Sample records for star formation reference

  1. What Determines Star Formation Rates?

    NASA Astrophysics Data System (ADS)

    Evans, Neal John

    2017-06-01

    The relations between star formation and gas have received renewed attention. We combine studies on scales ranging from local (within 0.5 kpc) to distant galaxies to assess what factors contribute to star formation. These include studies of star forming regions in the Milky Way, the LMC, nearby galaxies with spatially resolved star formation, and integrated galaxy studies. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. The star formation ``efficiency," defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas. We suggest ways to further develop the concept of "dense gas" to incorporate other factors, such as turbulence.

  2. An Introduction to the Sun and Stars

    NASA Astrophysics Data System (ADS)

    Green, Simon F.; Jones, Mark H.

    2015-02-01

    Introduction; 1. Seeing the Sun; 2. The working Sun; 3. Measuring stars; 4. Comparing stars; 5. The formation of stars; 6. The main sequence life of stars; 7. The life of stars beyond the main sequence; 8. The death of stars; 9. The remnants of stars; Conclusion; Answers and comments; Appendices; Glossary; Further reading; Acknowledgements; Figure references; Index.

  3. Induced Star Formation

    NASA Astrophysics Data System (ADS)

    Kennicutt, Robert C., Jr.

    Overview: Induced Star Formation and Interactions Introduction Historical Background: First Hints Systematic Studies: Starbursts Interactions and Nuclear activity IRAS and Ultralumious starburst Galaxies The 1990's: HST, Supercomputers, and the Distant Universe Key Questions and Issues Organization of Lectures Star Formation Properties of Normal Galaxies Observational Techniques Results: Star Formation in Normal Galaxies Interpretation: Star Formation Histories Global Star Formation in interacting Galaxies A Gallery of Interactions and Mergers Star Formation Statistics: Guilt By Association Tests SFRs in Interacting vs Noninteracting Galaxies Kinematic Properties and Regulation of SFRs Induced Nuclear Activity and Star Formation Background: Nuclear Spectra and Classification Nuclear Star Formation and Starbursts Nuclear Star Formation and Interactions Induced AGN Activity: Statistics of Seyfert Galaxies Environments of Quasars Kinematic Clues to the Triggering of AGNs Infrared Luminous Galaxies and Starbursts Background: IR Luminous Galaxies and IRAS Infrared Luminosity Function and Spectra Infrared Structure and Morphology Interstellar Gas X-Ray Emission and Superwinds Optical, UV, and Near-Infrared Spectra Radio Continuum Emission Evidence for Interactions and Mergers The Power Source: Starbursts or Dusty AGNs? Spectral Diagnostics of Starbursts Evolutionary Synthesis Models Applications: Integrated Colors of Interacting Galaxies Applications: Hα Emission, Colors, and SFRs Applications: Spectral Modelling of Evolved Starbursts Infrared Starbursts and the IMF in starbursts Triggering and Regulation of Star Formation: The Problem Introduction: Star Formation as a Nonlinear Process The schmidt Law in Normal Galaxies Star Formation Regimes in Interacting Galaxies Summary Triggering and Regulation of Starbusts: Theoretical Ideas Gravitational Star Formation Thresholds Cloud Collision Models Radial Transport of Gas: Clues from Barred Galaxies Simulations of Starbursts in Merging Galaxies The Cosmological Role of Interactions and Starbursts Interactions in Hierarchical Cosmology Interaction-Induced Star Formation Today Interaction-Induced Star Formation in the Past Disk kinematics and the Merger Rate Global Effects of Starbursts and Superwinds Concluding Remarks References

  4. Exploration of the region near the sun-earth collinear libration points for the control of large formations

    NASA Astrophysics Data System (ADS)

    Heritier, Aurelie

    Spacecraft formations possess many applications in the future of space exploration. During the last decade, due to the detection of a large number of extrasolar planets, new studies on formation flying in multi-body regimes have emerged to support searches for Earth-like planets in other solar systems. The L2 Sun-Earth libration point region has been a popular destination in creating an architecture for astronomical missions. It is a relatively cold environment, far from the disturbances of the Sun and, therefore, ideal for astronomical instruments. However, controlling multiple spacecraft in a multi-body environment is challenging and a good understanding of the natural dynamics in this regime is essential. The current investigation explores the dynamical environment near the L2 Sun-Earth libration point to aid in the control of formations of spacecraft. By exploiting the natural dynamics in the circular restricted three-body model (CR3BP), natural regions are determined that are particularly suitable for maintaining formations of spacecraft. The natural dynamics at small distances from a given reference trajectory are initially investigated for the placement of small formations of spacecraft. Some regions with low relative drift represent suitable locations to maintain small formations and are derived analytically using variational equations. Spacecraft located in such regions avoid large variations in their mutual distances while maintaining the orientation of the formation. These regions represent quadric surfaces, and the type of quadric surfaces, either ellipsoids or elliptic cylinders, depends on the eigenstructure reflecting the phase space along the given reference trajectory. The natural flow at large distances from a given reference trajectory is explored next to characterize regions that are suitable to maintain large formations, i.e., when the mutual distances between the spacecraft reaches tens of thousands of kilometers. Spheres of points at various locations along the reference orbit are constructed to classify the space, and regions of low natural drift on the spheres are numerically identified when the distance between two vehicles is large. These low drift regions are examined in detail, and a correspondance with the quadric surfaces that are derived for small formations is established. In particular, the orientation of these low drift zones along a given reference orbit are investigated as some parameters vary, such as the size of the formation as well as the reference orbit. Using the low natural drift regions, control strategies are then developed for large formations. Traditional controllers, such as impulsive maneuvers and linear quadratic regulators (LQR), are employed to quantify the level of control that is required to maintain large formations along specific directions in the CR3BP. Designs of new controllers are also investigated to produce some set of desired relative motions between two spacecraft placed at large mutual distances. In a potential formation option investigated in this analysis, a deputy vehicle maintains a fixed circular motion in a plane relative to a chief spacecraft moving along its reference trajectory. Finally, the effectiveness of using the low natural drift regions as derived for large formations is tested for the New Worlds Observer mission concept. This scenario involves a large telescope-occulter formation for star observations, to detect and characterize habitable terrestrial exoplanets. The low drift zones are employed to reduce the control effort to maintain a large telescope-occulter formation during the observation of inertially-fixed target stars. In particular, the occulter is maintained via a linear quadratic regulator during star observations. Given a set of inertially-fixed target stars, an automatic star sequence design process is proposed with observation and reconfiguration phases using the low drift regions. This design creates star sequences that lead to relatively small overall maneuver costs for this particular mission concept.

  5. Heating and cooling of the neutral ISM in the NGC 4736 circumnuclear ring

    NASA Astrophysics Data System (ADS)

    van der Laan, T. P. R.; Armus, L.; Beirao, P.; Sandstrom, K.; Groves, B.; Schinnerer, E.; Draine, B. T.; Smith, J. D.; Galametz, M.; Wolfire, M.; Croxall, K.; Dale, D.; Herrera Camus, R.; Calzetti, D.; Kennicutt, R. C.

    2015-03-01

    The manner in which gas accretes and orbits within circumnuclear rings has direct implications for the star formation process. In particular, gas may be compressed and shocked at the inflow points, resulting in bursts of star formation at these locations. Afterwards the gas and young stars move together through the ring. In addition, star formation may occur throughout the ring, if and when the gas reaches sufficient density to collapse under gravity. These two scenarios for star formation in rings are often referred to as the "pearls-on-a-string" and "popcorn" paradigms. In this paper, we use new Herschel/PACS observations, obtained as part of the KINGFISH open time key program, along with archival Spitzer and ground-based observations from the SINGS Legacy project, to investigate the heating and cooling of the interstellar medium in the nearby star-forming ring galaxy, NGC 4736. By comparing spatially resolved estimates of the stellar far-ultraviolet flux available for heating, with the gas and dust cooling derived from the far-infrared continuum and line emission, we show that while star formation is indeed dominant at the inflow points in NGC 4736, additional star formation is needed to balance the gas heating and cooling throughout the ring. This additional component most likely arises from the general increase in gas density in the ring over its lifetime. Our data provide strong evidence, therefore, for a combination of the two paradigms for star formation in the ring in NGC 4736.

  6. Legacy ExtraGalactic UV Survey (LEGUS): The HST View of Star Formation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Lee, J. C.; Adamo, A.; Aloisi, A.; Andrews, J. E.; Brown, T. M.; Chandar, R.; Christian, C. A.; Cignoni, M.; Clayton, G. C.; Da Silva, R. L.; de Mink, S. E.; Dobbs, C.; Elmegreen, B.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S.; Gouliermis, D.; Grebel, E.; Herrero-Davo`, A.; Hilbert, B.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R.; Kim, H.; Krumholz, M. R.; Lennon, D. J.; Martin, C. D.; Nair, P.; Nota, A.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Schaerer, D.; Schiminovich, D.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Van Dyk, S. D.; Walterbos, R. A.; Whitmore, B. C.; Wofford, A.

    2014-01-01

    The Treasury program LEGUS (HST/GO-13364) is the first HST UV Atlas of nearby galaxies, and is aimed at the thorough investigation of star formation and its relation with galaxy environment, from the scales of individual stars to those of ~kpc clustered structures. The 154-orbits program is obtaining NUV,U,B,V,I images of 50 star-forming galaxies in the distance range 4-12 Mpc, covering the full range of morphology, star formation rate (SFR), mass, metallicity, internal structure, and interaction state found in the local Universe. The imaging survey will yield accurate recent (<50 Myr) star formation histories (SFHs) from resolved massive stars, and the extinction-corrected ages and masses of star clusters and associations. These extensive inventories of massive stars, clustered systems, and SFHs will be used to: (1) quantify how the clustering of star formation evolves both in space and in time; (2) discriminate among models of star cluster evolution; (3) investigate the effects of SFH on the UV SFR calibrations; (4) explore the impact of environment on star formation and cluster evolution across the full range of galactic and ISM properties. LEGUS observations will inform theories of star formation and galaxy evolution, and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of the clumpy star formation at high redshift. LEGUS will generate the most homogeneous high-resolution, wide-field UV dataset to date, building and expanding on the GALEX legacy. Data products that will be delivered to the community include: catalogs of massive stars and star clusters, catalogs of star cluster properties (ages, masses, extinction), and a one-stop shop for all the ancillary data available for this well-studied galaxy sample. LEGUS will provide the reference survey and the foundation for future observations with JWST and with ALMA. This abstract accompanies another one from the same project, and presents the status of the project, its structure, and the data products that will be delivered to the community; the other abstract presents the science goals of LEGUS and how these will be addressed by the HST observations.

  7. Documentation for the machine-readable version of the revised Catalogue of Stellar Rotational Velocities of Uesugi and Fukuda (1982)

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1983-01-01

    The machine-readable catalog provides mean data on the old Slettebak system for 6472 stars. The catalog results from the review, analysis and transformation of 11460 data from 102 sources. Star identification, (major catalog number, name if the star has one, or cluster identification, etc.), a man projected rotational velocity, and a list of source references re included. The references are given in a second file included with the catalog when it is distributed on magnetic tape. The contents and/formats of the the data and reference files of the machine-readable catalog are described to enable users to read and process the data.

  8. First stars and reionization: Spinstars

    NASA Astrophysics Data System (ADS)

    Chiappini, C.

    2013-06-01

    Soon after the Big Bang, the appearance of the first stellar generations (hereafter, first stars) drastically changed the course of the history of the Universe by enriching the primordial gas with elements heavier than helium (referred to as metals) through both stellar winds and supernova explosions. High-resolution hydrodynamical simulations of the formation of the first stars suggest these objects to have formed in dark matter mini-halos, and to have played a key role in the formation of the first galaxies. Today these stars are (most likely) long dead, and even though next generation facilities will push the observational frontier to extremely high redshifts, with the aim of discovering the first galaxies, the first stars will still lie beyond reach. Thus, the only way to constrain our theoretical understanding of the formation of the first stars is to search for their imprints left in the oldest, still surviving, stars in our own backyard: the Milky Way and its satellites. Which imprints are we looking for, and where can we find them? We address these questions in the present review.

  9. Star formation in AGNs at the hundred parsec scale using MIR high-resolution images

    NASA Astrophysics Data System (ADS)

    Ruschel-Dutra, Daniel; Rodríguez Espinosa, José Miguel; González Martín, Omaira; Pastoriza, Miriani; Riffel, Rogério

    2017-04-01

    It has been well established in the past decades that the central black hole masses of galaxies correlate with dynamical properties of their harbouring bulges. This notion begs the question of whether there are causal connections between the active galactic nucleus (AGN) and its immediate vicinity in the host galaxy. In this paper, we analyse the presence of circumnuclear star formation in a sample of 15 AGN using mid-infrared observations. The data consist of a set of 11.3 μm polycyclic aromatic hydrocarbon emission and reference continuum images, taken with ground-based telescopes, with sub-arcsecond resolution. By comparing our star formation estimates with AGN accretion rates, derived from X-ray luminosities, we investigate the validity of theoretical predictions for the AGN-starburst connection. Our main results are: (I) circumnuclear star formation is found, at distances as low as tens of parsecs from the nucleus, in nearly half of our sample (7/15); (II) star formation luminosities are correlated with the bolometric luminosity of the AGN (LAGN) only for objects with LAGN ≥ 1042 erg s-1; (III) low-luminosity AGNs (LAGN < 1042 erg s-1) seem to have starburst luminosities far greater than their bolometric luminosities.

  10. STAR FORMATION RELATIONS IN THE MILKY WAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vutisalchavakul, Nalin; Evans II, Neal J.; Heyer, Mark, E-mail: nje@astro.as.utexas.edu

    2016-11-01

    The relations between star formation and properties of molecular clouds (MCs) are studied based on a sample of star-forming regions in the Galactic Plane. Sources were selected by having radio recombination lines to provide identification of associated MCs and dense clumps. Radio continuum emission and mid-infrared emission were used to determine star formation rates (SFRs), while {sup 13}CO and submillimeter dust continuum emission were used to obtain the masses of molecular and dense gas, respectively. We test whether total molecular gas or dense gas provides the best predictor of SFR. We also test two specific theoretical models, one relying onmore » the molecular mass divided by the free-fall time, the other using the free-fall time divided by the crossing time. Neither is supported by the data. The data are also compared to those from nearby star-forming regions and extragalactic data. The star formation “efficiency,” defined as SFR divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all of the molecular gas.« less

  11. A fast and efficient python library for interfacing with the Biological Magnetic Resonance Data Bank.

    PubMed

    Smelter, Andrey; Astra, Morgan; Moseley, Hunter N B

    2017-03-17

    The Biological Magnetic Resonance Data Bank (BMRB) is a public repository of Nuclear Magnetic Resonance (NMR) spectroscopic data of biological macromolecules. It is an important resource for many researchers using NMR to study structural, biophysical, and biochemical properties of biological macromolecules. It is primarily maintained and accessed in a flat file ASCII format known as NMR-STAR. While the format is human readable, the size of most BMRB entries makes computer readability and explicit representation a practical requirement for almost any rigorous systematic analysis. To aid in the use of this public resource, we have developed a package called nmrstarlib in the popular open-source programming language Python. The nmrstarlib's implementation is very efficient, both in design and execution. The library has facilities for reading and writing both NMR-STAR version 2.1 and 3.1 formatted files, parsing them into usable Python dictionary- and list-based data structures, making access and manipulation of the experimental data very natural within Python programs (i.e. "saveframe" and "loop" records represented as individual Python dictionary data structures). Another major advantage of this design is that data stored in original NMR-STAR can be easily converted into its equivalent JavaScript Object Notation (JSON) format, a lightweight data interchange format, facilitating data access and manipulation using Python and any other programming language that implements a JSON parser/generator (i.e., all popular programming languages). We have also developed tools to visualize assigned chemical shift values and to convert between NMR-STAR and JSONized NMR-STAR formatted files. Full API Reference Documentation, User Guide and Tutorial with code examples are also available. We have tested this new library on all current BMRB entries: 100% of all entries are parsed without any errors for both NMR-STAR version 2.1 and version 3.1 formatted files. We also compared our software to three currently available Python libraries for parsing NMR-STAR formatted files: PyStarLib, NMRPyStar, and PyNMRSTAR. The nmrstarlib package is a simple, fast, and efficient library for accessing data from the BMRB. The library provides an intuitive dictionary-based interface with which Python programs can read, edit, and write NMR-STAR formatted files and their equivalent JSONized NMR-STAR files. The nmrstarlib package can be used as a library for accessing and manipulating data stored in NMR-STAR files and as a command-line tool to convert from NMR-STAR file format into its equivalent JSON file format and vice versa, and to visualize chemical shift values. Furthermore, the nmrstarlib implementation provides a guide for effectively JSONizing other older scientific formats, improving the FAIRness of data in these formats.

  12. The Star Formation Reference Survey - II. Activity demographics and host-galaxy properties for infrared-selected galaxies

    NASA Astrophysics Data System (ADS)

    Maragkoudakis, A.; Zezas, A.; Ashby, M. L. N.; Willner, S. P.

    2018-04-01

    We present activity demographics and host-galaxy properties of infrared-selected galaxies in the local Universe, using the representative Star Formation Reference Survey (SFRS). Our classification scheme is based on a combination of optical emission-line diagrams (BPT) and infrared (IR)-colour diagnostics. Using the weights assigned to the SFRS galaxies based on its parent sample, a far-IR-selected sample comprises 71 per cent H II galaxies, 13 per cent Seyferts, 3 per cent transition objects (TOs), and 13 per cent low-ionization nuclear emission-line regions (LINERs). For the SFRS H II galaxies, we derive nuclear star formation rates and gas-phase metallicities. We measure host-galaxy metallicities for all galaxies with available long-slit spectroscopy and abundance gradients for a subset of 12 face-on galaxies. The majority of H II galaxies show a narrow range of metallicities, close to solar, and flat metallicity profiles. Based on their host-galaxy and nuclear properties, the dominant ionizing source in the far-infrared selected TOs is star-forming activity. LINERs are found mostly in massive hosts (median of 1010.5 M⊙), median L(60 μm) = 109 L⊙, median dust temperatures of F60/F100 = 0.36, and median LH α surface density of 1040.2 erg s-1kpc-2, indicating older stellar populations as their main ionizing source rather than active galactic nucleus activity.

  13. The Spitzer/IRAC Star Formation Reference Survey

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Ashby, Matthew; Ashby, Matthew L. N.; Barmby, Pauline; Chakrabarti, Sukanya; Gonzalez-Alfonso, Eduardo; Huang, Jia-Sheng; Madden, Suzanne; Noeske, Kai; Pahre, Michael; Papovich, Casey; Robitaille, Thomas; Smith, Howard; Sturm, Eckhard; Surace, Jason; Wang, Zhong; Whitney, Barbara; Willner, Steven; Wu, Hong; Zezas, Andreas

    2008-03-01

    We propose a statistically robust study of 380 nearby, bright star-forming galaxies of all types to better understand the nature of star formation. The goal of this IRAC reference survey will be to measure total star formation rates via 8.0 micron PAH emission, with an emphasis on quantitative comparisons of multiple global star formation indicators including ultraviolet emission, H-alpha, and radio continuum measurements. The sample is selected to be fully representative of the entire ranges of infrared luminosity, dust temperature, and stellar mass exhibited by star-forming galaxies in the local universe: the sample galaxies exhibit all existing combinations of these properties with the minimum overall number, selected in a manner that allows results to be applied to the entire local galaxy population. Here we propose four-band Spitzer/IRAC photometry for the 275 out of 380 objects which lack suitable observations in the Spitzer archive. All sample galaxies already have extensive complementary data available including global ugrizJHK photometry plus radio continuum intensities. Most also have GALEX imaging; in addition we have already begun a ground-based campaign to acquire global H-alpha imaging for the complete sample. We are submitting this IRAC proposal in the context of a larger campaign that includes a GTO proposal to complete the MIPS 24 micron imaging, and a GO proposal to acquire the IRS low-resolution spectroscopy. Although these companion proposals will significantly increase the scientific return of our survey program, the success of this proposal is not contingent in any way on any other Spitzer proposal. Our international team is dedicated, experienced, and has adequate manpower and institutional resources, with expertise in all the relevant disciplines to ensure the success of this undertaking. PI Fazio believes this proposal to be the most important element of his extragalactic GTO program, and requests that it be assigned first priority.

  14. Galaxy And Mass Assembly (GAMA): bivariate functions of Hα star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Hopkins, A. M.; Taylor, E. N.; Bland-Hawthorn, J.; Norberg, P.; Baldry, I. K.; Loveday, J.; Owers, M. S.; Wilkins, S. M.; Colless, M.; Brown, M. J. I.; Driver, S. P.; Alpaslan, M.; Brough, S.; Cluver, M.; Croom, S.; Kelvin, L.; Lara-López, M. A.; Liske, J.; López-Sánchez, A. R.; Robotham, A. S. G.

    2015-02-01

    We present bivariate luminosity and stellar mass functions of Hα star-forming galaxies drawn from the Galaxy And Mass Assembly (GAMA) survey. While optically deep spectroscopic observations of GAMA over a wide sky area enable the detection of a large number of 0.001 < SFRHα (M⊙ yr-1) < 100 galaxies, the requirement for an Hα detection in targets selected from an r-band magnitude-limited survey leads to an incompleteness due to missing optically faint star-forming galaxies. Using z < 0.1 bivariate distributions as a reference we model the higher-z distributions, thereby approximating a correction for the missing optically faint star-forming galaxies to the local star formation rate (SFR) and M densities. Furthermore, we obtain the r-band luminosity functions (LFs) and stellar mass functions of Hα star-forming galaxies from the bivariate LFs. As our sample is selected on the basis of detected Hα emission, a direct tracer of ongoing star formation, this sample represents a true star-forming galaxy sample, and is drawn from both photometrically classified blue and red subpopulations, though mostly from the blue population. On average 20-30 per cent of red galaxies at all stellar masses are star forming, implying that these galaxies may be dusty star-forming systems.

  15. The star forming universe after z=1

    NASA Astrophysics Data System (ADS)

    Harker, Justin J.

    This dissertation explores three projects in the field of galaxy formation and evolution: the formation of the red sequence via quenching, the detection, characterization, and frequency of starbursts in the DEEP2 sample, and the behavior of a main sequence of star forming galaxies whose behavior is determined by baryonic mass, referred to as staged star formation. The first section, in Chapter 2, presents a breakdown of several population synthesis models designed to probe the history of the red sequence. Known from measurements at low redshift to be composed of objects with a large range of ages, the red sequence is not well-modeled as being the result of a single monolithic event in the distant past. By combining information on restframe color, Balmer absorption line strengths, and the number density of L* galaxies as a function of redshift, we find evidence that the red sequence is built up over time. The second section, in Chapter 3 and 4, presents a novel method for determining simultaneously the absorption line and emission line contributions to the total measured equivalent width of Balmer lines. Relying on the predictable behavior of both absorption lines, which are to first order equivalent to one another, and emission lines, which follow a predictable decrement toward shorter wavelengths, a single measurement of total line strength for Hb and Hd yield uncoupled emission and absorption line components. Using the measurement of Hd in absorption against D n 4000 and Hb in emission, we isolate a population of potential starbursts in the DEEP2 sample. The final section, in Chapter 5, explores the regularity of star formation as a function of redshift, using the staged star formation prescription of Noeske et al. (2007a). We compute a set of t-models using the prescription, and compare them to the data in a number of parameters in addition to mass and star formation. While the staged star formation model is a good match in a number of parameters, we find several irregularities.

  16. Zodiacal Exoplanets in Time: Searching for Young Stars in K2

    NASA Astrophysics Data System (ADS)

    Morris, Nathan; Mann, Andrew W.

    2017-06-01

    Nearby young, open clusters such as the Hyades, Pleiades, and Praesepe provide an important reference point for the properties of stellar systems in general. In each cluster, all stars are of the same known age. As such, observations of planetary systems around these stars can be used to gain insight into the early stages of planetary system formation. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in the and elsewhere in the K2 field. We aim to compute rotational periods from sunspot patterns for all K2 target stars and use gyrochronometric relationships derived from cluster stars to determine their ages. From there, we will search for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve with time.

  17. Using Massive Star Clusters in Merger Remnants To Provide Reference Colors of Intermediate-Age Stellar Populations

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    2009-07-01

    Much current research in cosmology and galaxy formation relies on an accurate interpretation of colors of galaxies in terms of their evolutionary state, i.e., in terms of ages and metallicities. One particularly important topic is the ability to identify early-type galaxies at "intermediate" ages { 500 Myr - 5 Gyr}, i.e., the period between the end of star formation and half the age of the universe. Currently, integrated-light studies must rely on population synthesis models which rest upon spectral libraries of stars in the solar neighborhood. These models have a difficult time correctly incorporating short-lived evolutionary phases such as thermally pulsing AGB stars, which produce up to 80% of the flux in the near-IR in this age range. Furthermore, intermediate-age star clusters in the Local Group do not represent proper templates against which to calibrate population synthesis models in this age range, because their masses are too low to render the effect of stochastic fluctuations due to the number of bright RGB and AGB stars negligible. As a consequence, current population synthesis models have trouble reconciling the evolutionary state of high-redshift galaxies from optical versus near-IR colors. We propose a simple and effective solution to this issue, namely obtaining high-quality EMPIRICAL colors of massive globular clusters in galaxy merger remnants which span this important age range. These colors should serve as relevant references, both to identify intermediate-age objects in the local and distant universe and as calibrators for population synthesis modellers.

  18. Post-main-sequence planetary system evolution.

    PubMed

    Veras, Dimitri

    2016-02-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries.

  19. Estimating the Star Formation Rate at 1 kpc Scales in nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Leroy, Adam K.; Bigiel, Frank; de Blok, W. J. G.; Boissier, Samuel; Bolatto, Alberto; Brinks, Elias; Madore, Barry; Munoz-Mateos, Juan-Carlos; Murphy, Eric; Sandstrom, Karin; Schruba, Andreas; Walter, Fabian

    2012-07-01

    Using combinations of Hα, ultraviolet (UV), and infrared (IR) emission, we estimate the star formation rate (SFR) surface density, ΣSFR, at 1 kpc resolution for 30 disk galaxies that are targets of the IRAM HERACLES CO survey. We present a new physically motivated IR spectral-energy-distribution-based approach to account for possible contributions to 24 μm emission not associated with recent star formation. Considering a variety of "reference" SFRs from the literature, we revisit the calibration of the 24 μm term in hybrid (UV+IR or Hα+IR) tracers. We show that the overall calibration of this term remains uncertain at the factor of two level because of the lack of wide-field, robust reference SFR estimates. Within this uncertainty, published calibrations represent a reasonable starting point for 1 kpc-wide areas of star-forming disk galaxies, but we re-derive and refine the calibration of the IR term in these tracers to match our resolution and approach to 24 μm emission. We compare a large suite of ΣSFR estimates and find that above ΣSFR ~ 10-3 M ⊙ yr-1 kpc-2 the systematic differences among tracers are less than a factor of two across two orders of magnitude dynamic range. We caution that methodology and data both become serious issues below this level. We note from simple model considerations that when focusing on a part of a galaxy dominated by a single stellar population, the intrinsic uncertainty in Hα- and FUV-based SFRs is ~0.3 and ~0.5 dex.

  20. SDSS-IV MaNGA - the spatially resolved transition from star formation to quiescence

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Diamond-Stanic, Aleksandar M.; Drory, Niv; Heckman, Timothy M.; Law, David R.; Malanushenko, Olena; Oravetz, Audrey; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2017-04-01

    Using spatially resolved spectroscopy from SDSS-IV MaNGA we have demonstrated that low ionization emission-line regions (LIERs) in local galaxies result from photoionization by hot evolved stars, not active galactic nuclei, hence tracing galactic region hosting old stellar population where, despite the presence of ionized gas, star formation is no longer occurring. LIERs are ubiquitous in both quiescent galaxies and in the central regions of galaxies where star formation takes place at larger radii. We refer to these two classes of galaxies as extended LIER (eLIER) and central LIER (cLIER) galaxies, respectively. cLIERs are late-type galaxies primarily spread across the green valley, in the transition region between the star formation main sequence and quiescent galaxies. These galaxies display regular disc rotation in both stars and gas, although featuring a higher central stellar velocity dispersion than star-forming galaxies of the same mass. cLIERs are consistent with being slowly quenched inside-out; the transformation is associated with massive bulges, pointing towards the importance of bulge growth via secular evolution. eLIERs are morphologically early types and are indistinguishable from passive galaxies devoid of line emission in terms of their stellar populations, morphology and central stellar velocity dispersion. Ionized gas in eLIERs shows both disturbed and disc-like kinematics. When a large-scale flow/rotation is observed in the gas, it is often misaligned relative to the stellar component. These features indicate that eLIERs are passive galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Importantly, quiescent galaxies devoid of line emission reside in denser environments and have significantly higher satellite fraction than eLIERs. Environmental effects thus represent the likely cause for the existence of line-less galaxies on the red sequence.

  1. Variations of the stellar initial mass function in semi-analytical models - II. The impact of cosmic ray regulation

    NASA Astrophysics Data System (ADS)

    Fontanot, Fabio; De Lucia, Gabriella; Xie, Lizhi; Hirschmann, Michaela; Bruzual, Gustavo; Charlot, Stéphane

    2018-04-01

    Recent studies proposed that cosmic rays (CRs) are a key ingredient in setting the conditions for star formation, thanks to their ability to alter the thermal and chemical state of dense gas in the ultraviolet-shielded cores of molecular clouds. In this paper, we explore their role as regulators of the stellar initial mass function (IMF) variations, using the semi-analytic model for GAlaxy Evolution and Assembly (GAEA). The new model confirms our previous results obtained using the integrated galaxy-wide IMF (IGIMF) theory. Both variable IMF models reproduce the observed increase of α-enhancement as a function of stellar mass and the measured z = 0 excess of dynamical mass-to-light ratios with respect to photometric estimates assuming a universal IMF. We focus here on the mismatch between the photometrically derived (M^app_{\\star }) and intrinsic (M⋆) stellar masses, by analysing in detail the evolution of model galaxies with different values of M_{\\star }/M^app_{\\star }. We find that galaxies with small deviations (i.e. formally consistent with a universal IMF hypothesis) are characterized by more extended star formation histories and live in less massive haloes with respect to the bulk of the galaxy population. In particular, the IGIMF theory does not change significantly the mean evolution of model galaxies with respect to the reference model, a CR-regulated IMF instead implies shorter star formation histories and higher peaks of star formation for objects more massive than 1010.5 M⊙. However, we also show that it is difficult to unveil this behaviour from observations, as the key physical quantities are typically derived assuming a universal IMF.

  2. Probing the Extreme Environment of the Galactic Center with Observations from SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Herter, Terry L.; Morris, Mark; Adams, Joseph D; Becklin, Eric E.

    2014-06-01

    In this thesis we present a study of the inner 40 pc of the Galactic center addressing the dense, dusty torus around Sgr A*, dust production around massive stars, and massive star formation. Observations of warm dust emission from the Galactic center were performed using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). A dense, molecular torus referred to as the Circumnuclear Disk (CND) orbits Sgr A* with an inner radius of ~1.4 pc and extending to ~7 pc. The inner edge of the CND, which we refer to as the Circumnuclear Ring (CNR), exhibits features of a classic HII region and appears consistent with the prevailing paradigm in which the dust is heated by the Central cluster of hot, young stars. We do not detect any star formation occurring in the CNR; however, we reveal the presence of density “clumps” along the inner edge of the CNR. These clumps are not dense enough to be stable against tidal shear from Sgr A* and will be sheared out before completing a full orbit 10^5 yrs). Three Luminous Blue Variables (LBVs) are located in and near the Quintuplet Cluster 40 pc in projection from Sgr A*: qF362, the Pistol star, G0.120-0.048 (LBV3). FORCAST observation reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding LBV3. However, no detection of hot dust associated with qF362 is made. We argue that the Pistol star and LBV3 are identical “twins” that exhibit contrasting nebulae due to the external influence of their different environments. G-0.02-0.07, a complex consisting of three compact HII regions and one ultracompact HII region, is located at the edge of a molecular cloud 6 pc in projection to the east of Sgr A* and contains the most recent episode of star formation in the Galactic center. We probe the dust morphology, energetics, and composition of the regions to study the star forming conditions of a molecular cloud in the strong gravitational potential of Sgr A*.

  3. Quenching of the star formation activity in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Roehlly, Y.; Fossati, M.; Buat, V.; Boissier, S.; Boquien, M.; Burgarella, D.; Ciesla, L.; Gavazzi, G.; Serra, P.

    2016-11-01

    We study the star formation quenching mechanism in cluster galaxies by fitting the spectral energy distribution (SED) of the Herschel Reference Survey, a complete volume-limited K-band-selected sample of nearby galaxies including objects in different density regions, from the core of the Virgo cluster to the general field. The SEDs of the target galaxies were fitted using the CIGALE SED modelling code. The truncated activity of cluster galaxies was parametrised using a specific star formation history with two free parameters, the quenching age QA and the quenching factor QF. These two parameters are crucial for the identification of the quenching mechanism, which acts on long timescales when starvation processes are at work, but is rapid and efficient when ram pressure occurs. To be sensitive to an abrupt and recent variation of the star formation activity, we combined twenty photometric bands in the UV to far-infrared in a new way with three age-sensitive Balmer line absorption indices extracted from available medium-resolution (R 1000) integrated spectroscopy and with Hα narrow-band imaging data. The use of a truncated star formation history significantly increases the quality of the fit in HI-deficient galaxies of the sample, that is to say, in those objects whose atomic gas content has been removed during the interaction with the hostile cluster environment. The typical quenching age of the perturbed late-type galaxies is QA ≲ 300 Myr whenever the activity of star formation is reduced by 50% < QF ≤ 80% and QA ≲ 500 Myr for QF > 80%, while that of the quiescent early-type objects is QA ≃ 1-3 Gyr. The fraction of late-type galaxies with a star formation activity reduced by QF > 80% and with an HI-deficiency parameter HI-def > 0.4 drops by a factor of 5 from the inner half virial radius of the Virgo cluster (R/Rvir < 0.5), where the hot diffuse X-ray emitting gas of the cluster is located, to the outer regions (R/Rvir > 4). The efficient quenching of the star formation activity observed in Virgo suggests that the dominant stripping process is ram pressure. We discuss the implication of this result in the cosmological context of galaxy evolution.

  4. Post-main-sequence planetary system evolution

    PubMed Central

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  5. Legacy Extragalactic UV Survey (LEGUS) With the Hubble Space Telescope. I. Survey Description

    NASA Astrophysics Data System (ADS)

    Calzetti, D.; Lee, J. C.; Sabbi, E.; Adamo, A.; Smith, L. J.; Andrews, J. E.; Ubeda, L.; Bright, S. N.; Thilker, D.; Aloisi, A.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; da Silva, R.; de Mink, S. E.; Dobbs, C.; Elmegreen, B. G.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Kim, H.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Ryon, J. E.; Schaerer, D.; Schiminovich, D.; Tosi, M.; Van Dyk, S. D.; Walterbos, R.; Whitmore, B. C.; Wofford, A.

    2015-02-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars to those of ˜kiloparsec-size clustered structures. Five-band imaging from the near-ultraviolet to the I band with the Wide-Field Camera 3 (WFC3), plus parallel optical imaging with the Advanced Camera for Surveys (ACS), is being collected for selected pointings of 50 galaxies within the local 12 Mpc. The filters used for the observations with the WFC3 are F275W(λ2704 Å), F336W(λ3355 Å), F438W(λ4325 Å), F555W(λ5308 Å), and F814W(λ8024 Å) the parallel observations with the ACS use the filters F435W(λ4328 Å), F606W(λ5921 Å), and F814W(λ8057 Å). The multiband images are yielding accurate recent (≲50 Myr) star formation histories from resolved massive stars and the extinction-corrected ages and masses of star clusters and associations. The extensive inventories of massive stars and clustered systems will be used to investigate the spatial and temporal evolution of star formation within galaxies. This will, in turn, inform theories of galaxy evolution and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of star formation at high redshift. This paper describes the survey, its goals and observational strategy, and the initial scientific results. Because LEGUS will provide a reference survey and a foundation for future observations with the James Webb Space Telescope and with ALMA, a large number of data products are planned for delivery to the community. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS 5-26555.

  6. An Observational Study of Blended Young Stellar Clusters in the Galactic Plane - Do Massive Stars form First?

    NASA Astrophysics Data System (ADS)

    Martínez-Galarza, Rafael; Protopapas, Pavlos; Smith, Howard A.; Morales, Esteban

    2018-01-01

    From an observational point of view, the early life of massive stars is difficult to understand partly because star formation occurs in crowded clusters where individual stars often appear blended together in the beams of infrared telescopes. This renders the characterization of the physical properties of young embedded clusters via spectral energy distribution (SED) fitting a challenging task. Of particular relevance for the testing of star formation models is the question of whether the claimed universality of the IMF (references) is reflected in an equally universal integrated galactic initial mass function (IGIMF) of stars. In other words, is the set of all stellar masses in the galaxy sampled from a single universal IMF, or does the distribution of masses depend on the environment, making the IGIMF different from the canonical IMF? If the latter is true, how different are the two? We present a infrared SED analysis of ~70 Spitzer-selected, low mass ($<100~\\rm{M}_{\\odot}$), galactic blended clusters. For all of the clusters we obtain the most probable individual SED of each member and derive their physical properties, effectively deblending the confused emission from individual YSOs. Our algorithm incorporates a combined probabilistic model of the blended SEDs and the unresolved images in the long-wavelength end. We find that our results are compatible with competitive accretion in the central regions of young clusters, with the most massive stars forming early on in the process and less massive stars forming about 1Myr later. We also find evidence for a relationship between the total stellar mass of the cluster and the mass of the most massive member that favors optimal sampling in the cluster and disfavors random sampling for the canonical IMF, implying that star formation is self-regulated, and that the mass of the most massive star in a cluster depends on the available resources. The method presented here is easily adapted to future observations of clustered regions of star formation with JWST and other high resolution facilities.

  7. ESTIMATING THE STAR FORMATION RATE AT 1 kpc SCALES IN NEARBY GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos; Bigiel, Frank

    2012-07-15

    Using combinations of H{alpha}, ultraviolet (UV), and infrared (IR) emission, we estimate the star formation rate (SFR) surface density, {Sigma}{sub SFR}, at 1 kpc resolution for 30 disk galaxies that are targets of the IRAM HERACLES CO survey. We present a new physically motivated IR spectral-energy-distribution-based approach to account for possible contributions to 24 {mu}m emission not associated with recent star formation. Considering a variety of 'reference' SFRs from the literature, we revisit the calibration of the 24 {mu}m term in hybrid (UV+IR or H{alpha}+IR) tracers. We show that the overall calibration of this term remains uncertain at the factormore » of two level because of the lack of wide-field, robust reference SFR estimates. Within this uncertainty, published calibrations represent a reasonable starting point for 1 kpc-wide areas of star-forming disk galaxies, but we re-derive and refine the calibration of the IR term in these tracers to match our resolution and approach to 24 {mu}m emission. We compare a large suite of {Sigma}{sub SFR} estimates and find that above {Sigma}{sub SFR} {approx} 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2} the systematic differences among tracers are less than a factor of two across two orders of magnitude dynamic range. We caution that methodology and data both become serious issues below this level. We note from simple model considerations that when focusing on a part of a galaxy dominated by a single stellar population, the intrinsic uncertainty in H{alpha}- and FUV-based SFRs is {approx}0.3 and {approx}0.5 dex.« less

  8. Celestial paleontology: The legacy of dying stars

    NASA Astrophysics Data System (ADS)

    Hart, Alexa H.

    2013-03-01

    In their death throes, stars dole out their atmospheric material to the interstellar medium in dramatic stellar winds and spectacular explosions. The details of this profound metamorphosis, from star to remnant, play a key role in the next generation of star formation as well as the energetic and chemical evolution of galaxies and the universe as a whole. Dying stars are thought to be the source of all of the nuclei heavier than iron in the universe, as well as more complex molecules, such as carbon chains, which form the backbone of life as we know it. High mass Wolf-Rayet stars are likely progenitors of many types of Supernova, yet due to observational constraints we lack the most basic information about most of them: rather they are part of binary systems. This information is key to the determination of rather or not these stars will go supernova, since depending on its nature the companion can either draw mass off the Wolf-Rayet star, effectively quenching the march to explosion, or feed material onto the Wolf-Rayet star, speeding its demise as a supernova. Models of galactic evolution depend sensitively on the frequency of supernova for several reasons: they inject a great deal of energy into the Interstellar medium, they are the only known producers of nuclei heavier than nickel, and the shock waves that they create can stimulate star formation. In turn, the energy generated by supernova explosions drives the galactic wind, the heavier elements now present in the Interstellar Medium increase the efficiency of star formation, and the groups of new stars formed in the wake of a shock are thought to lead to the development of spiral arms in galaxies. In addition, because high mass stars are so short-lived, they can cycle through hundreds of generations in the time it takes one solar-type star's to evolve. Though intermediate mass stars merely fizzle out in comparison, they are pivotal to the evolution of the universe because they make up over 97% of the stars that have had enough time to evolve off the Main Sequence since the Big Bang. These stars produce more than half of the carbon in the universe as well as much of the nitrogen, oxygen, and more complex molecules such as aromatic rings of carbon. This process, often referred to as chemical enrichment, strongly affects the star formation rates and the characteristics of the next generation of stars. In this work, we explore the contributions of these two classes of stars to our own galaxy: we quantify the nature of the chemical enrichment to the Milky Way from a large sample of intermediate mass stars, and determine the binary status of a sample of Wolf-Rayet stars in the Milky Way.

  9. A two-step initial mass function:. Consequences of clustered star formation for binary properties

    NASA Astrophysics Data System (ADS)

    Durisen, R. H.; Sterzik, M. F.; Pickett, B. K.

    2001-06-01

    If stars originate in transient bound clusters of moderate size, these clusters will decay due to dynamic interactions in which a hard binary forms and ejects most or all the other stars. When the cluster members are chosen at random from a reasonable initial mass function (IMF), the resulting binary characteristics do not match current observations. We find a significant improvement in the trends of binary properties from this scenario when an additional constraint is taken into account, namely that there is a distribution of total cluster masses set by the masses of the cloud cores from which the clusters form. Two distinct steps then determine final stellar masses - the choice of a cluster mass and the formation of the individual stars. We refer to this as a ``two-step'' IMF. Simple statistical arguments are used in this paper to show that a two-step IMF, combined with typical results from dynamic few-body system decay, tends to give better agreement between computed binary characteristics and observations than a one-step mass selection process.

  10. Studies of extra-solar OORT clouds and the Kuiper disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1993-01-01

    This is the second report for NAGW-3023, Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for infering the presence of planetary systems. Our three-year effort consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including Beta Pic. These efforts are referred to as Task 1 and 2, respectively.

  11. Studies of extra-solar Oort Clouds and the Kuiper Disk

    NASA Technical Reports Server (NTRS)

    Stern, Alan

    1995-01-01

    This is the September 1995 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic. These efforts are referred to as Task 1 and 2.

  12. Dynamical masses of pms stars in the taurus star formation region

    NASA Astrophysics Data System (ADS)

    Simon, M.

    2013-02-01

    Our preliminary orbital parameters for DF Tau, T Tau Sa-Sb, ZZ Tau and the Pleaides binary are presented in the paper Orbital Motion in Pre-Main Sequence Binaries by G.H. Schaefer, L. Prato, M. Simon, & J. Patience (2013, in prep. for AJ). In the few pages available here I present an overview of our motivation for this work and of our results. The slides and complete references for my talk at the Leuven conference are available at http://www.astro.sunysb.edu/msimon/public.

  13. Star formation across cosmic time and its influence on galactic dynamics

    NASA Astrophysics Data System (ADS)

    Freundlich, Jonathan

    2015-12-01

    Observations show that ten billion years ago, galaxies formed their stars at rates up to twenty times higher than now. As stars are formed from cold molecular gas, a high star formation rate means a significant gas supply, and galaxies near the peak epoch of star formation are indeed much more gas-rich than nearby galaxies. Is the decline of the star formation rate mostly driven by the diminishing cold gas reservoir, or are the star formation processes also qualitatively different earlier in the history of the Universe? Ten billion years ago, young galaxies were clumpy and prone to violent gravitational instabilities, which may have contributed to their high star formation rate. Stars indeed form within giant, gravitationally-bound molecular clouds. But the earliest phases of star formation are still poorly understood. Some scenarii suggest the importance of interstellar filamentary structures as a first step towards core and star formation. How would their filamentary geometry affect pre-stellar cores? Feedback mechanisms related to stellar evolution also play an important role in regulating star formation, for example through powerful stellar winds and supernovae explosions which expel some of the gas and can even disturb the dark matter distribution in which each galaxy is assumed to be embedded. This PhD work focuses on three perspectives: (i) star formation near the peak epoch of star formation as seen from observations at sub-galactic scales; (ii) the formation of pre-stellar cores within the filamentary structures of the interstellar medium; and (iii) the effect of feedback processes resulting from star formation and evolution on the dark matter distribution.

  14. Examining Sites of Recent Star Formation in the Galactic Center: A Closer Look at the Arched Filaments and H HII Regions

    NASA Astrophysics Data System (ADS)

    Hankins, Matthew; Herter, Terry; Lau, Ryan; Morris, Mark; Mills, Elisabeth

    2018-01-01

    In this dissertation presentation, we analyze mid-infrared imaging of the Arched Filaments and H HII regions in the Galactic center taken with the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). Examining these regions are of great interest because they provide insights on star formation in the Galactic center and the interactions massive stars have with the ISM. The Arched Filaments are a collection of molecular cloud ridges which are ionized by the nearby Arches star cluster, and give the appearance of large (~25 pc) arch-like structures. The H HII regions are a collection of HII regions just to the west of the Arches cluster (~5-15 pc). The origin of the stars powering the H HII regions is uncertain, as they may have formed in a nearby molecular cloud or could be ejected members of the Arches cluster. FORCAST observations of these regions were used to study the morphology and heating structure of the HII regions, as well as constrain their luminosities.Color-temperature maps of the Arched Filaments created with the FORCAST data reveals fairly uniform dust temperatures (~70-100 K) across the length filaments. The temperature uniformity of the clouds can be explained if they are heated by the Arches cluster but are located at a larger distance from the cluster than they appear. The density of the Arched Filaments clouds was estimated from the FORCAST data and was found to be below the threshold for tidal shearing, indicating that that the clouds will be destroyed by the strong tidal field near the Galactic center. To the west of the Arched Filaments, there is an interesting collection of HII regions, referred to as the H HII regions. These regions are likely heated by massive O/B type stars, and the morphology of the dust emission associated with these objects indicate a mixture of potential in situ formation mechanisms and interlopers. Interestingly, FORCAST imaging of the H HII regions also reveal several compact sources, which may be young embedded stars. We discuss these sources in the context of star formation scenarios in the Galactic center.

  15. Star formation inside a galactic outflow.

    PubMed

    Maiolino, R; Russell, H R; Fabian, A C; Carniani, S; Gallagher, R; Cazzoli, S; Arribas, S; Belfiore, F; Bellocchi, E; Colina, L; Cresci, G; Ishibashi, W; Marconi, A; Mannucci, F; Oliva, E; Sturm, E

    2017-04-13

    Recent observations have revealed massive galactic molecular outflows that may have the physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.

  16. Unfolding the laws of star formation: the density distribution of molecular clouds.

    PubMed

    Kainulainen, Jouni; Federrath, Christoph; Henning, Thomas

    2014-04-11

    The formation of stars shapes the structure and evolution of entire galaxies. The rate and efficiency of this process are affected substantially by the density structure of the individual molecular clouds in which stars form. The most fundamental measure of this structure is the probability density function of volume densities (ρ-PDF), which determines the star formation rates predicted with analytical models. This function has remained unconstrained by observations. We have developed an approach to quantify ρ-PDFs and establish their relation to star formation. The ρ-PDFs instigate a density threshold of star formation and allow us to quantify the star formation efficiency above it. The ρ-PDFs provide new constraints for star formation theories and correctly predict several key properties of the star-forming interstellar medium.

  17. Photoionization-regulated star formation and the structure of molecular clouds

    NASA Technical Reports Server (NTRS)

    Mckee, Christopher F.

    1989-01-01

    A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.

  18. Massive Star Formation Viewed through Extragalactic-Tinted Glasses

    NASA Astrophysics Data System (ADS)

    Willis, Sarah; Marengo, M.; Smith, H. A.; Allen, L.

    2014-01-01

    Massive Galactic star forming regions are the local analogs to the luminous star forming regions that dominate the emission from star forming galaxies. Their proximity to us enables the characterization of the full range of stellar masses that form in these more massive environments, improving our understanding of star formation tracers used in extragalactic studies. We have surveyed a sample of massive star forming regions with a range of morphologies and luminosities to probe the star formation activity in a variety of environments. We have used Spitzer IRAC and deep ground based J, H, Ks observations to characterize the Young Stellar Object (YSO) content of 6 massive star forming regions. These YSOs provide insight into the rate and efficiency of star formation within these regions, and enable comparison with nearby, low mass star forming regions as well as extreme cases of Galactic star formation including ‘mini-starburst’ regions. In addition, we have conducted an in-depth analysis of NGC 6334 to investigate how the star formation activity varies within an individual star forming region, using Herschel data in the far-infrared to probe the earliest stages of the ongoing star formation activity.

  19. Testing the universality of the star-formation efficiency in dense molecular gas

    NASA Astrophysics Data System (ADS)

    Shimajiri, Y.; André, Ph.; Braine, J.; Könyves, V.; Schneider, N.; Bontemps, S.; Ladjelate, B.; Roy, A.; Gao, Y.; Chen, H.

    2017-08-01

    Context. Recent studies with, for example, Spitzer and Herschel have suggested that star formation in dense molecular gas may be governed by essentially the same "law" in Galactic clouds and external galaxies. This conclusion remains controversial, however, in large part because different tracers have been used to probe the mass of dense molecular gas in Galactic and extragalactic studies. Aims: We aimed to calibrate the HCN and HCO+ lines commonly used as dense gas tracers in extragalactic studies and to test the possible universality of the star-formation efficiency in dense gas (≳104 cm-3), SFEdense. Methods: We conducted wide-field mapping of the Aquila, Ophiuchus, and Orion B clouds at 0.04 pc resolution in the J = 1 - 0 transition of HCN, HCO+, and their isotopomers. For each cloud, we derived a reference estimate of the dense gas mass MHerschelAV > 8, as well as the strength of the local far-ultraviolet (FUV) radiation field, using Herschel Gould Belt survey data products, and estimated the star-formation rate from direct counting of the number of Spitzer young stellar objects. Results: The H13CO+(1-0) and H13CN(1-0) lines were observed to be good tracers of the dense star-forming filaments detected with Herschel. Comparing the luminosities LHCN and LHCO+ measured in the HCN and HCO+ lines with the reference masses MHerschelAV > 8, the empirical conversion factors αHerschel - HCN (=MHerschelAV > 8/LHCN) and αHerschel - HCO+ (=MHerschelAV > 8/LHCO+) were found to be significantly anti-correlated with the local FUV strength. In agreement with a recent independent study of Orion B by Pety et al., the HCN and HCO+ lines were found to trace gas down to AV ≳ 2. As a result, published extragalactic HCN studies must be tracing all of the moderate density gas down to nH2 ≲ 103 cm-3. Estimating the contribution of this moderate density gas from the typical column density probability distribution functions in nearby clouds, we obtained the following G0-dependent HCN conversion factor for external galaxies: αHerschel - HCNfit' = 64 × G0-0.34. Re-estimating the dense gas masses in external galaxies with αHerschel - HCNfit'(G0), we found that SFEdense is remarkably constant, with a scatter of less than 1.5 orders of magnitude around 4.5 × 10-8 yr-1, over eight orders of magnitude in dense gas mass. Conclusions: Our results confirm that SFEdense of galaxies is quasi-universal on a wide range of scales from 1-10 pc to > 10 kpc. Based on the tight link between star formation and filamentary structure found in Herschel studies of nearby clouds, we argue that SFEdense is primarily set by the "microphysics" of core and star formation along filaments. Partly based on observations carried out with the IRAM 30 m Telescope under project numbers 150-14 and 032-15. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  20. The imprint of rapid star formation quenching on the spectral energy distributions of galaxies

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Boselli, A.; Elbaz, D.; Boissier, S.; Buat, V.; Charmandaris, V.; Schreiber, C.; Béthermin, M.; Baes, M.; Boquien, M.; De Looze, I.; Fernández-Ontiveros, J. A.; Pappalardo, C.; Spinoglio, L.; Viaene, S.

    2016-01-01

    In high density environments, the gas content of galaxies is stripped, leading to a rapid quenching of their star formation activity. This dramatic environmental effect, which is not related to typical passive evolution, is generally not taken into account in the star formation histories (SFHs) usually assumed to perform spectral energy distribution (SED) fitting of these galaxies, yielding a poor fit of their stellar emission and, consequently, biased estimate of the star formation rate (SFR). In this work, we aim at reproducing this rapid quenching using a truncated delayed SFH that we implemented in the SED fitting code CIGALE. We show that the ratio between the instantaneous SFR and the SFR just before the quenching (rSFR) is well constrained as long as rest-frame UV data are available. This SED modeling is applied to the Herschel Reference Survey (HRS) containing isolated galaxies and sources falling in the dense environment of the Virgo cluster. The latter are Hi-deficient because of ram pressure stripping. We show that the truncated delayed SFH successfully reproduces their SED, while typical SFH assumptions fail. A good correlation is found between rSFR and Hi-def, the parameter that quantifies the gas deficiency of cluster galaxies, meaning that SED fitting results can be used to provide a tentative estimate of the gas deficiency of galaxies for which Hi observations are not available. The HRS galaxies are placed on the SFR-M∗ diagram showing that the Hi-deficient sources lie in the quiescent region, thus confirming previous studies. Using the rSFR parameter, we derive the SFR of these sources before quenching and show that they were previously on the main sequence relation. We show that the rSFR parameter is also recovered well for deeply obscured high redshift sources, as well as in the absence of IR data. SED fitting is thus a powerful tool for identifying galaxies that underwent a rapid star formation quenching.

  1. A Simple Non-equilibrium Model of Star Formation and Scatter in the Kennicutt-Schmidt Relation and Star Formation Efficiencies in Galaxies

    NASA Astrophysics Data System (ADS)

    Orr, Matthew; Hopkins, Philip F.

    2018-06-01

    I will present a simple model of non-equilibrium star formation and its relation to the scatter in the Kennicutt-Schmidt relation and large-scale star formation efficiencies in galaxies. I will highlight the importance of a hierarchy of timescales, between the galaxy dynamical time, local free-fall time, the delay time of stellar feedback, and temporal overlap in observables, in setting the scatter of the observed star formation rates for a given gas mass. Further, I will talk about how these timescales (and their associated duty-cycles of star formation) influence interpretations of the large-scale star formation efficiency in reasonably star-forming galaxies. Lastly, the connection with galactic centers and out-of-equilibrium feedback conditions will be mentioned.

  2. The spatial extent and distribution of star formation in 3D-HST mergers at z ˜ 1.5

    NASA Astrophysics Data System (ADS)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; van Dokkum, Pieter; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; Lundgren, Britt; Maseda, Michael V.; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van der Wel, Arjen; Whitaker, Katherine E.

    2013-06-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z > 1. Our sample, drawn from the 3D-HST survey, is flux limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems, with total stellar masses and star formation rates derived from multiwavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce Hα or [O III] emission line maps as proxies for star formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58 per cent) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass or star formation rate are found. A restricted set of hydrodynamical merger simulations between similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z ˜ 1.5 mergers typically occur between galaxies whose gas fractions, masses and/or star formation rates are distinctly different from one another.

  3. The Spatial Extent and Distribution of Star Formation in 3D-HST Mergers at z is approximately 1.5

    NASA Technical Reports Server (NTRS)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; Van Dokkum, Pieter; Foerster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; hide

    2013-01-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z greater than 1. Our sample, drawn from the 3D-HST survey, is flux-limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems,with total stellar masses and star formation rates derived from multi-wavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce H or [OIII] emission line maps as proxies for star-formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58%) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass, or star formation rate are found. A restricted set of hydrodynamical merger simulationsbetween similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z is approximately 1.5 mergers typically occur between galaxies whose gas fractions, masses, andor star formation rates are distinctly different from one another.

  4. TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star Formation

    NASA Astrophysics Data System (ADS)

    Rigby, Jane; Vieira, Joaquin; Bayliss, M.; Fischer, T.; Florian, M.; Gladders, M.; Gonzalez, A.; Law, D.; Marrone, D.; Phadke, K.; Sharon, K.; Spilker, J.

    2017-11-01

    We propose high signal-to-noise NIRSpec and MIRI IFU spectroscopy, with accompanying imaging, for 4 gravitationally lensed galaxies at 1

  5. Forecast analysis of optical waveguide bus performance

    NASA Technical Reports Server (NTRS)

    Ledesma, R.; Rourke, M. D.

    1979-01-01

    Elements to be considered in the design of a data bus include: architecture; data rate; modulation, encoding, detection; power distribution requirements; protocol, work structure; bus reliability, maintainability; interterminal transmission medium; cost; and others specific to application. Fiber- optic data bus considerations for a 32 port transmissive star architecture, are discussed in a tutorial format. General optical-waveguide bus concepts, are reviewed. The electrical and optical performance of a 32 port transmissive star bus, and the effects of temperature on the performance of optical-waveguide buses are examined. A bibliography of pertinent references and the bus receiver test results are included.

  6. Spatial Distribution of Star Formation in High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Cunnyngham, Ian; Takamiya, M.; Willmer, C.; Chun, M.; Young, M.

    2011-01-01

    Integral field unit spectroscopy taken of galaxies with redshifts between 0.6 and 0.8 utilizing Gemini Observatory’s GMOS instrument were used to investigate the spatial distribution of star-forming regions by measuring the Hβ and [OII]λ3727 emission line fluxes. These galaxies were selected based on the strength of Hβ and [OII]λ3727 as measured from slit LRIS/Keck spectra. The process of calibrating and reducing data into cubes -- possessing two spatial dimensions, and one for wavelength -- was automated via a custom batch script using the Gemini IRAF routines. Among these galaxies only the bluest sources clearly show [OII] in the IFU regardless of total galaxy luminosity. The brightest galaxies lack [OII] emission and it is posited that two different modes of star formation exist among this seemingly homogeneous group of z=0.7 star-forming galaxies. In order to increase the galaxy sample to include redshifts from 0.3 to 0.9, public Gemini IFU data are being sought. Python scripts were written to mine the Gemini Science Archive for candidate observations, cross-reference the target of these observations with information from the NASA Extragalactic Database, and then present the resultant database in sortable, searchable, cross-linked web-interface using Django to facilitate navigation. By increasing the sample, we expect to characterize these two different modes of star formation which could be high-redshift counterparts of the U/LIRGs and dwarf starburst galaxies like NGC 1569/NGC 4449. The authors acknowledge funds provided by the National Science Foundation (AST 0909240).

  7. What drives the formation of massive stars and clusters?

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram; Meixner, Margaret; Roman-Duval, Julia; Evans, Neal J., II; Rahman, Mubdi; Zinnecker, Hans; Nayak, Omnarayani; Bally, John; Jones, Olivia C.; Indebetouw, Remy

    2018-01-01

    Galaxy-wide surveys allow to study star formation in unprecedented ways. In this talk, I will discuss our analysis of the Large Magellanic Cloud (LMC) and the Milky Way, and illustrate how studying both the large and small scale structure of galaxies are critical in addressing the question: what drives the formation of massive stars and clusters?I will show that ‘turbulence-regulated’ star formation models do not reproduce massive star formation properties of GMCs in the LMC and Milky Way: this suggests that theory currently does not capture the full complexity of star formation on small scales. I will also report on the discovery of a massive star forming complex in the LMC, which in many ways manifests itself as an embedded twin of 30 Doradus: this may shed light on the formation of R136 and 'Super Star Clusters' in general. Finally, I will highlight what we can expect in the next years in the field of star formation with large-scale sky surveys, ALMA, and our JWST-GTO program.

  8. The Role of Stellar Feedback on the Structure of the ISM and Star Formation in Galaxies

    NASA Astrophysics Data System (ADS)

    Grisdale, Kearn Michael

    2017-08-01

    Stellar feedback refers to the injection of energy, momentum and mass into the interstellar medium (ISM) by massive stars. This feedback owes to a combination of ionising radiation, radiation pressure, stellar winds and supernovae and is likely responsible both for the inefficiency of star formation in galaxies, and the observed super-sonic turbulence of the ISM. In this thesis, I study how stellar feedback shapes the ISM thereby regulating galaxy evolution. In particular, I focus on three key questions: (i) How does stellar feedback shape the gas density distribution of the ISM? (ii) How does feedback change or influence the distribution of the kinetic energy in the ISM? and (iii) What role does feedback play in determining the star formation efficiency of giant molecular clouds (GMCs)? To answer these questions, I run high resolution (Deltax 4.6 pc) numerical simulations of three isolated galaxies, both with and without stellar feedback. I compare these simulations to observations of six galaxies from The HI Nearby Galaxy Survey (THINGS) using power spectra, and I use clump finding techniques to identify GMCs in my simulations and calculate their properties. I find that the kinetic energy power spectra in stellar feedback- regulated galaxies, regardless of the galaxy's mass and size, show scalings in excellent agreement with supersonic turbulence on scales below the thickness of the HI layer. I show that feedback influences the gas density field, and drives gas turbulence, up to large (kiloparsec) scales. This is in stark contrast to the density fields generated by large-scale gravity-only driven turbulence (i.e. without stellar feedback). Simulations with stellar feedback are able to reproduce the internal properties of GMCs such as: mass, size and velocity dispersion. Finally, I demonstrate that my simulations naturally reproduce the observed scatter (3.5-4 dex) in the star formation efficiency per free-fall time of GMCs, despite only employing a simple Schmidt star formation law. I conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales and that stellar feedback is, therefore, key to regulating the evolution of galaxies over cosmic time.

  9. The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oemler, Augustus Jr; Dressler, Alan; Abramson, Louis E.

    We reexamine the properties of local galaxy populations using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below that of the so-called “main sequence” of star formation versus mass. We find an unexpectedly large population of quiescent galaxies with star formation rates intermediate between the main sequence and passive populations and with disproportionately high star formation rates. We demonstrate that a tight main sequence is a natural outcome of most histories of star formation and has little astrophysical significance but that the quiescentmore » population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dependence of star formation on gas content in local galaxies, and assuming simple histories of cold gas inflow, we show that the evolution of galaxies away from the main sequence can be attributed to the depletion of gas due to star formation after a cutoff of gas inflow. The quiescent population is composed of galaxies in which the density of disk gas has fallen below a threshold for star formation probably set by disk stability. The evolution of galaxies beyond the quiescent state to gas exhaustion and the end of star formation requires another process, probably wind-driven mass loss. The environmental dependence of the three galaxy populations is consistent with recent numerical modeling, which indicates that cold gas inflows into galaxies are truncated at earlier epochs in denser environments.« less

  10. The combined effect of AGN and supernovae feedback in launching massive molecular outflows in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Biernacki, Pawel; Teyssier, Romain

    2018-04-01

    We have recently improved our model of active galactic nucleus (AGN) by attaching the supermassive black hole (SMBH) to a massive nuclear star cluster (NSC). Here, we study the effects of this new model in massive, gas-rich galaxies with several simulations of different feedback recipes with the hydrodynamics code RAMSES. These simulations are compared to a reference simulation without any feedback, in which the cooling halo gas is quickly consumed in a burst of star formation. In the presence of strong supernovae (SN) feedback, we observe the formation of a galactic fountain that regulates star formation over a longer period, but without halting it. If only AGN feedback is considered, as soon as the SMBH reaches a critical mass, strong outflows of hot gas are launched and prevent the cooling halo gas from reaching the disc, thus efficiently halting star formation, leading to the so-called `quenching'. If both feedback mechanisms act in tandem, we observe a non-linear coupling, in the sense that the dense gas in the supernovae-powered galactic fountain is propelled by the hot outflow powered by the AGN at much larger radii than without AGN. We argue that these particular outflows are able to unbind dense gas from the galactic halo, thanks to the combined effect of SN and AGN feedback. We speculate that this mechanism occurs at the end of the fast growing phase of SMBH, and is at the origin of the dense molecular outflows observed in many massive high-redshift galaxies.

  11. Stellar age spreads in clusters as imprints of cluster-parent clump densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmentier, G.; Grebel, E. K.; Pfalzner, S.

    2014-08-20

    It has recently been suggested that high-density star clusters have stellar age distributions much narrower than that of the Orion Nebula Cluster, indicating a possible trend of narrower age distributions for denser clusters. We show this effect to likely arise from star formation being faster in gas with a higher density. We model the star formation history of molecular clumps in equilibrium by associating a star formation efficiency per free-fall time, ε{sub ff}, to their volume density profile. We focus on the case of isothermal spheres and we obtain the evolution with time of their star formation rate. Our modelmore » predicts a steady decline of the star formation rate, which we quantify with its half-life time, namely, the time needed for the star formation rate to drop to half its initial value. Given the uncertainties affecting the star formation efficiency per free-fall time, we consider two distinct values: ε{sub ff} = 0.1 and ε{sub ff} = 0.01. When ε{sub ff} = 0.1, the half-life time is of the order of the clump free-fall time, τ{sub ff}. As a result, the age distributions of stars formed in high-density clumps have smaller full-widths at half-maximum than those of stars formed in low-density clumps. When the star formation efficiency per free-fall time is 0.01, the half-life time is 10 times longer, i.e., 10 clump free-fall times. We explore what happens if the duration of star formation is shorter than 10τ{sub ff}, that is, if the half-life time of the star formation rate cannot be defined. There, we build on the invariance of the shape of the young cluster mass function to show that an anti-correlation between the clump density and the duration of star formation is expected. We therefore conclude that, regardless of whether the duration of star formation is longer than the star formation rate half-life time, denser molecular clumps yield narrower star age distributions in clusters. Published densities and stellar age spreads of young clusters and star-forming regions actually suggest that the timescale for star formation is of order 1-4τ{sub ff}. We also discuss how the age bin size and uncertainties in stellar ages affect our results. We conclude that there is no need to invoke the existence of multiple cluster formation mechanisms to explain the observed range of stellar age spreads in clusters.« less

  12. Hubble Space Telescope and Spitzer Imaging of Red and Blue Galaxies at z ~ 2.5: A Correlation between Size and Star Formation Activity from Compact Quiescent Galaxies to Extended Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Toft, S.; van Dokkum, P.; Franx, M.; Labbe, I.; Förster Schreiber, N. M.; Wuyts, S.; Webb, T.; Rudnick, G.; Zirm, A.; Kriek, M.; van der Werf, P.; Blakeslee, J. P.; Illingworth, G.; Rix, H.-W.; Papovich, C.; Moorwood, A.

    2007-12-01

    We present HST NICMOS+ACS and Spitzer IRAC+MIPS observations of 41 galaxies at 2

  13. REVIEWS OF TOPICAL PROBLEMS: Large-scale star formation in galaxies

    NASA Astrophysics Data System (ADS)

    Efremov, Yurii N.; Chernin, Artur D.

    2003-01-01

    A brief review is given of the history of modern ideas on the ongoing star formation process in the gaseous disks of galaxies. Recent studies demonstrate the key role of the interplay between the gas self-gravitation and its turbulent motions. The large scale supersonic gas flows create structures of enhanced density which then give rise to the gravitational condensation of gas into stars and star clusters. Formation of star clusters, associations and complexes is considered, as well as the possibility of isolated star formation. Special emphasis is placed on star formation under the action of ram pressure.

  14. Highlights of Astronomy, Vol. 16

    NASA Astrophysics Data System (ADS)

    Montmerle, Thierry

    2015-04-01

    Part I. Invited Discourses: 1. The Herschel view of star formation; 2. Past, present and future of Chinese astronomy; 3. The zoo of galaxies; 4. Supernovae, the accelerating cosmos, and dark energy; Part II. Joint Discussion: 5. Very massive stars in the local universe; 6. 3-D views of the cycling Sun in stellar context; 7. Ultraviolet emission in early-type galaxies; 8. From meteors and meteorites to their parent bodies: current status and future developments; 9. The connection between radio properties and high-energy emission in AGNs; 10. Space-time reference systems for future research; Part III. Special Sessions: 11. Origin and complexity of massive star clusters; 12. Cosmic evolution of groups and clusters of galaxies; 13. Galaxy evolution through secular processes; 14. New era for studying interstellar and intergalactic magnetic fields; 15. The IR view of massive stars: the main sequence and beyond; 16. Science with large solar telescopes; 17. The impact hazard: current activities and future plans; 18. Calibration of star-formation rate measurements across the electromagnetic spectrum; 19. Future large scale facilities; 20. Dynamics of the star-planet relations strategic plan and the Global Office of Astronomy for Development; 21. Strategic plan and the Global Office of Astronomy for Development; 22. Modern views of the interstellar medium; 23. High-precision tests of stellar physics from high-precision photometry; 24. Communicating astronomy with the public for scientists; 25. Data intensive astronomy; 26. Unexplained spectral phenomena in the interstellar medium; 27. Light pollution: protecting astronomical sites and increasing global awareness through education.

  15. Star Cluster Formation in Cosmological Simulations. I. Properties of Young Clusters

    NASA Astrophysics Data System (ADS)

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; Meng, Xi; Semenov, Vadim A.; Kravtsov, Andrey V.

    2017-01-01

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is α ≈ 1.8{--}2, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. Comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.

  16. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    NASA Technical Reports Server (NTRS)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  17. The Impact Of Galactic Environment On Star Formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn

    2016-09-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well@corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=35pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic@scale dynamical processes dominate GMC disruption.

  18. The impact of galactic environment on star formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn; Blanc, Guillermo A.; Schinnerer, Eva; Groves, Brent; Adamo, Angela; Hughes, Annie; Meidt, Sharon; SFNG Collaboration

    2017-01-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well-corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=50pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic-scale dynamical processes dominate GMC disruption.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helfer, Thomas; Marsh, David J.E.; Clough, Katy

    The classical equations of motion for an axion with potential V (φ)= m {sub a} {sup 2} f {sub a} {sup 2} [1−cos (φ/ f {sub a} )] possess quasi-stable, localized, oscillating solutions, which we refer to as ''axion stars''. We study, for the first time, collapse of axion stars numerically using the full non-linear Einstein equations of general relativity and the full non-perturbative cosine potential. We map regions on an ''axion star stability diagram', parameterized by the initial ADM mass, M {sub ADM}, and axion decay constant, f {sub a} . We identify three regions of the parameter space:more » i) long-lived oscillating axion star solutions, with a base frequency, m {sub a} , modulated by self-interactions, ii) collapse to a BH and iii) complete dispersal due to gravitational cooling and interactions. We locate the boundaries of these three regions and an approximate ''triple point' ( M {sub TP}, f {sub TP}) ∼ (2.4 M {sub pl}{sup 2}/ m {sub a} ,0.3 M {sub pl}). For f {sub a} below the triple point BH formation proceeds during winding (in the complex U(1) picture) of the axion field near the dispersal phase. This could prevent astrophysical BH formation from axion stars with f {sub a} || M {sub pl}. For larger f {sub a} ∼> f {sub TP}, BH formation occurs through the stable branch and we estimate the mass ratio of the BH to the stable state at the phase boundary to be O(1) within numerical uncertainty. We discuss the observational relevance of our findings for axion stars as BH seeds, which are supermassive in the case of ultralight axions. For the QCD axion, the typical BH mass formed from axion star collapse is M {sub BH} ∼ 3.4 ( f {sub a} /0.6 M {sub pl}){sup 1.2} M {sub ⊙}.« less

  20. Accreting Planets in the Habitable Zones of M-Stars Are Too Hot to Retain Liquid Water

    NASA Astrophysics Data System (ADS)

    Ramirez, R. M.; Kopparapu, R. K.; Kasting, J. F.

    2014-12-01

    Previous studies1,2 have shown that young accreting planets in the habitable zones (HZ) of pre-main sequence M-stars face major dynamical hurdles in both the retention and acquisition of volatiles. High collision rates with other bodies, short planetary formation timescales, and inefficient radial mixing are among the major problems encountered. However, another equally-important concern is the high temperatures predicted within the circumstellar disk, greatly hindering volatile delivery. We use a 1-D radiative-convective climate model to demonstrate that the fluxes received by accreting planets orbiting late K-M stars exceed the runaway greenhouse threshold. Given that M-stars are disproportionately brighter in their pre main-sequence lifetimes as compared to Sun-like stars (i.e. G-class insolation), planets orbiting M-stars are especially susceptible to the runaway, with intensity and duration increasing for cooler M-stars. Thus, accreting planetesimals in the HZs of M-stars could be too hot to maintain liquid water on their surfaces. In contrast, accreting planets located at Earth's distance (or farther) from a pre-main sequence solar analogue (i.e. G2 spectral class) receive stellar fluxes well below that of the runaway point. Our results suggest that future missions and surveys can improve their prospects of finding alien life by targeting HZ planets orbiting Sun-like stars. Moreover, our findings support recent claims that Venus may have lost its water during accretion3. REFERENCES1. Lissauer, Jack J. "Planets formed in habitable zones of M dwarf stars probably are deficient in volatiles." The Astrophysical Journal Letters 660.2 (2007): L149. 2. Raymond, Sean N., John Scalo, and Victoria S. Meadows. "A decreased probability of habitable planet formation around low-mass stars." The Astrophysical Journal 669.1 (2007): 606. 3. Hamano, Keiko, Yutaka Abe, and Hidenori Genda. "Emergence of two types of terrestrial planet on solidification of magma ocean." Nature 497.7451 (2013): 607-610.

  1. Wavelength Dependent Luminosity Functions for Super Star Clusters

    NASA Astrophysics Data System (ADS)

    Garmany, Catharine

    1997-07-01

    Starburst galaxies, considered to exhibit enhanced star formation on a galaxy-wide scale, have now been found with HST to contain very intense knots of star formation, referred to as ``super star clusters'', or SSCs. A steepening of the luminosity function with increasing wavelength for young burst populations, such as SSCs, has recently been predicted by Hogg & Phinney {1997}. This prediction, not previously addressed in the literature, is straightforward to test with multi- wavelength photometry. Using the colors of the SSCs in a galaxy in combination with the difference in slopes of the luminosity functions derived from different wavelength bands and applying population synthesis models, we can also constrain the high mass stellar initial mass function {IMF}. Recent work has suggested that the slope of the IMF is roughly constant in a variety of local environments, from galactic OB associations to the closest analog of a super star cluster, R136 in the LMC. This investigation will allow us to compare the IMFs in the extreme environments of SSCs in starburst galaxies to IMFs found locally in the Galaxy, LMC, and SMC. Archival imaging data in both the UV and optical bands is available for about 10 young starburst systems. These data will allow us to test the predictions of Hogg & Phinney, as well as constrain the IMF for environments not found in the nearby universe.

  2. The ATLASGAL survey: a catalog of dust condensations in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Urquhart, J. S.; Schuller, F.; Motte, F.; Bontemps, S.; Wyrowski, F.; Menten, K. M.; Bronfman, L.; Beuther, H.; Henning, Th.; Testi, L.; Zavagno, A.; Walmsley, M.

    2014-05-01

    Context. The formation processes and the evolutionary stages of high-mass stars are poorly understood compared to low-mass stars. Large-scale surveys are needed to provide an unbiased census of high column density sites that can potentially host precursors to high-mass stars. Aims: The ATLASGAL survey covers 420 sq. degree of the Galactic plane, between -80° < ℓ < +60° at 870 μm. Here we identify the population of embedded sources throughout the inner Galaxy. With this catalog we first investigate the general statistical properties of dust condensations in terms of their observed parameters, such as flux density and angular size. Then using mid-infrared surveys we aim to investigate their star formation activity and the Galactic distribution of star-forming and quiescent clumps. Our ultimate goal is to determine the statistical properties of quiescent and star-forming clumps within the Galaxy and to constrain the star formation processes. Methods: We optimized the source extraction method, referred to as MRE-GCL, for the ATLASGAL maps in order to generate a catalog of compact sources. This technique is based on multiscale filtering to remove extended emission from clouds to better determine the parameters corresponding to the embedded compact sources. In a second step we extracted the sources by fitting 2D Gaussians with the Gaussclumps algorithm. Results: We have identified in total 10861 compact submillimeter sources with fluxes above 5σ. Completeness tests show that this catalog is 97% complete above 5σ and >99% complete above 7σ. Correlating this sample of clumps with mid-infrared point source catalogs (MSX at 21.3 μm and WISE at 22 μm), we have determined a lower limit of 33% that is associated with embedded protostellar objects. We note that the proportion of clumps associated with mid-infrared sources increases with increasing flux density, achieving a rather constant fraction of ~75% of all clumps with fluxes over 5 Jy/beam being associated with star formation. Examining the source counts as a function of Galactic longitude, we are able to identify the most prominent star-forming regions in the Galaxy. Conclusions: We present here the compact source catalog of the full ATLASGAL survey and investigate their characteristic properties. From the fraction of the likely massive quiescent clumps (~25%), we estimate a formation time scale of ~ 7.5 ± 2.5 × 104 yr for the deeply embedded phase before the emergence of luminous young stellar objects. Such a short duration for the formation of high-mass stars in massive clumps clearly proves that the earliest phases have to be dynamic with supersonic motions. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A75

  3. System and method for calibrating inter-star-tracker misalignments in a stellar inertial attitude determination system

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Wu, Yeong-Wei Andy (Inventor); Hein, Douglas H. (Inventor)

    2004-01-01

    A method and apparatus for determining star tracker misalignments is disclosed. The method comprises the steps of defining a defining a reference frame for the star tracker assembly according to a boresight of the primary star tracker and a boresight of a second star tracker wherein the boresight of the primary star tracker and a plane spanned by the boresight of the primary star tracker and the boresight of the second star tracker at least partially define a datum for the reference frame for the star tracker assembly; and determining the misalignment of the at least one star tracker as a rotation of the defined reference frame.

  4. Kinematic evidence for feedback-driven star formation in NGC 1893

    NASA Astrophysics Data System (ADS)

    Lim, Beomdu; Sung, Hwankyung; Bessell, Michael S.; Lee, Sangwoo; Lee, Jae Joon; Oh, Heeyoung; Hwang, Narae; Park, Byeong-Gon; Hur, Hyeonoh; Hong, Kyeongsoo; Park, Sunkyung

    2018-06-01

    OB associations are the prevailing star-forming sites in the Galaxy. Up to now, the process of how OB associations were formed remained a mystery. A possible process is self-regulating star formation driven by feedback from massive stars. However, although a number of observational studies uncovered various signposts of feedback-driven star formation, the effectiveness of such feedback has been questioned. Stellar and gas kinematics is a promising tool to capture the relative motion of newborn stars and gas away from ionizing sources. We present high-resolution spectroscopy of stars and gas in the young open cluster NGC 1893. Our findings show that newborn stars and the tadpole nebula Sim 130 are moving away from the central cluster containing two O-type stars, and that the time-scale of sequential star formation is about 1 Myr within a 9 pc distance. The newborn stars formed by feedback from massive stars account for at least 18 per cent of the total stellar population in the cluster, suggesting that this process can play an important role in the formation of OB associations. These results support the self-regulating star formation model.

  5. Galaxy Zoo: star formation versus spiral arm number

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Casteels, Kevin R. V.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.

    2017-06-01

    Spiral arms are common features in low-redshift disc galaxies, and are prominent sites of star formation and dust obscuration. However, spiral structure can take many forms: from galaxies displaying two strong 'grand design' arms to those with many 'flocculent' arms. We investigate how these different arm types are related to a galaxy's star formation and gas properties by making use of visual spiral arm number measurements from Galaxy Zoo 2. We combine ultraviolet and mid-infrared (MIR) photometry from GALEX and WISE to measure the rates and relative fractions of obscured and unobscured star formation in a sample of low-redshift SDSS spirals. Total star formation rate has little dependence on spiral arm multiplicity, but two-armed spirals convert their gas to stars more efficiently. We find significant differences in the fraction of obscured star formation: an additional ˜10 per cent of star formation in two-armed galaxies is identified via MIR dust emission, compared to that in many-armed galaxies. The latter are also significantly offset below the IRX-β relation for low-redshift star-forming galaxies. We present several explanations for these differences versus arm number: variations in the spatial distribution, sizes or clearing time-scales of star-forming regions (I.e. molecular clouds), or contrasting recent star formation histories.

  6. The Star Formation Rate Density of the Universe at z = 0.24 and 0.4 from Halpha

    NASA Astrophysics Data System (ADS)

    Pascual, S.

    2005-01-01

    Knowledge of both the global star formation history of the universe and the nature of individual star-forming galaxies at different look-back times is essential to our understanding of galaxy formation and evolution. Deep redshift surveys suggest star-formation activity increases by an order of magnitude from z = 0 to ~1. As a direct test of whether substantial evolution in star-formation activity has occurred, we need to measure the star formation rate (SFR) density and the properties of the corresponding star-forming galaxy populations at different redshifts, using similar techniques. The main goal of this work is to extend the Universidad Complutense de Madrid (UCM) survey of emission-line galaxies to higher redshifts. (continues)

  7. The formation of stellar systems from interstellar molecular clouds.

    PubMed

    Gehrz, R D; Black, D C; Solomon, P M

    1984-05-25

    Star formation, a crucial link in the chain of events that led from the early expansion of the universe to the formation of the solar system, continues to play a major role in the evolution of many galaxies. Observational and theoretical studies of regions of ongoing star formation provide insight into the physical conditions and events that must have attended the formation of the solar system. Such investigations also elucidate the role played by star formation in the evolutionary cycle which appears to dominate the chemical processing of interstellar material by successive generations of stars in spiral galaxies like our own. New astronomical facilities planned for development during the 1980's could lead to significant advances in our understanding of the star formation process. Efforts to identify and examine both the elusive protostellar collapse phase of star formation and planetary systems around nearby stars will be especially significant.

  8. Testing the Relation between the Local and Cosmic Star Formation Histories

    NASA Astrophysics Data System (ADS)

    Fields, Brian D.

    1999-04-01

    Recently, there has been great progress toward observationally determining the mean star formation history of the universe. When accurately known, the cosmic star formation rate could provide much information about Galactic evolution, if the Milky Way's star formation rate is representative of the average cosmic star formation history. A simple hypothesis is that our local star formation rate is proportional to the cosmic mean. In addition, to specify a star formation history, one must also adopt an initial mass function (IMF) typically it is assumed that the IMF is a smooth function, which is constant in time. We show how to test directly the compatibility of all these assumptions by making use of the local (solar neighborhood) star formation record encoded in the present-day stellar mass function. Present data suggest that at least one of the following is false: (1) the local IMF is constant in time; (2) the local IMF is a smooth (unimodal) function; and/or (3) star formation in the Galactic disk was representative of the cosmic mean. We briefly discuss how to determine which of these assumptions fail and also improvements in observations, which will sharpen this test.

  9. Review on the Celestial Sphere Positioning of FITS Format Image Based on WCS and Research on General Visualization

    NASA Astrophysics Data System (ADS)

    Song, W. M.; Fan, D. W.; Su, L. Y.; Cui, C. Z.

    2017-11-01

    Calculating the coordinate parameters recorded in the form of key/value pairs in FITS (Flexible Image Transport System) header is the key to determine FITS images' position in the celestial system. As a result, it has great significance in researching the general process of calculating the coordinate parameters. By combining CCD related parameters of astronomical telescope (such as field, focal length, and celestial coordinates in optical axis, etc.), astronomical images recognition algorithm, and WCS (World Coordinate System) theory, the parameters can be calculated effectively. CCD parameters determine the scope of star catalogue, so that they can be used to build a reference star catalogue by the corresponding celestial region of astronomical images; Star pattern recognition completes the matching between the astronomical image and reference star catalogue, and obtains a table with a certain number of stars between CCD plane coordinates and their celestial coordinates for comparison; According to different projection of the sphere to the plane, WCS can build different transfer functions between these two coordinates, and the astronomical position of image pixels can be determined by the table's data we have worked before. FITS images are used to carry out scientific data transmission and analyze as a kind of mainstream data format, but only to be viewed, edited, and analyzed in the professional astronomy software. It decides the limitation of popular science education in astronomy. The realization of a general image visualization method is significant. FITS is converted to PNG or JPEG images firstly. The coordinate parameters in the FITS header are converted to metadata in the form of AVM (Astronomy Visualization Metadata), and then the metadata is added to the PNG or JPEG header. This method can meet amateur astronomers' general needs of viewing and analyzing astronomical images in the non-astronomical software platform. The overall design flow is realized through the java program and tested by SExtractor, WorldWide Telescope, picture viewer, and other software.

  10. KEY ISSUES REVIEW: Insights from simulations of star formation

    NASA Astrophysics Data System (ADS)

    Larson, Richard B.

    2007-03-01

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604)

  11. Star cluster formation in cosmological simulations. I. Properties of young clusters

    DOE PAGES

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; ...

    2017-01-03

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less

  12. Star cluster formation in cosmological simulations. I. Properties of young clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.

    We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less

  13. VizieR Online Data Catalog: Catalogue of Radio Stars (Wendker, 2001)

    NASA Astrophysics Data System (ADS)

    Wendker, H. J.

    2015-06-01

    The first version of this catalogue was published in Abh.Hamburger Sternw. 1978, Vol.10, p 1ff. (CDS Catalogue II/129). A second version was published in 1987 (1987A&AS...69...87W) and microfiches (CDS Catalogue II/147). A third version was published 1995A&AS..109..177W (CDS Catalogue II/199). The basic concept of the earlier versions is preserved (in file "catalog.txt"), namely one entry per star per frequency per paper. Space is now provided, however, to add more informations. These may be of technical or astronomical nature. Usually month and year of observation and the number of independent data points or length of monitoring session are given. In the file "catalog.txt", all radio data are preceded by a header which contains information on the star or stellar system. (Note, that a physical stellar system is regarded as one single entry and that comments pertaining to individual components are found directly behind the observational data). Stellar data like names, position, proper motion, magnitudes and spectroscopic types are given in fixed format in a self-explanatory fashion. It is tried to have typical values from commonly available references. It is not intended to compete here with other compilations. These header informations are collected when the star is entered for the first time. They are only changed when new values are available while additional radio references are added. An arbitrarily expandable section for unformatted text finishes the header. Finally, the units of the radio data remain in MHz (column#1) and mJy (columns #2. and #3). All coordinates refer to epoch and equinox 1950.0 (e.g. B1950). This is a so-called merged version e.g. all stars, those detected at least once and those with upper limits only, are listed in order of ascending right ascension. The detected stars are marked with a "D" in the outermost right hand column in lines 1 to 5 ('D' in column "Det" of the file "stars.dat"). The last updating occurred on 2001-Mar-06. In this version stars have new running numbers. (4 data files).

  14. The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation

    NASA Astrophysics Data System (ADS)

    Schinnerer, Eva; Meidt, Sharon E.; Colombo, Dario; Chandar, Rupali; Dobbs, Clare L.; García-Burillo, Santiago; Hughes, Annie; Leroy, Adam K.; Pety, Jérôme; Querejeta, Miguel; Kramer, Carsten; Schuster, Karl F.

    2017-02-01

    The process that leads to the formation of the bright star-forming sites observed along prominent spiral arms remains elusive. We present results of a multi-wavelength study of a spiral arm segment in the nearby grand-design spiral galaxy M51 that belongs to a spiral density wave and exhibits nine gas spurs. The combined observations of the (ionized, atomic, molecular, dusty) interstellar medium with star formation tracers (H II regions, young <10 Myr stellar clusters) suggest (1) no variation in giant molecular cloud (GMC) properties between arm and gas spurs, (2) gas spurs and extinction feathers arising from the same structure with a close spatial relation between gas spurs and ongoing/recent star formation (despite higher gas surface densities in the spiral arm), (3) no trend in star formation age either along the arm or along a spur, (4) evidence for strong star formation feedback in gas spurs, (5) tentative evidence for star formation triggered by stellar feedback for one spur, and (6) GMC associations being not special entities but the result of blending of gas arm/spur cross sections in lower resolution observations. We conclude that there is no evidence for a coherent star formation onset mechanism that can be solely associated with the presence of the spiral density wave. This suggests that other (more localized) mechanisms are important to delay star formation such that it occurs in spurs. The evidence of star formation proceeding over several million years within individual spurs implies that the mechanism that leads to star formation acts or is sustained over a longer timescale.

  15. The Insignificance of Major Mergers in Driving Star Formation at z approximately equal to 2

    NASA Technical Reports Server (NTRS)

    Kaviraj, S.; Cohen, S.; Windhorst, R. A.; Silk, J.; O'Connell, R. W.; Dopita, M. A.; Dekel, A.; Hathi, N. P.; Straughn, A.; Rutkowski, M.

    2012-01-01

    We study the significance of major mergers in driving star formation in the early Universe, by quantifying the contribution of this process to the total star formation budget in 80 massive (M(*) > 10(exp 10) Solar M) galaxies at z approx = 2. Employing visually-classified morphologies from rest-frame V-band HST imaging, we find that 55(exp +/-14)% of the star formation budget is hosted by non-interacting late-types, with 27(exp +/-18% in major mergers and 18(exp +/- 6)% in spheroids. Given that a system undergoing a major merger continues to experience star formation driven by other processes at this epoch (e.g. cold accretion, minor mergers), approx 27% is a likely upper limit for the major-merger contribution to star formation activity at this epoch. The ratio of the average specific star formation rate in major mergers to that in the non-interacting late-types is approx 2.2:1, suggesting that the typical enhancement of star formation due to major merging is modest and that just under half the star formation in systems experiencing major mergers is unrelated to the merger itself. Taking this into account, we estimate that the actual major-merger contribution to the star formation budget may be as low as approx 15%. While our study does not preclude a major-merger-dominated. era in the very early Universe, if the major-merger contribution to star formation does not evolve significantly into larger look-back times, then this process has a relatively insignificant role in driving stellar mass assembly over cosmic time.

  16. A Toolkit for Eye Recognition of LAMOST Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yuan, H.; Zhang, H.; Zhang, Y.; Lei, Y.; Dong, Y.; Zhao, Y.

    2014-05-01

    The Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST, also named the Guo Shou Jing Telescope) has finished the pilot survey and now begun the normal survey by the end of 2012 September. There have already been millions of targets observed, including thousands of quasar candidates. Because of the difficulty in the automatic identification of quasar spectra, eye recognition is always necessary and efficient. However massive spectra identification by eye is a huge job. In order to improve the efficiency and effectiveness of spectra , a toolkit for eye recognition of LAMOST spectroscopy is developed. Spectral cross-correlation templates from the Sloan Digital Sky Survey (SDSS) are applied as references, including O star, O/B transition star, B star, A star, F/A transition star, F star, G star, K star, M1 star, M3 star,M5 star,M8 star, L1 star, magnetic white dwarf, carbon star, white dwarf, B white dwarf, low metallicity K sub-dwarf, "Early-type" galaxy, galaxy, "Later-type" galaxy, Luminous Red Galaxy, QSO, QSO with some BAL activity and High-luminosity QSO. By adjusting the redshift and flux ratio of the template spectra in an interactive graphic interface, the spectral type of the target can be discriminated in a easy and feasible way and the redshift is estimated at the same time with a precision of about millesimal. The advantage of the tool in dealing with low quality spectra is indicated. Spectra from the Pilot Survey of LAMSOT are applied as examples and spectra from SDSS are also tested from comparison. Target spectra in both image format and fits format are supported. For convenience several spectra accessing manners are provided. All the spectra from LAMOST pilot survey can be located and acquired via the VOTable files on the internet as suggested by International Virtual Observatory Alliance (IVOA). After the construction of the Simple Spectral Access Protocol (SSAP) service by the Chinese Astronomical Data Center (CAsDC), spectra can be obtained and analyzed in a more efficient way.

  17. An unusually very bright dust light mass (?) observed in the vicinity (?) of á Lyrae

    NASA Astrophysics Data System (ADS)

    Stefanopoulos, G.

    2009-04-01

    There are not many written worldwide references regarding unusual phenomena such as dust, unusual lights or unexplained objects orbiting the earth or the solar and extra solar systems. Regarding the external space few references exist . Regarding the a Lyrae many scientists were involve in the eighties with the possible existence of a planet next to this star. Structure in the Dusty Debris around Vega, D. J. Wilner et al 2002 ApJ 569.Near-infrared observations of Vega, at 2006 Philip M. Hinz et al. refers to possible companion planet round this star .In constellations Lyrae and Eridani,some authors refer to possible initial formation of planets and they mention the presence of dust formations orbiting around those stars.(A. N. Heinze, Philip M. Hinz, Deep L' and M-band Imaging for Planets Around Vega and epsilon Eridani,The Astrophysical Journal 688 (2008) 583. This paper is concerned with an unexplained or perhaps portion of dust, in the constellation of Lyrae, which appears and have been observed only in conventional photographic plaque.For this observation , simple equipment and amateur instruments are use.In the night of April the 2002, during an amatory observation in variable stars, in the RR Lyrae, pictures were taken in the mentioned deep space area as a normal weekly study procedure. The instruments used are, telescope Meade 10΄΄, illuminate reticle guiding, 12mm, photo camera Nikon F -100, and lenses,70mm, f =1,8.The film used was a Kodak X-pro,BW 400 ASA.The equatorial mount was motorized. A total of six pictures with an exposure 5-10 min were taken. While developing the film, on the fifth photogram, a bright (object?) - dust light appear which seems to be in adhesion with the Vega star . On consecutive months more pictures were taken, with conventional and digital exposures, without any repetition of the event. What is provoke illumination of this dust portion to have been present in a simple photographic film? This simple observation study is directed to the astrophysics society to give a rational explanation of this unexplain to us phenomenon. What conditions and forces influence the liberation of such dust or possible charged aerosols? In our planet we have similar phenomena of aerosols liberation from earth mantel. As an explanation, the case of a comet or asteroid or satellite,is exluded. Are they finally a case of γ ray burst? Key point question remains, how to trap the portion of possible rotating dust in the vicinity of the star, in a conventional (in a ten minutes exposure) photogram. Would the scientist experts please reply to this question and clarify the reason.

  18. Disruption of Giant Molecular Clouds by Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Harper-Clark, Elizabeth

    The lifetime of a Giant Molecular Cloud (GMC) and the total mass of stars that form within it are crucial to the understanding of star formation rates across a whole galaxy. In particular, the stars within a GMC may dictate its disruption and the quenching of further star formation. Indeed, observations show that the Milky Way contains GMCs with extensive expanding bubbles while the most massive stars are still alive. Simulating entire GMCs is challenging, due to the large variety of physics that needs to be included, and the computational power required to accurately simulate a GMC over tens of millions of years. Using the radiative-magneto-hydrodynamic code Enzo, I have run many simulations of GMCs. I obtain robust results for the fraction of gas converted into stars and the lifetimes of the GMCs: (A) In simulations with no stellar outputs (or "feedback''), clusters form at a rate of 30% of GMC mass per free fall time; the GMCs were not disrupted but contained forming stars. (B) Including ionization gas pressure or radiation pressure into the simulations, both separately and together, the star formation was quenched at between 5% and 21% of the original GMC mass. The clouds were fully disrupted within two dynamical times after the first cluster formed. The radiation pressure contributed the most to the disruption of the GMC and fully quenched star formation even without ionization. (C) Simulations that included supernovae showed that they are not dynamically important to GMC disruption and have only minor effects on subsequent star formation. (D) The inclusion of a few micro Gauss magnetic field across the cloud slightly reduced the star formation rate but accelerated GMC disruption by reducing bubble shell disruption and leaking. These simulations show that new born stars quench further star formation and completely disrupt the parent GMC. The low star formation rate and the short lifetimes of GMCs shown here can explain the low star formation rate across the whole galaxy.

  19. UV, optical and infrared properties of star forming galaxies

    NASA Technical Reports Server (NTRS)

    Huchra, John P.

    1987-01-01

    The UVOIR properties of galaxies with extreme star formation rates are examined. These objects seem to fall into three distinct classes which can be called (1) extragalactic H II regions, (2) clumpy irregulars, and (3) starburst galaxies. Extragalactic H II regions are dominated by recently formed stars and may be considered 'young' galaxies if the definition of young is having the majority of total integrated star formation occurring in the last billion years. Clumpy irregulars are bursts of star formation superposed on an old population and are probably good examples of stochastic star formation. It is possible that star formation in these galaxies is triggered by the infall of gas clouds or dwarf companions. Starburst galaxies are much more luminous, dustier and more metal rich than the other classes. These objects show evidence for shock induced star formation where shocks may be caused by interaction with massive companions or are the result of an extremely strong density wave.

  20. Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I

    NASA Astrophysics Data System (ADS)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.

    2018-05-01

    We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.

  1. Star formation histories in NGC 147 and NGC 185

    NASA Astrophysics Data System (ADS)

    Hamedani Golshan, R.; Javadi, A.; van Loon, J. Th

    2017-06-01

    NGC 147 and NGC 185 are two of the most massive satellites of the Andromeda galaxy (M 31). With similar mass and morphological type dE, they possess different amounts of interstellar gas and tidal distortion. The question therefore is, how do their histories compare? We present the first reconstruction of the star formation histories of NGC 147 and NGC 185 using long-period variable stars (LPVs). LPVs are low- to intermediate-mass stars at the asymptotic giant branch, which their luminosity is related to their birth mass. Combining near-infrared photometry with stellar evolution models, we construct the mass function and hence the star formation history. For NGC 185 we found that the main epoch of star formation occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate. In the case of NGC 147, the star formation rate peaked only 7 Gyr ago, staying intense until ∼ 3 Gyr ago, but no star formation has occurred for at least 300 Myr. Despite their similar masses, NGC 147 has evolved more slowly than NGC 185 initially, but more dramatically in more recent times.

  2. Formation Stellaire Aux Échelles Des Galaxies

    NASA Astrophysics Data System (ADS)

    Boissier, S.

    2012-12-01

    Star Formation is at the very core of the evolution of galaxies. From their gas reservoir (filled by infall or fusions), stars form at the "Star Formation Rate" (SFR), with an enormous impact on many aspects of the evolution of galaxies. This HDR presents first the formalism concerning star formation (SFR, IMF), some theoretical suggestions on physical processes that may affect star formation on various galactic scales, and the methods used to determine the SFR from observations. A large part is dedicated to the "Star Formation Laws" (e.g. Schmidt law) on various scales (local, radial, and global law). Finally, the last part concerns the largest scales (evolution of the "cosmic" SFR and effect of the environment).

  3. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    NASA Technical Reports Server (NTRS)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  4. Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo

    2017-03-01

    With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.

  5. Radiation pressure in super star cluster formation

    NASA Astrophysics Data System (ADS)

    Tsang, Benny T.-H.; Milosavljević, Miloš

    2018-05-01

    The physics of star formation at its extreme, in the nuclei of the densest and the most massive star clusters in the universe—potential massive black hole nurseries—has for decades eluded scrutiny. Spectroscopy of these systems has been scarce, whereas theoretical arguments suggest that radiation pressure on dust grains somehow inhibits star formation. Here, we harness an accelerated Monte Carlo radiation transport scheme to report a radiation hydrodynamical simulation of super star cluster formation in turbulent clouds. We find that radiation pressure reduces the global star formation efficiency by 30-35%, and the star formation rate by 15-50%, both relative to a radiation-free control run. Overall, radiation pressure does not terminate the gas supply for star formation and the final stellar mass of the most massive cluster is ˜1.3 × 106 M⊙. The limited impact as compared to in idealized theoretical models is attributed to a radiation-matter anti-correlation in the supersonically turbulent, gravitationally collapsing medium. In isolated regions outside massive clusters, where the gas distribution is less disturbed, radiation pressure is more effective in limiting star formation. The resulting stellar density at the cluster core is ≥108 M⊙ pc-3, with stellar velocity dispersion ≳ 70 km s-1. We conclude that the super star cluster nucleus is propitious to the formation of very massive stars via dynamical core collapse and stellar merging. We speculate that the very massive star may avoid the claimed catastrophic mass loss by continuing to accrete dense gas condensing from a gravitationally-confined ionized phase.

  6. Nonuniversal star formation efficiency in turbulent ISM

    DOE PAGES

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2016-07-29

    Here, we present a study of a star formation prescription in which star formation efficiency depends on local gas density and turbulent velocity dispersion, as suggested by direct simulations of SF in turbulent giant molecular clouds (GMCs). We test the model using a simulation of an isolated Milky Way-sized galaxy with a self-consistent treatment of turbulence on unresolved scales. We show that this prescription predicts a wide variation of local star formation efficiency per free-fall time,more » $$\\epsilon_{\\rm ff} \\sim 0.1 - 10\\%$$, and gas depletion time, $$t_{\\rm dep} \\sim 0.1 - 10$$ Gyr. In addition, it predicts an effective density threshold for star formation due to suppression of $$\\epsilon_{\\rm ff}$$ in warm diffuse gas stabilized by thermal pressure. We show that the model predicts star formation rates in agreement with observations from the scales of individual star-forming regions to the kiloparsec scales. This agreement is non-trivial, as the model was not tuned in any way and the predicted star formation rates on all scales are determined by the distribution of the GMC-scale densities and turbulent velocities $$\\sigma$$ in the cold gas within the galaxy, which is shaped by galactic dynamics. The broad agreement of the star formation prescription calibrated in the GMC-scale simulations with observations, both gives credence to such simulations and promises to put star formation modeling in galaxy formation simulations on a much firmer theoretical footing.« less

  7. Globular cluster formation with multiple stellar populations: self-enrichment in fractal massive molecular clouds

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji

    2017-08-01

    Internal chemical abundance spreads are one of fundamental properties of globular clusters (GCs) in the Galaxy. In order to understand the origin of such abundance spreads, we numerically investigate GC formation from massive molecular clouds (MCs) with fractal structures using our new hydrodynamical simulations with star formation and feedback effects of core-collapse supernovae (SNe) and asymptotic giant branch (AGB) stars. We particularly investigate star formation from gas chemically contaminated by SNe and AGB stars ('self-enrichment') in forming GCs within MCs with different initial conditions and environments. The principal results are as follows. GCs with multiple generations of stars can be formed from merging of hierarchical star cluster complexes that are developed from high-density regions of fractal MCs. Feedback effects of SNe and AGB stars can control the formation efficiencies of stars formed from original gas of MCs and from gas ejected from AGB stars. The simulated GCs have strong radial gradients of helium abundances within the central 3 pc. The original MC masses need to be as large as 107 M⊙ for a canonical initial stellar mass function (IMF) so that the final masses of stars formed from AGB ejecta can be ˜105 M⊙. Since star formation from AGB ejecta is rather prolonged (˜108 yr), their formation can be strongly suppressed by SNe of the stars themselves. This result implies that the so-called mass budget problem is much more severe than ever thought in the self-enrichment scenario of GC formation and thus that IMF for the second generation of stars should be 'top-light'.

  8. The origin of discrete multiple stellar populations in globular clusters

    NASA Astrophysics Data System (ADS)

    Bekki, K.; Jeřábková, T.; Kroupa, P.

    2017-10-01

    Recent observations have revealed that at least several old globular clusters (GCs) in the Galaxy have discrete distributions of stars along the Mg-Al anticorrelation. In order to discuss this recent observation, we construct a new one-zone GC formation model in which the maximum stellar mass (mmax) in the initial mass function of stars in a forming GC depends on the star formation rate, as deduced from independent observations. We investigate the star formation histories of forming GCs. The principal results are as follows. About 30 Myr after the formation of the first generation (1G) of stars within a particular GC, new stars can be formed from ejecta from asymptotic giant branch (AGB) stars of 1G. However, the formation of this second generation (2G) of stars can last only for [10-20] Myr because the most massive SNe of 2G expel all of the remaining gas. The third generation (3G) of stars are then formed from AGB ejecta ≈30 Myr after the truncation of 2G star formation. This cycle of star formation followed by its truncation by SNe can continue until all AGB ejecta is removed from the GC by some physical process. Thus, it is inevitable that GCs have discrete multiple stellar populations in the [Mg/Fe]-[Al/Fe] diagram. Our model predicts that low-mass GCs are unlikely to have discrete multiple stellar populations, and young massive clusters may not have massive OB stars owing to low mmax (<[20-30] M⊙) during the secondary star formation.

  9. The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schinnerer, Eva; Meidt, Sharon E.; Querejeta, Miguel

    2017-02-10

    The process that leads to the formation of the bright star-forming sites observed along prominent spiral arms remains elusive. We present results of a multi-wavelength study of a spiral arm segment in the nearby grand-design spiral galaxy M51 that belongs to a spiral density wave and exhibits nine gas spurs. The combined observations of the (ionized, atomic, molecular, dusty) interstellar medium with star formation tracers (H ii regions, young <10 Myr stellar clusters) suggest (1) no variation in giant molecular cloud (GMC) properties between arm and gas spurs, (2) gas spurs and extinction feathers arising from the same structure withmore » a close spatial relation between gas spurs and ongoing/recent star formation (despite higher gas surface densities in the spiral arm), (3) no trend in star formation age either along the arm or along a spur, (4) evidence for strong star formation feedback in gas spurs, (5) tentative evidence for star formation triggered by stellar feedback for one spur, and (6) GMC associations being not special entities but the result of blending of gas arm/spur cross sections in lower resolution observations. We conclude that there is no evidence for a coherent star formation onset mechanism that can be solely associated with the presence of the spiral density wave. This suggests that other (more localized) mechanisms are important to delay star formation such that it occurs in spurs. The evidence of star formation proceeding over several million years within individual spurs implies that the mechanism that leads to star formation acts or is sustained over a longer timescale.« less

  10. Investigating the Environmental Properties of Galaxies in the SDSS-MaNGA Survey

    NASA Astrophysics Data System (ADS)

    Spindler, Ashley

    2018-05-01

    This thesis presents a study of galaxy evolution in the local universe. I study how environments shape the structures of galaxies, and how internal and external processes affect star formation. I perform four investigations of galaxy properties: a study of the relations between size, mass and velocity dispersion of 124,524 galaxies from SDSS DR7; I estimate star formation rates using Hα and Dn4000 for galaxies in the MaNGA survey; a study of the spatial distribution of star formation in 1494 MaNGA galaxies; and finally, a study of 215 barred and 402 unbarred galaxies, to investigate how bars affect star formation. I find that environment plays a key role in the evolution of galaxies, both structurally and in terms of their star formation. Using core velocity dispersion to study the effects of minor mergers and tidal/ram pressure stripping, I find that central galaxies are up to 30% larger and more massive than satellites. I suggest that minor mergers play a crucial role in the increase in size and mass of centrals. In addition, I find that satellites have a uniform radial suppression of star formation, compared to centrals, which may be due to the strangulation of their cold gas supplies. I study the internal processes that affect star formation and find that specific star formation rate is suppressed at all radii for high mass galaxies. Massive galaxies are more likely to have suppressed star formation in their cores, which I determined is caused by a combination of morphological quenching and AGN feedback. Finally, I study the role of galaxy bars in regulating the circumnuclear and disk star formation in late-type galaxies. I find that barred galaxies have lower star formation in their disks than unbarred galaxies, and that they are more likely to have enhanced star formation in their cores.

  11. A model for the origin of bursty star formation in galaxies

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André

    2018-01-01

    We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.

  12. Prospects of the "WSO-UV" Project for Star Formation Study in Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Makarova, L. N.; Makarov, D. I.

    2017-12-01

    In the present work we consider the questions of star formation and evolution of nearby dwarf galaxies. We describe the method of star formation history determination based on multicolor photometry of resolved stars and models of color-magnitude diagrams of the galaxies. We present the results of star formation rate determination and its dependence on age and metallicity for dwarf irregular and dwarf spheroidal galaxies in the two nearby galaxy groups M81 and Cen A. Similar age of the last episode of star formation in the central part of the M81 group and also unusually high level of metal enrichment in the several galaxies of the Cen A group are mentioned. We pay special attention to the consideration of perspectives of star formation study in nearby dwarf galaxies with he new WSO-UV observatory.

  13. AGES OF 70 DWARFS OF THREE POPULATIONS IN THE SOLAR NEIGHBORHOOD: CONSIDERING O AND C ABUNDANCES IN STELLAR MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Z. S.; Bi, S. L.; Liu, K.

    2016-12-20

    Oxygen and carbon are important elements in stellar populations. Their behavior refers to the formation history of the stellar populations. C and O abundances would also obviously influence stellar opacities and the overall metal abundance Z . With observed high-quality spectroscopic properties, we construct stellar models with C and O elements to give more accurate ages for 70 metal-poor dwarfs, which have been determined to be high- α halo, low- α halo, and thick-disk stars. Our results show that high- α halo stars are somewhat older than low- α halo stars by around 2.0 Gyr. The thick-disk population has anmore » age range in between the two halo populations. The age distribution profiles indicate that high- α halo and low- α halo stars match the in situ accretion simulation by Zolotov et al., and the thick-disk stars might be formed in a relatively quiescent and long-lasting process. We also note that stellar ages are very sensitive to O abundance, since the ages clearly increase with increasing [O/Fe] values. Additionally, we obtain several stars with peculiar ages, including 2 young thick-disk stars and 12 stars older than the universe age.« less

  14. X-ray insights into star and planet formation.

    PubMed

    Feigelson, Eric D

    2010-04-20

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.

  15. X-ray insights into star and planet formation

    PubMed Central

    Feigelson, Eric D.

    2010-01-01

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197

  16. The dangers of being trigger-happy

    NASA Astrophysics Data System (ADS)

    Dale, J. E.; Haworth, T. J.; Bressert, E.

    2015-06-01

    We examine the evidence offered for triggered star formation against the backdrop provided by recent numerical simulations of feedback from massive stars at or below giant molecular cloud sizescales. We compile a catalogue of 67 observational papers, mostly published over the last decade, and examine the signposts most commonly used to infer the presence of triggered star formation. We then determine how well these signposts perform in a recent suite of hydrodynamic simulations of star formation including feedback from O-type stars performed by Dale et al. We find that none of the observational markers improve the chances of correctly identifying a given star as triggered by more than factors of 2 at most. This limits the fidelity of these techniques in interpreting star formation histories. We therefore urge caution in interpreting observations of star formation near feedback-driven structures in terms of triggering.

  17. NGC 346: Looking in the Cradle of a Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these two parameters with a considerable scatter. The fraction of stellar over the total (gas plus young stars) mass is found to be systematically higher within the central 15 pc (where the young massive cluster is located) than outside, which suggests variations in the star formation efficiency within the same star-forming complex. This trend possibly reflects a change of star formation efficiency in N66 between clustered and non-clustered star formation. Our findings suggest that the formation of NGC 346 is the combined result of star formation regulated by turbulence and of early dynamical evolution induced by the gravitational potential of the dense interstellar medium.

  18. The turbulent formation of stars

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph

    2018-06-01

    How stars are born from clouds of gas is a rich physics problem whose solution will inform our understanding of not just stars but also planets, galaxies, and the universe itself. Star formation is stupendously inefficient. Take the Milky Way. Our galaxy contains about a billion solar masses of fresh gas available to form stars-and yet it produces only one solar mass of new stars a year. Accounting for that inefficiency is one of the biggest challenges of modern astrophysics. Why should we care about star formation? Because the process powers the evolution of galaxies and sets the initial conditions for planet formation and thus, ultimately, for life.

  19. A Systematic Survey of Star Formation with the ORION MIDEX Mission

    NASA Astrophysics Data System (ADS)

    Scowen, P.; Morse, J.; Beasley, M.; Hester, J.; Windhorst, R.; Desch, S.; Jansen, R.; Calzetti, D.; Padgett, D.; Hartigan, P.; Oey, S.; Bally, J.; Gallagher, J.; O'Connell, R.; Kennicutt, R.; Lauer, T.

    2004-05-01

    The ORION MIDEX mission is a 1.2m UV-visual observatory orbiting at L2 that will conduct the first-ever high spatial resolution survey of a statistically significant sample of visible star-forming environments in the Solar neighborhood in emission lines and continuum. This survey will be used to characterize the star and planet forming environments within 2.5 kpc of the Sun, infer global properties and star formation history in these regions, understand how the environment influences the process of star and planet formation, and develop a classification scheme for star forming regions incorporating the earlier results. Based on these findings we will then conduct a similar high spatial resolution survey of large portions of the Magellanic Clouds, applying the classification scheme from local star forming environments to analogous regions in nearby galaxies, extending the classification scheme to regions that do not have nearby analogs but are common in external galaxies. The results from the local survey will allow us to infer characteristics of low mass star forming environments in the Magellanic Clouds, study the spatial distribution of star forming environments and analyze stellar population photometry to trace star formation history. Finally we will image a representative sample of external galaxies using the same filters used to characterize nearby star formation regions. We will map the distribution of star forming region type as a function of galactic environment for galaxies out to 5 Mpc to infer the distribution and history of low-mass star formation over galactic scales, characterize the stellar content and star formation history of galaxies, and relate these results to the current star forming environments in these galaxies. Ultimately we intend to use these diagnostics to extrapolate to star formation environments in the higher redshift Universe. We will also present an update on the technology development, project planning and operations for the proposed mission.

  20. Space-based Observations of Star Formation using ORION: THE MIDEX

    NASA Astrophysics Data System (ADS)

    Scowen, P.; Morse, J.; Beasley, M.; Hester, J.; Windhorst, R.; Jansen, R.; Lauer, T.; Danielson, E.; Sepulveda, C.; Olarte, G.; ORION MIDEX Science Team

    2003-12-01

    The ORION MIDEX mission is a 1.2m UV-visual observatory orbiting at L2 that will conduct the first-ever high spatial resolution survey of a statistically significant sample of visible star-forming environments in the Solar neighborhood in emission lines and continuum. This survey will be used to characterize the star and planet forming environments within 2.5 kpc of the Sun, infer global properties and star formation history in these regions, understand how the environment influences the process of star and planet formation, and develop a classification scheme for star forming regions incorporating the earlier results. Based on these findings we will then conduct a similar high spatial resolution survey of large portions of the Magellanic Clouds, applying the classification scheme from local star forming environments to analogous regions in nearby galaxies, extending the classification scheme to regions that do not have nearby analogs but are common in external galaxies. The results from the local survey will allow us to infer characteristics of low mass star forming environments in the Magellanic Clouds, study the spatial distribution of star forming environments and analyze stellar population photometry to trace star formation history. Finally we will image a representative sample of external galaxies using the same filters used to characterize nearby star formation regions. We will map the distribution of star forming region type as a function of galactic environment for galaxies out to 5 Mpc to infer the distribution and history of low-mass star formation over galactic scales, characterize the stellar content and star formation history of galaxies, and relate these results to the current star forming environments in these galaxies. Ultimately we intend to use these diagnostics to extrapolate to star formation environments in the higher redshift Universe. We will also present details on technology development, project planning and operations for the proposed mission.

  1. ORION: Hierarchical Space-based Observations of Star Formation, From Near to Far

    NASA Astrophysics Data System (ADS)

    Scowen, P. A.; Morse, J. A.; Beasley, M.; Veach, T.; ORION Science Team

    2005-12-01

    The ORION MIDEX mission is a 1.2m UV-visual observatory orbiting at L2 that will conduct the first-ever high spatial resolution survey of a statistically significant sample of visible star-forming environments in the Solar neighborhood in emission lines and continuum. This survey will be used to characterize the star and planet forming environments within 2.5 kpc of the Sun, infer global properties and star formation history in these regions, understand how the environment influences the process of star and planet formation, and develop a classification scheme for star forming regions incorporating the earlier results. Based on these findings we will then conduct a similar high spatial resolution survey of large portions of the Magellanic Clouds, applying the classification scheme from local star forming environments to analogous regions in nearby galaxies, extending the classification scheme to regions that do not have nearby analogs but are common in external galaxies. The results from the local survey will allow us to infer characteristics of low mass star forming environments in the Magellanic Clouds, study the spatial distribution of star forming environments and analyze stellar population photometry to trace star formation history. Finally we will image a representative sample of external galaxies using the same filters used to characterize nearby star formation regions. We will map the distribution of star forming region type as a function of galactic environment for galaxies out to 5 Mpc to infer the distribution and history of low-mass star formation over galactic scales, characterize the stellar content and star formation history of galaxies, and relate these results to the current star forming environments in these galaxies. Ultimately we intend to use these diagnostics to extrapolate to star formation environments in the higher redshift Universe. We will also present details on technology development, project planning and operations for the proposed mission.

  2. A Systematic Survey of Star Formation with the ORION MIDEX Mission

    NASA Astrophysics Data System (ADS)

    Scowen, P.; Morse, J.; Beasley, M.; Hester, J.; Windhorst, R.; Desch, S.; Jansen, R.; Calzetti, D.; Padgett, D.; Hartigan, P.; Oey, S.; Bally, J.; Gallagher, J.; O'Connell, R.; Kennicutt, R.; Lauer, T.; McCaughrean, M.

    2004-12-01

    The ORION MIDEX mission is a 1.2m UV-visual observatory orbiting at L2 that will conduct the first-ever high spatial resolution survey of a statistically significant sample of visible star-forming environments in the Solar neighborhood in emission lines and continuum. This survey will be used to characterize the star and planet forming environments within 2.5 kpc of the Sun, infer global properties and star formation history in these regions, understand how the environment influences the process of star and planet formation, and develop a classification scheme for star forming regions incorporating the earlier results. Based on these findings we will then conduct a similar high spatial resolution survey of large portions of the Magellanic Clouds, applying the classification scheme from local star forming environments to analogous regions in nearby galaxies, extending the classification scheme to regions that do not have nearby analogs but are common in external galaxies. The results from the local survey will allow us to infer characteristics of low mass star forming environments in the Magellanic Clouds, study the spatial distribution of star forming environments and analyze stellar population photometry to trace star formation history. Finally we will image a representative sample of external galaxies using the same filters used to characterize nearby star formation regions. We will map the distribution of star forming region type as a function of galactic environment for galaxies out to 5 Mpc to infer the distribution and history of low-mass star formation over galactic scales, characterize the stellar content and star formation history of galaxies, and relate these results to the current star forming environments in these galaxies. Ultimately we intend to use these diagnostics to extrapolate to star formation environments in the higher redshift Universe. We will also present an update on the technology development, project planning and operations for the proposed mission.

  3. The SAMI Galaxy Survey: spatially resolving the environmental quenching of star formation in GAMA galaxies

    NASA Astrophysics Data System (ADS)

    Schaefer, A. L.; Croom, S. M.; Allen, J. T.; Brough, S.; Medling, A. M.; Ho, I.-T.; Scott, N.; Richards, S. N.; Pracy, M. B.; Gunawardhana, M. L. P.; Norberg, P.; Alpaslan, M.; Bauer, A. E.; Bekki, K.; Bland-Hawthorn, J.; Bloom, J. V.; Bryant, J. J.; Couch, W. J.; Driver, S. P.; Fogarty, L. M. R.; Foster, C.; Goldstein, G.; Green, A. W.; Hopkins, A. M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, A. R.; Lorente, N. P. F.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.; van de Sande, J.; Walcher, C. J.; Wong, O. I.

    2017-01-01

    We use data from the Sydney-AAO Multi-Object Integral Field Spectrograph Galaxy Survey and the Galaxy And Mass Assembly (GAMA) survey to investigate the spatially resolved signatures of the environmental quenching of star formation in galaxies. Using dust-corrected measurements of the distribution of Hα emission, we measure the radial profiles of star formation in a sample of 201 star-forming galaxies covering three orders of magnitude in stellar mass (M*; 108.1-1010.95 M⊙) and in fifth nearest neighbour local environment density (Σ5; 10-1.3-102.1 Mpc-2). We show that star formation rate gradients in galaxies are steeper in dense (log10(Σ5/Mpc2) > 0.5) environments by 0.58 ± 0.29 dex re^{-1} in galaxies with stellar masses in the range 10^{10} < M_{*}/M_{⊙} < 10^{11} and that this steepening is accompanied by a reduction in the integrated star formation rate. However, for any given stellar mass or environment density, the star formation morphology of galaxies shows large scatter. We also measure the degree to which the star formation is centrally concentrated using the unitless scale-radius ratio (r50,Hα/r50,cont), which compares the extent of ongoing star formation to previous star formation. With this metric, we find that the fraction of galaxies with centrally concentrated star formation increases with environment density, from ˜5 ± 4 per cent in low-density environments (log10(Σ5/Mpc2) < 0.0) to 30 ± 15 per cent in the highest density environments (log10(Σ5/Mpc2) > 1.0). These lines of evidence strongly suggest that with increasing local environment density, the star formation in galaxies is suppressed, and that this starts in their outskirts such that quenching occurs in an outside-in fashion in dense environments and is not instantaneous.

  4. The Reliability of [c II] as a Star Formation Rate Indicator

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Baes, Maarten; Fritz, Jacopo; Bendo, George J.; Cortese, Luca

    2011-08-01

    We present a calibration of the star formation rate (SFR) as a function of the [C II] 157.74 μ m luminosity for a sample of 24 star-forming galaxies in the nearby universe. In order to calibrate the SFR against the line luminosity, we rely on both GALEX FUV data, which is an ideal tracer of the unobscured star formation, and Spitzer MIPS 24 μ m, to probe the dust-enshrouded fraction of star formation. For this sample of normal star-forming galaxies, the [C II] luminosity correlates well with the star formation rate. However, the extension of this relation to more quiescent (Hα EW ≤ 10 Å) or ultra luminous galaxies (L TIR ≥ 1012 L⊙) should be handled with caution, since these objects show a non-linearity in the L [C II]-to-L FIR ratio as a function of L FIR (and thus, their star formation activity). Two possible scenarios can be invoked to explain the tight correlation between the [C II] emission and the star formation activity on a global galaxy-scale. The first interpretation could be that the [C II] emission from photo dissociation regions arises from the immediate surroundings of actively star-forming regions and contributes a more or less constant fraction on a global galaxy-scale. Alternatively, we consider the possibility that the [C II] emission is associated to the cold interstellar medium, which advocates an indirect link with the star formation activity in a galaxy through the Schmidt law.

  5. Baseline metal enrichment from Population III star formation in cosmological volume simulations

    NASA Astrophysics Data System (ADS)

    Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.

  6. Star formation suppression and bar ages in nearby barred galaxies

    NASA Astrophysics Data System (ADS)

    James, P. A.; Percival, S. M.

    2018-03-01

    We present new spectroscopic data for 21 barred spiral galaxies, which we use to explore the effect of bars on disc star formation, and to place constraints on the characteristic lifetimes of bar episodes. The analysis centres on regions of heavily suppressed star formation activity, which we term `star formation deserts'. Long-slit optical spectroscopy is used to determine H β absorption strengths in these desert regions, and comparisons with theoretical stellar population models are used to determine the time since the last significant star formation activity, and hence the ages of the bars. We find typical ages of ˜1 Gyr, but with a broad range, much larger than would be expected from measurement errors alone, extending from ˜0.25 to >4 Gyr. Low-level residual star formation, or mixing of stars from outside the `desert' regions, could result in a doubling of these age estimates. The relatively young ages of the underlying populations coupled with the strong limits on the current star formation rule out a gradual exponential decline in activity, and hence support our assumption of an abrupt truncation event.

  7. The formation of stellar systems from interstellar molecular clouds

    NASA Technical Reports Server (NTRS)

    Gehrz, R. D.; Black, D. C.; Solomon, P.M.

    1984-01-01

    The observational and theoretical study of regions of continuing star formation promises greater insight into the physical conditions and events associated with the formation of the solar system, and elucidates the role played by star formation in the evolutionary cycle which seems to dominate interstellar material's processing by successive generations of stars in the spiral galaxies. Novel astronomical methods incorporated by the new facilities scheduled for development in the 1980s may yield substantial advancements in star formation process theory; most significant among these efforts will be the identification and examination of the elusive protostellar collapse phase of both star and planetary system formation.

  8. Jet-induced star formation by accreting black holes: impact on stellar, galaxy, and cosmic evolution

    NASA Astrophysics Data System (ADS)

    Mirabel, Igor Felix

    2016-07-01

    Evidence that relativistic jets trigger star formation along their axis has been found associated to low redshift and high redshift accreting supermassive black holes. However, the physical processes by which jet-cloud interaction may trigger star formation has so far not been elucidated. To gain insight into this potentially important star formation mechanism during reionization, when microquasars were form prolifically before AGN, our international team is carrying out a muliwavelength study of a microquasar jet-induced star formation region in the Milky Way using data from space missions (Chandra, Integral, ISO, Herschel) and from the ground (at cm and mm wavelengths with the VLA and IRAM, and IR with Gemini and VLT). I will show that this relative nearby star forming region is an ideal laboratory to test models of jet-induced star formation elsewhere in the universe.

  9. The Formation of Glycine in Hot Cores: New Gas-grain Chemical Simulations of Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Garrod, Robin

    2012-07-01

    Organic molecules of increasing complexity have been detected in the warm envelopes of star-forming cores, commonly referred to as "hot cores". Spectroscopic searches at mm/sub-mm wavelengths have uncovered both amines and carboxylic acids in these regions, as well as a range of other compounds including alcohols, ethers, esters, and nitriles. However, the simplest amino acid, glycine (NH2CH2COOH), has not yet been reliably detected in the ISM. There has been much interest in this molecule, due to its importance to the formation of proteins, and to life, while the positive identification of interstellar molecules of similar or greater complexity suggests that its existence in star-forming regions is plausible. I will present the results of recent models of hot-core chemistry that simulate the formation of both simple and complex molecules on the surfaces or within the ice mantles of dust grains. I will also present results from the first gas-grain astrochemical model to approach the question of amino-acid formation in hot cores. The formation of glycine in moderate abundance is found to be as efficient as that for similarly complex species, while its sublimation from the grains occurs at somewhat higher temperatures. However, simulated emission spectra based on the model results show that the degree of compactness of high-abundance regions, and the density and temperature profiles of the cores may be the key variables affecting the future detection of glycine, as well as other amino acids, and may explain its non-detection to date.

  10. Bursts of star formation in computer simulations of dwarf galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing burstsmore » rather than continuous, nonbursting low-level star formation activity.« less

  11. SUSTAINING STAR FORMATION RATES IN SPIRAL GALAXIES: SUPERNOVA-DRIVEN TURBULENT ACCRETION DISK MODELS APPLIED TO THINGS GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollmer, Bernd; Leroy, Adam K., E-mail: bvollmer@astro.u-strasbg.fr

    2011-01-15

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproducedmore » by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M{sub sun}) {approx}< 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.« less

  12. Sustaining Star Formation Rates in Spiral Galaxies Supernova-driven Turbulent Accretion Disk Models Applied to THINGS Galaxies

    NASA Astrophysics Data System (ADS)

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-01

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M ⊙) <~ 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  13. Search of massive star formation with COMICS

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshiko K.

    2004-04-01

    Mid-infrared observations is useful for studies of massive star formation. Especially COMICS offers powerful tools: imaging survey of the circumstellar structures of forming massive stars such as massive disks and cavity structures, mass estimate from spectroscopy of fine structure lines, and high dispersion spectroscopy to census gas motion around formed stars. COMICS will open the next generation infrared studies of massive star formation.

  14. How Does Dense Molecular Gas Contribute to Star Formation in the Starburst Galaxy NGC 2146?

    NASA Astrophysics Data System (ADS)

    Wofford, Alia

    2017-01-01

    The starburst galaxy NGC 2146 is believed to have been formed approximately 800 Myr ago, when two galaxies collided with each other possibly leading to a burst of star formation. NGC 2146 is known as a starburst galaxy for the high frequency of star formation going on in its molecular clouds. These clouds serve as nurseries for star formation to occur. Hydrogen Cyanide (HCN) and Carbon monoxide (CO) are molecules found in molecular gas clouds. HCN molecules are tracers for high density star forming gas. Whereas, CO molecules are tracers for low density star forming gas. In this project, we are observing these two molecules and their proximity to where the stars are forming in the galaxy to determine if the star formation is occurring in the same area as the high and low density molecular gas areas in starburst galaxy NGC 2146.

  15. Bar quenching in gas-rich galaxies

    NASA Astrophysics Data System (ADS)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  16. Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik

    2016-01-01

    We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Benjamin; Tan, Jonathan C.; Christie, Duncan

    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMCmore » collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.« less

  18. Star Formation in low mass galaxies

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have extremely low masses (105-107 M⊙). They are much fainter equivalents of the "green pea" galaxies found in SDSS. These objects are followed up with HectoSpec on the MMT to confirm their redshift as well as study their star formation properties in detail.

  19. Clustered star formation and the origin of stellar masses.

    PubMed

    Pudritz, Ralph E

    2002-01-04

    Star clusters are ubiquitous in galaxies of all types and at all stages of their evolution. We also observe them to be forming in a wide variety of environments, ranging from nearby giant molecular clouds to the supergiant molecular clouds found in starburst and merging galaxies. The typical star in our galaxy and probably in others formed as a member of a star cluster, so star formation is an intrinsically clustered and not an isolated phenomenon. The greatest challenge regarding clustered star formation is to understand why stars have a mass spectrum that appears to be universal. This review examines the observations and models that have been proposed to explain these fundamental issues in stellar formation.

  20. Star Formation in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.

    2008-12-01

    M16 (the Eagle Nebula) is a striking star forming region, with a complex morphology of gas and dust sculpted by the massive stars in NGC 6611. Detailed studies of the famous ``elephant trunks'' dramatically increased our understanding of the massive star feedback into the parent molecular cloud. A rich young stellar population (2-3 Myr) has been identified, from massive O-stars down to substellar masses. Deep into the remnant molecular material, embedded protostars, Herbig-Haro objects and maser sources bear evidence of ongoing star formation in the nebula, possibly triggered by the massive cluster members. M 16 is a excellent template for the study of star formation under the hostile environment created by massive O-stars. This review aims at providing an observational overview not only of the young stellar population but also of the gas remnant of the star formation process.

  1. The Origin and Evolution of the Galaxy Star Formation Rate-Stellar Mass Correlation

    NASA Astrophysics Data System (ADS)

    Gawiser, Eric; Iyer, Kartheik

    2018-01-01

    The existence of a tight correlation between galaxies’ star formation rates and stellar masses is far more surprising than usually noted. However, a simple analytical calculation illustrates that the evolution of the normalization of this correlation is driven primarily by the inverse age of the universe, and that the underlying correlation is one between galaxies’ instantaneous star formation rates and their average star formation rates since the Big Bang.Our new Dense Basis method of SED fitting (Iyer & Gawiser 2017, ApJ 838, 127) allows star formation histories (SFHs) to be reconstructed, along with uncertainties, for >10,000 galaxies in the CANDELS and 3D-HST catalogs at 0.5

  2. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Tie; Wu Yuefang; Zhang Huawei

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed towardmore » core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.« less

  3. The Aurora radiation-hydrodynamical simulations of reionization: calibration and first results

    NASA Astrophysics Data System (ADS)

    Pawlik, Andreas H.; Rahmati, Alireza; Schaye, Joop; Jeon, Myoungwon; Dalla Vecchia, Claudio

    2017-04-01

    We introduce a new suite of radiation-hydrodynamical simulations of galaxy formation and reionization called Aurora. The Aurora simulations make use of a spatially adaptive radiative transfer technique that lets us accurately capture the small-scale structure in the gas at the resolution of the hydrodynamics, in cosmological volumes. In addition to ionizing radiation, Aurora includes galactic winds driven by star formation and the enrichment of the universe with metals synthesized in the stars. Our reference simulation uses 2 × 5123 dark matter and gas particles in a box of size 25 h-1 comoving Mpc with a force softening scale of at most 0.28 h-1 kpc. It is accompanied by simulations in larger and smaller boxes and at higher and lower resolution, employing up to 2 × 10243 particles, to investigate numerical convergence. All simulations are calibrated to yield simulated star formation rate functions in close agreement with observational constraints at redshift z = 7 and to achieve reionization at z ≈ 8.3, which is consistent with the observed optical depth to reionization. We focus on the design and calibration of the simulations and present some first results. The median stellar metallicities of low-mass galaxies at z = 6 are consistent with the metallicities of dwarf galaxies in the Local Group, which are believed to have formed most of their stars at high redshifts. After reionization, the mean photoionization rate decreases systematically with increasing resolution. This coincides with a systematic increase in the abundance of neutral hydrogen absorbers in the intergalactic medium.

  4. CONTINUOUS MID-INFRARED STAR FORMATION RATE INDICATORS: DIAGNOSTICS FOR 0 < z < 3 STAR-FORMING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battisti, A. J.; Calzetti, D.; Johnson, B. D.

    2015-02-20

    We present continuous, monochromatic star formation rate (SFR) indicators over the mid-infrared wavelength range of 6–70 μm. We use a sample of 58 star-forming galaxies (SFGs) in the Spitzer–SDSS–GALEX Spectroscopic Survey at z < 0.2, for which there is a rich suite of multi-wavelength photometry and spectroscopy from the ultraviolet through to the infrared. The data from the Spitzer Infrared Spectrograph (IRS) of these galaxies, which spans 5–40 μm, is anchored to their photometric counterparts. The spectral region between 40–70 μm is interpolated using dust model fits to the IRS spectrum and Spitzer 70 and 160 μm photometry. Since theremore » are no sharp spectral features in this region, we expect these interpolations to be robust. This spectral range is calibrated as a SFR diagnostic using several reference SFR indicators to mitigate potential bias. Our band-specific continuous SFR indicators are found to be consistent with monochromatic calibrations in the local universe, as derived from Spitzer, WISE, and Herschel photometry. Our local composite template and continuous SFR diagnostics are made available for public use through the NASA/IPAC Infrared Science Archive (IRSA) and have typical dispersions of 30% or less. We discuss the validity and range of applicability for our SFR indicators in the context of unveiling the formation and evolution of galaxies. Additionally, in the era of the James Webb Space Telescope this will become a flexible tool, applicable to any SFG up to z ∼ 3.« less

  5. Radiative Hydrodynamic Simulations of In Situ Star Formation in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Frazer, Chris; Heitsch, Fabian

    2018-01-01

    Many stars observed in the Galactic Center (GC) orbit the supermassive black hole (SMBH), Sagittarius A*, in a region where the extreme gravitational field is expected to inhibit star formation. Yet, many of these stars are young which favors an in situ formation scenario. Previous numerical work on this topic has focused on two possible solutions. First, the tidal capture of a > 10^4 Msun infalling molecular cloud by an SMBH may result in the formation of a surrounding gas disk which then rapidly cools and forms stars. This process results in stellar populations that are consistent with the observed stellar disk in the GC. Second, dense gas clumps of approximately 100 Msun on highly eccentric orbits about an SMBH can experience sparks of star formation via orbital compressions occurring during pericenter passage. In my dissertation, I build upon these models using a series of grid-based radiative hydrodynamic simulations, including the effects of both ionizing ultraviolet light from existing stars as well as X-ray radiation emanating from the central black hole. Radiation is treated with an adaptive ray-tracing routine, including appropriate heating and cooling for both neutral and ionized gas. These models show that ultraviolet radiation is sufficiently strong to heat low mass gas clouds, thus suppressing star formation from clump compression. Gas disks that form from cloud capture become sufficiently dense to provide shielding from the radiation of existing central stars, thus allowing star formation to continue. Conversely, X-rays easily penetrate and heat the potentially star forming gas. For sufficiently high radiation fields, this provides a mechanism to disrupt star formation for both scenarios considered above.

  6. CHARACTERIZING THE STAR FORMATION OF THE LOW-MASS SHIELD GALAXIES FROM HUBBLE SPACE TELESCOPE IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Simones, Jacob E.

    The Survey of Hi in Extremely Low-mass Dwarfs is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ∼10% of the Hi Arecibo Legacy Fast ALFA survey based on their low Hi mass and low baryonic mass. Here, we measure the star formation properties from optically resolved stellar populations for 12 galaxies using a color–magnitude diagram fitting technique. We derive lifetime average star formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, themore » recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dwarf irregulars. We do not find a correlation between the recent star formation activity and the distance to the nearest neighboring galaxy, suggesting that the star formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star formation process.« less

  7. Long-period variable stars in NGC 147 and NGC 185 - I. Their star formation histories

    NASA Astrophysics Data System (ADS)

    Hamedani Golshan, Roya; Javadi, Atefeh; van Loon, Jacco Th.; Khosroshahi, Habib; Saremi, Elham

    2017-04-01

    NGC 147 and NGC 185 are two of the most massive satellites of the Andromeda galaxy (M 31). Close together in the sky, of similar mass and morphological type dE, they possess different amounts of interstellar gas and tidal distortion. The question therefore is, how do their histories compare? Here, we present the first reconstruction of the star formation histories of NGC 147 and NGC 185 using long-period variable stars. These represent the final phase of evolution of low- and intermediate-mass stars at the asymptotic giant branch, when their luminosity is related to their birth mass. Combining near-infrared photometry with stellar evolution models, we construct the mass function and hence the star formation history. For NGC 185, we found that the main epoch of star formation occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate. In the case of NGC 147, the star formation rate peaked only 7 Gyr ago, staying intense until ˜3 Gyr ago, but no star formation has occurred for at least 300 Myr. Despite their similar masses, NGC 147 has evolved more slowly than NGC 185 initially, but more dramatically in more recent times. This is corroborated by the strong tidal distortions of NGC 147 and the presence of gas in the centre of NGC 185.

  8. LATE POP III STAR FORMATION DURING THE EPOCH OF REIONIZATION: RESULTS FROM THE RENAISSANCE SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hao; Norman, Michael L.; O’Shea, Brian W.

    2016-06-01

    We present results on the formation of Population III (Pop III) stars at redshift 7.6 from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich radiation transport hydrodynamics cosmological adaptive-mesh refinement simulations of high-redshift galaxy formation performed on the Blue Waters supercomputer. In a survey volume of about 220 comoving Mpc{sup 3}, we found 14 Pop III galaxies with recent star formation. The surprisingly late formation of Pop III stars is possible due to two factors: (i) the metal enrichment process is local and slow, leaving plenty of pristine gas to exist in the vast volume; and (ii) strongmore » Lyman–Werner radiation from vigorous metal-enriched star formation in early galaxies suppresses Pop III formation in (“not so”) small primordial halos with mass less than ∼3 × 10{sup 7} M {sub ⊙}. We quantify the properties of these Pop III galaxies and their Pop III star formation environments. We look for analogs to the recently discovered luminous Ly α emitter CR7, which has been interpreted as a Pop III star cluster within or near a metal-enriched star-forming galaxy. We find and discuss a system similar to this in some respects, however, the Pop III star cluster is far less massive and luminous than CR7 is inferred to be.« less

  9. Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit “Coherent” Star Formation

    NASA Astrophysics Data System (ADS)

    Orr, Matthew E.; Hayward, Christopher C.; Nelson, Erica J.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Chan, T. K.; Schmitz, Denise M.; Miller, Tim B.

    2017-11-01

    In a recent work based on 3200 stacked Hα maps of galaxies at z˜ 1, Nelson et al. find evidence for “coherent star formation”: the stacked star formation rate (SFR) profiles of galaxies above (below) the “star formation main sequence” (MS) are above (below) that of galaxies on the MS at all radii. One might interpret this result as inconsistent with highly bursty star formation and evidence that galaxies evolve smoothly along the MS rather than crossing it many times. We analyze six simulated galaxies at z˜ 1 from the Feedback in Realistic Environments (FIRE) project in a manner analogous to the observations to test whether the above interpretations are correct. The trends in stacked SFR profiles are qualitatively consistent with those observed. However, SFR profiles of individual galaxies are much more complex than the stacked profiles: the former can be flat or even peak at large radii because of the highly clustered nature of star formation in the simulations. Moreover, the SFR profiles of individual galaxies above (below) the MS are not systematically above (below) those of MS galaxies at all radii. We conclude that the time-averaged coherent star formation evident stacks of observed galaxies is consistent with highly bursty, clumpy star formation of individual galaxies and is not evidence that galaxies evolve smoothly along the MS.

  10. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.

    PubMed

    Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H

    2015-03-19

    Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidalgo, Sebastian L.; Aparicio, Antonio; MartInez-Delgado, David

    We present the star formation history (SFH) and its variations with galactocentric distance for the Local Group dwarf galaxy of Phoenix. They have been derived from a (F555W, F814W) color-magnitude diagram obtained from WFPC2-HST data, which reaches the oldest main-sequence turnoffs. The IAC-star and IAC-pop codes and the MinnIAC suite have been used to obtain the star formation rate as a function of time and metallicity, psi(t, z). We find that Phoenix has had ongoing but gradually decreasing star formation over nearly a Hubble time. The highest level of star formation occurred from the formation of the galaxy till 10.5more » Gyr ago, when 50% of the total star formation had already taken place. From that moment, star formation continues at a significant level until 6 Gyr ago (an additional 35% of the stars are formed in this time interval), and at a very low level till the present time. The chemical enrichment law shows a trend of slowly increasing metallicity as a function of time until 6-8 Gyr ago, when metallicity starts to increase steeply to the current value. We have paid particular attention to the study of the variations of the SFH as a function of radius. Young stars are found in the inner region of the galaxy only, but intermediate-age and old stars can be found at all galactocentric distances. The distribution of mass density in alive stars and its evolution with time has been studied. This study shows that star formation started at all galactocentric distances in Phoenix at an early epoch. If stars form in situ in Phoenix, the star formation onset took place all over the galaxy (up to a distance of about 400 pc from the center), but preferentially out of center regions. After that, our results are compatible with a scenario in which the star formation region envelope slowly shrinks as time goes on, possibly as a natural result of pressure support reduction as gas supply diminishes. As a consequence, the star formation stopped first (about 7-8 Gyr ago) in outer regions and the scale length of the stellar mass density distribution decreased with time. Finally, no traces of a true, old halo are apparent in Phoenix either in its stellar age distribution or in the stellar mass density distribution, at least out to 0.5 kpc (about 2.5 scale length) from the center.« less

  12. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  13. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  14. Physics of primordial star formation

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki

    2012-09-01

    The study of primordial star formation has a history of nearly sixty years. It is generally thought that primordial stars are one of the key elements in a broad range of topics in astronomy and cosmology, from Galactic chemical evolution to the formation of super-massive blackholes. We review recent progress in the theory of primordial star formation. The standard theory of cosmic structure formation posits that the present-day rich structure of the Universe developed through gravitational amplification of tiny matter density fluctuations left over from the Big Bang. It has become possible to study primordial star formation rigorously within the framework of the standard cosmological model. We first lay out the key physical processes in a primordial gas. Then, we introduce recent developments in computer simulations. Finally, we discuss prospects for future observations of the first generation of stars.

  15. Formation of new stellar populations from gas accreted by massive young star clusters.

    PubMed

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  16. Star Formation History In Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Chien, Li-Hsin

    2009-01-01

    Interacting and merging galaxies are believed to play an important role in many aspects of galactic evolution. Their violent interactions can trigger starbursts, which lead to formation of young globular clusters. Therefore the ages of these young globular clusters can be interpreted to yield the timing of interaction-triggered events, and thus provide a key to reconstruct the star formation history in merging galaxies. The link between galaxy interaction and star formation is well established, but the triggers of star formation in interacting galaxies are still not understood. To date there are two competing formulas that describe the star formation mechanism--density-dependent and shock-induced rules. Numerical models implementing the two rules predict significantly different star formation histories in merging galaxies. My dissertation combines these two distinct areas of astrophysics, stellar evolution and galactic dynamics, to investigate the star formation history in galaxies at various merging stages. Begin with NGC 4676 as an example, I will briefly describe its model and illustrate the idea of using the ages of clusters to constrain the modeling. The ages of the clusters are derived from spectra that were taken with multi-object spectroscopy on Keck. Using NGC 7252 as a second example, I will present a state of the art dynamical model which predicts NGC7252's star formation history and other properties. I will then show a detailed comparison and analysis between the clusters and the modeling. In the end, I will address this important link as the key to answer the fundamental question of my thesis: what is the trigger of star formation in merging galaxies?

  17. Bursting star formation and the overabundance of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Bodigfee, G.; Deloore, C.

    1985-01-01

    The ratio of the number of WR-stars to their OB progenitors appears to be significantly higher in some extragalactic systems than in our Galaxy. This overabundance of Wolf-Rayet-stars can be explained as a consequence of a recent burst of star formation. It is suggested that this burst is the manifestation of a long period nonlinear oscillation in the star formation process, produced by positive feedback effects between young stars and the interstellar medium. Star burst galaxies with large numbers of WR-stars must generate gamma - fluxes but due to the distance, all of them are beyond the reach of present-day ray detectors, except probably 30 Dor.

  18. Variations of comoving volume and their effects on the star formation rate density

    NASA Astrophysics Data System (ADS)

    Kim, Sungeun; Physics and Astronomy, Sejong University, Seoul, Korea (the Republic of).

    2018-01-01

    To build a comprehensive picture of star formation in the universe, we havedeveloped an application to calculate the comoving volume at a specific redshift and visualize the changes of spaceand time. The application is based on the star formation rates of about a few thousands of galaxies and their redshiftvalues. Three dimensional modeling of these galaxies using the redshift, comoving volume, and star formation ratesas input data allows calculation of the star formation rate density corresponding to the redshift. This work issupported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP)(no. 2017037333).

  19. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    NASA Astrophysics Data System (ADS)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  20. Drivers of Turbulence in the Neutral Interstellar Medium of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Stilp, Adrienne M.

    The cause of HI velocity dispersions in the interstellar medium (ISM) of galaxies is often attributed to star formation, but recent evidence has shown these two quantities are not connected in regions of low star formation. This lack of connection is most apparent in dwarf galaxies and the outer disks of spiral galaxies. However, unique data sets have recently been collected that can help address this discrepancy. The ACS Nearby Survey Treasury Project (ANGST) has measured time-resolved star formation histories (SFHs) in ˜ 70 nearby galaxies. The followup Very Large Array-ANGST survey (VLA-ANGST) provides complementary HI observations of a subset of ANGST galaxies. In this thesis, I explore the connection between star formation and HI kinematics in a number of nearby dwarf galaxies. I first present the Very Large Array-ACS Nearby Galaxy Survey Treasury Project (ANGST). VLA-ANGST was designed to provide high spatial and velocity resolution observations of the HI component of the interstellar medium (ISM) in ANGST galaxies. I describe the data calibration and imaging procedures, and then present the publicly-available data products. The observations from this survey and from The HI Nearby Galaxy Survey (THINGS) comprise the majority of data in my thesis. Using VLA-ANGST and THINGS data, I present a method to measure the average HI kinematics in a number of nearby dwarf galaxies by co-adding individual line-of-sight profiles. These "superprofiles" are composed of a central narrow peak (˜ 6-10 km s-1) with higher velocity wings to either side. When scaled to the same half-width half-maximum, the shapes of the superprofiles are very similar. I interpret the central peak as representative of the average turbulent motion; the wings are then due to HI moving faster than expected compared to the average kinematics. I then compare the superprofile parameters to physical properties such as mass surface density and star formation intensity. The average velocity dispersion correlate most strongly with HI surface density, and do not show correlations with star formation intensity unless higher mass galaxies were included. The properties of the wings are more connected with star formation. By applying energy arguments, I determine that star formation can provide enough energy to drive the HI kinematics over ˜ 10 Myr timescales, while a gravitational instability cannot. I then extend this analysis to spatially-resolved scales in these galaxies, and generated superprofiles in regions determined by radius or by star formation intensity. These superprofiles provide a more direct comparison between H I kinematics and local ISM properties compared to the analysis on global scales. The spatially-resolved superprofiles indicate that star formation does not uniquely determine the HI velocity dispersion, but it does appear to provide a lower floor below which velocity dispersions cannot fall. I also find that the coupling efficiency between star formation and HI kinematics decreases with increasing star formation surface density, which may indicate that star formation energy couples more consistently to other phases of the ISM. I finally explore the timescale over which HI responds to star formation using a combination of VLA-ANGST, THINGS, and ANGST data. Using time-resolved SFHs from ANGST, I measure the average star formation rate as a function of time and compared it to present-day HI kinematics. I find that the HI kinematics are most strongly correlated with star formation that occurred ˜ 30 -- 40 Myr ago, which supports the idea that supernova explosions are one driver of HI kinematics even in low star formation systems.

  1. The fate of NGC602, an intense region of star-formation in the Wing of the SMC

    NASA Astrophysics Data System (ADS)

    Sabbi, Elena

    2017-08-01

    This is a small 2 orbit proposal designed to measure the internal dynamics of NGC602, a small region of intense star formation in the Wing of the SMC, with a low gas and dust density that has been often considered an unfavorable place for star formation. Small regions of massive star formation are important to study for our understanding of the process of star and cluster formation, the ionization of the interstellar medium, and the injection of energy and momentum into their host galaxy. By combining our new observations with archival ACS/WFC data acquired in July 2004, we will be able to measure the relative proper motions of the NGC602 sub-structures better than 2.3 km/s and investigate the nature of the apparently isolated massive stars found around NGC602. This study will provide unique observational data to characterize the early phase of cluster evolution and test cluster formation theories. It will also address significant open issues in star formation, cluster dynamics and the origin of isolated supernovae and GRBs.

  2. QUIESCENCE CORRELATES STRONGLY WITH DIRECTLY MEASURED BLACK HOLE MASS IN CENTRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrazas, Bryan A.; Bell, Eric F.; Henriques, Bruno M. B.

    Roughly half of all stars reside in galaxies without significant ongoing star formation. However, galaxy formation models indicate that it is energetically challenging to suppress the cooling of gas and the formation of stars in galaxies that lie at the centers of their dark matter halos. In this Letter, we show that the dependence of quiescence on black hole and stellar mass is a powerful discriminant between differing models for the mechanisms that suppress star formation. Using observations of 91 star-forming and quiescent central galaxies with directly measured black hole masses, we find that quiescent galaxies host more massive blackmore » holes than star-forming galaxies with similar stellar masses. This observational result is in qualitative agreement with models that assume that effective, more-or-less continuous active galactic nucleus feedback suppresses star formation, strongly suggesting the importance of the black hole in producing quiescence in central galaxies.« less

  3. Star Formation: Answering Fundamental Questions During the Spitzer Warm Mission Phase

    NASA Astrophysics Data System (ADS)

    Strom, Steve; Allen, Lori; Carpenter, John; Hartmann, Lee; Megeath, S. Thomas; Rebull, Luisa; Stauffer, John R.; Liu, Michael

    2007-10-01

    Through existing studies of star-forming regions, Spitzer has created rich databases which have already profoundly influenced our ability to understand the star and planet formation process on micro and macro scales. However, it is essential to note that Spitzer observations to date have focused largely on deep observations of regions of recent star formation associated directly with well-known molecular clouds located within 500 pc. What has not been done is to explore to sufficient depth or breadth a representative sample of the much larger regions surrounding the more massive of these molecular clouds. Also, while there have been targeted studies of specific distant star forming regions, in general, there has been little attention devoted to mapping and characterizing the stellar populations and star-forming histories of the surrounding giant molecular clouds (GMCs). As a result, we have yet to develop an understanding of the major physical processes that control star formation on the scale or spiral arms. Doing so will allow much better comparison of star-formation in our galaxy to the star-forming complexes that dominate the spiral arms of external galaxies. The power of Spitzer in the Warm Mission for studies of star formation is its ability to carry out large-scale surveys unbiased by prior knowledge of ongoing star formation or the presence of molecular clouds. The Spitzer Warm Mission will provide two uniquely powerful capabilities that promise equally profound advances : high sensitivity and efficient coverage of many hundreds of square degrees, and angular resolution sufficient to resolve dense groups and clusters of YSOs and to identify contaminating background galaxies whose colors mimic those of young stars. In this contribution, we describe two major programs: a survey of the outer regions of selected nearby OB associations, and a study of distant GMCs and star formation on the scale of a spiral arm.

  4. Exploring the Dust Content, Metallicity, Star Formation and AGN Activity in Distant Dusty, Star-Forming Galaxies Using Cosmic Telescope

    NASA Astrophysics Data System (ADS)

    Walth, Gregory; Egami, Eiichi; Clément, Benjamin; Rujopakarn, Wiphu; Rawle, Tim; Richard, Johan; Dessauges, Miroslava; Perez-Gonzalez, Pablo; Ebeling, Harald; Vayner, Andrey; Wright, Shelley; Cosens, Maren; Herschel Lensing Survey

    2018-01-01

    We present our recent ALMA observations of Herschel-detected gravitationally lensed dusty, star-forming galaxies (DSFGs) and how they compliment our near-infrared spectroscopic observations of their rest-frame optical nebular emission. This provides the complete picture of star formation; from the molecular gas that fuels star formation, to the dust emission which are the sites of star formation, and the nebular emission which is the gas excited by the young stars. DSFGs undergo the largest starbursts in the Universe, contributing to the bulk of the cosmic star formation rate density between redshifts z = 1 - 4. Internal processes within high-redshift DSFGs remains largely unexplored; such as feedback from star formation, the role of turbulence, gas surface density of molecular gas, AGN activity, and the rates of metal production. Much that is known about DSFGs star formation properties comes from their CO and dust emission. In order to fully understand the star formation history of DSFGs, it is necessary to observe their optical nebular emission. Unfortunately, UV/optical emission is severely attenuated by dust, making it challenging to detect. With the Herschel Lensing Survey, a survey of the cores of almost 600 massive galaxy clusters, we are able to probe faint dust-attenuated nebular emission. We are currently conducting a new survey using Keck/OSIRIS to resolve a sample of gravitationally lensed DSFGs from the Herschel Lensing Survey (>100 mJy, with SFRs >100 Msun/yr) at redshifts z=1-4 with magnifications >10x all with previously detected nebular emission lines. We present the physical and resolved properties of gravitationally lensed DSFGs at unprecedented spatial scales; such as ionization, metallicity, AGN activity, and dust attenuation.

  5. AGB stars as tracers to IC 1613 evolution.

    NASA Astrophysics Data System (ADS)

    Hashemi, S. A.; Javadi, A.; van Loon, J. Th.

    We are going to apply AGB stars to find star formation history for IC 1613 galaxy; this a new and simple method that works well for nearby galaxies. IC 1613 is a Local Group dwarf irregular galaxy that is located at distance of 750 kpc, a gas rich and isolated dwarf galaxy that has a low foreground extinction. We use the long period variable stars (LPVs) that represent the very final stage of evolution of stars with low and intermediate mass at the AGB phase and are very luminous and cool so that they emit maximum brightness in near-infrared bands. Thus near-infrared photometry with using stellar evolutionary models help us to convert brightness to birth mass and age and from this drive star formation history of the galaxy. We will use the luminosity distribution of the LPVs to reconstruct the star formation history-a method we have successfully applied in other Local Group galaxies. Our analysis shows that the IC 1613 has had a nearly constant star formation rate, without any dominant star formation episode.

  6. Activity of the Baby Sun

    NASA Astrophysics Data System (ADS)

    Katsova, M. M.; Livshits, M. A.; Mishenina, T. V.; Nizamov, B. A.

    2017-05-01

    An analysis of the X-ray radiation of G-stars shows that the youngest fast rotating stars are characterized by saturation of activity, but part of stars demonstrate the solar-type activity, starting from rotational periods of 1.4 days. This type of activity, the level of which is determined by the rate of axial rotation, includes the formation of spots, flares and etc; first, activity is irregular, and only then there are conditions for the formation of cycles. The Kepler data show that stars of the same spectral type demonstrate two activity levels. This bimodality of different distributions of stars, change in a character of cycles and a level of Жiзнь i Bceлeннaya flare activity are evidences for an evolution of activity versus the age. By the nature of activity, we call conditionally G-dwarfs with rotation periods from 1 day to 5-6 days by the term "the Baby Sun" (the maximal number of these stars has Prot = 3 d), and we refer G-stars with Prot from 10 to 18 days to "the Young Suns". Ages of the main amount of the Baby Sun are around 200-600 Myr and the Young Sun are of about 1-2 Gyr. The Baby Suns are characterized by enhanced lithium content. We estimate the quasi-stationary X-ray and farultraviolet radiation of the outer atmosphere of the Baby Sun. From the GALEX data we obtain the FUV flux in the range 1350-1750 A for this kind of stars at the distance of 1 AU is 12.8 ± 4.2 erg/(cm^2 c), that exceeds the FUV-flux of the contemporary Sun by more than 6 times. The Kepler data demonstrate that the superflares happen more often namely on the Baby Suns. Our estimate is that superflares of the total energies 10^35 erg occur on the Baby Sun of about one per year.

  7. ALMA constraints on star-forming gas in a prototypical z = 1.5 clumpy galaxy: the dearth of CO(5-4) emission from UV-bright clumps

    NASA Astrophysics Data System (ADS)

    Cibinel, A.; Daddi, E.; Bournaud, F.; Sargent, M. T.; le Floc'h, E.; Magdis, G. E.; Pannella, M.; Rujopakarn, W.; Juneau, S.; Zanella, A.; Duc, P.-A.; Oesch, P. A.; Elbaz, D.; Jagannathan, P.; Nyland, K.; Wang, T.

    2017-08-01

    We present deep ALMA CO(5-4) observations of a main-sequence, clumpy galaxy at z = 1.5 in the HUDF. Thanks to the ˜0{^''.}5 resolution of the ALMA data, we can link stellar population properties to the CO(5-4) emission on scales of a few kiloparsec. We detect strong CO(5-4) emission from the nuclear region of the galaxy, consistent with the observed LIR-L^' }_CO(5-4) correlation and indicating ongoing nuclear star formation. The CO(5-4) gas component appears more concentrated than other star formation tracers or the dust distribution in this galaxy. We discuss possible implications of this difference in terms of star formation efficiency and mass build-up at the galaxy centre. Conversely, we do not detect any CO(5-4) emission from the UV-bright clumps. This might imply that clumps have a high star formation efficiency (although they do not display unusually high specific star formation rates) and are not entirely gas dominated, with gas fractions no larger than that of their host galaxy (˜50 per cent). Stellar feedback and disc instability torques funnelling gas towards the galaxy centre could contribute to the relatively low gas content. Alternatively, clumps could fall in a more standard star formation efficiency regime if their actual star formation rates are lower than generally assumed. We find that clump star formation rates derived with several different, plausible methods can vary by up to an order of magnitude. The lowest estimates would be compatible with a CO(5-4) non-detection even for main-sequence like values of star formation efficiency and gas content.

  8. The Constant Average Relationship Between Dust-obscured Star Formation and Stellar Mass from z=0 to z=2.5

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergo; Yun, Min; 3D-HST Collaboration

    2018-01-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends (SFR) and stellar mass for mass-complete samples of galaxies at 0 < z < 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24μm photometry in the well-studied 5 extragalactic CANDELS fields. We find a strong dependence of the fraction of obscured star formation (f_obscured=SFR_IR/SFR_UV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z=2.5. 50% of star formation is obscured for galaxies with log(M/M⊙)=9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low mass extremely obscured star-forming galaxies at z > 1. For log(M/M⊙)>10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, f_obscured is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in f_obscured with stellar mass. This poses a challenge to theoretical models to reproduce, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  9. The Constant Average Relationship between Dust-obscured Star Formation and Stellar Mass from z = 0 to z = 2.5

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergö; Yun, Min S.

    2017-12-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends on stellar mass for mass-complete samples of galaxies at 0< z< 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24 μm photometry in the well-studied five extragalactic Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) fields. We find a strong dependence of the fraction of obscured star formation (f obscured = SFRIR/SFRUV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z = 2.5. 50% of star formation is obscured for galaxies with log(M/M ⊙) = 9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low-mass, extremely obscured star-forming galaxies at z> 1. For log(M/M ⊙) > 10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, {f}{obscured} is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions, and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in {f}{obscured} with stellar mass. This poses a challenge to theoretical models, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  10. Mapping the spatial distribution of star formation in cluster galaxies at z ~0.5 with the Grism Lens-Amplified Survey from Space (GLASS)

    NASA Astrophysics Data System (ADS)

    Vulcani, Benedetta

    2015-08-01

    What physical processes regulate star formation in dense environments? Understanding why galaxy evolution is environment dependent is one of the key questions of current astrophysics. I will present the first characterization of the spatial distribution of star formation in cluster galaxies at z~0.5, in order to quantify the role of different physical processes that are believed to be responsible for shutting down star formation. The analysis makes use of data from the Grism Lens-Amplified Survey from Space (GLASS), a large HST cycle-21 program targeting 10 massive galaxy clusters with extensive HST imaging from CLASH and the Frontier Field Initiative. The program consists of 140 primary and 140 parallel orbits of near-infrared WCF3 and optical ACS slitless grism observations, which result in 3D spectroscopy of hundreds of galaxies. The grism data are used to produce spatially resolved maps of the star formation density, while the stellar mass density and optical surface brightness are obtained from multiband imaging. I will describe quantitative measures of the spatial location and extend of the star formation rate, showing that about half of the cluster members with significant Halpha detection have diffused star formation, larger than the optical counterpart. This suggests that star formation occurs out to larger radii than the rest frame continuum. For some systems, nuclear star forming regions are found. I will also present a comparison between the Halpha distribution observed in cluster and field galaxies. The characterization of the spatial distribution of Halpha provides a new window, yet poorly exploited, on the mechanisms that regulate star formation and morphological transformation in dense environments.

  11. Age Spreads and the Temperature Dependence of Age Estimates in Upper Sco

    NASA Astrophysics Data System (ADS)

    Fang, Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron

    2017-06-01

    Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on a timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron

    Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on amore » timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.« less

  13. STScI Archive Manual, Version 7.0

    NASA Astrophysics Data System (ADS)

    Padovani, Paolo

    1999-06-01

    The STScI Archive Manual provides information a user needs to know to access the HST archive via its two user interfaces: StarView and a World Wide Web (WWW) interface. It provides descriptions of the StarView screens used to access information in the database and the format of that information, and introduces the use to the WWW interface. Using the two interfaces, users can search for observations, preview public data, and retrieve data from the archive. Using StarView one can also find calibration reference files and perform detailed association searches. With the WWW interface archive users can access, and obtain information on, all Multimission Archive at Space Telescope (MAST) data, a collection of mainly optical and ultraviolet datasets which include, amongst others, the International Ultraviolet Explorer (IUE) Final Archive. Both interfaces feature a name resolver which simplifies searches based on target name.

  14. Astronomical Data Center Bulletin, volume 1, number 2

    NASA Technical Reports Server (NTRS)

    Nagy, T. A.; Warren, W. H., Jr.; Mead, J. M.

    1981-01-01

    Work in progress on astronomical catalogs is presented in 16 papers. Topics cover astronomical data center operations; automatic astronomical data retrieval at GSFC; interactive computer reference search of astronomical literature 1950-1976; formatting, checking, and documenting machine-readable catalogs; interactive catalog of UV, optical, and HI data for 201 Virgo cluster galaxies; machine-readable version of the general catalog of variable stars, third edition; galactic latitude and magnitude distribution of two astronomical catalogs; the catalog of open star clusters; infrared astronomical data base and catalog of infrared observations; the Air Force geophysics laboratory; revised magnetic tape of the N30 catalog of 5,268 standard stars; positional correlation of the two-micron sky survey and Smithsonian Astrophysical Observatory catalog sources; search capabilities for the catalog of stellar identifications (CSI) 1979 version; CSI statistics: blue magnitude versus spectral type; catalogs available from the Astronomical Data Center; and status report on machine-readable astronomical catalogs.

  15. Analysis and Quality Assurance of the SKYMAP 4.0 Guidance and Tracking Star Catalog: The NASA SKY2000 Spacecraft Attitude Determination Star Catalog

    NASA Technical Reports Server (NTRS)

    Warren, Wayne H., Jr.

    2001-01-01

    An updated and improved NASA spacecraft attitude determination catalog, now called SKY2000, Version 3, has been prepared and quality assured. The highest priority goals were to replace the astrometric (positions and motions) and photometric (brightnesses and colors) data with the most recent and accurate data available. Quality assurance has been performed in a fairly straightforward manner, i.e., without extensive data checking and analysis, and many errors and Inconsistencies were corrected. Additional work should eventually be done on the variability and multiple-star data In the catalog, while certain other data can be significantly Improved. The current version of the catalog can be found at the GSFC Flight Dynamics website: http://cheli.gsfc.nasa.gov/dist/attitude/skymap.html. Supporting information and reference materials (published papers, format and data descriptions, etc.) can also be found at the website.

  16. Formation and Assembly of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    McMillan, Stephen

    The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing open access to state-of- the-art simulation techniques within a modern, modular software environment. We will follow the gravitational collapse of 0.1-10 million-solar mass gas clouds through star formation and coalescence into a star cluster, modeling in detail the coupling of the gas and the newborn stars. We will study the effects of star formation by detecting accreting regions of gas in self-gravitating, turbulent, MHD, FLASH models that we will translate into collisional dynamical systems of stars modeled with an N-body code, coupled together in the AMUSE framework. Our FLASH models will include treatments of radiative transfer from the newly formed stars, including heating and radiative acceleration of the surrounding gas. Specific questions to be addressed are: (1) How efficiently does the gas in a star forming region form stars, how does this depend on mass, metallicity, and other parameters, and what terminates star formation? What observational predictions can be made to constrain our models? (2) How important are different mechanisms for driving turbulence and removing gas from a cluster: accretion, radiative feedback, and mechanical feedback? (3) How does the infant mortality rate of young clusters depend on the initial properties of the parent cloud? (4) What are the characteristic formation timescales of massive star clusters, and what observable imprints does the assembly process leave on their structure at an age of 10-20 Myr, when formation is essentially complete and many clusters can be observed? These studies are directly relevant to NASA missions at many electromagnetic wavelengths, including Chandra, GALEX, Hubble, and Spitzer. Each traces different aspects of cluster formation and evolution: X-rays trace supernovae, ultraviolet traces young stars, visible colors can distinguish between young blue stars and older red stars, and the infrared directly shows young embedded star clusters.

  17. The (Un)Lonely Planet Guide: Formation and Evolution of Planetary Systems from a ``Blue Dots'' Perspective

    NASA Astrophysics Data System (ADS)

    Meyer, M. R.

    2010-10-01

    In this contribution I summarize some recent successes, and focus on remaining challenges, in understanding the formation and evolution of planetary systems in the context of the Blue Dots initiative. Because our understanding is incomplete, we cannot yet articulate a design reference mission engineering matrix suitable for an exploration mission where success is defined as obtaining a spectrum of a potentially habitable world around a nearby star. However, as progress accelerates, we can identify observational programs that would address fundamental scientific questions through hypothesis testing such that the null result is interesting.

  18. Star Formation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    O'Connell, Robert

    2009-07-01

    Star formation is a fundamental astrophysical process; it controls phenomena ranging from the evolution of galaxies and nucleosynthesis to the origins of planetary systems and abodes for life. The WFC3, optimized at both UV and IR wavelengths and equipped with an extensive array of narrow-band filters, brings unique capabilities to this area of study. The WFC3 Scientific Oversight Committee {SOC} proposes an integrated program on star formation in the nearby universe which will fully exploit these new abilities. Our targets range from the well-resolved R136 in 30 Dor in the LMC {the nearest super star cluster} and M82 {the nearest starbursting galaxy} to about half a dozen other nearby galaxies that sample a wide range of star-formation rates and environments. Our program consists of broad-band multiwavelength imaging over the entire range from the UV to the near-IR, aimed at studying the ages and metallicities of stellar populations, revealing young stars that are still hidden by dust at optical wavelengths, and showing the integrated properties of star clusters. Narrow-band imaging of the same environments will allow us to measure star-formation rates, gas pressure, chemical abundances, extinction, and shock morphologies. The primary scientific issues to be addressed are: {1} What triggers star formation? {2} How do the properties of star-forming regions vary among different types of galaxies and environments of different gas densities and compositions? {3} How do these different environments affect the history of star formation? {4} Is the stellar initial mass function universal or determined by local conditions?

  19. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    NASA Astrophysics Data System (ADS)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  20. On the Star Formation-AGN Connection at zeta (is) approximately greater than 0.3

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, Andrew; Urry, C. Megan

    2013-01-01

    Using the spectra of a sample of approximately 28,000 nearby obscured active galaxies from Data Release 7 of the Sloan Digital Sky Survey (SDSS), we probe the connection between active galactic nucleus (AGN) activity and star formation over a range of radial scales in the host galaxy. We use the extinction-corrected luminosity of the [O iii] 5007A line as a proxy of intrinsic AGN power and supermassive black hole (SMBH) accretion rate. The star formation rates (SFRs) are taken from the MPA-JHU value-added catalog and are measured through the 3 inch SDSS aperture. We construct matched samples of galaxies covering a range in redshifts. With increasing redshift, the projected aperture size encompasses increasing amounts of the host galaxy. This allows us to trace the radial distribution of star formation as a function of AGN luminosity. We find that the star formation becomes more centrally concentrated with increasing AGN luminosity and Eddington ratio. This implies that such circumnuclear star formation is associated with AGN activity, and that it increasingly dominates over omnipresent disk star formation at higher AGN luminosities, placing critical constraints on theoretical models that link host galaxy star formation and SMBH fueling. We parameterize this relationship and find that the star formation on radial scales (is) less than 1.7 kpc, when including a constant disk component, has a sub-linear dependence on SMBH accretion rate: SFR in proportion to solar mass(sup 0.36), suggesting that angular momentum transfer through the disk limits accretion efficiency rather than the supply from stellar mass loss.

  1. Self-consistent semi-analytic models of the first stars

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2018-04-01

    We have developed a semi-analytic framework to model the large-scale evolution of the first Population III (Pop III) stars and the transition to metal-enriched star formation. Our model follows dark matter haloes from cosmological N-body simulations, utilizing their individual merger histories and three-dimensional positions, and applies physically motivated prescriptions for star formation and feedback from Lyman-Werner (LW) radiation, hydrogen ionizing radiation, and external metal enrichment due to supernovae winds. This method is intended to complement analytic studies, which do not include clustering or individual merger histories, and hydrodynamical cosmological simulations, which include detailed physics, but are computationally expensive and have limited dynamic range. Utilizing this technique, we compute the cumulative Pop III and metal-enriched star formation rate density (SFRD) as a function of redshift at z ≥ 20. We find that varying the model parameters leads to significant qualitative changes in the global star formation history. The Pop III star formation efficiency and the delay time between Pop III and subsequent metal-enriched star formation are found to have the largest impact. The effect of clustering (i.e. including the three-dimensional positions of individual haloes) on various feedback mechanisms is also investigated. The impact of clustering on LW and ionization feedback is found to be relatively mild in our fiducial model, but can be larger if external metal enrichment can promote metal-enriched star formation over large distances.

  2. THE LOCATION, CLUSTERING, AND PROPAGATION OF MASSIVE STAR FORMATION IN GIANT MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochsendorf, Bram B.; Meixner, Margaret; Chastenet, Jérémy

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this work, we use data from several galaxy-wide surveys to build an unbiased data set of ∼600 massive young stellar objects, ∼200 giant molecular clouds (GMCs), and ∼100 young (<10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. We reveal that massive stars do not typically form at the highest column densities nor centers of their parentmore » GMCs at the ∼6 pc resolution of our observations. Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. We find that massive star formation is significantly boosted in clouds near SCs. However, whether a cloud is associated with an SC does not depend on either the cloud’s mass or global surface density. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. We compare our work with Galactic studies and discuss our findings in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.« less

  3. Measuring star formation rates in blue galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Hunter, Deidre A.

    1987-01-01

    The problems associated with measurements of star formation rates in galaxies are briefly reviewed, and specific models are presented for determinations of current star formation rates from H alpha and Far Infrared (FIR) luminosities. The models are applied to a sample of optically blue irregular galaxies, and the results are discussed in terms of star forming histories. It appears likely that typical irregular galaxies are forming stars at nearly constant rates, although a few examples of systems with enhanced star forming activity are found among HII regions and luminous irregular galaxies.

  4. An uncertainty principle for star formation - II. A new method for characterising the cloud-scale physics of star formation and feedback across cosmic history

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik; Schruba, Andreas; Hygate, Alexander P. S.; Hu, Chia-Yu; Haydon, Daniel T.; Longmore, Steven N.

    2018-05-01

    The cloud-scale physics of star formation and feedback represent the main uncertainty in galaxy formation studies. Progress is hampered by the limited empirical constraints outside the restricted environment of the Local Group. In particular, the poorly-quantified time evolution of the molecular cloud lifecycle, star formation, and feedback obstructs robust predictions on the scales smaller than the disc scale height that are resolved in modern galaxy formation simulations. We present a new statistical method to derive the evolutionary timeline of molecular clouds and star-forming regions. By quantifying the excess or deficit of the gas-to-stellar flux ratio around peaks of gas or star formation tracer emission, we directly measure the relative rarity of these peaks, which allows us to derive their lifetimes. We present a step-by-step, quantitative description of the method and demonstrate its practical application. The method's accuracy is tested in nearly 300 experiments using simulated galaxy maps, showing that it is capable of constraining the molecular cloud lifetime and feedback time-scale to <0.1 dex precision. Access to the evolutionary timeline provides a variety of additional physical quantities, such as the cloud-scale star formation efficiency, the feedback outflow velocity, the mass loading factor, and the feedback energy or momentum coupling efficiencies to the ambient medium. We show that the results are robust for a wide variety of gas and star formation tracers, spatial resolutions, galaxy inclinations, and galaxy sizes. Finally, we demonstrate that our method can be applied out to high redshift (z≲ 4) with a feasible time investment on current large-scale observatories. This is a major shift from previous studies that constrained the physics of star formation and feedback in the immediate vicinity of the Sun.

  5. The Destructive Birth of Massive Stars and Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is amplified. Our results suggest that the combined effect of turbulence, magnetic pressure, and radiative feedback from massive stars is responsible for the low star formation efficiencies observed in molecular clouds.

  6. Radio stars - A possible link between the Hipparcos optical reference frame and an extra-galactic very long baseline interferometry reference frame

    NASA Technical Reports Server (NTRS)

    Lestrade, J.-F.; Preston, R. A.; Slade, M. A.

    1983-01-01

    The concept of typing the Hipparcos optical and the JPL VLBI frames of reference by means of VLBI measurements of the positions and proper motions of the radio components of some bright stars is considered. The properties of the thermal and non-thermal radio-stars are discussed and 22 candidate stars are selected to achieve this tie. A description is given of the first VLBI attempt to detect these stars on the intercontinental baselines of the Deep Space Network with the Mark II recording system.

  7. An excess of massive stars in the local 30 Doradus starburst

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Sana, H.; Evans, C. J.; Bestenlehner, J. M.; Castro, N.; Fossati, L.; Gräfener, G.; Langer, N.; Ramírez-Agudelo, O. H.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Tramper, F.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dufton, P. L.; Garcia, M.; Gieles, M.; Hénault-Brunet, V.; Herrero, A.; Izzard, R. G.; Kalari, V.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Podsiadlowski, Ph.; Puls, J.; Taylor, W. D.; van Loon, J. Th.; Vink, J. S.; Norman, C.

    2018-01-01

    The 30 Doradus star-forming region in the Large Magellanic Cloud is a nearby analog of large star-formation events in the distant universe. We determined the recent formation history and the initial mass function (IMF) of massive stars in 30 Doradus on the basis of spectroscopic observations of 247 stars more massive than 15 solar masses (M☉). The main episode of massive star formation began about 8 million years (My) ago, and the star-formation rate seems to have declined in the last 1 My. The IMF is densely sampled up to 200 M☉ and contains 32 ± 12% more stars above 30 M☉ than predicted by a standard Salpeter IMF. In the mass range of 15 to 200 M☉, the IMF power-law exponent is 1.90‑0.26+0.37, shallower than the Salpeter value of 2.35.

  8. An excess of massive stars in the local 30 Doradus starburst.

    PubMed

    Schneider, F R N; Sana, H; Evans, C J; Bestenlehner, J M; Castro, N; Fossati, L; Gräfener, G; Langer, N; Ramírez-Agudelo, O H; Sabín-Sanjulián, C; Simón-Díaz, S; Tramper, F; Crowther, P A; de Koter, A; de Mink, S E; Dufton, P L; Garcia, M; Gieles, M; Hénault-Brunet, V; Herrero, A; Izzard, R G; Kalari, V; Lennon, D J; Maíz Apellániz, J; Markova, N; Najarro, F; Podsiadlowski, Ph; Puls, J; Taylor, W D; van Loon, J Th; Vink, J S; Norman, C

    2018-01-05

    The 30 Doradus star-forming region in the Large Magellanic Cloud is a nearby analog of large star-formation events in the distant universe. We determined the recent formation history and the initial mass function (IMF) of massive stars in 30 Doradus on the basis of spectroscopic observations of 247 stars more massive than 15 solar masses ([Formula: see text]). The main episode of massive star formation began about 8 million years (My) ago, and the star-formation rate seems to have declined in the last 1 My. The IMF is densely sampled up to 200 [Formula: see text] and contains 32 ± 12% more stars above 30 [Formula: see text] than predicted by a standard Salpeter IMF. In the mass range of 15 to 200 [Formula: see text], the IMF power-law exponent is [Formula: see text], shallower than the Salpeter value of 2.35. Copyright © 2018, American Association for the Advancement of Science.

  9. riggered star-formation in the NGC 7538 H II region

    NASA Astrophysics Data System (ADS)

    Sharma, Saurabh; Pandey, Anil Kumar; Pandey, Rakesh; Sinha, Tirthendu

    2018-04-01

    We have generated a catalog of young stellar objects (YSOs) in the star forming region NGC 7538 using Ha and X-ray data. The spatial distribution of YSOs along with MIR, radio and CO emission are used to study the star formation process in the region. Our analysis shows that the 03V type high mass star 'IRS 6' might have triggered the formation of young low mass stars up to a radial distance of 3 pc.

  10. The accelerating pace of star formation

    NASA Astrophysics Data System (ADS)

    Caldwell, Spencer; Chang, Philip

    2018-03-01

    We study the temporal and spatial distribution of star formation rates in four well-studied star-forming regions in local molecular clouds (MCs): Taurus, Perseus, ρ Ophiuchi, and Orion A. Using published mass and age estimates for young stellar objects in each system, we show that the rate of star formation over the last 10 Myr has been accelerating and is (roughly) consistent with a t2 power law. This is in line with previous studies of the star formation history of MCs and with recent theoretical studies. We further study the clustering of star formation in the Orion nebula cluster. We examine the distribution of young stellar objects as a function of their age by computing an effective half-light radius for these young stars subdivided into age bins. We show that the distribution of young stellar objects is broadly consistent with the star formation being entirely localized within the central region. We also find a slow radial expansion of the newly formed stars at a velocity of v = 0.17 km s-1, which is roughly the sound speed of the cold molecular gas. This strongly suggests the dense structures that form stars persist much longer than the local dynamical time. We argue that this structure is quasi-static in nature and is likely the result of the density profile approaching an attractor solution as suggested by recent analytic and numerical analysis.

  11. Star Formation Properties of Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; Elmegreen, B. G.

    2003-12-01

    What regulates star formation in gas-rich dwarf galaxies on global and local scales? To address this question, we have conducted a survey of a large sample of reasonably normal, relatively nearby, non-interacting galaxies without spiral arms. The sample includes 94 Im galaxies, 26 Blue Compact Dwarfs, and 20 Sm systems. The data consist of UBV and Hα images for the entire sample, and JHK images, HI maps, CO observations, and HII region spectrophotometry for a sub-sample. The Hα , UBV, and JHK image sets act as probes of star formation on three different times scales: Hα images trace the most recent star formation (≤10 Myrs) through the ionization of natal clouds by the short-lived massive stars; UBV, while a more complicated clue, integrates over the past Gyr; and JHK integrates over the lifetime of the galaxy where even in Im galaxies global JHK colors are characteristic of old stellar populations. These data are being used to determine the nature and distribution of the star formation activity, to characterize the interstellar medium out of which the clouds and stars are forming, and to develop models that describe the important processes that drive star formation in these tiny systems. Here we present the Hα data: integrated star formation rates, azimuthally-averaged Hα surface brightnesses, and extents of star formation, and explore the relationship of the star formation properties to other integrated parameters of the galaxies. One TI CCD used in this work was provided to Lowell by the National Science Foundation and another was on loan from the U. S. Naval Observatory in Flagstaff. The Hα filters were purchased with funds provided by a Small Research Grant from the American Astronomical Society, National Science Foundation grant AST-9022046, and grant 960355 from JPL. Funding for carrying out this work was provided by the Lowell Research Fund and by the National Science Foundation through grants AST-0204922 to DAH and AST-0205097 to BGE.

  12. Resolving molecular gas to ~500 pc in a unique star forming disk galaxy at z~2

    NASA Astrophysics Data System (ADS)

    Brisbin, Drew; Aravena, Manuel; Hodge, Jacqueline; Carilli, Chris Luke; Daddi, Emanuele; Dannerbauer, Helmut; Riechers, Dominik; Wagg, Jeff

    2018-06-01

    We have resolved molecular gas in a 'typical' star forming disk galaxy at z>2 down to the scale of ~500 pc. Previous observations of CO and [CI] lines on larger spatial scales have revealed bulk molecular and atomic gas properties indicating that the target is a massive disk galaxy with large gas reserves. Unlike many galaxies studied at high redshift, it is undergoing modest quiescent star formation rather than bursty centrally concentrated star formation. Therefore this galaxy represents an under-studied, but cosmologically important population in the early universe. Our new observations of CO (4-3) highlight the clumpy molecular gas fuelling star formation throughout the disk. Underlying continuum from cold dust provides a key constraint on star formation rate surface densities, allowing us to examine the star formation rate surface density scaling law in a never-before-tested regime of early universe galaxies.These observations enable an unprecedented view of the obscured star formation that is hidden to optical/UV imaging and trace molecular gas on a fine enough scale to resolve morphological traits and provide a view akin to single dish surveys in the local universe.

  13. X-Raying the Star Formation History of the Universe.

    PubMed

    Cavaliere; Giacconi; Menci

    2000-01-10

    The current models of early star and galaxy formation are based upon the hierarchical growth of dark matter halos, within which the baryons condense into stars after cooling down from a hot diffuse phase. The latter is replenished by infall of outer gas into the halo potential wells; this includes a fraction previously expelled and preheated because of momentum and energy fed back by the supernovae which follow the star formation. We identify such an implied hot phase with the medium known to radiate powerful X-rays in clusters and in groups of galaxies. We show that the amount of the hot component required by the current star formation models is enough to be observable out to redshifts z approximately 1.5 in forthcoming deep surveys from Chandra and X-Ray Multimirror Mission, especially in case the star formation rate is high at such and earlier redshifts. These X-ray emissions constitute a necessary counterpart and will provide a much-wanted probe of the star formation process itself (in particular, of the supernova feedback) to parallel and complement the currently debated data from optical and IR observations of the young stars.

  14. Chemically-Deduced Star Formation Histories Of Dwarf Galaxies Using Barium

    NASA Astrophysics Data System (ADS)

    Duggan, Gina; Kirby, Evan

    2017-06-01

    Dwarf galaxies offer a unique opportunity to study the competing forces of galaxy evolution. Their simpler history (i.e., small size, fewer major mergers, and lack of active galactic nuclei) enables us to isolate different physical mechanisms more easily. The effects of these mechanisms are imprinted on the galaxy's star formation history. Traditionally, star formation histories are determined from color-magnitude diagrams. However, chemical abundances can increase the precision of this measurement. Here we present a simplistic galactic chemical evolution model to infer the star formation history. Chemical abundances are measured from spectra obtained with Keck/DEIMOS medium-resolution spectroscopy for over a hundred red giant stars from several satellite dwarf spheroidal galaxies and globular clusters. We focus our work on iron and barium abundances because they predominantly trace Type Ia supernovae and asymptotic giant branch stars, respectively. The different timescales of these two nucleosynthetic sources can be used to measure a finely resolved star formation history, especially when combined with existing [α/Fe] measurements. These models will inform the details of early star formation in dwarf galaxies and how it is affected by various physical processes, such as reionization and tidal stripping.

  15. Star formation onset in baryonic disks: The role of a triaxial halo

    NASA Astrophysics Data System (ADS)

    Mazzei, P.; Curir, A.

    2001-06-01

    We investigate the effects of the onset of star formation on the growth of bar instability using a smooth particle hydrodynamics code implemented to account for chemo-photometric evolution from UV to near-IR wavelengths. We analyze the role of a non axisymmetric dark matter halo on the bar triggering and the feedback due to the ongoing star formation rate in the disk. We find that the dark matter halo plays a very important role in the evolution of the luminous matter. The star formation rate (SFR) depends indeed both on its mass, which leads the total gravitational field, and on its dynamical state. Stronger initial bursts of star formation are triggered in the more massive unrelaxed haloes than in the relaxed ones, which are also the more concentrated at the beginning. We point out further that the dark matter concentration is different in haloes with a different initial triaxiality ratio, suggesting a dependence of the SFR also on the halo geometry. By mapping the predicted B surface brightness of the new stars formed, we find that a luminous bar along the whole disk develops only in the first stages of such an instability, then later, new stars are born in the inner regions and the bar is reduced to the central 3-4 kpc. After 1.7 Gyr the young stellar component shows stronger bars in the presence of the relaxed haloes with a lower initial triaxiality ratio; strong bars still appear in the old star isodensity contours of the same systems, at variance with our results when star formation is switched off. The formation of new stars causes indeed a lower dynamical coupling between dark matter and baryonic particles, which lengthens the life-time of the bar. Colours and metallicity gradients of new stars allow us to understand deeply the observational consequences of initial geometry and dynamical state of the halo on the star formation process.

  16. The effects of stimulated star formation on the evolution of the galaxy. III - The chemical evolution of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Ferrini, Federico; Palla, Francesco

    1987-01-01

    The evolution of models for star formation in galaxies with disk and halo components is discussed. Two phases for the halo (gas and stars) and three for the disk (including clouds) are used in these calculations. The star-formation history is followed using nonlinear phase-coupling models which completely determine the populations of the phases as a function of time. It is shown that for a wide range of parameters, including the effects of both spontaneous and stimulated star formation and mass exchange between the spatial components of the system, the observed chemical history of the galaxy can easily be obtained. The most sensitive parameter in the detailed metallicity and star-formation history for the system is the rate of return of gas to the diffuse phase upon stellar death.

  17. The effect of photoionizing feedback on star formation in isolated and colliding clouds

    NASA Astrophysics Data System (ADS)

    Shima, Kazuhiro; Tasker, Elizabeth J.; Federrath, Christoph; Habe, Asao

    2018-05-01

    We investigate star formation occurring in idealized giant molecular clouds, comparing structures that evolve in isolation versus those undergoing a collision. Two different collision speeds are investigated and the impact of photoionizing radiation from the stars is determined. We find that a colliding system leads to more massive star formation both with and without the addition of feedback, raising overall star formation efficiencies (SFE) by a factor of 10 and steepening the high-mass end of the stellar mass function. This rise in SFE is due to increased turbulent compression during the cloud collision. While feedback can both promote and hinder star formation in an isolated system, it increases the SFE by approximately 1.5 times in the colliding case when the thermal speed of the resulting H II regions matches the shock propagation speed in the collision.

  18. The Herschel Virgo Cluster Survey. XIX. Physical properties of low luminosity FIR sources at z < 0.5

    NASA Astrophysics Data System (ADS)

    Pappalardo, Ciro; Bizzocchi, Luca; Fritz, Jacopo; Boselli, Alessandro; Boquien, Mederic; Boissier, Samuel; Baes, Maarten; Ciesla, Laure; Bianchi, Simone; Clemens, Marcel; Viaene, Sebastien; Bendo, George J.; De Looze, Ilse; Smith, Matthew W. L.; Davies, Jonathan

    2016-05-01

    Context. The star formation rate is a crucial parameter for the investigation galaxy evolution. At low redshift the cosmic star formation rate density declines smoothly, and massive active galaxies become passive, reducing their star formation activity. This implies that the bulk of the star formation rate density at low redshift is mainly driven by low mass objects. Aims: We investigate the properties of a sample of low luminosity far-infrared sources selected at 250 μm. We have collected data from ultraviolet to far-infrared in order to perform a multiwavelengths analysis. The main goal is to investigate the correlation between star formation rate, stellar mass, and dust mass for a galaxy population with a wide range in dust content and stellar mass, including the low mass regime that most probably dominates the star formation rate density at low redshift. Methods: We define a main sample of ~800 sources with full spectral energy distribution coverage between 0.15 <λ< 500 μm and an extended sample with ~5000 sources in which we remove the constraints on the ultraviolet and near-infrared bands. We analyze both samples with two different spectral energy distribution fitting methods: MAGPHYS and CIGALE, which interpret a galaxy spectral energy distribution as a combination of different simple stellar population libraries and dust emission templates. Results: In the star formation rate versus stellar mass plane our samples occupy a region included between local spirals and higher redshift star forming galaxies. These galaxies represent the population that at z< 0.5 quenches their star formation activity and reduces their contribution to the cosmic star formation rate density. The subsample of galaxies with the higher masses (M∗> 3 × 1010 M⊙) do not lie on the main sequence, but show a small offset as a consequence of the decreased star formation. Low mass galaxies (M∗< 1 × 1010 M⊙) settle in the main sequence with star formation rate and stellar mass consistent with local spirals. Conclusions: Deep Herschel data allow the identification of a mixed galaxy population with galaxies still in an assembly phase or galaxies at the beginning of their passive evolution. We find that the dust luminosity is the parameter that allow us to discriminate between these two galaxy populations. The median spectral energy distribution shows that even at low star formation rate our galaxy sample has a higher mid-infrared emission than previously predicted. Herschel is an ESA space observatory with science instruments provided by a European-led principal investigator consortia and with an important participation from NASA.

  19. Star Formation & the Star Formation History of the Universe: Exploring the X-ray and the Multi-wavelength Point of Views

    NASA Astrophysics Data System (ADS)

    Burgarella, Denis; Ciesla, Laure; Boquien, Mederic; Buat, Veronique; Roehlly, Yannick

    2015-09-01

    The star formation rate density traces the formation of stars in the universe. To estimate the star formation rate of galaxies, we can use a wide range of star formation tracers: continuum measurements in most wavelength domains, lines, supernovae and GRBs... All of them have pros and cons. Most of the monochromatic tracers are hampered but the effects of dust. But, before being able to estimate the star formation rate, we first need to obtain a safe estimate to the dust attenuation. The advantage of the X-ray wavelength range is that we can consider it as free from the effect of dust. In this talk, we will estimate how many galaxies we could detect with ATHENA to obtain the star formation density. For this, I will use my recent Herschel paper where the total (UV + IR) star formation rate density was evaluated up to z ~ 4 and provide quantitative figures for what ATHENA will detect as a function of the redshift and the luminosity. ATHENA will need predictions that are in agreement with what we observe in the other wavelength ranges. I will present the code CIGALE (http://cigale.lam.fr). The new and public version of CIGALE (released in April 2015) allows to model the emission of galaxies from the far-ultraviolet to the radio and it can make prediction in any of these wavelength ranges. I will show how galaxy star formation rates can be estimated in a way that combines all the advantages of monochromatic tracers but not the caveats. It should be stressed that we can model the emission of AGNs in the FUV-to-FIR range using several models. Finally, I will explain why we seriously consider to extend CIGALE to the x-ray range to predict the X-ray emission of galaxies including any AGN.

  20. Connecting the Cosmic Star Formation Rate with the Local Star Formation

    NASA Astrophysics Data System (ADS)

    Gribel, Carolina; Miranda, Oswaldo D.; Williams Vilas-Boas, José

    2017-11-01

    We present a model that unifies the cosmic star formation rate (CSFR), obtained through the hierarchical structure formation scenario, with the (Galactic) local star formation rate (SFR). It is possible to use the SFR to generate a CSFR mapping through the density probability distribution functions commonly used to study the role of turbulence in the star-forming regions of the Galaxy. We obtain a consistent mapping from redshift z˜ 20 up to the present (z = 0). Our results show that the turbulence exhibits a dual character, providing high values for the star formation efficiency (< \\varepsilon > ˜ 0.32) in the redshift interval z˜ 3.5{--}20 and reducing its value to < \\varepsilon > =0.021 at z = 0. The value of the Mach number ({{ M }}{crit}), from which < \\varepsilon > rapidly decreases, is dependent on both the polytropic index (Γ) and the minimum density contrast of the gas. We also derive Larson’s first law associated with the velocity dispersion (< {V}{rms}> ) in the local star formation regions. Our model shows good agreement with Larson’s law in the ˜ 10{--}50 {pc} range, providing typical temperatures {T}0˜ 10{--}80 {{K}} for the gas associated with star formation. As a consequence, dark matter halos of great mass could contain a number of halos of much smaller mass, and be able to form structures similar to globular clusters. Thus, Larson’s law emerges as a result of the very formation of large-scale structures, which in turn would allow the formation of galactic systems, including our Galaxy.

  1. Black-hole-regulated star formation in massive galaxies.

    PubMed

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  2. Black-hole-regulated star formation in massive galaxies

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  3. Peering into the heart of galactic star formation: A detailed characterization of infrared-dark clouds

    NASA Astrophysics Data System (ADS)

    Ragan, Sarah E.

    2009-09-01

    Everything we know about other galaxies is based on light from massive stars, yet, in our own Galaxy, it's the formation of massive stars that is the least understood. Star formation studies to date have focused on nearby, low-mass regions, but the bulk of star formation takes place in massive clusters, which takes place primarily in the inner-Galaxy, where the bulk of the molecular gas resides. To learn about the conditions under which massive clusters form, we seek out their precursors, called infrared-dark clouds (IRDCs). We present the results of a high-resolution multi-wavelength observational study of IRDCs, which vastly improves our knowledge of the initial conditions of cluster formation. Beginning with IRDC candidates identified with Midcourse Science Experiment (MSX) survey data, we map 41 IRDCs in the N 2 H + 1 [arrow right] 0, CS 2 [arrow right] 1 and C 18 O 1 [arrow right] 0 molecular transitions using the Five College Radio Astronomy Observatory. We examine the stellar content and absorption structure with Spitzer Space Telescope observations of eleven IRDCs, and we use Very Large Array NH 3 observations to probe the kinematics and chemistry of six IRDCs. Our comprehensive high-resolution study of IRDCs confirms that these objects are cold and dense precursors to massive stars and clusters. For the first time. we quantify IRDC sub-structure on sub-parsec scales and show the kinematic structure of IRDCs is diverse and depends on associated local star- formation activity. Overall, IRDCs exhibit non-thermal dynamics, suggesting that turbulence and systematic motions dominate. IRDC temperatures are between 8 and 16 K and are mostly flat with hints of a rise near the edges due to external heating. This study shows that IRDCs are a unique star-forming environment, one that dominates the star formation in the Milky Way. Using high-resolution observations, we have quantified the structure, star formation, kinematics, and chemistry of infrared-dark clouds. Our study of sub- structure in particular shows that IRDCs are undergoing fragmentation and are the precursors to star clusters, and thus we have placed IRDCs in context with Galactic star formation. The characterization presented here offers new constraints on theories of molecular cloud fragmentation and clustered star formation.

  4. Star Formation Activity Beyond the Outer Arm. I. WISE -selected Candidate Star-forming Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, Natsuko; Yasui, Chikako; Saito, Masao

    The outer Galaxy beyond the Outer Arm provides a good opportunity to study star formation in an environment significantly different from that in the solar neighborhood. However, star-forming regions in the outer Galaxy have never been comprehensively studied or cataloged because of the difficulties in detecting them at such large distances. We studied 33 known young star-forming regions associated with 13 molecular clouds at R {sub G} ≥ 13.5 kpc in the outer Galaxy with data from the Wide-field Infrared Survey Explorer ( WISE ) mid-infrared all-sky survey. From their color distribution, we developed a simple identification criterion of star-forming regions inmore » the outer Galaxy with the WISE color. We applied the criterion to all the WISE sources in the molecular clouds in the outer Galaxy at R {sub G} ≥ 13.5 kpc detected with the Five College Radio Astronomy Observatory (FCRAO) {sup 12}CO survey of the outer Galaxy, of which the survey region is 102.°49 ≤  l  ≤ 141.°54, −3.°03 ≤  b  ≤ 5.°41, and successfully identified 711 new candidate star-forming regions in 240 molecular clouds. The large number of samples enables us to perform the statistical study of star formation properties in the outer Galaxy for the first time. This study is crucial to investigate the fundamental star formation properties, including star formation rate, star formation efficiency, and initial mass function, in a primordial environment such as the early phase of the Galaxy formation.« less

  5. Sequential Star Formation in RCW 34: A Spectroscopic Census of the Stellar Content of High-Mass Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Bik, A.; Puga, E.; Waters, L. B. F. M.; Horrobin, M.; Henning, Th.; Vasyunina, T.; Beuther, H.; Linz, H.; Kaper, L.; van den Ancker, M.; Lenorzer, A.; Churchwell, E.; Kurtz, S.; Kouwenhoven, M. B. N.; Stolte, A.; de Koter, A.; Thi, W. F.; Comerón, F.; Waelkens, Ch.

    2010-04-01

    In this paper, we present VLT/SINFONI integral field spectroscopy of RCW 34 along with Spitzer/IRAC photometry of the surroundings. RCW 34 consists of three different regions. A large bubble has been detected in the IRAC images in which a cluster of intermediate- and low-mass class II objects is found. At the northern edge of this bubble, an H II region is located, ionized by 3 OB stars, of which the most massive star has spectral type O8.5V. Intermediate-mass stars (2-3 M sun) are detected of G- and K-spectral type. These stars are still in the pre-main-sequence (PMS) phase. North of the H II region, a photon-dominated region is present, marking the edge of a dense molecular cloud traced by H2 emission. Several class 0/I objects are associated with this cloud, indicating that star formation is still taking place. The distance to RCW 34 is revised to 2.5 ± 0.2 kpc and an age estimate of 2 ± 1 Myr is derived from the properties of the PMS stars inside the H II region. Between the class II sources in the bubble and the PMS stars in the H II region, no age difference could be detected with the present data. The presence of the class 0/I sources in the molecular cloud, however, suggests that the objects inside the molecular cloud are significantly younger. The most likely scenario for the formation of the three regions is that star formation propagated from south to north. First the bubble is formed, produced by intermediate- and low-mass stars only, after that, the H II region is formed from a dense core at the edge of the molecular cloud, resulting in the expansion similar to a champagne flow. More recently, star formation occurred in the rest of the molecular cloud. Two different formation scenarios are possible. (1) The bubble with the cluster of low- and intermediate-mass stars triggered the formation of the O star at the edge of the molecular cloud, which in its turn induces the current star formation in the molecular cloud. (2) An external triggering is responsible for the star formation propagating from south to north. Based on observations collected at the European Southern Observatory at Paranal, Chile (ESO program 078.C-0780).

  6. Globular cluster formation with multiple stellar populations from hierarchical star cluster complexes

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji

    2017-05-01

    Most old globular clusters (GCs) in the Galaxy are observed to have internal chemical abundance spreads in light elements. We discuss a new GC formation scenario based on hierarchical star formation within fractal molecular clouds. In the new scenario, a cluster of bound and unbound star clusters ('star cluster complex', SCC) that have a power-law cluster mass function with a slope (β) of 2 is first formed from a massive gas clump developed in a dwarf galaxy. Such cluster complexes and β = 2 are observed and expected from hierarchical star formation. The most massive star cluster ('main cluster'), which is the progenitor of a GC, can accrete gas ejected from asymptotic giant branch (AGB) stars initially in the cluster and other low-mass clusters before the clusters are tidally stripped or destroyed to become field stars in the dwarf. The SCC is initially embedded in a giant gas hole created by numerous supernovae of the SCC so that cold gas outside the hole can be accreted on to the main cluster later. New stars formed from the accreted gas have chemical abundances that are different from those of the original SCC. Using hydrodynamical simulations of GC formation based on this scenario, we show that the main cluster with the initial mass as large as [2-5] × 105 M⊙ can accrete more than 105 M⊙ gas from AGB stars of the SCC. We suggest that merging of hierarchical SSCs can play key roles in stellar halo formation around GCs and self-enrichment processes in the early phase of GC formation.

  7. Star formation rates and efficiencies in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Barnes, A. T.; Longmore, S. N.; Battersby, C.; Bally, J.; Kruijssen, J. M. D.; Henshaw, J. D.; Walker, D. L.

    2017-08-01

    The inner few hundred parsecs of the Milky Way harbours gas densities, pressures, velocity dispersions, an interstellar radiation field and a cosmic ray ionization rate orders of magnitude higher than the disc; akin to the environment found in star-forming galaxies at high redshift. Previous studies have shown that this region is forming stars at a rate per unit mass of dense gas which is at least an order of magnitude lower than in the disc, potentially violating theoretical predictions. We show that all observational star formation rate diagnostics - both direct counting of young stellar objects and integrated light measurements - are in agreement within a factor two, hence the low star formation rate (SFR) is not the result of the systematic uncertainties that affect any one method. As these methods trace the star formation over different time-scales, from 0.1 to 5 Myr, we conclude that the SFR has been constant to within a factor of a few within this time period. We investigate the progression of star formation within gravitationally bound clouds on ˜parsec scales and find 1-4 per cent of the cloud masses are converted into stars per free-fall time, consistent with a subset of the considered 'volumetric' star formation models. However, discriminating between these models is obstructed by the current uncertainties on the input observables and, most importantly and urgently, by their dependence on ill-constrained free parameters. The lack of empirical constraints on these parameters therefore represents a key challenge in the further verification or falsification of current star formation theories.

  8. Galaxy evolution. Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang.

    PubMed

    Tacchella, S; Carollo, C M; Renzini, A; Förster Schreiber, N M; Lang, P; Wuyts, S; Cresci, G; Dekel, A; Genzel, R; Lilly, S J; Mancini, C; Newman, S; Onodera, M; Shapley, A; Tacconi, L; Woo, J; Zamorani, G

    2015-04-17

    Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores. Copyright © 2015, American Association for the Advancement of Science.

  9. Star formation quenching in green valley galaxies at 0.5 ≲ z ≲ 1.0 and constraints with galaxy morphologies

    NASA Astrophysics Data System (ADS)

    Nogueira-Cavalcante, J. P.; Gonçalves, T. S.; Menéndez-Delmestre, K.; Sheth, K.

    2018-01-01

    We calculate the star formation quenching time-scales in green valley galaxies at intermediate redshifts (z ∼ 0.5-1) using stacked zCOSMOS spectra of different galaxy morphological types: spheroidal, disc-like, irregular and merger, dividing disc-like galaxies further into unbarred, weakly barred and strongly barred, assuming a simple exponentially decaying star formation history model and based on the H δ absorption feature and the 4000 Å break. We find that different morphological types present different star formation quenching time-scales, reinforcing the idea that the galaxy morphology is strongly correlated with the physical processes responsible for quenching star formation. Our quantification of the star formation quenching time-scale indicates that discs have typical time-scales 60 per cent to five times longer than that of galaxies presenting spheroidal, irregular or merger morphologies. Barred galaxies, in particular, present the slowest transition time-scales through the green valley. This suggests that although secular evolution may ultimately lead to gas exhaustion in the host galaxy via bar-induced gas inflows that trigger star formation activity, secular agents are not major contributors in the rapid quenching of galaxies at these redshifts. Galaxy interaction, associated with the elliptical, irregular and merger morphologies, contributes, to a more significant degree, to the fast transition through the green valley at these redshifts. In light of previous works suggesting that both secular and merger processes are responsible for the star formation quenching at low redshifts, our results provide an explanation to the recent findings that star formation quenching happened at a faster pace at z ∼ 0.8.

  10. A unified model for galactic discs: star formation, turbulence driving, and mass transport

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Burkhart, Blakesley; Forbes, John C.; Crocker, Roland M.

    2018-06-01

    We introduce a new model for the structure and evolution of the gas in galactic discs. In the model the gas is in vertical pressure and energy balance. Star formation feedback injects energy and momentum, and non-axisymmetric torques prevent the gas from becoming more than marginally gravitationally unstable. From these assumptions we derive the relationship between galaxies' bulk properties (gas surface density, stellar content, and rotation curve) and their star formation rates, gas velocity dispersions, and rates of radial inflow. We show that the turbulence in discs can be powered primarily by star formation feedback, radial transport, or a combination of the two. In contrast to models that omit either radial transport or star formation feedback, the predictions of this model yield excellent agreement with a wide range of observations, including the star formation law measured in both spatially resolved and unresolved data, the correlation between galaxies' star formation rates and velocity dispersions, and observed rates of radial inflow. The agreement holds across a wide range of galaxy mass and type, from local dwarfs to extreme starbursts to high-redshift discs. We apply the model to galaxies on the star-forming main sequence, and show that it predicts a transition from mostly gravity-driven turbulence at high redshift to star-formation-driven turbulence at low redshift. This transition and the changes in mass transport rates that it produces naturally explain why galaxy bulges tend to form at high redshift and discs at lower redshift, and why galaxies tend to quench inside-out.

  11. Gas, dust, stars, star formation, and their evolution in M 33 at giant molecular cloud scales

    NASA Astrophysics Data System (ADS)

    Komugi, Shinya; Miura, Rie E.; Kuno, Nario; Tosaki, Tomoka

    2018-06-01

    We report on a multi-parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M 33. A catalog of GMCs identifed in 12CO(J = 3-2) was used to compile associated 12CO(J = 1-0), dust, stellar mass, and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components, PC1 and PC2, which retain 75% of the information from the original data set. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (< 10 Myr) GMCs occupy a distinct region in the PC1-PC2 plane, with lower interstellar medium (ISM) content and star formation activity compared to intermediate-age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ˜ 10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt-Kennicutt relation with the molecular gas term substituted by dust.

  12. Gas, dust, stars, star formation, and their evolution in M 33 at giant molecular cloud scales

    NASA Astrophysics Data System (ADS)

    Komugi, Shinya; Miura, Rie E.; Kuno, Nario; Tosaki, Tomoka

    2018-04-01

    We report on a multi-parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M 33. A catalog of GMCs identifed in 12CO(J = 3-2) was used to compile associated 12CO(J = 1-0), dust, stellar mass, and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components, PC1 and PC2, which retain 75% of the information from the original data set. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (< 10 Myr) GMCs occupy a distinct region in the PC1-PC2 plane, with lower interstellar medium (ISM) content and star formation activity compared to intermediate-age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ˜ 10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt-Kennicutt relation with the molecular gas term substituted by dust.

  13. Intermittent behavior of galactic dynamo activities

    NASA Technical Reports Server (NTRS)

    Ko, C. M.; Parker, E. N.

    1989-01-01

    Recent observations by Beck and Golla of far-infrared and radio continuum emission from nearby spiral galaxies suggest that the galactic magnetic field strength is connected to the current star formation rate. The role of star formation on the generation of large-scale galactic magnetic field is studied in this paper. Using a simple galactic model, it is shown how the galactic dynamo depends strongly on the turbulent velocity of the interstellar medium. When the star formation efficiency is high, the ISM is churned which in turn amplifies the galactic magnetic field. Between active star formation epochs, the magnetic field is in dormant state and decays at a negligible rate. If density waves trigger star formation, then they also turn on the otherwise dormant dynamo.

  14. On the link between column density distribution and density scaling relation in star formation regions

    NASA Astrophysics Data System (ADS)

    Veltchev, Todor; Donkov, Sava; Stanchev, Orlin

    2017-07-01

    We present a method to derive the density scaling relation ∝ L^{-α} in regions of star formation or in their turbulent vicinities from straightforward binning of the column-density distribution (N-pdf). The outcome of the method is studied for three types of N-pdf: power law (7/5≤α≤5/3), lognormal (0.7≲α≲1.4) and combination of lognormals. In the last case, the method of Stanchev et al. (2015) was also applied for comparison and a very weak (or close to zero) correlation was found. We conclude that the considered `binning approach' reflects rather the local morphology of the N-pdf with no reference to the physical conditions in a considered region. The rough consistency of the derived slopes with the widely adopted Larson's (1981) value α˜1.1 is suggested to support claims that the density-size relation in molecular clouds is indeed an artifact of the observed N-pdf.

  15. Reconciling mass functions with the star-forming main sequence via mergers

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.; Yurk, Dominic; Capak, Peter

    2017-06-01

    We combine star formation along the 'main sequence', quiescence and clustering and merging to produce an empirical model for the evolution of individual galaxies. Main-sequence star formation alone would significantly steepen the stellar mass function towards low redshift, in sharp conflict with observation. However, a combination of star formation and merging produces a consistent result for correct choice of the merger rate function. As a result, we are motivated to propose a model in which hierarchical merging is disconnected from environmentally independent star formation. This model can be tested via correlation functions and would produce new constraints on clustering and merging.

  16. Skyscrapers in the Desert: Observing Ongoing, Active Star Formation in the Low-Density Wing of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Fulmer, Leah M.; Gallagher, John S.; Hamann, Wolf-Rainer; Oskinova, Lida; Ramachandran, Varsha

    2018-01-01

    The low-density Wing of the Small Magellanic Cloud exhibits ongoing, active star formation despite a distinctive lack of dense ambient gas and dust, or resources from which to form stars. Our continued work in studying this region reveals that these paradoxical observations may be explained by a process of sequential star formation. We present photometric, clustering, and spatial analyses in support of this scenario, along with a proposed star formation history based on the following evidence: matches to isochrone models, stellar and ionized gas kinematics (VLT, SALT), and regional HI gas kinematics (ATCA, PKS).

  17. A Study of Two Dwarf Irregular Galaxies with Asymmetrical Star Formation Distributions

    NASA Astrophysics Data System (ADS)

    Hunter, Deidre A.; Gallardo, Samavarti; Zhang, Hong-Xin; Adamo, Angela; Cook, David O.; Oh, Se-Heon; Elmegreen, Bruce G.; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Fumagalli, Michele; Sacchi, Elena; Kennicutt, R. C.; Tosi, Monica; Dale, Daniel A.; Cignoni, Michele; Messa, Matteo; Grebel, Eva K.; Gouliermis, Dimitrios A.; Sabbi, Elena; Grasha, Kathryn; Gallagher, John S., III; Calzetti, Daniela; Lee, Janice C.

    2018-03-01

    Two dwarf irregular galaxies, DDO 187 and NGC 3738, exhibit a striking pattern of star formation: intense star formation is taking place in a large region occupying roughly half of the inner part of the optical galaxy. We use data on the H I distribution and kinematics and stellar images and colors to examine the properties of the environment in the high star formation rate (HSF) halves of the galaxies in comparison with the low star formation rate halves. We find that the pressure and gas density are higher on the HSF sides by 30%–70%. In addition we find in both galaxies that the H I velocity fields exhibit significant deviations from ordered rotation and there are large regions of high-velocity dispersion and multiple velocity components in the gas beyond the inner regions of the galaxies. The conditions in the HSF regions are likely the result of large-scale external processes affecting the internal environment of the galaxies and enabling the current star formation there.

  18. The spatial extent of star formation in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Moreno, Jorge

    2015-08-01

    We employ a suite of 75 simulations of galaxies in idealized major mergers (stellar mass ratio ˜2.5:1), with a wide range of orbital parameters, to investigate the spatial extent of interaction-induced star formation. Although the total star formation in galaxy encounters is generally elevated relative to isolated galaxies, we find that this elevation is a combination of intense enhancements within the central kpc and moderately suppressed activity at larger galactocentric radii. The radial dependence of the star formation enhancement is stronger in the less massive galaxy than in the primary, and is also more pronounced in mergers of more closely aligned disc spin orientations. Conversely, these trends are almost entirely independent of the encounter’s impact parameter and orbital eccentricity. Our predictions of the radial dependence of triggered star formation, and specifically the suppression of star formation beyond kpc-scales, will be testable with the next generation of integral-field spectroscopic surveys.Co-authors: Paul Torrey, Sara Ellison, David Patton, Asa Bluck, Gunjan Bansal & Lars Hernquist

  19. The critical density for star formation in HII galaxies

    NASA Technical Reports Server (NTRS)

    Taylor, Christopher L.; Brinks, Elias; Skillman, Evan D.

    1993-01-01

    The star formation rate (SFR) in galaxies is believed to obey a power law relation with local gas density, first proposed by Schmidt (1959). Kennicutt (1989) has shown that there is a threshold density above which star formation occurs, and for densities at or near the threshold density, the DFR is highly non-linear, leading to bursts of star formation. Skillman (1987) empirically determined this threshold for dwarf galaxies to be approximately 1 x 10(exp 21) cm(exp -2), at a linear resolution of 500pc. During the course of our survey for HI companion clouds to HII galaxies, we obtained high resolution HI observations of five nearby HII galaxies. HII galaxies are low surface brightness, rich in HI, and contain one or a few high surface brightness knots whose optical spectra resemble those of HII regions. These knots are currently experiencing a burst of star formation. After Kennicutt (1989) we determine the critical density for star formation in the galaxies, and compare the predictions with radio and optical data.

  20. Analysis of Extreme Star Formation Environments in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Nayak, Omnarayani

    2018-01-01

    My thesis is on three extreme star forming environments in the Large Magellanic Cloud: 30 Doradus, N159, and N79. These three regions are at different evolutionary stage of forming stars. N79 is at a very young stage, just starting its star formation activity. N159 is currently actively forming several massive YSOs. And 30 Doradus has already passed it peak star formation, and several protostars are no longer shrouded by gas and dust, and are starting to be more visible in the optical wavelengths. I analyze the CO molecular gas clouds with ALMA in 30 Doradus, N159, and N79. I identify all massive YSOs within the ALMA footprint of all three regions. My thesis is on relating the star formation activity in 30 Doradus, N159, and N79 to the high density gas in which these protostars form. I find that not all massive young stellar objects are associated with CO gas, higher mass clumps tend to form higher mass stars, and lower mass clumps tend to not be gravitationally bound however the larger clouds are bound. I use ancillary SOFIA data and Magellan FIRE data to place constraints on the outflow rate from the massive protostars, constrain the temperature of the gas, determine the spectral type of the young stellar objects, and estimate the extinction. Looking at the interplay between dense molecular gas and the newly forming stars in a stellar nursery will shed light on how these stars formed: filamentary collision, monolithic collapse, or competitive accretion. The Large Magellanic Cloud has been the subject of star formation studies for decades due to its proximity to the Milky Way (50 kpc), a nearly face-on orientation, and a low metallicity (0.5 solar) similar to that of galaxies at the peak of star formation in the universe (z~2). Thus, my thesis probes the chemical and physical conditions necessary for massive star formation in an environment more typical of the peak of star formation in the universe.

  1. High mass star formation in the galaxy

    NASA Technical Reports Server (NTRS)

    Scoville, N. Z.; Good, J. C.

    1987-01-01

    The Galactic distributions of HI, H2, and HII regions are reviewed in order to elucidate the high mass star formation occurring in galactic spiral arms and in active galactic nuclei. Comparison of the large scale distributions of H2 gas and radio HII regions reveals that the rate of formation of OB stars depends on (n sub H2) sup 1.9 where (n sub H2) is the local mean density of H2 averaged over 300 pc scale lengths. In addition the efficiency of high mass star formation is a decreasing function of cloud mass in the range 200,000 to 3,000,000 solar mass. These results suggest that high mass star formation in the galactic disk is initiated by cloud-cloud collisions which are more frequent in the spiral arms due to orbit crowding. Cloud-cloud collisions may also be responsible for high rates of OB star formation in interacting galaxies and galactic nuclei. Based on analysis of the Infrared Astronomy Satellite (IRAS) and CO data for selected GMCs in the Galaxy, the ratio L sub IR/M sub H2 can be as high as 30 solar luminosity/solar mass for GMCs associated with HII regions. The L sub IR/M sub H2 ratios and dust temperature obtained in many of the high luminosity IRAS galaxies are similar to those encountered in galactic GMCs with OB star formation. High mass star formation is therefore a viable explanation for the high infrared luminosity of these galaxies.

  2. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relationsmore » obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.« less

  3. UVIT view of ram-pressure stripping in action: Star formation in the stripped gas of the GASP jellyfish galaxy JO201 in Abell 85

    NASA Astrophysics Data System (ADS)

    George, K.; Poggianti, B. M.; Gullieuszik, M.; Fasano, G.; Bellhouse, C.; Postma, J.; Moretti, A.; Jaffé, Y.; Vulcani, B.; Bettoni, D.; Fritz, J.; Côté, P.; Ghosh, S. K.; Hutchings, J. B.; Mohan, R.; Sreekumar, P.; Stalin, C. S.; Subramaniam, A.; Tandon, S. N.

    2018-06-01

    Jellyfish are cluster galaxies that experience strong ram-pressure effects that strip their gas. Their Hα images reveal ionized gas tails up to 100 kpc, which could be hosting ongoing star formation. Here we report the ultraviolet (UV) imaging observation of the jellyfish galaxy JO201 obtained at a spatial resolution ˜ 1.3 kpc. The intense burst of star formation happening in the tentacles is the focus of the present study. JO201 is the "UV-brightest cluster galaxy" in Abell 85 (z ˜ 0.056) with knots and streams of star formation in the ultraviolet. We identify star forming knots both in the stripped gas and in the galaxy disk and compare the UV features with the ones traced by Hα emission. Overall, the two emissions remarkably correlate, both in the main body and along the tentacles. Similarly, also the star formation rates of individual knots derived from the extinction-corrected FUV emission agree with those derived from the Hα emission and range from ˜ 0.01 -to- 2.07 M⊙ yr-1. The integrated star formation rate from FUV flux is ˜ 15 M⊙ yr-1. The unprecedented deep UV imaging study of the jellyfish galaxy JO201 shows clear signs of extraplanar star-formation activity due to a recent/ongoing gas stripping event.

  4. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the fullmore » H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.« less

  5. STAR FORMATION AT Z = 2.481 IN THE LENSED GALAXY SDSS J1110+6459: STAR FORMATION DOWN TO 30 PARSEC SCALES.

    PubMed

    Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T

    2017-07-10

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r <100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z ∼ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.

  6. A Higher Efficiency of Converting Gas to Stars Pushes Galaxies at z ˜ 1.6 Well Above the Star-forming Main Sequence

    NASA Astrophysics Data System (ADS)

    Silverman, J. D.; Daddi, E.; Rodighiero, G.; Rujopakarn, W.; Sargent, M.; Renzini, A.; Liu, D.; Feruglio, C.; Kashino, D.; Sanders, D.; Kartaltepe, J.; Nagao, T.; Arimoto, N.; Berta, S.; Béthermin, M.; Koekemoer, A.; Lutz, D.; Magdis, G.; Mancini, C.; Onodera, M.; Zamorani, G.

    2015-10-01

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ˜ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (˜300-800 M⊙ yr-1) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ˜ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (˜30%-50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  7. The Most Complete View Yet of Massive Star formation in the Local Universe

    NASA Astrophysics Data System (ADS)

    Leroy, Adam

    We propose to take advantage of the nearly all-sky coverage of the Galaxy Evolution Explorer and Wide Field Infrared Surveyor missions to construct a combined atlas of ultraviolet and mid-infrared intensity images for almost all massive galaxies within 40 Mpc as well as several key local galaxy surveys beyond this volume. Following established methodology, we will use these to construct resolved estimates of the star formation rate surface density (the recent rate of star formation per unit area) across the whole local galaxy population. We will then use this atlas to measure basic facts about star formation in the local universe: where are most stars forming? Where are galaxies of different masses and morphologies most rapidly increasing their mass and where are they quenched? How common are ``extreme'' events like nuclear or off-nuclear starbursts? The limited resolution of infrared telescopes has made it difficult to address these questions in large samples before the latest generation of NASA missions. These local galaxies have been, and will remain, the subject of much focused study. The atlas will also serve as a reference point to place smaller samples studied in greater detail into the full context of the galaxy population; for example, we highlight the ability to place detailed studies of gas and dust in moderate-size galaxies into the broader context of galaxy evolution. The prospect to make homogenously constructed, extinction robust, resolved maps of a huge set of galaxies is only now available and offers a powerful chance to link these two fields (nearby galaxy studies and statistical studies of galaxy evolution and population). It will also serve as an invaluable resource to target future detailed studies with telescopes like the James Webb Space Telescope that are optimized for extraordinarily detailed study of comparatively small areas and so require the sort of “finding chart” that we propose to produce. This goal of mapping all star formation in the local galaxy population bears directly on NASA's broad goals of understand how the universe works and the origins of stars, planets, and galaxies. This project will also enhance the legacy value of two phenomenal NASA missions by producing a set of broadly useful high level science products and using them to address fundamental scientific questions. It will also aid in targeting of future NASA observations and help place key work by earlier missions in context. It will also be a substantial resource to the community, producing useful data products and serving as a bridge between the often too-separated fields of nearby galaxy studies and galaxy evolution.

  8. A catalogue of chromospherically active binary stars (third edition)

    NASA Astrophysics Data System (ADS)

    Eker, Z.; Ak, N. Filiz; Bilir, S.; Doǧru, D.; Tüysüz, M.; Soydugan, E.; Bakış, H.; Uǧraş, B.; Soydugan, F.; Erdem, A.; Demircan, O.

    2008-10-01

    The catalogue of chromospherically active binaries (CABs) has been revised and updated. With 203 new identifications, the number of CAB stars is increased to 409. The catalogue is available in electronic format where each system has a number of lines (suborders) with a unique order number. The columns contain data of limited numbers of selected cross references, comments to explain peculiarities and the position of the binarity in case it belongs to a multiple system, classical identifications (RS Canum Venaticorum, BY Draconis), brightness and colours, photometric and spectroscopic data, a description of emission features (CaII H and K, Hα, ultraviolet, infrared), X-ray luminosity, radio flux, physical quantities and orbital information, where each basic entry is referenced so users can go to the original sources.

  9. Star-formation rate in compact star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Izotova, I. Y.; Izotov, Y. I.

    2018-03-01

    We use the data for the Hβ emission-line, far-ultraviolet (FUV) and mid-infrared 22 μm continuum luminosities to estimate star formation rates < SFR > averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking < SFR > and the star formation rate SFR0 derived from the Hβ luminosity at zero starburst age is found to be 0.04. We compare < SFR > s with some commonly used SFRs which are derived adopting a continuous star formation during a period of {˜} 100 Myr, and find that the latter ones are 2-3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for < SFR > determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of {˜} 2 of the < SFR > averaged over the lifetime of the bursting compact galaxy.

  10. A non-local thermodynamical equilibrium line formation for neutral and singly ionized titanium in model atmospheres of reference A-K stars

    NASA Astrophysics Data System (ADS)

    Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.

    2016-09-01

    We construct a model atom for Ti I-II using more than 3600 measured and predicted energy levels of Ti I and 1800 energy levels of Ti II, and quantum mechanical photoionization cross-sections. Non-local thermodynamical equilibrium (NLTE) line formation for Ti I and Ti II is treated through a wide range of spectral types from A to K, including metal-poor stars with [Fe/H] down to -2.6 dex. NLTE leads to weakened Ti I lines and positive abundance corrections. The magnitude of NLTE corrections is smaller compared to the literature data for FGK atmospheres. NLTE leads to strengthened Ti II lines and negative NLTE abundance corrections. For the first time, we have performed NLTE calculations for Ti I-II in the 6500 ≤ Teff ≤ 13 000 K range. For four A-type stars, we derived in LTE an abundance discrepancy of up to 0.22 dex between Ti I and Ti II, which vanishes in NLTE. For four other A-B stars, with only Ti II lines observed, NLTE leads to a decrease of line-to-line scatter. An efficiency of inelastic Ti I + H I collisions was estimated from an analysis of Ti I and Ti II lines in 17 cool stars with -2.6 ≤ [Fe/H] ≤ 0.0. Consistent NLTE abundances from Ti I and Ti II were obtained by applying classical Drawinian rates for the stars with log g ≥ 4.1, and neglecting inelastic collisions with H I for the very metal-poor (VMP) giant HD 122563. For the VMP turn-off stars ([Fe/H] ≤ -2 and log g ≤ 4.1), we obtained the positive abundance difference Ti I-II already in LTE, which increases in NLTE. Accurate collisional data for Ti I and Ti II are necessary to help solve this problem.

  11. Astrometric Detection of Extrasolar Planets: Results of a Feasibility Study with the Palomar 5 Meter Telescope

    NASA Technical Reports Server (NTRS)

    Pravdo, Steven H.; Shaklan, Stuart B.

    1996-01-01

    The detection of extrasolar planets around stars like the Sun remains an important goal of astronomy. We present results from Palomar 5 m observations of the open cluster NGC 2420 in which we measure some of the sources of noise that will be present in an astrometric search for extrasolar planets. This is the first time that such a large aperture has been used for high-precision astrometry. We find that the atmospheric noise is 150 micro-arcsec hr(exp 1/2) across a 90 sec field of view and that differential chromatic refraction (DCR) can be calibrated to 128 micro-arcsec for observations within 1 hr of the meridian and 45 deg of zenith. These results confirm that a model for astrometric measurements can be extrapolated to large apertures. We demonstrate, based upon these results, that a large telescope achieves the sensitivity required to perform a statistically significant search for extra solar planets. We describe an astrometric technique to detect planets, the astrometric signals expected, the role of reference stars, and the sources of measurement noise: photometric noise, atmospheric motion between stars, sky background, instrumental noise, and DCR. For the latter, we discuss a method to reduce the noise further to 66 micro-arcsecond for observations within 1 hr of the meridian and 45 deg of zenith. We discuss optimal lists of target stars taken from the latest Gliese & Jahreiss catalog of nearby stars with the largest potential astrometric signals, declination limits for both telescope accessibility and reduced DCR, and galactic latitude limits for a sufficiant number of reference stars. Two samples are described from which one can perform statistically significant searches for gas giant planets around nearby stars. One sample contains 100 "solar class" stars with an average stellar mass of 0.82 solar mass; the other maximizes the number of stars, 574, by searching mainly low-mass M stars. We perform Monte Carlo simulations of the statistical significance of the expected results by using measured and estimated noise quantities. We show the semimajor axis parameter spaces that are searched for each star and how an increase in the length of the observing program expands these spaces. The search over semimajor axis parameter space relates to the theory of gas giant planet formation.

  12. Star cluster formation in a turbulent molecular cloud self-regulated by photoionization feedback

    NASA Astrophysics Data System (ADS)

    Gavagnin, Elena; Bleuler, Andreas; Rosdahl, Joakim; Teyssier, Romain

    2017-12-01

    Most stars in the Galaxy are believed to be formed within star clusters from collapsing molecular clouds. However, the complete process of star formation, from the parent cloud to a gas-free star cluster, is still poorly understood. We perform radiation-hydrodynamical simulations of the collapse of a turbulent molecular cloud using the RAMSES-RT code. Stars are modelled using sink particles, from which we self-consistently follow the propagation of the ionizing radiation. We study how different feedback models affect the gas expulsion from the cloud and how they shape the final properties of the emerging star cluster. We find that the star formation efficiency is lower for stronger feedback models. Feedback also changes the high-mass end of the stellar mass function. Stronger feedback also allows the establishment of a lower density star cluster, which can maintain a virial or sub-virial state. In the absence of feedback, the star formation efficiency is very high, as well as the final stellar density. As a result, high-energy close encounters make the cluster evaporate quickly. Other indicators, such as mass segregation, statistics of multiple systems and escaping stars confirm this picture. Observations of young star clusters are in best agreement with our strong feedback simulation.

  13. The rate and latency of star formation in dense, massive clumps in the Milky Way

    NASA Astrophysics Data System (ADS)

    Heyer, M.; Gutermuth, R.; Urquhart, J. S.; Csengeri, T.; Wienen, M.; Leurini, S.; Menten, K.; Wyrowski, F.

    2016-04-01

    Context. Newborn stars form within the localized, high density regions of molecular clouds. The sequence and rate at which stars form in dense clumps and the dependence on local and global environments are key factors in developing descriptions of stellar production in galaxies. Aims: We seek to observationally constrain the rate and latency of star formation in dense massive clumps that are distributed throughout the Galaxy and to compare these results to proposed prescriptions for stellar production. Methods: A sample of 24 μm-based Class I protostars are linked to dust clumps that are embedded within molecular clouds selected from the APEX Telescope Large Area Survey of the Galaxy. We determine the fraction of star-forming clumps, f∗, that imposes a constraint on the latency of star formation in units of a clump's lifetime. Protostellar masses are estimated from models of circumstellar environments of young stellar objects from which star formation rates are derived. Physical properties of the clumps are calculated from 870 μm dust continuum emission and NH3 line emission. Results: Linear correlations are identified between the star formation rate surface density, ΣSFR, and the quantities ΣH2/τff and ΣH2/τcross, suggesting that star formation is regulated at the local scales of molecular clouds. The measured fraction of star forming clumps is 23%. Accounting for star formation within clumps that are excluded from our sample due to 24 μm saturation, this fraction can be as high as 31%, which is similar to previous results. Dense, massive clumps form primarily low mass (<1-2 M⊙) stars with emergent 24 μm fluxes below our sensitivity limit or are incapable of forming any stars for the initial 70% of their lifetimes. The low fraction of star forming clumps in the Galactic center relative to those located in the disk of the Milky Way is verified. Full Tables 2-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A29

  14. Bimodal star formation - Constraints from the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, J.

    1987-01-01

    The chemical evolution resulting from a simple model of bimodal star formulation is investigated, using constraints from the solar neighborhood to set the parameters of the initial mass function and star formation rate. The two modes are an exclusively massive star mode, which forms stars at an exponentially declining rate, and a mode which contains stars of all masses and has a constant star formation rate. Satisfactory agreement with the age-metallicity relation for the thin disk and with the metallicity structure of the thin-disk and spheroid stars is possible only for a small range of parameter values. The preferred model offers a resolution to several of the long-standing problems of galactic chemical evolution, including explanations of the age-metallicity relation, the gas consumption time scale, and the stellar cumulative metallicity distributions.

  15. Massive Stars and Star Clusters in the Era of JWST

    NASA Astrophysics Data System (ADS)

    Klein, Richard

    Massive stars lie at the center of the web of physical processes that has shaped the universe as we know it, governing the evolution of the interstellar medium of galaxies, producing a majority of the heavy elements, and thereby determining the evolution of galaxies. Massive stars are also important as signposts, since they produce most of the light and almost all the ionizing radiation in regions of active star formation. A significant fraction of all stars form in massive clusters, which will be observable throughout the visible universe with JWST. Their luminosities are so high that the pressure of their light on interstellar dust grains is likely the dominant feedback mechanism regulating their formation. While this process has been studied in the local Universe, much less attention has been focused on how it behaves at high redshift, where the dust abundance is much lower due to the overall lower abundance of heavy elements. The high redshift Universe also differs from the nearby one in that observations imply that high redshift star formation occurs at significantly higher densities than are typically found locally. We propose to simulate the formation of individual massive stars from the high redshift universe to the present day universe spanning metallicities ranging from 0.001 to 1.0 and column densities from 0.1to 30.0 g/cm2 focusing on how the process depends on both the dust abundance and on the density of the star-forming gas. These simulations will be among the first to treat the formation of Population II stars, which form in regions of low metallicity. Based on these results, we shall then simulate the formation of clusters of stars across also cosmic time, both of moderate mass, such as the Orion Nebula Cluster, and of high mass, such as the super star clusters seen in starburst galaxies. These state-of-the-art simulations will be carried out using our newly developed advanced techniques in our radiation-magneto-hydrodynamic AMR code ORION, for radiative transfer with both ionizing and non-ionizing radiation that accurately handle both the direct radiation from stars and the diffuse infrared radiation field that builds up when direct radiation is reprocessed by dust grains. Our simulations include all of the relevant feedback effects such as radiative heating, radiation pressure, photodissociation and photoionization, protostellar outflows and stellar winds. The challenge in simulating the formation of massive stars and massive clusters is to include all these feedback effects self-consistently as they occur collectively. We are in an excellent position to do so. The results of these simulations will be directly relevant to the interpretation of observations with JWST, which will probe cluster formation in both the nearby and distant universe, and with SOFIA, which can observe high-mass star formation in the Galaxy. We shall make direct comparison with observations of massive protostars in the Galactic disk. We shall also compare with observations of star clusters that form in dense environments, such as the Galactic Center and in merging galaxies (e.g., the Antennae), and in low metallicity environments, such as the dwarf starburst galaxy I Zw 18. Once our simulations have been benchmarked with observations of massive protostars in the Galaxy and massive protoclusters in the local universe, they will provide the theoretical basis for interpreting observations of the formation of massive star clusters at high redshift with JWST. What determines the maximum mass of a star? How does stellar feedback affect the formation of individual stars and the formation of massive star clusters and how the answers to these questions evolve with cosmic time. The proposed research will provide high-resolution input to the study of stellar feedback on galaxy formation with a significantly more accurate treatment of the physics, particularly the radiative transfer that is so important for feedback.

  16. The Center for Star Formation Studies

    NASA Technical Reports Server (NTRS)

    Hollenbach, D.; Bell, K. R.; Laughlin, G.

    2002-01-01

    The Center for Star Formation Studies, a consortium of scientists from the Space Science Division at Ames and the Astronomy Departments of the University of California at Berkeley and Santa Cruz, conducts a coordinated program of theoretical research on star and planet formation. Under the directorship of D. Hollenbach (Ames), the Center supports postdoctoral fellows, senior visitors, and students; meets regularly at Ames to exchange ideas and to present informal seminars on current research; hosts visits of outside scientists; and conducts a week-long workshop on selected aspects of star and planet formation each summer.

  17. Molecular gas mass and star formation of 12 Virgo spiral galaxies along the ram pressure time sequence

    NASA Astrophysics Data System (ADS)

    Chung, Eun Jung; Kim, S.

    2014-01-01

    The ram pressure stripping is known as one of the most efficient mechanisms to deplete the ISM of a galaxy in the clusters of galaxies. As being affected continuously by ICM pressure, a galaxy may lose their gas that is the fuel of star formation, and consequently star formation rate would be changed. We select twelve Virgo spiral galaxies according to their stage of the ram pressure stripping event to probe possible consequences of star formation of spiral galaxies in the ram pressure and thus the evolution of galaxies in the Virgo cluster. We investigate the molecular gas properties, star formation activity, and gas depletion time along the time from the ram pressure peak. We also discussed the evolution of galaxies in the cluster.

  18. Quenching of Star-formation Activity of High-redshift Galaxies in Clusters and Field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton

    At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped. We present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z ~ 2 to z ~ 0.5, focusing its dependence on their stellar mass and environment (Lee et al. 2015). In the UKIDSS/UDS region, covering ~2800 square arcmin, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range. Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z < 1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.

  19. The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Wong, O. I.; Braine, J.; Chung, A.; Kenney, J. D. P.

    2012-07-01

    The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data based on the 8, 24, 70, and 160 μm data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies (NGC 4430, NGC 4501, and NGC 4522), possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies (NGC 4330, NGC 4438, and NGC 4522) shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. We found two such regions of low star formation efficiency in the more face-on galaxies NGC 4501 and NGC 4654 which are both undergoing ram pressure stripping. These regions show low radio continuum emission or unusually steep radio spectral index. However, the stripped extraplanar gas in one highly inclined galaxy (NGC 4569) shows a normal star formation efficiency with respect to the total gas. We propose this galaxy is different because it is observed long after peak pressure, and its extraplanar gas is now in a converging flow as it resettles back into the disk. Appendices are available in electronic form http://www.aanda.org

  20. TIDAL TAILS OF MINOR MERGERS. II. COMPARING STAR FORMATION IN THE TIDAL TAILS OF NGC 2782

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knierman, Karen A.; Scowen, Paul; Veach, Todd

    2013-09-10

    The peculiar spiral NGC 2782 is the result of a minor merger with a mass ratio {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun. However, deep UBVR and H{alpha} narrowband images show evidence of recent star formation in the western tail, though it lacks massive star clusters and cluster complexes. Using Herschel PACS spectroscopy, we discover 158 {mu}m [C II] emission at themore » location of the three most luminous H{alpha} sources in the eastern tail, but not at the location of the even brighter H{alpha} source in the western tail. The western tail is found to have a normal star formation efficiency (SFE), but the eastern tail has a low SFE. The lack of CO and [C II] emission suggests that the western tail H II region may have a low carbon abundance and be undergoing its first star formation. The western tail is more efficient at forming stars, but lacks massive clusters. We propose that the low SFE in the eastern tail may be due to its formation as a splash region where gas heating is important even though it has sufficient molecular and neutral gas to make massive star clusters. The western tail, which has lower gas surface density and does not form high-mass star clusters, is a tidally formed region where gravitational compression likely enhances star formation.« less

  1. Star formation is boosted (and quenched) from the inside-out: radial star formation profiles from MaNGA

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Sánchez, Sebastian F.; Ibarra-Medel, Hector; Antonio, Braulio; Mendel, J. Trevor; Barrera-Ballesteros, Jorge

    2018-02-01

    The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star-forming main sequence. Using ˜487 000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (ΣSFR) and stellar mass (Σ⋆) on kpc scales, representing a `resolved' main sequence. Using a new metric (ΔΣSFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star-forming main sequence (ΔSFR). For galaxies above the global main sequence (positive ΔSFR) ΔΣSFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (<3 kpc, or 0.5Re). Moreover, galaxies that are at least a factor of 3 above the main sequence show diluted gas phase metallicities out to 2Re, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star-forming main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of ΔΣSFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.

  2. Calibrating Star Formation: The Link between Feedback and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela

    2005-07-01

    Stellar feedback - the return of mass and energy from star formation to the interstellar medium - is one of the primary engines of galaxy evolution. Yet, the theoretical foundation of mechanical feedback is, to date, unconstrained by observations. We propose to investigate this fundamental aspect of star formation on a sample of two local actively star-forming galaxies, NGC4449, and Holmberg II. The two galaxies have been selected to occupy an unexplored, yet crucial for quantifying mechanical feedback, niche in the two-parameter space of star formation intensity and galaxy mass. ACS/WFC and WFPC2 narrow-band observations in the light of H-beta, [OIII], H-alpha, and [NII] will be obtained for both galaxies, in order to: {1} discriminate the feedback-induced shock fronts from the photoionization regions; {2} map the shocks inside and around the starburst regions; and {3} measure the energy budget of the star-formation-produced shocks. These observations, complemented by existing data, will yield: {1} the efficiency of the feedback, i.e. the fraction of the star formation's mechanical energy that is transported out of the starburst volume rather than confined or radiated away; {2} the dependence of this efficiency on the two fundamental parameters of star formation intensity and stellar mass. The high angular resolution of HST is crucial for separating the spatially narrow shock fronts { 5 pc, 0.25" at 4 Mpc} from the more extended photoionization fronts. The legacy from this project will be the most complete quantitative measurement of the energetics associated with feedback processes. We will secure the first milestone for placing feedback mechanisms on a solid physical ground, and for understanding quantitatively their role on the energetics, structure, and star formation history of galaxies at all redshifts.

  3. OMEGA - OSIRIS Mapping of Emission-line Galaxies in A901/2 - II. Environmental influence on integrated star formation properties and AGN activity

    NASA Astrophysics Data System (ADS)

    Rodríguez del Pino, Bruno; Aragón-Salamanca, Alfonso; Chies-Santos, Ana L.; Weinzirl, Tim; Bamford, Steven P.; Gray, Meghan E.; Böhm, Asmus; Wolf, Christian; Maltby, David T.

    2017-06-01

    We present a study of the star formation and AGN activity for galaxies in CP 15051 the Abell 901/2 multicluster system at z ˜ 0.167 as part of the OSIRIS Mapping of Emission-line Galaxies in A901/2 (OMEGA) survey. Using Tuneable Filter data obtained with the OSIRIS instrument at the Gran Telescopio Canarias, we produce spectra covering the Hα and [N II] spectral lines for more than 400 galaxies. Using optical emission-line diagnostics, we identify a significant number of galaxies hosting AGN, which tend to have high masses and a broad range of morphologies. Moreover, within the environmental densities probed by our study, we find no environmental dependence on the fraction of galaxies hosting AGN. The analysis of the integrated Hα emission shows that the specific star formation rates of a majority of the cluster galaxies are below the field values for a given stellar mass. We interpret this result as evidence for a slow decrease in the star formation activity of star-forming galaxies as they fall into higher density regions, contrary to some previous studies that suggested a rapid truncation of star formation. We find that most of the intermediate- and high-mass spiral galaxies go through a phase in which their star formation is suppressed but still retain significant star formation activity. During this phase, these galaxies tend to retain their spiral morphology while their colours become redder. The presence of this type of galaxies in high-density regions indicates that the physical mechanism responsible for suppressing star formation affects mainly the gas component of the galaxies, suggesting that ram-pressure stripping or starvation is potentially responsible.

  4. SDSS-IV MaNGA: the spatial distribution of star formation and its dependence on mass, structure, and environment

    NASA Astrophysics Data System (ADS)

    Spindler, Ashley; Wake, David; Belfiore, Francesco; Bershady, Matthew; Bundy, Kevin; Drory, Niv; Masters, Karen; Thomas, Daniel; Westfall, Kyle; Wild, Vivienne

    2018-05-01

    We study the spatially resolved star formation of 1494 galaxies in the SDSS-IV MaNGA Survey. Star formation rates (SFRs) are calculated using a two-step process, using H α in star-forming regions and Dn4000 in regions identified as active galactic nucleus/low-ionization (nuclear) emission region [AGN/LI(N)ER] or lineless. The roles of secular and environmental quenching processes are investigated by studying the dependence of the radial profiles of specific star formation rate on stellar mass, galaxy structure, and environment. We report on the existence of `centrally suppressed' galaxies, which have suppressed Specific Star Formation Rate (SSFR) in their cores compared to their discs. The profiles of centrally suppressed and unsuppressed galaxies are distributed in a bimodal way. Galaxies with high stellar mass and core velocity dispersion are found to be much more likely to be centrally suppressed than low-mass galaxies, and we show that this is related to morphology and the presence of AGN/LI(N)ER like emission. Centrally suppressed galaxies also display lower star formation at all radii compared to unsuppressed galaxies. The profiles of central and satellite galaxies are also compared, and we find that satellite galaxies experience lower specific star formation rates at all radii than central galaxies. This uniform suppression could be a signal of the stripping of hot halo gas in the process known as strangulation. We find that satellites are not more likely to be suppressed in their cores than centrals, indicating that the core suppression is an entirely internal process. We find no correlation between the local environment density and the profiles of star formation rate surface density.

  5. SDSS-IV MaNGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence

    NASA Astrophysics Data System (ADS)

    Hsieh, B. C.; Lin, Lihwai; Lin, J. H.; Pan, H. A.; Hsu, C. H.; Sánchez, S. F.; Cano-Díaz, M.; Zhang, K.; Yan, R.; Barrera-Ballesteros, J. K.; Boquien, M.; Riffel, R.; Brownstein, J.; Cruz-González, I.; Hagen, A.; Ibarra, H.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.

    2017-12-01

    We present our study on the spatially resolved Hα and M * relation for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We show that the star formation rate surface density ({{{Σ }}}{SFR}), derived based on the Hα emissions, is strongly correlated with the M * surface density ({{{Σ }}}* ) on kiloparsec scales for star-forming galaxies and can be directly connected to the global star-forming sequence. This suggests that the global main sequence may be a consequence of a more fundamental relation on small scales. On the other hand, our result suggests that ∼20% of quiescent galaxies in our sample still have star formation activities in the outer region with lower specific star formation rate (SSFR) than typical star-forming galaxies. Meanwhile, we also find a tight correlation between {{{Σ }}}{{H}α } and {{{Σ }}}* for LI(N)ER regions, named the resolved “LI(N)ER” sequence, in quiescent galaxies, which is consistent with the scenario that LI(N)ER emissions are primarily powered by the hot, evolved stars as suggested in the literature.

  6. Starless Clumps and the Earliest Phases of High-mass Star Formation in the Milky Way

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian

    2018-01-01

    High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I report on observational studies of dense starless clump candidates (SCCs) that show no signatures of star formation activity. I identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyze their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, I study the 12 most high-mass SCCs within 5 kpc using ALMA. I report previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation effeciency in this sample, these observational facts are consistent with models where high-mass stars form from intially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump.

  7. Formation of the first galaxies under Population III stellar feedback

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon

    2015-01-01

    The first galaxies, which formed a few hundred million years after the big bang, are related to important cosmological questions. Given thatthey are thought to be the basic building blocks of large galaxies seen today, understanding their formation and properties is essentialto studying galaxy formation as a whole. In this dissertation talk, I will present the results of our highly-resolved cosmological ab-initio simulations to understand the assembly process of first galaxies under the feedback from the preceding generations of first stars, the so-called Population III (Pop III). The first stars formed at z≲30 in dark matter (DM) minihalos with M_{vir}=10^5-10^6Msun, predominately via molecular hydrogen (H_2) cooling. Radiation from Pop III stars dramatically altered the gas within their host minihalos, through photoionization, photoheating, and photoevaporation. Once a Pop III star explodes as a supernova (SN), heavy elements are dispersed, enriching the interstellar (ISM) and intergalactic medium (IGM), thus initiating the process of chemical evolution. I will begin by presenting how the SN explosion of the first stars influences early cosmic history, specifically assessing the time delay in further star formation and tracing the evolution of metal-enriched gas until the second episode star formation happens. These results will show the role of Pop III supernovae on the star formation transition from Pop III to Population II. Additionally, the more distant, diffuse IGM was heated by X-rays emitted by accreting black holes (BHs), or high-mass X-ray binaries (HMXBs), both remnants of Pop III stars. I will present results of a series of simulations where we study the impact of X-ray feedback from BHs and HMXBs on the star formation history in the early universe, and discuss the resulting implications on reionization. I will also present the role of X-rays on the early BH growth, providing constraints on models for supermassive black hole formation. Finally, I will discuss key physical quantities of the first galaxies derived from our simulations, such as their stellar population mix, star formation rates, metallicities, and resulting broad-band color and recombination spectra.

  8. On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael

    2006-01-01

    The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the buildup of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are fully consistent with observations in the field, cluster Fe enrichment immediately tracked a rapid, top-heavy phase of star formation - although transport of Fe into the ICM may have been more prolonged and star formation likely continued beyond redshift 1. The means of this prompt enrichment consisted of SNII yielding greater than or equal to 0.1 solar mass per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3 - 8 solar mass range) and/or SNIa with short delay times originating during the rapid star formation epoch. Star formation is greater than 3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.

  9. BUILDING LATE-TYPE SPIRAL GALAXIES BY IN-SITU AND EX-SITU STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillepich, Annalisa; Madau, Piero; Mayer, Lucio

    We analyze the formation and evolution of the stellar components in ''Eris'', a 120 pc resolution cosmological hydrodynamic simulation of a late-type spiral galaxy. The simulation includes the effects of a uniform UV background, a delayed-radiative-cooling scheme for supernova feedback, and a star formation recipe based on a high gas density threshold. It allows a detailed study of the relative contributions of ''in-situ'' (within the main host) and ''ex-situ'' (within satellite galaxies) star formation to each major Galactic component in a close Milky Way analog. We investigate these two star-formation channels as a function of galactocentric distance, along different lines ofmore » sight above and along the disk plane, and as a function of cosmic time. We find that: (1) approximately 70% of today's stars formed in-situ; (2) more than two thirds of the ex-situ stars formed within satellites after infall; (3) the majority of ex-situ stars are found today in the disk and in the bulge; (4) the stellar halo is dominated by ex-situ stars, whereas in-situ stars dominate the mass profile at distances ≲ 5 kpc from the center at high latitudes; and (5) approximately 25% of the inner, r ≲ 20 kpc, halo is composed of in-situ stars that have been displaced from their original birth sites during Eris' early assembly history.« less

  10. Star Formation in Merging Galaxies Using FIRE

    NASA Astrophysics Data System (ADS)

    Perez, Adrianna; Hung, Chao-Ling; Naiman, Jill; Moreno, Jorge; Hopkins, Philip

    2018-01-01

    Galaxy interactions and mergers are efficient mechanisms to birth stars at rates that are significantly higher than found in our Milky Way galaxy. The Kennicut-Schmidt (KS) relation is an empirical relationship between the star-forming rate and gas surface densities of galaxies (Schmidt 1959; Kennicutt 1998). Although most galaxies follow the KS relation, the high levels of star formation in galaxy mergers places them outside of this otherwise tight relationship. The goal of this research is to analyze the gas content and star formation of simulated merging galaxies. Our work utilizes the Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high-resolution cosmological simulation that resolves star-forming regions and incorporates stellar feedback in a physically realistic way. In this work, we have noticed a significant increase in the star formation rate at first and second passage, when the two black holes of each galaxy approach one other. Next, we will analyze spatially resolved star-forming regions over the course of the interacting system. Then, we can study when and how the rates that gas converts into stars deviate from the standard KS. These analyses will provide important insights into the physical mechanisms that regulate star formation of normal and merging galaxies and valuable theoretical predictions that can be used to compare with current and future observations from ALMA or the James Webb Space Telescope.

  11. Approximations to galaxy star formation rate histories: properties and uses of two examples

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.

    2018-05-01

    Galaxies evolve via a complex interaction of numerous different physical processes, scales and components. In spite of this, overall trends often appear. Simplified models for galaxy histories can be used to search for and capture such emergent trends, and thus to interpret and compare results of galaxy formation models to each other and to nature. Here, two approximations are applied to galaxy integrated star formation rate histories, drawn from a semi-analytic model grafted onto a dark matter simulation. Both a lognormal functional form and principal component analysis (PCA) approximate the integrated star formation rate histories fairly well. Machine learning, based upon simplified galaxy halo histories, is somewhat successful at recovering both fits. The fits to the histories give fixed time star formation rates which have notable scatter from their true final time rates, especially for quiescent and "green valley" galaxies, and more so for the PCA fit. For classifying galaxies into subfamilies sharing similar integrated histories, both approximations are better than using final stellar mass or specific star formation rate. Several subsamples from the simulation illustrate how these simple parameterizations provide points of contact for comparisons between different galaxy formation samples, or more generally, models. As a side result, the halo masses of simulated galaxies with early peak star formation rate (according to the lognormal fit) are bimodal. The galaxies with a lower halo mass at peak star formation rate appear to stall in their halo growth, even though they are central in their host halos.

  12. The Formation and Evolution of the Solar System

    NASA Astrophysics Data System (ADS)

    Marov, Mikhail

    2018-05-01

    The formation and evolution of our solar system (and planetary systems around other stars) are among the most challenging and intriguing fields of modern science. As the product of a long history of cosmic matter evolution, this important branch of astrophysics is referred to as stellar-planetary cosmogony. Interdisciplinary by way of its content, it is based on fundamental theoretical concepts and available observational data on the processes of star formation. Modern observational data on stellar evolution, disc formation, and the discovery of extrasolar planets, as well as mechanical and cosmochemical properties of the solar system, place important constraints on the different scenarios developed, each supporting the basic cosmogony concept (as rooted in the Kant-Laplace hypothesis). Basically, the sequence of events includes fragmentation of an original interstellar molecular cloud, emergence of a primordial nebula, and accretion of a protoplanetary gas-dust disk around a parent star, followed by disk instability and break-up into primary solid bodies (planetesimals) and their collisional interactions, eventually forming a planet. Recent decades have seen major advances in the field, due to in-depth theoretical and experimental studies. Such advances have clarified a new scenario, which largely supports simultaneous stellar-planetary formation. Here, the collapse of a protosolar nebula's inner core gives rise to fusion ignition and star birth with an accretion disc left behind: its continuing evolution resulting ultimately in protoplanets and planetary formation. Astronomical observations have allowed us to resolve in great detail the turbulent structure of gas-dust disks and their dynamics in regard to solar system origin. Indeed radio isotope dating of chondrite meteorite samples has charted the age and the chronology of key processes in the formation of the solar system. Significant progress also has been made in the theoretical study and computer modeling of protoplanetary accretion disk thermal regimes; evaporation/condensation of primordial particles depending on their radial distance, mechanisms of clustering, collisions, and dynamics. However, these breakthroughs are yet insufficient to resolve many problems intrinsically related to planetary cosmogony. Significant new questions also have been posed, which require answers. Of great importance are questions on how contemporary natural conditions appeared on solar system planets: specifically, why the three neighbor inner planets—Earth, Venus, and Mars—reveal different evolutionary paths.

  13. Magnetically Controlled Spasmodic Accretion during Star Formation. II. Results

    NASA Astrophysics Data System (ADS)

    Tassis, Konstantinos; Mouschovias, Telemachos Ch.

    2005-01-01

    The problem of the late accretion phase of the evolution of an axisymmetric, isothermal magnetic disk surrounding a forming star has been formulated in a companion paper. The ``central sink approximation'' is used to circumvent the problem of describing the evolution inside the opaque central region for densities greater than 1011 cm-3 and radii smaller than a few AU. Only the electrons are assumed to be attached to the magnetic field lines, and the effects of both negatively and positively charged grains are accounted for. After a mass of 0.1 Msolar accumulates in the central cell (forming star), a series of magnetically driven outflows and associated outward-propagating shocks form in a quasi-periodic fashion. As a result, mass accretion onto the protostar occurs in magnetically controlled bursts. We refer to this process as spasmodic accretion. The shocks propagate outward with supermagnetosonic speeds. The period of dissipation and revival of the outflow decreases in time, as the mass accumulated in the central sink increases. We evaluate the contribution of ambipolar diffusion to the resolution of the magnetic flux problem of star formation during the accretion phase, and we find it to be very significant albeit not sufficient to resolve the entire problem yet. Ohmic dissipation is completely negligible in the disk during this phase of the evolution. The protostellar disk is found to be stable against interchange-like instabilities, despite the fact that the mass-to-flux ratio has temporary local maxima.

  14. Applying a Hydrodynamical Treatment of Stream Flow and Accretion Disk Formation in WASP-12/b Exoplanetary System

    NASA Astrophysics Data System (ADS)

    Weaver, Ian; Lopez, Aaron; Macias, Phil

    2016-01-01

    WASP-12b is a hot Jupiter orbiting dangerously close to its parent star WASP-12 at a radius 1/44th the distance between the Earth and the Sun, or roughly 16 times closer than Mercury. WASP-12's gravitational influence at this incredibly close proximity generates tidal forces on WASP-12b that distort the planet into an egg-like shape. As a result, the planet's surface overflows its Roche lobe through L1, transferring mass to the host star at a rate of 270 million metric tonnes per second. This mass transferring stream forms an accretion disk that transits the parent star, which aids sensitive instruments, such as the Kepler spacecraft, whose role is to examine the periodic dimming of main sequence stars in order to detect ones with orbiting planets. The quasi-ballistic stream trajectory is approximated by that of a massless point particle released from analogous initial conditions in 2D. The particle dynamics are shown to deviate negligibly across a broad range of initial conditions, indicating applicability of our model to "WASP-like" systems in general. We then apply a comprehensive fluid treatment by way of hydrodynamical code FLASH in order to directly model the behavior of mass transfer in a non-inertial reference frame and subsequent disk formation. We hope to employ this model to generate virtual spectroscopic signatures and compare them against collected light curve data from the Hubble Space Telescope's Cosmic Origins Spectrograph (COS).

  15. Massive star formation in 100,000 years from turbulent and pressurized molecular clouds.

    PubMed

    McKee, Christopher F; Tan, Jonathan C

    2002-03-07

    Massive stars (with mass m* > 8 solar masses Mmiddle dot in circle) are fundamental to the evolution of galaxies, because they produce heavy elements, inject energy into the interstellar medium, and possibly regulate the star formation rate. The individual star formation time, t*f, determines the accretion rate of the star; the value of the former quantity is currently uncertain by many orders of magnitude, leading to other astrophysical questions. For example, the variation of t*f with stellar mass dictates whether massive stars can form simultaneously with low-mass stars in clusters. Here we show that t*f is determined by the conditions in the star's natal cloud, and is typically about 105yr. The corresponding mass accretion rate depends on the pressure within the cloud--which we relate to the gas surface density--and on both the instantaneous and final stellar masses. Characteristic accretion rates are sufficient to overcome radiation pressure from about 100M middle dot in circle protostars, while simultaneously driving intense bipolar gas outflows. The weak dependence of t*f on the final mass of the star allows high- and low-mass star formation to occur nearly simultaneously in clusters.

  16. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  17. Revisiting The First Galaxies: The epoch of Population III stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratov, Alexander L.; Gnedin, Oleg Y.; Gnedin, Nickolay Y.

    2013-07-19

    We investigate the transition from primordial Population III (Pop III) star formation to normal Pop II star formation in the first galaxies using new cosmological hydrodynamic simulations. We find that while the first stars seed their host galaxies with metals, they cannot sustain significant outflows to enrich the intergalactic medium, even assuming a top-heavy initial mass function. This means that Pop III star formation could potentially continue until z 6 in different unenriched regions of the universe, before being ultimately shut off by cosmic reionization. Within an individual galaxy, the metal production and stellar feedback from Pop II stars overtake Pop III stars inmore » 20-200 Myr, depending on galaxy mass.« less

  18. Star formation in massive Milky Way molecular clouds: Building a bridge to distant galaxies

    NASA Astrophysics Data System (ADS)

    Willis, Sarah Elizabeth

    The Kennicutt-Schmidt relation is an empirical power-law linking the surface density of the star formation rate (SigmaSFR) to the surface density of gas (Sigmagas ) averaged over the observed face of a starforming galaxy Kennicutt (1998). The original presentation used observations of CO to measure gas density and H alpha emission to measure the population of hot, massive young stars (and infer the star formation rate). Observations of Sigma SFR from a census of young stellar objects in nearby molecular clouds in our Galaxy are up to 17 times higher than the extragalactic relation would predict given their Sigmagas. These clouds primarily form low-mass stars that are essentially invisible to star formation rate tracers. A sample of six giant molecular cloud (GMC) complexes with signposts of massive star formation was identified in our galaxy. The regions selected have a range of total luminosity and morphology. Deep ground-based observations in the near-infrared with NEWFIRM and IRAC observations with the Spitzer Space Telescope were used to conduct a census of the young stellar content associated with each of these clouds. The star formation rates from the stellar census in each of these regions was compared with the star formation rates measured by extragalactic star formation rate tracers based on monochromatic mid-infrared luminosities. Far-infrared Herschel observations from 160 through 500 mum were used to determine the column density and temperature in each region. The region NGC 6334 served as a test case to compare the Herschel column density measurements with the measurements for near-infrared extinction. The combination of the column density maps and the stellar census lets us examine SigmaSFR vs. Sigma gas for the massive GMCs. These regions are consistent with the results for the low-mass molecular clouds, indicating Sigma SFR levels that are higher than predicted based on Sigma gas. The overall Sigmagas levels are higher for the massive star forming regions, indicating that they have a higher fraction of dense gas than the clouds that are forming primarily low mass stars. There is still significant spread at a given average gas density, indicating that the star formation history and dense gas fraction play important roles in determining an individual molecular cloud's place in a Sigma SFR vs. Sigmagas diagram. Zooming in, SigmaSFR vs. Sigma gas was examined within the individual clouds, revealing a decrease relative to the spread that is observed for the average over whole clouds. The dependence of SigmaSFR on Sigma gas increases significantly above AV ˜ 5 - 10 which is consistent with previous measurements of a threshold for star formation around AV = 8 or Sigma gas = 0.04 g cm-2. NGC 6334 was found to be consistent with a threshold for massive star formation at Sigmagas = 1 g cm-2.

  19. Complex organic molecules and star formation

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2014-12-01

    Star forming regions are characterised by the presence of a wealth of chemical species. For the past two to three decades, ever more complex organic species have been detected in the hot cores of protostars. The evolution of these molecules in the course of the star forming process is still uncertain, but it is likely that they are partially incorporated into protoplanetary disks and then into planetesimals and the small bodies of planetary systems. The complex organic molecules seen in star forming regions are particularly interesting since they probably make up building blocks for prebiotic chemistry. Recently we showed that these species were also present in the cold gas in prestellar cores, which represent the very first stages of star formation. These detections question the models which were until now accepted to account for the presence of complex organic molecules in star forming regions. In this article, we shortly review our current understanding of complex organic molecule formation in the early stages of star formation, in hot and cold cores alike and present new results on the formation of their likely precursor radicals.

  20. Formation and spatial distribution of hypervelocity stars in AGN outflows

    NASA Astrophysics Data System (ADS)

    Wang, Xiawei; Loeb, Abraham

    2018-05-01

    We study star formation within outflows driven by active galactic nuclei (AGN) as a new source of hypervelocity stars (HVSs). Recent observations revealed active star formation inside a galactic outflow at a rate of ∼ 15M⊙yr-1 . We verify that the shells swept up by an AGN outflow are capable of cooling and fragmentation into cold clumps embedded in a hot tenuous gas via thermal instabilities. We show that cold clumps of ∼ 103 M⊙ are formed within ∼ 105 yrs. As a result, stars are produced along outflow's path, endowed with the outflow speed at their formation site. These HVSs travel through the galactic halo and eventually escape into the intergalactic medium. The expected instantaneous rate of star formation inside the outflow is ∼ 4 - 5 orders of magnitude greater than the average rate associated with previously proposed mechanisms for producing HVSs, such as the Hills mechanism and three-body interaction between a star and a black hole binary. We predict the spatial distribution of HVSs formed in AGN outflows for future observational probe.

  1. Star formation across galactic environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    I present here parallel investigations of star formation in typical and extreme galaxies. The typical galaxies are selected to be free of active galactic nuclei (AGN), while the extreme galaxies host quasars (the most luminous class of AGN). These two environments are each insightful in their own way; quasars are among the most violent objects in the universe, literally reshaping their host galaxies, while my sample of AGN-free star-forming galaxies ranges from systems larger than the Milky Way to small galaxies which are forming stars at unsustainably high rates. The current paradigm of galaxy formation and evolution suggests that extreme circumstances are key stepping stones in the assembly of galaxies like our Milky Way. To test this paradigm and fully explore its ramifications, this dual approach is needed. My sample of AGN-free galaxies is drawn from the KPNO International Spectroscopic Survey. This Halpha-selected, volume-limited survey was designed to detect star-forming galaxies without a bias toward continuum luminosity. This type of selection ensures that this sample is not biased toward galaxies that are large or nearby. My work studies the KISS galaxies in the mid- and far-infrared using photometry from the IRAC and MIPS instruments aboard the Spitzer Space Telescope. These infrared bands are particularly interesting for star formation studies because the ultraviolet light from young stars is reprocessed into thermal emission in the far-infrared (24mum MIPS) by dust and into vibrational transitions features in the mid-infrared (8.0mum IRAC) by polycyclic aromatic hydrocarbons (PAHs). The work I present here examines the efficiencies of PAH and thermal dust emission as tracers of star-formation rates over a wide range of galactic stellar masses. I find that the efficiency of PAH as a star-formation tracer varies with galactic stellar mass, while thermal dust has a highly variable efficiency that does not systematically depend on galactic stellar mass. Complementing this study of normal star-forming galaxies, my study of quasar host galaxies utilizes narrow- and medium-band images of eight Palomar-Green (PG) quasars from the WFPC2 and NICMOS instruments aboard the Hubble Space Telescope. Using images of a point-spread function (PSF) star in the same filters, I subtract the PSF of the quasar from each of the target images. The residual light images clearly show the host galaxies of the respective quasars. The narrow-band images were chosen to be centered on the Hbeta, [O II ], [O III], and Paalpha emission lines, allowing the use of line ratios and luminosities to create extinction and star formation maps. Additionally, I utilize the line-ratio maps to distinguish AGN-powered line emission from star formation powered line emission with line-diagnostic diagrams. I find star formation in each of the eight quasar host galaxies in my study. The bulk star-formation rates are lower than expected, suggesting that quasar host galaxies may be dynamically more advanced than previously believed. Seven of the eight quasar host galaxies in this study have higher-than-typical mass-specific star-formation rates. Additionally, I see evidence of shocked gas, supporting the hypotheses presented in earlier works that suggest that AGN activity quenches star formation in its host galaxy by disrupting its gas reservoir.

  2. High-resolution Near-infrared Observations of a Small Cluster Associated with a Bright-rimmed Cloud in W5

    NASA Astrophysics Data System (ADS)

    Imai, Rieko; Sugitani, Koji; Miao, Jingqi; Fukuda, Naoya; Watanabe, Makoto; Kusune, Takayoshi; Pickles, Andrew J.

    2017-08-01

    We carried out near-infrared (IR) observations to examine star formation toward the bright-rimmed cloud SFO 12, of which the main exciting star is O7V star in W5-W. We found a small young stellar object (YSO) cluster of six members embedded in the head of SFO 12 facing its exciting star, aligned along the UV radiation incident direction from the exciting star. We carried out high-resolution near-IR observations with the Subaru adaptive optics (AO) system and revealed that three of the cluster members appear to have circumstellar envelopes, one of which shows an arm-like structure in its envelope. Our near-IR and {L}\\prime -band photometry and Spitzer IRAC data suggest that formation of two members at the tip side occurred in advance of other members toward the central part, under our adopted assumptions. Our near-IR data and previous studies imply that more YSOs are distributed in the region just outside the cloud head on the side of the main exciting star, but there is little sign of star formation toward the opposite side. We infer that star formation has been sequentially occurring from the exciting star side to the central part. We examined archival data of far-infrared and CO (J=3-2) which reveals that, unlike in the optical image, SFO 12 has a head-tail structure that is along the UV incident direction. This suggests that SFO 12 is affected by strong UV from the main exciting star. We discuss the formation of this head-tail structure and star formation there by comparing with a radiation-driven implosion (RDI) model.

  3. Early Science with the Large Millimeter Telescope: discovery of the 12CO(1-0) emission line in the ring galaxy VIIZw466

    NASA Astrophysics Data System (ADS)

    Wong, O. Ivy; Vega, O.; Sánchez-Argüelles, D.; Narayanan, G.; Wall, W. F.; Zwaan, M. A.; Rosa González, D.; Zeballos, M.; Bekki, K.; Mayya, Y. D.; Montaña, A.; Chung, A.

    2017-04-01

    We report an early science discovery of the 12CO(1-0) emission line in the collisional ring galaxy VII Zw466, using the Redshift Search Receiver instrument on the Large Millimeter Telescope Alfonso Serrano. The apparent molecular-to-atomic gas ratio either places the interstellar medium (ISM) of VII Zw466 in the H I-dominated regime or implies a large quantity of CO-dark molecular gas, given its high star formation rate. The molecular gas densities and star formation rate densities of VII Zw466 are consistent with the standard Kennicutt-Schmidt star formation law even though we find this galaxy to be H2-deficient. The choice of CO-to-H2 conversion factors cannot explain the apparent H2 deficiency in its entirety. Hence, we find that the collisional ring galaxy, VII Zw466, is either largely deficient in both H2 and H I or contains a large mass of CO-dark gas. A low molecular gas fraction could be due to the enhancement of feedback processes from previous episodes of star formation as a result of the star-forming ISM being confined to the ring. We conclude that collisional ring galaxy formation is an extreme form of galaxy interaction that triggers a strong galactic-wide burst of star formation that may provide immediate negative feedback towards subsequent episodes of star formation - resulting in a short-lived star formation history or, at least, the appearance of a molecular gas deficit.

  4. Climbing the Ladder of Star Formation Feedback

    NASA Astrophysics Data System (ADS)

    Frank, Adam

    2012-10-01

    While much is understood about isolated star formation, the opposite is true for star formation in clusters of both low and high mass. In particular the mechanisms by which many coevally formed stars affect their parent cloud environment remains poorly characterized. Fundamental questions such as interplay between multiple outflows, ionization fronts and turbulence are just beginning to be fully articulated. Distinguishing between the nature of feedback in clusters of different mass is also critical. In high mass clusters O stars are expected to dominate energetics while in low mass clusters multiple collimated outflows may represent the dominant feedback mechanism. Thus the issue of feedback modalities in clusters of different masses represents one of the major challenges to the next generation of star formation studies. In this proposal we seek to carry forward a focused theoretical study of feedback in both low and high-mass cluster environments with direct connections to observations. Using a state-of-the-art Adaptive Mesh Refinement MHD multi-physics code {developed by our group} we propose two computational studies: {1} multiple, interacting outflows and their role in altering the properties of a parent low mass cluster {2} Poorly collimated outburst/outflows from massive star{s} and their effect on high mass cluster star forming environments. In both cases we will use initial conditions derived from high-resolution AMR MHD simulations of cloud/cluster formation. Synthetic observations derived from the simulations {in a variety of emission lines from ions to atoms to molecules} will allow for direct contact with HST and other star formation databases.

  5. The History and Rate of Star Formation within the G305 Complex

    NASA Astrophysics Data System (ADS)

    Faimali, Alessandro Daniele

    2013-07-01

    Within this thesis, we present an extended multiwavelength analysis of the rich massive Galactic star-forming complex G305. We have focused our attention on studying the both the embedded massive star-forming population within G305, while also identifying the intermediate-, to lowmass content of the region also. Though massive stars play an important role in the shaping and evolution of their host galaxies, the physics of their formation still remains unclear. We have therefore set out to studying the nature of star formation within this complex, and also identify the impact that such a population has on the evolution of G305. We firstly present a Herschel far-infrared study towards G305, utilising PACS 70, 160 micron and SPIRE 250, 350, and 500 micron observations from the Hi-GAL survey of the Galactic plane. The focus of this study is to identify the embedded massive star-forming population within G305, by combining far-infrared data with radio continuum, H2O maser, methanol maser, MIPS, and Red MSX Source survey data available from previous studies. From this sample we identify some 16 candidate associations are identified as embedded massive star-forming regions, and derive a two-selection colour criterion from this sample of log(F70/F500) >= 1 and log(F160/F350) >= 1.6 to identify an additional 31 embedded massive star candidates with no associated star-formation tracers. Using this result, we are able to derive a star formation rate (SFR) of 0.01 - 0.02 Msun/yr. Comparing this resolved star formation rate, to extragalactic star formation rate tracers (based on the Kennicutt-Schmidt relation), we find the star formation activity is underestimated by a factor of >=2 in comparison to the SFR derived from the YSO population. By next combining data available from 2MASS and VVV, Spitzer GLIMPSE and MIPSGAL, MSX, and Herschel Hi-GAL, we are able to identify the low-, to intermediate-mass YSOs present within the complex. Employing a series of stringent colour selection criteria and fitting reddened stellar atmosphere models, we are able remove a significant amount of contaminating sources from our sample, leaving us with a highly reliable sample of some 599 candidate YSOs. From this sample, we derive a present-day SFR of 0.005±0.001 Msun/yr, and find the YSO mass function (YMF) of G305 to be significantly steeper than the standard Salpeter-Kroupa IMF. We find evidence of mass segregation towards G305, with a significant variation of the YMF both with the active star-forming region, and the outer region. The spatial distribution, and age gradient, of our 601 candidate YSOs also seem to rule out the scenario of propagating star formation within G305, with a more likely scenario of punctuated star formation over the lifetime of the complex.

  6. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observedmore » colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.« less

  7. When Feedback Fails: The Scaling and Saturation of Star Formation Efficiency

    NASA Astrophysics Data System (ADS)

    Y Grudic, Michael; Hopkins, Philip F.; Faucher-Giguere, Claude-Andre; Quataert, Eliot; Murray, Norman W.; Keres, Dusan

    2017-06-01

    We present a suite of 3D multi-physics MHD simulations following star formation in isolated turbulent molecular gas disks ranging from 5 to 500 parsecs in radius. These simulations are designed to survey the range of surface densities between those typical of Milky Way GMCs (˜100 M⊙pc-2) and extreme ULIRG environments (˜104M⊙pc-2) so as to map out the scaling of star formation efficiency (SFE) between these two regimes. The simulations include prescriptions for supernova, stellar wind, and radiative feedback, which we find to be essential in determining both the instantaneous (ɛff) and integrated (ɛint) star formation efficiencies. In all simulations, the gas disks form stars until a critical stellar mass has been reached and the remaining gas is blown out by stellar feedback. We find that surface density is the best predictor of ɛint of all of the gas cloud's global properties, as suggested by analytic force balance arguments from previous works. Furthermore, SFE eventually saturates to ˜1 at high surface density, with very good agreement across different spatial scales. We also find a roughly proportional relationship between ɛff and ɛint. These results have implications for star formation in galactic disks, the nature and fate of nuclear starbursts, and the formation of bound star clusters. The scaling of ɛff also contradicts star formation models in which ɛff˜1% universally, including popular subgrid models for galaxy simulations.

  8. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, L. Clifton; Sandstrom, Karin; Seth, Anil C.

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studiedmore » galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (Σ{sub SFR}). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time ( τ {sub dep}) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H{sub 2}-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high Σ{sub SFR} starburst systems are well-explained by τ {sub dep}-dependent fiducial Γ models.« less

  9. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David

    2017-06-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  10. Star formation in simulated galaxies: understanding the transition to quiescence at 3 × 1010 M⊙

    NASA Astrophysics Data System (ADS)

    Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki

    2017-08-01

    Star formation in galaxies relies on the availability of cold, dense gas, which, in turn, relies on factors internal and external to the galaxies. In order to provide a simple model for how star formation is regulated by various physical processes in galaxies, we analyse data at redshift z = 0 from a hydrodynamical cosmological simulation that includes prescriptions for star formation and stellar evolution, active galactic nuclei, and their associated feedback processes. This model can determine the star formation rate (SFR) as a function of galaxy stellar mass, gas mass, black hole mass, and environment. We find that gas mass is the most important quantity controlling star formation in low-mass galaxies, and star-forming galaxies in dense environments have higher SFR than their counterparts in the field. In high-mass galaxies, we find that black holes more massive than ˜ 107.5 M⊙ can be triggered to quench star formation in their host; this mass scale is emergent in our simulations. Furthermore, this black hole mass corresponds to a galaxy bulge mass ˜ 2 × 1010 M⊙, consistent with the mass at which galaxies start to become dominated by early types ( ˜ 3 × 1010 M⊙, as previously shown in observations by Kauffmann et al.). Finally, we demonstrate that our model can reproduce well the SFR measured from observations of galaxies in the Galaxy And Mass Assembly and Arecibo Legacy Fast ALFA surveys.

  11. Star formation: Cosmic feast

    NASA Astrophysics Data System (ADS)

    Scaringi, Simone

    2016-11-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  12. Star formation: Cosmic feast

    NASA Astrophysics Data System (ADS)

    Scaringi, Simone

    2017-03-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  13. Star formation in the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Leichenauer, Stefan

    2009-03-15

    We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.

  14. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    NASA Astrophysics Data System (ADS)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  15. Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

    NASA Astrophysics Data System (ADS)

    Marks, M.; Martín, E. L.; Béjar, V. J. S.; Lodieu, N.; Kroupa, P.; Manjavacas, E.; Thies, I.; Rebolo López, R.; Velasco, S.

    2017-08-01

    Context. One of the key questions of the star formation problem is whether brown dwarfs (BDs) form in the manner of stars directly from the gravitational collapse of a molecular cloud core (star-like) or whether BDs and some very low-mass stars (VLMSs) constitute a separate population that forms alongside stars comparable to the population of planets, for example through circumstellar disk (peripheral) fragmentation. Aims: For young stars in Taurus-Auriga the binary fraction has been shown to be large with little dependence on primary mass above ≈ 0.2 M⊙, while for BDs the binary fraction is < 10%. Here we investigate a case in which BDs in Taurus formed dominantly, but not exclusively, through peripheral fragmentation, which naturally results in small binary fractions. The decline of the binary frequency in the transition region between star-like formation and peripheral formation is modelled. Methods: We employed a dynamical population synthesis model in which stellar binary formation is universal with a large binary fraction close to unity. Peripheral objects form separately in circumstellar disks with a distinctive initial mass function (IMF), their own orbital parameter distributions for binaries, and small binary fractions, according to observations and expectations from smoothed particle hydrodynamics (SPH) and grid-based computations. A small amount of dynamical processing of the stellar component was accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. Results: The binary fraction declines strongly in the transition region between star-like and peripheral formation, exhibiting characteristic features. The location of these features and the steepness of this trend depend on the mass limits for star-like and peripheral formation. Such a trend might be unique to low density regions, such as Taurus, which host binary populations that are largely unprocessed dynamically in which the binary fraction is large for stars down to M-dwarfs and small for BDs. Conclusions: The existence of a strong decline in the binary fraction - primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star-forming region. The binary fraction - primary mass diagram is a diagnostic of the (non-)continuity of star formation along the mass scale, the separateness of the stellar and BD populations, and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.

  16. Star formation and galaxy evolution in different environments, from the field to massive clusters

    NASA Astrophysics Data System (ADS)

    Tyler, Krystal

    This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass-SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray underluminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the distribution of star-forming galaxies with respect to stellar mass varies from cluster to cluster, echoing what we found for Coma and A2029. In other words, while some preprocessing occurs in groups, the cluster environment still contributes to the quenching of star formation.

  17. Clues to the Formation of Lenticular Galaxies Using Spectroscopic Bulge-Disk Decomposition

    NASA Astrophysics Data System (ADS)

    Johnston, E. J.; Aragón-Salamanca, A.; Merrifield, M. R.; Bedregal, A. G.

    2014-03-01

    Lenticular galaxies have long been thought of as evolved spirals, but the processes involved to quench the star formation are still unclear. By studying the individual star formation histories of the bulges and disks of lenticulars, it is possible to look for clues to the processes that triggered their transformation from spirals. To accomplish this feat, we present a new method for spectroscopic bulge-disk decomposition, in which a long-slit spectrum is decomposed into two one-dimensional spectra representing purely the bulge and disk light. We present preliminary results from applying this method to lenticular galaxies in the Virgo and Fornax Clusters, in which we show that the most recent star formation activity in these galaxies occurred within the bulges. We also find that the star formation timescales of the bulges are longer than the disks, and that more massive galaxies take longer to lose their gas during the transformation. These results point towards slow processes, such as ram-pressure stripping or harassment, being the mechanism responsible for the quenching of star formation in spirals, followed by a burst of star formation in the central regions from the gas that has been funnelled inwards through the disk.

  18. AGN contamination in total infrared determined star formation rates in dusty galaxies at z~2-3

    NASA Astrophysics Data System (ADS)

    Mazzei, Renato; Sharon, Chelsea E.; Riechers, Dominik

    2017-01-01

    Along with theoretical work that suggests feedback from active galactic nuclei (AGN) may quench star formation in massive galaxies, the temporal coincidence between the peak of cosmic star formation rates and black hole accretion rates suggests that AGN are common in star forming galaxies at z~2-3. Since star forming galaxies at these epochs are also very dusty, it is important that we correct galaxies’ long-wavelength properties for the presence of dust-obscured AGN in order to accurately capture their star formation rates and gas characteristics. We present a spectral energy distribution (SED) analysis of several un-lensed z~2-3 dusty star-forming galaxies from Pope et al. (2008) and Coppin et al. (2010), which we compare to several other high-z starbursts with well sampled SEDs. We constructed dust SEDs from existing Spitzer, Herschel, and SCUBA-2 photometry catalogues with data between 3.6 and 850 μm. For the SED fits, we used the Code Investigating GALaxy Emission (CIGALE), since it self-consistently determines the dust attenuation of stars and dust emission in the infrared in addition to determining the dust emission from obscured AGN (Noll et al. 2009; Serra et al. 2011). Our best-fit SEDs have typical reduced χ2 values between 0.2 and ~3. We use the output from CIGALE to determine the fraction of the total infrared luminosity (LTIR 8-1000 um) from star formation and from any potential obscured AGN. In order to examine the effects of buried AGN on the integrated Schmidt-Kennicutt relation (log(LTIR) vs. log(L'CO)), we compare our new LTIR to recently obtained CO(1-0) line luminosities from the Karl G. Jansky Very Large Array. Unaccounted for dust emission from AGN can artificially inflate the star formation rate inferred from LTIR, and may therefore offset starburst galaxies from the local Schmidt-Kennicutt relation and increase the slope of the relation, which can affect the inferred drivers of star formation.

  19. Suppressed star formation by a merging cluster system

    DOE PAGES

    Mansheim, A. S.; Lemaux, B. C.; Tomczak, A. R.; ...

    2017-03-24

    We examine the effects of an impending cluster merger on galaxies in the large scale structure (LSS) RX J0910 at z =1.105. Using multi-wavelength data, including 102 spectral members drawn from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey and precise photometric redshifts, we calculate star formation rates and map the specific star formation rate density of the LSS galaxies. These analyses along with an investigation of the color-magnitude properties of LSS galaxies indicate lower levels of star formation activity in the region between the merging clusters relative to the outskirts of the system. We suggest thatmore » gravitational tidal forces due to the potential of the merging halos may be the physical mechanism responsible for the observed suppression of star formation in galaxies caught between the merging clusters.« less

  20. An Archival COS Study of Multi-phase Galactic Outflows and Their Dependence on Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Chisholm, John

    2013-10-01

    Galactic outflows have become vital for understanding galaxy evolution. Outflows have been used to explain the mass-metallicity relation, the star formation history of the universe, and the shape of the baryonic mass function. However, few studies have focused on the basic question of how outflow velocities depend upon the physical properties of their host galaxies. Here we propose an archival project utilizing 52 COS spectra of local star-forming galaxies spanning four decades of star formation rate, and stellar mass. We will preform a self-consistent analysis of trends between galactic properties {star formation rate, stellar mass, specific star formation rate and star formation rate surface density} and outflow velocities measured from interstellar metal absorption lines {e.g., CII 1335}. We will extend this analysis to different gas phases - cold, warm, and hot - to gain a more comprehensive understanding of the physics of multi-phase outflows. The trends we observe will provide insights into the feedback process and will be crucial new benchmarks for simulations.

  1. Radio Interferometry with the SMA: Uncovering Hidden Star Formation in Our Extreme Galactic Center

    NASA Astrophysics Data System (ADS)

    Gutierrez, Elizabeth; Battersby, Cara; MacGregor, Meredith Ann

    2018-01-01

    Radio interferometry provides the best tool to identify embedded star-forming cores in cold, dense, molecular clouds of gas and dust. Observations at long, submillimeter wavelengths can be used to investigate the physical properties in the youngest stages of star formation. Interferometers provide the resolution necessary to resolve small scale structures like dense cores where star formation is expected to occur. CMZoom is the first large area survey of the Central Molecular Zone (CMZ) at high resolution in the submillimeter, allowing us to identify early sites of star formation. The survey uses both the subcompact and compact configurations of the Submillimeter Array (SMA) interferometric radio telescope. The CMZ, or the inner 500 pc of the Milky Way Galaxy, is a high extinction region comprised of hot, dense, and turbulent molecular gas. This region is forming about an order of magnitude fewer stars than predicted based on simple star formation prescriptions. Here, we present new high resolution images of G0.068-0.075, a region from the CMZoom survey, obtained using CASA. We highlight the importance of interferometric observations of different baseline lengths by comparing the spatial information obtained through different configurations. We will use these new images, in conjunction with the rest of the CMZoom survey, to reveal the mechanisms driving star formation at the center of the galaxy.

  2. Star-Formation Histories of MUSCEL Galaxies

    NASA Astrophysics Data System (ADS)

    Young, Jason; Kuzio de Naray, Rachel; Xuesong Wang, Sharon

    2018-01-01

    The MUSCEL program (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies) uses combined ground-based/space-based data to determine the spatially resolved star-formation histories of low surface brightness (LSB) galaxies. LSB galaxies are paradoxical in that they are gas rich but have low star-formation rates. Here we present our observations and fitting technique, and the derived histories for select MUSCEL galaxies. It is our aim to use these histories in tandem with velocity fields and metallicity profiles to determine the physical mechanism(s) that give these faint galaxies low star-formation rates despite ample gas supplies.

  3. The SUNBIRD survey: characterizing the super star cluster populations of intensely star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Randriamanakoto, Zara; Väisänen, Petri

    2017-03-01

    Super star clusters (SSCs) represent the youngest and most massive form of known gravitationally bound star clusters in the Universe. They are born abundantly in environments that trigger strong and violent star formation. We investigate the properties of these massive SSCs in a sample of 42 nearby starbursts and luminous infrared galaxies. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared (NIR) K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments. Results from i) the fitted power-laws to the SSC K-band luminosity functions, ii) the NIR brightest star cluster magnitude - star formation rate (SFR) relation and iii) the star cluster age and mass distributions have shown the importance of studying SSC host galaxies with high SFR levels to determine the role of the galactic environments in the star cluster formation, evolution and disruption mechanisms.

  4. Kinematic Clues to OB Field Star Origins: Radial Velocities, Runaways, and Binaries

    NASA Astrophysics Data System (ADS)

    Januszewski, Helen; Castro, Norberto; Oey, Sally; Becker, Juliette; Kratter, Kaitlin M.; Mateo, Mario; Simón-Díaz, Sergio; Bjorkman, Jon E.; Bjorkman, Karen; Sigut, Aaron; Smullen, Rachel; M2FS Team

    2018-01-01

    Field OB stars are a crucial probe of star formation in extreme conditions. Properties of massive stars formed in relative isolation can distinguish between competing star formation theories, while the statistics of runaway stars allow an indirect test of the densest conditions in clusters. To address these questions, we have obtained multi-epoch, spectroscopic observations for a spatially complete sample of 48 OB field stars in the SMC Wing with the IMACS and M2FS multi-object spectrographs at the Magellan Telescopes. The observations span 3-6 epochs per star, with sampling frequency ranging from one day to about one year. From these spectra, we have calculated the radial velocities (RVs) and, in particular, the systemic velocities for binaries. Thus, we present the intrinsic RV distribution largely uncontaminated by binary motions. We estimate the runaway frequency, corresponding to the high velocity stars in our sample, and we also constrain the binary frequency. The binary frequency and fitted orbital parameters also place important constraints on star formation theories, as these properties drive the process of runaway ejection in clusters, and we discuss these properties as derived from our sample. This unique kinematic analysis of a high mass field star population thus provides a new look at the processes governing formation and interaction of stars in environments at extreme densities, from isolation to dense clusters.

  5. Feedback in low-mass galaxies in the early Universe.

    PubMed

    Erb, Dawn K

    2015-07-09

    The formation, evolution and death of massive stars release large quantities of energy and momentum into the gas surrounding the sites of star formation. This process, generically termed 'feedback', inhibits further star formation either by removing gas from the galaxy, or by heating it to temperatures that are too high to form new stars. Observations reveal feedback in the form of galactic-scale outflows of gas in galaxies with high rates of star formation, especially in the early Universe. Feedback in faint, low-mass galaxies probably facilitated the escape of ionizing radiation from galaxies when the Universe was about 500 million years old, so that the hydrogen between galaxies changed from neutral to ionized-the last major phase transition in the Universe.

  6. The formation process of the He I lambda 10830 line in cool giant stars

    NASA Technical Reports Server (NTRS)

    Luttermoser, Donald G.

    1993-01-01

    The Final Report on the formation process of the He I lambda 10830 line in cool giant stars is presented. The research involves observing a sample of cool giant stars with ROSAT. These stars were selected from the list of bright stars which display He I lambda 10830 in absorption or emission and lie on the cool side of the coronal dividing line. With measured x ray fluxes or upper limits measured by the Position Sensitive Proportional Counter (PSPC), the role x rays play in the formation of this important line was investigated using the non-LTE radiative transfer code PANDORA. Hydrodynamic calculations were performed to investigate the contributions of acoustic wave heating in the formation of this line as well.

  7. Optical Alignment of the Global Precipitation Measurement (GPM) Star Trackers

    NASA Technical Reports Server (NTRS)

    Hetherington, Samuel; Osgood, Dean; McMann, Joe; Roberts, Viki; Gill, James; Mclean, Kyle

    2013-01-01

    The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NASA Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower Bus Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocked line-of-sight to the primary star tracker optical references. The initial solution was to negotiate minor changes in the original LBS design to allow for the installation of a removable item of ground support equipment (GSE) that could be installed whenever measurements of the star tracker optical references were needed. However, this GSE could only be used to measure secondary optical reference cube faces not used by the star tracker vendor to obtain the relationship information and matrix transformations necessary to determine star tracker alignment. Unfortunately, due to unexpectedly large orthogonality errors between the measured secondary adjacent cube faces and the lack of cube calibration data, we required a method that could be used to measure the same reference cube faces as originally measured by the vendor. We describe an alternative technique to theodolite auto-collimation for measurement of an optical reference mirror pointing direction when normal incidence measurements are not possible. This technique was used to successfully align the GPM star trackers and has been used on a number of other NASA flight projects. We also discuss alignment theory as well as a GSFC-developed theodolite data analysis package used to analyze angular metrology data.

  8. Star Formation in Dwarf-Dwarf Mergers: Fueling Hierarchical Assembly

    NASA Astrophysics Data System (ADS)

    Stierwalt, Sabrina; Johnson, K. E.; Kallivayalil, N.; Patton, D. R.; Putman, M. E.; Besla, G.; Geha, M. C.

    2014-01-01

    We present early results from the first systematic study a sample of isolated interacting dwarf pairs and the mechanisms governing their star formation. Low mass dwarf galaxies are ubiquitous in the local universe, yet the efficiency of gas removal and the enhancement of star formation in dwarfs via pre-processing (i.e. dwarf-dwarf interactions occurring before the accretion by a massive host) are currently unconstrained. Studies of Local Group dwarfs credit stochastic internal processes for their complicated star formation histories, but a few intriguing examples suggest interactions among dwarfs may produce enhanced star formation. We combine archival UV imaging from GALEX with deep optical broad- and narrow-band (Halpha) imaging taken with the pre- One Degree Imager (pODI) on the WIYN 3.5-m telescope and with the 2.3-m Bok telescope at Steward Observatory to confirm the presence of stellar bridges and tidal tails and to determine whether dwarf-dwarf interactions alone can trigger significant levels of star formation. We investigate star formation rates and global galaxy colors as a function of dwarf pair separation (i.e. the dwarf merger sequence) and dwarf-dwarf mass ratio. This project is a precursor to an ongoing effort to obtain high spatial resolution HI imaging to assess the importance of sequential triggering caused by dwarf-dwarf interactions and the subsequent affect on the more massive hosts that later accrete the low mass systems.

  9. The impact of dark energy on galaxy formation. What does the future of our Universe hold?

    NASA Astrophysics Data System (ADS)

    Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop

    2018-04-01

    We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilise hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total co-moving density of stars ever formed by ≈15%. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.

  10. Quenching of Star-formation Activity of High-redshift Galaxies in Cluster and Field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton M.

    2015-08-01

    How the galaxy evolution differs at different environment is one of intriguing questions in the study of structure formation. At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped.In this presentation, we will present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z~ 2 to z~0.5, focusing its dependence on their stellar mass and environment. In the UKIDSS/UDS region, covering ~2800 arcmin2, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range.Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z<1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.

  11. General polytropic self-gravitating cylinder free-fall and accreting mass string with a chain of collapsed objects

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Hu, Xu-Yao

    2016-06-01

    We present a theoretical model framework for general polytropic (GP) hydrodynamic cylinder under self-gravity of infinite length with axial uniformity and axisymmetry. For self-similar dynamic solutions, we derive valuable integrals, analytic asymptotic solutions, sonic critical curves, shock conditions, and global numerical solutions with or without expansion shocks. Among others, we investigate various dynamic solutions featured with central free-fall asymptotic behaviours, corresponding to a collapsed mass string with a sustained dynamic accretion from a surrounding mass reservoir. Depending on the allowed ranges of a scaling index a < -1, such cylindrical dynamic mass accretion rate could be steady, increasing with time and decreasing with time. Physically, such a collapsed mass string or filament would break up into a sequence of sub-clumps and segments as induced by gravitational Jeans instabilities. Depending on the scales involved, such sub-clumps would evolve into collapsed objects or gravitationally bound systems. In diverse astrophysical and cosmological contexts, such a scenario can be adapted on various temporal, spatial and mass scales to form a chain of collapsed clumps and/or compact objects. Examples include the formation of chains of proto-stars, brown dwarfs and gaseous planets along molecular filaments; the formation of luminous massive stars along magnetized spiral arms and circum-nuclear starburst rings in barred spiral galaxies; the formation of chains of compact stellar objects such as white dwarfs, neutron stars, and black holes along a highly condensed mass string. On cosmological scales, one can perceive the formation of chains of galaxies, chains of galaxy clusters or even chains of supermassive and hypermassive black holes in the Universe including the early Universe. All these chains referred to above include possible binaries.

  12. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Elmegreen, B. G.; Calzetti, D.; Adamo, A.; Aloisi, A.; Bright, S. N.; Cook, D. O.; Dale, D. A.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grebel, E. K.; Kahre, L.; Kim, H.; Krumholz, M. R.; Lee, J. C.; Messa, M.; Ryon, J. E.; Ubeda, L.

    2017-06-01

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25-0.6 power, and that the maximum size over which star formation is physically correlated ranges from ˜200 pc to ˜1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  13. Beyond the Solar Circle - Tracing Trends in Massive Star Formation for the Inner and Outer Galaxy

    NASA Astrophysics Data System (ADS)

    Djordjevic, Julie; Thompson, Mark; Urquhart, James

    2018-01-01

    Observations towards nearby galaxies are biased towards massive stars, affecting simulations and typically overestimating models for galactic evolution and star formation rates. The Milky Way provides an ideal template for studying the key factors that affect these massive star formation rates and efficiencies at high resolution, fine-tuning those models. We examine trends in massive star formation through the Galactic distribution of compact and ultracompact HII regions (UC HII regions) identified and confirmed as genuine via multi-wavelength inspection of submillimeter, radio, and infrared survey data. Previous catalogs focused on the inner Galaxy (RGC ≤ 8.5 kpc) but results from the recently completed SASSy 850 µm survey with JCMT’s SCUBA-2 show potential star forming clumps out to ~20 kpc. We follow a similar approach to Urquhart et at. (2013) who compiled a catalog of UC HII regions by cross matching CORNISH 5 GHz data with ATLASGAL 870 µm and GLIMPSE 3-color images. The CORNISH survey, however, was limited to the range 10° < l < 60° . By utilizing the RMS radio and infrared catalogs which cover the entire Galactic plane, we can examine the remaining ATLASGAL regions (300° < l < 10° ) as well as the SASSy ranges (60° < l < 240°). With this method we more than doubled the sample size of the CORNISH study, finding a grand total of 539 embedded UC HII regions across the Galaxy. We derive their properties and also look at the parameters of the host clumps to determine the implications for massive star formation rates and efficiencies as a function of galactocentric radius. We find that there is no significant change in the rate of massive star formation in the outer vs inner Galaxy. However, many of the potentially star forming SASSy clumps have no available radio counterpart to confirm the presence of an HII region or other star formation tracer. This begs the question whether there really is less star formation in this area or whether simply a lack of available data. Hence, we also present early results from follow-up radio observations with the VLA on selected SASSy clumps.

  14. How Dead are Dead Galaxies? Mid-Infrared Fluxes of Quiescent Galaxies at Redshift 0.3< Z< 2.5: Implications for Star Formation Rates and Dust Heating

    NASA Technical Reports Server (NTRS)

    Fumagalli, Mattia; Labbe, Ivo; Patel, Shannon G.; Franx, Marijn; vanDokkum, Pieter; Brammer, Gabriel; DaCunha, Elisabete; FoersterSchreiber, Natascha M.; Kriek, Mariska; Quadri, Ryan; hide

    2013-01-01

    We investigate star formation rates of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution fitting (rest frame optical and near-IR) indicates very low star formation rates for quiescent galaxies (sSFR approx. 10(exp -12)/yr. However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS-24 micron images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 micron detections, we find sSFR approx. 10(exp -11.9) × (1 + z)(sup 4)/yr. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well above that at lower redshifts.

  15. Radiation hydrodynamics of super star cluster formation

    NASA Astrophysics Data System (ADS)

    Tsang, Benny Tsz Ho; Milos Milosavljevic

    2018-01-01

    Throughout the history of the Universe, the nuclei of super star clusters represent the most active sites for star formation. The high densities of massive stars within the clusters produce intense radiation that imparts both energy and momentum on the surrounding star-forming gas. Theoretical claims based on idealized geometries have claimed the dominant role of radiation pressure in controlling the star formation activity within the clusters. In order for cluster formation simulations to be reliable, numerical schemes have to be able to model accurately the radiation flows through the gas clumps at the cluster nuclei with high density contrasts. With a hybrid Monte Carlo radiation transport module we developed, we performed 3D radiation hydrodynamical simulations of super star cluster formation in turbulent clouds. Furthermore, our Monte Carlo radiation treatment provides a native capability to produce synthetic observations, which allows us to predict observational indicators and to inform future observations. We found that radiation pressure has definite, but minor effects on limiting the gas supply for star formation, and the final mass of the most massive cluster is about one million solar masses. The ineffective forcing was due to the density variations inside the clusters, i.e. radiation takes the paths of low densities and avoids forcing on dense clumps. Compared to a radiation-free control run, we further found that the presence of radiation amplifies the density variations. The core of the resulting cluster has a high stellar density, about the threshold required for stellar collisions and merging. The very massive star that form from the stellar merging could continue to gain mass from the surrounding gas reservoir that is gravitationally confined by the deep potential of the cluster, seeding the potential formation of a massive black hole.

  16. The Sagittarius Dwarf Galaxy Survey (SDGS) - II. The stellar content and constraints on the star formation history

    NASA Astrophysics Data System (ADS)

    Bellazzini, M.; Ferraro, F. R.; Buonanno, R.

    1999-08-01

    A detailed study of the star formation history of the Sagittarius dwarf spheroidal galaxy is performed through the analysis of data from the Sagittarius Dwarf Galaxy Survey (SDGS). Accurate statistical decontamination of the SDGS colour-magnitude diagrams (CMDs) allows us to obtain many useful constraints on the age and metal content of the Sgr stellar populations in three different regions of the galaxy. A coarse metallicity distribution of Sgr stars is derived, ranging from [Fe/H]~-2.0 to [Fe/H]~-0.7, the upper limit being somewhat higher in the central region of the galaxy. A qualitative global fit to all the observed CMD features is attempted, and a general scheme for the star formation history of the Sgr dSph is derived. According to this scheme, star formation began at a very early time from a low metal content interstellar medium and lasted for severalGyr, coupled with progressive chemical enrichment. The star formation rate (SFR) had a peak from 8 to 10Gyr ago, when the mean metallicity was in the range -1.3<=[Fe/H]<=-0.7. After that maximum, the SFR rapidly decreased and a very low rate of star formation took place until ~1-0.5Gyr ago.

  17. ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, theremore » is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skillman, Evan D.; Hidalgo, Sebastian L.; Monelli, Matteo

    We present an analysis of the star formation history (SFH) of a field near the half-light radius in the Local Group dwarf irregular galaxy IC 1613 based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. Our observations reach the oldest main sequence turn-off, allowing a time resolution at the oldest ages of ∼1 Gyr. Our analysis shows that the SFH of the observed field in IC 1613 is consistent with being constant over the entire lifetime of the galaxy. These observations rule out an early dominant episode of star formation in IC 1613. We compare the SFH ofmore » IC 1613 with expectations from cosmological models. Since most of the mass is in place at early times for low-mass halos, a naive expectation is that most of the star formation should have taken place at early times. Models in which star formation follows mass accretion result in too many stars formed early and gas mass fractions that are too low today (the 'over-cooling problem'). The depth of the present photometry of IC 1613 shows that, at a resolution of ∼1 Gyr, the star formation rate is consistent with being constant, at even the earliest times, which is difficult to achieve in models where star formation follows mass assembly.« less

  19. Astronomers Discover Most Distant Galaxy Showing Key Evidence For Furious Star Formation

    NASA Astrophysics Data System (ADS)

    2003-12-01

    Astronomers have discovered a key signpost of rapid star formation in a galaxy 11 billion light-years from Earth, seen as it was when the Universe was only 20 percent of its current age. Using the National Science Foundation's Very Large Array (VLA) radio telescope, the scientists found a huge quantity of dense interstellar gas -- the environment required for active star formation -- at the greatest distance yet detected. A furious spawning of the equivalent of 1,000 Suns per year in a distant galaxy dubbed the Cloverleaf may be typical of galaxies in the early Universe, the scientists say. Cloverleaf galaxy VLA image (green) of radio emission from HCN gas, superimposed on Hubble Space Telescope image of the Cloverleaf galaxy. The four images of the Cloverleaf are the result of gravitational lensing. CREDIT: NRAO/AUI/NSF, STScI (Click on Image for Larger Version) "This is a rate of star formation more than 300 times greater than that in our own Milky Way and similar spiral galaxies, and our discovery may provide important information about the formation and evolution of galaxies throughout the Universe," said Philip Solomon, of Stony Brook University in New York. While the raw material for star formation has been found in galaxies at even greater distances, the Cloverleaf is by far the most distant galaxy showing this essential signature of star formation. That essential signature comes in the form of a specific frequency of radio waves emitted by molecules of the gas hydrogen cyanide (HCN). "If you see HCN, you are seeing gas with the high density required to form stars," said Paul Vanden Bout of the National Radio Astronomy Observatory (NRAO). Solomon and Vanden Bout worked with Chris Carilli of NRAO and Michel Guelin of the Institute for Millimeter Astronomy in France. They reported their results in the December 11 issue of the scientific journal Nature. In galaxies like the Milky Way, dense gas traced by HCN but composed mainly of hydrogen molecules is always associated with regions of active star formation. What is different about the Cloverleaf is the huge quantity of dense gas along with very powerful infrared radiation from the star formation. Ten billion times the mass of the Sun is contained in dense, star-forming gas clouds. "At the rate this galaxy is seen to be forming stars, that dense gas will be used up in only about 10 million years," Solomon said. In addition to giving astronomers a fascinating glimpse of a huge burst of star formation in the early Universe, the new information about the Cloverleaf helps answer a longstanding question about bright galaxies of that era. Many distant galaxies have supermassive black holes at their cores, and those black holes power "central engines" that produce bright emission. Astronomers have wondered specifically about those distant galaxies that emit large amounts of infrared light, galaxies like the Cloverleaf which has a black hole and central engine. "Is this bright infrared light caused by the black-hole-powered core of the galaxy or by a huge burst of star formation? That has been the question. Now we know that, in at least one case, much of the infrared light is produced by intense star formation," Carilli said. The rapid star formation, called a starburst, and the black hole are both generating the bright infrared light in the Cloverleaf. The starburst is a major event in the formation and evolution of this galaxy. "This detection of HCN gives us a unique new window through which we can study star formation in the early Universe," Carilli said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  20. A Local Laboratory for Studying Positive Feedback from Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Croft, Steve

    2016-10-01

    AGN feedback is a critical regulator of galaxy growth. As well as curtailing star formation in diffuse, hot gas, it is increasingly understood to sometimes enhance star formation in the clumpy ISM through shock-induced collapse of clouds. Simulations have shown that such positive feedback may play a significant role in determining the stellar populations of galaxies. Minkowsi's Object (MO) provides an excellent local laboratory to probe this poorly-studied process in detail. The detection of a Type II supernova in MO (unexpected given the low mass of MO) suggests that jet-induced star formation may overproduce massive stars, and that models of the initial mass function in such systems may need to be revised. Recent results also suggest that star formation efficiency is enhanced in MO. Using WFC3, we will obtain morphologies, SEDs, H-a luminosities, equivalent widths, sizes, and population synthesis models of star forming regions across MO in order to address these questions, critical for understanding not just this single object, but the general process: 1. Does jet induced star formation change the luminosities and initial mass functions of star clusters? 2. What do the age gradients of the star clusters tell us about the process of conversion of gas (HI, CO) into stars as the radio jet progressed through the parent cloud? Does this match numerical simulations? 3. By using observations to refine simulations, what can we learn about intrinsic properties of these kinds of radio jets, such as propagation speed, age, pressure and jet energy flux?

  1. First significant image improvement from a sodium-layer laser guide star adaptive optics system at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; Max, C.E.; Friedman, H.W.

    1997-07-14

    Atmospheric turbulence severely limits the resolution of ground-based telescopes. Adaptive optics can correct for the aberrations caused by the atmosphere, but requires a bright wavefront reference source in close angular proximity to the object being imaged. Since natural reference stars of the necessary brightness are relatively rare, methods of generating artificial reference beacons have been under active investigation for more than a decade. In this paper, we report the first significant image improvement achieved using a sodium-layer laser guide star as a wavefront reference for a high- order adaptive optics system. An artificial beacon was created by resonant scattering frommore » atomic sodium in the mesosphere, at an altitude of 95 km. Using this laser guide star, an adaptive optics system on the 3 m Shane Telescope at Lick Observatory produced a factor of 2.4 increase in peak intensity and a factor of 2 decrease in full width at half maximum of a stellar image, compared with image motion compensation alone. The Strehl ratio when using the laser guide star as the reference was 65% of that obtained with a natural guide star, and the image full widths at half maximum were identical, 0.3 arc sec, using either the laser or the natural guide star. This sodium-layer laser guide star technique holds great promise for the world`s largest telescopes. 24 refs., 4 figs., 1 tab.« less

  2. AGN feedback in action? - outflows and star formation in type 2 AGNs

    NASA Astrophysics Data System (ADS)

    Woo, Jong-Hak

    2017-01-01

    We present the statistical constraints on the ionized gas outflows and their connection to star formation, using a large sample of ~110,000 AGNs and star-forming galaxies at z < 0.3. First, we find a dramatic difference of the outflow signatures between AGNs and star-forming galaxies based on the [OIII] emission line kinematics. While the [OIII] velocity and velocity dispersion of star forming galaxies can be entirely accounted by the gravitational potential of host galaxies, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. Second, the distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the outflows are AGN-driven. Third, the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [OIII] profile. Interestingly, we find that the specific star formation of non-outflow AGNs is much lower than that of strong outflow AGNs, while the star formation rate of strong outflow AGNs is comparable to that of star forming galaxies. We interpret this trend as a delayed AGN feedback as it takes dynamical time for the outflows to suppress star formation in galactic scales.

  3. Evolved stars in the Local Group galaxies - II. AGB, RSG stars and dust production in IC10

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Ventura, P.; Limongi, M.; García-Hernández, D. A.; Marini, E.; Rossi, C.

    2018-06-01

    We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass (M < 8 M⊙) stars, evolved through the asymptotic giant branch phase, with the inclusion of the description of dust formation. We also use models of higher mass stars. From the analysis of the distribution of stars in the observational planes obtained with IR bands, we find that the reddening and distance of IC10 are E(B - V) = 1.85 mag and d = 0.77 Mpc, respectively. The evolved stellar population is dominated by carbon stars, that account for 40% of the sources brighter than the tip of the red giant branch. Most of these stars descend from ˜1.1 - 1.3 M⊙ progenitors, formed during the major epoch of star formation, which occurred ˜2.5 Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is 7 × 10-6 M⊙/yr.

  4. Star formation: Sibling rivalry begins at birth

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin M.

    2015-02-01

    High-resolution astronomical observations of a nearby molecular gas cloud have revealed a quadruplet of stars in the act of formation. The system is arguably the youngest multiple star system detected so far. See Letter p.213

  5. The rate and efficiency of high-mass star formation along the Hubble sequence

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas A.; Young, Judith S.

    1991-01-01

    Data obtained with IRAS are used to compare and contrast the global star formation rates for a galactic sample which represents essentially all known noninteracting spiral and lenticular galaxies within 40 Mpc. The distribution of 60 micron luminosity is similar for spirals of types Sa-Scd inclusively, although the luminosities of the very early and very late types are, on average, one order of magnitude lower. High-mass star formation rates are similar for early, intermediate, and late type spirals, and the average high-mass star formation rate per unit molecular gas mass is independent of type for spiral galaxies. A remarkable homogeneity exists in the high-mass star-forming capabilities of spiral galaxies, particularly among the Sa-Scd types. The Hubble sequence is therefore not a sequence in the present-day rate or production efficiency of high-mass stars.

  6. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, J. D.; Rujopakarn, W.; Daddi, E.

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxiesmore » having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.« less

  7. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  8. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  9. Numerical Simulation of the Global Star Formation Pattern in the LMC

    NASA Astrophysics Data System (ADS)

    Gardiner, L. T.; Turfus, C.

    Dottori et al. (1996, ApJ 461, 742) have recently presented evidence for the idea that the observed distribution of young star clusters in the Large Magellanic Cloud (LMC) has resulted from the gravitational perturbation induced by a bar potential offset from the LMC disk center. We have constructed a dynamical model of the LMC to examine the effects of such an off-center perturbation on the global distribution of the gas and star formation activity. We have used a newly developed hybrid N-body/cellular automaton scheme for modeling star formation in galaxies which incorporates the dual mechanisms of gravitational instability and self-propagating star formation, combined with feedback of kinetic energy from star-forming regions into the interstellar medium. We find that a weak rotating bar perturbation, whose center is displaced by 0.6 kpc from the disk center, gives rise to an asymmetric spiral structure which mimics the chains of recent star formation observed in the LMC as well as delineating activity in the bar region. Large gas concentrations are produced where the spiral arms merge in the northern part of the galaxy, and such structures may have observed counterparts in giant star-forming complexes such as Constellation III in the NE part of the LMC.

  10. Cold Gas Content and Morphology: Scaling Relationships and Gas Deficiencies

    NASA Astrophysics Data System (ADS)

    Zhang, Helen; Crocker, Alison

    2018-01-01

    Spiral arms are a key feature of spiral galaxies. They are areas of higher gas density, and thus more stars are actively being formed in these regions. Two armed spirals are commonly referred to as ‘grand design’ spirals. In constrast, many armed spirals have three or more arms that are often less distinct. Here we present the cold gas mass per unit of stellar mass (cold gas fraction) in grand design spirals versus many armed spiral galaxies using Galaxy Zoo 2 for our morphological classifications. The masses of HI and H2 gas are taken from the COLDGASS survey, which included nondetections in the form of upper limits. Through our analysis, we found that grand design galaxies have a lower cold gas fraction of both HI and H2. This is a surprising result, given that earlier studies have shown that they have comparable rates of star formation. Combined with our result, this means that grand design galaxies must be more efficient at converting H2 gas to stars.

  11. A COMPARATIVE STUDY OF KNOTS OF STAR FORMATION IN INTERACTING VERSUS SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Beverly J.; Olmsted, Susan; Jones, Keith

    2016-03-15

    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger starmore » formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.« less

  12. SEGUE 1—A COMPRESSED STAR FORMATION HISTORY BEFORE REIONIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, David; Bland-Hawthorn, Joss; Frebel, Anna, E-mail: d.webster@physics.usyd.edu.au

    Segue 1 is the current best candidate for a “first galaxy,” a system that experienced only a single, short burst of star formation and has since remained unchanged. Here we present possible star formation scenarios that can explain Segue 1’s unique metallicity distribution. While the majority of stars in all other ultra-faint dwarfs are within 0.5 dex of the mean [Fe/H] for the galaxy, five of the seven stars in Segue 1 have a spread of Δ[Fe/H]  > 0.8 dex. We show that this distribution of metallicities cannot be explained by a gradual buildup of stars, but instead requires clustered star formation. Chemicalmore » tagging allows the separate unresolved delta functions in abundance space to be associated with discrete events in space and time. This provides an opportunity to put the enrichment events into a time sequence and unravel the history of the system. We investigate two possible scenarios for the star formation history of Segue 1 using Fyris Alpha simulations of gas in a 10{sup 7} M{sub ⊙} dark matter halo. The lack of stars with intermediate metallicities −3 < [Fe/H] < −2 can be explained either by a pause in star formation caused by supernova feedback or by the spread of metallicities resulting from one or two supernovae in a low-mass dark matter halo. Either possibility can reproduce the metallicity distribution function (MDF) as well as the other observed elemental abundances. The unusual MDF and the low luminosity of Segue 1 can be explained by it being a first galaxy that originated with M{sub vir} ∼ 10{sup 7}M{sub ⊙} at z ∼ 10.« less

  13. Star formation in the outskirts of DDO 154: A top-light IMF in a nearly dormant disc

    NASA Astrophysics Data System (ADS)

    Watts, Adam B.; Meurer, Gerhardt R.; Lagos, Claudia D. P.; Bruzzese, Sarah M.; Kroupa, Pavel; Jerabkova, Tereza

    2018-04-01

    We present optical photometry of Hubble Space Telescope (HST) ACS/WFC data of the resolved stellar populations in the outer disc of the dwarf irregular galaxy DDO 154. The photometry reveals that young main sequence stars are almost absent from the outermost HI disc. Instead, most are clustered near the main stellar component of the galaxy. We constrain the stellar initial mass function (IMF) by comparing the luminosity function of the main sequence stars to simulated stellar populations assuming a constant star formation rate over the dynamical timescale. The best-fitting IMF is deficient in high mass stars compared to a canonical Kroupa IMF, with a best-fit slope α = -2.45 and upper mass limit MU = 16 M⊙. This top-light IMF is consistent with predictions of the Integrated Galaxy-wide IMF theory. Combining the HST images with HI data from The HI Nearby Galaxy Survey Treasury (THINGS) we determine the star formation law (SFL) in the outer disc. The fit has a power law exponent N = 2.92 ± 0.22 and zero point A = 4.47 ± 0.65 × 10-7 M⊙ yr-1 kpc-2. This is depressed compared to the Kennicutt-Schmidt Star Formation Law, but consistent with weak star formation observed in diffuse HI environments. Extrapolating the SFL over the outer disc implies that there could be significant star formation occurring that is not detectable in Hα. Last, we determine the Toomre stability parameter Q of the outer disc of DDO 154 using the THINGS HI rotation curve and velocity dispersion map. 72% of the HI in our field has Q ≤ 4 and this incorporates 96% of the observed MS stars. Hence 28% of the HI in the field is largely dormant.

  14. Near-field limits on the role of faint galaxies in cosmic reionization

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea

    2014-09-01

    Reionizing the Universe with galaxies appears to require significant star formation in low-mass haloes at early times, while local dwarf galaxy counts tell us that star formation has been minimal in small haloes around us today. Using simple models and the ELVIS simulation suite, we show that reionization scenarios requiring appreciable star formation in haloes with Mvir ≈ 108 M⊙ at z = 8 are in serious tension with galaxy counts in the Local Group. This tension originates from the seemingly inescapable conclusion that 30-60 haloes with Mvir > 108 M⊙ at z = 8 will survive to be distinct bound satellites of the Milky Way at z = 0. Reionization models requiring star formation in such haloes will produce dozens of bound galaxies in the Milky Way's virial volume today (and 100-200 throughout the Local Group), each with ≳105 M⊙ of old stars (≳13 Gyr). This exceeds the stellar mass function of classical Milky Way satellites today, even without allowing for the (significant) post-reionization star formation observed in these galaxies. One possible implication of these findings is that star formation became sharply inefficient in haloes smaller than ˜109 M⊙ at early times, implying that the high-z luminosity function must break at magnitudes brighter than is often assumed (at MUV ≃ -14). Our results suggest that the James Webb Space Telescope (and possibly even the Hubble Space Telescope with the Frontier Fields) may realistically detect the faintest galaxies that drive reionization. It remains to be seen how these results can be reconciled with the most sophisticated simulations of early galaxy formation at present, which predict substantial star formation in Mvir ˜ 108 M⊙ haloes during the epoch of reionization.

  15. The UK Infrared Telescope M 33 monitoring project - V. The star formation history across the galactic disc

    NASA Astrophysics Data System (ADS)

    Javadi, Atefeh; van Loon, Jacco Th.; Khosroshahi, Habib G.; Tabatabaei, Fatemeh; Hamedani Golshan, Roya; Rashidi, Maryam

    2017-01-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope of the Local Group spiral galaxy M 33 (Triangulum). On the basis of their variability, we have identified stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In this fifth paper of the series, we construct the birth mass function and hence derive the star formation history across the galactic disc of M 33. The star formation rate has varied between ˜0.010 ± 0.001 (˜0.012 ± 0.007) and 0.060±0.005 (0.052±0.009) M⊙ yr-1 kpc-2 statistically (systematically) in the central square kiloparsec of M 33, comparable with the values derived previously with another camera. The total star formation rate in M 33 within a galactocentric radius of 14 kpc has varied between ˜0.110 ± 0.005 (˜0.174 ± 0.060) and ˜0.560 ± 0.028 (˜0.503 ± 0.100) M⊙ yr-1 statistically (systematically). We find evidence of two epochs during which the star formation rate was enhanced by a factor of a few - one that started ˜6 Gyr ago and lasted ˜3 Gyr and produced ≥71 per cent of the total mass in stars, and one ˜250 Myr ago that lasted ˜200 Myr and formed ≤13 per cent of the mass in stars. Radial star formation history profiles suggest that the inner disc of M 33 was formed in an inside-out formation scenario. The outskirts of the disc are dominated by the old population, which may be the result of dynamical effects over many Gyr. We find correspondence to spiral structure for all stars, but enhanced only for stars younger than ˜100 Myr; this suggests that the spiral arms are transient features and not a part of a global density wave potential.

  16. Automatic meta-data collection of STP observation data

    NASA Astrophysics Data System (ADS)

    Ishikura, S.; Kimura, E.; Murata, K.; Kubo, T.; Shinohara, I.

    2006-12-01

    For the geo-science and the STP (Solar-Terrestrial Physics) studies, various observations have been done by satellites and ground-based observatories up to now. These data are saved and managed at many organizations, but no common procedure and rule to provide and/or share these data files. Researchers have felt difficulty in searching and analyzing such different types of data distributed over the Internet. To support such cross-over analyses of observation data, we have developed the STARS (Solar-Terrestrial data Analysis and Reference System). The STARS consists of client application (STARS-app), the meta-database (STARS- DB), the portal Web service (STARS-WS) and the download agent Web service (STARS DLAgent-WS). The STARS-DB includes directory information, access permission, protocol information to retrieve data files, hierarchy information of mission/team/data and user information. Users of the STARS are able to download observation data files without knowing locations of the files by using the STARS-DB. We have implemented the Portal-WS to retrieve meta-data from the meta-database. One reason we use the Web service is to overcome a variety of firewall restrictions which is getting stricter in recent years. Now it is difficult for the STARS client application to access to the STARS-DB by sending SQL query to obtain meta- data from the STARS-DB. Using the Web service, we succeeded in placing the STARS-DB behind the Portal- WS and prevent from exposing it on the Internet. The STARS accesses to the Portal-WS by sending the SOAP (Simple Object Access Protocol) request over HTTP. Meta-data is received as a SOAP Response. The STARS DLAgent-WS provides clients with data files downloaded from data sites. The data files are provided with a variety of protocols (e.g., FTP, HTTP, FTPS and SFTP). These protocols are individually selected at each site. The clients send a SOAP request with download request messages and receive observation data files as a SOAP Response with DIME-Attachment. By introducing the DLAgent-WS, we overcame the problem that the data management policies of each data site are independent. Another important issue to be overcome is how to collect the meta-data of observation data files. So far, STARS-DB managers have added new records to the meta-database and updated them manually. We have had a lot of troubles to maintain the meta-database because observation data are generated every day and the quantity of data files increases explosively. For that purpose, we have attempted to automate collection of the meta-data. In this research, we adopted the RSS 1.0 (RDF Site Summary) as a format to exchange meta-data in the STP fields. The RSS is an RDF vocabulary that provides a multipurpose extensible meta-data description and is suitable for syndication of meta-data. Most of the data in the present study are described in the CDF (Common Data Format), which is a self- describing data format. We have converted meta-information extracted from the CDF data files into RSS files. The program to generate the RSS files is executed on data site server once a day and the RSS files provide information of new data files. The RSS files are collected by RSS collection server once a day and the meta- data are stored in the STARS-DB.

  17. Triggering active galactic nuclei in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Marshall, Madeline A.; Shabala, Stanislav S.; Krause, Martin G. H.; Pimbblet, Kevin A.; Croton, Darren J.; Owers, Matt S.

    2018-03-01

    We model the triggering of active galactic nuclei (AGN) in galaxy clusters using the semi-analytic galaxy formation model SAGE. We prescribe triggering methods based on the ram pressure galaxies experience as they move throughout the intracluster medium, which is hypothesized to trigger star formation and AGN activity. The clustercentric radius and velocity distribution of the simulated active galaxies produced by these models are compared with those of AGN and galaxies with intense star formation from a sample of low-redshift relaxed clusters from the Sloan Digital Sky Survey. The ram pressure triggering model that best explains the clustercentric radius and velocity distribution of these observed galaxies has AGN and star formation triggered if 2.5 × 10-14 Pa < Pram < 2.5 × 10-13 Pa and Pram > 2Pinternal; this is consistent with expectations from hydrodynamical simulations of ram-pressure-induced star formation. Our results show that ram pressure is likely to be an important mechanism for triggering star formation and AGN activity in clusters.

  18. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  19. GUM 48d: AN EVOLVED H II REGION WITH ONGOING STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karr, J. L.; Ohashi, N.; Manoj, P.

    2009-05-20

    High-mass star formation and the evolution of H II regions have a substantial impact on the morphology and star formation history of molecular clouds. The H II region Gum 48d, located in the Centaurus Arm at a distance of 3.5 kpc, is an old, well evolved H II region whose ionizing stars have moved off the main sequence. As such, it represents a phase in the evolution of H II regions that is less well studied than the earlier, more energetic, main-sequence phase. In this paper, we use multiwavelength archive data from a variety of sources to perform a detailedmore » study of this interesting region. Morphologically, Gum 48d displays a ring-like faint H II region associated with diffuse emission from the associated photodissociation region, and is formed from part of a large, massive molecular cloud complex. There is extensive ongoing star formation in the region, at scales ranging from low to high mass, which is consistent with triggered star formation scenarios. We investigate the dynamical history and evolution of this region, and conclude that the original H II region was once larger and more energetic than the faint region currently seen. The proposed history of this molecular cloud complex is one of multiple, linked generations of star formation, over a period of 10 Myr. Gum 48d differs significantly in morphology and star formation from the other H II regions in the molecular cloud; these differences are likely the result of the advanced age of the region, and its different evolutionary status.« less

  20. Comparing models of star formation simulating observed interacting galaxies

    NASA Astrophysics Data System (ADS)

    Quiroga, L. F.; Muñoz-Cuartas, J. C.; Rodrigues, I.

    2017-07-01

    In this work, we make a comparison between different models of star formation to reproduce observed interacting galaxies. We use observational data to model the evolution of a pair of galaxies undergoing a minor merger. Minor mergers represent situations weakly deviated from the equilibrium configuration but significant changes in star fomation (SF) efficiency can take place, then, minor mergers provide an unique scene to study SF in galaxies in a realistic but yet simple way. Reproducing observed systems also give us the opportunity to compare the results of the simulations with observations, which at the end can be used as probes to characterize the models of SF implemented in the comparison. In this work we compare two different star formation recipes implemented in Gadget3 and GIZMO codes. Both codes share the same numerical background, and differences arise mainly in the star formation recipe they use. We use observations from Pico dos Días and GEMINI telescopes and show how we use observational data of the interacting pair in AM2229-735 to characterize the interacting pair. Later we use this information to simulate the evolution of the system to finally reproduce the observations: Mass distribution, morphology and main features of the merger-induced star formation burst. We show that both methods manage to reproduce roughly the star formation activity. We show, through a careful study, that resolution plays a major role in the reproducibility of the system. In that sense, star formation recipe implemented in GIZMO code has shown a more robust performance. Acknowledgements: This work is supported by Colciencias, Doctorado Nacional - 617 program.

  1. Chromospherically Active Stars in the RAVE Survey. II. Young Dwarfs in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Žerjal, M.; Zwitter, T.; Matijevič, G.; Grebel, E. K.; Kordopatis, G.; Munari, U.; Seabroke, G.; Steinmetz, M.; Wojno, J.; Bienaymé, O.; Bland-Hawthorn, J.; Conrad, C.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Kunder, A.; Navarro, J.; Parker, Q. A.; Reid, W.; Siviero, A.; Watson, F. G.; Wyse, R. F. G.

    2017-01-01

    A large sample of over 38,000 chromospherically active candidate solar-like stars and cooler dwarfs from the RAVE survey is addressed in this paper. An improved activity identification with respect to the previous study was introduced to build a catalog of field stars in the solar neighborhood with an excess emission flux in the calcium infrared triplet wavelength region. The central result of this work is the calibration of the age-activity relation for main-sequence dwarfs in a range from a few 10 {Myr} up to a few Gyr. It enabled an order of magnitude age estimation of the entire active sample. Almost 15,000 stars are shown to be younger than 1 {Gyr} and ˜2000 younger than 100 {Myr}. The young age of the most active stars is confirmed by their position off the main sequence in the J - K versus {N}{UV}-V diagram showing strong ultraviolet excess, mid-infrared excess in the J - K versus {W}1-{W}2 diagram, and very cool temperatures (J-K> 0.7). They overlap with the reference pre-main-sequence RAVE stars often displaying X-ray emission. The activity level increasing with the color reveals their different nature from the solar-like stars and probably represents an underlying dynamo-generating magnetic fields in cool stars. Of the RAVE objects from DR5, 50% are found in the TGAS catalog and supplemented with accurate parallaxes and proper motions by Gaia. This makes the database of a large number of young stars in a combination with RAVE’s radial velocities directly useful as a tracer of the very recent large-scale star formation history in the solar neighborhood. The data are available online in the Vizier database.

  2. A Constraint on the Formation Timescale of the Young Open Cluster NGC 2264: Lithium Abundance of Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Lim, Beomdu; Sung, Hwankyung; Kim, Jinyoung S.; Bessell, Michael S.; Hwang, Narae; Park, Byeong-Gon

    2016-11-01

    The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500\\lt {T}{eff}[{{K}}]≤slant 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A({Li})=3.2+/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.

  3. The Water Content of Exo-earths in the Habitable Zone around Low-mass Stars

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs Dirk; Ciesla, Fred; Pascucci, Ilaria; apai, Daniel

    2015-08-01

    Terrestrial planets in the habitable zones of low-mass M dwarf stars have become the focus of many astronomical studies: they are more easily accessible to detection and characterization than their counterparts around sunlike stars. The habitability of these planets, however, faces a number of challenges, including inefficient or negligible water delivery during accretion. To understand the water content of planets in and around the habitable zone, simulations of the final stages of planet formation are necessary.We present detailed accretion simulations of wet and dry planetary embryos around a range of stellar masses. We focus on different pathways of delivering water from beyond the snow line to terrestrial planets in the habitable zone. We explore the impact of using either asteroid-like or comet-like bodies, and the effects of a dispersion in snow line locations. We derive the probability distribution of water abundances for terrestrial sized planets in the habitable zone.While these models predict that the bulk of terrestrial planets in the habitable zones of M stars will be dry, a small fraction receives earth-like amounts of water. Given their larger numbers and higher planet occurrence rates, this population of water-enriched worlds in the habitable zone of M stars may equal that around sun-like stars in numbers.References:Ciesla, Mulders et al. 2015Mulders et al. ApJ subm.

  4. Classification of stellar populations in globular clusters

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Zhao, Gang; Li, Hai-Ning

    2017-04-01

    Possessing multiple stellar populations has been accepted as a common feature of globular clusters (GCs). Different stellar populations manifest themselves with different chemical features, e.g. the well-known O-Na anti-correlation. Generally, the first (primordial) population has O and Na abundances consistent with those of field stars with similar metallicity; while the second (polluted) population is identified by their Na overabundance and O deficiency. The fraction of the populations is an important constraint on the GC formation scenario. Several methods have been proposed for the classification of GC populations. Here we examine a criterion derived based on the distribution of Galactic field stars, which relies on Na abundance as a function of [Fe/H], to distinguish first and second stellar populations in GCs. By comparing the first population fractions of 17 GCs estimated by the field star criterion with those in the literature derived by methods related to individual GCs, we find that the field star criterion tends to overestimate the first population fractions. The population separation methods, which are related to an individual GC sample, are recommended because the diversity of GCs can be taken into consideration. Currently, more caution should be exercised if one wants to regard field stars as a reference for the identification of a GC population. However, further study on the connection between field stars and GCs populations is still needed.

  5. The Black Hole Masses and Star Formation Rates of z>1 Dust Obscured Galaxies: Results from Keck OSIRIS Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Peng, Chien Y.; Soifer, B. T.; Urrutia, Tanya; Desai, Vandana; Armus, L.; Bussmann, R. S.; Dey, Arjun; Matthews, K.

    2011-04-01

    We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z ~ 1.5 ultra-luminous infrared galaxies that exhibit broad Hα emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0farcs1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions—possibly powered by star formation—from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(Hα) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) × 108 M sun and star formation rates <100 M sun yr-1. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.

  6. Active star formation in NGC 2264

    NASA Technical Reports Server (NTRS)

    Schwartz, P. R.; Thronson, H. A., Jr.; Odenwald, S. F.; Glaccum, W.; Loewenstein, R. F.; Wolf, G.

    1985-01-01

    The region of NGC 2264 near the cone nebula is the site of active star formation in a rotating ring seen nearly edge on as a two lobed source. Allen's infrared source (IRS 1) surrounds a B3V star still embedded in the southern lobe of the cloud. The northern lobe, IRS 2, also probably contains young stars.

  7. Anatomy of a Triangulum

    NASA Technical Reports Server (NTRS)

    2005-01-01

    M33, the Triangulum Galaxy, is a perennial favorite of amateur and professional astronomers alike, due to its orientation and relative proximity to us. It is the second nearest spiral galaxy to our Milky Way (after M31, the Andromeda Galaxy) and a prominent member of the 'local group' of galaxies. From our Milky Way perspective, M33's stellar disk appears at moderate inclination, allowing us to see its internal structure clearly, whereas M31 is oriented nearly edge-on.

    The Galaxy Evolution Explorer imaged M33 as it appears in ultraviolet wavelengths. Ultraviolet imaging primarily traces emission from the atmospheres of hot stars, most of which formed in the past few hundred million years. These data provide a reference point as to the internal composition of a typical star-forming galaxy and will help scientists understand the origin of ultraviolet emission in more distant galaxies.

    These observations of M33 allow astronomers to compare the population of young, massive stars with other components of the galaxy, such as interstellar dust and gas, on the scale of individual giant molecular clouds. The clouds contain the raw material from which stars form. This presents direct insight into the star formation process as it occurs throughout an entire spiral galaxy and constitutes a unique resource for broader studies of galaxy evolution.

  8. VizieR Online Data Catalog: 2007.5 to 2010.4 HST astrometry of HD 202206 (Benedict+, 2017)

    NASA Astrophysics Data System (ADS)

    Benedict, G. F.; Harrison, T. E.

    2017-08-01

    For this study astrometric measurements came from Fine Guidance Sensor 1r (FGS 1r), an upgraded FGS installed in 1997 during the second Hubble Space Telescope (HST) servicing mission. It provided superior fringes from which to obtain target and reference star positions (McArthur et al. 2003hstc.conf..373M). We utilized only the fringe tracking mode (POS mode) in this investigation. POS mode observations of a star have a typical duration of 60s, during which over 2000 individual position measures are collected. The astrometric centroid is estimated by choosing the median measure, after filtering large outliers (caused by cosmic-ray hits and particles trapped by the Earth's magnetic field). The standard deviation of the measures provides a measurement error. We refer to the aggregate of astrometric centroids of each star secured during one visibility period as an "orbit". Because one of the pillars of the scientific method involves reproducibility, we present a complete ensemble of time-tagged HD202206 and reference star astrometric measurements, Optical Field Angle Distortion (OFAD; McArthur et al. 2006hstc.conf..396M) and intra-orbit-drift-corrected, in Table2, along with calculated parallax factors in R.A. and decl. These data, collected from 2007.5 to 2010.4, in addition to providing material for confirmation of our results, might ultimately be combined with Gaia measures, significantly extending the time baseline of astrometry, thereby improving proper motion and perturbation characterization. Our band passes for reference star photometry include: BVRI photometry of the reference stars from the NMSU 1m telescope located at Apache Point Observatory and JHK (from 2MASS; see Cutri et al. 2003, Cat. II/246). Table4 lists the visible and infrared photometry for the HD202206 reference stars. To establish spectral type and luminosity class, the reference frame stars were observed on 2009 December 9 using the RCSPEC on the Blanco 4m telescope at Cerro Tololo Inter-American Observatory (CTIO). We used the KPGL1 grating to give a dispersion of 0.95Å/pix. Classifications used a combination of template matching and line ratios. We determine the spectral types for the higher S/N stars to within ±1 subclass. Classifications for the lower S/N stars have ±2 subclass uncertainty. Table5 lists the spectral types and luminosity classes for our reference stars. (6 data files).

  9. A SINFONI view of circum-nuclear star-forming rings in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Böker, Torsten; Schinnerer, Eva; Knapen, Johan H.; Ryder, Stuart

    2008-07-01

    We present near-infrared (H- and K-band) SINFONI integral-field observations of the circumnuclear star formation rings in five nearby spiral galaxies. We made use of the relative intensities of different emission lines (i.e. [FeII], HeI, Brγ) to age date the stellar clusters present along the rings. This qualitative, yet robust, method allows us to discriminate between two distinct scenarios that describe how star formation progresses along the rings. Our findings favour a model where star formation is triggered predominantly at the intersection between the bar major axis and the inner Lindblad resonance and then passively evolves as the clusters rotate around the ring (‘Pearls on a string’ scenario), although models of stochastically distributed star formation (‘Popcorn’ model) cannot be completely ruled out.

  10. HOBYS and W43-HERO: Two more steps toward a Galaxy-wide understanding of high-mass star formation

    NASA Astrophysics Data System (ADS)

    Motte, Frédérique; Bontemps, Sylvain; Tigé, Jérémy

    The Herschel/HOBYS key program allows to statistically study the formation of 10-20 M ⊙ stars. The IRAM/W43-HERO large program is itself dedicated to the much more extreme W43 molecular complex, which forms stars up to 50 M ⊙. Both reveal high-density cloud filaments of several pc3, which are forming clusters of OB-type stars. Given their activity, these so-called mini-starburst cloud ridges could be seen as ``miniature and instant models'' of starburst galaxies. Both surveys also strongly suggest that high-mass prestellar cores do not exist, in agreement with the dynamical formation of cloud ridges. The HOBYS and W43 surveys are necessary steps towards Galaxy-wide studies of high-mass star formation.

  11. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2002-01-01

    This report details work done in a project involving spectroscopic studies, including data analysis and modeling, of star-formation regions using an ensemble of archival space-based data including some from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and other spectroscopic databases. We will include four kinds of regions: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star-formation regions; (3) star formation in external, bright IR (infrared) galaxies; and (4) the galactic center. During this period, work proceeded fully on track and on time. Details on workshops and conferences attended and research results are presented. A preprint article entitled 'The Far Infrared Lines of OH as Molecular Cloud Diagnostics' is included as an appendix.

  12. A Smoking Gun in the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  13. What FIREs Up Star Formation: the Emergence of the Kennicutt-Schmidt Law from Feedback

    NASA Astrophysics Data System (ADS)

    Orr, Matthew E.; Hayward, Christopher C.; Hopkins, Philip F.; Chan, T. K.; Faucher-Giguère, Claude-André; Feldmann, Robert; Kereš, Dušan; Murray, Norman; Quataert, Eliot

    2018-05-01

    We present an analysis of the global and spatially-resolved Kennicutt-Schmidt (KS) star formation relation in the FIRE (Feedback In Realistic Environments) suite of cosmological simulations, including halos with z = 0 masses ranging from 1010 - 1013 M⊙. We show that the KS relation emerges and is robustly maintained due to the effects of feedback on local scales regulating star-forming gas, independent of the particular small-scale star formation prescriptions employed. We demonstrate that the time-averaged KS relation is relatively independent of redshift and spatial averaging scale, and that the star formation rate surface density is weakly dependent on metallicity and inversely dependent on orbital dynamical time. At constant star formation rate surface density, the `Cold & Dense' gas surface density (gas with T < 300 K and n > 10 cm-3, used as a proxy for the molecular gas surface density) of the simulated galaxies is ˜0.5 dex less than observed at ˜kpc scales. This discrepancy may arise from underestimates of the local column density at the particle-scale for the purposes of shielding in the simulations. Finally, we show that on scales larger than individual giant molecular clouds, the primary condition that determines whether star formation occurs is whether a patch of the galactic disk is thermally Toomre-unstable (not whether it is self-shielding): once a patch can no longer be thermally stabilized against fragmentation, it collapses, becomes self-shielding, cools, and forms stars, regardless of epoch or environment.

  14. The formation of a Spitzer bubble RCW 79 triggered by a cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Ohama, Akio; Kohno, Mikito; Hasegawa, Keisuke; Torii, Kazufumi; Nishimura, Atsushi; Hattori, Yusuke; Hayakawa, Takahiro; Inoue, Tsuyoshi; Sano, Hidetoshi; Yamamoto, Hiroaki; Tachihara, Kengo; Fukui, Yasuo

    2018-05-01

    Understanding the mechanism of O-star formation is one of the most important current issues in astrophysics. Also an issue of keen interest is how O stars affect their surroundings and trigger secondary star formation. An H II region RCW 79 is one of the typical Spitzer bubbles alongside RCW 120. New observations of CO J = 1-0 emission with Mopra and NANTEN2 revealed that molecular clouds are associated with RCW 79 in four velocity components over a velocity range of 20 km s-1. We hypothesize that two of the clouds collided with each other and the collision triggered the formation of 12 O stars inside the bubble and the formation of 54 low-mass young stellar objects along the bubble wall. The collision is supported by observational signatures of bridges connecting different velocity components in the colliding clouds. The whole collision process happened over a timescale of ˜3 Myr. RCW 79 has a larger size by a factor of 30 in the projected area than RCW 120 with a single O star, and the large size favored formation of the 12 O stars due to the greater accumulated gas in the collisional shock compression.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janowiecki, Steven; Salzer, John J.; Zee, Liese van

    We discuss and test possible evolutionary connections between blue compact dwarf galaxies (BCDs) and other types of dwarf galaxies. BCDs provide ideal laboratories to study intense star formation episodes in low-mass dwarf galaxies, and have sometimes been considered a short-lived evolutionary stage between types of dwarf galaxies. To test these connections, we consider a sample of BCDs as well as a comparison sample of nearby galaxies from the Local Volume Legacy (LVL) survey for context. We fit the multi-wavelength spectral energy distributions (SED, far-ultra-violet to far-infrared) of each galaxy with a grid of theoretical models to determine their stellar massesmore » and star formation properties. We compare our results for BCDs with the LVL galaxies to put BCDs in the context of normal galaxy evolution. The SED fits demonstrate that the star formation events currently underway in BCDs are at the extreme of the continuum of normal dwarf galaxies, both in terms of the relative mass involved and in the relative increase over previous star formation rates. Today’s BCDs are distinctive objects in a state of extreme star formation that is rapidly transforming them. This study also suggests ways to identify former BCDs whose star formation episodes have since faded.« less

  16. Unveiling the Role of Galactic Rotation on Star Formation

    NASA Astrophysics Data System (ADS)

    Utreras, José; Becerra, Fernando; Escala, Andrés

    2016-12-01

    We study the star formation process at galactic scales and the role of rotation through numerical simulations of spiral and starburst galaxies using the adaptive mesh refinement code Enzo. We focus on the study of three integrated star formation laws found in the literature: the Kennicutt-Schmidt (KS) and Silk-Elmegreen (SE) laws, and the dimensionally homogeneous equation proposed by Escala {{{Σ }}}{SFR}\\propto \\sqrt{G/L}{{{Σ }}}{gas}1.5. We show that using the last we take into account the effects of the integration along the line of sight and find a unique regime of star formation for both types of galaxies, suppressing the observed bi-modality of the KS law. We find that the efficiencies displayed by our simulations are anti-correlated with the angular velocity of the disk Ω for the three laws studied in this work. Finally, we show that the dimensionless efficiency of star formation is well represented by an exponentially decreasing function of -1.9{{Ω }}{t}{ff}{ini}, where {t}{ff}{ini} is the initial free-fall time. This leads to a unique galactic star formation relation which reduces the scatter of the bi-modal KS, SE, and Escala relations by 43%, 43%, and 35%, respectively.

  17. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatlymore » suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.« less

  18. Aperture Effects in the Long Slit Spectrophotometry of the Polar Ring Galaxy IIZw71

    NASA Astrophysics Data System (ADS)

    Pérez-Montero, E.; García-Benito, R.; Díaz, Á. I.; Pérez, E.; Kehrig, C.

    2008-10-01

    Polar ring galaxies are composed by an early type galaxy and a polar ring rotating around it and which is rich in gas, dust and star formation. IIZw71 is catalogued as a blue compact dwarf galaxy and as a probable polar ring galaxy (Whitmore et al. 1990). The formation of the polar ring and the very luminous bursts of star formation along it, is a consequence of the interaction with a close companion, IIZw70, situated at 18.1 kpc (Cox et al. 2001). We have carried out spectrophotometric observations of the bursts of star formation along the polar ring in order to study differences in the physical properties or the star formation histories between the knots

  19. MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C., E-mail: ngoldbau@illinois.edu

    2016-08-10

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 andmore » leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.« less

  20. The star formation history of the Sextans dwarf spheroidal galaxy: a true fossil of the pre-reionization era

    NASA Astrophysics Data System (ADS)

    Bettinelli, M.; Hidalgo, S. L.; Cassisi, S.; Aparicio, A.; Piotto, G.

    2018-05-01

    We present the star formation history (SFH) of the Sextans dwarf spheroidal galaxy based on deep archive B, I photometry taken with Suprime-Cam at Subaru telescope focusing our analysis on the inner region of the galaxy, fully located within the core radius. Within the errors of our SFH, we have not detected any metallicity gradient along the considered radial distance interval. As a main result of this work, we can state that the Sextans dwarf spheroidal stopped forming stars less than ˜1.3 Gyr after big bang in correspondence to the end of the reionization epoch. We have been able to constrain the duration of the main burst of star formation to ˜0.6 Gyr. From the calculation of the mechanical luminosity released from supernovae (SNe) during the brief episode of star formation, there are strong indications that SNe could have played an important role in the fate of Sextans, by removing almost completely the gas component, so preventing a prolonged star formation.

  1. Cosmic Star Formation - Seen from the Milky Way with AtLAST Short Contributed Talk

    NASA Astrophysics Data System (ADS)

    Kauffmann, Jens

    2018-01-01

    Herschel and Spitzer provided first truly unbiased overviews of star formation environments in the Milky Way. Today, high–powered instruments like ALMA additionally resolve the immediate birth environments of individual stars in a few selected regions throughout the Galaxy. This progress in the Milky Way is important, because the same facilities also allow us to explore how galaxies evolved over time. Was star formation more efficient in the dense molecular clouds found in starburst galaxies? Why do galaxies often follow star formation relations like those from Kennicutt & Schmidt and Gao & Solomon? A cloud-scale understanding of the star formation processes, that can only be developed in the Milky Way, is necessary to make progress. Unfortunately, ALMA can resolve the detailed substructure only in SELECTED galactic molecular clouds, given mapping with ALMA is very slow. Here I show how surveys of dust continuum and line emission provided by a large and fast single–dish telescope can overcome these critical limitations, e.g. by breaking degeneracies in current theoretical models. My discussion draws on a white papers previously developed for similar telescopes.

  2. HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meidt, Sharon E.

    2016-02-10

    In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itselfmore » inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.« less

  3. STAR FORMATION ON SUBKILOPARSEC SCALE TRIGGERED BY NON-LINEAR PROCESSES IN NEARBY SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momose, Rieko; Koda, Jin; Donovan Meyer, Jennifer

    We report a super-linear correlation for the star formation law based on new CO(J = 1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spatially resolved. Combined with the star formation rate surface density traced by H{alpha} and 24 {mu}m images, CO(J = 1-0) data provide a super-linear slope of N = 1.3. The slope becomes even steeper (N = 1.8) when the diffuse stellar and dust background emission is subtracted from the H{alpha} and 24 {mu}m images. In contrast to the recent resultsmore » with CO(J = 2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO(J = 2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contaminates the SFE measurement most in regions where the star formation rate is law. These two effects can flatten the power-law correlation and produce the apparent linear slope. The super-linear slope from the CO(J = 1-0) analysis indicates that star formation is enhanced by non-linear processes in regions of high gas density, e.g., gravitational collapse and cloud-cloud collisions.« less

  4. The impact of dark energy on galaxy formation. What does the future of our Universe hold?

    NASA Astrophysics Data System (ADS)

    Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop

    2018-07-01

    We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilize hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM (cold dark matter) Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total comoving density of stars ever formed by ≈ 15 per cent. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011 M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.

  5. An analysis of star formation with Herschel in the Hi-GAL Survey. II. The tips of the Galactic bar

    NASA Astrophysics Data System (ADS)

    Veneziani, M.; Schisano, E.; Elia, D.; Noriega-Crespo, A.; Carey, S.; Di Giorgio, A.; Fukui, Y.; Maiolo, B. M. T.; Maruccia, Y.; Mizuno, A.; Mizuno, N.; Molinari, S.; Mottram, J. C.; Moore, T. J. T.; Onishi, T.; Paladini, R.; Paradis, D.; Pestalozzi, M.; Pezzuto, S.; Piacentini, F.; Plume, R.; Russeil, D.; Strafella, F.

    2017-03-01

    Context. We present the physical and evolutionary properties of prestellar and protostellar clumps in the Herschel Infrared GALactic plane survey (Hi-GAL) in two large areas centered in the Galactic plane and covering the tips of the long Galactic bar at the intersection with the spiral arms. The areas fall in the longitude ranges 19° <ℓ < 33° and 340° < ℓ < 350°, while latitude is -1° < b < 1°. Newly formed high mass stars and prestellar objects are identified and their properties derived and compared. A study is also presented on five giant molecular complexes at the further edge of the bar, identified through ancillary 12CO(1-0) data from the NANTEN observatory. Aims: One of the goals of this analysis is assessing the role of spiral arms in the star-formation processes in the Milky Way. It is, in fact, still a matter of debate if the particular configuration of the Galactic rotation and potential at the tips of the bar can trigger star formation. Methods: The star-formation rate was estimated from the quantity of proto-stars expected to form during the collapse of massive turbulent clumps into star clusters. The expected quantity of proto-stars was estimated by the possible final cluster configurations of a given initial turbulent clump. This new method was developed by applying a Monte Carlo procedure to an evolutionary model of turbulent cores and takes into account the wide multiplicity of sources produced during the collapse. Results: The star-formation rate density values at the tips are 1.2±0.3×10-3 M_⊙/{yr kpc^2} and 1.5±0.3×10-3 M_⊙/{yr kpc^2} in the first and fourth quadrant, respectively. The same values estimated on the entire field of view, that is including the tips of the bar and background and foreground regions, are 0.9±0.2×10-3 M_⊙/{yr kpc^2} and 0.8±0.2×10-3 M_⊙/{yr kpc^2}. The conversion efficiency indicates the percentage amount of material converted into stars and is approximately 0.8% in the first quadrant and 0.5% in the fourth quadrant, and does not show a significant difference in proximity of the bar. The star forming regions identified through CO contours at the further edge of the bar show star-formation rate and star-formation rate densities larger than the surrounding regions but their conversion efficiencies are comparable. Conclusions: The tips of the bar show an enhanced star-formation rate with respect to background and foreground regions. However, the conversion efficiency shows little change across the observed fields suggesting that the star-formation activity at the bar is due to a large amount of dust and molecular material rather than being due to a triggering process.

  6. Progress and Challenges in SPH Simulations of Disk Galaxy Formation: The Combined Role of Resolution and the Star Formation Density Threshold

    NASA Astrophysics Data System (ADS)

    Mayer, L.

    2012-07-01

    We review progress in cosmological SPH simulations of disk galaxy formation. We discuss the role of numerical resolution and sub-grid recipes of star formation and feedback from supernovae, higlighting the important role of a high star formation density threshold comparable to that of star forming molecular gas phase. Two recent succesfull examples, in simulations of the formation of gas-rich bulgeless dwarf galaxies and in simulations of late-type spirals (the ERIS simulations), are presented and discussed. In the ERIS simulations, already in the progenitors at z = 3 the resolution is above the threshold indicated by previous idealized numerical experiments as necessary to minimize numerical angular momentum loss (Kaufmann et al. 2007). A high star formation density threshold maintains an inhomogeneous interstellar medium, where star formation is clustered, and thus the local effect of supernovae feedback is enhanced. As a result, outflows are naturally generated removing 2/3 of the baryons in galaxies with Vvir˜50 km/s and ˜ 30% of the baryons in galaxies with (Vvir ˜ 150 km/s). Low angular momentum baryons are preferentially removed since the strongest bursts of star formation occur predominantly near the center, especially after a merger event. This produces pure exponential disks or small bulges depending on galaxy mass, and, correspondingly, slowly rising or nearly flat rotation curves that match those of observed disk galaxies. In dwarfs the rapid mass removal by outflows generates a core-like distribution in the dark matter. Furthermore, contrary to the common picture, in the ERIS spiral galaxies a bar/pseudobulge forms rapidly, and not secularly, as a result of mergers and interactions at high-z.

  7. The Elephant Trunk Nebula and the Trumpler 37 cluster: contribution of triggered star formation to the total population of an H II region

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Feigelson, Eric D.; Sicilia-Aguilar, Aurora; Broos, Patrick S.; Kuhn, Michael A.; Garmire, Gordon P.

    2012-11-01

    Rich young stellar clusters produce H ii regions whose expansion into the nearby molecular cloud is thought to trigger the formation of new stars. However, the importance of this mode of star formation is uncertain. This investigation seeks to quantify triggered star formation (TSF) in IC 1396A (aka the Elephant Trunk Nebula), a bright-rimmed cloud (BRC) on the periphery of the nearby giant H ii region IC 1396 produced by the Trumpler 37 cluster. X-ray selection of young stars from Chandra X-ray Observatory data is combined with existing optical and infrared surveys to give a more complete census of the TSF population. Over 250 young stars in and around IC 1396A are identified; this doubles the previously known population. A spatio-temporal gradient of stars from the IC 1396A cloud towards the primary ionizing star HD 206267 is found. We argue that the TSF mechanism in IC 1396A is a radiation-driven implosion process persisting over several million years. Analysis of the X-ray luminosity and initial mass functions indicates that >140 stars down to 0.1 M⊙ were formed by TSF. Considering other BRCs in the IC 1396 H ii region, we estimate the TSF contribution for the entire H ii region exceeds 14-25 per cent today, and may be higher over the lifetime of the H ii region. Such triggering on the periphery of H ii regions may be a significant mode of star formation in the Galaxy.

  8. Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Cox, Thomas J.; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C.; Murray, Norman

    2013-04-01

    We use hydrodynamic simulations with detailed, explicit models for stellar feedback to study galaxy mergers. These high-resolution (˜1 pc) simulations follow the formation and destruction of individual giant molecular clouds (GMC) and star clusters. We find that the final starburst is dominated by in situ star formation, fuelled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self-gravitating, and forms massive (≲1010 M⊙) GMC and subsequently super star clusters (with masses up to 108 M⊙). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in super-clusters which then sink to the centre of the galaxy. This is because feedback efficiently disperses GMC after they turn several per cent of their mass into stars. In other words, most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from infrared photons, extend, with no fine-tuning, over seven decades in star formation rate (SFR) to regulate star formation in the most extreme starburst systems with densities ≳104 M⊙ pc-2. This feedback also drives super-winds with large mass-loss rates; however, a significant fraction of the wind material falls back on to the discs at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. This suggests that strong active galactic nucleus feedback may be required to explain the sharp cut-offs in SFR that are observed in post-merger galaxies. We compare the results to those from simulations with no explicit resolution of GMC or feedback [`effective equation-of-state' (EOS) models]. We find that global galaxy properties are similar between EOS and resolved-feedback models. The relic structure and mass profile, and the total mass of stars formed in the nuclear starburst are quite similar, as is the morphological structure during and after mergers (tails, bridges, etc.). Disc survival in sufficiently gas rich mergers is similar in the two cases, and the new models follow the same scalings as derived for the efficiency of disc re-formation after a merger as derived from previous work with the simplified EOS models. While the global galaxy properties are similar between EOS and feedback models, subgalaxy-scale properties and the SFRs can be quite different: the more detailed models exhibit significantly higher star formation in tails and bridges (especially in shocks), and allow us to resolve the formation of super star clusters. In the new models, the star formation is more strongly time-variable and drops more sharply between close passages. The instantaneous burst enhancement can be higher or lower, depending on the details of the orbit and initial structural properties of the galaxies; first-passage bursts are more sensitive to these details than those at the final coalescence.

  9. An intriguing young-looking dwarf galaxy

    NASA Image and Video Library

    2015-03-16

    The bright streak of glowing gas and stars in this NASA/ESA Hubble Space Telescope image is known as PGC 51017, or SBSG 1415+437. It is type of galaxy known as a blue compact dwarf. This particular dwarf is well studied and has an interesting star formation history. Astronomers initially thought that SBS 1415+437 was a very young galaxy currently undergoing its very first burst of star formation, but more recent studies have suggested that the galaxy is in fact a little older, containing stars over 1.3 billion years old. Starbursts are an area of ongoing research for astronomers — short-lived and intense periods of star formation, during which huge amounts of gas within a galaxy are hungrily used up to form newborn stars. They have been seen in gas-rich disc galaxies, and in some lower-mass dwarfs. However, it is still unclear whether all dwarf galaxies experience starbursts as part of their evolution. It is possible that dwarf galaxies undergo a star formation cycle, with bursts occurring repeatedly over time. SBS 1415+437 is an interesting target for another reason. Dwarf galaxies like this are thought to have formed early in the Universe, producing some of the very first stars before merging together to create more massive galaxies. Dwarf galaxies which contain very few of the heavier elements formed from having several generations of stars, like SBS 1415+437, remain some of the best places to study star-forming processes similar to those thought to occur in the early Universe. However, it seems that our nearby patch of the Universe may not contain any galaxies that are currently undergoing their first burst of star formation. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Nick Rose.

  10. Structural analysis of star-forming blue early-type galaxies. Merger-driven star formation in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    George, Koshy

    2017-02-01

    Context. Star-forming blue early-type galaxies at low redshift can give insight to the stellar mass growth of L⋆ elliptical galaxies in the local Universe. Aims: We wish to understand the reason for star formation in these otherwise passively evolving red and dead stellar systems. The fuel for star formation can be acquired through recent accretion events such as mergers or flyby. The signatures of such events should be evident from a structural analysis of the galaxy image. Methods: We carried out structural analysis on SDSS r-band imaging data of 55 star-forming blue elliptical galaxies, derived the structural parameters, analysed the residuals from best-fit to surface brightness distribution, and constructed the galaxy scaling relations. Results: We found that star-forming blue early-type galaxies are bulge-dominated systems with axial ratio >0.5 and surface brightness profiles fitted by Sérsic profiles with index (n) mostly >2. Twenty-three galaxies are found to have n< 2; these could be hosting a disc component. The residual images of the 32 galaxy surface brightness profile fits show structural features indicative of recent interactions. The star-forming blue elliptical galaxies follow the Kormendy relation and show the characteristics of normal elliptical galaxies as far as structural analysis is concerned. There is a general trend for high-luminosity galaxies to display interaction signatures and high star formation rates. Conclusions: The star-forming population of blue early-type galaxies at low redshifts could be normal ellipticals that might have undergone a recent gas-rich minor merger event. The star formation in these galaxies will shut down once the recently acquired fuel is consumed, following which the galaxy will evolve to a normal early-type galaxy.

  11. The Galactic Distribution of Massive Star Formation from the Red MSX Source Survey

    NASA Astrophysics Data System (ADS)

    Figura, Charles C.; Urquhart, J. S.

    2013-01-01

    Massive stars inject enormous amounts of energy into their environments in the form of UV radiation and molecular outflows, creating HII regions and enriching local chemistry. These effects provide feedback mechanisms that aid in regulating star formation in the region, and may trigger the formation of subsequent generations of stars. Understanding the mechanics of massive star formation presents an important key to understanding this process and its role in shaping the dynamics of galactic structure. The Red MSX Source (RMS) survey is a multi-wavelength investigation of ~1200 massive young stellar objects (MYSO) and ultra-compact HII (UCHII) regions identified from a sample of colour-selected sources from the Midcourse Space Experiment (MSX) point source catalog and Two Micron All Sky Survey. We present a study of over 900 MYSO and UCHII regions investigated by the RMS survey. We review the methods used to determine distances, and investigate the radial galactocentric distribution of these sources in context with the observed structure of the galaxy. The distribution of MYSO and UCHII regions is found to be spatially correlated with the spiral arms and galactic bar. We examine the radial distribution of MYSOs and UCHII regions and find variations in the star formation rate between the inner and outer Galaxy and discuss the implications for star formation throughout the galactic disc.

  12. Formation Timescales for High-Mass X-ray Binaries in M33

    NASA Astrophysics Data System (ADS)

    Garofali, Kristen; Williams, Benjamin F.; Hillis, Tristan; Gilbert, Karoline M.; Dolphin, Andrew E.; Eracleous, Michael; Binder, Breanna

    2018-06-01

    We have identified 55 candidate high-mass X-ray binaries (HMXBs) in M33 using available archival HST and Chandra imaging to find blue stars associated with X-ray positions. We use the HST photometric data to model the color-magnitude diagrams in the vicinity of each candidate HMXB to measure a resolved recent star formation history (SFH), and thus a formation timescale, or age for the source. Taken together, the SFHs for all candidate HMXBs in M33 yield an age distribution that suggests preferred formation timescales for HMXBs in M33 of < 5 Myr and ˜ 40 Myr after the initial star formation episode. The population at 40 Myr is seen in other Local Group galaxies, and can be attributed to a peak in formation efficiency of HMXBs with neutron stars as compact objects and B star secondary companions. This timescale is preferred as neutron stars should form in abundance from ˜ 8 M⊙ core-collapse progenitors on these timescales, and B stars are shown observationally to be most actively losing mass around this time. The young population at < 5 Myr has not be observed in other Local Group HMXB population studies, but may be attributed to a population of very massive progenitors forming black holes very early on. We discuss these results in the context of massive binary evolution, and the implications for compact object binaries and gravitational wave sources.

  13. Black Holes Categorization, Along with the Space(s) they Inhabit, to Explain the Astro-Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2011-12-01

    We define and categorize black holes (BH) and the space they inhabit. We describe mechanisms for their formation and mechanisms of black hole collisions and explosions/bursts, inside of the universe. These are linked to the formation of galaxies, stars, planets and planetary processes. Insight is gained regarding the formation and evolution of galaxies and the matter contained therein. Space itself must be categorized as to its purpose and properties as it relates to the various categories of black holes and processes ongoing within the space in which the processes occur. What we herein refer to as category-1 (c-1) black hole, formed the universe, by generating catagory-2 (c-2) black holes, say about 10% of which formed galaxies and 90% remain as dark matter in the form of c-2 BHs that are still evolving. C-1 BHs can explode/burst by collision or on their own, and give off great numbers (e.g., trillions) of c-2 BHs inside the universe, in c-2 space, which can become galaxies and which is the start of the universe. C-2 BHs can explode/burst and form a galaxy, containing c-3 space, filled with c-3 BHs. C-3 BHs are somewhat more modified and expanded than c-2 BHs and are formed from exploded/burst c-2 BHs on their own due to instabilities or by colliding with another c-2 BH and exploding/bursting to form gas and dust clouds peppered with c-3 BHs. Additionally, remnants from the exploded c-2 BH may include a range of sizes from minute particles that would contribute to the formation of massive gas and dust clouds peppered with the c-3 BHs; to about 10 to 20 solar masses that form large stars; and others, much smaller (tiny) stars that eventually become planets and moons. Some, eventually explode/burst inside the galaxy to produce the gas and dust clouds that we see inside the galaxy. These gas and dust clouds are peppered with c-4 BHs that eventually are seen as new stars forming in the dust clouds (described below). We envision three mechanisms (a,b,&c) for stellar origin, formation and evolution. The first type 'a' is well known (accepted); whereas, the other two 'b&c' are new and presented herein. The presently generally accepted process 'a,' consists of an accretion and gravitation process where mass comes together from interstellar gas and dust, left over from previous stars' deaths/explosions; or, from some other gas and dust accumulation. In addition, to this process, we propose a process 'b,' where a star originates as an expanded, modified Black Hole (BH) (described later with Figure 4) with none or little help from accretion/gravitation, begins to radiate, and continues to grow into a star. A third process 'c,' is also possible in which a star would originate from a combination of the two mechanisms 'a & b' described above. This latter mechanism is perhaps the most common type. This type starts as an expanded, modified BH inside of a gas and dust cloud. This, then serves as the nucleus that starts the subsequent accretion/gravitation process; however, it greatly accelerates the accretion/gravitation formation process as in the standard process. This mechanism could then explain how some super-cluster complexes, which have been estimated to take 40 to 60 billion years to form, can occur in a universe of a much younger age, as exists.

  14. Black Holes Categorization, along with the Space(s) they inhabit, to explain the Astro-Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2012-04-01

    We define and categorize black holes (BH) and the space they inhabit. We describe mechanisms for their formation and mechanisms of black hole collisions and explosions/bursts, inside of the universe. These are linked to the formation of galaxies, stars, planets and planetary processes. Insight is gained regarding the formation and evolution of galaxies and the matter contained therein. Space itself must be categorized as to its purpose and properties as it relates to the various categories of black holes and processes ongoing within the space in which the processes occur. What we herein refer to as category-1 (c-1) black hole, formed the universe, by generating catagory-2 (c-2) black holes, say about 10% of which formed galaxies and 90% remain as dark matter in the form of c-2 BHs that are still evolving. C-1 BHs can explode/burst by collision or on their own, and give off great numbers (e.g., trillions) of c-2 BHs inside the universe, in c-2 space, which can become galaxies and which is the start of the universe. C-2 BHs can explode/burst and form a galaxy, containing c-3 space, filled with c-3 BHs. C-3 BHs are somewhat more modified and expanded than c-2 BHs and are formed from exploded/burst c-2 BHs on their own due to instabilities or by colliding with another c-2 BH and exploding/bursting to form gas and dust clouds peppered with c-3 BHs. Additionally, remnants from the exploded c-2 BH may include a range of sizes from minute particles that would contribute to the formation of massive gas and dust clouds peppered with the c-3 BHs; to about 10 to 20 solar masses that form large stars; and others, much smaller (tiny) stars that eventually become planets and moons. Some, eventually explode/burst inside the galaxy to produce the gas and dust clouds that we see inside the galaxy. These gas and dust clouds are peppered with c-4 BHs that eventually are seen as new stars forming in the dust clouds (described below). We envision three mechanisms (a,b,&c) for stellar origin, formation and evolution. The first type 'a' is well known (accepted); whereas, the other two 'b&c' are new and presented herein. The presently generally accepted process 'a,' consists of an accretion and gravitation process where mass comes together from interstellar gas and dust, left over from previous stars' deaths/explosions; or, from some other gas and dust accumulation. In addition, to this process, we propose a process 'b,' where a star originates as an expanded, modified Black Hole (BH) (described later with Figure 4) with none or little help from accretion/gravitation, begins to radiate, and continues to grow into a star. A third process 'c,' is also possible in which a star would originate from a combination of the two mechanisms 'a & b' described above. This latter mechanism is perhaps the most common type. This type starts as an expanded, modified BH inside of a gas and dust cloud. This, then serves as the nucleus that starts the subsequent accretion/gravitation process; however, it greatly accelerates the accretion/gravitation formation process as in the standard process. This mechanism could then explain how some super-cluster complexes, which have been estimated to take 40 to 60 billion years to form, can occur in a universe of a much younger age of 13.5 billion, as exists.

  15. Report on the Workshop Herbig Ae/Be Stars: The Missing Link in Star Formation

    NASA Astrophysics Data System (ADS)

    de Wit, W.-J.; Oudmaijer, R. D.; van den Ancker, M. E.; Calvet, N.

    2014-09-01

    The workshop highlighted the many recent advances within the field of Herbig Ae/Be stars and the close links to star and planet formation. Topics such as magnetospheric accretion and the evolution of dust in discs, the structure of circumstellar discs and the role of walls and gaps and their links to planet formation from many observational aspects were covered. The workshop was dedicated to the life and works of George H. Herbig, who sadly passed away at the end of last year.

  16. Properties of the outer regions of spiral disks: abundances, colors and ages

    NASA Astrophysics Data System (ADS)

    Mollá, Mercedes; Díaz, Angeles I.; Gibson, Brad K.; Cavichia, Oscar; López-Sánchez, Ángel-R.

    2017-03-01

    We summarize the results obtained from our suite of chemical evolution models for spiral disks, computed for different total masses and star formation efficiencies. Once the gas, stars and star formation radial distributions are reproduced, we analyze the Oxygen abundances radial profiles for gas and stars, in addition to stellar averaged ages and global metallicity. We examine scenarios for the potential origin of the apparent flattening of abundance gradients in the outskirts of disk galaxies, in particular the role of molecular gas formation prescriptions.

  17. A new model of spiral galaxies based on propagating star formation

    NASA Astrophysics Data System (ADS)

    Sleath, John

    1996-01-01

    Many models exist in the literature of either star formation or galactic structure, but the former concentrate on small-scale details, whilst the latter, if they include star formation at all, adopt a very simple approach, for example by assuming a power law relationship between the rate of star formation and the gas density (a Schmidt Law). The new model described in this dissertation bridges the gap between these two extremes by adopting a simple, but not simplistic, approach to the detailed physics, allowing the effects of star formation on the broader scale to be investigated. 'Propagating star formation' considers the collapse of molecular clouds (and subsequent creation of new stars) to be triggered by the passage of a shock wave resulting from the supernovae explosions of members of the previous generation of stars. The approach taken is a stochastic one, i.e. we determine from the mass of a cloud the probability of star formation occurring, given that it has been shocked. Models using a similar approach have been described before, but the new model is unique in that it uses a particulate representation of the gas clouds and stellar associations. This permits us to simulate collisions between the particles as they orbit in a realistic galactic gravitational potential and more importantly, to impose a spiral density wave perturbation in a natural way. Such waves arise naturally in N-body simulations where the collective forces between particles are considered explicitly, but we are more interested in its effect on the star formation rate, and hence to make the code more manageable, impose the perturbation by hand. The model has been extremely successful; for example, predicting accurately, with no free parameters, the cluster formation rate for the Milky Way. A Schmidt Law arises as a natural consequence and with a power law index which is consistent with observational constraints. A wide range of galactic morphologies can be produced, including long-lived two-armed grand-design spirals, which have not resulted from any of the previous propagating star formation models. The spiral density wave orders the star formation, but does not simply result in the star formation tracing directly the potential minima - it is found that the pitch angles of the imposed and observed spiral patterns differ significantly. Moreover, the pitch angle of the observed pattern exhibits a maximum value equal to the maximum pitch angle observed in late-type spirals. To compare the results of this, and other, models of galactic structure with observed galaxies, we require some way of classifying the appearance of the data sets. There already exist a number of schemes, but they are all somewhat subjective, and a reliable, quantitative approach would form a valuable addition. I have investigated a number of schemes, namely Fourier transforms, minimal spanning tree edge-length spectra and multifractal dimensions, and considered their application to both simulated and observed data. The results of the analysis are encouraging, particularly for the multifractals, although it is not as yet possible to calculate a single, unique number which fully characterises the morphology.

  18. Towards a Population Synthesis Model of Objects formed by Self-Gravitating Disc Fragmentation and Tidal Downsizing

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan; Rice, Ken

    2013-07-01

    Recently, the gravitational instability (GI) model of giant planet and brown dwarf formation has been revisited and recast into what is often referred to as the "tidal downsizing" hypothesis. The fragmentation of self-gravitating protostellar discs into gravitationally bound embryos - with masses of a few to tens of Jupiter masses, at semi major axes above 30 - 40 AU - is followed by a combination of grain sedimentation inside the embryo, radial migration towards the central star and tidal disruption of the embryo's upper layers. The properties of the resultant object depends sensitively on the timescales upon which each process occurs. Therefore, GI followed by tidal downsizing can theoretically produce objects spanning a large mass range, from terrestrial planets to giant planets and brown dwarfs. Whether such objects can be formed in practice, and what proportions of the observed population they would represent, requires a more involved statistical analysis. We present a simple population synthesis model of star and planet formation via GI and tidal downsizing. We couple a semi-analytic model of protostellar disc evolution to analytic calculations of fragmentation, initial embryo mass, grain growth and sedimentation, embryo migration and tidal disruption. While there are key pieces of physics yet to be incorporated, it represents a first step towards a mature statistical model of GI and tidal downsizing as a mode of star and planet formation. We show results from four runs of the population synthesis model, varying the opacity law and the strength of migration, as well as investigating the effect of disc truncation during the fragmentation process.

  19. Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2008-12-01

    Preface; SOC and LOC; Participants; Life at the conference; Conference photo; Session I. Population III and Metal-Free Star Formation: 1. Open questions in the study of population III star formation S. C. O. Glover, P. C. Clark, T. H. Greif, J. L. Johnson, V. Bromm, R. S. Klessen and A. Stacy; 2. Protostar formation in the early universe Naoki Yoshida; 3. Population III.1 stars: formation, feedback and evolution of the IMF Jonathan C. Tan; 4. The formation of the first galaxies and the transition to low-mass star formation T. H. Greif, D. R. G. Schleicher, J. L. Johnson, A.-K. Jappsen, R. S. Klessen, P. C. Clark, S. C. O. Glover, A. Stacy and V. Bromm; 5. Low-metallicity star formation: the characteristic mass and upper mass limit Kazuyuki Omukai; 6. Dark stars: dark matter in the first stars leads to a new phase of stellar evolution Katherine Freese, Douglas Spolyar, Anthony Aguirre, Peter Bodenheimer, Paolo Gondolo, J. A. Sellwood and Naoki Yoshida; 7. Effects of dark matter annihilation on the first stars F. Iocco, A. Bressan, E. Ripamonti, R. Schneider, A. Ferrara and P. Marigo; 8. Searching for Pop III stars and galaxies at high redshift Daniel Schaerer; 9. The search for population III stars Sperello di Serego Alighieri, Jaron Kurk, Benedetta Ciardi, Andrea Cimatti, Emanuele Daddi and Andrea Ferrara; 10. Observational search for population III stars in high-redshift galaxies Tohru Nagao; Session II. Metal Enrichment, Chemical Evolution, and Feedback: 11. Cosmic metal enrichment Andrea Ferrara; 12. Insights into the origin of the galaxy mass-metallicity relation Henry Lee, Eric F. Bell and Rachel S. Somerville; 13. LSD and AMAZE: the mass-metallicity relation at z > 3 F. Mannucci and R. Maiolino; 14. Three modes of metal-enriched star formation at high redshift Britton D. Smith, Matthew J. Turk, Steinn Sigurdsson, Brian W. O'Shea and Michael L. Norman; 15. Primordial supernovae and the assembly of the first galaxies Daniel Whalen, Bob Van Veelen, Brian W. O'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  20. PONDEROSA, an automated 3D-NOESY peak picking program, enables automated protein structure determination.

    PubMed

    Lee, Woonghee; Kim, Jin Hae; Westler, William M; Markley, John L

    2011-06-15

    PONDEROSA (Peak-picking Of Noe Data Enabled by Restriction of Shift Assignments) accepts input information consisting of a protein sequence, backbone and sidechain NMR resonance assignments, and 3D-NOESY ((13)C-edited and/or (15)N-edited) spectra, and returns assignments of NOESY crosspeaks, distance and angle constraints, and a reliable NMR structure represented by a family of conformers. PONDEROSA incorporates and integrates external software packages (TALOS+, STRIDE and CYANA) to carry out different steps in the structure determination. PONDEROSA implements internal functions that identify and validate NOESY peak assignments and assess the quality of the calculated three-dimensional structure of the protein. The robustness of the analysis results from PONDEROSA's hierarchical processing steps that involve iterative interaction among the internal and external modules. PONDEROSA supports a variety of input formats: SPARKY assignment table (.shifts) and spectrum file formats (.ucsf), XEASY proton file format (.prot), and NMR-STAR format (.star). To demonstrate the utility of PONDEROSA, we used the package to determine 3D structures of two proteins: human ubiquitin and Escherichia coli iron-sulfur scaffold protein variant IscU(D39A). The automatically generated structural constraints and ensembles of conformers were as good as or better than those determined previously by much less automated means. The program, in the form of binary code along with tutorials and reference manuals, is available at http://ponderosa.nmrfam.wisc.edu/.

  1. Airborne Astronomy Program

    NASA Technical Reports Server (NTRS)

    Butner, Harold M.

    1999-01-01

    Our understanding about the inter-relationship between the collapsing cloud envelope and the disk has been greatly altered. While the dominant star formation models invoke free fall collapse and r(sup -1.5) density profile, other star formation models are possible. These models invoke either different cloud starting conditions or the mediating effects of magnetic fields to alter the cloud geometry during collapse. To test these models, it is necessary to understand the envelope's physical structure. The discovery of disks, based on millimeter observations around young stellar objects, however makes a simple interpretation of the emission complicated. Depending on the wavelength, the disk or the envelope could dominate emission from a star. In addition, the discovery of planets around other stars has made understanding the disks in their own right quite important. Many star formation models predict disks should form naturally as the star is forming. In many cases, the information we derive about disk properties depends implicitly on the assumed envelope properties. How to understand the two components and their interaction with each other is a key problem of current star formation.

  2. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasha, K.; Calzetti, D.; Elmegreen, B. G.

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are closemore » to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.« less

  3. Gas Accretion and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge

    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star formation are analyzed, specifically, the short gas-consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the α-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.

  4. The formation efficiency of different generations of HMXBs in the low metallicity environment of the SMC

    NASA Astrophysics Data System (ADS)

    Antoniou, Vallia; Zezas, Andreas; Drake, Jeremy J.; Badenes, Carles; Hong, Jaesub; SMC XVP Collaboration

    2018-01-01

    Nearby star-forming galaxies offer a unique environment to study the populations of young (<100 Myr) X-ray binaries, which consist of a compact object - typically a neutron star or a black hole - powered by accretion from a companion star. These systems are tracers of past populations of massive stars that heavily affect their immediate environment and parent galaxies. The Small Magellanic Cloud (SMC) is the ideal environment for population studies of young X-ray binaries by providing us with what the Milky Way cannot: A complete sample of X-ray sources within a galaxy. Using a Chandra X-ray Visionary program, we investigate the young neutron-star binary population in this low-metallicity, nearby, star-forming galaxy by reaching quiescent X-ray luminosity levels (~few times 1032 erg/s). In this talk, I will present the first measurement of the formation efficiency of high-mass X-ray binaries (HMXBs) as a function of the age of their parent stellar populations. We use three indicators of the formation efficiency of young accreting binaries in the low SMC metallicity: the number ratio of the HMXBs, N(HMXBs), to the number of OB stars, to the star-formation rate (SFR), and to the stellar mass produced during the specific star-formation burst they are associated with, all as a function of the age of their parent stellar populations. In all cases, we find that the HMXB formation efficiency increases as a function of time up to ~40—60 Myr, and then gradually decreases. The peak formation efficiency N(HMXB)/SFR is in good agreement with previous estimates of the average formation efficiency in the broad ~20—60 Myr age range, and a factor of at least ~8 and ~4 higher than the formation efficiency in earlier (~10 Myr) and later (~260 Myr) epochs. I will also present the deepest luminosity function ever recorded for a galaxy, and discuss the X-ray properties of the largest sample of extragalactic accreting pulsars as well.

  5. Mapping the spatial distribution of star formation in cluster galaxies at z ~0.5 with the Grism Lens-Amplified Survey from Space (GLASS)

    NASA Astrophysics Data System (ADS)

    Vulcani, B.; Treu, T.; Schmidt, K. B.; Poggianti, B. M.; Dressler, A.; Fontana, A.; Bradač, M.; Brammer, G. B.; Hoag, A.; Huang, K.; Malkan, M.; Pentericci, L.; Trenti, M.; von der Linden, A.; Abramson, L.; He, J.; Morris, G.

    2016-06-01

    What physical processes regulate star formation in dense environments? Understanding why galaxy evolution is environment dependent is one of the key questions of current astrophysics. I will present the first characterization of the spatial distribution of star formation in cluster galaxies at z~0.5, and compare to a field control sample, in order to quantify the role of different physical processes that are believed to be responsible for shutting down star formation (Vulcani et al. 2015, Vulcani et al. in prep). The analysis makes use of data from the Grism Lens-Amplified Survey from Space (GLASS), a large HST cycle-21 program targeting 10 massive galaxy clusters with extensive HST imaging from CLASH and the Frontier Field Initiative. The program consists of 140 primary and 140 parallel orbits of near-infrared WCF3 and optical ACS slitless grism observations, which result in 3D spectroscopy of hundreds of galaxies. The grism data are used to produce spatially resolved maps of the star formation density, while the stellar mass density and optical surface brightness are obtained from multiband imaging. I will describe quantitative measures of the spatial location and extent of the star formation rate. I will show that both in clusters and in the field, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside out growth. The Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. I will also correlate the properties of the Hα maps to the cluster global properties, such as the hot gas density, and the surface mass density. The characterization of the spatial distribution of Halpha provides a new window, yet poorly exploited, on the mechanisms that regulate star formation and morphological transformation in dense environments.

  6. The dark nemesis of galaxy formation: why hot haloes trigger black hole growth and bring star formation to an end

    NASA Astrophysics Data System (ADS)

    Bower, Richard G.; Schaye, Joop; Frenk, Carlos S.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; McAlpine, Stuart

    2017-02-01

    Galaxies fall into two clearly distinct types: `blue-sequence' galaxies which are rapidly forming young stars, and `red-sequence' galaxies in which star formation has almost completely ceased. Most galaxies more massive than 3 × 1010 M⊙ follow the red sequence, while less massive central galaxies lie on the blue sequence. We show that these sequences are created by a competition between star formation-driven outflows and gas accretion on to the supermassive black hole at the galaxy's centre. We develop a simple analytic model for this interaction. In galaxies less massive than 3 × 1010 M⊙, young stars and supernovae drive a high-entropy outflow which is more buoyant than any tenuous corona. The outflow balances the rate of gas inflow, preventing high gas densities building up in the central regions. More massive galaxies, however, are surrounded by an increasingly hot corona. Above a halo mass of ˜1012 M⊙, the outflow ceases to be buoyant and star formation is unable to prevent the build-up of gas in the central regions. This triggers a strongly non-linear response from the black hole. Its accretion rate rises rapidly, heating the galaxy's corona, disrupting the incoming supply of cool gas and starving the galaxy of the fuel for star formation. The host galaxy makes a transition to the red sequence, and further growth predominantly occurs through galaxy mergers. We show that the analytic model provides a good description of galaxy evolution in the EAGLE hydrodynamic simulations. So long as star formation-driven outflows are present, the transition mass scale is almost independent of subgrid parameter choice.

  7. Stellar Mass Function of Active and Quiescent Galaxies via the Continuity Equation

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Mancuso, C.; Bressan, A.; Danese, L.

    2017-09-01

    The continuity equation is developed for the stellar mass content of galaxies and exploited to derive the stellar mass function of active and quiescent galaxies over the redshift range z˜ 0{--}8. The continuity equation requires two specific inputs gauged from observations: (I) the star formation rate functions determined on the basis of the latest UV+far-IR/submillimeter/radio measurements and (II) average star formation histories for individual galaxies, with different prescriptions for disks and spheroids. The continuity equation also includes a source term taking into account (dry) mergers, based on recent numerical simulations and consistent with observations. The stellar mass function derived from the continuity equation is coupled with the halo mass function and with the SFR functions to derive the star formation efficiency and the main sequence of star-forming galaxies via the abundance-matching technique. A remarkable agreement of the resulting stellar mass functions for active and quiescent galaxies of the galaxy main sequence, and of the star formation efficiency with current observations is found; the comparison with data also allows the characteristic timescales for star formation and quiescence of massive galaxies, the star formation history of their progenitors, and the amount of stellar mass added by in situ star formation versus that contributed by external merger events to be robustly constrained. The continuity equation is shown to yield quantitative outcomes that detailed physical models must comply with, that can provide a basis for improving the (subgrid) physical recipes implemented in theoretical approaches and numerical simulations, and that can offer a benchmark for forecasts on future observations with multiband coverage, as will become routinely achievable in the era of JWST.

  8. When feedback fails: the scaling and saturation of star formation efficiency

    NASA Astrophysics Data System (ADS)

    Grudić, Michael Y.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman; Kereš, Dušan

    2018-04-01

    We present a suite of 3D multiphysics MHD simulations following star formation in isolated turbulent molecular gas discs ranging from 5 to 500 parsecs in radius. These simulations are designed to survey the range of surface densities between those typical of Milky Way giant molecular clouds (GMCs) ({˜ } 10^2 {M_{\\odot } pc^{-2}}) and extreme ultraluminous infrared galaxy environments ({˜ } 10^4 {M_{\\odot } pc^{-2}}) so as to map out the scaling of the cloud-scale star formation efficiency (SFE) between these two regimes. The simulations include prescriptions for supernova, stellar wind, and radiative feedback, which we find to be essential in determining both the instantaneous per-freefall (ɛff) and integrated (ɛint) star formation efficiencies. In all simulations, the gas discs form stars until a critical stellar surface density has been reached and the remaining gas is blown out by stellar feedback. We find that surface density is a good predictor of ɛint, as suggested by analytic force balance arguments from previous works. SFE eventually saturates to ˜1 at high surface density. We also find a proportional relationship between ɛff and ɛint, implying that star formation is feedback-moderated even over very short time-scales in isolated clouds. These results have implications for star formation in galactic discs, the nature and fate of nuclear starbursts, and the formation of bound star clusters. The scaling of ɛff with surface density is not consistent with the notion that ɛff is always ˜ 1 per cent on the scale of GMCs, but our predictions recover the ˜ 1 per cent value for GMC parameters similar to those found in spiral galaxies, including our own.

  9. The KMOS Redshift One Spectroscopic Survey (KROSS): dynamical properties, gas and dark matter fractions of typical z ˜ 1 star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Stott, John P.; Swinbank, A. M.; Johnson, Helen L.; Tiley, Alfie; Magdis, Georgios; Bower, Richard; Bunker, Andrew J.; Bureau, Martin; Harrison, Chris M.; Jarvis, Matt J.; Sharples, Ray; Smail, Ian; Sobral, David; Best, Philip; Cirasuolo, Michele

    2016-04-01

    The KMOS Redshift One Spectroscopic Survey (KROSS) is an ESO-guaranteed time survey of 795 typical star-forming galaxies in the redshift range z = 0.8-1.0 with the KMOS instrument on the Very Large Telescope. In this paper, we present resolved kinematics and star formation rates for 584 z ˜ 1 galaxies. This constitutes the largest near-infrared Integral Field Unit survey of galaxies at z ˜ 1 to date. We demonstrate the success of our selection criteria with 90 per cent of our targets found to be H α emitters, of which 81 per cent are spatially resolved. The fraction of the resolved KROSS sample with dynamics dominated by ordered rotation is found to be 83 ± 5 per cent. However, when compared with local samples these are turbulent discs with high gas to baryonic mass fractions, ˜35 per cent, and the majority are consistent with being marginally unstable (Toomre Q ˜ 1). There is no strong correlation between galaxy averaged velocity dispersion and the total star formation rate, suggesting that feedback from star formation is not the origin of the elevated turbulence. We postulate that it is the ubiquity of high (likely molecular) gas fractions and the associated gravitational instabilities that drive the elevated star formation rates in these typical z ˜ 1 galaxies, leading to the 10-fold enhanced star formation rate density. Finally, by comparing the gas masses obtained from inverting the star formation law with the dynamical and stellar masses, we infer an average dark matter to total mass fraction within 2.2re (9.5 kpc) of 65 ± 12 per cent, in agreement with the results from hydrodynamic simulations of galaxy formation.

  10. VLA and ALMA Imaging of Intense Galaxy-wide Star Formation in z ˜ 2 Galaxies

    NASA Astrophysics Data System (ADS)

    Rujopakarn, W.; Dunlop, J. S.; Rieke, G. H.; Ivison, R. J.; Cibinel, A.; Nyland, K.; Jagannathan, P.; Silverman, J. D.; Alexander, D. M.; Biggs, A. D.; Bhatnagar, S.; Ballantyne, D. R.; Dickinson, M.; Elbaz, D.; Geach, J. E.; Hayward, C. C.; Kirkpatrick, A.; McLure, R. J.; Michałowski, M. J.; Miller, N. A.; Narayanan, D.; Owen, F. N.; Pannella, M.; Papovich, C.; Pope, A.; Rau, U.; Robertson, B. E.; Scott, D.; Swinbank, A. M.; van der Werf, P.; van Kampen, E.; Weiner, B. J.; Windhorst, R. A.

    2016-12-01

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z = 1.3-3.0. These galaxies are selected from sensitive blank-field surveys of the 2‧ × 2‧ Hubble Ultra-Deep Field at λ = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z ˜ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z ˜ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M ⊙ yr-1 kpc-2, sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3-8 times larger, providing a constraint on the characteristic SFR (˜300 M ⊙ yr-1) above which a significant population of more compact SFGs appears to emerge.

  11. Metal-poor star formation triggered by the feedback effects from Pop III stars

    NASA Astrophysics Data System (ADS)

    Chiaki, Gen; Susa, Hajime; Hirano, Shingo

    2018-04-01

    Metal enrichment by first-generation (Pop III) stars is the very first step of the matter cycle in structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), Mhalo, and Pop III stars, MPopIII. We find that the metal-rich ejecta reach neighbouring haloes and external enrichment (EE) occurs when the H II region expands before the SN explosion. The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta fall back and recollapse to form an enriched cloud, i.e. an internal-enrichment (IE) process takes place. In the case where a Pop III star explodes as a core-collapse SN (CCSN), the MH undergoes IE, and the metallicity in the recollapsing region is -5 ≲ [Fe/H] ≲ -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass ranges of MHs, consistent with the lack of observational signs of PISNe among EMP stars.

  12. The star-forming complex LMC-N79 as a future rival to 30 Doradus

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Zinnecker, Hans; Nayak, Omnarayani; Bally, John; Meixner, Margaret; Jones, Olivia C.; Indebetouw, Remy; Rahman, Mubdi

    2017-11-01

    Within the early Universe, `extreme' star formation may have been the norm rather than the exception1,2. Super star clusters (with masses greater than 105 solar masses) are thought to be the modern-day analogues of globular clusters, relics of a cosmic time (redshift z ≳ 2) when the Universe was filled with vigorously star-forming systems3. The giant H ii region 30 Doradus in the Large Magellanic Cloud is often regarded as a benchmark for studies of extreme star formation4. Here, we report the discovery of a massive embedded star-forming complex spanning about 500 pc in the unexplored southwest region of the Large Magellanic Cloud, which manifests itself as a younger, embedded twin of 30 Doradus. Previously known as N79, this region has a star-formation efficiency greater than that of 30 Doradus, by a factor of about 2, as measured over the past 0.5 Myr. Moreover, at the heart of N79 lies the most luminous infrared compact source discovered with large-scale infrared surveys of the Large Magellanic Cloud and Milky Way, possibly a precursor to the central super star cluster of 30 Doradus, R136. The discovery of a nearby candidate super star cluster may provide invaluable information to understand how extreme star formation proceeds in the current and high-redshift Universe.

  13. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  14. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459: Star Formation Down to 30 pc Scales

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Rigby, Jane R.; Sharon, Keren; Gladders, Michael D.; Florian, Michael; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Livermore, Rachael; Murray, Katherine T.

    2017-07-01

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z = 2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r< 100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z˜ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc—physical scales not usually resolved at these redshifts by current telescopes—are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of the order of 1 kpc. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13003.

  15. Influence of stellar multiplicity on planet formation. II. Planets are less common in multiple-star systems with separations smaller than 1500 AU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei

    2014-08-20

    Almost half of the stellar systems in the solar neighborhood are made up of multiple stars. In multiple-star systems, planet formation is under the dynamical influence of stellar companions, and the planet occurrence rate is expected to be different from that of single stars. There have been numerous studies on the planet occurrence rate of single star systems. However, to fully understand planet formation, the planet occurrence rate in multiple-star systems needs to be addressed. In this work, we infer the planet occurrence rate in multiple-star systems by measuring the stellar multiplicity rate for planet host stars. For a subsamplemore » of 56 Kepler planet host stars, we use adaptive optics (AO) imaging and the radial velocity (RV) technique to search for stellar companions. The combination of these two techniques results in high search completeness for stellar companions. We detect 59 visual stellar companions to 25 planet host stars with AO data. Three stellar companions are within 2'' and 27 within 6''. We also detect two possible stellar companions (KOI 5 and KOI 69) showing long-term RV acceleration. After correcting for a bias against planet detection in multiple-star systems due to flux contamination, we find that planet formation is suppressed in multiple-star systems with separations smaller than 1500 AU. Specifically, we find that compared to single star systems, planets in multiple-star systems occur 4.5 ± 3.2, 2.6 ± 1.0, and 1.7 ± 0.5 times less frequently when a stellar companion is present at a distance of 10, 100, and 1000 AU, respectively. This conclusion applies only to circumstellar planets; the planet occurrence rate for circumbinary planets requires further investigation.« less

  16. Cygnus OB2: Star Formation Ugly Duckling Causes a Flap

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Wright, Nicholas; Guarcello, Mario

    2015-08-01

    Cygnus OB2 is one of the largest known OB associations in our Galaxy, with a total stellar mass of 30,000 Msun and boasting an estimated 65 O-type stars and hundreds of OB stars. At a distance of only 1.4kpc, it is also the closest truly massive star forming region and provides a valuable testbed for star and planet formation theory. We have performed a deep stellar census using observations from X-ray to infrared, which has enabled studies of sub-structuring, mass segregation and dynamics, while infrared data reveal a story of protoplanetary disk attrition in an extremely harsh radiation environment. I will discuss how Cygnus OB2 challenges the idea that stars must form in dense, compact clusters, and demonstrates that stars as massive as 100 Msun can form in relatively low-density environments. Convincing evidence of disk photoevaporation poses a potential problem for planet formation and growth in starburst environments.

  17. The reliability of [C II] as an indicator of the star formation rate

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Cortese, Luca; Fritz, Jacopo

    2011-10-01

    The [C II] 157.74 μm line is an important coolant for the neutral interstellar gas. Since [C II] is the brightest spectral line for most galaxies, it is a potentially powerful tracer of star formation activity. In this paper, we present a calibration of the star formation rate (SFR) as a function of the [C II] luminosity for a sample of 24 star-forming galaxies in the nearby Universe. This sample includes objects classified as H II regions or low-ionization nuclear emission-line regions, but omits all Seyfert galaxies with a significant contribution from the active galactic nucleus to the mid-infrared photometry. In order to calibrate the SFR against the line luminosity, we rely on both Galaxy Evolution Explorer far-ultraviolet data, which is an ideal tracer of the unobscured star formation, and MIPS 24 μm, to probe the dust-enshrouded fraction of star formation. In the case of normal star-forming galaxies, the [C II] luminosity correlates well with the SFR. However, the extension of this relation to more quiescent (Hα EW ≤ 10 Å) or ultraluminous galaxies should be handled with caution, since these objects show a non-linearity in the ?-to-LFIR ratio as a function of LFIR (and thus, their star formation activity). We provide two possible explanations for the origin of the tight correlation between the [C II] emission and the star formation activity on a global galaxy-scale. A first interpretation could be that the [C II] emission from photodissociation regions (PDRs) arises from the immediate surroundings of star-forming regions. Since PDRs are neutral regions of warm dense gas at the boundaries between H II regions and molecular clouds and they provide the bulk of [C II] emission in most galaxies, we believe that a more or less constant contribution from these outer layers of photon-dominated molecular clumps to the [C II] emission provides a straightforward explanation for this close link between the [C II] luminosity and SFR. Alternatively, we consider the possibility that the [C II] emission is associated with the cold interstellar medium, which advocates an indirect link with the star formation activity in a galaxy through the Schmidt law.

  18. The Gaia-ESO Survey: A globular cluster escapee in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Lind, K.; Koposov, S. E.; Battistini, C.; Marino, A. F.; Ruchti, G.; Serenelli, A.; Worley, C. C.; Alves-Brito, A.; Asplund, M.; Barklem, P. S.; Bensby, T.; Bergemann, M.; Blanco-Cuaresma, S.; Bragaglia, A.; Edvardsson, B.; Feltzing, S.; Gruyters, P.; Heiter, U.; Jofre, P.; Korn, A. J.; Nordlander, T.; Ryde, N.; Soubiran, C.; Gilmore, G.; Randich, S.; Ferguson, A. M. N.; Jeffries, R. D.; Vallenari, A.; Allende Prieto, C.; Pancino, E.; Recio-Blanco, A.; Romano, D.; Smiljanic, R.; Bellazzini, M.; Damiani, F.; Hill, V.; de Laverny, P.; Jackson, R. J.; Lardo, C.; Zaggia, S.

    2015-03-01

    A small fraction of the halo field is made up of stars that share the light element (Z ≤ 13) anomalies characteristic of second generation globular cluster (GC) stars. The ejected stars shed light on the formation of the Galactic halo by tracing the dynamical history of the clusters, which are believed to have once been more massive. Some of these ejected stars are expected to show strong Al enhancement at the expense of shortage of Mg, but until now no such star has been found. We search for outliers in the Mg and Al abundances of the few hundreds of halo field stars observed in the first eighteen months of the Gaia-ESO public spectroscopic survey. One halo star at the base of the red giant branch, here referred to as 22593757-4648029 is found to have [ Mg/Fe ] = -0.36 ± 0.04 and [ Al/Fe ] = 0.99 ± 0.08, which is compatible with the most extreme ratios detected in GCs so far. We compare the orbit of 22593757-4648029 to GCs of similar metallicity andfind it unlikely that this star has been tidally stripped with low ejection velocity from any of the clusters. However, both chemical and kinematic arguments render it plausible that the star has been ejected at high velocity from the anomalous GC ω Centauri within the last few billion years. We cannot rule out other progenitor GCs, because some may have disrupted fully, and the abundance and orbital data are inadequate for many of those that are still intact. Based on data acquired by the Gaia-ESO Survey, programme ID 188.B-3002. Observations were made with ESO Telescopes at the La Silla Paranal Observatory.Appendix A is available in electronic form at http://www.aanda.org

  19. STARFIRE: The Spectroscopic Terahertz Airborne Receiver for Far-InfraRed Exploration

    NASA Astrophysics Data System (ADS)

    Aguirre, James; STARFIRE Collaboration

    2018-01-01

    Understanding the formation and evolution of galaxies is one of the foremost goals of astrophysics and cosmology today. The cosmic star formation rate has undergone a dramatic evolution over the course of the last seven billion years, with a peak in cosmic star formation near z ~ 1, largely in dust-obscured star forming galaxies (DSFGs), followed by a dramatic fall in both the star formation rate and the fraction of star formation occurring in DSFGs. A variety of unextincted diagnostic lines are present in the far-infrared (FIR) which can provide insight into the conditions of star formation in DSFGs. Spectroscopy in the far-infrared is thus scientifically crucial for understanding galaxy evolution, yet remains technically difficult, particularly for wavelengths shorter than those accessible to ALMA.STARFIRE (the Spectroscopic Terahertz Airborne Receiver for Far-InfraRed Exploration) is a proposed integral-field spectrometer using kinetic inductance detectors, operating from 240 - 420 μm and coupled to a 2.5 meter low-emissivity carbon-fiber balloon-borne telescope. Using dispersive spectroscopy and the stratospheric platform, STARFIRE can achieve better performance than SOFIA or Herschel-SPIRE FTS. STARFIRE is designed to study the ISM of galaxies from 0.5 < z < 1.5, primarily in the [CII](158 μm) line, and also in cross-correlation with [NII] (122 μm). This offers a view of the star-forming medium with minimal impact from dust extinction through the period of peak cosmic star formation and into the current epoch where the star formation rate begins to decline. STARFIRE will be capable of making a high significance detection of the [CII] power spectrum in at least 4 redshift bins and measuring the [CII] x [NII] power spectrum at z ~ 1. The intensity mapped power spectra will be sensitive to one- and two-halo clustering, as well as shot noise, and will relate the mean [CII] intensity as a function of redshift (a proxy for star formation rate density) to the large scale structure. In addition, STARFIRE will detect at least 50 galaxies directly in the [CII] line, and will also be able to stack on optical galaxies to below the SPIRE confusion limit to measure the [CII] luminosity of more typical galaxies.

  20. On star formation in stellar systems. I - Photoionization effects in protoglobular clusters

    NASA Technical Reports Server (NTRS)

    Tenorio-Tagle, G.; Bodenheimer, P.; Lin, D. N. C.; Noriega-Crespo, A.

    1986-01-01

    The progressive ionization and subsequent dynamical evolution of nonhomogeneously distributed low-metal-abundance diffuse gas after star formation in globular clusters are investigated analytically, taking the gravitational acceleration due to the stars into account. The basic equations are derived; the underlying assumptions, input parameters, and solution methods are explained; and numerical results for three standard cases (ionization during star formation, ionization during expansion, and evolution resulting in a stable H II region at its equilibrium Stromgren radius) are presented in graphs and characterized in detail. The time scale of residual-gas loss in typical clusters is found to be about the same as the lifetime of a massive star on the main sequence.

  1. The Contribution of TP-AGB Stars to the Mid-infrared Colors of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-01

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 μm. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  2. Discovery of massive star formation quenching by non-thermal effects in the centre of NGC 1097

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Minguez, P.; Prieto, M. A.; Fernández-Ontiveros, J. A.

    2018-01-01

    Observations show that massive star formation quenches first at the centres of galaxies. To understand quenching mechanisms, we investigate the thermal and non-thermal energy balance in the central kpc of NGC 1097—a prototypical galaxy undergoing quenching—and present a systematic study of the nuclear star formation efficiency and its dependencies. This region is dominated by the non-thermal pressure from the magnetic field, cosmic rays and turbulence. A comparison of the mass-to-magnetic flux ratio of the molecular clouds shows that most of them are magnetically critical or supported against the gravitational collapse needed to form the cores of massive stars. Moreover, the star formation efficiency of the clouds drops with the magnetic field strength. Such an anti-correlation holds with neither the turbulent nor the thermal pressure. Hence, a progressive build up of the magnetic field results in high-mass stars forming inefficiently, and this may be the cause of the low-mass stellar population in the bulges of galaxies.

  3. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisari, Nora E.; Kelson, Daniel D., E-mail: nchisari@astro.princeton.edu

    2012-07-10

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 {mu}m. There is a handfulmore » of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.« less

  4. Star formation trends in high-redshift galaxy surveys: the elephant or the tail?

    NASA Astrophysics Data System (ADS)

    Stringer, Martin; Cole, Shaun; Frenk, Carlos S.; Stark, Daniel P.

    2011-07-01

    Star formation rate and accumulated stellar mass are two fundamental physical quantities that describe the evolutionary state of a forming galaxy. Two recent attempts to determine the relationship between these quantities, by interpreting a sample of star-forming galaxies at redshift of z˜ 4, have led to opposite conclusions. Using a model galaxy population, we investigate possible causes for this discrepancy and conclude that minor errors in the conversion from observables to physical quantities can lead to a major misrepresentation when applied without awareness of sample selection. We also investigate, in a general way, the physical origin of the correlation between star formation rate and stellar mass within the hierarchical galaxy formation theory.

  5. Protostar formation in the early universe.

    PubMed

    Yoshida, Naoki; Omukai, Kazuyuki; Hernquist, Lars

    2008-08-01

    The nature of the first generation of stars in the universe remains largely unknown. Observations imply the existence of massive primordial stars early in the history of the universe, and the standard theory for the growth of cosmic structure predicts that structures grow hierarchically through gravitational instability. We have developed an ab initio computer simulation of the formation of primordial stars that follows the relevant atomic and molecular processes in a primordial gas in an expanding universe. The results show that primeval density fluctuations left over from the Big Bang can drive the formation of a tiny protostar with a mass 1% that of the Sun. The protostar is a seed for the subsequent formation of a massive primordial star.

  6. The Role of Star Formation in Radio-Loud Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Wilcots, E.; Hess, K.

    2010-01-01

    X-ray observations have shown that additional non-gravitational processes are required to explain the heating of the intergalactic medium in galaxy groups. The two most likely processes are galactic outflows from starbursts and feedback from AGN. Here, we look at star formation as a possible additional heating mechanism in X-ray luminous groups such as NGC 741, NGC 1052, NGC 524, and NGC 1587. We report on the results of optical imaging of these groups carried out using the WIYN 3.5m telescope with a specific emphasis on measuring the star formation rates of the resident galaxies in each group and estimating the impact of that star formation on the thermodynamics of the intragroup medium.

  7. UV-to-IR spectral energy distributions of galaxies at z>1: the impact of Herschel data on dust attenuation and star formation determinations

    NASA Astrophysics Data System (ADS)

    Buat, V.; Heinis, S.; Boquien, M.

    2013-11-01

    We report on our recent works on the UV-to-IR SED fitting of a sample of distant (z>1) galaxies observed by Herschel in the CDFS as part of the GOODS-Herschel project. Combining stellar and dust emission in galaxies is found powerful to constrain their dust attenuation as well as their star formation activity. We focus on the caracterisation of dust attenuation and on the uncertainties on the derivation of the star formation rates and stellar masses, as a function of the range of wavelengths sampled by the data data and of the assumptions made on the star formation histories

  8. 10 CFR 431.223 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... procedures incorporated by reference. (1) Environmental Protection Agency, “ENERGY STAR Program Requirements... Agency “ENERGY STAR Program Requirements for Traffic Signals,” Version 1.1, may be obtained from the...

  9. 10 CFR 431.223 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... procedures incorporated by reference. (1) Environmental Protection Agency, “ENERGY STAR Program Requirements... Agency “ENERGY STAR Program Requirements for Traffic Signals,” Version 1.1, may be obtained from the...

  10. 10 CFR 431.223 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... procedures incorporated by reference. (1) Environmental Protection Agency, “ENERGY STAR Program Requirements... Agency “ENERGY STAR Program Requirements for Traffic Signals,” Version 1.1, may be obtained from the...

  11. The Influence Of Environment On The Star Formation Properties Of Galaxies

    NASA Astrophysics Data System (ADS)

    Rodriguez Del Pino, Bruno

    2015-10-01

    This thesis explores the properties of galaxies that reside in regions of high density and the influence of the environment in their evolution. n particular, it aims to shed more light on the understanding of how galaxies stop forming stars, becoming passive objects, and the role played by environment in this process. The work presented here includes the study of the properties of galaxies in clusters at two different stages of their evolution: we first look at cluster galaxies that have recently stopped forming stars, and then we investigate the influence of environment on galaxies while they are still forming stars. The first study is based on Integral Field Spectroscopic (IFS) observations of a sample of disk `k+a' galaxies in a cluster at z 0.3. The `k+a' spectral feature imply a recent suppression of star formation in the galaxies, and therefore the study of their properties is crucial to understanding how the suppression happened. We study the kinematics and spatial distributions of the different stellar populations inhabiting these galaxies. We found that the last stars that were formed (i.e., younger stars) are rotationally-supported and behave similar to the older stars. Moreover, the spatial distribution of the young stars also resembles that of the older stellar populations, although the young stars tend to be more concentrated towards the central regions of the galaxies. These findings indicate that the process responsible for the suppression of the star formation in the cluster disk galaxies had to be gentle, withouth perturbing significantly the old stellar disks. However, a significant number of galaxies with centrally-concentrated young populations were found to have close companions, therefore implying that galaxy-galaxy interactions might also contribute to the cessation of the star formation. These results provide very valuable information on the putative transformation of star-forming galaxies into passive S0s. We then move to the study of the star formation properties and nuclear activity in galaxies in a multi-cluster system at z 0.165. We employ Tuneable Filter observations to map the Halpha and N[II] emission lines. We show the feasibility and advantages of using these type of observations to map emission lines in a large number of objects at a single redshift, and developed a procedure for the reduction and analysis of the data. We find a large number of optical AGN that were not previously detected as X-ray point sources. The probability that a galaxy hosts an AGN is not found to correlate with environment. From the analysis of the integrated star formation properties of the galaxies in the multi-cluster system we observe a significant number of galaxies with suppressed star formation with respect to the field. Although stellar mass is the main driver of the suppression of star formation, once its effect is removed, we find that galaxies in the core regions have reduced specific star formation rates (SSFRs) with respect to the infall regions. Moreover, the environment influences galaxies differently depending on their stellar mass. Galaxies with low masses experience a change in morphology (from irregulars and spirals to early-types) and colour (blue to red) as they fall into regions of higher density. However, many massive spiral galaxies retain their disk morphologies and the visibility of their spiral arms all the way to the core regions. Before becoming passive, these galaxies experience a phase exhibiting red colours and relatively high SSFRs. A significant fraction of the spiral galaxies with relatively high masses go through this phase, which could represent the transition towards becoming S0s. We finish by presenting some interesting results on the spatial distribution of the emission-line regions in the cluster galaxies. We develop a method to create emission-line images, which successfully preserves the flux within the emission lines. Our analysis on the concentrations and sizes of the star-forming regions shows that the star-forming regions of cluster galaxies are generally more concentrated than the underlying stellar populations. However, we find no differences in the spatial distribution of the star formation between galaxies in the infall and in the core regions, but the star formation is more concentrated than in the field galaxies studied in previous works. These results imply that the process responsible for the concentration or truncation of the star formation in the galaxies took place before entering the multi-cluster system of our study.

  12. A Multi-Wavelength Survey of Intermediate-Mass Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Lundquist, Michael J.; Kobulnicky, Henry A.; Kerton, Charles R.

    2015-01-01

    Current research into Galactic star formation has focused on either massive star-forming regions or nearby low-mass regions. We present results from a survey of Galactic intermediate-mass star-forming regions (IM SFRs). These regions were selected from IRAS colors that specify cool dust and large PAH contribution, suggesting that they produce stars up to but not exceeding about 8 solar masses. Using WISE data we have classified 984 candidate IM SFRs as star-like objects, galaxies, filamentary structures, or blobs/shells based on their mid-infrared morphologies. Focusing on the blobs/shells, we combined follow-up observations of deep near-infrared (NIR) imaging with optical and NIR spectroscopy to study the stellar content, confirming the intermediate-mass nature of these regions. We also gathered CO data from OSO and APEX to study the molecular content and dynamics of these regions. We compare these results to those of high-mass star formation in order to better understand their role in the star-formation paradigm.

  13. RCSED—A Value-added Reference Catalog of Spectral Energy Distributions of 800,299 Galaxies in 11 Ultraviolet, Optical, and Near-infrared Bands: Morphologies, Colors, Ionized Gas, and Stellar Population Properties

    NASA Astrophysics Data System (ADS)

    Chilingarian, Igor V.; Zolotukhin, Ivan Yu.; Katkov, Ivan Yu.; Melchior, Anne-Laure; Rubtsov, Evgeniy V.; Grishin, Kirill A.

    2017-02-01

    We present RCSED, the value-added Reference Catalog of Spectral Energy Distributions of galaxies, which contains homogenized spectrophotometric data for 800,299 low- and intermediate-redshift galaxies (0.007< z< 0.6) selected from the Sloan Digital Sky Survey spectroscopic sample. Accessible from the Virtual Observatory (VO) and complemented with detailed information on galaxy properties obtained with state-of-the-art data analysis, RCSED enables direct studies of galaxy formation and evolution over the last 5 Gyr. We provide tabulated color transformations for galaxies of different morphologies and luminosities, and analytic expressions for the red sequence shape in different colors. RCSED comprises integrated k-corrected photometry in up to 11 ultraviolet, optical, and near-infrared bands published by the GALEX, SDSS, and UKIDSS wide-field imaging surveys; results of the stellar population fitting of SDSS spectra including best-fitting templates, velocity dispersions, parameterized star formation histories, and stellar metallicities computed for instantaneous starburst and exponentially declining star formation models; parametric and non-parametric emission line fluxes and profiles; and gas phase metallicities. We link RCSED to the Galaxy Zoo morphological classification and galaxy bulge+disk decomposition results of Simard et al. We construct the color-magnitude, Faber-Jackson, and mass-metallicity relations; compare them with the literature; and discuss systematic errors of the galaxy properties presented in our catalog. RCSED is accessible from the project web site and via VO simple spectrum access and table access services using VO-compliant applications. We describe several examples of SQL queries to the database. Finally, we briefly discuss existing and future scientific applications of RCSED and prospective catalog extensions to higher redshifts and different wavelengths. .

  14. Dust formation at low metallicity

    NASA Astrophysics Data System (ADS)

    Ferrarotti, A. S.; Gail, H.-P.

    Stars between 3Modot and 25Modot reach their final stages of stellar evolution either as AGB (asymptotic giant branch) stars and finally become white dwarfs, or end in a supernova explosion. The last evolutionary stages, shortly before the final state, are regularly accompanied by stellar winds which lead to substantial mass loss and develop optically very thick dust shells. Mass loss for smaller and medium sized stars higher up on the AGB depends predominantly on the metallicity of the star. For Pop I metallicity, the mass loss is caused by dust condensation. This process is not possible for stars of small Z. Thus, their final evolution strongly depends on the possibility of dust formation. Our research focuses on the dependence of dust formation of the first stellar generation on Z and on the initial mass of the star. Furthermore, we investigate when dust formation becomes possible in stellar winds and the effects this process has on the evolution of the star at the final evolutionary stages. With synthetic AGB evolution models some important issues in stellar evolution can tried to be answered: (1) mass loss on the AGB, (2) the shift of the limit (γ>1) for the onset of dust driven winds with Z and (3) the critical Z when dust formation becomes possible.

  15. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in themore » largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.« less

  16. Probing Dust Formation Around Evolved Stars with Near-Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Sargent, B.; Srinivasan, S.; Riebel, D.; Meixner, M.

    2014-09-01

    Near-infrared interferometry holds great promise for advancing our understanding of the formation of dust around evolved stars. For example, the Magdalena Ridge Observatory Interferometer (MROI), which will be an optical/near-infrared interferometer with down to submilliarcsecond resolution, includes studying stellar mass loss as being of interest to its Key Science Mission. With facilities like MROI, many questions relating to the formation of dust around evolved stars may be probed. How close to an evolved star such as an asymptotic giant branch (AGB) or red supergiant (RSG) star does a dust grain form? Over what temperature ranges will such dust form? How does dust formation temperature and distance from star change as a function of the dust composition (carbonaceous versus oxygen-rich)? What are the ranges of evolved star dust shell geometries, and does dust shell geometry for AGB and RSG stars correlate with dust composition, similar to the correlation seen for planetary nebula outflows? At what point does the AGB star become a post-AGB star, when dust formation ends and the dust shell detaches? Currently we are conducting studies of evolved star mass loss in the Large Magellanic Cloud using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We model this mass loss using the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS). For simplicity, we assume spherical symmetry, but 2Dust does have the capability to model axisymmetric, non-spherically-symmetric dust shell geometries. 2Dust can also generate images of models at specified wavelengths. We discuss possible connections of our GRAMS modeling using 2Dust of SAGE data of evolved stars in the LMC and also other data on evolved stars in the Milky Way's Galactic Bulge to near-infrared interferometric studies of such stars. By understanding the origins of dust around evolved stars, we may learn more about the later parts of the life of stardust; e.g., its residence in the interstellar medium, its time spent in molecular clouds, and its inclusion into solid bodies in future planetary systems.

  17. Star Formation and Gas Dynamics in Galactic Disks: Physical Processes and Numerical Models

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve C.

    2011-04-01

    Star formation depends on the available gaseous ``fuel'' as well as galactic environment, with higher specific star formation rates where gas is predominantly molecular and where stellar (and dark matter) densities are higher. The partition of gas into different thermal components must itself depend on the star formation rate, since a steady state distribution requires a balance between heating (largely from stellar UV for the atomic component) and cooling. In this presentation, I discuss a simple thermal and dynamical equilibrium model for the star formation rate in disk galaxies, where the basic inputs are the total surface density of gas and the volume density of stars and dark matter, averaged over ~kpc scales. Galactic environment is important because the vertical gravity of the stars and dark matter compress gas toward the midplane, helping to establish the pressure, and hence the cooling rate. In equilibrium, the star formation rate must evolve until the gas heating rate is high enough to balance this cooling rate and maintain the pressure imposed by the local gravitational field. In addition to discussing the formulation of this equilibrium model, I review the current status of numerical simulations of multiphase disks, focusing on measurements of quantities that characterize the mean properties of the diffuse ISM. Based on simulations, turbulence levels in the diffuse ISM appear relatively insensitive to local disk conditions and energetic driving rates, consistent with observations. It remains to be determined, both from observations and simulations, how mass exchange processes control the ratio of cold-to-warm gas in the atomic ISM.

  18. Modeling Jet and Outflow Feedback during Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Schrön, Martin; Banerjee, Robi; Klessen, Ralf S.

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ~1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ~1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ~ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  19. Unusual void galaxy DDO 68: implications of the HST-resolved photometry

    NASA Astrophysics Data System (ADS)

    Makarov, D. I.; Makarova, L. N.; Pustilnik, S. A.; Borisov, S. B.

    2017-04-01

    DDO 68 (UGC 5340) is an unusual dwarf galaxy with extremely low gas metallicity [12 + log (O/H) = 7.14] residing in the nearby Lynx-Cancer void. Despite its apparent isolation, it shows both optical and H I morphological evidence for strong tidal disturbance. Here, we study the resolved stellar populations of DDO 68 using deep images from the HST archive. We determined a distance of 12.75 ± 0.41 Mpc using the tip of the red giant branch (TRGB). The star formation history reconstruction reveals that about 60 per cent of stars formed during the initial period of star formation, about 12-14 Gyr ago. During the next 10 Gyr, DDO 68 was in the quenched state, with only slight traces of star formation. The onset of the most recent burst of star formation occurred about 300 Myr ago. We find that young populations with ages of several million to a few hundred million years are widely spread across various parts of DDO 68, indicating an intense star formation episode with a high mean rate of 0.15 M⊙ yr-1. A major fraction of the visible stars in the whole system (˜80 per cent) have low metallicities: Z = Z⊙/50-Z⊙/20. The properties of the northern periphery of DDO 68 can be explained by an ongoing burst of star formation induced by the minor merger of a small, gas-rich, extremely metal-poor galaxy with a more typical dwarf galaxy. The current TRGB-based distance of DDO 68 implies a total negative peculiar velocity of ≈500 km s-1.

  20. Star formation in a high-pressure environment: an SMA view of the Galactic Centre dust ridge

    NASA Astrophysics Data System (ADS)

    Walker, D. L.; Longmore, S. N.; Zhang, Q.; Battersby, C.; Keto, E.; Kruijssen, J. M. D.; Ginsburg, A.; Lu, X.; Henshaw, J. D.; Kauffmann, J.; Pillai, T.; Mills, E. A. C.; Walsh, A. J.; Bally, J.; Ho, L. C.; Immer, K.; Johnston, K. G.

    2018-02-01

    The star formation rate in the Central Molecular Zone (CMZ) is an order of magnitude lower than predicted according to star formation relations that have been calibrated in the disc of our own and nearby galaxies. Understanding how and why star formation appears to be different in this region is crucial if we are to understand the environmental dependence of the star formation process. Here, we present the detection of a sample of high-mass cores in the CMZ's `dust ridge' that have been discovered with the Submillimeter Array. These cores range in mass from ˜50-2150 M⊙ within radii of 0.1-0.25 pc. All appear to be young (pre-UCHII), meaning that they are prime candidates for representing the initial conditions of high-mass stars and sub-clusters. We report that at least two of these cores (`c1' and `e1') contain young, high-mass protostars. We compare all of the detected cores with high-mass cores and clouds in the Galactic disc and find that they are broadly similar in terms of their masses and sizes, despite being subjected to external pressures that are several orders of magnitude greater, ˜108 K cm-3, as opposed to ˜105 K cm-3. The fact that >80 per cent of these cores do not show any signs of star-forming activity in such a high-pressure environment leads us to conclude that this is further evidence for an increased critical density threshold for star formation in the CMZ due to turbulence.

  1. Not all stars form in clusters - measuring the kinematics of OB associations with Gaia

    NASA Astrophysics Data System (ADS)

    Ward, Jacob L.; Kruijssen, J. M. Diederik

    2018-04-01

    It is often stated that star clusters are the fundamental units of star formation and that most (if not all) stars form in dense stellar clusters. In this monolithic formation scenario, low-density OB associations are formed from the expansion of gravitationally bound clusters following gas expulsion due to stellar feedback. N-body simulations of this process show that OB associations formed this way retain signs of expansion and elevated radial anisotropy over tens of Myr. However, recent theoretical and observational studies suggest that star formation is a hierarchical process, following the fractal nature of natal molecular clouds and allowing the formation of large-scale associations in situ. We distinguish between these two scenarios by characterizing the kinematics of OB associations using the Tycho-Gaia Astrometric Solution catalogue. To this end, we quantify four key kinematic diagnostics: the number ratio of stars with positive radial velocities to those with negative radial velocities, the median radial velocity, the median radial velocity normalized by the tangential velocity, and the radial anisotropy parameter. Each quantity presents a useful diagnostic of whether the association was more compact in the past. We compare these diagnostics to models representing random motion and the expanding products of monolithic cluster formation. None of these diagnostics show evidence of expansion, either from a single cluster or multiple clusters, and the observed kinematics are better represented by a random velocity distribution. This result favours the hierarchical star formation model in which a minority of stars forms in bound clusters and large-scale, hierarchically structured associations are formed in situ.

  2. Star and Planet Formation through Cosmic Time

    NASA Astrophysics Data System (ADS)

    Lee, Aaron Thomas

    The computational advances of the past several decades have allowed theoretical astrophysics to proceed at a dramatic pace. Numerical simulations can now simulate the formation of individual molecules all the way up to the evolution of the entire universe. Observational astrophysics is producing data at a prodigious rate, and sophisticated analysis techniques of large data sets continue to be developed. It is now possible for terabytes of data to be effectively turned into stunning astrophysical results. This is especially true for the field of star and planet formation. Theorists are now simulating the formation of individual planets and stars, and observing facilities are finally capturing snapshots of these processes within the Milky Way galaxy and other galaxies. While a coherent theory remains incomplete, great strides have been made toward this goal. This dissertation discusses several projects that develop models of star and planet forma- tion. This work spans large spatial and temporal scales: from the AU-scale of protoplanetary disks all the way up to the parsec-scale of star-forming clouds, and taking place in both contemporary environments like the Milky Way galaxy and primordial environments at redshifts of z 20. Particularly, I show that planet formation need not proceed in incremental stages, where planets grow from millimeter-sized dust grains all the way up to planets, but instead can proceed directly from small dust grains to large kilometer-sized boulders. The requirements for this model to operate effectively are supported by observations. Additionally, I draw suspicion toward one model for how you form high mass stars (stars with masses exceeding 8 Msun), which postulates that high-mass stars are built up from the gradual accretion of mass from the cloud onto low-mass stars. I show that magnetic fields in star forming clouds thwart this transfer of mass, and instead it is likely that high mass stars are created from the gravitational collapse of large clouds. This work also provides a sub-grid model for computational codes that employ sink particles accreting from magnetized gas. Finally, I analyze the role that radiation plays in determining the final masses of the first stars to ever form in the universe. These stars formed in starkly different environments than stars form in today, and the role of the direct radiation from these stars turns out to be a crucial component of primordial star formation theory. These projects use a variety of computational tools, including the use of spectral hydrodynamics codes, magneto-hydrodynamics grid codes that employ adaptive mesh refinement techniques, and long characteristic ray tracing methods. I develop and describe a long characteristic ray tracing method for modeling hydrogen-ionizing radiation from stars. Additionally, I have developed Monte Carlo routines that convert hydrodynamic data used in smoothed particle hydrodynamics codes for use in grid-based codes. Both of these advances will find use beyond simulations of star and planet formation and benefit the astronomical community at large.

  3. Completing the Mapping of the W3 Giant Molecular Cloud; Testing Models and the Importance of Triggered Star Formation

    NASA Astrophysics Data System (ADS)

    Moore, Toby; Allsopp, James; Jones, Huw

    2006-05-01

    It is proposed to complete the R. Gehrz's mapping of W3 at both IRAC and MIPS 24um wavelengths. W3 is an outer galaxy Giant Molecular Cloud comprising of two regions; a quiescent, spontaneously star forming region and a region compressed by the W4 OB association containing the majority of star formation and all of the high mass star formation. Currently only the high-density region, Lada( put date) is mapped, but for a scientifically-valid comparision between the triggered and spontaneous modes we require the remainder of the cloud to be mapped. Triggered star formation is vitally important as it provides a mechanism for understanding the massive disparity between the low star formation efficiencies of galaxies such as our own andmore violent events such as galaxy mergers. Currently we have mapped the majority of the cloud at 850 um using SCUBA and the whole cloud using the CO(J=1-0) with the 12CO, 13CO and C18O isotomers. From these studies we have identified and measured the masses of 230 clumps. Without Spitzer data we have no way of determining which of these clumps have formed stars. This project forms the final crucial piece which when added to our current observations of the mass in the cloud will quantify the local star formation efficiency for each region. This is the first part of an ongoing much larger study into triggered star formation. We used Aztec (1.1mm continuum) on the JCMT in January 2006 to map two more clouds and Spitzer data on these from other observers has either been recently released or is about to be. In 2007, we will expand on the knowledge gained from this with the SCUBA2 JCMT Galactic Plane Survey (JPS) in which we are collaborators.

  4. Star Formation-Driven Winds in the Early Universe

    NASA Astrophysics Data System (ADS)

    Peek, Matthew; Lundgren, Britt; Brammer, Gabriel

    2018-01-01

    Measuring the extent of star formation-driven winds from galaxies in the early universe is crucial for understanding of how galaxies evolve over cosmic time. Using WFC3/IR grism data from the Hubble Space Telescope (HST), we have measured the star formation rates and star formation rate surface densities of several hundred galaxies at redshift (z) = 1, when the universe was roughly half its present age. The galaxies we examine are also probed by background quasars, whose spectra provide information about the extent of metal-enriched gas in their halos. We use a computational pipeline to measure the density of the star formation in each galaxy and correlate these measurements with detections of Mg II absorption in nearby quasar spectra from the Sloan Digital Sky Survey. Our preliminary results support a model in which galaxies with high SFR surface densities drive metal-enriched gas out of the disk and into these galaxies’ extended halos, where that gas is detected in the spectra of more distant quasars.

  5. Automata network models of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Chappell, David; Scalo, John

    1993-01-01

    Two ideas appear frequently in theories of star formation and galaxy evolution: (1) star formation is nonlocally excitatory, stimulating star formation in neighboring regions by propagation of a dense fragmenting shell or the compression of preexisting clouds; and (2) star formation is nonlocally inhibitory, making H2 regions and explosions which can create low-density and/or high temperature regions and increase the macroscopic velocity dispersion of the cloudy gas. Since it is not possible, given the present state of hydrodynamic modeling, to estimate whether one of these effects greatly dominates the other, it is of interest to investigate the predicted spatial pattern of star formation and its temporal behavior in simple models which incorporate both effects in a controlled manner. The present work presents preliminary results of such a study which is based on lattice galaxy models with various types of nonlocal inhibitory and excitatory couplings of the local SFR to the gas density, temperature, and velocity field meant to model a number of theoretical suggestions.

  6. Environmental dependence of star formation induced by cloud collisions in a barred galaxy

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yusuke; Tasker, Elizabeth J.; Habe, Asao

    2014-11-01

    Cloud collision has been proposed as a way to link the small-scale star formation process with the observed global relation between the surface star formation rate and gas surface density. We suggest that this model can be improved further by allowing the productivity of such collisions to depend on the relative velocity of the two clouds. Our adjustment implements a simple step function that results in the most successful collisions being at the observed velocities for triggered star formation. By applying this to a high-resolution simulation of a barred galaxy, we successfully reproduce the observational result that the star formation efficiency (SFE) in the bar is lower than that in the spiral arms. This is not possible when we use an efficiency dependent on the internal turbulence properties of the clouds. Our results suggest that high-velocity collisions driven by the gravitational pull of the clouds are responsible for the low bar SFE.

  7. Reconstructing Star Formation Histories to Reveal the Origin and Evolution of the SFR-M* Correlation

    NASA Astrophysics Data System (ADS)

    Gawiser, Eric

    2016-10-01

    Correlations have played an important role in advancing our knowledge of astrophysics, from the Schmidt-Kennicutt law to the black hole-bulge mass relation. A surprisingly tight correlation between galaxy star formation rates (SFR) and stellar masses (M*) was discovered in 2007, and models of galaxy formation and evolution can be constrained by studying the evolution of this SFR-M* correlation and its intrinsic scatter. At present, such investigations are weakened by the need to assume a simple parametric form for the star formation history, typically constant or exponentially declining.We propose to use our new dense basis method to reconstruct star-formation histories (SFHs) through SED fitting using multi-band photometry of >10,000 galaxies in the 3D-HST and CANDELS catalogs. Armed with these reconstructed SFHs, we will then:1. Better measure the SFR-M* correlation (aka star-forming sequence) in several redshift bins at 0.5

  8. Star Formation in a Complete Spectroscopic Survey of Galaxies

    NASA Astrophysics Data System (ADS)

    Carter, B. J.; Fabricant, D. G.; Geller, M. J.; Kurtz, M. J.; McLean, B.

    2001-10-01

    The 15R-North galaxy redshift survey is a uniform spectroscopic survey (S/N~10) covering the range 3650-7400 Å for 3149 galaxies with median redshift 0.05. The sample is 90% complete to R=15.4. The median slit covering fraction is 24% of the galaxy, apparently sufficient to minimize the effects of aperture bias on the EW(Hα). Forty-nine percent of the galaxies in the survey have one or more emission lines detected at >=2 σ. In agreement with previous surveys, the fraction of absorption-line galaxies increases steeply with galaxy luminosity. We use Hβ, [O III], Hα, and [N II] to discriminate between star-forming galaxies and AGNs. At least 20% of the galaxies are star-forming, at least 17% have AGN-like emission, and 12% have unclassifiable emission. The unclassified 12% may include a ``hybrid'' population of galaxies with both star formation and AGN activity. The AGN fraction increases steeply with luminosity; the fraction of star-forming galaxies decreases. We use the EW(Hα+[N II]) to estimate the Scalo birthrate parameter, b, the ratio of the current star formation rate to the time averaged star formation rate. The median birthrate parameter is inversely correlated with luminosity in agreement with the conclusions based on smaller samples (Kennicutt, Tamblyn, & Congdon). Because our survey is large, we identify 33 vigorously star-forming galaxies with b>3. We confirm the conclusion of Jansen, Franx, & Fabricant that EW([O II]) must be used with caution as a measure of current star formation. Finally, we examine the way galaxies of different spectroscopic type trace the large-scale galaxy distribution. As expected the absorption-line fraction decreases and the star-forming emission-line fraction increases as the galaxy density decreases. The AGN fraction is insensitive to the surrounding galaxy density; the unclassified fraction declines slowly as the density increases. For the star-forming galaxies, the EW(Hα) increases very slowly as the galaxy number density decreases. Whether a galaxy forms stars or not is strongly correlated with the surrounding galaxy density averaged over a scale of a few Mpc. This dependence reflects, in large part, the morphology-density relation. However, for galaxies forming stars, the stellar birthrate parameter is remarkably insensitive to the galaxy density. This conclusion suggests that the triggering of star formation occurs on a smaller spatial scale.

  9. Studies of star formation in isolated small dark clouds - II. A southern ammonia survey

    NASA Astrophysics Data System (ADS)

    Bourke, T. L.; Hyland, A. R.; Robinson, G.; James, S. D.; Wright, C. M.

    1995-10-01

    A study of the set of small, southern molecular clouds (globules) compiled by Bourke, Hyland & Robinson has been undertaken, through radio observations of ammonia using the Parkes 64-m telescope. The aim of the study is to determine the physical characteristics of the globules, their role in the formation of low-mass stars, and the physical mechanism that triggers the star formation process, or stabilizes the globules against collapse. With this general aim in mind, the (1,1) and (2,2) inversion transitions of ammonia have been surveyed in order to determine the densities, temperatures and masses of the globules. Half of the globules have been detected in ammonia, but only 6 per cent of the detections are `strong' (T*_a>=0.35K). Comparing the globule properties with those of Benson & Myers for cores within complexes, we find that the globules are less opaque and less dense, and are less active sites of star formation. Other properties are comparable. The Vela cometary globules are detected more readily in ammonia than the more isolated globules, and are more active star formation sites. These results suggest that the dense core's environment, in particular the presence of either a large external mass or a significant stellar wind, plays an important role in initiating the star formation process.

  10. The Origin of Scales and Scaling Laws in Star Formation

    NASA Astrophysics Data System (ADS)

    Guszejnov, David; Hopkins, Philip; Grudich, Michael

    2018-01-01

    Star formation is one of the key processes of cosmic evolution as it influences phenomena from the formation of galaxies to the formation of planets, and the development of life. Unfortunately, there is no comprehensive theory of star formation, despite intense effort on both the theoretical and observational sides, due to the large amount of complicated, non-linear physics involved (e.g. MHD, gravity, radiation). A possible approach is to formulate simple, easily testable models that allow us to draw a clear connection between phenomena and physical processes.In the first part of the talk I will focus on the origin of the IMF peak, the characteristic scale of stars. There is debate in the literature about whether the initial conditions of isothermal turbulence could set the IMF peak. Using detailed numerical simulations, I will demonstrate that not to be the case, the initial conditions are "forgotten" through the fragmentation cascade. Additional physics (e.g. feedback) is required to set the IMF peak.In the second part I will use simulated galaxies from the Feedback in Realistic Environments (FIRE) project to show that most star formation theories are unable to reproduce the near universal IMF peak of the Milky Way.Finally, I will present analytic arguments (supported by simulations) that a large number of observables (e.g. IMF slope) are the consequences of scale-free structure formation and are (to first order) unsuitable for differentiating between star formation theories.

  11. Radiative and Kinetic Feedback by Low-Mass Primordial Stars

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel; Hueckstaedt, Robert M.; McConkie, Thomas O.

    2010-03-01

    Ionizing UV radiation and supernova (SN) flows amidst clustered minihalos at high redshift regulated the rise of the first stellar populations in the universe. Previous studies have addressed the effects of very massive primordial stars on the collapse of nearby halos into new stars, but the absence of the odd-even nucleosynthetic signature of pair-instability SNe in ancient metal-poor stars suggests that Population III stars may have been less than 100 M sun. We extend our earlier survey of local UV feedback on star formation to 25-80 M sun stars and include kinetic feedback by SNe for 25-40 M sun stars. We find radiative feedback to be relatively uniform over this mass range, primarily because the larger fluxes of more massive stars are offset by their shorter lifetimes. Our models demonstrate that prior to the rise of global UV backgrounds, Lyman-Werner (LW) photons from nearby stars cannot prevent halos from forming new stars. These calculations also reveal that violent dynamical instabilities can erupt in the UV radiation front enveloping a primordial halo, but that they ultimately have no effect on the formation of a star. Finally, our simulations suggest that relic H II regions surrounding partially evaporated halos may expel LW backgrounds at lower redshifts, allowing stars to form that were previously suppressed. We provide fits to radiative and kinetic feedback on star formation for use in both semianalytic models and numerical simulations.

  12. LoCuSS: THE STEADY DECLINE AND SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES OVER THE LAST FOUR BILLION YEARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, C. P.; Pereira, M. J.; Egami, E.

    2013-10-01

    We present an analysis of the levels and evolution of star formation activity in a representative sample of 30 massive galaxy clusters at 0.15 < z < 0.30 from the Local Cluster Substructure Survey, combining wide-field Spitzer/MIPS 24 μm data with extensive spectroscopy of cluster members. The specific SFRs of massive (M > or approx. 10{sup 10} M{sub ☉}) star-forming cluster galaxies within r{sub 200} are found to be systematically ∼28% lower than their counterparts in the field at fixed stellar mass and redshift, a difference significant at the 8.7σ level. This is the unambiguous signature of star formation inmore » most (and possibly all) massive star-forming galaxies being slowly quenched upon accretion into massive clusters, their star formation rates (SFRs) declining exponentially on quenching timescales in the range 0.7-2.0 Gyr. We measure the mid-infrared Butcher-Oemler effect over the redshift range 0.0-0.4, finding rapid evolution in the fraction (f{sub SF}) of massive (M{sub K} < – 23.1) cluster galaxies within r{sub 200} with SFRs > 3 M{sub ☉} yr{sup –1}, of the form f{sub SF}∝(1 + z){sup 7.6±1.1}. We dissect the origins of the Butcher-Oemler effect, revealing it to be due to the combination of a ∼3 × decline in the mean specific SFRs of star-forming cluster galaxies since z ∼ 0.3 with a ∼1.5 × decrease in number density. Two-thirds of this reduction in the specific SFRs of star-forming cluster galaxies is due to the steady cosmic decline in the specific SFRs among those field galaxies accreted into the clusters. The remaining one-third reflects an accelerated decline in the star formation activity of galaxies within clusters. The slow quenching of star formation in cluster galaxies is consistent with a gradual shut down of star formation in infalling spiral galaxies as they interact with the intracluster medium via ram-pressure stripping or starvation mechanisms. The observed sharp decline in star formation activity among cluster galaxies since z ∼ 0.4 likely reflects the increased susceptibility of low-redshift spiral galaxies to gas removal mechanisms as their gas surface densities decrease with time. We find no evidence for the build-up of cluster S0 bulges via major nuclear starburst episodes.« less

  13. A study of the gas-star formation relation over cosmic time

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Gracia-Carpio, J.; Sternberg, A.; Cooper, M. C.; Shapiro, K.; Bolatto, A.; Bouché, N.; Bournaud, F.; Burkert, A.; Combes, F.; Comerford, J.; Cox, P.; Davis, M.; Schreiber, N. M. Förster; Garcia-Burillo, S.; Lutz, D.; Naab, T.; Neri, R.; Omont, A.; Shapley, A.; Weiner, B.

    2010-10-01

    We use the first systematic data sets of CO molecular line emission in z ~ 1-3 normal star-forming galaxies (SFGs) for a comparison of the dependence of galaxy-averaged star formation rates on molecular gas masses at low and high redshifts, and in different galactic environments. Although the current high-z samples are still small and biased towards the luminous and massive tail of the actively star-forming `main-sequence', a fairly clear picture is emerging. Independent of whether galaxy-integrated quantities or surface densities are considered, low- and high-z SFG populations appear to follow similar molecular gas-star formation relations with slopes 1.1 to 1.2, over three orders of magnitude in gas mass or surface density. The gas-depletion time-scale in these SFGs grows from 0.5 Gyr at z ~ 2 to 1.5 Gyr at z ~ 0. The average corresponds to a fairly low star formation efficiency of 2 per cent per dynamical time. Because star formation depletion times are significantly smaller than the Hubble time at all redshifts sampled, star formation rates and gas fractions are set by the balance between gas accretion from the halo and stellar feedback. In contrast, very luminous and ultraluminous, gas-rich major mergers at both low and high z produce on average four to 10 times more far-infrared luminosity per unit gas mass. We show that only some fraction of this difference can be explained by uncertainties in gas mass or luminosity estimators; much of it must be intrinsic. A possible explanation is a top-heavy stellar mass function in the merging systems but the most likely interpretation is that the star formation relation is driven by global dynamical effects. For a given mass, the more compact merger systems produce stars more rapidly because their gas clouds are more compressed with shorter dynamical times, so that they churn more quickly through the available gas reservoir than the typical normal disc galaxies. When the dependence on galactic dynamical time-scale is explicitly included, disc galaxies and mergers appear to follow similar gas-to-star formation relations. The mergers may be forming stars at slightly higher efficiencies than the discs. Based on observations with the Plateau de Bure millimetre interferometre, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany) and IGN (Spain). E-mail: genzel@mpe.mpg.de; linda@mpe.mpg.de ‡ Spitzer Fellow. § MPG-Fellow at MPE.

  14. Low-metallicity Star Formation (IAU S255)

    NASA Astrophysics Data System (ADS)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2009-01-01

    Preface; SOC and LOC; Participants; Life at the conference; Conference photo; Session I. Population III and Metal-Free Star Formation: 1. Open questions in the study of population III star formation S. C. O. Glover, P. C. Clark, T. H. Greif, J. L. Johnson, V. Bromm, R. S. Klessen and A. Stacy; 2. Protostar formation in the early universe Naoki Yoshida; 3. Population III.1 stars: formation, feedback and evolution of the IMF Jonathan C. Tan; 4. The formation of the first galaxies and the transition to low-mass star formation T. H. Greif, D. R. G. Schleicher, J. L. Johnson, A.-K. Jappsen, R. S. Klessen, P. C. Clark, S. C. O. Glover, A. Stacy and V. Bromm; 5. Low-metallicity star formation: the characteristic mass and upper mass limit Kazuyuki Omukai; 6. Dark stars: dark matter in the first stars leads to a new phase of stellar evolution Katherine Freese, Douglas Spolyar, Anthony Aguirre, Peter Bodenheimer, Paolo Gondolo, J. A. Sellwood and Naoki Yoshida; 7. Effects of dark matter annihilation on the first stars F. Iocco, A. Bressan, E. Ripamonti, R. Schneider, A. Ferrara and P. Marigo; 8. Searching for Pop III stars and galaxies at high redshift Daniel Schaerer; 9. The search for population III stars Sperello di Serego Alighieri, Jaron Kurk, Benedetta Ciardi, Andrea Cimatti, Emanuele Daddi and Andrea Ferrara; 10. Observational search for population III stars in high-redshift galaxies Tohru Nagao; Session II. Metal Enrichment, Chemical Evolution, and Feedback: 11. Cosmic metal enrichment Andrea Ferrara; 12. Insights into the origin of the galaxy mass-metallicity relation Henry Lee, Eric F. Bell and Rachel S. Somerville; 13. LSD and AMAZE: the mass-metallicity relation at z > 3 F. Mannucci and R. Maiolino; 14. Three modes of metal-enriched star formation at high redshift Britton D. Smith, Matthew J. Turk, Steinn Sigurdsson, Brian W. O'Shea and Michael L. Norman; 15. Primordial supernovae and the assembly of the first galaxies Daniel Whalen, Bob Van Veelen, Brian W. O'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  15. Hierarchical Model for the Evolution of Cloud Complexes

    NASA Astrophysics Data System (ADS)

    Sánchez D., Néstor M.; Parravano, Antonio

    1999-01-01

    The structure of cloud complexes appears to be well described by a tree structure (i.e., a simplified ``stick man'') representation when the image is partitioned into ``clouds.'' In this representation, the parent-child relationships are assigned according to containment. Based on this picture, a hierarchical model for the evolution of cloud complexes, including star formation, is constructed. The model follows the mass evolution of each substructure by computing its mass exchange with its parent and children. The parent-child mass exchange (evaporation or condensation) depends on the radiation density at the interphase. At the end of the ``lineage,'' stars may be born or die, so that there is a nonstationary mass flow in the hierarchical structure. For a variety of parameter sets the system follows the same series of steps to transform diffuse gas into stars, and the regulation of the mass flux in the tree by previously formed stars dominates the evolution of the star formation. For the set of parameters used here as a reference model, the system tends to produce initial mass functions (IMFs) that have a maximum at a mass that is too high (~2 Msolar) and the characteristic times for evolution seem too long. We show that these undesired properties can be improved by adjusting the model parameters. The model requires further physics (e.g., allowing for multiple stellar systems and clump collisions) before a definitive comparison with observations can be made. Instead, the emphasis here is to illustrate some general properties of this kind of complex nonlinear model for the star formation process. Notwithstanding the simplifications involved, the model reveals an essential feature that will likely remain if additional physical processes are included, that is, the detailed behavior of the system is very sensitive to the variations on the initial and external conditions, suggesting that a ``universal'' IMF is very unlikely. When an ensemble of IMFs corresponding to a variety of initial or external conditions is examined, the slope of the IMF at high masses shows variations comparable to the range derived from observational data. These facts suggest that the considered physical processes (phase transitions regulated by the radiation field) may play a role in the global evolution of molecular complexes.

  16. On the analysis of large data sets

    NASA Astrophysics Data System (ADS)

    Ruch, Gerald T., Jr.

    We present a set of tools and techniques for performing detailed comparisons between computational models with high dimensional parameter spaces and large sets of archival data. By combining a principal component analysis of a large grid of samples from the model with an artificial neural network, we create a powerful data visualization tool as well as a way to robustly recover physical parameters from a large set of experimental data. Our techniques are applied in the context of circumstellar disks, the likely sites of planetary formation. An analysis is performed applying the two layer approximation of Chiang et al. (2001) and Dullemond et al. (2001) to the archive created by the Spitzer Space Telescope Cores to Disks Legacy program. We find two populations of disk sources. The first population is characterized by the lack of a puffed up inner rim while the second population appears to contain an inner rim which casts a shadow across the disk. The first population also exhibits a trend of increasing spectral index while the second population exhibits a decreasing trend in the strength of the 20 mm silicate emission feature. We also present images of the giant molecular cloud W3 obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer (MIPS) on board the Spitzer Space Telescope. The images encompass the star forming regions W3 Main, W3(OH), and a region that we refer to as the Central Cluster which encloses the emission nebula IC 1795. We present a star count analysis of the point sources detected in W3. The star count analysis shows that the stellar population of the Central Cluster, when compared to that in the background, contains an over density of sources. The Central Cluster also contains an excess of sources with colors consistent with Class II Young Stellar Objects (YSOs). A analysis of the color-color diagrams also reveals a large number of Class II YSOs in the Central Cluster. Our results suggest that an earlier epoch of star formation created the Central Cluster, created a cavity, and triggered the active star formation in the W3 Main and W3(OH) regions. We also detect a new outflow and its candidate exciting star.

  17. Self-regulated cooling flows in elliptical galaxies and in cluster cores - Is exclusively low mass star formation really necessary?

    NASA Technical Reports Server (NTRS)

    Silk, J.; Djorgovski, S.; Wyse, R. F. G.; Bruzual A., G.

    1986-01-01

    A self-consistent treatment of the heating by supernovae associated with star formation in a spherically symmetric cooling flow in a cluster core or elliptical galaxy is presented. An initial stellar mass function similar to that in the solar neighborhood is adopted. Inferred star-formation rates, within the cooling region - typically the inner 100 kpc around dominant galaxies at the centers of cooling flows in XD clusters - are reduced by about a factor of 2, relative to rates inferred when the heat input from star formation is ignored. Truncated initial mass functions (IMFs) are also considered, in which massive star formation is suppressed in accordance with previous treatments, and colors are predicted for star formation in cooling flows associated with central dominant elliptical galaxies and with isolated elliptical galaxies surrounded by gaseous coronae. The low inferred cooling-flow rates around isolated elliptical galaxies are found to be insensitive to the upper mass cutoff in the IMF, provided that the upper mass cutoff exceeds 2 M solar mass. Comparison with observed colors favors a cutoff in the IMF above 1 M solar mass in at least two well-studied cluster cooling flows, but a normal IMF cannot be excluded definitively. Models for NGC 1275 support a young (less than about 3 Gyr) cooling flow. As for the isolated elliptical galaxies, the spread in colors is consistent with a normal IMF. A definitive test of the IMF arising via star formation in cooling flows requires either UV spectral data or supernova searches in the cooling-flow-centered galaxies.

  18. Origin of chemically distinct discs in the Auriga cosmological simulations

    NASA Astrophysics Data System (ADS)

    Grand, Robert J. J.; Bustamante, Sebastián; Gómez, Facundo A.; Kawata, Daisuke; Marinacci, Federico; Pakmor, Rüdiger; Rix, Hans-Walter; Simpson, Christine M.; Sparre, Martin; Springel, Volker

    2018-03-01

    The stellar disc of the Milky Way shows complex spatial and abundance structure that is central to understanding the key physical mechanisms responsible for shaping our Galaxy. In this study, we use six very high resolution cosmological zoom-in simulations of Milky Way-sized haloes to study the prevalence and formation of chemically distinct disc components. We find that our simulations develop a clearly bimodal distribution in the [α/Fe]-[Fe/H] plane. We find two main pathways to creating this dichotomy, which operate in different regions of the galaxies: (a) an early (z > 1) and intense high-[α/Fe] star formation phase in the inner region (R ≲ 5 kpc) induced by gas-rich mergers, followed by more quiescent low-[α/Fe] star formation; and (b) an early phase of high-[α/Fe] star formation in the outer disc followed by a shrinking of the gas disc owing to a temporarily lowered gas accretion rate, after which disc growth resumes. In process (b), a double-peaked star formation history around the time and radius of disc shrinking accentuates the dichotomy. If the early star formation phase is prolonged (rather than short and intense), chemical evolution proceeds as per process (a) in the inner region, but the dichotomy is less clear. In the outer region, the dichotomy is only evident if the first intense phase of star formation covers a large enough radial range before disc shrinking occurs; otherwise, the outer disc consists of only low-[α/Fe] sequence stars. We discuss the implication that both processes occurred in the Milky Way.

  19. A case study of an extremely luminous, highly spatially extended starburst only 1.7Gyr after the Big Bang

    NASA Astrophysics Data System (ADS)

    Farrah, Duncan

    2017-08-01

    Luminous starbursts, systems with SFRs exceeding 1000Msun yr-1, are predicted to be extremely rare at z>3. However, recent observations find such systems at rates of tens to hundreds above predictions. This discrepancy is extremely difficult to explain. Case studies of such luminous starbursts are thus of profound importance to understand how star formation is triggered and quenched at z > 3, and help reconcile models with observations. Our group has been intensively studying the quasar SDSS J160705.16, at z = 3.65 (or 1.7Gyr after the Big Bang). This quasar is an excellent case study of luminous star formation at z > 3, and how AGN activity may affect such star formation. SDSS J160705.16 harbors both a broad-line, luminous quasar and an extremely high star formation rate, with an AGN luminosity of 10^47 ergs s-1 and an SFR of 2000 Msol yr-1. Sub-mm interferometry has further revealed that the star formation is highly spatially extended on scales up to 40kpc. Furthermore, VLA observations show an emerging 4kpc radio jet.We here propose WFC3 imaging with the following goals: (1) to set precise constraints on any lensing magnification, (2) to determine the morphology and color structure of the extended star formation, (3) to compare the optical morphology of the star formation to that seen in the sub-mm data, and (4) to search for evidence that SDSS J160705.16 resides in a protocluster.

  20. Exploring Damped Ly Alpha System Host Galaxies Using Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Toy, Vicki L.; Cucchiara, Antonino; Veilleux, Sylvain; Fumagalli, Michele; Rafelski, Marc; Rahmati, Alireza; Cenko, S. Bradley; Capone, John I.; Pasham, Dheeraj R.

    2016-01-01

    We present a sample of 45 Damped Ly-Alpha system [DLA; H I-N is greater than or equal to 2 x 10(exp. 20) cm(exp. -2)] counterparts (33 detections, 12 upper limits) which host gamma-ray bursts (GRB-DLAs) in order to investigate star formation and metallicity within galaxies hosting DLAs. Our sample spans z is approx. 2 - 6 and is nearly three times larger than any previously detected DLA counterparts survey based on quasar line-of-sight searches (QSO-DLAs). We report star formation rates (SFRs) from rest-frame UV photometry and spectral energy distribution modeling. We find that DLA counterpart SFRs are not correlated with either redshift or H I column density. Thanks to the combination of Hubble Space Telescope and ground-based observations, we also investigate DLA host star formation efficiency. Our GRB-DLA counterpart sample spans both higher efficiency and low efficiency star formation regions compared to the local Kennicutt-Schmidt relation, local star formation laws, and z is approximately 3 cosmological simulations. We also compare the depletion times of our DLA hosts sample to other objects in the local universe; our sample appears to deviate from the star formation efficiencies measured in local spiral and dwarf galaxies. Furthermore, we find similar efficiencies as local inner disks, SMC, and Lyman-break galaxy outskirts. Finally, our enrichment time measurements show a spread of systems with under- and over-abundance of metals, which may suggest that these systems had episodic star formation and a metal enrichment/depletion as a result of strong stellar feedback and/or metal inflow/outflow.

  1. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. VI. The role of bars in quenching star formation from z = 3 to the present epoch

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Consolandi, G.; Dotti, M.; Fanali, R.; Fossati, M.; Fumagalli, M.; Viscardi, E.; Savorgnan, G.; Boselli, A.; Gutiérrez, L.; Hernández Toledo, H.; Giovanelli, R.; Haynes, M. P.

    2015-08-01

    A growing body of evidence indicates that the star formation rate per unit stellar mass (sSFR) decreases with increasing mass in normal main-sequence star-forming galaxies. Many processes have been advocated as being responsible for this trend (also known as mass quenching), e.g., feedback from active galactic nuclei (AGNs), and the formation of classical bulges. In order to improve our insight into the mechanisms regulating the star formation in normal star-forming galaxies across cosmic epochs, we determine a refined star formation versus stellar mass relation in the local Universe. To this end we use the Hα narrow-band imaging follow-up survey (Hα3) of field galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Coma and Local superclusters. By complementing this local determination with high-redshift measurements from the literature, we reconstruct the star formation history of main-sequence galaxies as a function of stellar mass from the present epoch up to z = 3. In agreement with previous studies, our analysis shows that quenching mechanisms occur above a threshold stellar mass Mknee that evolves with redshift as ∝ (1 + z)2. Moreover, visual morphological classification of individual objects in our local sample reveals a sharp increase in the fraction of visually classified strong bars with mass, hinting that strong bars may contribute to the observed downturn in the sSFR above Mknee. We test this hypothesis using a simple but physically motivated numerical model for bar formation, finding that strong bars can rapidly quench star formation in the central few kpc of field galaxies. We conclude that strong bars contribute significantly to the red colors observed in the inner parts of massive galaxies, although additional mechanisms are likely required to quench the star formation in the outer regions of massive spiral galaxies. Intriguingly, when we extrapolate our model to higher redshifts, we successfully recover the observed redshift evolution for Mknee. Our study highlights how the formation of strong bars in massive galaxies is an important mechanism in regulating the redshift evolution of the sSFR for field main-sequence galaxies. Based on observations taken at the observatory of San Pedro Martir (Baja California, Mexico), belonging to the Mexican Observatorio Astronómico Nacional.

  2. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F.

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  3. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.

    PubMed

    Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  4. Insights from Synthetic Star-forming Regions. III. Calibration of Measurement and Techniques of Star Formation Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E., E-mail: koepferl@usm.lmu.de

    Through an extensive set of realistic synthetic observations (produced in Paper I), we assess in this part of the paper series (Paper III) how the choice of observational techniques affects the measurement of star formation rates (SFRs) in star-forming regions. We test the accuracy of commonly used techniques and construct new methods to extract the SFR, so that these findings can be applied to measure the SFR in real regions throughout the Milky Way. We investigate diffuse infrared SFR tracers such as those using 24 μ m, 70 μ m and total infrared emission, which have been previously calibrated formore » global galaxy scales. We set up a toy model of a galaxy and show that the infrared emission is consistent with the intrinsic SFR using extra-galactic calibrated laws (although the consistency does not prove their reliability). For local scales, we show that these techniques produce completely unreliable results for single star-forming regions, which are governed by different characteristic timescales. We show how calibration of these techniques can be improved for single star-forming regions by adjusting the characteristic timescale and the scaling factor and give suggestions of new calibrations of the diffuse star formation tracers. We show that star-forming regions that are dominated by high-mass stellar feedback experience a rapid drop in infrared emission once high-mass stellar feedback is turned on, which implies different characteristic timescales. Moreover, we explore the measured SFRs calculated directly from the observed young stellar population. We find that the measured point sources follow the evolutionary pace of star formation more directly than diffuse star formation tracers.« less

  5. The Effect of Star Formation History on the Inferred Stellar Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.; Scalo, John

    2006-01-01

    Peaks and lulls in the star formation rate (SFR) over the history of the Galaxy produce plateaus and declines in the present-day mass function (PDMF) where the main-sequence lifetime overlaps the age and duration of the SFR variation. These PDMF features can be misinterpreted as the form of the intrinsic stellar initial mass function (IMF) if the star formation rate is assumed to be constant or slowly varying with time. This effect applies to all regions that have formed stars for longer than the age of the most massive stars, including OB associations, star complexes, and especially galactic field stars. Related problems may apply to embedded clusters. Evidence is summarized for temporal SFR variations from parsec scales to entire galaxies, all of which should contribute to inferred IMF distortions. We give examples of various star formation histories to demonstrate the types of false IMF structures that might be seen. These include short-duration bursts, stochastic histories with lognormal amplitude distributions, and oscillating histories with various periods and phases. The inferred IMF should appear steeper than the intrinsic IMF over mass ranges where the stellar lifetimes correspond to times of decreasing SFRs; shallow portions of the inferred IMF correspond to times of increasing SFRs. If field regions are populated by dispersed clusters and defined by their low current SFRs, then they should have steeper inferred IMFs than the clusters. The SFRs required to give the steep field IMFs in the LMC and SMC are determined. Structure observed in several determinations of the Milky Way field star IMF can be accounted for by a stochastic and bursty star formation history.

  6. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  7. Star Formation in Massive Clusters via Bondi Accretion

    NASA Astrophysics Data System (ADS)

    Murray, Norman; Chang, Philip

    2012-02-01

    Essentially all stars form in giant molecular clouds (GMCs). However, inside GMCs, most of the gas does not participate in star formation; rather, denser gas accumulates in clumps in the GMC, with the bulk of the stars in a given GMC forming in a few of the most massive clumps. In the Milky Way, these clumps have masses M cl <~ 5 × 10-2 of the GMC, radii r cl ~ 1 pc, and free-fall times τcl ~ 2 × 105 yr. We show that clumps inside GMCs should accrete at a modified Bondi accretion rate, which depends on clump mass as \\dot{M}_{cl}\\sim M_{cl}^{5/4}. This rate is initially rather slow, usually slower than the initial star formation rate inside the clump (we adopt the common assumption that inside the clump, \\dot{M}_*=\\epsilon _ffM_{cl}/\\tau _{cl}, with epsilonff ≈ 0.017). However, after ~2 GMC free-fall times τGMC, the clump accretion rate accelerates rapidly; formally, the clump can accrete the entire GMC in ~3τGMC. At the same time, the star formation rate accelerates, tracking the Bondi accretion rate. If the GMC is disrupted by feedback from the largest clump, half the stars in that clump form in the final τGMC before the GMC is disrupted. The theory predicts that the distribution of effective star formation rates, measured per GMC free-fall time, is broad, ranging from ~0.001 up to 0.1 or larger and that the mass spectrum of star clusters is flatter than that of clumps, consistent with observations.

  8. Hierarchical star formation across the grand-design spiral NGC 1566

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Elmegreen, Bruce G.; Elmegreen, Debra M.; Calzetti, Daniela; Cignoni, Michele; Gallagher, John S., III; Kennicutt, Robert C.; Klessen, Ralf S.; Sabbi, Elena; Thilker, David; Ubeda, Leonardo; Aloisi, Alessandra; Adamo, Angela; Cook, David O.; Dale, Daniel; Grasha, Kathryn; Grebel, Eva K.; Johnson, Kelsey E.; Sacchi, Elena; Shabani, Fayezeh; Smith, Linda J.; Wofford, Aida

    2017-06-01

    We investigate how star formation is spatially organized in the grand-design spiral NGC 1566 from deep Hubble Space Telescope photometry with the Legacy ExtraGalactic UV Survey. Our contour-based clustering analysis reveals 890 distinct stellar conglomerations at various levels of significance. These star-forming complexes are organized in a hierarchical fashion with the larger congregations consisting of smaller structures, which themselves fragment into even smaller and more compact stellar groupings. Their size distribution, covering a wide range in length-scales, shows a power law as expected from scale-free processes. We explain this shape with a simple 'fragmentation and enrichment' model. The hierarchical morphology of the complexes is confirmed by their mass-size relation that can be represented by a power law with a fractional exponent, analogous to that determined for fractal molecular clouds. The surface stellar density distribution of the complexes shows a lognormal shape similar to that for supersonic non-gravitating turbulent gas. Between 50 and 65 per cent of the recently formed stars, as well as about 90 per cent of the young star clusters, are found inside the stellar complexes, located along the spiral arms. We find an age difference between young stars inside the complexes and those in their direct vicinity in the arms of at least 10 Myr. This time-scale may relate to the minimum time for stellar evaporation, although we cannot exclude the in situ formation of stars. As expected, star formation preferentially occurs in spiral arms. Our findings reveal turbulent-driven hierarchical star formation along the arms of a grand-design galaxy.

  9. An Unwelcome Place for New Stars (artist concept)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version Suppression of Star Formation from Supermassive Black Holes

    This artist's concept depicts a supermassive black hole at the center of a galaxy. NASA's Galaxy Evolution Explorer found evidence that black holes -- once they grow to a critical size -- stifle the formation of new stars in elliptical galaxies. Black holes are thought to do this by heating up and blasting away the gas that fuels star formation.

    The blue color here represents radiation pouring out from material very close to the black hole. The grayish structure surrounding the black hole, called a torus, is made up of gas and dust. Beyond the torus, only the old red-colored stars that make up the galaxy can be seen. There are no new stars in the galaxy.

  10. Driving Turbulence and Triggering Star Formation by Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Gritschneder, Matthias; Naab, Thorsten; Walch, Stefanie; Burkert, Andreas; Heitsch, Fabian

    2009-03-01

    We present high-resolution simulations on the impact of ionizing radiation of massive O stars on the surrounding turbulent interstellar medium (ISM). The simulations are performed with the newly developed software iVINE which combines ionization with smoothed particle hydrodynamics (SPH) and gravitational forces. We show that radiation from hot stars penetrates the ISM, efficiently heats cold low-density gas and amplifies overdensities seeded by the initial turbulence. The formation of observed pillar-like structures in star-forming regions (e.g. in M16) can be explained by this scenario. At the tip of the pillars gravitational collapse can be induced, eventually leading to the formation of low-mass stars. Detailed analysis of the evolution of the turbulence spectra shows that UV radiation of O stars indeed provides an excellent mechanism to sustain and even drive turbulence in the parental molecular cloud.

  11. Rest-IR photometry of the brightest arc in the universe

    NASA Astrophysics Data System (ADS)

    Dahle, Hakon; Rigby, Jane; Gladders, Michael; Sharon, Keren; Bayliss, Matthew

    2016-08-01

    We propose IRAC imaging of a uniquely bright (R=17.8) star forming galaxy at z=2.37. The galaxy is gravitationally lensed into a 55' long arc, with a total magnification factor most likely in excess of 50x. The proposed observations will allow us to spatially resolve the stellar mass distribution within the lensed galaxy and compare this to its spatial distribution of star formation, as measured from existing and planned rest-UV/optical data. This will enable us to examine how star formation varies with specific star formation rate within a galaxy at z=2.

  12. Simulating Shock Triggered Star Formation with AstroBEAR2.0

    NASA Astrophysics Data System (ADS)

    Li, Shule; Frank, Adam; Blackman, Eric

    2013-07-01

    Star formation can be triggered by the compression from shocks running over stable clouds. Triggered star formation is a favored explanation for the traces of SLRI's in our solar system. Previous research has shown that when parameters such as shock speed are within a certain range, the gravitational collapse of otherwise stable, dense cloud cores is possible. However, these studies usually focus on the precursors of star formation, and the conditions for the triggering. We use AstroBEAR2.0 code to simulate the collapse and subsequent evolution of a stable Bonnor-Ebert cloud by an incoming shock. Through our simulations, we show that interesting physics happens when the newly formed star interacts with the cloud residue and the post-shock flow. We identify these interactions as controlled by the initial conditions of the triggering and study the flow pattern as well as the evolution of important physics quantities such as accretion rate and angular momentum.

  13. Effects of spiral arms on star formation in nuclear rings of barred-spiral galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Woo-Young; Kim, Woong-Tae, E-mail: seowy@astro.snu.ac.kr, E-mail: wkim@astro.snu.ac.kr

    2014-09-01

    We use hydrodynamic simulations to study the effect of spiral arms on the star formation rate (SFR) in nuclear rings of barred-spiral galaxies. We find that spiral arms can be an efficient means of gas transport from the outskirts to the central parts, provided that the arms are rotating slower than the bar. While the ring star formation in models with no arms or corotating arms is active only during around the bar growth phase, arm-driven gas accretion both significantly enhances and prolongs the ring star formation in models with slow-rotating arms. The arm-enhanced SFR is larger by a factormore » of ∼3-20 than in the no-arm model, with larger values corresponding to stronger and slower arms. Arm-induced mass inflows also make dust lanes stronger. Nuclear rings in slow-arm models are ∼45% larger than in the no-arm counterparts. Star clusters that form in a nuclear ring exhibit an age gradient in the azimuthal direction only when the SFR is small, whereas no notable age gradient is found in the radial direction for models with arm-induced star formation.« less

  14. The SAMI Galaxy Survey: Publicly Available Spatially Resolved Emission Line Data Products

    NASA Astrophysics Data System (ADS)

    Medling, Anne; Green, Andrew W.; Ho, I.-Ting; Groves, Brent; Croom, Scott; SAMI Galaxy Survey Team

    2017-01-01

    The SAMI Galaxy Survey is collecting optical integral field spectroscopy of up to 3400 nearby (z<0.1) galaxies with a range of stellar masses and in a range of environments. The first public data release contains nearly 800 galaxies from the Galaxy And Mass Assembly (GAMA) Survey. In addition to releasing the reduced data cubes, we also provide emission line fits (flux and kinematic maps of strong emission lines including Halpha and Hbeta, [OII]3726,29, [OIII]4959,5007, [OI]6300, [NII]6548,83, and [SII]6716,31), extinction maps, star formation classification masks, and star formation rate maps. We give an overview of the data available for your favorite emission line science and present a few early science results. For example, a sample of edge-on disk galaxies show enhanced extraplanar emission related to SF-driven outflows, which are correlated with a bursty star formation history and higher star formation rate surface densities. Interestingly, the star formation rate surface densities of these wind hosts are 5-100 times lower than the canonical threshold for driving winds (0.1 MSun/yr/kpc2), indicating that galactic winds may be more important in normal star-forming galaxies than previously thought.

  15. Bipolar Molecular Outflows within 1pc of Sgr A*:Evidence for Low-mass Star Formation Activity

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, Farhad; Wardle, Mark; Kunneriath, Devaky; Royster, Marc; Wootten, Al; Roberts, Douglas

    2018-01-01

    The 4 million solar mass black hole, Sgr A*, is expected to suppress star formation because the measured density of the cloud is insufficient for self-gravity to overcome tidal disruption by the black hole's gravitational field. Nevertheless, objects resembling dust-enshrouded young stars and photo-evaporative flows from their disks have been identified within 2pc of Sgr A*. Clear identification of the nature of these objects has been hampered by the Galactic center's distance, 30 magnitudes of foreground extinction, and stellar crowding. Here, we report the discovery of 11 bipolar molecular outflows using ALMA within a projected distance of one pc from Sgr A*. These unambiguous signatures of young protostars manifest as approaching and receding lobes of dense gas swept up by the jets created during the formation and early evolution of low-mass stars. The mean dynamical age of the outflow sources and the rate of star formation are estimated to be ~6500 years and ~5x10^{-4} solar mass per year, respectively. These measurements suggest that star formation could take place in the immediate vicinity of supermassive black holes in the nuclei of external galaxies.

  16. The Next Generation of Numerical Modeling in Mergers- Constraining the Star Formation Law

    NASA Astrophysics Data System (ADS)

    Chien, Li-Hsin

    2010-09-01

    Spectacular images of colliding galaxies like the "Antennae", taken with the Hubble Space Telescope, have revealed that a burst of star/cluster formation occurs whenever gas-rich galaxies interact. A?The ages and locations of these clusters reveal the interaction history and provide crucial clues to the process of star formation in galaxies. A?We propose to carry out state-of-the-art numerical simulations to model six nearby galaxy mergers {Arp 256, NGC 7469, NGC 4038/39, NGC 520, NGC 2623, NGC 3256}, hence increasing the number with this level of sophistication by a factor of 3. These simulations provide specific predictions for the age and spatial distributions of young star clusters. The comparison between these simulation results and the observations will allow us to answer a number of fundamental questions including: 1} is shock-induced or density-dependent star formation the dominant mechanism; 2} are the demographics {i.e. mass and age distributions} of the clusters in different mergers similar, i.e. "universal", or very different; and 3} will it be necessary to include other mechanisms, e.g., locally triggered star formation, in the models to better match the observations?

  17. The diskmass survey. VIII. On the relationship between disk stability and star formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westfall, Kyle B.; Verheijen, Marc A. W.; Andersen, David R.

    2014-04-10

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo and Wiegert (Q {sub RW}), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21 cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averagingmore » over this subsample, we find a meridional shape of σ{sub z}/σ{sub R}=0.51{sub −0.25}{sup +0.36} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q {sub RW} = 2.0 ± 0.9. We also find that the disk-averaged star-formation-rate surface density ( Σ-dot {sub e,∗}) is correlated with the disk-averaged gas and stellar mass surface densities (Σ {sub e,} {sub g} and Σ {sub e,} {sub *}) and anti-correlated with Q {sub RW}. We show that an anti-correlation between Σ-dot {sub e,∗} and Q {sub RW} can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Σ-dot {sub e,∗} is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Σ-dot {sub e,∗}/Σ{sub e,g}∝Σ{sub e,∗}{sup 1/2}. Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.« less

  18. Characterizing the Protostars in the Herschel Survey of Cygnus-X

    NASA Astrophysics Data System (ADS)

    Kirk, James; Hora, J. L.; Smith, H. A.; Herschel Cygnus-X Group

    2014-01-01

    The Cygnus-X complex is an extremely active region of massive star formation at a distance of ~1.4 kpc which can be studied with higher sensitivity and less confusion than more distant regions. The study of this region is important in improving our understanding of the formation processes and protostellar phases of massive stars. A previous Spitzer Legacy survey of Cygnus-X mapped the distributions of Class I and Class II YSOs within the region and studied the interaction between massive young stars and clusters of YSOs. Using data from the recent Herschel survey of the region, taken with the PACS and SPIRE instrument (70-500 microns), we are expanding this study of star formation to the youngest and most deeply embedded objects. Using these data we will expand the sample of massive protostars and YSOs in Cygnus-X, analyze the population of infrared dark clouds and their embedded objects, construct Spectral Energy Distributions (SEDs) using pre-existing Spitzer and near-IR data sets (1-500 microns), and fit these sources with models of protostars to derive luminosities and envelope masses. The derived luminosities and masses will enable us to create evolutionary diagrams and test models of high-mass star formation. We will also investigate what role OB associations, such as Cyg OB2, play in causing subsequent star formation in neighboring clouds, providing us with a comprehensive picture of star formation within this extremely active complex.

  19. The dynamical origin of multiple populations in intermediate-age clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; de Grijs, Richard; Askar, Abbas; Berczik, Peter; Li, Chengyuan; Wang, Long; Deng, Licai; Kouwenhoven, M. B. N.; Giersz, Mirek; Spurzem, Rainer

    2017-11-01

    Numerical simulations were carried out to study the origin of multiple stellar populations in the intermediate-age clusters NGC 411 and NGC 1806 in the Magellanic Clouds. We performed NBODY6++ simulations based on two different formation scenarios, an ad hoc formation model where second-generation (SG) stars are formed inside a cluster of first-generation (FG) stars using the gas accumulated from the external intergalactic medium and a minor merger model of unequal mass (MSG/MFG ∼ 5-10 per cent) clusters with an age difference of a few hundred million years. We compared our results such as the radial profile of the SG-to-FG number ratio with observations on the assumption that the SG stars in the observations are composed of cluster members, and confirmed that both the ad hoc formation and merger scenarios reproduce the observed radial trend of the SG-to-FG number ratio, which shows less centrally concentrated SG than FG stars. It is difficult to constrain the formation scenario for the multiple populations by only using the spatial distribution of the SG stars. SG stars originating from the merger scenario show a significant velocity anisotropy and rotational features compared to those from the ad hoc formation scenario. Thus, observations aimed at kinematic properties like velocity anisotropy or rotational velocities for SG stars should be obtained to better understand the formation of the multiple populations in these clusters. This is, however, beyond current instrumentation capabilities.

  20. A youthful cluster

    NASA Image and Video Library

    2015-08-24

    Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope, is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic Cloud, a satellite galaxy of our own galaxy, the Milky Way, in the southern hemisphere constellation of Dorado. First observed by John Herschel in 1835, NGC 1783 is nearly 160 000 light-years from Earth, and has a mass around 170 000 times that of the Sun. Globular clusters are dense collections of stars held together by their own gravity, which orbit around galaxies like satellites. The image clearly shows the symmetrical shape of NGC 1783 and the concentration of stars towards the centre, both typical features of globular clusters. By measuring the colour and brightness of individual stars, astronomers can deduce an overall age for a cluster and a picture of its star formation history. NGC 1783 is thought to be under one and a half billion years old — which is very young for globular clusters, which are typically several billion years old. During that time, it is thought to have undergone at least two periods of star formation, separated by 50 to 100 million years. This ebb and flow of star-forming activity is an indicator of how much gas is available for star formation at any one time. When the most massive stars created in the first burst of formation explode as supernovae they blow away the gas needed to form further stars, but the gas reservoir can later be replenished by less massive stars which last longer and shed their gas less violently. After this gas flows to the dense central regions of the star cluster, a second phase of star formation can take place and once again the short-lived massive stars blow away any leftover gas. This cycle can continue a few times, at which time the remaining gas reservoir is thought to be too small to form any new stars. A version of this image was entered into the Hubble's Hidden Treasures image pr

  1. Young stellar population and star formation history ofW4 HII region/Cluster Complex

    NASA Astrophysics Data System (ADS)

    Panwar, Neelam

    2018-04-01

    The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.

  2. Ionization-induced star formation - IV. Triggering in bound clusters

    NASA Astrophysics Data System (ADS)

    Dale, J. E.; Ercolano, B.; Bonnell, I. A.

    2012-12-01

    We present a detailed study of star formation occurring in bound star-forming clouds under the influence of internal ionizing feedback from massive stars across a spectrum of cloud properties. We infer which objects are triggered by comparing our feedback simulations with control simulations in which no feedback was present. We find that feedback always results in a lower star formation efficiency and usually but not always results in a larger number of stars or clusters. Cluster mass functions are not strongly affected by feedback, but stellar mass functions are biased towards lower masses. Ionization also affects the geometrical distribution of stars in ways that are robust against projection effects, but may make the stellar associations more or less subclustered depending on the background cloud environment. We observe a prominent pillar in one simulation which is the remains of an accretion flow feeding the central ionizing cluster of its host cloud and suggest that this may be a general formation mechanism for pillars such as those observed in M16. We find that the association of stars with structures in the gas such as shells or pillars is a good but by no means foolproof indication that those stars have been triggered and we conclude overall that it is very difficult to deduce which objects have been induced to form and which formed spontaneously simply from observing the system at a single time.

  3. Toward the first stars: hints from the CEMP-no stars

    NASA Astrophysics Data System (ADS)

    Choplin, A.

    2017-12-01

    CEMP-no stars are iron-deficient, carbon-rich stars, with no or little s- and r-elements. Because of their very low iron content, they are often considered to be closely linked to the first stars. Their origin is still a matter of debate. Understanding their formation could provide very valuable information on the first stars, early nucleosynthesis, early galactic chemical evolution and first supernovae. The most explored formation scenario for CEMP-no stars suggests that CEMP-no stars formed from the ejecta (wind and/or supernova) of a massive source star, that lived before the CEMP-no star. Here we discuss models of fast rotating massive source stars with and without triggering a late mixing event just before the end of the life of the source star. We find that without this late mixing event, the bulk of observed CEMP-no stars cannot be reproduced by our models. On the opposite, the bulk is reproductible if adding the late mixing event in the source star models.

  4. STAR FORMATION AT 4 < z < 6 FROM THE SPITZER LARGE AREA SURVEY WITH HYPER-SUPRIME-CAM (SPLASH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhardt, Charles L.; Capak, Peter; Masters, Dan

    2014-08-20

    Using the first 50% of data collected for the Spitzer Large Area Survey with Hyper-Suprime-Cam observations on the 1.8 deg{sup 2} Cosmological Evolution Survey we estimate the masses and star formation rates of 3398 M {sub *} > 10{sup 10} M {sub ☉} star-forming galaxies at 4 < z < 6 with a substantial population up to M {sub *} ≳ 10{sup 11.5} M {sub ☉}. We find that the strong correlation between stellar mass and star formation rate seen at lower redshift (the ''main sequence'' of star-forming galaxies) extends to z ∼ 6. The observed relation and scatter is consistentmore » with a continued increase in star formation rate at fixed mass in line with extrapolations from lower-redshift observations. It is difficult to explain this continued correlation, especially for the most massive systems, unless the most massive galaxies are forming stars near their Eddington-limited rate from their first collapse. Furthermore, we find no evidence for moderate quenching at higher masses, indicating quenching either has not occurred prior to z ∼ 6 or else occurs rapidly, so that few galaxies are visible in transition between star-forming and quenched.« less

  5. Gravitational instability and star formation in NGC 628

    NASA Astrophysics Data System (ADS)

    Marchuk, A. A.

    2018-05-01

    The gas-stars instability criterion for infinitesimally thin disc was applied to the galaxy NGC 628. Instead of using the azimuthally averaged profiles of data, the maps of the gas surface densities (THINGS, HERACLES), of the velocity dispersions of stars (VENGA) and gas (THINGS), and of the surface brightness of the galaxy (S4G) were analysed. All these maps were collected for the same region with a noticeable star formation rate and were superimposed on each other. Using the data on the rotation, curve values of Qeff were calculated for each pixel in the image. The areas within the contours Qeff < 3 were compared with the ongoing star formation regions (ΣSFR > 0.007 M⊙ yr-1 kpc-2) and showed a good coincidence between them. The Romeo-Falstad disc instability diagnostics taking into account the thickness of the stellar and gas layers does not change the result. If the one-fluid instability criterion is used, the coincidence is worse. The analysis was carried out for the area r < 0.5r25. Leroy et al. using azimuthally averaged data obtained Qeff ≈ 3-4 for this area of the disc, which makes it stable against non-axisymmetric perturbations and gas dissipation, and does not predict the location of star-forming regions. Since, in the galaxies, the distribution of hydrogen and the regions of star formation is often patchy, the relationship between gravitational instability and star formation should be sought using data maps rather than azimuthally averaged data.

  6. MAGiX in the Chandra Archive

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa

    2016-09-01

    Massive star-forming regions (MSFRs) are engines of change across the Galaxy, providing its ionization, fueling the hot ISM, and seeding spiral arms with tens of thousands of new stars. Galactic MSFRs are springboards for understanding their extragalactic counterparts, which provide the basis for star formation rate calibrations and form the building blocks of starburst galaxies. This archive program will extend Chandra's lexicon of the Galaxy's MSFRs with in-depth analysis of 16 complexes, studying star formation and evolution on scales of tenths to tens of parsecs, distances <1 to >10 kpc, and ages <1 to >15 Myr. It fuses a "Physics of the Cosmos" mission with "Cosmic Origins" science, bringing new insight into star formation and feedback through Chandra's unique X-ray perspective.

  7. More MAGiX in the Chandra Archive

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa

    2017-09-01

    Massive star-forming regions (MSFRs) are engines of change across the Galaxy, providing its ionization, fueling the hot ISM, and seeding spiral arms with tens of thousands of new stars. Resolvable MSFRs are microscopes for understanding their more distant extragalactic counterparts, which provide the basis for star formation rate calibrations and form the building blocks of starburst galaxies. This archive program will extend Chandra's lexicon of MSFRs with in-depth analysis of 16 complexes, studying star formation and evolution on scales of tenths to tens of parsecs, distances <1 to >50 kpc, and ages <1 to 25 Myr. It fuses a "Physics of the Cosmos" mission with "Cosmic Origins" science, bringing new insight into star formation and feedback through Chandra's unique X-ray perspective.

  8. Molecules as Drives and Witnesses of Star Formation

    NASA Astrophysics Data System (ADS)

    Shustov, B. M.

    2017-07-01

    The progress in understanding the role of molecules in star formation is discussed. After very brief introduction which we note in that no star formation would be possible without molecules at the dawn of the Universe and that molecules are important drivers and witnesses of star formation in the current epoch, we consider observational technologies and emphasize the prospective role of UV observations. Special attention is paid to possibilities of UV spectroscopy with coming space observatory Spektr-UF (World Space Observatory - Ultraviolet; WSO-UV). Only one example (observations of CO-dark clouds) from vast scientific program of the WSO-UV is mentioned. Also very briefly disclosed is a model approach to study complex evolution of very young (prestellar) object focusing on chemical (molecular) evolution.

  9. MASSIVE STARS IN THE LOCAL GROUP: Implications for Stellar Evolution and Star Formation

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    The galaxies of the Local Group serve as important laboratories for understanding the physics of massive stars. Here I discuss what is involved in identifying various kinds of massive stars in nearby galaxies: the hydrogen-burning O-type stars and their evolved He-burning evolutionary descendants, the luminous blue variables, red supergiants, and Wolf-Rayet stars. Primarily I review what our knowledge of the massive star population in nearby galaxies has taught us about stellar evolution and star formation. I show that the current generation of stellar evolutionary models do well at matching some of the observed features and provide a look at the sort of new observational data that will provide a benchmark against which new models can be evaluated.

  10. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-12-10

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction inmore » Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.« less

  11. Röntgen spheres around active stars

    NASA Astrophysics Data System (ADS)

    Locci, Daniele; Cecchi-Pestellini, Cesare; Micela, Giuseppina; Ciaravella, Angela; Aresu, Giambattista

    2018-01-01

    X-rays are an important ingredient of the radiation environment of a variety of stars of different spectral types and age. We have modelled the X-ray transfer and energy deposition into a gas with solar composition, through an accurate description of the electron cascade following the history of the primary photoelectron energy deposition. We test and validate this description studying the possible formation of regions in which X-rays are the major ionization channel. Such regions, called Röntgen spheres may have considerable importance in the chemical and physical evolution of the gas embedding the emitting star. Around massive stars the concept of Röntgen sphere appears to be of limited use, as the formation of extended volumes with relevant levels of ionization is efficient just in a narrow range of gas volume densities. In clouds embedding low-mass pre-main-sequence stars significant volumes of gas are affected by ionization levels exceeding largely the cosmic-ray background ionization. In clusters arising in regions of vigorous star formation X-rays create an ionization network pervading densely the interstellar medium, and providing a natural feedback mechanism, which may affect planet and star formation processes.

  12. Big Black Holes Mean Bad News for Stars (diagram)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version Suppression of Star Formation from Supermassive Black Holes

    This diagram illustrates research from NASA's Galaxy Evolution Explorer showing that black holes -- once they reach a critical size -- can put the brakes on new star formation in elliptical galaxies.

    In this graph, galaxies and their supermassive black holes are indicated by the drawings (the black circle at the center of each galaxy represents the black hole). The relative masses of the galaxies and their black holes are reflected in the sizes of the drawings. Blue indicates that the galaxy has new stars, while red means the galaxy does not have any detectable new stars.

    The Galaxy Evolution Explorer observed the following trend: the biggest galaxies and black holes (shown in upper right corner) are more likely to have no observable star formation (red) than the smaller galaxies with smaller black holes. This is evidence that black holes can create environments unsuitable for stellar birth.

    The white line in the diagram illustrates that, for any galaxy no matter what the mass, its black hole must reach a critical size before it can shut down star formation.

  13. Filaments, ridges and a mini-starburst - HOBYS' view of high mass star formation with Herschel

    NASA Astrophysics Data System (ADS)

    Hill, T.; Motte, F.; Didelon, P.

    2012-03-01

    With its unprecedented spatial resolution and high sensitivity, Herschel is revolutionising our understanding of high mass star formation and the interstellar medium (ISM). In particular, Herschel is unveiling the filamentary structure and molecular cloud constituents of the ISM where star formation takes place. The Herschel Imaging Survey of OB Young Stellar objects (HOBYS; Motte, Zavagno, Bontemps, see http://www.herschel.fr/cea/hobys/en/index.php) key program targets burgeoning young stellar objects with the aim of characterising them and the environments in which they form. HOBYS has already proven fruitful with many clear examples of high-mass star formation in nearby molecular cloud complexes (e.g. Motte et al., 2010). Through multi-wavelength Herschel observations I will introduce select regions of the HOBYS program, including Vela C, M16 and W48 to start. These data are rich with filamentary structures and a wealth of sources which span a large mass range including, low, intermediate and high-mass objects in the pre-collapse or protostellar phase of formation, many of which will proceed to form stars. The natal filaments themselves come in many shapes and sizes, they can form thick ridge-like structures, be dispersed in low column density regions or cluster in higher density regions. In Vela C, high-mass star formation proceeds preferentially in high column density supercritical filaments, called ridges, which may result from the constructive convergence of flows (Hill et al., 2011). I will present other examples of ridges identified in HOBYS regions. In addition, I will present the latest results on the Eagle Nebula (M16). This region was made iconic by Hubble, but only Herschel can trace the cold, dense early prestellar phases of star formation, and their natal interstellar filaments, in this infamous star-forming complex. The cavity ionised by the nearby OB cluster in M16 serves to heat the Pillars of Creation and the surrounding interstellar filaments. We draw hypotheses regarding the long, cold resilient (enduring) filament in the eastern portion of M16, offset from the ionised cavity. In W48, the IRDC G035.39-00.33 is likely undergoing a mini star-burst of star formation (Nuygen-Luong et al., 2011).

  14. Measuring Star-Formation Rates of AGNs and QSOs using a new calibration from Polycyclic Aromatic Hydrocarbon Emission

    NASA Astrophysics Data System (ADS)

    Papovich, Casey

    Understanding the coevolution of star-formation and supermassive black hole accretion is one of the key questions in galaxy formation theory. This relation is important for understanding why at present the mass in galaxy bulges (on scales of kpc) correlates so tightly with the mass of galaxy central supermassive blackholes (on scales of AU). Feedback from supermassive black hole accretion may also be responsible for heating or expelling cold gas from galaxies, shutting off the fuel for star-formation and additional black hole growth. Did bulges proceed the formation of black holes, or vice versa, or are they contemporaneous? Therefore, understanding the exact rates of star-formation and supermassive black hole growth, and how they evolve with time and galaxy mass has deep implications for how galaxies form. It has previously been nearly impossible to study simultaneously both star-formation and accretion onto supermassive black holes in galaxies because the emission from black hole accretion contaminates nearly all diagnostics of star-formation. The "standard" diagnostics for the star-formation rate (the emission from hydrogen, UV emission, midIR emission, far-IR emission, etc) are not suitable for measuring star-formation rates in galaxies with actively accreting supermassive blackholes. In this proposal, the researchers request NASA/ADP funding for an archival study using spectroscopy with the Spitzer Space Telescope to measure simultaneously the star-formation rate (SFR) and bolometric emission from accreting supermassive blackholes to understand the complex relation between both processes. The key to this study is that they will develop a new calibrator for SFRs in galaxies with active supermassive black holes based on the molecular emission from polycyclic aromatic hydrocarbons (PAHs), which emit strongly in the mid-IR (3 - 20 micron) and are very strong in spectra from the Spitzer Space Telescope. The PAH molecules exist near photo-dissociation regions, and they re-emit a large fraction of the ionization radiation from ongoing star formation. Preliminary work using archival spectra from Spitzer show that the PAH luminosity scales linearly with the SFR with smaller scatter than "gold standard" SFR tracers, such as the (dust corrected) hydrogen emission. The PAH emission becomes important because they are destroyed by the hard UV radiation in the vicinity of accreting supermassive blackholes. Therefore, this makes the PAH emission extremely powerful: it has the unique ability to measure SFRs in galaxies with active supermassive black holes, where every other SFR indicator is contaminated by emission from the supermassive black hole. This objectives for this proposal are to (1) provide a robust recalibration of the SFR from the mid-IR PAH emission features using a large sample of star-forming galaxies in the Spitzer archive; (2) demonstrate the utility of the PAHs to derive valid SFRs from JWST observations, using archival Spitzer spectroscopy for distant galaxies strongly lensed gravitationally; finally, using a large sample of galaxies with Spitzer spectroscopy spanning a large range of total luminosity and AGN activity (from pure starbursts to quasars) to (3) measure the distribution function of the luminosity of star-formation, AGN, and test how these vary with total luminosity and redshift. Theoretical models make strong predictions for this distribution function. Comparing the data to these predictions allows us to test these models directly.

  15. A CANDELS-3D-HST synergy: Resolved Star Formation Patterns at 0.7 < z < 1.5

    NASA Astrophysics Data System (ADS)

    Wuyts, Stijn; Förster Schreiber, Natascha M.; Nelson, Erica J.; van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia; Genzel, Reinhard; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lundgren, Britt; Lutz, Dieter; McGrath, Elizabeth J.; Momcheva, Ivelina; Rosario, David; Skelton, Rosalind E.; Tacconi, Linda J.; van der Wel, Arjen; Whitaker, Katherine E.

    2013-12-01

    We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multi-wavelength broadband imaging from CANDELS and Hα surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Hα morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Hα dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Hα/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced Hα equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Hα/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.

  16. A CANDELS-3d-HST Synergy: Resolved Star Formation Patterns at 0.7 less than z less than 1.5

    NASA Technical Reports Server (NTRS)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Nelson, Erica J.; Van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia; hide

    2013-01-01

    We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multiwavelength broadband imaging from CANDELS andHalpha surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Halpha morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Halpha dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Halpha/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced H alpha equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Halpha/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.

  17. ATLASGAL: Chemical evolution of star forming clumps

    NASA Astrophysics Data System (ADS)

    Figura, Charles C.; Urquhart, James S.; Wyrowski, Friedrich

    2017-01-01

    Although massive stars are few in number, they impact their host molecular clouds, clusters, and galaxies in profound ways, playing a vital role in regulating star formation in their host galaxy. Understanding the formation of these massive stars is critical to understanding this evolution, but their rapid early development causes them to reach the main sequence while still shrouded in their natal molecular cloud. Many studies have investigated these regions in a targeted manner, but a full understanding necessitates a broader view at all stages of formation across many star forming regions.We have used mid-infrared continuum surveys to guide selection of a statistically large sample of massive dust clumps from the 10,000 such clumps identified in the ATLASGAL Compact Source Catalogue (CSC), ensuring that all stages of the evolutionary process are included. A final sample of 600 fourth-quadrant sources within 1 degree of the Galactic plane were observed with the Mopra telescope with an 8 GHz bandwidth between 85.2 and 93.4 GHz.We present an overview of our results. We have identified over 30 molecular lines, seven of which with detected hyperfine structure, as well as several mm-radio recombination line transitions. Source velocities indicate that these regions trace the Crux-Scutum, Norma, and Carina Sagitarius arms. We have performed an analysis of linewidth and line intensity ratios, correlating these with star formation stages as identified by IR brightness at the 70 and 24 μm bands, and present several molecular pairs whose linewidth and intensity might serve as significant tracers of the evolutionary stage of star formation. We comment on the results of PCA analysis of the measured parameters for the overall population and the star formation stage subgroups with an eye toward characterising early stellar development through molecular line observations.

  18. Direct Measurements of Dust Attenuation in z ~ 1.5 Star-forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van Dokkum, Pieter G.; Whitaker, Katherine E.; Wuyts, Stijn

    2014-06-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star). We select a sample of 163 galaxies between 1.36 <= z <= 1.5 with Hα signal-to-noise ratio >=5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star, and find that A V, H II = 1.86 A V, star, with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M *). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  19. Massive Stars in the W33 Giant Molecular Complex

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Clark, J. Simon; Figer, Donald F.; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, R. Michael; Menten, Karl M.; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, C.-H. Rosie; Davies, Ben

    2015-06-01

    Rich in H ii regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star-forming complex W33 is located at l=˜ 12\\buildrel{\\circ}\\over{.} 8 and at a distance of 2.4 kpc and has a size of ≈ 10 pc and a total mass of ≈ (0.8-8.0) × {{10}5} M ⊙ . The integrated radio and IR luminosity of W33—when combined with the direct detection of methanol masers, the protostellar object W33A, and the protocluster embedded within the radio source W33 main—mark the region as a site of vigorous ongoing star formation. In order to assess the long-term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time 14 early-type stars, including one WN6 star and four O4-7 stars. The distribution of spectral types suggests that this population formed during the past ˜2-4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6-30 Myr. This activity appears distributed throughout the region and does not appear to have yielded the dense stellar clusters that characterize other star-forming complexes such as Carina and G305. Instead, we anticipate that W33 will eventually evolve into a loose stellar aggregate, with Cyg OB2 serving as a useful, albeit richer and more massive, comparator. Given recent distance estimates, and despite a remarkably similar stellar population, the rich cluster Cl 1813-178 located on the northwest edge of W33 does not appear to be physically associated with W33.

  20. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations

    DOE PAGES

    Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; ...

    2017-11-23

    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. Here, we find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 10 5–6 M ⊙ collectively to high density, at which point it rapidly turns into stars beforemore » stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ~420 Myr till the end of the simulation. Finally, because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.« less

  1. The Radial Distribution of Star Formation in Galaxies at z ~ 1 from the 3D-HST Survey

    NASA Astrophysics Data System (ADS)

    Nelson, Erica June; van Dokkum, Pieter G.; Momcheva, Ivelina; Brammer, Gabriel; Lundgren, Britt; Skelton, Rosalind E.; Whitaker, Katherine E.; Da Cunha, Elisabete; Förster Schreiber, Natascha; Franx, Marijn; Fumagalli, Mattia; Kriek, Mariska; Labbe, Ivo; Leja, Joel; Patel, Shannon; Rix, Hans-Walter; Schmidt, Kasper B.; van der Wel, Arjen; Wuyts, Stijn

    2013-01-01

    The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of Hα emission for a sample of 54 strongly star-forming galaxies at z ~ 1 in the 3D-HST Treasury survey. By stacking the Hα emission, we find that star formation occurred in approximately exponential distributions at z ~ 1, with a median Sérsic index of n = 1.0 ± 0.2. The stacks are elongated with median axis ratios of b/a = 0.58 ± 0.09 in Hα consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination corrected velocities of 90-330 km s-1. The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z ~ 1 generally occurred in disks. The disks appear to be "scaled-up" versions of nearby spiral galaxies: they have EW(Hα) ~ 100 Å out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds.

  2. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.

    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. Here, we find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 10 5–6 M ⊙ collectively to high density, at which point it rapidly turns into stars beforemore » stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ~420 Myr till the end of the simulation. Finally, because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.« less

  3. STAR CLUSTER FORMATION WITH STELLAR FEEDBACK AND LARGE-SCALE INFLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Christopher D.; Jumper, Peter H., E-mail: matzner@astro.utoronto.ca

    2015-12-10

    During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when itsmore » column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South and with the dust temperatures observed in regions of massive star formation. Comparing observations of massive cluster-forming regions against our model parameter space, and against our expectations for accretion-driven evolution, we infer that massive-star feedback is a likely cause of gas disruption in regions with velocity dispersions less than a few kilometers per second, but that more massive and more turbulent regions are too strongly bound for stellar feedback to be disruptive.« less

  4. Past and future star formation in disk galaxies

    NASA Astrophysics Data System (ADS)

    Kennicutt, Robert C., Jr.; Tamblyn, Peter; Congdon, Charles E.

    1994-11-01

    We have combined H-alpha and UBV measurements of 210 nearby Sa-Irr galaxies with new photometric synthesis models to reanalyze the past and future star formation timescales in disks. The integrated photoionization rates and colors of disks are best fitted by a stellar initial mass function (IMF) which is enriched in massive stars by a factor of 2-3 relative to the Scalo solar neighborhood IMF. We have used published surface photometry of spiral galaxies to analyze the star formation histories of disks independent of their bulge properties. The ratio of the current star formation rate (SFR) to the average past rate increases from of order 0.01 in Sa galaxies to 1 in Sc-Irr disks. This confirms that the pronounced change in the photometric properties of spiral galaxies along the Hubble sequence is predominantly due to changes in the star formation histories of disks, and only secondarily to changes in the bulge/disk ratio. A comparison of current SFRs and gas masses of the sample yields median timescales for gas consumption of approximately 3 Gyr, in the absence of stellar recycling. However, a proper time-dependent treatment of the gas return from stars shows that recycling extends the gas lifetimes of disks by factors of 1.5-4 for typical disk parameters. Consequently the current SFRs in many (but not all) disks can be sustained for periods comparable to the Hubble time.

  5. The Radial Distribution of Star Formation in Galaxies at Z approximately 1 from the 3D-HST Survey

    NASA Technical Reports Server (NTRS)

    Nelson, Erica June; vanDokkum, Pieter G.; Momcheva, Ivelina; Brammer, Gabriel; Lundgren, Britt; Skelton, Rosalind E.; Whitaker, Katherine E.; DaCunha, Elisabete; Schreiber, Natascha Foerster; Franx, Marijn; hide

    2013-01-01

    The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of H emission for a sample of 54 strongly star-forming galaxies at z 1 in the 3D-HST Treasury survey. By stacking the H emission, we find that star formation occurred in approximately exponential distributions at z approximately 1, with a median Sersic index of n = 1.0 +/- 0.2. The stacks are elongated with median axis ratios of b/a = 0.58 +/- 0.09 in H consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination corrected velocities of 90.330 km s(exp 1-). The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z approximately 1 generally occurred in disks. The disks appear to be scaled-up versions of nearby spiral galaxies: they have EW(H alpha) at approximately 100 A out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds.

  6. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; Hopkins, Philip F.; Hayward, Christopher C.; Wetzel, Andrew; Faucher-Giguère, Claude-André; Kereš, Dušan; Garrison-Kimmel, Shea; Murray, Norman

    2018-03-01

    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. We find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 105-6 M⊙ collectively to high density, at which point it rapidly turns into stars before stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ˜420 Myr till the end of the simulation. Because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.

  7. Inefficient jet-induced star formation in Centaurus A. High resolution ALMA observations of the northern filaments

    NASA Astrophysics Data System (ADS)

    Salomé, Q.; Salomé, P.; Miville-Deschênes, M.-A.; Combes, F.; Hamer, S.

    2017-12-01

    NGC 5128 (Centaurus A) is one of the best targets to study AGN feedback in the local Universe. At 13.5 kpc from the galaxy, optical filaments with recent star formation lie along the radio jet direction. This region is a testbed for positive feedback, here through jet-induced star formation. Atacama Pathfinder EXperiment (APEX) observations have revealed strong CO emission in star-forming regions and in regions with no detected tracers of star formation activity. In cases where star formation is observed, this activity appears to be inefficient compared to the Kennicutt-Schmidt relation. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to map the 12CO(1-0) emission all along the filaments of NGC 5128 at a resolution of 1.3'' 23.8pc. We find that the CO emission is clumpy and is distributed in two main structures: (i) the Horseshoe complex, located outside the HI cloud, where gas is mostly excited by shocks and where no star formation is observed, and (ii) the Vertical filament, located at the edge of the HI shell, which is a region of moderate star formation. We identified 140 molecular clouds using a clustering method applied to the CO data cube. A statistical study reveals that these clouds have very similar physical properties, such as size, velocity dispersion, and mass, as in the inner Milky Way. However, the range of radius available with the present ALMA observations does not enable us to investigate whether or not the clouds follow the Larson relation. The large virial parameter αvir of the clouds suggests that gravity is not dominant and clouds are not gravitationally unstable. Finally, the total energy injection in the northern filaments of Centaurus A is of the same order as in the inner part of the Milky Way. The strong CO emission detected in the northern filaments is an indication that the energy injected by the jet acts positively in the formation of dense molecular gas. The relatively high virial parameter of the molecular clouds suggests that the injected kinetic energy is too strong for star formation to be efficient. This is particularly the case in the horseshoe complex, where the virial parameter is the largest and where strong CO is detected with no associated star formation. This is the first evidence of AGN positive feedback in the sense of forming molecular gas through shocks, associated with low star formation efficiency due to turbulence injection by the interaction with the radio jet. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.01019.S.The full Table A.1 and a catalogue of the molecular clouds are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A98

  8. The star formation history of the Hubble sequence: spatially resolved colour distributions of intermediate-redshift galaxies in the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Abraham, R. G.; Ellis, R. S.; Fabian, A. C.; Tanvir, N. R.; Glazebrook, K.

    1999-03-01

    We analyse the spatially resolved colours of distant galaxies of known redshift in the Hubble Deep Field, using a new technique based on matching resolved four-band colour data to the predictions of evolutionary synthesis models. Given some simplifying assumptions, we demonstrate how our technique is capable of probing the evolutionary history of high-redshift systems, noting the specific advantage of observing galaxies at an epoch closer to the time of their formation. We quantify the relative age, dispersion in age, on-going star formation rate and star formation history of distinct components. We explicitly test for the presence of dust and quantify its effect on our conclusions. To demonstrate the potential of the method, we study the spirals and ellipticals in the near-complete sample of 32 I_814<21.9 mag galaxies with z~0.5 studied by Bouwens, Broadhurst & Silk. The dispersion of the internal colours of a sample of 0.4

  9. Monitoring pulsating giant stars in M33: star formation history and chemical enrichment

    NASA Astrophysics Data System (ADS)

    Javadi, A.; van Loon, J. Th

    2017-06-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1-4] and disc of M33 [5-8].

  10. Scales of Star Formation: Does Local Environment Matter?

    NASA Astrophysics Data System (ADS)

    Bittle, Lauren

    2018-01-01

    I will present my work on measuring molecular gas properties in local universe galaxies to assess the impact of local environment on the gas and thus star formation. I will also discuss the gas properties on spatial scales that span an order of magnitude to best understand the layers of star formation processes. Local environments within these galaxies include external mechanisms from starburst supernova shells, spiral arm structure, and superstar cluster radiation. Observations of CO giant molecular clouds (GMC) of ~150pc resolution in IC 10, the Local Group dwarf starburst, probe the large-scale diffuse gas, some of which are near supernova bubble ridges. We mapped CO clouds across the spiral NGC 7793 at intermediate scales of ~20pc resolution with ALMA. With the clouds, we can test theories of cloud formation and destruction in relation to the spiral arm pattern and cluster population from the HST LEGUS analysis. Addressing the smallest scales, I will show results of 30 Doradus ALMA observations of sub-parsec dense molecular gas clumps only 15pc away from a superstar cluster R136. Though star formation occurs directly from the collapse of densest molecular gas, we test theories of scale-free star formation, which suggests a constant slope of the mass function from ~150pc GMCs to sub-parsec clumps. Probing environments including starburst supernova shells, spiral arm structure, and superstar cluster radiation shed light on how these local external mechanisms affect the molecular gas at various scales of star formation.

  11. Neutrino probe comparisons of supernovae as a function of redshift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryer, Christopher Lee

    2009-01-01

    We compare aspects of supernova explosions produced in the current epoch against those produced in the first round of star formation. Although the total final mass of stars can change dramatically between these two epochs due to different mass-loss rates from winds, their cores remam very similar. The core structure is more sensitive to the stellar evolution code than it is to the amount of metals. As such, current stellar models produce supernovae from first stars that look very similar to that of stars produced in the current epoch. The neutrino signal, a powerful probe of the inner core, ismore » identical to the few percent level for both star formation epochs. A change in the neutrino signal in the supernova population between these two star formation epochs will only arise if the initial mass function is altered.« less

  12. Properties of Massive Stars in Primitive Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2012-01-01

    According to R. Dave, the phases of galaxy formation are distinguished by their halo mass and governing feedback mechanism. Galaxies in the birth phase (our "primitive galaxies") have a low halo mass (M<10(exp 9) Msun); and star formation is affected by photoionizing radiation of massive stars. In contrast, galaxies in the growth phase (e.g. Lyman Break galaxies) are more massive (M=10(exp 9)-10(exp 12) Msun); star formation is fueled by cold accretion but modulated by strong outflows from massive stars. I Zw 18 is a local blue, compact dwarf galaxy that meets the requirements for a birth-phase galaxy: halo mass <10(exp 9) Msun, strong photo ionizing radiation, no galactic outflow, and very low metallicity, log(O/H)=7.2. We will describe the properties of massive stars in I Zw 18 based on analysis of ultraviolet spectra obtained with HST.

  13. Are star formation rates of galaxies bimodal?

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (I) the discrete nature of star formation, (II) the presence of 'dead' galaxies with zero SFRs and (III) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  14. Galaxy and Mass Assembly (GAMA): Impact of the Group Environment on Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Barsanti, S.; Owers, M. S.; Brough, S.; Davies, L. J. M.; Driver, S. P.; Gunawardhana, M. L. P.; Holwerda, B. W.; Liske, J.; Loveday, J.; Pimbblet, K. A.; Robotham, A. S. G.; Taylor, E. N.

    2018-04-01

    We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly groups at 0.05 ≤ z ≤ 0.2 and analyze the projected phase space (PPS) diagram, i.e., the galaxy velocity as a function of projected group-centric radius, as a local environmental metric in the low-mass halo regime 1012 ≤ (M 200/M ⊙) < 1014. We study the properties of star-forming group galaxies, exploring the correlation of star formation rate (SFR) with radial distance and stellar mass. We find that the fraction of star-forming group members is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialized regions. We observe a small decline in specific SFR of star-forming galaxies toward the group center by a factor ∼1.2 with respect to field galaxies. Similar to cluster studies, we conclude for low-mass halos that star-forming group galaxies represent an infalling population from the field to the halo and show suppressed star formation.

  15. Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Hopkins, A. M.; Sharp, R. G.; Brough, S.; Taylor, E.; Bland-Hawthorn, J.; Maraston, C.; Tuffs, R. J.; Popescu, C. C.; Wijesinghe, D.; Jones, D. H.; Croom, S.; Sadler, E.; Wilkins, S.; Driver, S. P.; Liske, J.; Norberg, P.; Baldry, I. K.; Bamford, S. P.; Loveday, J.; Peacock, J. A.; Robotham, A. S. G.; Zucker, D. B.; Parker, Q. A.; Conselice, C. J.; Cameron, E.; Frenk, C. S.; Hill, D. T.; Kelvin, L. S.; Kuijken, K.; Madore, B. F.; Nichol, B.; Parkinson, H. R.; Pimbblet, K. A.; Prescott, M.; Sutherland, W. J.; Thomas, D.; van Kampen, E.

    2011-08-01

    The stellar initial mass function (IMF) describes the distribution in stellar masses produced from a burst of star formation. For more than 50 yr, the implicit assumption underpinning most areas of research involving the IMF has been that it is universal, regardless of time and environment. We measure the high-mass IMF slope for a sample of low-to-moderate redshift galaxies from the Galaxy and Mass Assembly survey. The large range in luminosities and galaxy masses of the sample permits the exploration of underlying IMF dependencies. A strong IMF-star formation rate dependency is discovered, which shows that highly star-forming galaxies form proportionally more massive stars (they have IMFs with flatter power-law slopes) than galaxies with low star formation rates. This has a significant impact on a wide variety of galaxy evolution studies, all of which rely on assumptions about the slope of the IMF. Our result is supported by, and provides an explanation for, the results of numerous recent explorations suggesting a variation of or evolution in the IMF.

  16. Cool Star Beginnings: YSOs in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Young, Kaisa E.; Young, Chadwick H.

    2015-01-01

    Nearby molecular clouds, where there is considerable evidence of ongoing star formation, provide the best opportunity to observe stars in the earliest stages of their formation. The Perseus molecular cloud contains two young clusters, IC 348 and NGC 1333 and several small dense cores of the type that produce only a few stars. Perseus is often cited as an intermediate case between quiescent low-mass and turbulent high-mass clouds, making it perhaps an ideal environment for studying ``typical low-mass star formation. We present an infrared study of the Perseus molecular cloud with data from the Spitzer Space Telescope as part of the ``From Molecular Cores to Planet Forming Disks (c2d) Legacy project tep{eva03}. By comparing Spitzer's near- and mid-infrared maps, we identify and classify the young stellar objects (YSOs) in the cloud using updated extinction corrected photometry. Virtually all of the YSOs in Perseus are forming in the clusters and other smaller associations at the east and west ends of the cloud with very little evidence of star formation in the midsection even in areas of high extinction.

  17. Star formation history from the cosmic infrared background anisotropies

    NASA Astrophysics Data System (ADS)

    Maniyar, A. S.; Béthermin, M.; Lagache, G.

    2018-06-01

    We present a linear clustering model of cosmic infrared background (CIB) anisotropies at large scales that is used to measure the cosmic star formation rate density up to redshift 6, the effective bias of the CIB, and the mass of dark matter halos hosting dusty star-forming galaxies. This is achieved using the Planck CIB auto- and cross-power spectra (between different frequencies) and CIB × CMB (cosmic microwave background) lensing cross-spectra measurements, as well as external constraints (e.g. on the CIB mean brightness). We recovered an obscured star formation history which agrees well with the values derived from infrared deep surveys and we confirm that the obscured star formation dominates the unobscured formation up to at least z = 4. The obscured and unobscured star formation rate densities are compatible at 1σ at z = 5. We also determined the evolution of the effective bias of the galaxies emitting the CIB and found a rapid increase from 0.8 at z = 0 to 8 at z = 4. At 2 < z < 4, this effective bias is similar to that of galaxies at the knee of the mass functions and submillimetre galaxies. This effective bias is the weighted average of the true bias with the corresponding emissivity of the galaxies. The halo mass corresponding to this bias is thus not exactly the mass contributing the most to the star formation density. Correcting for this, we obtained a value of log(Mh/M⊙) = 12.77-0.125+0.128 for the mass of the typical dark matter halo contributing to the CIB at z = 2. Finally, using a Fisher matrix analysis we also computed how the uncertainties on the cosmological parameters affect the recovered CIB model parameters, and find that the effect is negligible.

  18. Constraining the Active Galactic Nucleus Contribution in a Multiwavelength Study of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Kraemer, S.B.; Schmitt, H.R.; Crenshaw, D.M.; Deo, R.P.; Mushotzky, R.F.; Bruhweiler, F.C.

    2008-01-01

    We have studied the relationship between the high- and low-ionization [O IV] (lambda)25.89 microns, [Ne III] (lambda)15.56 microns, and [Ne II] (lambda)12.81 microns emission lines with the aim of constraining the active galactic nuclei (AGNs) and star formation contributions for a sample of 103 Seyfert galaxies.We use the [O IV] and [Ne II] emission as tracers for the AGN power and star formation to investigate the ionization state of the emission-line gas.We find that Seyfert 2 galaxies have, on average, lower [O IV]/[Ne II] ratios than Seyfert 1 galaxies. This result suggests two possible scenarios: (1) Seyfert 2 galaxies have intrinsically weaker AGNs, or (2) Seyfert 2 galaxies have relatively higher star formation rates than Seyfert 1 galaxies. We estimate the fraction of [Ne II] directly associated with the AGNs and find that Seyfert 2 galaxies have a larger contribution from star formation, by a factor of approx.1.5 on average, than what is found in Seyfert 1 galaxies. Using the stellar component of [Ne II] as a tracer of the current star formation, we found similar star formation rates in Seyfert 1 and Seyfert 2 galaxies.We examined the mid- and far-infrared continua and found that [Ne II] is well correlated with the continuum luminosity at 60 microns and that both [Ne III] and [O IV] are better correlated with the 25 micron luminosities than with the continuum at longer wavelengths, suggesting that the mid-infrared continuum luminosity is dominated by the AGN, while the far-infrared luminosity is dominated by star formation. Overall, these results test the unified model of AGNs and suggest that the differences between Seyfert galaxies cannot be solely due to viewing angle dependence.

  19. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, David; Bland-Hawthorn, Joss; Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au

    2015-01-30

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce themore » chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M{sub vir}∼10{sup 7} M{sub ⊙}), rather than being stripped remnants of much larger systems.« less

  20. The Epoch of Disk Formation: z is Approximately l to Today

    NASA Technical Reports Server (NTRS)

    Kassin, Susan; Gardner, Jonathan; Weiner, Ben; Faber, Sandra

    2012-01-01

    We present data on galaxy kinematics, morphologies, and star-formation rates over 0.1 less than z less than 1.2 for approximately 500 blue galaxies. These data show how systems like our own Milky-Way have come into being. At redshifts around 1, about half the age of the Universe ago, Milky-Way mass galaxies were different beasts than today. They had a significant amount of disturbed motions, disturbed morphologies, shallower potential wells, higher specific star-formation rates, and likely higher gas fractions. Since redshift approximately 1, galaxies have decreased in disturbed motions, increased in rotation velocity and potential well depth, become more well-ordered morphologically, and decreased in specific star-formation rate. We find interrelationships between these measurements. Galaxy kinematics are correlated with morphology and specific star-formation rate such that galaxies with the fastest rotation velocities and the least amounts of disturbed motions have the most well-ordered morphologies and the lowest specific star-formation rates. The converse is true. Moreover, we find that the rate at which galaxies become more well-ordered kinematically (i.e., increased rotation velocity, decreased disturbed motions) and morphologically is directly proportional to their stellar mass.

  1. On the correlation between the recent star formation rate in the Solar Neighbourhood and the glaciation period record on Earth

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, R.; de la Fuente Marcos, C.

    2004-11-01

    Shaviv [New Astron. 8 (2003) 39; J. Geophys. Res. 108 (2003) 3] has shown evidence for a correlation between variations in the Galactic cosmic ray flux reaching Earth and the glaciation period record on Earth during the last 2 Gyr. If the flux of cosmic rays is mainly the result of Type II supernovae, an additional correlation between the star formation history of the Solar Neighbourhood and the timing of past ice ages is expected. Higher star formation rate implies increased cosmic ray flux and this may translate into colder climate through a rise in the average low altitude cloud cover. Here we reanalyze the correlation between this star formation history and the glaciation period record on Earth using a volume limited open cluster sample. Numerical modeling and recent observational data indicate that the correlation is rather strong but only if open clusters within 1.5 kpc from the Sun are considered. Under this constraint, our statistical analysis not only suggests a strong correlation in the timing of the events (enhanced star formation and glaciation episodes), but also in the severity and length of the episodes. In particular, the snowball Earth scenario appears to be connected with the strongest episode of enhanced star formation recorded in the Solar Neighbourhood during the last 2 Gyr.

  2. The distribution of star formation and metals in the low surface brightness galaxy UGC 628

    NASA Astrophysics Data System (ADS)

    Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.

    2015-09-01

    We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.

  3. Speckle interferometry of Hipparcos link stars. III

    NASA Technical Reports Server (NTRS)

    White, Graeme L.; Jauncey, David L.; Reynolds, John E.; Blackmore, David R.; Matcher, Steven J.

    1991-01-01

    A third list of stars is presented which have been tested by speckle interferometry for use in the Hubble Space Telescope link between the Hipparcos astrometric reference frame and the extragalactic VLBI reference frame. Structural information on angular scales of 0.15-1.2 arcsec for 34 Southern Hemisphere stars is reported from observations made with the Imperial College Speckle Interferometer mounted on the Mount Stromlo 1.9-m telescope. Twenty-four percent of the stars (8 out of the 34) show evidence of multiplicity, in agreement with previous observations in this program.

  4. The edge of galaxy formation - I. Formation and evolution of MW-satellite analogues before accretion

    NASA Astrophysics Data System (ADS)

    Macciò, Andrea V.; Frings, Jonas; Buck, Tobias; Penzo, Camilla; Dutton, Aaron A.; Blank, Marvin; Obreja, Aura

    2017-12-01

    The satellites of the Milky Way and Andromeda represent the smallest galaxies we can observe in our Universe. In this series of papers, we aim to shed light on their formation and evolution using cosmological hydrodynamical simulations. In this first paper, we focus on the galaxy properties before accretion, by simulating 27 haloes with masses between 5 × 108 and 1010 M⊙. Out of this set 19 haloes successfully form stars, while 8 remain dark. The simulated galaxies match quite well present day observed scaling relations between stellar mass, size and metallicity, showing that such relations are in place before accretion. Our galaxies show a large variety of star formation histories, from extended star formation periods to single bursts. As in more massive galaxies, large star formation bursts are connected with major mergers events, which greatly contribute to the overall stellar mass build up. The intrinsic stochasticity of mergers induces a large scatter in the stellar mass-halo mass relation, up to two orders of magnitude. Despite the bursty star formation history, on these mass scales baryons are very ineffective in modifying the dark matter profiles, and galaxies with a stellar mass below ≈106 M⊙ retain their cuspy central dark matter distribution, very similar to results from pure N-body simulations.

  5. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

  6. Determining the Nature of [CII] 158 Micron Emission: an Improved Star Formation Rate Indicator

    NASA Astrophysics Data System (ADS)

    Sutter, Jessica; Dale, Daniel A.; KINGFISH Team

    2018-06-01

    The brightest observed emission line from most normal star-forming galaxies is the 158 micron line arising from singly-ionized carbon (also known as C+ or CII). In fact, astronomers have recently begun using the bright emission line to detect and characterize galaxies in the furthermost reaches of the universe. It is thus imperative that we have the tools to fully understand how this emission line could be utilized as an indicator of star formation rate, a primary parameter by which galaxies and their constituent star-forming regions are characterized. There are two main challenges to utilizing the [CII] 158 micron line as a star formation rate indicator. First, advances in long-wavelength astronomical instrumentation have only recently enabled its detection in statistically-significant samples of galaxies. Second, it is both a blessing and a curse that singly-ionized carbon can be created in both star-forming regions (ionized HII regions) and in non-star forming regions (neutral photo-dissociation regions). In order to better understand and quantify the [CII] emission as an indicator of star-formation rate, the relationship between the [NII] 205 micron emission, which can only arise from the ionized interstellar medium (ISM), and the [CII] 158 micron emission has been employed to determine the fraction of [CII] emission that originates from each phase of the ISM. Sub-kiloparsec measurements of the [NII] 205 micron line in nearby galaxies have recently become available as part of the KINGFISH program. We use these two far-infrared lines along with the full suite of KINGFISH panchromatic data to present an improved calibration of the [CII] emission line as a star formation rate indicator.

  7. Galaxies in the act of quenching star formation

    NASA Astrophysics Data System (ADS)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z < 0.21,we identify the ˜300 quenching galaxy best candidates with low [O III]/Hα, out of ˜26 000 galaxies without [O III] emission. They have masses between 10^{9.7} and 10^{10.8} M_{⊙},consistently with the corresponding growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  8. The velocity characteristics of dusty filaments in the JCMT GBS clouds

    NASA Astrophysics Data System (ADS)

    Buckle, J. V.; Salji, C.; Richer, J. S.

    2013-07-01

    Large scale, high resolution spectral and continuum imaging maps have revealed, to an unprecedented extent, the characteristics of filamentary structure in star-forming molecular clouds, and their close association with star-forming cores. The filaments are associated with the formation of dense molecular cores where star formation occurs, and recent models highlight the important relationship between filaments and star-forming clusters. Velocity-coherent filaments have been proposed as the parent structures of star forming cores in Taurus. In Serpens, accretion flows along filaments have been proposed as the continuous source of mass for the star forming cluster. An evolutionary scenario for filaments based on velocity dispersion and column density measurements has recently been proposed, which we test with large scale molecular line and dust continuum maps. The JCMT Gould Belt Survey with SCUBA-2 and HARP provides dust continuum observations at 850 and 450 micron, and 12CO/13CO/C18O J=3-2 spectral line mapping of several nearby molecular clouds, covering large angular scales at high resolution. Velocities and linewidths of optically thin species, such as C18O which traces the warm, dense gas associated with star formation, are critical for an estimate of the virial stability of filamentary structures. The data and analyses that we present provide robust statistics over a large range of starless and protostellar evolutionary states. We present the velocity characteristics of dusty filaments in Orion, probing the physics at the boundary of filamentary structure and star formation. Using C18O, we investigate the internal structure of filaments, based on fragmentation and velocity coherence in the molecular line data. Through velocity dispersion measurements, we determine whether the filamentary structures are bound, and compare results between clouds of different star formation characteristics.

  9. WFPC2 Observations of Star Clusters in the Magellanic Clouds. Report 2; The Oldest Star Clusters in the Small Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Mighell, Kenneth J.; Sarajedini, Ata; French, Rica S.

    1998-01-01

    We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F45OW ( approximately B) and F555W (approximately V) of the intermediate-age populous star clusters NGC 121, NGC 339, NGC 361, NGC 416, and Kron 3 in the Small Magellanic Cloud. We use published photometry of two other SMC populous star clusters, Lindsay 1 and Lindsay 113, to investigate the age sequence of these seven populous star clusters in order to improve our understanding of the formation chronology of the SMC. We analyzed the V vs B-V and M(sub V) vs (B-V)(sub 0) color-magnitude diagrams of these populous Small Magellanic Cloud star clusters using a variety of techniques and determined their ages, metallicities, and reddenings. These new data enable us to improve the age-metallicity relation of star clusters in the Small Magellanic Cloud. In particular, we find that a closed-box continuous star-formation model does not reproduce the age-metallicity relation adequately. However, a theoretical model punctuated by bursts of star formation is in better agreement with the observational data presented herein.

  10. A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole

    NASA Astrophysics Data System (ADS)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya; Thielemann, Friedrich-Karl

    2018-06-01

    We study the final fate of a very massive star by performing full general relativistic (GR), three-dimensional (3D) simulation with three-flavour multi-energy neutrino transport. Utilizing a 70 solar mass zero-metallicity progenitor, we self-consistently follow the radiation-hydrodynamics from the onset of gravitational core-collapse until the second collapse of the proto-neutron star (PNS), leading to black hole (BH) formation. Our results show that the BH formation occurs at a post-bounce time of Tpb ˜ 300 ms for the 70 M⊙ star. This is significantly earlier than those in the literature where lower mass progenitors were employed. At a few ˜10 ms before BH formation, we find that the stalled bounce shock is revived by intense neutrino heating from the very hot PNS, which is aided by violent convection behind the shock. In the context of 3D-GR core-collapse modelling with multi-energy neutrino transport, our numerical results present the first evidence to validate a fallback BH formation scenario of the 70 M⊙ star.

  11. A theory of ring formation around Be stars

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1976-01-01

    A theory for the formation of gaseous rings around Be stars is developed which involves the combined effect of stellar rotation and radiation pressure. A qualitative scenario of ring formation is outlined in which the envelope formed about a star from ejected material is in the form of a disk in the equatorial plane, collisions between ejected gas blobs are inevitable, and particles with high angular momenta form a rotating ring around the star. A quantitative description of this process is then formulated by considering the angular momentum and dynamical energy of the ejected matter as well as those of the ring alone, without introducing any other assumptions.

  12. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Cores: Towards a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2004-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.

  13. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rujopakarn, W.; Silverman, J. D.; Dunlop, J. S.

    2016-12-10

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z  = 1.3–3.0. These galaxies are selected from sensitive blank-field surveys of the 2′ × 2′ Hubble Ultra-Deep Field at λ  = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z  ∼ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs),more » thereby representing a diversity of z  ∼ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M {sub ⊙} yr{sup −1} kpc{sup −2}, sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3–8 times larger, providing a constraint on the characteristic SFR (∼300 M {sub ⊙} yr{sup −1}) above which a significant population of more compact SFGs appears to emerge.« less

  14. Shocks and star formation in Stephan's Quintet. I. Gemini spectroscopy of Hα-bright knots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantopoulos, I. S.; Cluver, M. E.; Appleton, P. N.

    2014-03-20

    We present a Gemini-GMOS spectroscopic study of Hubble Space Telescope (HST)-selected Hα-emitting regions in Stephan's Quintet (HCG 92), a nearby compact galaxy group, with the aim of disentangling the processes of shock-induced heating and star formation in its intra-group medium. The ≈40 sources are distributed across the system, but most densely concentrated in the ∼kiloparsec-long shock region. Their spectra neatly divide them into narrow- and broad-line emitters, and we decompose the latter into three or more emission peaks corresponding to spatial elements discernible in HST imaging. The emission-line ratios of the two populations of Hα-emitters confirm their nature as Hmore » II regions (90% of the sample) or molecular gas heated by a shock front propagating at ≲300 km s{sup –1}. Their redshift distribution reveals interesting three-dimensional structure with respect to gas-phase baryons, with no H II regions associated with shocked gas, no shocked regions in the intruder galaxy NGC 7318B, and a sharp boundary between shocks and star formation. We conclude that star formation is inhibited substantially, if not entirely, in the shock region. Attributing those H II regions projected against the shock to the intruder, we find a lopsided distribution of star formation in this galaxy, reminiscent of pileup regions in models of interacting galaxies. The Hα luminosities imply mass outputs, star formation rates, and efficiencies similar to nearby star-forming regions. Two large knots are an exception to this, being comparable in stellar output to the prolific 30 Doradus region. We also examine Stephan's Quintet in the context of compact galaxy group evolution, as a paradigm for intermittent star formation histories in the presence of a rich, X-ray-emitting intra-group medium. All spectra are provided as supplemental materials.« less

  15. SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR–M ∗ Relations on Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Pan, Hsi-An; Lin, Lihwai; Hsieh, Bau-Ching; Sánchez, Sebastián F.; Ibarra-Medel, Héctor; Boquien, Médéric; Lacerna, Ivan; Argudo-Fernández, Maria; Bizyaev, Dmitry; Cano-Díaz, Mariana; Drory, Niv; Gao, Yang; Masters, Karen; Pan, Kaike; Tabor, Martha; Tissera, Patricia; Xiao, Ting

    2018-02-01

    The galaxy integrated Hα star formation rate–stellar mass relation, or SFR(global)–M *(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα (all)) and stellar mass surface density (Σ*(all)) progressively turns over at the high Σ*(all) end for increasing M *(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)–M *(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H II)–M *(H II) and spatially resolved ΣHα (H II)–Σ*(H II) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR–M * relation critically depends on their global properties (M *(global) and B/T) and relative abundances of various ionizing sources within the galaxies.

  16. Equilibrium star formation in a constant Q disc: model optimization and initial tests

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Meurer, Gerhardt R.; Heckman, Timothy M.; Thilker, David A.; Zwaan, Martin A.

    2013-10-01

    We develop a model for the distribution of the interstellar medium (ISM) and star formation in galaxies based on recent studies that indicate that galactic discs stabilize to a constant stability parameter, which we combine with prescriptions of how the phases of the ISM are determined and for the star formation law (SFL). The model predicts the gas surface mass density and star formation intensity of a galaxy given its rotation curve, stellar surface mass density and the gas velocity dispersion. This model is tested on radial profiles of neutral and molecular ISM surface mass density and star formation intensity of 12 galaxies selected from the H I Nearby Galaxy Survey sample. Our tests focus on intermediate radii (0.3 to 1 times the optical radius) because there are insufficient data to test the outer discs and the fits are less accurate in detail in the centre. Nevertheless, the model produces reasonable agreement with the ISM mass and star formation rate integrated over the central region in all but one case. To optimize the model, we evaluate four recipes for the stability parameter, three recipes for apportioning the ISM into molecular and neutral components, and eight versions of the SFL. We find no clear-cut best prescription for the two-fluid (gas and stars) stability parameter Q2f and therefore for simplicity, we use the Wang and Silk approximation (QWS). We found that an empirical scaling between the molecular-to-neutral ISM ratio (Rmol) and the stellar surface mass density proposed by Leroy et al. works marginally better than the other two prescriptions for this ratio in predicting the ISM profiles, and noticeably better in predicting the star formation intensity from the ISM profiles produced by our model with the SFLs we tested. Thus, in the context of our modelled ISM profiles, the linear molecular SFL and the two-component SFL work better than the other prescriptions we tested. We incorporate these relations into our `constant Q disc' model.

  17. A dichotomy in satellite quenching around L* galaxies

    NASA Astrophysics Data System (ADS)

    Phillips, John I.; Wheeler, Coral; Boylan-Kolchin, Michael; Bullock, James S.; Cooper, Michael C.; Tollerud, Erik J.

    2014-01-01

    We examine the star formation properties of bright (˜0.1 L*) satellites around isolated ˜L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey Data Release 7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass-matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also play at least an indirect role in quenching star formation in their bright satellites. The previously reported tendency for `galactic conformity' in colour/morphology may be a by-product of this host-specific quenching dichotomy. The Sérsic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter haloes that are ˜45 per cent more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ˜30 per cent of ˜0.1L* galaxies that fall in from the field are quenched around passive hosts, compared with ˜0 per cent around star-forming hosts.

  18. How does star formation proceed in the circumnuclear starburst ring of NGC 6951?

    NASA Astrophysics Data System (ADS)

    van der Laan, T. P. R.; Schinnerer, E.; Emsellem, E.; Hunt, L. K.; McDermid, R. M.; Liu, G.

    2013-03-01

    Gas inflowing along stellar bars is often stalled at the location of circumnuclear rings, which form an effective reservoir for massive star formation and thus shape the central regions of galaxies. However, how exactly star formation proceeds within these circumnuclear starburst rings is the subject of debate. Two main scenarios for this process have been put forward. In the first, the onset of star formation is regulated by the total amount of gas present in the ring with star forming starting, once a mass threshold has been reached, in "random" positions within the ring like "popcorn". In the second, star formation primarily takes place near the locations where the gas enters the ring. This scenario has been dubbed "pearls-on-a-string". Here we combine new optical IFU data covering the full stellar bar with existing multiwavelength data to study the 580 pc radius circumnuclear starburst ring in detail in the nearby spiral galaxy NGC 6951. Using Hubble Space Telescope (HST) archival data together with SAURON and OASIS IFU data, we derive the ages and stellar masses of star clusters, as well as the total stellar content of the central region. Adding information on the molecular gas distribution, stellar and gaseous dynamics, and extinction, we find that the circumnuclear ring in NGC 6951 is ~1-1.5 Gyr old and has been forming stars for most of that time. We see evidence for preferred sites of star formation within the ring, consistent with the "pearls-on-a-string" scenario, when focusing on the youngest stellar populations. The ring's longevity means that this signature is washed out when older stellar populations are included in the analysis. Tables 4 and 5 are available in electronic form at http://www.aanda.orgOASIS maps and SAURON cube are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A81

  19. Properties of compact HII regions and their host clumps in the inner vs outer Galaxy - early results from SASSy

    NASA Astrophysics Data System (ADS)

    Djordjevic, Julie; Thompson, Mark; Urquhart, James S.

    2017-01-01

    We present a catalog of compact and ultracompact HII regions for all Galactocentric radii. Previous catalogs focus on the inner Galaxy (Rgal ≤ 8 kpc) but the recent SASSy 870 µm survey allows us to identify regions out to ~20 kpc. Early samples are also filled with false classifications leading to uncertainty when deriving star formation efficiencies in Galactic models. These objects have similar mid-IR colours to HII regions. Urquhart et al. (2013) found that they could use mid-IR, submm, and radio data to identify the genuine compact HII regions, avoiding confusion. They used this method on a small portion of the Galaxy (10 < l < 60), identifying 213 HII regions embedded in 170 clumps. We use ATLASGAL and SASSy, crossmatched with RMS, to sample the remaining galactic longitudes out to Rgal = 20 kpc. We derive the properties of the identified compact HII regions and their host clumps while addressing the implications for recent massive star formation in the outer Galaxy. Observations towards nearby galaxies are biased towards massive stars, affecting simulations and overestimating models for galactic evolution and star formation rates. The Milky Way provides the ideal template for studying factors affecting massive star formation rates and efficiencies at high resolution, thus fine-tuning those models. We find that there is no significant change in the rate of massive star formation in the outer vs inner Galaxy. Despite some peaks in known complexes and possible correlation with spiral arms, the outer Galaxy appears to produce massive stars as efficiently as the inner regions. However, many of the potential star forming SASSy clumps have no available radio counterpart to confirm the presence of an HII region or other star formation tracer. Follow-up observations will be required to verify this conclusion and are currently in progress.

  20. Unveiling hidden properties of young star clusters: differential reddening, star-formation spread, and binary fraction

    NASA Astrophysics Data System (ADS)

    Bonatto, C.; Lima, E. F.; Bica, E.

    2012-04-01

    Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the simulated Hess diagrams. Conclusions: Even for low-mass star clusters, ASAmin is sensitive to the values of cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and to a lesser degree, binary fraction. Compared with simpler approaches, including binaries, a decaying star-formation rate, and a normally distributed differential reddening appears to yield more constrained parameters, especially the mass, age, and distance from the Sun. A robust determination of cluster parameters may have a positive impact on many fields. For instance, age, mass, and binary fraction are important for establishing the dynamical state of a cluster or for deriving a more precise star-formation rate in the Galaxy.

  1. The Lesser Role of Starbursts in Star Formation at z = 2

    NASA Astrophysics Data System (ADS)

    Rodighiero, G.; Daddi, E.; Baronchelli, I.; Cimatti, A.; Renzini, A.; Aussel, H.; Popesso, P.; Lutz, D.; Andreani, P.; Berta, S.; Cava, A.; Elbaz, D.; Feltre, A.; Fontana, A.; Förster Schreiber, N. M.; Franceschini, A.; Genzel, R.; Grazian, A.; Gruppioni, C.; Ilbert, O.; Le Floch, E.; Magdis, G.; Magliocchetti, M.; Magnelli, B.; Maiolino, R.; McCracken, H.; Nordon, R.; Poglitsch, A.; Santini, P.; Pozzi, F.; Riguccini, L.; Tacconi, L. J.; Wuyts, S.; Zamorani, G.

    2011-10-01

    Two main modes of star formation are know to control the growth of galaxies: a relatively steady one in disk-like galaxies, defining a tight star formation rate (SFR)-stellar mass sequence, and a starburst mode in outliers to such a sequence which is generally interpreted as driven by merging. Such starburst galaxies are rare but have much higher SFRs, and it is of interest to establish the relative importance of these two modes. PACS/Herschel observations over the whole COSMOS and GOODS-South fields, in conjunction with previous optical/near-IR data, have allowed us to accurately quantify for the first time the relative contribution of the two modes to the global SFR density in the redshift interval 1.5 < z < 2.5, i.e., at the cosmic peak of the star formation activity. The logarithmic distributions of galaxy SFRs at fixed stellar mass are well described by Gaussians, with starburst galaxies representing only a relatively minor deviation that becomes apparent for SFRs more than four times higher than on the main sequence. Such starburst galaxies represent only 2% of mass-selected star-forming galaxies and account for only 10% of the cosmic SFR density at z ~ 2. Only when limited to SFR > 1000 M sun yr-1, off-sequence sources significantly contribute to the SFR density (46% ± 20%). We conclude that merger-driven starbursts play a relatively minor role in the formation of stars in galaxies, whereas they may represent a critical phase toward the quenching of star formation and morphological transformation in galaxies.

  2. Conversion of gas into stars in the Galactic center

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.

    2014-05-01

    The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.

  3. The Relation between Luminous AGNs and Star Formation in Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Rieke, G. H.; Egami, E.; Haines, C. P.; Pereira, M. J.; Smith, G. P.

    2015-08-01

    We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes (˜ 3× {10}8{M}⊙ ) accreting at ˜10% of the Eddington rate and residing in galaxies with stellar mass \\gt 3× {10}10{M}⊙ ; those detected with Herschel have IR luminosity from star formation in the range of {L}{SF,{IR}}˜ {10}10-{10}12{L}⊙ . We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.

  4. A molecular Einstein ring: imaging a starburst disk surrounding a quasi-stellar object.

    PubMed

    Carilli, C L; Lewis, G F; Djorgovski, S G; Mahabal, A; Cox, P; Bertoldi, F; Omont, A

    2003-05-02

    Images of the molecular CO 2-1 line emission and the radio continuum emission from the redshift 4.12 gravitationally lensed quasi-stellar object (QSO) PSS J2322+1944 reveal an Einstein ring with a diameter of 1.5". These observations are modeled as a star-forming disk surrounding the QSO nucleus with a radius of 2 kiloparsecs. The implied massive star formation rate is 900 solar masses per year. At this rate, a substantial fraction of the stars in a large elliptical galaxy could form on a dynamical time scale of 108 years. The observation of active star formation in the host galaxy of a high-redshift QSO supports the hypothesis of coeval formation of supermassive black holes and stars in spheroidal galaxies.

  5. The Star Formation Scenario in the Galactic Range from Ophiuchus to Chamaeleon

    NASA Astrophysics Data System (ADS)

    Sartori, Marília J.

    2000-07-01

    The molecular cloud complexes of Chamaeleon, Lupus and Ophiuchus, and the OB sub-groups of stars that form the Scorpius OB2 association are located at galactic longitudes in the interval 290° to 360°, all of them in a distance range from 100 to 200 pc. The distribution of known young stars in this region, both of low and of high mass, suggests that they belong to a single large structure. Moreover, a significant number of pre-main sequence (PMS) stars far from the star-forming clouds have been recently discovered. This scenario suggests that a global analysis of the star formation must be performed, especially of such nearby regions for which a large amount of data can be obtained. In order to test the models that intend to describe the history of star formation in these nearby star-forming regions, we collected information on the distribution of gas and dust and on the related young stellar populations. We mapped the molecular clouds of the complexes located in Chamaeleon, Lupus and Ophiuchus by means of an automatic method for star counting on plates of the Digitized Sky Survey. Another improvement with respect to the traditional star counts method is that we have adopted a relation between the extinction and the number of stars based on the predictions of the Galaxy's model by Ortiz & Lépine (1993, A&A 279, 90). Our maps confirm that there is an extended distribution of dust in the regions between the main clouds. We built a complete list of PMS and early-type stars from the literature, including all the available distance, radial velocity and proper motion data. We completed these data with our own determinations of proper motions of PMS stars, using positions obtained with the Valinhos Meridian Circle (IAG/USP, Brazil), photographic plates and public catalogs (Teixeira et al. 2000, A&A in press). Using these kinematical data and comparing the positions and spatial velocities of PMS stars to those of early-type stars, we verified that the kinematics of the two stellar populations is very similar. We estimated the age of the PMS stars using H-R diagrams constructed with photometric data, spectral type and HIPPARCOS parallaxes, when available. We also re-determined the age of the OB associations using the same method. The comparison of the ages of the two populations shows that they are also similar. Our conclusion is that the two stellar populations have a common global origin. The arrangement of stars and molecular clouds in this extended region and the average velocity of the stars in the opposite direction of the galactic rotation, agree with the expected behavior of the star formation in a nearby spiral arm. On the other hand, the star formation by impact of high velocity clouds on the galactic disk and the sequential star formation do not explain our results. We conclude that the extended complex we have studied probably belongs to a spiral arm close to the Sun.

  6. The formation of high-mass stars and stellar clusters in the extreme environment of the Central Molecular Zone

    NASA Astrophysics Data System (ADS)

    Walker, Daniel Lewis

    2017-08-01

    The process of converting gas into stars underpins much of astrophysics, yet many fundamental questions surrounding this process remain unanswered. For example - how sensitive is star formation to the local environmental conditions? How do massive and dense stellar clusters form, and how does this crowded environment influence the stars that form within it? How do the most massive stars form and is there an upper limit to the stellar initial mass function (IMF)? Answering questions such as these is crucial if we are to construct an end-to-end model of how stars form across the full range of conditions found throughout the Universe. The research described in this thesis presents a study that utilises a multi-scale approach to identifying and characterising the early precursors to young massive clusters and high-mass proto-stars, with a specific focus on the extreme environment in the inner few hundred parsecs of the Milky Way - the Central Molecular Zone (CMZ). The primary sources of interest that are studied in detail belong to the Galactic centre dust ridge - a group of six high-mass (M 10^(4-5) Msun), dense (R 1-3 pc, n > 10^(4) cm^(-3)), and quiescent molecular clouds. These properties make these clouds ideal candidates for representing the earliest stages of high-mass star and cluster formation. The research presented makes use of single-dish and interferometric far-infrared and (sub-)millimetre observations to study their global and small-scale properties. A comparison of the known young massive clusters (YMCs) and their likely progenitors (the dust ridge clouds) in the CMZ shows that the stellar content of YMCs is much more dense and centrally concentrated than the gas in the clouds. If these clouds are truly precursors to massive clusters, the resultant stellar population would have to undergo significant dynamical evolution to reach central densities that are typical of YMCs. This suggests that YMCs in the CMZ are unlikely to form monolithically. Extending this study to include YMCs in the Galactic disc again shows that the known population of YMC precursor clouds throughout the Galaxy are not sufficiently dense or central concentrated that they could form a cluster that then expands due to gas expulsion. The data also reveal an evolutionary trend, in which clouds contract and accrete gas towards their central regions along with concurrent star formation. This is argued to favour a conveyor-belt mode of YMC formation and is again not consistent with a monolithic formation event. High angular resolution observations of the dust ridge clouds with the Submillimeter Array are presented. They reveal an embedded population of compact and massive cores, ranging from 50 - 2150 Msun within radii of 0.1 - 0.25 pc. These are likely formation sites of high-mass stars and clusters, and are strong candidates for representing the initial conditions of extremely massive stars. Two of these cores are found to be young, high-mass proto-stars, while the remaining 13 are quiescent. Comparing these cores with high-mass proto-stars in the Galactic disc, along with models in which star formation is regulated by turbulence, shows that these cores are consistent with the idea that the critical density threshold for star formation is greater in the turbulent environment at the Galactic centre.

  7. Massive stars, disks, and clustered star formation

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas Barry

    The formation of an isolated massive star is inherently more complex than the relatively well-understood collapse of an isolated, low-mass star. The dense, clustered environment where massive stars are predominantly found further complicates the picture, and suggests that interactions with other stars may play an important role in the early life of these objects. In this thesis we present the results of numerical hydrodynamic experiments investigating interactions between a massive protostar and its lower-mass cluster siblings. We explore the impact of these interactions on the orientation of disks and outflows, which are potentially observable indications of encounters during the formation of a star. We show that these encounters efficiently form eccentric binary systems, and in clusters similar to Orion they occur frequently enough to contribute to the high multiplicity of massive stars. We suggest that the massive protostar in Cepheus A is currently undergoing a series of interactions, and present simulations tailored to that system. We also apply the numerical techniques used in the massive star investigations to a much lower-mass regime, the formation of planetary systems around Solar- mass stars. We perform a small number of illustrative planet-planet scattering experiments, which have been used to explain the eccentricity distribution of extrasolar planets. We add the complication of a remnant gas disk, and show that this feature has the potential to stabilize the system against strong encounters between planets. We present preliminary simulations of Bondi-Hoyle accretion onto a protoplanetary disk, and consider the impact of the flow on the disk properties as well as the impact of the disk on the accretion flow.

  8. Star Formation Histories of Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Skillman, Evan

    1995-07-01

    We propose to obtain deep WFPC2 `BVI' color-magnitude diagrams {CMDs} for the dwarf irregular {dI} Local Group galaxies GR 8, Leo A, Pegasus, and Sextans A. In addition to resolved stars, we will use star clusters, and especially any globulars, to probe the history of intense star formation. These data will allow us to map the Pop I and Pop II stellar components, and thereby construct the first detailed star formation histories for non-interacting dI galaxies. Our results will bear on a variety of astrophysical problems, including the evolution of small galaxies, distances in the Local Group, age-metallicity distributions in small galaxies, ages of dIs, and the physics of star formation. The four target galaxies are typical dI systems in terms of luminosity, gas content, and H II region abundance, and represent a range in current star forming activity. They are sufficiently near to allow us to reach to stars at M_V = 0, have 0.1 of the luminosity of the SMC and 0.25 of its oxygen abundance. Unlike the SMC, these dIs are not near giant galaxies. This project will allow the extension of our knowledge of stellar populations in star forming galaxies from the spirals in the Local Group down to its smallest members. We plan to take maximum advantage of the unique data which this project will provide. Our investigator team brings extensive and varied experience in studies of dwarf galaxies, stellar populations, imaging photometry, and stellar evolution to this project.

  9. A dynamical model for gas flows, star formation and nuclear winds in galactic centres

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Kruijssen, J. M. Diederik; Crocker, Roland M.

    2017-04-01

    We present a dynamical model for gas transport, star formation and winds in the nuclear regions of galaxies, focusing on the Milky Way's Central Molecular Zone (CMZ). In our model angular momentum and mass are transported by a combination of gravitational and bar-driven acoustic instabilities. In gravitationally unstable regions the gas can form stars, and the resulting feedback drives both turbulence and a wind that ejects mass from the CMZ. We show that the CMZ is in a quasi-steady state where mass deposited at large radii by the bar is transported inwards to a star-forming, ring-shaped region at ˜100 pc from the Galactic Centre, where the shear reaches a minimum. This ring undergoes episodic starbursts, with bursts lasting ˜5-10 Myr occurring at ˜20-40 Myr intervals. During quiescence the gas in the ring is not fully cleared, but is driven out of a self-gravitating state by the momentum injected by expanding supernova remnants. Starbursts also drive a wind off the star-forming ring, with a time-averaged mass flux comparable to the star formation rate. We show that our model agrees well with the observed properties of the CMZ, and places it near a star formation minimum within the evolutionary cycle. We argue that such cycles of bursty star formation and winds should be ubiquitous in the nuclei of barred spiral galaxies, and show that the resulting distribution of galactic nuclei on the Kennicutt-Schmidt relation is in good agreement with that observed in nearby galaxies.

  10. Formation of ultra-compact dwarf galaxies from supergiant molecular clouds

    NASA Astrophysics Data System (ADS)

    Goodman, Morgan; Bekki, Kenji

    2018-05-01

    The origin of ultra-compact dwarf galaxies (UCDs) is not yet clear. One possible formation path of UCDs is the threshing of a nucleated elliptical dwarf galaxy (dE, N), however, it remains unclear how such massive nuclear stellar systems were formed in dwarf galaxies. To better establish the early history of UCDs, we investigate the formation of UCD progenitor clusters from super giant molecular clouds (SGMCs), using hydrodynamical simulations. In this study we focus on SGMCs with masses 107 - 108 M_{\\odot } that can form massive star clusters that display physical properties similar to UCDs. We find that the clusters have extended star formation histories with two phases, producing multiple distinct stellar populations, and that the star formation rate is dependent on the feedback effects of SNe and AGB stars. The later generations of stars formed in these clusters are more compact, leading to a clearly nested structure, and these stars will be more He-rich than those of the first generation, leading to a slight colour gradient. The simulated clusters demonstrate scaling relations between Reff and M and σv and M consistent with those observed in UCDs and strongly consistent with those of the original SGMC. We discuss whether SGMCs such as these can be formed through merging of self-gravitating molecular clouds in galaxies at high-z.

  11. Cosmic infrared background measurements and star formation history from Planck

    NASA Astrophysics Data System (ADS)

    Serra, Paolo; Serra

    2014-05-01

    We present new measurements of Cosmic Infrared Background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles l ~ 150 to 2500. The interpretation based on the halo model is able to associate star-forming galaxies with dark matter halos and their subhalos, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass, and it allows to simultaneously fit all auto- and cross- power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log(M eff/M ⊙) = 12.6 and that CIB galaxies have warmer temperatures as redshift increases.

  12. STAR (Simple Tool for Automated Reasoning): Tutorial guide and reference manual

    NASA Technical Reports Server (NTRS)

    Borchardt, G. C.

    1985-01-01

    STAR is an interactive, interpreted programming language for the development and operation of Artificial Intelligence application systems. The language is intended for use primarily in the development of software application systems which rely on a combination of symbolic processing, central to the vast majority of AI algorithms, with routines and data structures defined in compiled languages such as C, FORTRAN and PASCAL. References to routines and data structures defined in compiled languages are intermixed with symbolic structures in STAR, resulting in a hybrid operating environment in which symbolic and non-symbolic processing and organization of data may interact to a high degree within the execution of particular application systems. The STAR language was developed in the course of a project involving AI techniques in the interpretation of imaging spectrometer data and is derived in part from a previous language called CLIP. The interpreter for STAR is implemented as a program defined in the language C and has been made available for distribution in source code form through NASA's Computer Software Management and Information Center (COSMIC). Contained within this report are the STAR Tutorial Guide, which introduces the language in a step-by-step manner, and the STAR Reference Manual, which provides a detailed summary of the features of STAR.

  13. The real population of star clusters in the bar of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2017-09-01

    We report results on star clusters located in the south-eastern half of the Large Magellanic (LMC) bar from Washington CT1 photometry. Using appropriate kernel density estimators, we detected 73 star cluster candidates, three of which do not show any detectable trace of star cluster sequences in their colour-magnitude diagrams (CMDs). We did not detect the other 38 previously catalogued clusters, which could not be recognized when visually inspecting the C and T1 images either; the distribution of stars in their respective fields do not resemble that of a stellar aggregate. They represent 33 per cent of all catalogued objects located within the analysed LMC bar field. From matching theoretical isochrones to the cluster CMDs cleaned from field star contamination, we derived ages in the range 7.2 < log(t yr-1) < 10.1. As far as we are aware, this is the first time that homogeneous age estimates based on resolved stellar photometry are obtained for most of the studied clusters. We built the cluster frequency (CF) for the surveyed area, and found that the main star cluster formation activity has taken place during the period log(t yr-1) 8.0-9.0. Since 100 Myr ago, clusters have been formed during a few bursting formation episodes. When comparing the observed CF to that recovered from the star formation rate, we found noticeable differences, which suggests that field star and star cluster formation histories could have been significantly different. Photometric catalogues of the studied star clusters are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A21

  14. Submillimeter Observations of CLASH 2882 and the Evolution of Dust in this Galaxy

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G; Kovacs, Attila; Decarli, Roberto; Egami, Eiichi; Michalowski, Michal J.; Rawle, Timothy D.; Toft, Sune; Walter, Fabian

    2015-01-01

    Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882,12 source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6 +2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is 54/mu/Solar Mass/yr, and its dust mass is about 5 × 10(exp 7)/mu Solar Mass, where mu is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium.

  15. Origin and development of the germ line in sea stars

    PubMed Central

    Wessel, Gary M.; Fresques, Tara; Kiyomoto, Masato; Yajima, Mamiko; Zazueta, Vanesa

    2014-01-01

    This review summarizes and integrates our current understanding of how sea stars make gametes. Although little is known of the mechanism of germ line formation in these animals, recent results point to specific cells and to cohorts of molecules in the embryos and larvae that may lay the ground work for future research efforts. A coelomic outpocketing forms in the posterior of the gut in larvae, referred to as the posterior enterocoel (PE), that when removed, significantly reduces the number of germ cell later in larval growth. This same PE structure also selectively accumulates several germ-line associated factors – vasa, nanos, piwi – and excludes factors involved in somatic cell fate. Since its formation is relatively late in development, these germ cells may form by inductive mechanisms. When integrated into the morphological observations of germ cells and gonad development in larvae, juveniles, and adults, the field of germ line determination appears to have a good model system to study inductive germ line determination to complement the recent work on the molecular mechanisms in mice. We hope this review will also guide investigators interested in germ line determination and regulation of the germ line in how these animals can help in this research field. The review is not intended to be comprehensive – sea star reproduction has been studied over 100 years and many reviews are comprehensive in their coverage of, for example, seasonal growth of the gonads in response to light, nutrient, and temperature. Rather the intent of this review is to help the reader focus on new experimental results attached to the historical underpinnings of how the germ cell functions in sea stars with particular emphasis to clarify the important areas of priority for future research. PMID:24648114

  16. The formation of Dwarf Spheroidal galaxies by the dissolving star cluster model.

    NASA Astrophysics Data System (ADS)

    Alarcon, Alex; Theory and Star Formation Group

    2018-01-01

    Dwarf spheroidal (dSph) galaxies are regarded as key object in the formation of larger galaxies and are believed to be the most dark matter dominated systems known. There are several model that attempt to explain their formation, but they have problems to model the formation of isolated dSph. Here we will explain a possible formation scenario in which star clusters form in the dark matter halo of a dSph. these cluster suffer from low star formation efficiency and dissolve while orbiting inside the halo. Thereby they build the faint luminous components that we observe in dSph galaxies. Here we will show the main results of this simulations and how they would be corroborated using observational data.

  17. Resolving Star Formation, Multiphase ISM Structure, and Wind Driving with MHD and RHD Models of Galactic Disks

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve

    Current studies of star and galaxy formation have concluded that energetic feedback from young stars and supernovae (SNe) is crucial, both for controlling observed interstellar medium (ISM) properties and star formation rates in the Milky Way and other galaxies, and for driving galactic winds that govern the baryon abundance in dark matter halos. However, in many numerical studies of the ISM, energy inputs have not been implemented self-consistently with the evolving rate of gravitational collapse to make stars, or have considered only isolated star-forming clouds without a realistic galactic environment (including sheared rotation and externally-originating SNe), or have not directly incorporated radiation, magnetic, and chemical effects that are important or even dominant. In models of galaxy formation and evolution in the cosmic context, galactic winds are indispensable but highly uncertain as the physics of superbubble evolution and radiation-gas interactions cannot be resolved. Our central objectives are (1) to address the above limitations of current models, developing self-consistent simulations of the multiphase ISM in disk galaxies that resolve both star formation and stellar feedback, covering the range of scales needed to connect star cluster formation to galactic superwind ejection, and the range of environments from dwarfs to ULIRGs; and (2) to analyze the detailed properties of the gas, magnetic field, radiation field, and star formation/SNe in our simulations, including dependencies on local galactic disk environment, and to connect intrinsic properties with observable diagnostics. The proposed project will employ the Athena code for numerical magneto-hydrodynamic (MHD) and radiation-hydrodynamic (RHD) simulations, using comprehensive physics modules that have been developed, tested, and demonstrated in sample simulations. We will consider local ``shearing box'' disk models with gas surface density Sigma = 2 - 10,000 Msun/pc^2, and a range of stellar potentials and galactic rotation rates. Our simulations follow all thermal phases of the gas, the driving of turbulence, and the expulsion of material in high-velocity galactic winds as well as the circulation of lowervelocity material in galactic ``fountains.'' We resolve gravitational collapse and apply stellar population modeling to determine radiation emitted by star cluster particles, and both in situ and runaway O-star SN events. With time-dependent chemistry, we will be able to follow C+/C/CO transitions and assess the relationship between the observed molecular component and self-gravitating or diffuse clouds in varying galactic environments, also determining how cloud properties (e.g. distributions of mass, size, virial parameter, internal/external pressure, magnetization) and lifetimes depend on environment. We will also investigate the dependence on local galactic environment of: * mass and volume fractions, and turbulent and magnetic state, of each thermal and chemical ISM phase * star formation rate, and galactic wind mass loss rate in each ISM phase * metrics of ISM energy gain/loss, large-scale force balance, wind acceleration * roles of SN and radiation feedback in setting cloud SFEs, overall SFRs, and wind massloss rates Our models will be valuable for interpreting a wide range of observations with Chandra, Hubble, Spitzer, Herschel, Planck, and ground-based telescopes. Obtaining self-consistent solutions for the dynamical, thermal, magnetic, chemical, and radiative state of the star-forming ISM is a long-sought goal of galactic theory. Understanding why ISM and star formation properties vary among and within galaxies is essential for interpreting new multiwavelength extragalactic surveys. Connecting galactic winds to star formation via resolved physical mechanisms will provide a missing link in contemporary galaxy formation models. With our planned research program, we are in a position to achieve all of these advances.

  18. Radial velocity detection of extra-solar planetary systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    1991-01-01

    The goal of this program was to detect planetary systems in orbit around other stars through the ultra high precision measurement of the orbital motion of the star around the star-planet barycenter. The survey of 33 nearby solar-type stars is the essential first step in understanding the overall problem of planet formation. The program will accumulate the necessary statistics to determine the frequency of planet formation as a function of stellar mass, age, and composition.

  19. Massive Infrared-Quiet Dense Cores: Unveiling the Initial Conditions of High-Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Motte, F.; Bontemps, S.; Schneider, N.; Schilke, P.; Menten, K. M.

    2008-05-01

    As Th. Henning said at the conference, cold precursors of high-mass stars are now ``hot topics''. We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class~0 protostars and pre-stellar condensations. We also show how far-infrared to millimeter imaging surveys of entire complexes forming OB stars are starting to unveil the initial conditions of high-mass star formation.

  20. LEGUS: A Legacy ExtraGalactic UV Survey of Nearby Galaxies with HST

    NASA Astrophysics Data System (ADS)

    Lee, Janice C.; Calzetti, D.; Adamo, A.; Aloisi, A.; Andrews, J. E.; Brown, T. M.; Chandar, R.; Christian, C. A.; Cignoni, M.; Clayton, G. C.; Da Silva, R. L.; de Mink, S. E.; Dobbs, C.; Elmegreen, B.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S.; Gouliermis, D.; Grebel, E.; Herrero-Davo`, A.; Hilbert, B.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R.; Kim, H.; Krumholz, M. R.; Lennon, D. J.; Martin, C. D.; Nair, P.; Nota, A.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Schaerer, D.; Schiminovich, D.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Van Dyk, S. D.; Walterbos, R. A.; Whitmore, B. C.; Wofford, A.

    2014-01-01

    We introduce LEGUS, a Hubble Space Telescope program which will provide a critical missing piece in our efforts to solve the star formation puzzle: a robust characterization of the links between star formation on two fundamental scales, those of individual young stars, stellar clusters and associations over parsec scales, and of galaxy disks over kiloparsec scales. As a 154-orbit Treasury survey, LEGUS has begun obtaining NUV,U,B,V,I imaging of 50 star-forming galaxies, at distances of 4-12 Mpc. The dataset is guaranteed to have exceptional legacy value, as the targets have been carefully selected to uniformly sample a full range of global galaxy properties, as well as have the largest suites of multi-wavelength ancillary data available. The high-resolution HST NUV and U imaging are key for deriving accurate recent (<50 Myr) star formation histories from resolved massive stars, along with the ages and masses for complete samples of star clusters and associations in each galaxy. We present an overview of the sample, the observations, and provide a first look at the science that the LEGUS team is pursuing. A companion poster presents the status of the program, and a more detailed description of the extensive data products being developed which will seed community science, and provide a foundation for studies of star formation with ALMA and JWST.

Top