supermassive black hole winds

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E.; Heckman, Timothy M.; Drory, Niv; Law, David R.; Masters, Karen L.; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-Mei; Zhang, Kai; Gelfand, Joseph D.; Bizyaev, Dmitry; Roman-Lopes, A.; Schneider, Donald P.

    2016-05-01

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 1010 times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1, 2, 3, 4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 1010 times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy’s low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

  5. Star Formation Suppression Due to Jet Feedback in Radio Galaxies with Shocked Warm Molecular Gas

    NASA Astrophysics Data System (ADS)

    Lanz, Lauranne; Ogle, Patrick M.; Alatalo, Katherine; Appleton, Philip N.

    2016-07-01

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ˜3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radio jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H2 line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H2 emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.

  6. What is the Dominant Mode of Star-Formation as a Function of Galaxy Mass and Redshift?

    NASA Astrophysics Data System (ADS)

    Kassin, Susan

    We propose to determine star formation histories of galaxies since a redshift of 5. In particular, we will measure the fraction of galaxies which experience significantly elevated and depressed star-formation activity with respect to the cosmic average, and quantify the amount of time galaxies spend in such states. We will do this using our new galaxy spectral models which are based on a combination of star-formation and chemical enrichment histories from hierarchical simulations of galaxy formation. We propose to use these models to fit an extremely large data set of 105,000 galaxies over 0.2 < z < 5 with photometry spanning the UV through the infrared and with spectroscopic (80%, mostly from low resolution spectra) and photometric (20%) redshifts. There is no other data set larger or more complete in terms of redshift or wavelength, and there will likely not be one until JWST or 30-meter class telescopes are online.

  7. THE STAR FORMATION AND NUCLEAR ACCRETION HISTORIES OF NORMAL GALAXIES IN THE AGES SURVEY

    SciTech Connect

    Watson, Casey R.; Kochanek, Christopher S.; Forman, William R.; Hickox, Ryan C.; Jones, Christine J.; Kenter, Almus T.; Murray, Steve S.; Vikhlinin, Alexey; Fazio, Giovani G.; Green, Paul J.; Brown, Michael J. I.; Brand, Kate; Dey, Arjun; Jannuzi, Buell T.; Rieke, Marcia; Eisenstein, Daniel J.; McNamara, Brian R.; Shields, Joseph C.

    2009-05-10

    We combine IR, optical, and X-ray data from the overlapping, 9.3 deg{sup 2} NOAO Deep Wide-Field Survey, AGN and Galaxy Evolution Survey (AGES), and XBooetes Survey to measure the X-ray evolution of 6146 normal galaxies as a function of absolute optical luminosity, redshift, and spectral type over the largely unexplored redshift range 0.1 {approx}< z {approx}< 0.5. Because only the closest or brightest of the galaxies are individually detected in X-rays, we use a stacking analysis to determine the mean properties of the sample. Our results suggest that X-ray emission from spectroscopically late-type galaxies is dominated by star formation, while that from early-type galaxies is dominated by a combination of hot gas and active galactic nucleus (AGN) emission. We find that the mean star formation and supermassive black hole accretion rate densities evolve like {approx}(1 + z){sup 3{+-}}{sup 1}, in agreement with the trends found for samples of bright, individually detectable starburst galaxies and AGN. Our work also corroborates the results of many previous stacking analyses of faint source populations, with improved statistics.

  8. Extended far-infrared emission and star formation in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Marston, A. P.

    1994-01-01

    An investigation into the extended distribution of far-infrared (FIR) emission associated with nearby Seyfert galaxies is made using a set of MEM reconstructions of IRAS Chopped Photometric Channel (CPC) data (Marston 1993). The data is compared to a set of HII/starburst galaxy images similarly processed in order to compare distributions and FIR color properties. It is shown that the central 1 kpc or so of Seyfert galaxies show extended FIR emission. FIR colors suggest that the bulk of this emission is not directly associated with an active nucleus. They further suggest that the origins of the majority of the emission is from heated dust associated with star formation surrounding the nucleus rather than dust heated by the active nucleus. Nearby Seyfert galaxies are shown to have a higher concentration of far-infrared emission from their centers than the HII/starburst galaxies and a number appear to reside in disk galaxies with relatively low ongoing star formation in their disks. An example of this is NGC 7582 which has a smooth disk but an active nucleus/starbust center.

  9. On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael

    2006-01-01

    The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the buildup of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are fully consistent with observations in the field, cluster Fe enrichment immediately tracked a rapid, top-heavy phase of star formation - although transport of Fe into the ICM may have been more prolonged and star formation likely continued beyond redshift 1. The means of this prompt enrichment consisted of SNII yielding greater than or equal to 0.1 solar mass per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3 - 8 solar mass range) and/or SNIa with short delay times originating during the rapid star formation epoch. Star formation is greater than 3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.

  10. GLOBAL STAR FORMATION RATES AND DUST EMISSION OVER THE GALAXY INTERACTION SEQUENCE

    SciTech Connect

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars; Brassington, Nicola; Da Cunha, Elisabete; Hayward, Christopher C.; Jonsson, Patrik

    2013-05-01

    We measured and modeled spectral energy distributions (SEDs) in 28 bands from the ultraviolet to the far-infrared (FIR) for 31 interacting galaxies in 14 systems. The sample is drawn from the Spitzer Interacting Galaxy Survey, which probes a range of galaxy interaction parameters at multiple wavelengths with an emphasis on the infrared bands. The subset presented in this paper consists of all galaxies for which FIR Herschel SPIRE observations are publicly available. Our SEDs combine the Herschel photometry with multi-wavelength data from Spitzer, GALEX, Swift UVOT, and 2MASS. While the shapes of the SEDs are broadly similar across our sample, strongly interacting galaxies typically have more mid-infrared emission relative to their near-infrared and FIR emission than weakly or moderately interacting galaxies. We modeled the full SEDs to derive host galaxy star formation rates (SFRs), specific star formation rates (sSFRs), stellar masses, dust temperatures, dust luminosities, and dust masses. We find increases in the dust luminosity and mass, SFR, and cold (15-25 K) dust temperature as the interaction progresses from moderately to strongly interacting and between non-interacting and strongly interacting galaxies. We also find increases in the SFR between weakly and strongly interacting galaxies. In contrast, the sSFR remains unchanged across all the interaction stages. The ultraviolet photometry is crucial for constraining the age of the stellar population and the SFR, while dust mass is primarily determined by SPIRE photometry. The SFR derived from the SED modeling agrees well with rates estimated by proportionality relations that depend on infrared emission.

  11. Metallicity Distribution Functions of Dwarf Galaxies: A Probe of Star Formation History and Baryonic Physics

    NASA Astrophysics Data System (ADS)

    Escala, Ivanna; Kirby, Evan N.; Wetzel, Andrew R.; Hopkins, Philip F.

    2016-06-01

    We examine the metallicity distribution functions (MDFs) of simulated, isolated dwarf galaxies (M_{star} = 4 × 10^{4} - 3 × 10^{8} M_{⊙}) from the Feedback in Realistic Environments (FIRE) project to quantify the impact of star formation history (SFH) and baryonic physics. These high-resolution cosmological simulations include realistic treatments of stellar evolution and complex gas dynamics and do not require the usual approximations (e.g., instantaneous recycling and instantaneous mixing) of analytic chemical evolution models. The evolution of the MDF with redshift informs which processes drive the dominant contributions to the distribution at z = 0, thus enabling a reconstruction of the SFH and gas loss/accretion history. We then compare the theoretical MDFs to the observed MDFs of Local Group dwarf galaxies to infer plausible SFHs for each matched galaxy.

  12. Magnetic fields and star formation in low-mass Magellanic-type and peculiar galaxies

    NASA Astrophysics Data System (ADS)

    Jurusik, W.; Drzazga, R. T.; Jableka, M.; Chyży, K. T.; Beck, R.; Klein, U.; Weżgowiec, M.

    2014-07-01

    Aims: We investigate how magnetic properties of Magellanic-type and perturbed objects are related to star-forming activity, galactic type, and mass. Methods: We present radio and magnetic properties of five Magellanic-type and two peculiar low-mass galaxies observed at 4.85 and/or 8.35 GHz with the Effelsberg 100 m telescope. The sample is extended to 17 objects by including five Magellanic-type galaxies and five dwarf ones. Results: The distribution of the observed radio emission of low-mass galaxies at 4.85/8.35 GHz is closely connected with the galactic optical discs, which are independent for unperturbed galaxies and those which show signs of tidal interactions. The strengths of total magnetic field are within 5-9 μG, while the ordered fields reach 1-2 μG, and both these values are larger than in typical dwarf galaxies and lower than in spirals. The magnetic field strengths in the extended sample of 17 low-mass galaxies are well correlated with the surface density of star formation rate (correlation coefficient of 0.87) and manifest a power-law relation with an exponent of 0.25 ± 0.02 extending a similar relation found for dwarf galaxies. We claim that the production of magnetic energy per supernova event is very similar for all the various galaxies. It constitutes about 3% (1049 erg) of the individual supernovae energy release. We show that the total magnetic field energy in galaxies is almost linearly related to the galactic gas mass, which indicates equipartition of the magnetic energy and the turbulent kinetic energy of the interstellar medium. The Magellanic-type galaxies fit very well with the radio-infrared relation constructed for surface brightness of galaxies of various types, including bright spirals and interacting objects (with a slope of 0.96 ± 0.03 and correlation coefficient of 0.95). We found that the typical far-infrared relation based on luminosity of galaxies is tighter and steeper but more likely to inherit a partial correlation from a

  13. INFRARED AND ULTRAVIOLET STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES IN THE ACCEPT SAMPLE

    SciTech Connect

    Hoffer, Aaron S.; Donahue, Megan; Hicks, Amalia; Barthelemy, R. S. E-mail: donahue@pa.msu.edu E-mail: ramon.s.barthelemy@wmich.edu

    2012-03-01

    We present infrared (IR) and ultraviolet (UV) photometry for a sample of brightest cluster galaxies (BCGs). The BCGs are from a heterogeneous but uniformly characterized sample, the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT), of X-ray galaxy clusters from the Chandra X-ray telescope archive with published gas temperature, density, and entropy profiles. We use archival Galaxy Evolution Explorer (GALEX), Spitzer Space Telescope, and Two Micron All Sky Survey (2MASS) observations to assemble spectral energy distributions (SEDs) and colors for BCGs. We find that while the SEDs of some BCGs follow the expectation of red, dust-free old stellar populations, many exhibit signatures of recent star formation in the form of excess UV or mid-IR emission, or both. We establish a mean near-UV (NUV) to 2MASS K color of 6.59 {+-} 0.34 for quiescent BCGs. We use this mean color to quantify the UV excess associated with star formation in the active BCGs. We use both fits to a template of an evolved stellar population and library of starburst models and mid-IR star formation relations to estimate the obscured star formation rates (SFRs). We show that many of the BCGs in X-ray clusters with low central gas entropy exhibit enhanced UV (38%) and mid-IR emission (43%) from 8 to 160 {mu}m, above that expected from an old stellar population. These excesses are consistent with ongoing star formation activity in the BCG, star formation that appears to be enabled by the presence of high-density, X-ray-emitting intergalactic gas in the core of the cluster of galaxies. This hot, X-ray-emitting gas may provide the enhanced ambient pressure and some of the fuel to trigger star formation. This result is consistent with previous works that showed that BCGs in clusters with low central gas entropies host H{alpha} emission-line nebulae and radio sources, while clusters with high central gas entropy exhibit none of these features. GALEX UV and Spitzer mid-IR measurements combined

  14. Probing Bursty Star Formation in Faint Galaxies with the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven; Livermore, Rachael; Song, Mimi

    2015-08-01

    The Hubble Frontier Fields have magnified our view into the formation and evolution of galaxies in the first billion years after the Big Bang. One key issue these data can probe is how galaxies grow their stellar masses. Do they grow smoothly with time, dominated by steady gas inflow? Or is their growth more stochastic, dominated by starburst triggering events such as mergers or clumpy gas inflows? A bevy of observational studies have shown that the star formation rates (SFRs) of distant galaxies increase with time, while theoretical studies, which broadly agree on long timescales, show that the SFRs may vary significantly on shorter timescales. We have compiled a sample of galaxies over a wide dynamic range in SFR by combining the HFF imaging with the CANDELS and HUDF datasets. By comparing the scatter in SFRs to SPH and semi-analytic models with known star formation histories, we directly measure the fraction of galaxies at a given epoch undergoing starbursts. This has a variety of implications on the distant universe, including reionization, as a significant burst fraction could both increase the number of ionizing photons being produced, as well as disturb the interstellar medium enough to allow these photons to escape.

  15. On the formation redshift of Low-Mass Star-Forming Galaxies at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Gallego, Jesus; Rodriguez-Muñoz, Lucía; Pacifici, Camilla; Tresse, Laurence; Charlot, Stéphane; Gil de Paz, Armando; Barro, Guillermo; Gomez-Guijarro, Carlos; Villar, Víctor

    2015-08-01

    Dwarf galaxies play a key role in galaxy formation and evolution: (1) hierarchical models predict that low-mass systems merged to form massive galaxies (building block paradigm; Dekel & Silk 1986); (2) dwarf systems might have been responsible for the reionization of the Universe (Wyithe & Loeb 2006); (3) theoretical models are particularly sensitive to the density of low-mass systems at diferent redshifts (Mamon et al. 2011), being one of the key science cases for the future E-ELT (Evans et al. 2013). While the history of low-mass dark matter halos is relatively well understood, the formation history of dwarf galaxies is still poorly reproduced by the models due to the distinct evolution of baryonic and dark matter.We present constraints on the star formation histories (SFHs) of a sample of low-mass Star-Forming Galaxies (LMSFGs; 7.3 < log M∗/Mo < 8.0, at 0.3 < zspec < 0.9) selected by photometric stellar mass and apparent magnitude. The SFHs were obtained through the analysis of their spectral energy distributions using a novel approach (Pacifici et al. 2012) that (1) consistently combines photometric (HST and ground-based multi-broadband) and spectroscopic (equivalent widths of emission lines from VLT and GTC spectroscopy) data, and (2) uses physically motivated SFHs with non-uniform variations of the star formation rate (SFR) as a function of time.The median SFH of our LMSFGs appears to form 90% of the median stellar mass inferred for the sample in the ˜0.5-1.8 Gyr immediately preceding the observation. These results suggest a recent stellar mass assembly for dwarf SFGs, consistent with the cosmological downsizing trends. We find similar median SFH timescales for a slightly more massive secondary sample 8.0 < log M∗/Mo < 9.1).This is a pilot study for future surveys on dwarf galaxies at high redshift.

  16. A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS

    SciTech Connect

    Krumholz, Mark R.; Dekel, Avishai; McKee, Christopher F. E-mail: dekel@phys.huji.ac.il

    2012-01-20

    Star formation laws are rules that relate the rate of star formation in a particular region, either an entire galaxy or some portion of it, to the properties of the gas, or other galactic properties, in that region. While observations of Local Group galaxies show a very simple, local star formation law in which the star formation rate per unit area in each patch of a galaxy scales linearly with the molecular gas surface density in that patch, recent observations of both Milky Way molecular clouds and high-redshift galaxies apparently show a more complicated relationship in which regions of equal molecular gas surface density can form stars at quite different rates. These data have been interpreted as implying either that different star formation laws may apply in different circumstances, that the star formation law is sensitive to large-scale galaxy properties rather than local properties, or that there are high-density thresholds for star formation. Here we collate observations of the relationship between gas and star formation rate from resolved observations of Milky Way molecular clouds, from kpc-scale observations of Local Group galaxies, and from unresolved observations of both disk and starburst galaxies in the local universe and at high redshift. We show that all of these data are in fact consistent with a simple, local, volumetric star formation law. The apparent variations stem from the fact that the observed objects have a wide variety of three-dimensional size scales and degrees of internal clumping, so even at fixed gas column density the regions being observed can have wildly varying volume densities. We provide a simple theoretical framework to remove this projection effect, and we use it to show that all the data, from small solar neighborhood clouds with masses {approx}10{sup 3} M{sub Sun} to submillimeter galaxies with masses {approx}10{sup 11} M{sub Sun }, fall on a single star formation law in which the star formation rate is simply {approx}1% of

  17. Star formation and molecular hydrogen in dwarf galaxies: a non-equilibrium view

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Yu; Naab, Thorsten; Walch, Stefanie; Glover, Simon C. O.; Clark, Paul C.

    2016-06-01

    We study the connection of star formation to atomic (H I) and molecular hydrogen (H2) in isolated, low-metallicity dwarf galaxies with high-resolution (mgas = 4 M⊙, Nngb = 100) smoothed particle hydrodynamics simulations. The model includes self-gravity, non-equilibrium cooling, shielding from a uniform and constant interstellar radiation field, the chemistry of H2 formation, H2-independent star formation, supernova feedback and metal enrichment. We find that the H2 mass fraction is sensitive to the adopted dust-to-gas ratio and the strength of the interstellar radiation field, while the star formation rate is not. Star formation is regulated by stellar feedback, keeping the gas out of thermal equilibrium for densities n < 1 cm-3. Because of the long chemical time-scales, the H2 mass remains out of chemical equilibrium throughout the simulation. Star formation is well correlated with cold (T ≤ 100 K) gas, but this dense and cold gas - the reservoir for star formation - is dominated by H I, not H2. In addition, a significant fraction of H2 resides in a diffuse, warm phase, which is not star-forming. The interstellar medium is dominated by warm gas (100 K < T ≤ 3 × 104 K) both in mass and in volume. The scaleheight of the gaseous disc increases with radius while the cold gas is always confined to a thin layer in the mid-plane. The cold gas fraction is regulated by feedback at small radii and by the assumed radiation field at large radii. The decreasing cold gas fractions result in a rapid increase in depletion time (up to 100 Gyr) for total gas surface densities Σ _{H I+H_2} ≲ 10 M⊙ pc-2, in agreement with observations of dwarf galaxies in the Kennicutt-Schmidt plane.

  18. SHIELD: The Star Formation Law in Extremely Low-mass Galaxies

    NASA Astrophysics Data System (ADS)

    Teich, Yaron; McNichols, Andrew; Cannon, John M.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we analyze the relationships between HI and star formation in these systems using multi-configuration, high spatial (~300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array, Hα imaging from the WIYN 3.5m telescope, and archival GALEX far-ultraviolet imaging. We compare the locations and intensities of star formation with the properties of the neutral ISM. We quantify the degree of local co-spatiality between star forming regions and regions of high HI column densities using the Kennicutt-Schmidt (K-S) relation. The values of the K-S index N vary considerably from system to system; because no single galaxy is representative of the sample, we instead focus on the narratives of the individual galaxies and their complex distribution of gaseous and stellar components. At the extremely faint end of the HI mass function, these systems are dominated by stochastic fluctuations in their interstellar media, which governs whether or not they show signs of recent star formation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  19. REVERSAL OF FORTUNE: INCREASED STAR FORMATION EFFICIENCIES IN THE EARLY HISTORIES OF DWARF GALAXIES?

    SciTech Connect

    Madau, Piero; Weisz, Daniel R.; Conroy, Charlie

    2014-08-01

    On dwarf galaxy scales, the different shapes of the galaxy stellar mass function and the dark halo mass function require a star-formation efficiency (SFE) in these systems that is currently more than 1 dex lower than that of Milky Way-size halos. Here, we argue that this trend may actually be reversed at high redshift. Specifically, by combining the resolved star-formation histories of nearby isolated dwarfs with the simulated mass-growth rates of dark matter halos, we show that the assembly of these systems occurs in two phases: (1) an early, fast halo accretion phase with a rapidly deepening potential well, characterized by a high SFE; and (2) a late, slow halo accretion phase where, perhaps as a consequence of reionization, the SFE is low. Nearby dwarfs have more old stars than predicted by assuming a constant or decreasing SFE with redshift, a behavior that appears to deviate qualitatively from the trends seen among more massive systems. Taken at face value, the data suggest that at sufficiently early epochs, dwarf galaxy halos above the atomic cooling mass limit can be among the most efficient sites of star formation in the universe.

  20. Differences in the Structural Properties and Star-formation Rates of Field and Cluster Galaxies at z~1

    NASA Astrophysics Data System (ADS)

    Allen, Rebecca J.; Kacprzak, Glenn G.; Glazebrook, Karl; Tran, Kim-Vy H.; Spitler, Lee R.; Straatman, Caroline M. S.; Cowley, Michael; Nanayakkara, Themiya

    2016-07-01

    We investigate the dependence of galaxy sizes and star formation rates (SFRs) on their environment using a mass-limited sample of quiescent and star-forming galaxies with log(M */{M}ȯ ) ≥ 9.5 at \\bar{z}=0.92 selected from the NEWFIRM medium-band Survey (NMBS). Using the Galaxy Environment Evolution Collaboration 2 spectroscopic cluster catalog and the accurate photometric redshifts from the NMBS, we select quiescent and star-forming cluster (\\bar{σ }=490 km s‑1) galaxies within two virial radius, R vir, intervals of 2 > R vir > 0.5 and R vir < 0.5. Galaxies residing outside of the 2 R vir of both the cluster centers and the additional candidate over-densities are defined as our field sample. Galaxy structural parameters are measured from the COSMOS legacy Hubble Space Telescope/ACS F814W image. The sizes and Sérsic indices of quiescent field and cluster galaxies have the same distribution regardless of R vir. However, cluster star-forming galaxies within 0.5 R vir have lower mass-normalized average sizes by 16+/- 7 % , and a higher fraction of Sérsic indices with n\\gt 1, than field star-forming galaxies. The average SFRs of star-forming cluster galaxies show a trend of decreasing SFR with clustocentric radius. The mass-normalized average SFR of cluster star-forming galaxies is a factor of 2{--}2.5 (7{--}9σ ) lower than that of star-forming galaxies in the field. While we find no significant dependence on environment for quiescent galaxies, the properties of star-forming galaxies are affected, which could be the result of environment acting on their gas content.

  1. Differences in the Structural Properties and Star-formation Rates of Field and Cluster Galaxies at z~1

    NASA Astrophysics Data System (ADS)

    Allen, Rebecca J.; Kacprzak, Glenn G.; Glazebrook, Karl; Tran, Kim-Vy H.; Spitler, Lee R.; Straatman, Caroline M. S.; Cowley, Michael; Nanayakkara, Themiya

    2016-07-01

    We investigate the dependence of galaxy sizes and star formation rates (SFRs) on their environment using a mass-limited sample of quiescent and star-forming galaxies with log(M */{M}⊙ ) ≥ 9.5 at \\bar{z}=0.92 selected from the NEWFIRM medium-band Survey (NMBS). Using the Galaxy Environment Evolution Collaboration 2 spectroscopic cluster catalog and the accurate photometric redshifts from the NMBS, we select quiescent and star-forming cluster (\\bar{σ }=490 km s-1) galaxies within two virial radius, R vir, intervals of 2 > R vir > 0.5 and R vir < 0.5. Galaxies residing outside of the 2 R vir of both the cluster centers and the additional candidate over-densities are defined as our field sample. Galaxy structural parameters are measured from the COSMOS legacy Hubble Space Telescope/ACS F814W image. The sizes and Sérsic indices of quiescent field and cluster galaxies have the same distribution regardless of R vir. However, cluster star-forming galaxies within 0.5 R vir have lower mass-normalized average sizes by 16+/- 7 % , and a higher fraction of Sérsic indices with n\\gt 1, than field star-forming galaxies. The average SFRs of star-forming cluster galaxies show a trend of decreasing SFR with clustocentric radius. The mass-normalized average SFR of cluster star-forming galaxies is a factor of 2{--}2.5 (7{--}9σ ) lower than that of star-forming galaxies in the field. While we find no significant dependence on environment for quiescent galaxies, the properties of star-forming galaxies are affected, which could be the result of environment acting on their gas content.

  2. Using Herschel Far-Infrared Photometry to Constrain Star Formation Rates in CLASH Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Larson, Rebecca L.; Postman, Marc; Fogarty, Kevin

    2016-01-01

    The Cluster Lensing And Supernova survey with Hubble (CLASH) program obtained broadband images of 25 massive galaxy clusters in 16 passbands from the UV to the near-IR. The data was taken with the Wide-field Camera 3 (WFC3), and the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST). These 25 clusters have also been observed in the mid-IR by Spitzer IRAC, the far-IR by the Herschel Space Observatory PACS and SPIRE, and in the x-ray by the Chandra and XMM observatories. We focused on the two brightest cluster galaxies (BCGs) in the survey (MACS1931.8-2653 and RXJ1532.9+3021) that have reddening-corrected UV-derived star formation rates (SFRs) > 100 M⊙ yr-1 as measured by Fogarty et al (2015). The inclusion of Herschel data provides unique constraints on dust content and independent estimates of the star formation rates in these interesting galaxies. We performed photometry on the five Herschel bands (100-500μm), and removed any contamination from other cluster members. We fit a UV-FIR SED to each galaxy to measure the bolometric dust luminosity (Lbol), which we use to derive the FIR obscured SFR. We calculate the sum of the measured UV unobscured SFR from the HST photometry and the FIR obscured SFR from the Herschel photometry to get a total SFR for these two BCGs. We compared this to the reddening-corrected SFRs and found they were in agreement within error. This confirms that the Kennicutt and Calzetti methods for calculating star formation rates are both applicable for these highly star-forming massive cluster galaxies.

  3. Regulation of star formation in giant galaxies by precipitation, feedback and conduction.

    PubMed

    Voit, G M; Donahue, M; Bryan, G L; McDonald, M

    2015-03-12

    The Universe's largest galaxies reside at the centres of galaxy clusters and are embedded in hot gas that, if left undisturbed, would cool quickly and create many more new stars than are actually observed. Cooling can be regulated by feedback from accretion of cooling gas onto the central black hole, but requires an accretion rate finely tuned to the thermodynamic state of the hot gas. Theoretical models in which cold clouds precipitate out of the hot gas via thermal instability and accrete onto the black hole exhibit the necessary tuning. Recent observational evidence shows that the abundance of cold gas in the centres of clusters increases rapidly near the predicted threshold for instability. Here we report observations showing that this precipitation threshold extends over a large range in cluster radius, cluster mass and cosmic time. We incorporate the precipitation threshold into a framework of theoretical models for the thermodynamic state of hot gas in galaxy clusters. According to that framework, precipitation regulates star formation in some giant galaxies, while thermal conduction prevents star formation in others if it can compensate for radiative cooling and shut off precipitation.

  4. Regulation of star formation in giant galaxies by precipitation, feedback and conduction.

    PubMed

    Voit, G M; Donahue, M; Bryan, G L; McDonald, M

    2015-03-12

    The Universe's largest galaxies reside at the centres of galaxy clusters and are embedded in hot gas that, if left undisturbed, would cool quickly and create many more new stars than are actually observed. Cooling can be regulated by feedback from accretion of cooling gas onto the central black hole, but requires an accretion rate finely tuned to the thermodynamic state of the hot gas. Theoretical models in which cold clouds precipitate out of the hot gas via thermal instability and accrete onto the black hole exhibit the necessary tuning. Recent observational evidence shows that the abundance of cold gas in the centres of clusters increases rapidly near the predicted threshold for instability. Here we report observations showing that this precipitation threshold extends over a large range in cluster radius, cluster mass and cosmic time. We incorporate the precipitation threshold into a framework of theoretical models for the thermodynamic state of hot gas in galaxy clusters. According to that framework, precipitation regulates star formation in some giant galaxies, while thermal conduction prevents star formation in others if it can compensate for radiative cooling and shut off precipitation. PMID:25739501

  5. A Numerical Simulation of Star Formation in Nuclear Rings of Barred-Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Woo-Young; Kim, W.

    2014-01-01

    We use grid-based hydrodynamic simulations to study star formation history in nuclear rings of barred-spiral galaxies. We assume infinitesimally thin, isothermal, and unmagnetized gaseous disk. To investigate effects of spiral arm potential, we calculate both models with and without spiral. We find that star formation rate (SFR) in a nuclear ring is determined by the mass inflow rate to the ring rather than the total gas mass in the ring. In case of models without spiral arms, the SFR shows a strong primary burst at early time, and declines to small values after after that. The primary burst is caused by the rapid gas infall to the ring due to the bar growth. On the other hand, models with spiral arms show multiple star bursts at late time caused by additional gas inflow from outside bar region. When the SFR is low, ages of young star clusters exhibit a bipolar azimuthal gradient along the ring since star formation occurs near the contact points between dust lanes and the nuclear ring. When the SFR is large, there are no age gradient of star clusters since star formation sites are widely distributed throughout the whole ring region.

  6. Inclusion of horizontal branch stars in the derivation of star formation histories of dwarf galaxies: The Carina dSph

    NASA Astrophysics Data System (ADS)

    Savino, Alessandro; Salaris, Maurizio; Tolstoy, Eline

    2015-11-01

    We present a detailed analysis of the horizontal branch of the Carina dwarf spheroidal galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from main sequence and red giant branch spectroscopic observations. We found that a range of integrated red giant branch mass loss values of 0.1-0.14 M⊙ increasing with metallicity is able to reproduce the colour extension of the old horizontal branch. Nonetheless, leaving the mass loss as the only free parameter is not enough to match the detailed morphology of Carina horizontal branch. We then investigated the role played by the star formation history on the discrepancies between synthetic and observed horizontal branches. We derived a "toy" bursty star formation history that reproduces well the observed horizontal branch star counts, and also matches qualitatively the red giant and the turn-off regions. This bursty star formation history is made of a subset of age and [M/H] components of the star formation history based on turn off and red giants only, and entails four separate bursts of star formation of different strengths, centred at 2, 5, 8.6, and 11.5 Gyr, respectively, with mean [M/H] decreasing from ~-1.7 to ~-2.2 when the age of the burst increases, and with a Gaussian spread of σ 0.1 dex around these mean values. The comparison between the metallicity distribution function of our bursty star formation history and the one measured from the infrared CaT feature using a CaT-[Fe/H] calibration shows a qualitative agreement, once the range of [Ca/Fe] abundances measured in a sample of Carina stars have been taken into account, that causes a bias of the derived [Fe/H] distribution toward values that are too low. In conclusion, we show how the information contained within the horizontal branch of Carina (and dwarf galaxies in general) can be extracted and interpreted to refine the star formation history derived exclusively

  7. SDSS IV MaNGA: Gradients in Recent Star Formation Histories as Diagnostics for Galaxy Growth and Death

    NASA Astrophysics Data System (ADS)

    Li, Cheng; MaNGA Team

    2016-01-01

    The spatially resolved spectroscopy from MaNGA allows the radial gradients of recent star formation histories (SFH), as indicated by the 4000Å break (D4000) and the equivalent width of both Hδ absorption line and Hα emission line, to be obtained with high accuracy for a large sample of galaxies in the nearby universe. Analyses of both a dozen galaxies observed by the MaNGA prototype run (P-MaNGA) and ~700 galaxies in the current MaNGA sample have shown that the SFH gradients are useful for understanding disk growth and star formation cessation in local galaxies. We find the SFH gradient of a galaxy to strongly depend on the evolution stage of its central region. Centrally star-forming galaxies generally show very weak or no radial variations. In contrast, centrally quiescent galaxies present significant radial gradients in the sense that Dn(4000) decreases, while both EW(HδA) and EW(Hα) increase from the galactic center outward. This effect is seen mainly for high-mass galaxies with stellar mass above a few ×1010 M⊙, and depends weakly on galaxy morphology type. These results are consistent with a picture in which the cessation of star formation propagates from the center of a galaxy outward as it moves to the red sequence. In this talk I will present these analyses and discuss their implications on galaxy evolution.

  8. Theoretical models of gas dynamics and star formation in interacting ring galaxies

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis

    1990-01-01

    A series of one and two dimensional hydrodynamic simulations of a ring wave in interstellar gas disks was completed. These calculations included nonlinear source terms to model the effects of interstellar interactions and star formation, as well as the spatial-temporal gas flow. Toomre's kinematical model was merged with the Arnold, Shandarin, and Zeldovich 'pancake' theory of caustics in galaxy formation. The resulting theory can describe almost all the structure in restricted three-body simulations of single-pass collisions, even with multi-component potentials. Off-center galactic collisions were studied to understand the dynamics involved. Multi-color optical and near-infrared observations of faint tidal features were performed in about two dozen interacting galaxies selected from the Arp atlas. This sample provided evidence for ongoing star formation in tidal structures, and even enhancements of star formation in some cases. The task of assembling the data for gas-rich, late-type galaxies, was undertaken to see if a more coherent picture of the gas distribution would emerge from the more complete data. Analytic solutions of the equations with subsonic flows to balance gas consumption for expulsion form a galactic fountain were also derived.

  9. Understanding the In-Situ Star Formation in a z=1.7 Cluster Core Galaxy

    NASA Astrophysics Data System (ADS)

    Webb, Tracy

    2014-10-01

    We have discovered a rare beast of a central galaxy within a z=1.7 rich galaxy cluster (estimated ~4x10^14 Msun), forming stars at a prodigious rate of 1200 Msun/yr. This system is infrared bright and its SED and the detection of PAHs at the cluster redshift, implies the IR luminosity is dominated by star formation. Such an extreme system has to date, only been confirmed in the z=0.6 Phoenix cluster (McDonald et al. 2012, 2013, 2014), whereas this object is observed at a much earlier and more active epoch of galaxy and cluster evolution. Here we propose deep HST imaging with WFC3 F160W/F105W to investigate the morphology of the BCG galaxy and its nearest neighbours. Our main goal is to understand the physical processes fuelling the intense starburst, be it a major merger or infalling gas from a cooling flow. We will also characterize the morphological properties (with color information) of the central BCG. These data will be the first of their kind at this redshift and will relate overall formation and evolution of the central galaxy massive parent halo at a cosmological epoch where these processes may begin to dominate.

  10. Stellar Masses, Star Formation Rates and X-ray Constraints on Galaxies in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Hrinda, Greg; Desjardins, T. D.; Hornschemeier, A. E.; Gallagher, S.; Hammer, D.; Miller, N. A.; Ptak, A.; Tzanavaris, P.; Johnson, K. E.; Walker, L.

    2014-01-01

    We report on new measurements of star formation rates and stellar masses in the “infall” region of the nearby Coma cluster of galaxies. This region is approximately 1 Mpc from the cluster core, where relatively gas-rich galaxies are interacting with the hot intracluster medium, providing an important view of the impact of cluster processes on galaxy evolution. We have used infrared and ultraviolet data available from both ground and spaced-based observations to make these measurements. The star formation rates and stellar mass values were verified via comparison with published results in the Coma core as well as the Sloan Digital Sky Survey spectral measurements. The infall region has also been observed by XMM-Newton to faint limits to obtain X-ray luminosities for the galaxies in this field. Specifically, we present X-ray photometry of approximately 20 galaxies with XMM-Newton coverage to constrain the X-ray - SFR correlation in a cluster environment. This project was supported by the Baltimore Excellence in STEM Teaching program via summer internship funding to Hrinda.

  11. Nuclei of Seyfert galaxies and QSOs - Central engine & conditions of star formation

    NASA Astrophysics Data System (ADS)

    Supermassive black holes (SMBHs) are ubiquitous in the Universe. It is widely accepted that most or all massive galaxies harbors a central SMBH. Apparent correlations between the black hole mass and host galaxy structural/dynamical properties, such as the M/σ relation, give rise to the notion of an intimate link between the growth of SMBHs and their host galaxies. Active galactic nuclei (AGN) represent a phase (phases) in the life of a galaxy, during which the SMBH growth is directly observable. The question is, whether such episodes provide a window onto the relevant aspects of the regulation of the growth of the bulges and the SMBHs. The focus of this workshop is on understanding the conditions of star formation in AGN and the interplay between star formation, the active nuclei, and the host galaxies - especially of intermediate redshift (z<0.1) systems - in order to bridge the gap between local, well-studied AGN and their hosts and marginally resolved high redshift AGN and their hosts.

  12. A magnified view of star formation at z = 0.9 from two lensed galaxies

    SciTech Connect

    Olmstead, Alice; Veilleux, Sylvain; Rigby, Jane R.; Swinbank, Mark

    2014-10-01

    We present new narrowband Hα imaging from the Hubble Space Telescope of two z = 0.91 galaxies that have been lensed by the foreground galaxy cluster A2390. These data probe spatial scales as small as ∼0.3 kpc, providing a magnified look at the morphology of star formation at an epoch when the global star formation rate (SFR) was high. However, dust attenuates our spatially resolved SFR indicators, the Hα and rest-UV emission, and we lack a direct measurement of extinction. Other studies have found that ionized gas in galaxies tends to be roughly 50% more obscured than stars; however, given an unextincted measurement of the SFR we can quantify the relative stellar to nebular extinction and the extinction in Hα. We infer SFRs from Spitzer and Herschel mid- to far-infrared observations and compare these to integrated Hα and rest-UV SFRs; this yields stellar to nebular extinction ratios consistent with previous studies. We take advantage of high spatial resolution and contextualize these results in terms of the source-plane morphologies, comparing the distribution of Hα to that of the rest-frame UV and optical light. In one galaxy, we measure separate SFRs in visually distinct clumps, but can set only a lower limit on the extinction and thus the star formation. Consequently, the data are also consistent with there being an equal amount of extinction along the lines of sight to the ionized gas as to the stars. Future observations in the far-infrared could settle this by mapping out the dust directly.

  13. Gas distribution, star formation and giant molecular cloud evolution in nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Rebolledo Lara, David Andres

    2013-12-01

    In this thesis, I present a detailed study of the resolved properties of the cold gas in nearby galaxies at different size scales, starting from the whole galactic disk to the size of the Giant Molecular Clouds (GMCs). Differences in the shape and width of global CO and HI spectra of resolved disks of spiral galaxies are systematically investigated using a nearby sample for which high-resolution CO and HI maps are available. I find that CO line widths can be wider than HI widths in galaxies where the rotation curve declines in the outer parts, while they can be narrower in galaxies where the CO does not adequately sample the flat part of the rotation curve. Limited coverage of the CO emission by the telescope beam can mimic the latter effect. A physically based prescription linking the CO and HI radial profiles with the stellar disk is consistent with these findings. Then, I present an analysis performed on high spatial resolution observations of Giant Molecular Clouds in the three nearby spiral galaxies NGC 6946, NGC 628 and M101 obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Using the automated CPROPS algorithm I identified 112 CO cloud complexes in the CO(1 → 0) map and 145 GMCs in the CO(2 → 1) maps. The properties of the GMCs are similar to values found in other extragalactic studies. Clouds located on-arm present in general higher star formation rates than clouds located in inter-arm regions. Also, I find differences in the distribution of star formation efficiencies in the disk of these galaxies. These differences may be related to the underlying dynamical process that drives the observed spiral arm structure in the disks. In this scenario, in galaxies with nearly symmetric arm shape (e. g., NGC 628), the spiral shocks are triggering star formation along the arms. On other hand, galaxies with flocculent or multi-arm spiral structure (e. g., NGC 6946 and M101) show regions of high star formation efficiency at specific

  14. The Star Formation Histories of Local Group Dwarf Galaxies. III. Characterizing Quenching in Low-mass Galaxies

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2015-05-01

    We explore the quenching of low-mass galaxies (104 ≲ {{M}\\star } ≲ 108 {{M}⊙ }) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived by analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) lower-mass galaxies quench earlier than higher-mass galaxies; (2) inside of Rvirial there is no correlation between a satellite’s current proximity to a massive host and its quenching epoch; and (3) there are hints of systematic differences in the quenching times of M31 and Milky Way (MW) satellites, although the sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with results from the literature, we qualitatively consider the redshift evolution (z = 0-1) of the quenched galaxy fraction over ˜7 dex in stellar mass (104 ≲ {{M}\\star } ≲ 1011.5 {{M}⊙ }). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest-mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between {{M}\\star } ˜ 108-1010 {{M}⊙ } have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times for low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall, while higher-mass satellites (e.g., Leo I, Fornax) typically quench ˜1-4 Gyr after infall. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA constract NAS 5-26555.

  15. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    SciTech Connect

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  16. The evolution of galaxies at constant number density: a less biased view of star formation, quenching, and structural formation

    NASA Astrophysics Data System (ADS)

    Ownsworth, Jamie R.; Conselice, Christopher J.; Mundy, Carl J.; Mortlock, Alice; Hartley, William G.; Duncan, Kenneth; Almaini, Omar

    2016-09-01

    Due to significant galaxy contamination and impurity in stellar mass selected samples (up to 95 per cent from z = 0-3), we examine the star formation history, quenching time-scales, and structural evolution of galaxies using a constant number density selection with data from the United Kingdom Infra-Red Deep Sky Survey Ultra-Deep Survey field. Using this methodology, we investigate the evolution of galaxies at a variety of number densities from z = 0-3. We find that samples chosen at number densities ranging from 3 × 10-4 to 10-5 galaxies Mpc-3 (corresponding to z ˜ 0.5 stellar masses of M* = 1010.95-11.6 M0) have a star-forming blue fraction of ˜50 per cent at z ˜ 2.5, which evolves to a nearly 100 per cent quenched red and dead population by z ˜ 1. We also see evidence for number density downsizing, such that the galaxies selected at the lowest densities (highest masses) become a homogeneous red population before those at higher number densities. Examining the evolution of the colours for these systems furthermore shows that the formation redshift of galaxies selected at these number densities is zform > 3. The structural evolution through size and Sérsic index fits reveal that while there remains evolution in terms of galaxies becoming larger and more concentrated in stellar mass at lower redshifts, the magnitude of the change is significantly smaller than for a mass-selected sample. We also find that changes in size and structure continues at z < 1, and is coupled strongly to passivity evolution. We conclude that galaxy structure is driving the quenching of galaxies, such that galaxies become concentrated before they become passive.

  17. The lack of star formation gradients in galaxy groups up to z ˜ 1.6

    NASA Astrophysics Data System (ADS)

    Ziparo, F.; Popesso, P.; Biviano, A.; Finoguenov, A.; Wuyts, S.; Wilman, D.; Salvato, M.; Tanaka, M.; Ilbert, O.; Nandra, K.; Lutz, D.; Elbaz, D.; Dickinson, M.; Altieri, B.; Aussel, H.; Berta, S.; Cimatti, A.; Fadda, D.; Genzel, R.; Le Flo'ch, E.; Magnelli, B.; Nordon, R.; Poglitsch, A.; Pozzi, F.; Portal, M. Sanchez; Tacconi, L.; Bauer, F. E.; Brandt, W. N.; Cappelluti, N.; Cooper, M. C.; Mulchaey, J. S.

    2013-10-01

    In the local Universe, galaxy properties show a strong dependence on environment. In cluster cores, early-type galaxies dominate, whereas star-forming galaxies are more and more common in the outskirts. At higher redshifts and in somewhat less dense environments (e.g. galaxy groups), the situation is less clear. One open issue is that of whether and how the star formation rate (SFR) of galaxies in groups depends on the distance from the centre of mass. To shed light on this topic, we have built a sample of X-ray selected galaxy groups at 0 < z < 1.6 in various blank fields [Extended Chandra Deep Field South (ECDFS), Cosmological Evolution Survey (COSMOS), Great Observatories Origin Deep Survey (GOODS)]. We use a sample of spectroscopically confirmed group members with stellar mass M⋆ > 1010.3 M⊙ in order to have a high spectroscopic completeness. As we use only spectroscopic redshifts, our results are not affected by uncertainties due to projection effects. We use several SFR indicators to link the star formation (SF) activity to the galaxy environment. Taking advantage of the extremely deep mid-infrared Spitzer MIPS and far-infrared Herschel1 PACS observations, we have an accurate, broad-band measure of the SFR for the bulk of the star-forming galaxies. We use multi-wavelength Spectral Energy Distribution (SED) fitting techniques to estimate the stellar masses of all objects and the SFR of the MIPS and PACS undetected galaxies. We analyse the dependence of the SF activity, stellar mass and specific SFR on the group-centric distance, up to z ˜ 1.6, for the first time. We do not find any correlation between the mean SFR and group-centric distance at any redshift. We do not observe any strong mass segregation either, in agreement with predictions from simulations. Our results suggest that either groups have a much smaller spread in accretion times with respect to the clusters and that the relaxation time is longer than the group crossing time.

  18. Self-consistent photometric and spectroscopic Star Formation Histories in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    García-Benito, R.; Pérez, E.; Pérez-Montero, E.; González Delgado, R.; Vílchez, J. M.

    2016-06-01

    This project aims to unify the spectroscopic and stellar photometric views by performing a comprehensive study of a sample of the nearest Blue Compact Dwarf Galaxies (BCDs). We plan to derive Star Formation Histories (SFH) both by means of Color-Magnitude Diagrams (CMDs) from extant Hubble Space Telescope (HST) optical imaging and with spectral fitting methods techniques using MUSE, allowing us to obtain state-of-the-art 2D stellar properties and abundances of the gas in BCDs.

  19. Nuclear Star Formation in the Hot-Spot Galaxy NGC 2903

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, A.; Ryder, S. D.; Knapen, J. H.

    1994-01-01

    We present high-resolution near-infrared imaging obtained using adaptive optics and HST/NICMOS and ground-based spectroscopy of the hot-spot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hot spots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H II regions, as revealed by the HST/NICMOS Pace image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc. The SF properties of the stellar clusters and H II regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4 to 7 x 10(exp 6) yr after the peak of star formation, or absolute ages 6.5 to 9.5 x 10(exp 6) yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7 - 12% of the total stellar mass in the central 625 pc of NGC 2903. The H II regions in the ring of star formation have luminosities close to that of the super-giant H II region 30 Doradus, they are younger than the stellar clusters, and will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.

  20. Towards simulating star formation in turbulent high-z galaxies with mechanical supernova feedback

    NASA Astrophysics Data System (ADS)

    Kimm, Taysun; Cen, Renyue; Devriendt, Julien; Dubois, Yohan; Slyz, Adrianne

    2015-08-01

    To better understand the impact of supernova (SN) explosions on the evolution of galaxies, we perform a suite of high-resolution (12 pc), zoom-in cosmological simulations of a Milky Way-like galaxy at z = 3 with adaptive mesh refinement. We find that SN explosions can efficiently regulate star formation, leading to the stellar mass and metallicity consistent with the observed mass-metallicity relation and stellar mass-halo mass relation at z ˜ 3. This is achieved by making three important changes to the classical feedback scheme: (i) the different phases of SN blast waves are modelled directly by injecting radial momentum expected at each stage, (ii) the realistic time delay of SNe is required to disperse very dense gas before a runaway collapse sets in, and (iii) a non-uniform density distribution of the interstellar medium (ISM) is taken into account below the computational grid scale for the cell in which an SN explodes. The simulated galaxy with the SN feedback model shows strong outflows, which carry approximately 10 times larger mass than star formation rate, as well as smoothly rising circular velocity. Although the metallicity of the outflow depends sensitively on the feedback model used, we find that the accretion rate and metallicity of the cold flow around the virial radius is impervious to SN feedback. Our results suggest that understanding the structure of the turbulent ISM may be crucial to assess the role of SN and other feedback processes in galaxy formation theory.

  1. Sharing Gravity's Microscope: Star Formation and Galaxy Evolution for Underserved Arizonans

    NASA Astrophysics Data System (ADS)

    Knierman, Karen A.; Monkiewicz, Jacqueline A.; Bowman, Catherine DD; Taylor, Wendy

    2016-01-01

    Learning science in a community is important for children of all levels and especially for many underserved populations. This project combines HST research of galaxy evolution using gravitationally lensed galaxies with hands-on activities and the Starlab portable planetarium to link astronomy with families, teachers, and students. To explore galaxy evolution, new activities were developed and evaluated using novel evaluation techniques. A new set of galaxy classification cards enable inquiry-based learning about galaxy ages, evolution, and gravitational lensing. Activities using new cylinder overlays for the Starlab transparent cylinder will enable the detailed examination of star formation and galaxy evolution as seen from the viewpoint inside of different types of galaxies. These activities were presented in several Arizona venues that enable family and student participation including ASU Earth and Space Open House, Arizona Museum of Natural History Homeschooling Events, on the Salt River Pima-Maricopa Indian Community, and inner city Phoenix schools serving mainly Hispanic populations. Additional events targeted underserved families at the Phoenix Zoo, in Navajo County, and for the Pascua Yaqui Tribe. After evaluation, the activities and materials will also be shared with local teachers and nationally.

  2. GAS OUTFLOWS IN SEYFERT GALAXIES: EFFECTS OF STAR FORMATION VERSUS AGN FEEDBACK

    SciTech Connect

    Melioli, C.; Pino, E. M. de Gouveia Dal E-mail: dalpino@iag.usp.br

    2015-10-20

    Large-scale, weakly collimated outflows are very common in galaxies with large infrared luminosities. In complex systems in particular, where intense star formation (SF) coexists with an active galactic nucleus (AGN), it is not clear yet from observations whether the SF, the AGN, or both are driving these outflows. Accreting supermassive black holes are expected to influence their host galaxies through kinetic and radiative feedback processes, but in a Seyfert galaxy, where the energy emitted in the nuclear region is comparable to that of the body of the galaxy, it is possible that stellar activity is also playing a key role in these processes. In order to achieve a better understanding of the mechanisms driving the gas evolution especially at the nuclear regions of these galaxies, we have performed high-resolution three-dimensional hydrodynamical simulations with radiative cooling considering the feedback from both SF regions, including supernova (Type I and II) explosions and an AGN jet emerging from the central region of the active spiral galaxy. We computed the gas mass lost by the system, separating the role of each of these injection energy sources on the galaxy evolution, and found that at scales within 1 kpc an outflow can be generally established considering intense nuclear SF only. The jet alone is unable to drive a massive gas outflow, although it can sporadically drag and accelerate clumps of the underlying outflow to very high velocities.

  3. STAR FORMATION IN THE EXTENDED GASEOUS DISK OF THE ISOLATED GALAXY CIG 96

    SciTech Connect

    Espada, D.; Sabater, J.; Verdes-Montenegro, L.; Sulentic, J.; Munoz-Mateos, J. C.; Gil de Paz, A.; Verley, S.; Leon, S.

    2011-07-20

    We study the Kennicutt-Schmidt star formation law and efficiency in the gaseous disk of the isolated galaxy CIG 96 (NGC 864), with special emphasis on its unusually large atomic gas (H I) disk (r{sub Hmathsci}/r{sub 25} = 3.5, r{sub 25} = 1.'85). We present deep Galaxy Evolution Explorer near- and far-UV observations, used as a recent star formation tracer, and we compare them with new, high-resolution (16''or 1.6 kpc) Very Large Array H I observations. The UV and H I maps show good spatial correlation outside the inner 1', where the H I phase dominates over H{sub 2}. Star-forming regions in the extended gaseous disk are mainly located along the enhanced H I emission within two (relatively) symmetric, giant gaseous spiral arm-like features, which emulate an H I pseudo-ring at r {approx_equal} 3'. Inside this structure, two smaller gaseous spiral arms extend from the northeast and southwest of the optical disk and connect to the previously mentioned H I pseudo-ring. Interestingly, we find that the (atomic) Kennicutt-Schmidt power-law index systematically decreases with radius, from N {approx_equal} 3.0 {+-} 0.3 in the inner disk (0.'8-1.'7) to N = 1.6 {+-} 0.5 in the outskirts of the gaseous disk (3.'3-4.'2). Although the star formation efficiency (SFE), the star formation rate per unit of gas, decreases with radius where the H I component dominates as is common in galaxies, we find that there is a break of the correlation at r = 1.5r{sub 25}. At radii 1.5r{sub 25} < r < 3.5r{sub 25}, mostly within the H I pseudo-ring structure, regions exist whose SFE remains nearly constant, SFE {approx_equal} 10{sup -11} yr{sup -1}. We discuss possible mechanisms that might be triggering the star formation in the outskirts of this galaxy, and we suggest that the constant SFE for such large radii (r > 2r{sub 25}) and at such low surface densities might be a common characteristic in extended UV disk galaxies.

  4. Connecting AGN Feedback, the Star-Forming Interstellar Medium, and Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip

    The biggest shortcoming in our models of star, supermassive black hole, and galaxy formation is our poor and incomplete understanding of 'feedback' processes. In nearly all models, strong feedback from stars and black holes plays a critical role in regulating the nature of the interstellar medium (ISM) and subsequent generations of star formation and black hole growth. But our theoretical understanding of these processes has largely been restricted to either idealized cases, or simple phenomenological 'sub-grid' prescriptions. These have limited predictive power, and invoke highly uncertain assumptions for the unresolved ISM physics. As such, developing more realistic, explicit treatment of these processes is critical, and one of the primary challenges facing models of both galaxy and star formation. In this proposal, we focus on improving our understanding of AGN feedback by combining novel, high-resolution studies of both black hole growth and galaxy evolution. Critically, these will simultaneously resolve the ISM and both fueling and feedback from black holes, and include fundamentally new physics on galactic scales. Our goal is to anchor these calculations as much as possible in first principles, eliminating large uncertainties in the current models, and enable new predictions on galactic scales. Recently, we developed new numerical models to resolve star formation and feedback on scales from molecular cloud star-forming regions through galaxies. These simulations explicitly follow the energy, momentum, mass, and metal fluxes from stellar radiation pressure, photo-heating, supernovae, and stellar winds; in all cases feedback is tied directly to stellar evolution models. Unlike those previous, the models naturally produce an ISM in which molecular clouds form and disperse rapidly, with realistic phase structure and turbulence. These mechanisms simultaneously drive large galactic outflows; the galactic environment is radically different from the smooth medium of

  5. THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD

    SciTech Connect

    Karim, A.; Schinnerer, E.; Sargent, M. T.; Van der Wel, A.; Rix, H.-W.; MartInez-Sansigre, A.; Ilbert, O.; Smolcic, V.; Carilli, C.; Pannella, M.; Koekemoer, A. M.; Bell, E. F.; Salvato, M.

    2011-04-01

    We explore the redshift evolution of the specific star formation rate (SSFR) for galaxies of different stellar mass by drawing on a deep 3.6 {mu}m selected sample of >10{sup 5} galaxies in the 2 deg{sup 2} COSMOS field. The average star formation rate (SFR) for subsets of these galaxies is estimated with stacked 1.4 GHz radio continuum emission. We separately consider the total sample and a subset of galaxies that shows evidence for substantive recent star formation in the rest-frame optical spectral energy distributions. At redshifts 0.2 < z < 3 both populations show a strong and mass-independent decrease in their SSFR toward the present epoch. It is best described by a power law (1 + z) {sup n}, where n {approx} 4.3 for all galaxies and n {approx} 3.5 for star-forming (SF) sources. The decrease appears to have started at z>2, at least for high-mass (M{sub *} {approx}> 4 x 10{sup 10} M{sub sun}) systems where our conclusions are most robust. Our data show that there is a tight correlation with power-law dependence, SSFR {proportional_to} M{sub *} {sup {beta},} between SSFR and stellar mass at all epochs. The relation tends to flatten below M{sub *} {approx} 10{sup 10} M{sub sun} if quiescent galaxies are included; if they are excluded from the analysis a shallow index {beta}{sub SFG} {approx} -0.4 fits the correlation. On average, higher mass objects always have lower SSFRs, also among SF galaxies. At z>1.5 there is tentative evidence for an upper threshold in SSFR that an average galaxy cannot exceed, possibly due to gravitationally limited molecular gas accretion. It is suggested by a flattening of the SSFR-M{sub *} relation (also for SF sources), but affects massive (>10{sup 10} M{sub sun}) galaxies only at the highest redshifts. Since z = 1.5 there thus is no direct evidence that galaxies of higher mass experience a more rapid waning of their SSFR than lower mass SF systems. In this sense, the data rule out any strong 'downsizing' in the SSFR. We combine our

  6. Constraints on Feedback in the Local Universe: The Relation Between Star Formation and AGN Activity in Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher P.; Baum, Stefi Alison

    2016-01-01

    We address the relation between star formation and AGN activity in a sample of 231 nearby (0.0002 < z < 0.0358) early type galaxies by carrying out a multi-wavelength study using archival observations in the UV, IR and radio. Our results indicate that early type galaxies in the current epoch are rarely powerful AGNs, with P < 1022 WHz-1 for a majority of the galaxies. Only massive galaxies are capable of hosting powerful radio sources while less massive galaxies are hosts to lower radio power sources. Evidence of ongoing star formation is seen in approximately 7% of the sample. The SFR of these galaxies is less than 0.1 M⊙yr-1. They also tend to be radio faint (P < 1022 WHz-1). There is a nearly equal fraction of star forming galaxies in radio faint (P < 1022 WHz-1) and radio bright galaxies (P ≥ 1022 WHz-1) suggesting that both star formation and radio mode feedback are constrained to be very low in our sample. We notice that our galaxy sample and the Brightest Cluster Galaxies (BCGs) follow similar trends in radio power versus SFR. This may be produced if both radio power and SFR are related to stellar mass.

  7. Wind-driven gas networks and star formation in galaxies: reaction-advection hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Chappell, David; Scalo, John

    2001-07-01

    The effects of wind-driven star formation feedback on the spatio-temporal organization of stars and gas in galaxies is studied using two-dimensional intermediate-representational quasi-hydrodynamical simulations. The model retains only a reduced subset of the physics, including mass and momentum conservation, fully non-linear fluid advection, inelastic macroscopic interactions, threshold star formation, and momentum forcing by winds from young star clusters on the surrounding gas. Expanding shells of swept-up gas evolve through the action of fluid advection to form a `turbulent' network of interacting shell fragments which have the overall appearance of a web of filaments (in two dimensions). A new star cluster is formed whenever the column density through a filament exceeds a critical threshold based on the gravitational instability criterion for an expanding shell, which then generates a new expanding shell after some time delay. A filament-finding algorithm is developed to locate the potential sites of new star formation. The major result is the dominance of multiple interactions between advectively distorted shells in controlling the gas and star morphology, gas velocity distribution and mass spectrum of high mass density peaks, and the global star formation history. The gas morphology strongly resembles the model envisioned by Norman & Silk, and observations of gas in the Large Magellanic Cloud (LMC)Q1 and local molecular clouds. The dependence of the frequency distribution of present-to-past average global star formation rate on a number of parameters is investigated. Bursts of star formation only occur when the time-averaged star formation rate per unit area is low, or the system is small. Percolation does not play a role. The broad distribution observed in late-type galaxies can be understood as a result of either small size or small metallicity, resulting in larger shell column densities required for gravitational instability. The star formation rate

  8. The GRB 030329 host: a blue low metallicity subluminous galaxy with intense star formation

    NASA Astrophysics Data System (ADS)

    Gorosabel, J.; Pérez-Ramírez, D.; Sollerman, J.; de Ugarte Postigo, A.; Fynbo, J. P. U.; Castro-Tirado, A. J.; Jakobsson, P.; Christensen, L.; Hjorth, J.; Jóhannesson, G.; Guziy, S.; Castro Cerón, J. M.; Björnsson, G.; Sokolov, V. V.; Fatkhullin, T. A.; Nilsson, K.

    2005-12-01

    We present broad band photometry and spectroscopic observations of the host galaxy of GRB 030329. Analysis of the spectral emission lines shows that the host is likely a low metallicity galaxy (Z˜0.004). The spectral energy distribution (SED) constructed with the photometric points has been fitted using synthetic and observational templates. The best SED fit is obtained with a starburst template with an age of 150 Myr and an extinction Av ˜ 0.6. We find that the GRB 030329 host galaxy is a subluminous galaxy (L ˜ 0.016 Lstar) with a stellar mass of ≳ 108 M⊙. Three independent diagnostics, based on the restframe UV continuum, the [O II], and the Balmer emission lines, provide a consistent unextinguished star formation rate of ˜ 0.6 M⊙ yr-1, implying a high unextinguished specific star formation rate ( 34 M⊙ yr-1 (L/Lstar)-1). We estimate that the unextinguished specific star formation rate of the GRB 030329 host is higher than 93.5% of the galaxies at a similar redshift. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Based on data taken at the 2.2-m and 3.5-m telescopes of the Centro Astronómico Hispano Alemán de Calar Alto, operated by the Max Planck institute of Heidelberg and Centro Superior de Investigaciones Científicas. The spectral observations were obtained at the European Southern Observatory, Cerro Paranal (Chile), under the Director's Discretionary Time programme 271.D-5006(A).

  9. Stellar Content and Recent Star Formation History of the Local Group Dwarf Irregular Galaxy IC 1613

    NASA Astrophysics Data System (ADS)

    Bernard, Edouard J.; Aparicio, Antonio; Gallart, Carme; Padilla-Torres, Carmen P.; Panniello, Maurizio

    2007-09-01

    We present resolved-star VI photometry of the Local Group dwarf irregular galaxy IC 1613 reaching I ~ 23.5, obtained with the wide-field camera at the 2.5 m Isaac Newton Telescope. A fit to the stellar density distribution shows an exponential profile of scale length 2.9' ± 0.1' and gives a central surface brightness μV,0 = 22.7 ± 0.6. The significant number of red giant branch (RGB) stars present in the outer part of our images (r > 16.5') indicates that the galaxy is actually more extended than previously estimated. A comparison of the color-magnitude diagrams (CMDs) as a function of galactocentric distance shows a clear gradient in the age of its population, the scale length increasing with age, while we find no evidence of a metallicity gradient from the width of the RGB. We present quantitative results of the recent star formation history from a synthetic CMD analysis using IAC-STAR. We find a mean star formation rate of (1.6 ± 0.8) × 10-3 Modot yr-1 kpc-2 in the central r lesssim 2.5' for the last 300 Myr. Based on observations made with the Isaac Newton Telescope, operated on the island of La Palma by the Isaac Newton Group, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  10. Enhanced Star Formation of Less Massive Galaxies in a Protocluster at z = 2.5

    NASA Astrophysics Data System (ADS)

    Hayashi, Masao; Kodama, Tadayuki; Tanaka, Ichi; Shimakawa, Rhythm; Koyama, Yusei; Tadaki, Ken-ichi; Suzuki, Tomoko L.; Yamamoto, Moegi

    2016-08-01

    We investigate a correlation between star formation rate (SFR) and stellar mass for Hα emission-line galaxies (HAEs) in one of the richest protoclusters ever known at z ˜ 2.5, the USS 1558-003 protocluster. This study is based on a 9.7 hr narrowband imaging data with MOIRCS on the Subaru telescope. We are able to construct a sample in combination with additional H-band data taken with WFC3 on the Hubble Space Telescope, of 100 HAEs reaching the dust-corrected SFRs down to 3 M ⊙ yr-1 and the stellar masses down to 108.0 M ⊙. We find that while the star-forming galaxies with ≳109.3 M ⊙ are located on the universal SFR-mass main sequence (MS) irrespective of the environment, less massive star-forming galaxies with ≲109.3 M ⊙ show a significant upward scatter from the MS in this protocluster. This suggests that some less massive galaxies are in a starburst phase, although we do not know yet if this is due to environmental effects.

  11. Star Formation in 3CR Radio Galaxies and Quasars at z < 1

    NASA Astrophysics Data System (ADS)

    Westhues, Christian; Haas, Martin; Barthel, Peter; Wilkes, Belinda J.; Willner, S. P.; Kuraszkiewicz, Joanna; Podigachoski, Pece; Leipski, Christian; Meisenheimer, Klaus; Siebenmorgen, Ralf; Chini, Rolf

    2016-05-01

    Using the Herschel Space Observatory we have observed a representative sample of 87 powerful 3CR sources at redshift z\\lt 1. The far-infrared (FIR, 70-500 μm) photometry is combined with mid-infrared (MIR) photometry from the Wide-Field Infrared Survey Explorer and cataloged data to analyze the complete spectral energy distributions (SEDs) of each object from optical to radio wavelength. To disentangle the contributions of different components, the SEDs are fitted with a set of templates to derive the luminosities of host galaxy starlight, dust torus emission powered by active galactic nuclei (AGNs), and cool dust heated by stars. The level of emission from relativistic jets is also estimated to isolate the thermal host galaxy contribution. The new data are in line with the orientation-based unification of high-excitation radio-loud AGN, in that the dust torus becomes optically thin longwards of 30 μ {{m}}. The low-excitation radio galaxies and the MIR-weak sources represent an MIR- and FIR-faint AGN population that is different from the high-excitation MIR-bright objects; it remains an open question whether they are at a later evolutionary state or an intrinsically different population. The derived luminosities for host starlight and dust heated by star formation are converted to stellar masses and star-formation rates (SFR). The host-normalized SFR of the bulk of the 3CR sources is low when compared to other galaxy populations at the same epoch. Estimates of the dust mass yield a 1-100 times lower dust/stellar mass ratio than for the Milky Way, which indicates that these 3CR hosts have very low levels of interstellar matter and explains the low level of star formation. Less than 10% of the 3CR sources show levels of star formation above those of the main sequence of star-forming galaxies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  12. ALMA resolves extended star formation in high-z AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Simpson, J. M.; Stanley, F.; Alexander, D. M.; Daddi, E.; Mullaney, J. R.; Pannella, M.; Rosario, D. J.; Smail, Ian

    2016-03-01

    We present high-resolution (0.3 arcsec) Atacama Large Millimeter Array (ALMA) 870 μm imaging of five z ≈ 1.5-4.5 X-ray detected AGN (with luminosities of L2-8keV > 1042 erg s-1). These data provide a ≳20 times improvement in spatial resolution over single-dish rest-frame far-infrared (FIR) measurements. The sub-millimetre emission is extended on scales of FWHM ≈ 0.2 arcsec-0.5 arcsec, corresponding to physical sizes of 1-3 kpc (median value of 1.8 kpc). These sizes are comparable to the majority of z=1-5 sub-millimetre galaxies (SMGs) with equivalent ALMA measurements. In combination with spectral energy distribution analyses, we attribute this rest-frame FIR emission to dust heated by star formation. The implied star-formation rate surface densities are ≈20-200 M⊙ yr-1 kpc-2, which are consistent with SMGs of comparable FIR luminosities (i.e. LIR ≈ [1-5] × 1012 L⊙). Although limited by a small sample of AGN, which all have high-FIR luminosities, our study suggests that the kpc-scale spatial distribution and surface density of star formation in high-redshift star-forming galaxies is the same irrespective of the presence of X-ray detected AGN.

  13. Surveying Massive Star Formation in the Inner Galaxy

    NASA Astrophysics Data System (ADS)

    Dorda, R.; Negueruela, I.; González-Fernández, C.; Marco, A.

    2016-10-01

    The base of the Scutum arm is a Galactic region with a high density of red supergiant (RSG) stars, grouped in a few clusters which have similar ages, positions and radial velocities. We have performed an extensive survey using the multi-object spectrograph AAOmega, looking for new RSGs along the galactic plane from l˜24° to 30°. We have observed >1600 candidates, and identified them through an extensive study of the statistical behavior of RSG spectra, finding ˜200 new RSGs.

  14. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    SciTech Connect

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie; Renzini, Alvio

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  15. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    SciTech Connect

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  16. Another short-burst host galaxy with an optically obscured high star formation rate: The case of GRB 071227

    SciTech Connect

    Nicuesa Guelbenzu, A.; Klose, S.; Kann, D. A.; Rossi, A.; Schmidl, S.; Michałowski, M. J.; McKenzie, M. R. G.; Savaglio, S.; Greiner, J.; Hunt, L. K.; Gorosabel, J.

    2014-07-01

    We report on radio continuum observations of the host galaxy of the short gamma-ray burst 071227 (z = 0.381) with the Australia Telescope Compact Array. We detect the galaxy in the 5.5 GHz band with an integrated flux density of F {sub ν} = 43 ± 11 μJy, corresponding to an unobscured star-formation rate of about 24 M {sub ☉} yr{sup –1}, 40 times higher than what was found from optical emission lines. Among the ∼30 well-identified and studied host galaxies of short bursts this is the third case where the host is found to undergo an episode of intense star formation. This suggests that a fraction of all short-burst progenitors hosted in star-forming galaxies could be physically related to recent star formation activity, implying a relatively short merger timescale.

  17. STAR FORMATION IN LINER HOST GALAXIES AT z {approx} 0.3

    SciTech Connect

    Tommasin, Silvia; Netzer, Hagai; Sternberg, Amiel; Nordon, Raanan; Lutz, Dieter; Berta, Stefano; Magnelli, Benjamin; Bongiorno, Angela; Le Floc'h, Emeric; Riguccini, Laurie

    2012-07-10

    We present the results of a Herschel-PACS study of a sample of 97 low-ionization nuclear emission-line regions (LINERs) at redshift z {approx} 0.3 selected from the zCOSMOS survey. Of these sources, 34 are detected in at least one PACS band, enabling reliable estimates of the far-infrared L{sub FIR} luminosities, and a comparison to the FIR luminosities of local LINERs. Many of our PACS-detected LINERs are also UV sources detected by GALEX. Assuming that the FIR is produced in young dusty star-forming regions, the typical star formation rates (SFRs) for the host galaxies in our sample are {approx}10 M{sub Sun} yr{sup -1}, 1-2 orders of magnitude larger than in many local LINERs. Given stellar masses inferred from optical/NIR photometry of the (unobscured) evolved stellar populations, we find that the entire sample lies close to the star-forming 'main sequence' for galaxies at redshift 0.3. For young star-forming regions, the H{alpha}- and UV-based estimates of the SFRs are much smaller than the FIR-based estimates, by factors {approx}30, even assuming that all of the H{alpha} emission is produced by O-star ionization rather than by the active galactic nuclei (AGNs). These discrepancies may be due to large (and uncertain) extinctions toward the young stellar systems. Alternatively, the H{alpha} and UV emissions could be tracing residual star formation in an older, less obscured population with decaying star formation. We also compare L{sub SF} and L(AGN) in local LINERs and in our sample. Finally, we comment on the problematic use of several line diagnostic diagrams in cases with an estimated obscuration similar to that in the sample under study.

  18. Stellar populations and Star Formation Rates in NGC 6872, the Condor galaxy

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.; De Mello, D. F.; Dwek, E.; Arendt, R. G.; Gadotti, D. A.

    2014-01-01

    We present a detailed analysis of the Spectral Energy Distributions (SEDs) of 10 kpc regions across the giant spiral galaxy NGC 6872, the Condor galaxy. We made use of archival data from the FUV (GALEX) to 22 μm (WISE). In order to find any signature of the recent interaction 130 Myr) with its companion, the S0 galaxy IC 4970, we inspected the SED of Condor's bar. One possibility is that is would have been formed by passage of the companion. We find that it is a particularly long bar (9 kpc semi-major axis), with a size almost twice as large as the average found in other barred galaxies (4.5 kpc median in the local universe, Gadotti 2011). A bulge/bar/disk 2D decomposition using the Spitzer 3.6 μm image and the budda package (de Souza et al. 2004; Gadotti 2008) reveals that the ratio of the bar semi-major axis to the disk scale-length is 1.4, which is a value typically found in other barred galaxies (see Fig. 1 in Gadotti 2011). The disk scale-length is ~ 7 kpc, which is extremely large (2.8 kpc median in local galaxies, Gadotti 2009). Our analysis also shows that there are no signs of recent star formation along the bar. We find no signs of a box-peanut structure near the central regions, which is also another signature of an evolved bar. Taken altogether, the evidence points to a bar formed at least a few billion years ago and the stars in the bar seem to be a fossil record of the stellar population in the galaxy before the interaction with its companion. Then, we modeled the SFH of each 10 kpc region as constant Star Formation Rate (SFR) for the past 100 Myr superposed on an exponentially decaying, longstanding SFR. We find a single exponential SFH to account for all the recent SFR of the galaxy, with no need for an additional SFR due to the interaction. Av is low all across the galaxy 0.25), but increases near 0.7) the point of collision. The SFH of the arms are asymmetric. The northeastern arm having older ages 5 Gyr) and SFH closer to constant, while the

  19. Neutral interstellar medium phases and star formation tracers in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Cigan, Phillip Johnathan

    Dwarf galaxies present interesting observational challenges for the studies of various galaxy properties: despite their abundance and proximity to the Milky Way, they typically have very low surface brightnesses and small physical sizes. Until now, only the extreme variety of dwarfs --- those undergoing strong bouts of star formation --- have been observed in the FIR, due to observational difficulties. However, this population does not represent the majority of dwarfs, which have only moderate star formation rates and extremely low metallicity (the fraction of heavy elements to hydrogen). The advent of the Herschel Space Telescope, with its superior resolution and sensitivity over previous generations of telescopes, has made it possible to measure FIR spectral lines and broadband continuum in normal dwarf galaxies, expanding the scope of studies beyond the brighter, but more extreme, varieties. The general goal of my research was to study the conditions in the interstellar media (ISM) of typical dwarf galaxies. The LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, TheHI Nearby Galaxy Survey) project aims to unravel many mysteries of nearby dwarfs using a suite of multi-wavelength data, and the new additions from Herschel help provide insight into the physics of these systems. I reduced and analyzed FIR fine-structure spectral line data for the LITTLE THINGS sample to study the different phases of the ISM, as well as FIR photometry data to access the dust properties and infrared continuum emission in these systems. The FIR spectral lines are diagnostics for the conditions in the ISM of galaxies, telling us about heating efficiency, the fraction of gas that resides in photodissociation regions (PDRs), abundance of highly ionized gas from massive stars, and other physical descriptions. The photometric continuum observations enable the modeling of interstellar dust properties -- dust plays an important role in shielding and cooling molecular clouds which

  20. CONSTRAINTS ON OBSCURED STAR FORMATION IN HOST GALAXIES OF GAMMA-RAY BURSTS

    SciTech Connect

    Hatsukade, Bunyo; Ohta, Kouji; Hashimoto, Tetsuya; Nakanishi, Kouichiro; Tamura, Yoichi; Kohno, Kotaro

    2012-04-01

    We present the results of the 16 cm wave band continuum observations of four host galaxies of gamma-ray bursts (GRBs) 990705, 021211, 041006, and 051022 using the Australia Telescope Compact Array. Radio emission was not detected in any of the host galaxies. The 2{sigma} upper limits on star formation rates derived from the radio observations of the host galaxies are 23, 45, 27, and 26 M{sub Sun} yr{sup -1}, respectively, which are less than about 10 times those derived from UV/optical observations, suggesting that they have no significant dust-obscured star formation. GRBs 021211 and 051022 are known as the so-called dark GRBs and our results imply that dark GRBs do not always occur in galaxies enshrouded by dust. Because large dust extinction was not observed in the afterglow of GRB 021211, our result suggests the possibility that the cause of the dark GRB is the intrinsic faintness of the optical afterglow. On the other hand, by considering the high column density observed in the afterglow of GRB 051022, the likely cause of the dark GRB is the dust extinction in the line of sight of the GRB.

  1. Star Cluster Formation and Destruction in the Merging Galaxy NGC 3256

    NASA Astrophysics Data System (ADS)

    Mulia, A. J.; Chandar, R.; Whitmore, B. C.

    2016-07-01

    We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (ΣSFR). These clusters have luminosity and mass functions that follow power laws, dN/dL ∝ L α with α = ‑2.23 ± 0.07, and dN/dM ∝ M β with β = ‑1.86 ± 0.34 for τ < 10 Myr clusters, similar to those found in more quiescent galaxies. The age distribution can be described by dN/dτ ∝ τ γ , with γ ≈ ‑0.67 ± 0.08 for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where ˜80% of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high ΣSFR form clusters more efficiently than quiescent systems by determining the fraction of stars in bound clusters (Γ) and the CMF/SFR statistic (CMF is the cluster mass function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with ΣSFR and SFRs that are lower by 1–3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.

  2. Star Cluster Formation and Destruction in the Merging Galaxy NGC 3256

    NASA Astrophysics Data System (ADS)

    Mulia, A. J.; Chandar, R.; Whitmore, B. C.

    2016-07-01

    We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (ΣSFR). These clusters have luminosity and mass functions that follow power laws, dN/dL ∝ L α with α = -2.23 ± 0.07, and dN/dM ∝ M β with β = -1.86 ± 0.34 for τ < 10 Myr clusters, similar to those found in more quiescent galaxies. The age distribution can be described by dN/dτ ∝ τ γ , with γ ≈ -0.67 ± 0.08 for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where ˜80% of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high ΣSFR form clusters more efficiently than quiescent systems by determining the fraction of stars in bound clusters (Γ) and the CMF/SFR statistic (CMF is the cluster mass function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with ΣSFR and SFRs that are lower by 1-3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.

  3. Simulating Metal-Poor and Metal-Free Star Formation in the Earliest Galaxies

    NASA Astrophysics Data System (ADS)

    Safranek-Shrader, Chalence

    2014-01-01

    The end of the cosmic dark ages was brought about by the formation of the first stars and galaxies. Since this epoch is currently outside of observational reach, numerical studies are key in understanding this uncharted cosmic epoch. In this dissertation talk, I will describe my work using high-resolution, zoom-in simulations to understand the formation of these earliest stellar associations in a cosmological setting. The overarching focus will be on the fragmentation of collapsing gas and how this process is moderated by the gas chemistry, radiation fields, and realistic cosmological initial conditions. A key aspect of this work has been the development of sophisticated physics modules for the hydrodynamics code FLASH, including non-equilibrium chemistry, radiative transfer schemes, and sink particles. I will begin by describing how more moderate mass Population III stars ended their lives with a relatively quick heavy-element enrichment of their host dark matter halos, resulting in prompt Population II star formation. The introduction of metals from the first supernovae is believed to induce a star formation mode transition from high to low characteristic mass. I will show how the fragmentation of such metal enriched gas depends strongly on the metallicity, with fragmentation setting in when gas hits the CMB temperature floor. If present, an H2 photo-dissociating Lyman-Werner radiation background can delay the formation of the first stars and potentially result in clustered metal-free star formation in more massive, self-shielding halos at lower redshift. I will present results from recent simulations that follow the collapse and fragmentation of the first dust enriched gas to high densities (n ~ 10^14 cm^-3), analyzing the interplay of dust cooling with a CMB temperature floor and gauging the effect that dust heating from protostellar feedback has on the outcome of star formation. Finally, I will discuss this work’s implications for next

  4. Investigating star formation properties of galaxies in massive clusters with Herschel and ALMA

    NASA Astrophysics Data System (ADS)

    Wu, John F.; Baker, Andrew J.; Aguirre, Paula; Barkats, D.; Halpern, Mark; Hilton, Matt; Hughes, John Patrick; Infante, Leopoldo; Lindner, Robert; Marriage, Tobias; Menanteau, Felipe; Sifon, Cristobal; Weiss, Axel; ACT Collaboration

    2016-01-01

    I will present results from an investigation of star formation properties of galaxies residing in two massive z ~ 1 clusters (including the 'El Gordo' merger) that were initially selected via their Sunyaev-Zeldovich decrements by the Atacama Cosmology Telescope (ACT) southern survey. This study uses new Herschel Space Observatory and Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations, which provide information about the dust and cold gas content of galaxies in our targeted clusters. We have detected CO (4-3) and [CI] in individual star-forming cluster galaxies, and also measured stacked continuum and spectral line fluxes at long (e.g., far-infrared, submillimeter, and radio) wavelengths. We use these results to explore the relations between star formation and local environment and cluster dynamical state.This work has been supported by (i) an award issued by JPL/Caltech in association with Herschel, which is a European Space Agency Cornerstone Mission with significant participation by NASA, and (ii) the National Science Foundation through award GSSP SOSPA2-018 from the National Radio Astronomy Observatory, which is operated under cooperative agreement by Associated Universities, Inc.

  5. Herschel ATLAS: The cosmic star formation history of quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Serjeant, S.; Bertoldi, F.; Blain, A. W.; Clements, D. L.; Cooray, A.; Danese, L.; Dunlop, J.; Dunne, L.; Eales, S.; Falder, J.; Hatziminaoglou, E.; Hughes, D. H.; Ibar, E.; Jarvis, M. J.; Lawrence, A.; Lee, M. G.; Michałowski, M.; Negrello, M.; Omont, A.; Page, M.; Pearson, C.; van der Werf, P. P.; White, G.; Amblard, A.; Auld, R.; Baes, M.; Bonfield, D. G.; Burgarella, D.; Buttiglione, S.; Cava, A.; Dariush, A.; de Zotti, G.; Dye, S.; Frayer, D.; Fritz, J.; Gonzalez-Nuevo, J.; Herranz, D.; Ivison, R. J.; Lagache, G.; Leeuw, L.; Lopez-Caniego, M.; Maddox, S.; Pascale, E.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Samui, S.; Sibthorpe, B.; Smith, D. J. B.; Temi, P.; Thompson, M.; Valtchanov, I.; Verma, A.

    2010-07-01

    We present a derivation of the star formation rate per comoving volume of quasar host galaxies, derived from stacking analyses of far-infrared to mm-wave photometry of quasars with redshifts 0 < z < 6 and absolute I-band magnitudes -22 > IAB > -32 We use the science demonstration observations of the first ~16 deg2 from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) in which there are 240 quasars from the Sloan Digital Sky Survey (SDSS) and a further 171 from the 2dF-SDSS LRG and QSO (2SLAQ) survey. We supplement this data with a compilation of data from IRAS, ISO, Spitzer, SCUBA and MAMBO. H-ATLAS alone statistically detects the quasars in its survey area at >5σ at 250,350 and 500 μm. From the compilation as a whole we find striking evidence of downsizing in quasar host galaxy formation: low-luminosity quasars with absolute magnitudes in the range -22 > IAB > -24 have a comoving star formation rate (derived from 100 μm rest-frame luminosities) peaking between redshifts of 1 and 2, while high-luminosity quasars with IAB < -26 have a maximum contribution to the star formation density at z ~ 3. The volume-averaged star formation rate of -22 > IAB > -24 quasars evolves as (1 + z)2.3±0.7 at z < 2, but the evolution at higher luminosities is much faster reaching (1 + z)10±1 at -26 > IAB > -28. We tentatively interpret this as a combination of a declining major merger rate with time and gas consumption reducing fuel for both black hole accretion and star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia with important participation from NASA.

  6. A Turn-over in the Galaxy Main Sequence of Star Formation at M* ~ 1010 Msun

    NASA Astrophysics Data System (ADS)

    Lee, Nicholas; Cosmos Team

    2015-01-01

    The relationship between galaxy star formation rates (SFR) and stellar masses (M*) is re-examined using a mass-selected sample of ~62,000 star-forming galaxies at z < 1.3 in the COSMOS 2 deg2 field. We measure infrared luminosities and SFRs using photometry from Herschel-PACS and SPIRE, Spitzer 24 μm, and the NRK method based on galaxies' locations in the restframe color-color diagram (NUV-r) vs. (r-K). Using these new SFRs, we find that the relationship between median SFR and M* follows a power-law at low stellar masses, but flattens to nearly constant SFR at high stellar masses. We describe a new parameterization that provides the best fit to the main sequence and charaterizes the low mass power-law slope, turnover mass, and overall scaling of the relationship. The turnover in the main sequence occurs at a characteristic mass of about M0 ~ 1010 Msun at all redshifts. The low mass power-law slope ranges from 0.9-1.3 and the overall scaling of the main sequence rises as a function of (1+z)4.2±0.10. A broken power-law fit below and above the turnover mass gives relationships of SFR ∝ M*0.88±0.06 below the turnover mass and SFR ∝ M*0.27±0.04 above the turnover mass. On average, galaxies more massive than M* > 1010 Msun have a much lower specfic star formation rate (SSFR = SFR/M*) than would be expected by simply extrapolating the traditional linear fit to the main sequence found for less massive galaxies.

  7. The Rise and Fall of Star Formation Histories of Blue Galaxies at Redshifts 0.2 < z < 1.4

    NASA Technical Reports Server (NTRS)

    Pacifici, Camilla; Kassin, Susan A.; Weiner, Benjamin; Charlot, Stephane; Gardner, Jonathan P.

    2012-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitor, each with their own unique star formation history (SFH). We use the approach recently developed by Pacifici et al. to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range O.2 < z < 1:4 from the All-Wavelength Extended Groth Strip International Survey (AEGIS). This consists in the Bayesian analysis of the observed galaxy spectral ' energy distributions with a comprehensive library of synthetic spectra assembled using state-of-the-art models of star formation and chemical enrichment histories, stellar population synthesis, nebular emission and attenuation by dust. We constrain the SFH of each galaxy in our sample by comparing the observed fluxes in the B, R,l and K(sub s) bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFH on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs wIdely used to interpret observed galaxy spectral energy distributions is not appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  8. Connecting CO intensity mapping to molecular gas and star formation in the epoch of galaxy assembly

    DOE PAGES

    Li, Tony Y.; Wechsler, Risa H.; Devaraj, Kiruthika; Church, Sarah E.

    2016-01-29

    Intensity mapping, which images a single spectral line from unresolved galaxies across cosmological volumes, is a promising technique for probing the early universe. Here we present predictions for the intensity map and power spectrum of the CO(1–0) line from galaxies atmore » $$z\\sim 2.4$$–2.8, based on a parameterized model for the galaxy–halo connection, and demonstrate the extent to which properties of high-redshift galaxies can be directly inferred from such observations. We find that our fiducial prediction should be detectable by a realistic experiment. Motivated by significant modeling uncertainties, we demonstrate the effect on the power spectrum of varying each parameter in our model. Using simulated observations, we infer constraints on our model parameter space with an MCMC procedure, and show corresponding constraints on the $${L}_{\\mathrm{IR}}$$–$${L}_{\\mathrm{CO}}$$ relation and the CO luminosity function. These constraints would be complementary to current high-redshift galaxy observations, which can detect the brightest galaxies but not complete samples from the faint end of the luminosity function. Furthermore, by probing these populations in aggregate, CO intensity mapping could be a valuable tool for probing molecular gas and its relation to star formation in high-redshift galaxies.« less

  9. The Nature of Starbursts. I. The Star Formation Histories of Eighteen Nearby Starburst Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew; Hidalgo-Rodríguez, Sebastian; Holtzman, Jon; Stark, David; Weisz, Daniel; Williams, Benjamin

    2010-09-01

    We use archival Hubble Space Telescope observations of resolved stellar populations to derive the star formation histories (SFHs) of 18 nearby starburst dwarf galaxies. In this first paper, we present the observations, color-magnitude diagrams (CMDs), and the SFHs of the 18 starburst galaxies, based on a homogeneous approach to the data reduction, differential extinction, and treatment of photometric completeness. We adopt a star formation rate (SFR) threshold normalized to the average SFR of the individual system as a metric for classifying starbursts in SFHs derived from resolved stellar populations. This choice facilitates finding not only the currently bursting galaxies but also "fossil" bursts increasing the sample size of starburst galaxies in the nearby (D < 8 Mpc) universe. Thirteen of the eighteen galaxies are experiencing ongoing bursts and five galaxies show fossil bursts. From our reconstructed SFHs, it is evident that the elevated SFRs of a burst are sustained for hundreds of Myr with variations on small timescales. A long >100 Myr temporal baseline is thus fundamental to any starburst definition or identification method. The longer lived bursts rule out rapid "self-quenching" of starbursts on global scales. The bursting galaxies' gas consumption timescales are shorter than the Hubble time for all but one galaxy confirming the short-lived nature of starbursts based on fuel limitations. Additionally, we find that the strength of the Hα emission usually correlates with the CMD-based SFR during the last 4-10 Myr. However, in four cases, the Hα emission is significantly less than what is expected for models of starbursts; the discrepancy is due to the SFR changing on timescales of a few Myr. The inherently short timescale of the Hα emission limits identifying galaxies as starbursts based on the current characteristics which may or may not be representative of the recent SFH of a galaxy. Based on observations made with the NASA/ESA Hubble Space Telescope

  10. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  11. Cooling, AGN Feedback, and Star Formation in Simulated Cool-core Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Bryan, Greg L.; Ruszkowski, Mateusz; Voit, G. Mark; O’Shea, Brian W.; Donahue, Megan

    2015-10-01

    Numerical simulations of active galactic nuclei (AGNs) feedback in cool-core galaxy clusters have successfully avoided classical cooling flows, but often produce too much cold gas. We perform adaptive mesh simulations that include momentum-driven AGN feedback, self-gravity, star formation, and stellar feedback, focusing on the interplay between cooling, AGN heating, and star formation in an isolated cool-core cluster. Cold clumps triggered by AGN jets and turbulence form filamentary structures tens of kpc long. This cold gas feeds both star formation and the supermassive black hole (SMBH), triggering an AGN outburst that increases the entropy of the intracluster medium (ICM) and reduces its cooling rate. Within 1–2 Gyr, star formation completely consumes the cold gas, leading to a brief shutoff of the AGN. The ICM quickly cools and redevelops multiphase gas, followed by another cycle of star formation/AGN outburst. Within 6.5 Gyr, we observe three such cycles. There is good agreement between our simulated cluster and the observations of cool-core clusters. ICM cooling is dynamically balanced by AGN heating, and a cool-core appearance is preserved. The minimum cooling time to free-fall time ratio typically varies between a few and ≳ 20. The star formation rate (SFR) covers a wide range, from 0 to a few hundred {M}ȯ {{yr}}-1, with an average of ∼ 40 {M}ȯ {{yr}}-1. The instantaneous SMBH accretion rate shows large variations on short timescales, but the average value correlates well with the SFR. Simulations without stellar feedback or self-gravity produce qualitatively similar results, but a lower SMBH feedback efficiency (0.1% compared to 1%) results in too many stars.

  12. Effects of spiral arms on star formation in nuclear rings of barred-spiral galaxies

    SciTech Connect

    Seo, Woo-Young; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2014-09-01

    We use hydrodynamic simulations to study the effect of spiral arms on the star formation rate (SFR) in nuclear rings of barred-spiral galaxies. We find that spiral arms can be an efficient means of gas transport from the outskirts to the central parts, provided that the arms are rotating slower than the bar. While the ring star formation in models with no arms or corotating arms is active only during around the bar growth phase, arm-driven gas accretion both significantly enhances and prolongs the ring star formation in models with slow-rotating arms. The arm-enhanced SFR is larger by a factor of ∼3-20 than in the no-arm model, with larger values corresponding to stronger and slower arms. Arm-induced mass inflows also make dust lanes stronger. Nuclear rings in slow-arm models are ∼45% larger than in the no-arm counterparts. Star clusters that form in a nuclear ring exhibit an age gradient in the azimuthal direction only when the SFR is small, whereas no notable age gradient is found in the radial direction for models with arm-induced star formation.

  13. Massive star formation in Wolf-Rayet galaxies. I. Optical and NIR photometric results

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Á. R.; Esteban, C.

    2008-11-01

    Aims: We have performed a comprehensive multiwavelength analysis of a sample of 20 starburst galaxies that show the presence of a substantial population of massive stars. The main aims are the study of the massive star formation and stellar populations in these galaxies, and the role that interactions with or between dwarf galaxies and/or low surface companion objects have in triggering the bursts. In this series of papers, we present our new optical and near-infrared photometric and spectroscopic observations, and complete with data at other wavelengths (X-ray, far-infrared, and radio) available in the literature. In this paper, the first in the series, we analyze the morphology, stellar population age, and star-formation rate of each system. Methods: We completed new deep optical and NIR broad-band images, as well as the new continuum-subtracted Hα maps, of our sample of Wolf-Rayet galaxies. We analyze the morphology of each system and its surroundings and quantify the photometric properties of all important objects. All data were corrected for both extinction and nebular emission using our spectroscopic data. The age of the most recent star-formation burst is estimated and compared with the age of the underlying older low-luminosity population. The Hα-based star-formation rate, number of O7V equivalent stars, mass of ionized gas, and mass of the ionizing star cluster are also derived. Results: We found interaction features in many (15 up to 20) of the analyzed objects, which were extremely evident in the majority. We checked that the correction for nebular emission to the broad-band filter fluxes is important in compact objects and/or with intense nebular emission to obtain realistic colors and compare with the predictions of evolutionary synthesis models. The estimate of the age of the most recent star-formation burst is derived consistently. In general, the Hα-based star formation rate agrees with the estimates given by independent multiwavelength methods

  14. MEASURING GALAXY STAR FORMATION RATES FROM INTEGRATED PHOTOMETRY: INSIGHTS FROM COLOR-MAGNITUDE DIAGRAMS OF RESOLVED STARS

    SciTech Connect

    Johnson, Benjamin D.; Weisz, Daniel R.; Dalcanton, Julianne J.; Johnson, L. C.; Williams, Benjamin F.; Dale, Daniel A.; Dolphin, Andrew E.; Gil de Paz, Armando; Lee, Janice C.; Skillman, Evan D.; Boquien, Mederic

    2013-07-20

    We use empirical star formation histories (SFHs), measured from Hubble-Space-Telescope-based resolved star color-magnitude diagrams, as input into population synthesis codes to model the broadband spectral energy distributions (SEDs) of 50 nearby dwarf galaxies (6.5 < log M{sub *}/M{sub Sun} < 8.5, with metallicities {approx}10% solar). In the presence of realistic SFHs, we compare the modeled and observed SEDs from the ultraviolet (UV) through near-infrared and assess the reliability of widely used UV-based star formation rate (SFR) indicators. In the FUV through i bands, we find that the observed and modeled SEDs are in excellent agreement. In the Spitzer 3.6 {mu}m and 4.5 {mu}m bands, we find that modeled SEDs systematically overpredict observed luminosities by up to {approx}0.2 dex, depending on treatment of the TP-AGB stars in the synthesis models. We assess the reliability of UV luminosity as a SFR indicator, in light of independently constrained SFHs. We find that fluctuations in the SFHs alone can cause factor of {approx}2 variations in the UV luminosities relative to the assumption of a constant SFH over the past 100 Myr. These variations are not strongly correlated with UV-optical colors, implying that correcting UV-based SFRs for the effects of realistic SFHs is difficult using only the broadband SED. Additionally, for this diverse sample of galaxies, we find that stars older than 100 Myr can contribute from <5%-100% of the present day UV luminosity, highlighting the challenges in defining a characteristic star formation timescale associated with UV emission. We do find a relationship between UV emission timescale and broadband UV-optical color, though it is different than predictions based on exponentially declining SFH models. Our findings have significant implications for the comparison of UV-based SFRs across low-metallicity populations with diverse SFHs.

  15. The rise and fall of star formation in z ˜ 0.2 merging galaxy clusters

    NASA Astrophysics Data System (ADS)

    Stroe, Andra; Sobral, David; Dawson, William; Jee, M. James; Hoekstra, Henk; Wittman, David; van Weeren, Reinout J.; Brüggen, Marcus; Röttgering, Huub J. A.

    2015-06-01

    CIZA J2242.8+5301 (`Sausage') and 1RXS J0603.3+4213 (`Toothbrush') are two low-redshift (z ˜ 0.2), massive (˜2 × 1015 M⊙), post-core passage merging clusters, which host-shock waves traced by diffuse radio emission. To study their star formation properties, we uniformly survey the `Sausage' and `Toothbrush' clusters in broad- and narrow-band filters and select a sample of 201 and 463 line emitters, down to a rest-frame equivalent width (13 Å). We robustly separate between Hα and higher redshift emitters using a combination of optical multiband (B, g, V, r, i, z) and spectroscopic data. We build Hα luminosity functions for the entire cluster region, near the shock fronts, and away from the shock fronts and find striking differences between the two clusters. In the dynamically younger, 1 Gyr old `Sausage' cluster we find numerous (59) Hα emitters above a star formation rate (SFR) of 0.17 M⊙ yr-1 surprisingly located in close proximity to the shock fronts, embedded in very hot intracluster medium plasma. The SFR density for the cluster population is at least at the level of typical galaxies at z ˜ 2. Down to the same SFR, the possibly dynamically more evolved `Toothbrush' cluster has only nine Hα galaxies. The cluster Hα galaxies fall on the SFR-stellar mass relation z ˜ 0.2 for the field. However, the `Sausage' cluster has an Hα emitter density >20 times that of blank fields. If the shock passes through gas-rich cluster galaxies, the compressed gas could collapse into dense clouds and excite star formation for a few 100 Myr. This process ultimately leads to a rapid consumption of the molecular gas, accelerating the transformation of gas-rich field spirals into cluster S0s or ellipticals.

  16. Exploring star formation in high-z galaxies using atomic and molecular emission lines

    NASA Astrophysics Data System (ADS)

    Gullberg, Bitten

    2016-03-01

    The conditions under which stars are formed and the reasons for triggering and quenching of starburst events in high-z galaxies, are still not well understood. Studying the interstellar medium (ISM) and the morphology of high-z galaxies are therefore key points in order to understand galaxy evolution. The cosmic star formation rate density peaks between 1star-formation triggering and quenching mechanisms. Phenomena such as major mergers and galactic nuclear activity are believed to be mechanisms dominating the star formation activity at this period of time. It is therefore necessary to study galaxy populations which show signs of major merger events and active galactic nuclei (AGN). This thesis presents three studies of the ISM in high-z galaxies and their morphologies by: Exploring the physical conditions of the ISM in a sample of dusty star-forming galaxies (DSFGs) using the relative observed line strength of ionised carbon ([CII]) and carbon monoxide (CO). We find that the line ratios can best be described by a medium of [CII] and CO emitting gas with a higher [CII] than CO excitation temperature, high CO optical depth tau(CO)>>1, and low to moderate [CII] optical depth tau(CII)<1. Combining millimetre/sub-millimetre and optical data cubes for the high-z radio galaxy (HzRG) MRC0943-242, has revealed a much more complicated morphology than seen in the individual data sets. The millimetre/sub-millimetre observations data have allowed us to spatially separate of the AGN and starburst dominated components, which ~65 kpc apart. The optical data reveal structures of emitting and absorbing gas at multiple wavelengths. A deep high resolution millimetre/sub-millimetre study of the HzRG MRC1138-262, shows emission from water (H2O) and an unusually large amount of neutral atomic carbon ([CI]) relative to highly excited CO compared to lensed DSFGs. The

  17. Cloud fluid models of gas dynamics and star formation in galaxies

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.

    1987-01-01

    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.

  18. Star Formation Suppression in Compact Group Galaxies: A New Path to Quenching?

    NASA Astrophysics Data System (ADS)

    Alatalo, K.; Appleton, P. N.; Lisenfeld, U.; Bitsakis, T.; Lanz, L.; Lacy, M.; Charmandaris, V.; Cluver, M.; Dopita, M. A.; Guillard, P.; Jarrett, T.; Kewley, L. J.; Nyland, K.; Ogle, P. M.; Rasmussen, J.; Rich, J. A.; Verdes-Montenegro, L.; Xu, C. K.; Yun, M.

    2015-10-01

    We present CO(1-0) maps of 12 warm H2-selected Hickson Compact Groups (HCGs), covering 14 individually imaged warm H2 bright galaxies, with the Combined Array for Research in Millimeter Astronomy. We found a variety of molecular gas distributions within the HCGs, including regularly rotating disks, bars, rings, tidal tails, and possibly nuclear outflows, though the molecular gas morphologies are more consistent with spirals and early-type galaxies than mergers and interacting systems. Our CO-imaged HCG galaxies, when plotted on the Kennicutt-Schmidt relation, shows star formation (SF) suppression of < {S} > =10+/- 5, distributed bimodally, with five objects exhibiting suppressions of {S} ≳ 10 and depletion timescales ≳10 Gyr. This SF inefficiency is also seen in the efficiency per freefall time of Krumholz et al. We investigate the gas-to-dust ratios of these galaxies to determine if an incorrect LCO-M(H2) conversion caused the apparent suppression and find that HCGs have normal gas-to-dust ratios. It is likely that the cause of the apparent suppression in these objects is associated with shocks injecting turbulence into the molecular gas, supported by the fact that the required turbulent injection luminosity is consistent with the bright H2 luminosity reported by Cluver et al. Galaxies with high SF suppression ({S} ≳ 10) also appear to be those in the most advanced stages of transition across both optical and infrared color space. This supports the idea that at least some galaxies in HCGs are transitioning objects, where a disruption of the existing molecular gas in the system suppresses SF by inhibiting the molecular gas from collapsing and forming stars efficiently. These observations, combined with recent work on poststarburst galaxies with molecular reservoirs, indicates that galaxies do not need to expel their molecular reservoirs prior to quenching SF and transitioning from blue spirals to red early-type galaxies. This may imply that SF quenching can

  19. Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Sullivan, M.; Le Borgne, D.; Pritchet, C. J.; Hodsman, A.; Neill, J. D.; Howell, D. A.; Carlberg, R. G.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K.; Regnault, N.; Rich, J.; Taillet, R.; Baumont, S.; Bronder, J.; Ellis, R. S.; Filiol, M.; Lusset, V.; Perlmutter, S.; Ripoche, P.; Tao, C.

    2006-09-01

    We show that Type Ia supernovae (SNe Ia) are formed within both very young and old stellar populations, with observed rates that depend on the stellar mass and mean star formation rates (SFRs) of their host galaxies. Models in which the SN Ia rate depends solely on host galaxy stellar mass are ruled out with >99% confidence. Our analysis is based on 100 spectroscopically confirmed SNe Ia, plus 24 photometrically classified events, all from the Supernova Legacy Survey (SNLS) and distributed over 0.2galaxies by fitting their broadband spectral energy distributions with the galaxy spectral synthesis code PÉGASE.2. We show that the SN Ia rate per unit mass is proportional to the specific SFR of the parent galaxies-more vigorously star-forming galaxies host more SNe Ia per unit stellar mass, broadly equivalent to the trend of increasing SN Ia rate in later type galaxies seen in the local universe. Following earlier suggestions for a simple ``two-component'' model approximating the SN Ia rate, we find bivariate linear dependencies of the SN Ia rate on both the stellar masses and the mean SFRs of the host systems. We find that the SN Ia rate can be well represented as the sum of 5.3+/-1.1×10-14 SNe yr-1 Msolar-1 and 3.9+/-0.7×10-4 SNe yr-1 (Msolar yr-1)-1 of star formation. We also demonstrate a dependence of distant SN Ia light-curve shapes on star formation in the host galaxy, similar to trends observed locally. Passive galaxies, with no star formation, preferentially host faster declining/dimmer SNe Ia, while brighter events are found in systems with ongoing star formation.

  20. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang, Yiping; Hernán-Caballero, Antonio; Rigopoulou, Dimitra

    2013-03-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 × 107 M ⊙ using [Ne III] 15.56 μm and optical [O III] λ5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear ~1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  1. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  2. BRIGHT ULTRAVIOLET REGIONS AND STAR FORMATION CHARACTERISTICS IN NEARBY DWARF GALAXIES

    SciTech Connect

    Melena, Nicholas W.; Hunter, Deidre A.; Zernow, Lea; Elmegreen, Bruce G. E-mail: dah@lowell.edu E-mail: bge@us.ibm.com

    2009-11-15

    We compare star formation in the inner and outer disks of 11 dwarf irregular galaxies (dIm) within 3.6 Mpc. The regions are identified on Galaxy Evolution Explorer near-UV images, and modeled with UV, optical, and near-IR colors to determine masses and ages. A few galaxies have made 10{sup 5}-10{sup 6} M {sub sun} complexes in a starburst phase, while others have not formed clusters in the last 50 Myr. The maximum region mass correlates with the number of regions as expected from the size-of-sample effect. We find no radial gradients in region masses and ages, even beyond the realm of H{alpha} emission, although there is an exponential decrease in the luminosity density and number density of the regions with radius. H{alpha} is apparently lacking in the outer parts only because nebular emission around massive stars is too faint to see. The outermost regions for the five galaxies with H I data formed at average gas surface densities of 1.9-5.9 M {sub sun} pc{sup -2}. These densities are at the low end of commonly considered thresholds for star formation and imply either that local gas densities are higher before star formation begins or subthreshold star formation is possible. The first case could be explained by supernovae triggering and other local processes, while the second case could be explained by gravitational instabilities with angular momentum loss in growing condensations. The distribution of regions on a log(mass) - log(age) plot is examined. The distribution is usually uniform along log(age) for equal intervals of log(mass) and this implies a region count that varies as 1/age. This variation results from either an individual region mass that varies as 1/age or a region disruption probability that varies as 1/age. A correlation between fading-corrected surface brightness and age suggests the former. The implied loss of mass is from fading of region envelopes below the surface brightness limit.

  3. The star formation history of redshift z ~ 2 galaxies: the role of the infrared prior

    NASA Astrophysics Data System (ADS)

    Fan, Lu-Lu; Lapi, Andrea; Bressan, Alessandro; Nonino, Mario; De Zotti, Gianfranco; Danese, Luigi

    2014-01-01

    We build a sample of 298 spectroscopically-confirmed galaxies at redshift z ~ 2, selected in the z850-band from the GOODS-MUSIC catalog. By utilizing the rest frame 8 μm luminosity as a proxy of the star formation rate (SFR), we check the accuracy of the standard SED-fitting technique, finding it is not accurate enough to provide reliable estimates of the physical parameters of galaxies. We then develop a new SED-fitting method that includes the IR luminosity as a prior and a generalized Calzetti law with a variable RV. Then we exploit the new method to re-analyze our galaxy sample, and to robustly determine SFRs, stellar masses and ages. We find that there is a general trend of increasing attenuation with the SFR. Moreover, we find that the SFRs range between a few to 103 Msolar yr-1, the masses from 109 to 4 × 1011 Msolar, and the ages from a few tens of Myr to more than 1 Gyr. We discuss how individual age measurements of highly attenuated objects indicate that dust must have formed within a few tens of Myr and already been copious at <=100 Myr. In addition, we find that low luminosity galaxies harbor, on average, significantly older stellar populations and are also less massive than brighter ones; we discuss how these findings and the well known ‘downsizing’ scenario are consistent in a framework where less massive galaxies form first, but their star formation lasts longer. Finally, we find that the near-IR attenuation is not scarce for luminous objects, contrary to what is customarily assumed; we discuss how this affects the interpretation of the observed M*/L ratios.

  4. On the consequences of a Virial star formation criterion and radiation hydrodynamics in simulations of high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Perret, Valentin; Teyssier, Romain; Devriendt, Julien; Rosdahl, Joakim; Slyz, Adrianne

    2015-08-01

    The last decade has seen a data deluge coming from observational facilities targeting the young universe. These data has revealed that high redshift galaxies are substantially different from their local counterpart that populates the Hubble sequence. High redshift star-forming galaxies often display clumpy morphologies associated to disk-like kinematics with a high level of turbulence. Star formation essentially occurs in these giant massive clumps and is therefore a crucial step in the life of galaxies. Reproducing the fragmentation of high redshift disk galaxies in numerical simulations is mandatory if one wants to get a realistic picture of the Hubble sequence shaping. We present state-of-the-art parsec scale idealised simulations of high redshift analogue galaxies that resolve the supersonic turbulent and clumpy multi-phase interstellar medium. These simulations are performed with the adaptive mesh refinement code RAMSES (Teyssier et al. 2002) using its new radiation hydrodynamics module (Rosdahl et al. 2013). We are therefore able to model the radiative pressure from the young massive stars population settled in the star forming clumps which is suspected to play a subsequent role in the onset of outflowing gas in such galaxies. Furthermore, our model includes a star formation criterion inspired from molecular cloud simulations and which is based on a local analysis of the turbulent support of the gas clouds. The star formation efficiency associated to this approach is two order of magnitudes higher than the one using the standard density threshold and has therefore major implications for the evolution of the galaxy. We will review through a comparative study the consequences of using radiative transfer combined with such a Virial star formation criterion for the star formation history, the gas and stellar morphology of the disk and clumps as well as the properties of the galactic fountain induced by stellar feedback. A first set of simulation presents

  5. Stellar Populations and Star Formation History of the Metal-poor Dwarf Galaxy DDO 68

    NASA Astrophysics Data System (ADS)

    Sacchi, E.; Annibali, F.; Cignoni, M.; Aloisi, A.; Sohn, T.; Tosi, M.; van der Marel, R. P.; Grocholski, A. J.; James, B.

    2016-10-01

    We present the star formation history (SFH) of the extremely metal-poor dwarf galaxy DDO 68, based on our photometry with the Advanced Camera for Surveys. With a metallicity of only 12+{log}({{O}}/{{H}})=7.15 and a very isolated location, DDO 68 is one of the most metal-poor galaxies known. It has been argued that DDO 68 is a young system that started forming stars only ∼0.15 Gyr ago. Our data provide a deep and uncontaminated optical color–magnitude diagram (CMD) that allows us to disprove this hypothesis since we find a population of at least ∼1 Gyr old stars. The star formation activity has been fairly continuous over all the look-back time. The current rate is quite low, and the highest activity occurred between 10 and 100 Myr ago. The average star formation rate over the whole Hubble time is ≃0.01 M ⊙ yr‑1, corresponding to a total astrated mass of ≃1.3 × 108 M ⊙. Our photometry allows us to infer the distance from the tip of the red giant branch, D = 12.08 ± 0.67 Mpc; however, to let our synthetic CMD reproduce the observed ones, we need a slightly higher distance, D = 12.65 Mpc, or (m ‑ M)0 = 30.51, still inside the errors of the previous determination, and we adopt the latter. DDO 68 shows a very interesting and complex history, with its quite disturbed shape and a long tail, probably due to tidal interactions. The SFH of the tail differs from that of the main body mainly for enhanced activity at recent epochs likely triggered by the interaction. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS5-26555.

  6. Herschel Observed Stripe 82 Quasars and Their Host Galaxies: Connections between AGN Activity and host Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Dong, X. Y.; Wu, Xue-Bing

    2016-06-01

    In this work, we present a study of 207 quasars selected from the Sloan Digital Sky Survey quasar catalogs and the Herschel Stripe 82 survey. Quasars within this sample are high-luminosity quasars with a mean bolometric luminosity of 1046.4 erg s-1. The redshift range of this sample is within z < 4, with a mean value of 1.5 ± 0.78. Because we only selected quasars that have been detected in all three Herschel-SPIRE bands, the quasar sample is complete yet highly biased. Based on the multi-wavelength photometric observation data, we conducted a spectral energy distribution (SED) fitting through UV to FIR. Parameters such as active galactic nucleus (AGN) luminosity, far-IR (FIR) luminosity, stellar mass, as well as many other AGN and galaxy properties are deduced from the SED fitting results. The mean star formation rate (SFR) of the sample is 419 M ⊙ yr-1 and the mean gas mass is ˜1011.3 M ⊙. All of these results point to an IR luminous quasar system. Compared with star formation main sequence (MS) galaxies, at least 80 out of 207 quasars are hosted by starburst galaxies. This supports the statement that luminous AGNs are more likely to be associated with major mergers. The SFR increases with the redshift up to z = 2. It is correlated with the AGN bolometric luminosity, where {L}{{FIR}}\\propto {L}{{Bol}}0.46+/- 0.03. The AGN bolometric luminosity is also correlated with the host galaxy mass and gas mass. Yet the correlation between L FIR and L Bol has higher significant level, implies that the link between AGN accretion and the SFR is more primal. The M BH/M * ratio of our sample is 0.02, higher than the value 0.005 in the local universe. It might indicate an evolutionary trend of the M BH-M * scaling relation.

  7. THE SIZE-STAR FORMATION RELATION OF MASSIVE GALAXIES AT 1.5 < z < 2.5

    SciTech Connect

    Toft, S.; Franx, M.; Van Dokkum, P.; Foerster Schreiber, N. M.; Labbe, I.; Wuyts, S.; Marchesini, D. E-mail: franx@strw.leidenuniv.n E-mail: forster@mpe.mpg.d E-mail: swuyts@cfa.harvard.ed

    2009-11-01

    We study the relation between size and star formation activity in a complete sample of 225 massive (M{sub *} > 5 x 10{sup 10} M {sub sun}) galaxies at 1.5 < z < 2.5, selected from the FIREWORKS UV-IR catalog of the CDFS. Based on stellar population synthesis model fits to the observed rest-frame UV-NIR spectral energy distributions, and independent MIPS 24 mum observations, 65% of the galaxies are actively forming stars, while 35% are quiescent. Using sizes derived from two-dimensional surface brightness profile fits to high-resolution (FWHM{sub PSF} approx 0.''45) ground-based ISAAC data, we confirm and improve the significance of the relation between star formation activity and compactness found in previous studies, using a large, complete mass-limited sample. At z approx 2, massive quiescent galaxies are significantly smaller than massive star-forming galaxies, and a median factor of 0.34 +- 0.02 smaller than galaxies of similar mass in the local universe. Thirteen percent of the quiescent galaxies are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than five times smaller than galaxies of similar mass locally. The quiescent galaxies span a Kormendy relation which, compared to the relation for local early types, is shifted to smaller sizes and brighter surface brightnesses and is incompatible with passive evolution. The progenitors of the quiescent galaxies were likely dominated by highly concentrated, intense nuclear starbursts at z approx 3-4, in contrast to star-forming galaxies at z approx 2 which are extended and dominated by distributed star formation.

  8. A Multiwavelength Approach to the Star Formation Rate Estimation in Galaxies at Intermediate Redshifts

    NASA Astrophysics Data System (ADS)

    Cardiel, N.; Elbaz, D.; Schiavon, R. P.; Willmer, C. N. A.; Koo, D. C.; Phillips, A. C.; Gallego, J.

    2003-02-01

    We use a sample of seven starburst galaxies at intermediate redshifts (z~0.4 and 0.8) with observations ranging from the observed ultraviolet to 1.4 GHz, to compare the star formation rate (SFR) estimators that are used in the different wavelength regimes. We find that extinction-corrected Hα underestimates the SFR, and the degree of this underestimation increases with the infrared luminosity of the galaxies. Galaxies with very different levels of dust extinction as measured with SFRIR/SFR(Hα, uncorrected for extinction) present a similar attenuation A[Hα], as if the Balmer lines probed a different region of the galaxy than the one responsible for the bulk of the IR luminosity for large SFRs. In addition, SFR estimates derived from [O II] λ3727 match very well those inferred from Hα after applying the metallicity correction derived from local galaxies. SFRs estimated from the UV luminosities show a dichotomic behavior, similar to that previously reported by other authors in galaxies at z<~0.4. Here we extend this result up to z~0.8. Finally, one of the studied objects is a luminous compact galaxy (LCG) that may be suffering similar dust-enshrouded star formation episodes. These results highlight the relevance of quantifying the actual LIR of LCGs, as well as that of a much larger and generic sample of luminous infrared galaxies, which will be possible after the launch of SIRTF. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Based in part on

  9. Giant Molecular Clouds and Star Formation in the Non-Grand Design Spiral Galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Wong, Tony; Leroy, Adam

    2011-10-01

    Although the internal physical properties of molecular clouds have been extensively studied (Solomon et al. 1987), a more detailed understanding of their origin and evolution in different types of galaxies is needed. In order to disentangle the details of this process, we performed CO(1→0) CARMA observations of the eastern part of the multi-armed galaxy NGC 6946. Our goal was to determine if azimuthal segregation of various gas and star formation tracers occurs in this kind of spiral galaxy (Tamburro et al. 2008). Although we found no evidence of an angular offset between molecular gas, atomic gas and star formation regions in our observations, we observe a clear radial progression from regions where molecular gas dominates over atomic gas (for r ≤ 2.8 kpc) to regions where the gas becomes mainly atomic (5.6 kpc ≤ r ≤ 7.6 kpc) when azimuthally averaged. In addition, we found that the densest concentrations of molecular gas are located on arms, particularly where they appear to intersect. This result is in concordance with the behavior predicted by simulations of the spiral galaxies with an active potential (Clarke & Gittins 2006; Dobbs & Bonnell 2008). Since NGC 6946 is located at a distance of 5.5 Mpc, the linear resolution of the map corresponds to 140 pc. At such resolution, we were able to find CO emitting complexes with masses greater than those of typical Giant Molecular Clouds (105-106 M⊙). To identify GMCs individually and make a more detailed study of their physical properties, we made D array observations of CO(2→1) toward the densest concentrations of gas located in the prominent spiral arms. We achieved a linear resolution of 50 pc at 1 mm in D array, similar to GMCs sizes found in other galaxies (Bolatto et al. 2008). We present first results about possible differences in the properties of the on-arm clouds and the inter-arm clouds. While inter-arm GMAs in grand-design galaxies are thought to be formed by fragmentation of more massive on

  10. Starburst galaxies in the COSMOS field: clumpy star-formation at redshift 0 < z < 0.5

    NASA Astrophysics Data System (ADS)

    Hinojosa-Goñi, R.; Muñoz-Tuñón, C.; Méndez-Abreu, J.

    2016-08-01

    Context. At high redshift, starburst galaxies present irregular morphologies with 10-20% of their star formation occurring in giant clumps. These clumpy galaxies are considered the progenitors of local disk galaxies. To understand the properties of starbursts at intermediate and low redshift, it is fundamental to track their evolution and the possible link with the systems at higher z. Aims: We present an extensive, systematic, and multiband search and analysis of the starburst galaxies at redshift (0 < z < 0.5) in the COSMOS field, as well as detailed characteristics of their star-forming clumps by using Hubble Space Telescope/Advance Camera for Surveys (HST/ACS) images. Methods: The starburst galaxies are identified using a tailor-made intermediate-band color excess selection, tracing the simultaneous presence of Hα and [OIII] emission lines in the galaxies. Our methodology uses previous information from the zCOSMOS spectral database to calibrate the color excess as a function of the equivalent width of both spectral lines. This technique allows us to identify 220 starburst galaxies at redshift 0 < z < 0.5 using the SUBARU intermediate-band filters. Combining the high spatial resolution images from the HST/ACS with ground-based multi-wavelength photometry, we identify and parametrize the star-forming clumps in every galaxy. Their principal properties, sizes, masses, and star formation rates are provided. Results: The mass distribution of the starburst galaxies is remarkably similar to that of the whole galaxy sample with a peak around M/M⊙ ~ 2 × 108 and only a few galaxies with M/M⊙ > 1010. We classify galaxies into three main types, depending on their HST morphology: single knot (Sknot), single star-forming knot plus diffuse light (Sknot+diffuse), and multiple star-forming knots (Mknots/clumpy) galaxy. We found a fraction of Mknots/clumpy galaxy fclumpy = 0.24 considering out total sample of starburst galaxies up to z ~ 0.5. The individual star

  11. DENSE GAS FRACTION AND STAR FORMATION EFFICIENCY VARIATIONS IN THE ANTENNAE GALAXIES

    SciTech Connect

    Bigiel, F.; Leroy, A. K.; Blitz, L.; Bolatto, A. D.; Da Cunha, E.; Rosolowsky, E.; Sandstrom, K.; Usero, A.

    2015-12-20

    We use the Combined Array for Research in Millimeter-wave Astronomy (CARMA) millimeter interferometer to map the Antennae Galaxies (NGC 4038/39), tracing the bulk of the molecular gas via the {sup 12}CO(1–0) line and denser molecular gas via the high density transitions HCN(1–0), HCO{sup +}(1–0), CS(2–1), and HNC(1–0). We detect bright emission from all tracers in both the two nuclei and three locales in the overlap region between the two nuclei. These three overlap region peaks correspond to previously identified “supergiant molecular clouds.” We combine the CARMA data with Herschel infrared (IR) data to compare observational indicators of the star formation efficiency (star formation rate/H{sub 2} ∝ IR/CO), dense gas fraction (HCN/CO), and dense gas star formation efficiency (IR/HCN). Regions within the Antennae show ratios consistent with those seen for entire galaxies, but these ratios vary by up to a factor of six within the galaxy. The five detected regions vary strongly in both their integrated intensities and these ratios. The northern nucleus is the brightest region in millimeter-wave line emission, while the overlap region is the brightest part of the system in the IR. We combine the CARMA and Herschel data with ALMA CO data to report line ratio patterns for each bright point. CO shows a declining spectral line energy distribution, consistent with previous studies. HCO{sup +} (1–0) emission is stronger than HCN (1–0) emission, perhaps indicating either more gas at moderate densities or higher optical depth than is commonly seen in more advanced mergers.

  12. Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Kereš, Dušan; Oñorbe, José; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman; Bullock, James S.

    2014-11-01

    We present a series of high-resolution cosmological simulations1 of galaxy formation to z = 0, spanning halo masses ˜108-1013 M⊙, and stellar masses ˜104-1011 M⊙. Our simulations include fully explicit treatment of the multiphase interstellar medium and stellar feedback. The stellar feedback inputs (energy, momentum, mass, and metal fluxes) are taken directly from stellar population models. These sources of feedback, with zero adjusted parameters, reproduce the observed relation between stellar and halo mass up to Mhalo ˜ 1012 M⊙. We predict weak redshift evolution in the M*-Mhalo relation, consistent with current constraints to z > 6. We find that the M*-Mhalo relation is insensitive to numerical details, but is sensitive to feedback physics. Simulations with only supernova feedback fail to reproduce observed stellar masses, particularly in dwarf and high-redshift galaxies: radiative feedback (photoheating and radiation pressure) is necessary to destroy giant molecular clouds and enable efficient coupling of later supernovae to the gas. Star formation rates (SFRs) agree well with the observed Kennicutt relation at all redshifts. The galaxy-averaged Kennicutt relation is very different from the numerically imposed law for converting gas into stars, and is determined by self-regulation via stellar feedback. Feedback reduces SFRs and produces reservoirs of gas that lead to rising late-time star formation histories, significantly different from halo accretion histories. Feedback also produces large short-time-scale variability in galactic SFRs, especially in dwarfs. These properties are not captured by common `sub-grid' wind models.

  13. THE RADIAL DISTRIBUTION OF STAR FORMATION IN GALAXIES AT z {approx} 1 FROM THE 3D-HST SURVEY

    SciTech Connect

    Nelson, Erica June; Van Dokkum, Pieter G.; Momcheva, Ivelina; Skelton, Rosalind E.; Leja, Joel; Brammer, Gabriel; Lundgren, Britt; Whitaker, Katherine E.; Da Cunha, Elisabete; Rix, Hans-Walter; Van der Wel, Arjen; Foerster Schreiber, Natascha; Wuyts, Stijn; Franx, Marijn; Fumagalli, Mattia; Labbe, Ivo; Patel, Shannon; Kriek, Mariska; Schmidt, Kasper B.

    2013-01-20

    The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of H{alpha} emission for a sample of 54 strongly star-forming galaxies at z {approx} 1 in the 3D-HST Treasury survey. By stacking the H{alpha} emission, we find that star formation occurred in approximately exponential distributions at z {approx} 1, with a median Sersic index of n = 1.0 {+-} 0.2. The stacks are elongated with median axis ratios of b/a = 0.58 {+-} 0.09 in H{alpha} consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination corrected velocities of 90-330 km s{sup -1}. The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z {approx} 1 generally occurred in disks. The disks appear to be 'scaled-up' versions of nearby spiral galaxies: they have EW(H{alpha}) {approx} 100 A out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds.

  14. The Radial Distribution of Star Formation in Galaxies at Z approximately 1 from the 3D-HST Survey

    NASA Technical Reports Server (NTRS)

    Nelson, Erica June; vanDokkum, Pieter G.; Momcheva, Ivelina; Brammer, Gabriel; Lundgren, Britt; Skelton, Rosalind E.; Whitaker, Katherine E.; DaCunha, Elisabete; Schreiber, Natascha Foerster; Franx, Marijn; Fumagalli, Mattia; Kriek, Mariska; Labbe, Ivo; Leja, Joel; Patel, Shannon; Rix, Hans-Walter; Schmidt, Kasper B.; vanderWel, Argen; Wuyts, Stijn

    2013-01-01

    The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of H emission for a sample of 54 strongly star-forming galaxies at z 1 in the 3D-HST Treasury survey. By stacking the H emission, we find that star formation occurred in approximately exponential distributions at z approximately 1, with a median Sersic index of n = 1.0 +/- 0.2. The stacks are elongated with median axis ratios of b/a = 0.58 +/- 0.09 in H consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination corrected velocities of 90.330 km s(exp 1-). The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z approximately 1 generally occurred in disks. The disks appear to be scaled-up versions of nearby spiral galaxies: they have EW(H alpha) at approximately 100 A out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds.

  15. Properties of galaxy groups in the Sloan Digital Sky Survey - II. Active galactic nucleus feedback and star formation truncation

    NASA Astrophysics Data System (ADS)

    Weinmann, Simone M.; van den Bosch, Frank C.; Yang, Xiaohu; Mo, H. J.; Croton, Darren J.; Moore, Ben

    2006-11-01

    Successfully reproducing the galaxy luminosity function (LF) and the bimodality in the galaxy distribution requires a mechanism that can truncate star formation in massive haloes. Current models of galaxy formation consider two such truncation mechanisms: strangulation, which acts on satellite galaxies, and active galactic nucleus (AGN) feedback, which predominantly affects central galaxies. The efficiencies of these processes set the blue fraction of galaxies, fblue(L, M), as a function of galaxy luminosity, L, and halo mass, M. In this paper, we use a galaxy group catalogue extracted from the Sloan Digital Sky Survey (SDSS) to determine fblue(L, M). To demonstrate the potential power of these data as a benchmark for galaxy formation models, we compare the results to the semi-analytical model for galaxy formation of Croton et al. Although this model accurately fits the global statistics of the galaxy population, as well as the shape of the conditional LF, there are significant discrepancies when the blue fraction of galaxies as a function of mass and luminosity is compared between the observations and the model. In particular, the model predicts (i) too many faint satellites in massive haloes, (ii) a blue fraction of satellites that is much too low, and (iii) a blue fraction of centrals that is too high and with an inverted luminosity dependence. In the same order, we argue that these discrepancies owe to (i) the neglect of tidal stripping in the semi-analytical model, (ii) the oversimplified treatment of strangulation, and (iii) improper modelling of dust extinction and/or AGN feedback. The data presented here will prove useful to test and calibrate future models of galaxy formation and, in particular, to discriminate between various models for AGN feedback and other star formation truncation mechanisms.

  16. The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early- and late-type galaxies

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Urry, C. Megan; Simmons, Brooke D.; Fortson, Lucy; Kaviraj, Sugata; Keel, William C.; Lintott, Chris J.; Masters, Karen L.; Nichol, Robert C.; Sarzi, Marc; Skibba, Ramin; Treister, Ezequiel; Willett, Kyle W.; Wong, O. Ivy; Yi, Sukyoung K.

    2014-05-01

    We use SDSS+GALEX+Galaxy Zoo data to study the quenching of star formation in low-redshift galaxies. We show that the green valley between the blue cloud of star-forming galaxies and the red sequence of quiescent galaxies in the colour-mass diagram is not a single transitional state through which most blue galaxies evolve into red galaxies. Rather, an analysis that takes morphology into account makes clear that only a small population of blue early-type galaxies move rapidly across the green valley after the morphologies are transformed from disc to spheroid and star formation is quenched rapidly. In contrast, the majority of blue star-forming galaxies have significant discs, and they retain their late-type morphologies as their star formation rates decline very slowly. We summarize a range of observations that lead to these conclusions, including UV-optical colours and halo masses, which both show a striking dependence on morphological type. We interpret these results in terms of the evolution of cosmic gas supply and gas reservoirs. We conclude that late-type galaxies are consistent with a scenario where the cosmic supply of gas is shut off, perhaps at a critical halo mass, followed by a slow exhaustion of the remaining gas over several Gyr, driven by secular and/or environmental processes. In contrast, early-type galaxies require a scenario where the gas supply and gas reservoir are destroyed virtually instantaneously, with rapid quenching accompanied by a morphological transformation from disc to spheroid. This gas reservoir destruction could be the consequence of a major merger, which in most cases transforms galaxies from disc to elliptical morphology, and mergers could play a role in inducing black hole accretion and possibly active galactic nuclei feedback.

  17. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. IV. THE STAR FORMATION HISTORY OF NGC 2976

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Gilbert, Karoline M.; Roskar, Rok; Gogarten, Stephanie M.; Seth, Anil C.; Weisz, Daniel; Skillman, Evan; Dolphin, Andrew; Holtzman, Jon E-mail: jd@astro.washington.ed E-mail: stephanie@astro.washington.ed E-mail: dweisz@astro.umn.ed E-mail: dolphin@raytheon.co

    2010-01-20

    We present resolved stellar photometry of NGC 2976 obtained with the Advanced Camera for Surveys (ACS) as part of the ACS Nearby Galaxy Survey Treasury (ANGST) program. The data cover the radial extent of the major axis of the disk out to 6 kpc, or approx6 scale lengths. The outer disk was imaged to a depth of M{sub F606W} approx 1, and an inner field was imaged to the crowding limit at a depth of M{sub F606W} approx -1. Through detailed analysis and modeling of the resulting color-magnitude diagrams, we have reconstructed the star formation history (SFH) of the stellar populations currently residing in these portions of the galaxy, finding similar ancient populations at all radii but significantly different young populations at increasing radii. In particular, outside of the well-measured break in the disk surface brightness profile, the age of the youngest population increases with distance from the galaxy center, suggesting that star formation is shutting down from the outside-in. We use our measured SFH, along with H I surface density measurements, to reconstruct the surface density profile of the disk during previous epochs. Comparisons between the recovered star formation rates and reconstructed gas densities at previous epochs are consistent with star formation following the Schmidt law during the past 0.5 Gyr, but with a drop in star formation efficiency at low gas densities, as seen in local galaxies at the present day. The current rate and gas density suggest that rapid star formation in NGC 2976 is currently in the process of ceasing from the outside-in due to gas depletion. This process of outer disk gas depletion and inner disk star formation was likely triggered by an interaction with the core of the M81 group approx>1 Gyr ago that stripped the gas from the galaxy halo and/or triggered gas inflow from the outer disk toward the galaxy center.

  18. SKA studies of nearby galaxies: star-formation, accretion processes and molecular gas across all environments

    NASA Astrophysics Data System (ADS)

    Beswick, R.; Brinks, E.; Perez-Torres, M.; Richards, A. M. S.; Aalto, S.; Alberdi, A.; Argo, M. K.; van Bemmel, I.; Conway, J. E.; Dickinson, C.; Fenech, D.; Gray, M. D.; Kloeckner, H. R.; Murphy, E.; Muxlow, T. W. B.; Peel, M. W.; Rushton, A.; Schinnerer, E.

    2015-04-01

    The SKA will be a transformational instrument in the study of our local Universe. In particular, by virtue of its high sensitivity (both to point sources and diffuse low surface brightness emission), angular resolution and the frequency ranges covered, the SKA will undertake a very wide range of astrophysical research in the field of nearby galaxies. By surveying vast numbers of nearby galaxies of all types with $\\mu$Jy sensitivity and sub-arcsecond angular resolutions at radio wavelengths, the SKA will provide the cornerstone of our understanding of star-formation and accretion activity in the local Universe. In this chapter we outline the key continuum and molecular line science areas where the SKA, both during phase-1 and when it becomes the full SKA, will have a significant scientific impact.

  19. J-PLUS and the galaxy star formation rate in the local universe

    NASA Astrophysics Data System (ADS)

    Vilella, G.; Viironen, K.; López-Sanjuan, C.; Varela, J.; Cenarro, A. J.; J-PAS Team

    2015-05-01

    The Javalambre Physics of the Local Universe Survey (J-PLUS) is a large photometric survey that will cover ˜8000 deg^2 with a set of 5 broad filters (SDSS filter set) and 7 narrow ones. It will be carried out from the Observatorio Astrofísico de Javalambre (OAJ) at the Pico del Buitre, Teruel, Spain. In addition to its main goal, which is the photometric calibration of the J-PAS survey, it has been designed to acquire the Hα flux of the galaxies in the nearby Universe (z≤0.015) up to r˜23 (AB). In this poster we present a first approach to the methodology that will be used to obtain Hα fluxes from photometric data. We first explain different methodologies to recover this flux. To test these methodologies, we simulate observations of real star forming galaxies from SDSS spectra. We show that using the information of one or two broad filters and a narrow one would bias our results. To cope with that, we fit the whole observed spectral energy distribution to a simple stellar population template and isolate the excess of flux inside the Hα filter. This allows us to recover the desired flux with accuracy and without biases. With this information, the J-PLUS survey will allow us to reproduce the Hα luminosity function and derive the star formation rate of thousands of galaxies in the local universe.

  20. PANCHROMATIC ESTIMATION OF STAR FORMATION RATES IN BzK GALAXIES AT 1 < z < 3

    SciTech Connect

    Kurczynski, Peter; Gawiser, Eric; Huynh, Minh; Ivison, Rob J.; Treister, Ezequiel; Smail, Ian; Blanc, Guillermo A.; Cardamone, Carolin N.; Greve, Thomas R.; Schinnerer, Eva; Van der Werf, Paul; Urry, Meg

    2012-05-10

    We determine star formation rates (SFRs) in a sample of color-selected, star-forming (sBzK) galaxies (K{sub AB} < 21.8) in the Extended Chandra Deep Field-South. To identify and avoid active galactic nuclei, we use X-ray, IRAC color, and IR/radio flux ratio selection methods. Photometric redshift-binned, average flux densities are measured with stacking analyses in Spitzer-MIPS IR, BLAST and APEX/LABOCA submillimeter, VLA and GMRT radio, and Chandra X-ray data. We include averages of aperture fluxes in MUSYC UBVRIz'JHK images to determine UV-through-radio spectral energy distributions. We determine the total IR luminosities and compare SFR calibrations from FIR, 24 {mu}m, UV, radio, and X-ray wavebands. We find consistency with our best estimator, SFR{sub IR+UV}, to within errors for the preferred radio SFR calibration. Our results imply that 24 {mu}m only and X-ray SFR estimates should be applied to high-redshift galaxies with caution. Average IR luminosities are consistent with luminous infrared galaxies. We find SFR{sub IR+UV} for our stacked sBzKs at median redshifts 1.4, 1.8, and 2.2 to be 55 {+-} 6 (random error), 74 {+-} 8, and 154 {+-} 17 M{sub Sun} yr{sup -1}, respectively, with additional systematic uncertainty of a factor of {approx}2.

  1. LOW-METALLICITY STAR FORMATION IN HIGH-REDSHIFT GALAXIES AT z {approx} 8

    SciTech Connect

    Taniguchi, Y.; Shioya, Y.; Trump, J. R.

    2010-12-01

    Based on the recent very deep near-infrared imaging of the Hubble Ultra Deep Field with WFC3 on the Hubble Space Telescope, five groups published the most probable samples of galaxies at z {approx} 8, selected by the so-called dropout method or photometric redshift; e.g., Y{sub 105}-dropouts (Y{sub 105} - J{sub 125} > 0.8). These studies are highly useful for investigating both the early star formation history of galaxies and the sources of cosmic re-ionization. In order to better understand these issues, we carefully examine whether there are low-z interlopers in the samples of z {approx} 8 galaxy candidates. We focus on the strong emission-line galaxies at z {approx} 2 in this paper. Such galaxies may be selected as Y{sub 105}-dropouts since the [O III] {lambda}5007 emission line is redshifted into the J{sub 125} band. We have found that the contamination from such low-z interlopers is negligibly small. Therefore, all objects found by the five groups are free from this type of contamination. However, it remains difficult to extract real z {approx} 8 galaxies because all the sources are very faint and the different groups have found different candidates. With this in mind, we construct a robust sample of eight galaxies at z {approx} 8 from the objects found by the five groups: each of these eight objects has been selected by at least two groups. Using this sample, we discuss their UV continuum slope. We also discuss the escape fraction of ionizing photons adopting various metallicities. Our analysis suggests that massive stars forming in low-metallicity gas (Z {approx} 5 x 10{sup -4} Z{sub sun}) can be responsible for the completion of cosmic re-ionization if the escape fraction of the ionizing continuum from galaxies is as large as 0.5, and this is consistent with the observed blue UV continua.

  2. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by