Sample records for star interior physics

  1. The future of solar physics

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1985-01-01

    Outstanding problems for the future of solar physics and stellar physics are examined. The physics of stellar interiors has been called into serious question by the very low measured neutrino flux from the sun. The Ga-71 neutrino detection experiment is the next step in unravelling this mystery. The new methods of helioseismology, for probing the interior of the sun, have already found the primordial rapid rotation of the central core. The forthcoming worldwide helioseismology observing network will permit fuller exploitation of the method, promising to provide the first direct sounding of the interior of a star, hitherto known to us only through theoretical inference and the discrepant neutrino emission. An essential step in developing the physics of stellar activity will be the Solar Optical Telescope (presently planned by NASA to be launched early in the next decade) to permit a 'microscopic' examination of the surface of the sun to study the source of the action. The activity and X-ray emission of other stars depend on much the same effects, so that the study of the sun is essential to determining the significance of the X-ray emission from other stars.

  2. Constraints on pulsar masses from the maximum observed glitch

    NASA Astrophysics Data System (ADS)

    Pizzochero, P. M.; Antonelli, M.; Haskell, B.; Seveso, S.

    2017-07-01

    Neutron stars are unique cosmic laboratories in which fundamental physics can be probed in extreme conditions not accessible to terrestrial experiments. In particular, the precise timing of rotating magnetized neutron stars (pulsars) reveals sudden jumps in rotational frequency in these otherwise steadily spinning-down objects. These 'glitches' are thought to be due to the presence of a superfluid component in the star, and offer a unique glimpse into the interior physics of neutron stars. In this paper we propose an innovative method to constrain the mass of glitching pulsars, using observations of the maximum glitch observed in a star, together with state-of-the-art microphysical models of the pinning interaction between superfluid vortices and ions in the crust. We study the properties of a physically consistent angular momentum reservoir of pinned vorticity, and we find a general inverse relation between the size of the maximum glitch and the pulsar mass. We are then able to estimate the mass of all the observed glitchers that have displayed at least two large events. Our procedure will allow current and future observations of glitching pulsars to constrain not only the physics of glitch models but also the superfluid properties of dense hadronic matter in neutron star interiors.

  3. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Deibel, Alex Thomas

    When the most massive stars perish, their cores may remain intact in the form of extremely dense and compact stars. These stellar remnants, called neutron stars, are on the cusp of becoming black holes and reach mass densities greater than an atomic nucleus in their centers. Although the interiors of neutron stars were difficult to investigate at the time of their discovery, the advent of modern space-based telescopes (e.g., Chandra X-ray Observatory) has pushed our understanding of the neutron star interior into exciting new realms. It has been shown that the neutron star interior spans an enormous range of densities and contains many phases of matter, and further theoretical progress must rely on numerical calculations of neutron star phenomena built with detailed nuclear physics input. To further investigate the properties of the neutron star interior, this dissertation constructs numerical models of neutron stars, applies models to various observations of neutron star high-energy phenomena, and draws new conclusions about the neutron star interior from these analyses. In particular, we model the neutron star's outermost ? 1 km that encompasses the neutron star's envelope, ocean, and crust. The model must implement detailed nuclear physics to properly simulate the hydrostatic and thermal structure of the neutron star. We then apply our model to phenomena that occur in these layers, such as: thermonuclear bursts in the envelope, g-modes in the ocean, torsional oscillations of the crust, and crust cooling of neutron star transients. A comparison of models to observations provides new insights on the properties of dense matter that are often difficult to probe through terrestrial experiments. For example, models of the quiescent cooling of neutron stars, such as the accreting transient MAXI J0556-332, at late times into quiescence probe the thermal transport properties of the deep neutron star crust. This modeling provides independent data from astronomical observations on the nature of neutron superfluidity and the thermal conductivity of nuclear pasta. Our neutron star modeling efforts also pose new questions. For instance, reaction networks find that neutrino emission from cycling nuclear reactions is present in the neutron star ocean and crust, and potentially cools an accreting neutron star. This is a theory we attempt to verify using observations of neutron star transients and thermonuclear bursts, although it remains unclear if this cooling occurs. Furthermore, on some accreting neutron stars, more heat than supplied by nuclear reactions is needed to explain their high temperatures at the outset of quiescence. Although the presence of heating anomalies seems common, the source of extra heating is difficult to determine.

  4. Crystallization of the Pulsating White Dwarf Star, BPM 37093

    NASA Astrophysics Data System (ADS)

    Salois, Amee; Winget, D.

    2010-01-01

    BPM 37093 is unique among pulsating white dwarf stars because it is expected to have a highly crystallized interior. By understanding how this star is crystallizing, we gain a better understanding of extreme physics. Theoretical models of the evolution of white dwarf stars suggest that they crystallize from the inside out. The pulsations of the star, which we see as intensity variations, cannot penetrate this crystallized interior. Therefore, as the star crystallizes there is a smaller volume for the propagation of the pulsations and the pulsation periods are changed accordingly. We studied these changes in the periods of the pulsations of the star over ten weeks during the McDonald Observatory Research Experience for Undergraduates Program. By studying the changes in the pulsations periods of the star we can determine the mass fraction of the star that is crystallized. Comparing Fourier transforms of our observed light curves taken in 2004 and 2005 at CTIO with data taken in 1998 and 1999 by Kanaan et al. we hope to see the changes that have occurred in the star as well as determining a better approximation of the star's crystallized mass fraction.

  5. Surface emission from neutron stars and implications for the physics of their interiors.

    PubMed

    Ozel, Feryal

    2013-01-01

    Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition and magnetic fields. In this review, I discuss in detail the physics that governs the properties of emission from the surfaces of neutron stars and their various observational manifestations. I present the constraints on neutron star radii, core and crust composition, and magnetic field strength and topology obtained from studies of their broadband spectra, evolution of thermal luminosity, and the profiles of pulsations that originate on their surfaces.

  6. Dynamic collapses of relativistic degenerate stellar cores and radiation pressure dominated stellar interiors

    NASA Astrophysics Data System (ADS)

    Shi, Chun-Hui; Lou, Yu-Qing

    2018-04-01

    We investigate and explore self-similar dynamic radial collapses of relativistic degenerate stellar cores (RDSCs) and radiation pressure dominated stellar interiors (RPDSIs) of spherical symmetry by invoking a conventional polytropic (CP) equation of state (EoS) with a constant polytropic index γ = 4 / 3 and by allowing free-fall non-zero RDSC or RPDSI surface mass density and pressure due to their sustained physical contact with the outer surrounding stellar envelopes also in contraction. Irrespective of the physical triggering mechanisms (including, e.g., photodissociation, electron-positron pair instability, general relativistic instability etc.) for initiating such a self-similar dynamically collapsing RDSC or RPDSI embedded within a massive star, a very massive star (VMS) or a supermassive star (SMS) in contraction and by comparing with the Schwarzschild radii associated with their corresponding RDSC/RPDSI masses, the emergence of central black holes in a wide mass range appears inevitable during such RDSC/RPDSI dynamic collapses inside massive stars, VMSs, and SMSs, respectively. Radial pulsations of progenitor cores or during a stellar core collapse may well leave imprints onto collapsing RDSCs/RPDSIs towards their self-similar dynamic evolution. Massive neutron stars may form during dynamic collapses of RDSC inside massive stars in contraction under proper conditions.

  7. Dissertation Award in Nuclear Physics Recipient: Astromaterials in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew E.

    2017-09-01

    Stars freeze. As they age and cool white dwarfs and neutron stars crystallize, with remarkable materials forming in their interiors. These `astromaterials' have structures similar to terrestrial crystalline solids and liquid crystals, though they are over a trillion times denser. Notably, because their material properties affect the observable properties of the star, astromaterials must be understood to interpret observations of neutron stars. Thus, astromaterial science can be thought of as an interdisciplinary field, using techniques from material science to study nuclear physics systems with astrophysical relevance. In this talk, I will discuss recent results from simulations of astromaterials and how we use these results to interpret observations of neutron stars in X-ray binaries. In addition, I will discuss how nuclear pasta, in neutron stars, forms structures remarkably similar to biophysical membranes seen in living organisms.

  8. The Neutron Star Interior Composition Explorer (NICER)

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  9. The Life Story of a Star, Book 5. Guidebook. The University of Illinois Astronomy Project.

    ERIC Educational Resources Information Center

    Atkin, J. Myron; Wyatt, Stanley P., Jr.

    Presented is book five in a series of six books in the University of Illinois Astronomy Program which introduces astronomy to upper elementary and junior high school students. This guidebook discusses the interior of stars, their source of energy, and their evolution. Topics presented include: the physical properties of the sun; model of the solar…

  10. Surface tension and negative pressure interior of a non-singular ‘black hole’

    NASA Astrophysics Data System (ADS)

    Mazur, Pawel O.; Mottola, Emil

    2015-11-01

    The constant density interior Schwarzschild solution for a static, spherically symmetric collapsed star has a divergent pressure when its radius R≤slant \\frac{9}{8}{R}s=\\frac{9}{4}{GM}. We show that this divergence is integrable, and induces a non-isotropic transverse stress with a finite redshifted surface tension on a spherical surface of radius {R}0=3R\\sqrt{1-\\frac{8}{9}\\frac{R }{{R}s}}. For r\\lt {R}0 the interior Schwarzschild solution exhibits negative pressure. When R={R}s, the surface is localized at the Schwarzschild radius itself, {R}0={R}s, and the solution has constant negative pressure p=-\\bar{ρ } everywhere in the interior r\\lt {R}s, thereby describing a gravitational condensate star, a fully collapsed non-singular state already inherent in and predicted by classical general relativity. The redshifted surface tension of the condensate star surface is given by {τ }s={{Δ }}κ /8π G, where {{Δ }}κ ={κ }+-{κ }-=2{κ }+=1/{R}s is the difference of equal and opposite surface gravities between the exterior and interior Schwarzschild solutions. The First Law, {{d}}M={{d}}{E}V+{τ }s {{d}}A is recognized as a purely mechanical classical relation at zero temperature and zero entropy, describing the volume energy and surface energy change respectively. The Schwarzschild time t of such a non-singular gravitational condensate star is a global time, fully consistent with unitary time evolution in quantum theory. A clear observational test of gravitational condensate stars with a physical surface versus black holes is the discrete surface modes of oscillation which should be detectable by their gravitational wave signatures.

  11. The origin and pulsations of extreme helium stars†

    NASA Astrophysics Data System (ADS)

    Jeffery, C. Simon

    2014-02-01

    Stars consume hydrogen in their interiors but, generally speaking, their surfaces continue to contain some 70% hydrogen (by mass) throughout their lives. Nevertheless, many types of star can be found with hydrogen-deficient surfaces, in some cases with as little as one hydrogen atom in 10 000. Amongst these, the luminous B- and A-type extreme helium stars are genuinely rare; only ~15 are known within a very substantial volume of the Galaxy. Evidence from surface composition suggests a connection to the cooler R CrB variables and some of the hotter helium-rich subdwarf O stars. Arguments currently favour an origin in the merger of two white dwarfs; thus there are also connections with AM CVn variables and Type Ia supernovae. Pulsations in many extreme helium stars provide an opportune window into their interiors. These pulsations have unusual properties, some being ``strange'' modes, and others being driven by Z-bump opacities. They have the potential to deliver distance-independent masses and to provide a unique view of pulsation physics. We review the evolutionary origin and pulsations of these stars, and introduce recent progress and continuing challenges.

  12. Calibrating White Dwarf Asteroseismic Fitting Techniques

    NASA Astrophysics Data System (ADS)

    Castanheira, B. G.; Romero, A. D.; Bischoff-Kim, A.

    2017-03-01

    The main goal of looking for intrinsic variability in stars is the unique opportunity to study their internal structure. Once we have extracted independent modes from the data, it appears to be a simple matter of comparing the period spectrum with those from theoretical model grids to learn the inner structure of that star. However, asteroseismology is much more complicated than this simple description. We must account not only for observational uncertainties in period determination, but most importantly for the limitations of the model grids, coming from the uncertainties in the constitutive physics, and of the fitting techniques. In this work, we will discuss results of numerical experiments where we used different independently calculated model grids (white dwarf cooling models WDEC and fully evolutionary LPCODE-PUL) and fitting techniques to fit synthetic stars. The advantage of using synthetic stars is that we know the details of their interior structure so we can assess how well our models and fitting techniques are able to the recover the interior structure, as well as the stellar parameters.

  13. High-energy astrophysics: A theoretical analysis of thermal radiation from neutron stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1994-01-01

    The unambiguous detection of thermal radiation from the surface of a cooling neutron star was one of the most anxiously awaited results in neutron star physics. This particular Holy Grail was found by Halpern and Holt, who used ROSAT to detect pulsed X-rays from the gamma-ray source Geminga and demonstrate that it was a neutron star, probably a radio pulsar beamed away from us. At an age of approximately 3.4 x 10(exp 5) years, Geminga is in the photon cooling era. Its surface temperature of 5.2 x 10(exp 5) K can be explained within the contexts of both the slow and fast cooling scenarios. In the slow cooling scenario, the surface temperature is too high unless the specific heat of the interior is reduced by extensive baryon pairing. In the fast cooling scenario, the surface temperature will be much too low unless the fast neutrino cooling is shut off by baryon pairing. Two other pulsars, PSR 0656+14 and PSR 1055-52, have also been detected in thermal X-rays by ROSAT. They are also in the photon cooling era. All of this research's neutron star cooling models to date have used the unmagnetized effective temperature-interior temperature relation for the outer boundary condition. Models are being improved by using published magnetic envelope calculations and assumed geometried for the surface magnetic field to determine local interior temperature-emitted flux relations for the surface of the star.

  14. A conformally flat realistic anisotropic model for a compact star

    NASA Astrophysics Data System (ADS)

    Ivanov, B. V.

    2018-04-01

    A physically realistic stellar model with a simple expression for the energy density and conformally flat interior is found. The relations between the different conditions are used without graphic proofs. It may represent a real pulsar.

  15. Age Spreads and the Temperature Dependence of Age Estimates in Upper Sco

    NASA Astrophysics Data System (ADS)

    Fang, Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron

    2017-06-01

    Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on a timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron

    Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on amore » timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.« less

  17. SpaceX CRS-11 Prepares for Launch

    NASA Image and Video Library

    2017-06-01

    As a Falcon 9 rocket stands ready for liftoff at the Kennedy Space Center's Launch Complex 39A. The rocket will boost a Dragon resupply spacecraft to the International Space Station. Liftoff is scheduled for 5:55 p.m. EDT. On its 11th commercial resupply services mission to the space station, Dragon will bring up 6,000 pounds of supplies, such as the Neutron star Interior Composition Explorer, or NICER, instrument to study the extraordinary physics of neutron stars.

  18. Differential Rotation in Sun-like Stars from Surface Variability and Asteroseismology

    NASA Astrophysics Data System (ADS)

    Nielsen, Martin Bo

    2017-03-01

    The Sun and other stars are known to oscillate. Through the study of small perturbations to the frequencies of these oscillations the rotation of the deep interior can be inferred. However, thus far the internal rotation of other Sun-like stars is unknown. The NASA Kepler mission has observed a multitude of Sun-like stars over a period of four years. This has provided high-quality photometric data that can be used to study the rotation of stars with two different techniques: asteroseismology and surface activity. Asteroseismology provides a means of measuring rotation in the stellar interior, while photometric variability from magnetically active regions are sensitive to rotation at the stellar surface. The combination of these two methods can be used to constrain the radial differential rotation in Sun-like stars. First, we developed an automated method for measuring the rotation of stars using surface variability. This method was initially applied to the entire Kepler catalog, out of which we detected signatures of rotation in 12,000 stars across the main sequence, providing robust estimates of the surface rotation rates and the associated errors. Second, we performed an asteroseismic analysis of six Sun-like stars, where we were able to measure the rotational splitting as a function of frequency in the p-mode envelope. This was done by dividing the oscillation spectrum into individual segments, and fitting a model independently to each segment. We found that the measured splittings were all consistent with a constant value, indicating little differential rotation. Third, we compared the asteroseismic rotation rates of five Sun-like stars to their surface rotation rates. We found that the values were in good agreement, again indicating little differential rotation between the regions where the two methods are most sensitive. Finally, we discuss how the surface rotation rates may be used as a prior on the seismic envelope rotation rate in a double-zone model, consisting of an independently-rotating radiative interior and convective envelope. Using such a prior we find that the rotation rates of the radiative interior and convective envelope likely do not differ by more than 50%. This further supports the idea that Sun-like stars likely show a rotation pattern similar to that of the Sun. Results from the analysis presented herein provide physical limits on the internal differential rotation of Sun-like stars, and show that this method may be easily applied to a wider variety of stars.

  19. SpaceX CRS-11 Prepares for Launch

    NASA Image and Video Library

    2017-06-01

    As a Falcon 9 rocket is raised into positon for liftoff at the Kennedy Space Center's Launch Complex 39A. The rocket will boost a Dragon resupply spacecraft to the International Space Station. Liftoff is scheduled for 5:55 p.m. EDT. On its 11th commercial resupply services mission to the space station, Dragon will bring up 6,000 pounds of supplies, such as the Neutron star Interior Composition Explorer, or NICER, instrument to study the extraordinary physics of neutron stars.

  20. Concluding Remarks: Connecting Relativistic Heavy Ion Collisions and Neutron Star Mergers by the Equation of State of Dense Hadron- and Quark Matter as signalled by Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Steinheimer, Jan; Bovard, Luke; Mukherjee, Ayon; Schramm, Stefan; Takami, Kentaro; Papenfort, Jens; Wechselberger, Natascha; Rezzolla, Luciano; Stöcker, Horst

    2017-07-01

    The underlying open questions in the fields of general relativistic astrophysics and elementary particle and nuclear physics are strongly connected and their results are interdependent. Although the physical systems are quite different, the 4D-simulation of a merger of a binary system of two neutron stars and the properties of the hot and dense matter created in high energy heavy ion collisions, strongly depend on the equation of state of fundamental elementary matter. Neutron star mergers represent optimal astrophysical laboratories to investigate the QCD phase structure using a spectrogram of the post-merger phase of the emitted gravitational waves. These studies can be supplemented by observations from heavy ion collisions to possibly reach a conclusive picture on the QCD phase structure at high density and temperature. As gravitational waves (GWs) emitted from merging neutron star binaries are on the verge of their first detection, it is important to understand the main characteristics of the underlying merging system in order to predict the expected GW signal. Based on numerical-relativity simulations of merging neutron star binaries, the emitted GW and the interior structure of the generated hypermassive neutron stars (HMNS) have been analyzed in detail. This article will focus on the internal and rotational HMNS properties and their connection with the emitted GW signal. Especially, the appearance of the hadon-quark phase transition in the interior region of the HMNS and its conjunction with the spectral properties of the emitted GW will be addressed and confronted with the simulation results of high energy heavy ion collisions.

  1. Meridional circulation and CNO anomalies in red giant stars

    NASA Technical Reports Server (NTRS)

    Sweigart, A. V.; Mengel, J. G.

    1979-01-01

    The possibility is investigated that meridional circulation driven by internal rotation might lead to the mixing of CNO-processed material from the vicinity of the hydrogen shell into the envelope of a red giant star. This theory of meridional mixing is found to be generally consistent with available data and to be capable of explaining a number of observational results without invoking a radical departure from the standard physics of stellar interiors. It is suggested that meridional circulation must be a normal characteristic of a rotating star and that meridional mixing provides a reasonable framework for understanding many of the CNO anomalies exhibited by weak-G-band and CN-strong stars as well as the low C-12/C-13 ratios measured among field red giants.

  2. Preface: MHD wave phenomena in the solar interior and atmosphere

    NASA Astrophysics Data System (ADS)

    Fedun, Viktor; Srivastava, A. K.

    2018-01-01

    The Sun is our nearest star and this star produces various plasma wave processes and energetic events. These phenomena strongly influence interplanetary plasma dynamics and contribute to space-weather. The understanding of solar atmospheric dynamics requires hi-resolution modern observations which, in turn, further advances theoretical models of physical processes in the solar interior and atmosphere. In particular, it is essential to connect the magnetohydrodynamic (MHD) wave processes with the small and large-scale solar phenomena vis-a-vis transport of energy and mass. With the advent of currently available and upcoming high-resolution space (e.g., IRIS, SDO, Hinode, Aditya-L1, Solar-C, Solar Orbiter), and ground-based (e.g., SST, ROSA, NLST, Hi-C, DKIST, EST, COSMO) observations, solar physicists are able to explore exclusive wave processes in various solar magnetic structures at different spatio-temporal scales.

  3. Observational properties of pulsars.

    PubMed

    Manchester, R N

    2004-04-23

    Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.

  4. On the spottedness, magnetism and internal structure of stars

    NASA Astrophysics Data System (ADS)

    Gershberg, R. E.

    Kinematical structures within stellar interiors that are the result of a self-organization of these interiors as thermodynamically open nonlinear systems are proposed as the physical basis for stellar magnetism. It is noted that the ubiquitousness of stellar magnetism that follows from the hypothesis is not in contradiction with observations. These kinematical structures may be energy reservoirs, and changes in these structures may be connected with variations of an energy flux emergent from a stellar surface, while its internal energy sources remain constant, explaining the radiation deficit from sunspots and starspots.

  5. Seismology of adolescent neutron stars: Accounting for thermal effects and crust elasticity

    NASA Astrophysics Data System (ADS)

    Krüger, C. J.; Ho, W. C. G.; Andersson, N.

    2015-09-01

    We study the oscillations of relativistic stars, incorporating key physics associated with internal composition, thermal gradients and crust elasticity. Our aim is to develop a formalism which is able to account for the state-of-the-art understanding of the complex physics associated with these systems. As a first step, we build models using a modern equation of state including composition gradients and density discontinuities associated with internal phase transitions (like the crust-core transition and the point where muons first appear in the core). In order to understand the nature of the oscillation spectrum, we carry out cooling simulations to provide realistic snapshots of the temperature distribution in the interior as the star evolves through adolescence. The associated thermal pressure is incorporated in the perturbation analysis, and we discuss the presence of g -modes arising as a result of thermal effects. We also consider interface modes due to phase-transitions and the gradual formation of the star's crust and the emergence of a set of shear modes.

  6. The Star–Planet Connection. I. Using Stellar Composition to Observationally Constrain Planetary Mineralogy for the 10 Closest Stars

    NASA Astrophysics Data System (ADS)

    Hinkel, Natalie R.; Unterborn, Cayman T.

    2018-01-01

    The compositions of stars and planets are connected, but the definition of “habitability” and the “habitable zone” only take into account the physical relationship between the star and planet. Planets, however, are made truly habitable by both chemical and physical processes that regulate climatic and geochemical cycling between atmosphere, surface, and interior reservoirs. Despite this, an “Earth-like” planet is often defined as a planet made of a mixture of rock and Fe that is roughly 1 Earth-density. To understand the interior of a terrestrial planet, the stellar abundances of planet-building elements (e.g., Mg, Si, and Fe) can be used as a proxy for the planet’s composition. We explore the planetary mineralogy and structure for fictive planets around the 10 stars closest to the Sun using stellar abundances from the Hypatia Catalog. Although our sample contains stars that are both sub- and super-solar in their abundances, we find that the mineralogies are very similar for all 10 planets—since the error or spread in the stellar abundances create significant degeneracy in the models. We show that abundance uncertainties need to be on the order of [Fe/H] < 0.02 dex, [Si/H] < 0.01 dex, [Al/H] < 0.002 dex, while [Mg/H] and [Ca/H] < 0.001 dex in order to distinguish two unique planetary populations in our sample of 10 stars. While these precisions are high, we believe that they are possible given certain abundance techniques, in addition to methodological transparency, that have recently been demonstrated in the literature. However, without these precisions, the uncertainty in planetary structures will be so high that we will be unable to confidently state that a planet is like the Earth, or unlike anything we have ever seen. We made some cuts and ruled out a number of stars, but these 10 are still rather nearby.

  7. Study of isotropic compact stars in f(R,T,R_{μν}T^{μν}) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Waseem, Arfa

    2016-06-01

    In this paper, we investigate physical behavior and stability of compact stars filled with isotropic fluid in f(R,T,R_{μν}T^{μν}) gravity. We consider the static spherically symmetric spacetime and choose the simplest model of this gravity, i.e., R+α R_{μν}T^{μν} . To examine the basic features of compact stars like Her X-1, SAX J 1808.4-3658 and 4U 1820-30, we apply analytic solutions of Krori and Barua metric using the mass-radius relation. We study the behavior of effective energy density, pressure, equation of state parameter and energy conditions in the interior of compact stars. We also explore the stability criteria of compact stars via the speed of sound. It is concluded that all the energy conditions are satisfied and the compact stars are found to be stable at the boundary for this particular model.

  8. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  9. SpaceX CRS-11 Liftoff

    NASA Image and Video Library

    2017-06-03

    A SpaceX Falcon 9 rocket lifts off from Launch Complex 39A at NASA's Kenney Space Center in Florida, the company's 11th commercial resupply services mission to the International Space Station. Liftoff was at 5:07 p.m. EDT from the historic launch site now operated by SpaceX under a property agreement with NASA. The Dragon spacecraft will deliver 6,000 pounds of supplies, such as the Neutron star Interior Composition Explorer, or NICER, designed to study the extraordinary physics of these stars, providing insights into their nature and behavior.

  10. A new anisotropic compact star model having Matese & Whitman mass function

    NASA Astrophysics Data System (ADS)

    Bhar, Piyali; Ratanpal, B. S.

    2016-07-01

    Present paper proposed a new singularity free model of anisotropic compact star. The Einstein field equations are solved in closed form by utilizing Matese & Whitman mass function. The model parameters ρ, pr and pt all are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically acceptable. The model given in the present work is compatible with observational data of compact objects like SAX J 1808.4-3658 (SS1), SAX J 1808.4-3658 (SS2) and 4U 1820-30. A particular model of 4U 1820-30 is studied in detail and found that it satisfies all the condition needed for physically acceptable model. The present work is the generalization of Sharma and Ratanpal (Int. J. Mod. Phys. D 22:1350074, 2013) model for compact stars admitting quadratic equation of state.

  11. The Fate of Merging Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    A rapidly spinning, highly magnetized neutron star is one possible outcome when two smaller neutron stars merge. [Casey Reed/Penn State University]When two neutron stars collide, the new object that they make can reveal information about the interior physics of neutron stars. New theoretical work explores what we should be seeing, and what it can teach us.Neutron Star or Black Hole?So far, the only systems from which weve detected gravitational waves are merging black holes. But other compact-object binaries exist and are expected to merge on observable timescales in particular, binary neutron stars. When two neutron stars merge, the resulting object falls into one of three categories:a stable neutron star,a black hole, ora supramassive neutron star, a large neutron star thats supported by its rotation but will eventually collapse to a black hole after it loses angular momentum.Histograms of the initial (left) and final (right) distributions of objects in the authors simulations, for five different equations of state. Most cases resulted primarily in the formation of neutron stars (NSs) or supramassive neutron stars (sNSs), not black holes (BHs). [Piro et al. 2017]Whether a binary-neutron-star merger results in another neutron star, a black hole, or a supramassive neutron star depends on the final mass of the remnant and what the correct equation of state is that describes the interiors of neutron stars a longstanding astrophysical puzzle.In a recent study, a team of scientists led by Anthony Piro (Carnegie Observatories) estimated which of these outcomes we should expect for mergers of binary neutron stars. The teams results along with future observations of binary neutron stars may help us to eventually pin down the equation of state for neutron stars.Merger OutcomesPiro and collaborators used relativistic calculations of spinning and non-spinning neutron stars to estimate the mass range that neutron stars would have for several different realistic equations of state. They then combined this information with Monte Carlo simulations based on the mass distribution of neutron-star binaries in our galaxy. From these simulations, Piro and collaborators could predict the distribution of fates expected for merging neutron-star binaries, given different equations of state.The authors found that the fate of the merger could vary greatly depending on the equation of state you assume. Intriguingly, all equations of state resulted in a surprisingly high fraction of systems that merged to form a neutron star or a supramassive neutron star in fact, four out of the five equations of state predicted that 80100% of systems would result in a neutron star or a supermassive neutron star.Lessons from ObservationsThe frequency bands covered by various current and planned gravitational wave observatories. Advanced LIGO has the right frequency coverage to be able to explore a neutron-star remnant if the signal is loud enough. [Christopher Moore, Robert Cole and Christopher Berry]These results have important implications for our future observations. The high predicted fraction of neutron stars resulting from these mergers tells us that its especially important for gravitational-wave observatories to probe 14 kHz emission. This frequency range will enable us to study the post-merger neutron-star or supramassive-neutron-star remnants.Even if we cant observe the remnants behavior after it forms, we can still compare the distribution of remnants that we observe in the future to the predictions made by Piro and collaborators. This will potentially allow us to constrain the neutron-star equation of state, revealing the physics of neutron-star interiors even without direct observations.CitationAnthony L. Piro et al 2017 ApJL 844 L19. doi:10.3847/2041-8213/aa7f2f

  12. Neutron Star Interior Composition Explorer (NICE)

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.; Arzoumanian, Zaven

    2008-01-01

    This viewgraph presentation contains an overview of the mission of the Neutron Star Interior Composition Explorer (NICE), a proposed International Space Station (ISS) payload dedicated ot the study of neutron stars. There are also reviews of the Science Objectives of the payload,the science measurements, the design and the expected performance for the instruments for NICE,

  13. Constraining the physics of carbon crystallization through pulsations of a massive DAV BPM37093

    NASA Astrophysics Data System (ADS)

    Nitta, Atsuko; Kepler, S. O.; Chené, André-Nicolas; Koester, D.; Provencal, J. L.; Kleinmani, S. J.; Sullivan, D. J.; Chote, Paul; Sefako, Ramotholo; Kanaan, Antonio; Romero, Alejandra; Corti, Mariela; Kilic, Mukremin; Montgomery, M. H.; Winget, D. E.

    We are trying to reduce the largest uncertainties in using white dwarf stars as Galactic chronometers by understanding the details of carbon crystalliazation that currently result in a 1-2 Gyr uncertainty in the ages of the oldest white dwarf stars. We expect the coolest white dwarf stars to have crystallized interiors, but theory also predicts hotter white dwarf stars, if they are massive enough, will also have some core crystallization. BPM 37093 is the first discovered of only a handful of known massive white dwarf stars that are also pulsating DAV, or ZZ Ceti, variables. Our approach is to use the pulsations to constrain the core composition and amount of crystallization. Here we report our analysis of 4 hours of continuous time series spectroscopy of BPM 37093 with Gemini South combined with simultaneous time-series photometry from Mt. John (New Zealand), SAAO, PROMPT, and Complejo Astronomico El Leoncito (CASLEO, Argentina).

  14. Anisotropic solutions by gravitational decoupling

    NASA Astrophysics Data System (ADS)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  15. THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS: Topological aspects in a two-component Bose condensed system in a neutron star

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Rong; Guo, Heng

    2009-08-01

    By making use of Duan-Ge's decomposition theory of gauge potential and the topological current theory proposed by Prof. Duan Yi-Shi, we study a two-component superfluid Bose condensed system, which is supposed to be realized in the interior of neutron stars in the form of the coexistence of a neutron superfluid and a protonic superconductor. We propose that this system possesses vortex lines. The topological charges of the vortex lines are characterized by the Hopf indices and the Brower degrees of ø-mapping.

  16. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  17. Acceleration of a Static Observer Near the Event Horizon of a Static Isolated Black Hole.

    ERIC Educational Resources Information Center

    Doughty, Noel A.

    1981-01-01

    Compares the magnitude of the proper acceleration of a static observer in a static, isolated, spherically symmetric space-time region with the Newtonian result including the situation in the interior of a perfect-fluid star. This provides a simple physical interpretation of surface gravity and illustrates the global nature of the event horizon.…

  18. The quark-hadron transition in cosmology and astrophysics.

    PubMed

    Olive, K A

    1991-03-08

    A transition from normal hadronic matter (such as protons and neutrons) to quark-gluon matter is expected at both high temperatures and densities. In physical situations, this transition may occur in heavy ion collisions, the early universe, and in the cores of neutron stars. Astrophysics and cosmology can be greatly affected by such a phase transition. With regard to the early universe, big bang nucleosynthesis, the theory describing the primordial origin of the light elements, can be affected by inhomogeneities produced during the transition. A transition to quark matter in the interior by neutron stars further enhances our uncertainties regarding the equation of state of dense nuclear matter and neutron star properties such as the maximum mass and rotation frequencies.

  19. Slowly-rotating neutron stars in massive bigravity

    NASA Astrophysics Data System (ADS)

    Sullivan, A.; Yunes, N.

    2018-02-01

    We study slowly-rotating neutron stars in ghost-free massive bigravity. This theory modifies general relativity by introducing a second, auxiliary but dynamical tensor field that couples to matter through the physical metric tensor through non-linear interactions. We expand the field equations to linear order in slow rotation and numerically construct solutions in the interior and exterior of the star with a set of realistic equations of state. We calculate the physical mass function with respect to observer radius and find that, unlike in general relativity, this function does not remain constant outside the star; rather, it asymptotes to a constant a distance away from the surface, whose magnitude is controlled by the ratio of gravitational constants. The Vainshtein-like radius at which the physical and auxiliary mass functions asymptote to a constant is controlled by the graviton mass scaling parameter, and outside this radius, bigravity modifications are suppressed. We also calculate the frame-dragging metric function and find that bigravity modifications are typically small in the entire range of coupling parameters explored. We finally calculate both the mass-radius and the moment of inertia-mass relations for a wide range of coupling parameters and find that both the graviton mass scaling parameter and the ratio of the gravitational constants introduce large modifications to both. These results could be used to place future constraints on bigravity with electromagnetic and gravitational-wave observations of isolated and binary neutron stars.

  20. Neutron stars in a perturbative f(R) gravity model with strong magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheoun, Myung-Ki; Deliduman, Cemsinan; Güngör, Can

    2013-10-01

    In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17−18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equationsmore » derived for a gravity model with f(R) = R+αR{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter α along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.« less

  1. Report from solar physics

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C.; Acton, L.; Brueckner, G.; Chupp, E. L.; Hudson, H. S.; Roberts, W.

    1989-01-01

    A discussion of the nature of solar physics is followed by a brief review of recent advances in the field. These advances include: the first direct experimental confirmation of the central role played by thermonuclear processes in stars; the discovery that the 5-minute oscillations of the Sun are a global seismic phenomenon that can be used as a probe of the structure and dynamical behavior of the solar interior; the discovery that the solar magnetic field is subdivided into individual flux tubes with field strength exceeding 1000 gauss. Also covered was a science strategy for pure solar physics. Brief discussions are given of solar-terrestrial physics, solar/stellar relationships, and suggested space missions.

  2. The Influence of Hyperons and Strong Magnetic Field in Neutron Star Properties

    NASA Astrophysics Data System (ADS)

    Lopes, L. L.; Menezes, D. P.

    2012-12-01

    Neutron stars are among of the most exotic objects in the universe and constitute a unique laboratory to study nuclear matter above the nuclear saturation density. In this work, we study the equation of state (EoS) of the nuclear matter within a relativistic model subject to a strong magnetic field. We then apply this EoS to study and describe some of the physical characteristics of neutron stars, especially the mass-radius relation and chemical compositions. To study the influence of the magnetic field and the hyperons in the stellar interior, we consider altogether four solutions: two different magnetic field to obtain a weak and a strong influence; and two configurations: a family of neutron stars formed only by protons, electrons, and neutrons and a family formed by protons, electrons, neutrons, muons, and hyperons. The limit and the validity of the results found are discussed with some care. In all cases, the particles that constitute the neutron star are in β equilibrium and zero total net charge. Our work indicates that the effect of a strong magnetic field has to be taken into account in the description of magnetars, mainly if we believe that there are hyperons in their interior, in which case the influence of the magnetic field can increase the mass by more than 10 %. We have also seen that although a magnetar can reach 2.48 M ⊙, a natural explanation of why we do not know pulsars with masses above 2.0 M ⊙ arises. We also discuss how the magnetic field affects the strangeness fraction in some standard neutron star masses, and to conclude our paper, we revisit the direct Urca process related to the cooling of the neutron stars and show how it is affected by the hyperons and the magnetic field.

  3. From hadrons to quarks in neutron stars: a review.

    PubMed

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu-Jona-Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well understood nuclear matter regime at low densities and the quark matter regime at higher densities. The utility of such interpolations is driven by the present inability to calculate the dense matter equation of state in QCD from first principles. As we review, the parameters of effective quark models-which have direct relevance to the more general structure of the QCD phase diagram of dense and hot matter-are constrained by neutron star mass and radii measurements, in particular favoring large repulsive density-density and attractive diquark pairing interactions. We describe the structure of neutron stars constructed from the unified equations of states with crossover. Lastly we present the current equations of state-called 'QHC18' for quark-hadron crossover-in a parametrized form practical for neutron star modeling.

  4. From hadrons to quarks in neutron stars: a review

    NASA Astrophysics Data System (ADS)

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D.; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu–Jona–Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well understood nuclear matter regime at low densities and the quark matter regime at higher densities. The utility of such interpolations is driven by the present inability to calculate the dense matter equation of state in QCD from first principles. As we review, the parameters of effective quark models—which have direct relevance to the more general structure of the QCD phase diagram of dense and hot matter—are constrained by neutron star mass and radii measurements, in particular favoring large repulsive density-density and attractive diquark pairing interactions. We describe the structure of neutron stars constructed from the unified equations of states with crossover. Lastly we present the current equations of state—called ‘QHC18’ for quark-hadron crossover—in a parametrized form practical for neutron star modeling.

  5. Strange quintessence star in Krori-Barua spacetime

    NASA Astrophysics Data System (ADS)

    Bhar, Piyali

    2015-04-01

    In the present paper a new model of a compact star is obtained by utilizing the Krori-Barua (KB) ansatz [Krori and Barua in J. Phys. A, Math. Gen. 8:508, 1975] in the presence of a quintessence field characterized by a parameter ω q with . The obtained model of strange stars is singularity free and satisfies all the physical requirements. Our model is stable as well as it is in static equilibrium. The numerical values of the mass of the strange stars 4U1820-30 (radius=10 km), SAX J1808.4-3658(SS1) (radius=7.07 km) and Her X-1 (radius=7.7 km) calculated from our model are very close to the standard data. The interior solution is matched to the exterior Schwarzschild spacetime in the presence of a thin shell where a negative surface pressure is needed to keep the thin shell from collapsing.

  6. Deviations from a uniform period spacing of gravity modes in a massive star.

    PubMed

    Degroote, Pieter; Aerts, Conny; Baglin, Annie; Miglio, Andrea; Briquet, Maryline; Noels, Arlette; Niemczura, Ewa; Montalban, Josefina; Bloemen, Steven; Oreiro, Raquel; Vucković, Maja; Smolders, Kristof; Auvergne, Michel; Baudin, Frederic; Catala, Claude; Michel, Eric

    2010-03-11

    The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.

  7. Gravastars with higher dimensional spacetimes

    NASA Astrophysics Data System (ADS)

    Ghosh, Shounak; Ray, Saibal; Rahaman, Farook; Guha, B. K.

    2018-07-01

    We present a new model of gravastar in the higher dimensional Einsteinian spacetime including Einstein's cosmological constant Λ. Following Mazur and Mottola (2001, 2004) we design the star with three specific regions, as follows: (I) Interior region, (II) Intermediate thin spherical shell and (III) Exterior region. The pressure within the interior region is equal to the negative matter density which provides a repulsive force over the shell. This thin shell is formed by ultra relativistic plasma, where the pressure is directly proportional to the matter-energy density which does counter balance the repulsive force from the interior whereas the exterior region is completely vacuum assumed to be de Sitter spacetime which can be described by the generalized Schwarzschild solution. With this specification we find out a set of exact non-singular and stable solutions of the gravastar which seems physically very interesting and reasonable.

  8. 75 FR 37463 - Official Trail Marker for the Star-Spangled Banner National Historic Trail

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... DEPARTMENT OF THE INTERIOR National Park Service Official Trail Marker for the Star-Spangled Banner National Historic Trail AGENCY: National Parks Service, Interior. ACTION: Official Insignia, Designation. Authority: National Trails System Act, 16 U.S.C. 124(a) and 1246(c) and Protection of Official...

  9. Thermal Evolution of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Geppert, Ulrich R. M. E.

    The thermal evolution of neutron stars is a subject of intense research, both theoretical and observational. The evolution depends very sensitively on the state of dense matter at supranuclear densities, which essentially controls the neutrino emission. The evolution depends, too, on the structure of the stellar outer layers which control the photon emission. Various internal heating processes and the magnetic field strength and structure will influence the thermal evolution. Of great importance for the cooling processes is also whether, when, and where superfluidity and superconductivity appear within the neutron star. This article describes and discusses these issues and presents neutron star cooling calculations based on a broad collection of equations of state for neutron star matter and internal magnetic field geometries. X-ray observations provide reliable data, which allow conclusions about the surface temperatures of neutron stars. To verify the thermal evolution models, the results of model calculations are compared with the body of observed surface temperatures and their distribution. Through these comparisons, a better understanding can be obtained of the physical processes that take place under extreme conditions in the interior of neutron

  10. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes.

    PubMed

    Beck, Paul G; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; Aerts, Conny; García, Rafael A; Hekker, Saskia; Dupret, Marc-Antoine; Mosser, Benoit; Eggenberger, Patrick; Stello, Dennis; Elsworth, Yvonne; Frandsen, Søren; Carrier, Fabien; Hillen, Michel; Gruberbauer, Michael; Christensen-Dalsgaard, Jørgen; Miglio, Andrea; Valentini, Marica; Bedding, Timothy R; Kjeldsen, Hans; Girouard, Forrest R; Hall, Jennifer R; Ibrahim, Khadeejah A

    2011-12-07

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected 'mixed modes'. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.

  11. n-dimensional isotropic Finch-Skea stars

    NASA Astrophysics Data System (ADS)

    Chilambwe, Brian; Hansraj, Sudan

    2015-02-01

    We study the impact of dimension on the physical properties of the Finch-Skea astrophysical model. It is shown that a positive definite, monotonically decreasing pressure and density are evident. A decrease in stellar radius emerges as the order of the dimension increases. This is accompanied by a corresponding increase in energy density. The model continues to display the necessary qualitative features inherent in the 4-dimensional Finch-Skea star and the conformity to the Walecka theory is preserved under dimensional increase. The causality condition is always satisfied for all dimensions considered resulting in the proposed models demonstrating a subluminal sound speed throughout the interior of the distribution. Moreover, the pressure and density decrease monotonically outwards from the centre and a pressure-free hypersurface exists demarcating the boundary of the perfect-fluid sphere. Since the study of the physical conditions is performed graphically, it is necessary to specify certain constants in the model. Reasonable values for such constants are arrived at on examining the behaviour of the model at the centre and demanding the satisfaction of all elementary conditions for physical plausibility. Finally two constants of integration are settled on matching of our solutions with the appropriate Schwarzschild-Tangherlini exterior metrics. Furthermore, the solution admits a barotropic equation of state despite the higher dimension. The compactification parameter as well as the density variation parameter are also computed. The models satisfy the weak, strong and dominant energy conditions in the interior of the stellar configuration.

  12. Journey to the Center of a Neutron Star

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    A neutron star is not a place most would want to visit. This dense remnant of a collapsed star has a magnetic field billions of times stronger than Earth's, enough to shuffle your body's molecules long before you even land. The featureless surface is no fun either. Crushing gravity ensures that the star is a near perfect sphere, compressing all matter so that a sand-grain-sized scoop of neutron star material would weigh as much as a battleship on Earth. At least black holes offer the promise of funky singularity, time warps, and the Odyssean temptation to venture beyond a point of no return. What s a journey to a neutron star good for, one might ask? Well, for starters, it offers the possibility of confirming a theorized state of matter called quark-gluon plasma, which likely existed for a moment after the Big Bang and now might only exist in the superdense interiors of neutron stars. Beneath the neutron star crust, a kilometer-thick plate of crystalline matter, lies the great unknown. The popular theory is that the neutron star interior is made up of a neutron superfluid - a fluid without friction. With the help of two NASA satellites - the Rossi X-Ray Timing Explorer and the Chandra X-Ray Observatory - scientists are journeying to the center of a neutron star. Matter might be so compressed there that it breaks down into quarks, the building blocks of protons and neutrons, and gluons, the carrier of the strong nuclear force. To dig inside a neutron star, no simple drill bit will do. Scientists gain insight into the interior through events called glitches, a sudden change in the neutron star s precise spin rate. 'Glitches are one of the few ways we have to study the neutron star interior,' says Frank Marshall of NASA s Goddard Space Flight Center, who has used the Rossi Explorer to follow the escapades of the glitchiest of all neutron stars, dubbed the Big Glitcher and known scientifically as PSR J0537-6910.

  13. From hadrons to quarks in neutron stars: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Furthermore, programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. Atmore » the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors.« less

  14. From hadrons to quarks in neutron stars: a review

    DOE PAGES

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; ...

    2018-03-27

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Furthermore, programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. Atmore » the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors.« less

  15. Phase transitions, interparticle correlations, and elementary processes in dense plasmas

    NASA Astrophysics Data System (ADS)

    Ichimaru, Setsuo

    2017-12-01

    Astrophysical dense plasmas are those we find in the interiors, surfaces, and outer envelopes of stellar objects such as neutron stars, white dwarfs, the Sun, and giant planets. Condensed plasmas in the laboratory settings include those in ultrahigh-pressure metal-physics experiments undertaken for realization of metallic hydrogen. We review basic physics issues studied in the past 60 some years on the phase transitions, the interparticle correlations, and the elementary processes in dense plasmas, through survey on scattering of electromagnetic waves, equations of state, phase diagrams, transport processes, stellar and planetary magnetisms, and thermo- and pycnonuclear reactions.

  16. Searching for δ Scuti-type pulsation and characterising northern pre-main-sequence field stars

    NASA Astrophysics Data System (ADS)

    Díaz-Fraile, D.; Rodríguez, E.; Amado, P. J.

    2014-08-01

    Context. Pre-main-sequence (PMS) stars are objects evolving from the birthline to the zero-age main sequence (ZAMS). Given a mass range near the ZAMS, the temperatures and luminosities of PMS and main-sequence stars are very similar. Moreover, their evolutionary tracks intersect one another causing some ambiguity in the determination of their evolutionary status. In this context, the detection and study of pulsations in PMS stars is crucial for differentiating between both types of stars by obtaining information of their interiors via asteroseismic techniques. Aims: A photometric variability study of a sample of northern field stars, which previously classified as either PMS or Herbig Ae/Be objects, has been undertaken with the purpose of detecting δ Scuti-type pulsations. Determination of physical parameters for these stars has also been carried out to locate them on the Hertzsprung-Russell diagram and check the instability strip for this type of pulsators. Methods: Multichannel photomultiplier and CCD time series photometry in the uvby Strömgren and BVI Johnson bands were obtained during four consecutive years from 2007 to 2010. The light curves have been analysed, and a variability criterion has been established. Among the objects classified as variable stars, we have selected those which present periodicities above 4 d-1, which was established as the lowest limit for δ Scuti-type pulsations in this investigation. Finally, these variable stars have been placed in a colour-magnitude diagram using the physical parameters derived with the collected uvbyβ Strömgren-Crawford photometry. Results: Five PMS δ Scuti- and three probable β Cephei-type stars have been detected. Two additional PMS δ Scuti stars are also confirmed in this work. Moreover, three new δ Scuti- and two γ Doradus-type stars have been detected among the main-sequence objects used as comparison or check stars.

  17. Modern studies of the Lunar Physical libration at the Kazan University

    NASA Astrophysics Data System (ADS)

    Petrova, Natalia; Hanada, Hideo; Nefedyev, Yuri; Gusev, Alexander

    Main results in investigation of the lunar physical libration in the Kazan University are presented in the report. Modern problems in the lunar spin-dynamics are considered. The accent is done on the fine phenomena of the lunar libration caused by complicated interior structure. Parameters of a free libration are discussed; geometrical interpretation of the chandler-like and free core nutation is given. Over the past 10 years a creative cooperation has been formed between scientists of the Kazan University and the National Astronomical Observatory of Japan (Mizusava). The project ILOM (In situ Lunar Orientation Measurement), planned in the frame of SELENE-2 or -3 missions is aimed at monitoring the physical libration of the Moon. The Russian side has taken over some of the theoretical tasks to ensure the planned observations. One of the important elements of the project is placing of a small optical telescope on the lunar surface with the purpose to detect the lunar physical libration with millisecond accuracy. Computer simulation of the future observations is being done with the purpose of their optimization: effective placement of measuring system on the lunar surface, testing of sensitivity of new observations to various features of the lunar interior structure. The results of the first stage of the simulation are presented in the paper. At this stage the software for the selection of stars and reduction of their coordinates onto the period of observations is developed, the tracks for the selected stars are constructed and analyzed, their sensitivity to the internal characteristics of the lunar body, in the first place, to the selenopotential coefficients, is tested. Inverse problem of lunar physical libration is formulated and solved. It is shown that selenographic coordinates of polar stars are insensitive to longitudinal librations tau(t). Comparing coordinates calculated for two models of a rigid and deformable Moon is carried out and components sensitive to Love number k _{2} are revealed. Analytical theory of physical libration was very convenient tool for modeling the upcoming observations. The main outcome of this collaboration was the understanding of the strategy and tactics of building an improved analytical theory of physical libration. This work was supported by RFBR grant No. 13-02-00792.

  18. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  19. RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has uncovered surprising evidence that powerful magnetic fields might exist around the lowest mass stars in the universe, which are near the threshold of stellar burning processes. 'New theories will have to be developed to explain how these strong fields are produced, since conventional models predict that these low mass red dwarfs should have very weak or no magnetic fields,' says Dr. Jeffrey Linsky of the Joint Institute for Laboratory Astrophysics (JILA) in Boulder, Colorado. 'The Hubble observations provide clear evidence that very low mass red dwarf stars must have some form of dynamo to amplify their magnetic fields.' His conclusions are based upon Hubble's detection of a high-temperature outburst, called a flare, on the surface of the extremely small, cool red dwarf star Van Biesbroeck 10 (VB10) also known as Gliese 752B. Stellar flares are caused by intense, twisted magnetic fields that accelerate and contain gasses which are much hotter than a star's surface. Explosive flares are common on the Sun and expected for stars that have internal structures similar to our Sun's. Stars as small as VB10 are predicted to have a simpler internal structure than that of the Sun and so are not expected to generate the electric currents required for magnetic fields that drive flares. Besides leading to a clearer understanding of the interior structure of the smallest red dwarf stars known, these unexpected results might possibly shed light on brown dwarf stars. A brown dwarf is a long-sought class of astronomical object that is too small to shine like a star through nuclear fusion processes, but is too large to be considered a planet. 'Since VB10 is nearly a brown dwarf, it is likely brown dwarfs also have strong magnetic fields,' says Linsky. 'Additional Hubble searches for flares are needed to confirm this prediction.' A QUARTER-MILLION DEGREE TORCH The star VB10 and its companion star Gliese 752A make up a binary system located 19 light-years away in the constellation Aquila. Gliese 752A is a red dwarf that is one-third the mass of the Sun and slightly more than half its diameter. By contrast, VB10 is physically smaller than the planet Jupiter and only about nine percent the mass of our Sun. This very faint star is near the threshold of the lowest possible mass for a true star (.08 solar masses), below which nuclear fusion processes cannot take place according to current models. A team led by Linsky used Hubble's Goddard High Resolution Spectrograph (GHRS) to make a one-hour long exposure of VB10 on October 12, 1994. No detectable ultraviolet emission was seen until the last five minutes, when bright emission was detected in a flare. Though the star's normal surface temperature is 4,500 degrees Fahrenheit, Hubble's GHRS detected a sudden burst of 270,000 degrees Fahrenheit in the star's outer atmosphere. Linsky attributes this rapid heating to the presence of an intense, but unstable, magnetic field. THE INTERIOR WORKINGS OF A STELLAR DYNAMO Before the Hubble observation, astronomers thought magnetic fields in stars required the same dynamo process which creates magnetic fields on the Sun. In the classic solar model, heat generated by nuclear fusion reactions at the star's center escapes through a radiative zone just outside the core. The heat travels from the radiative core to the star's surface through a convection zone. In this region, heat bubbles to the surface by motions similar to boiling in a pot of water. Dynamos, which accelerate electrons to create magnetic forces, operate when the interior of a star rotates faster than the surface. Recent studies of the Sun indicate its convective zone rotates at nearly the same rate at all depths. This means the solar dynamo must operate in the more rapidly rotating radiative core just below the convective zone. The puzzle is that stars below 20 percent the mass of our Sun do not have radiative cores, but instead transport heat from their core through convection only. The new Hubble observations suggest a magnetic dynamo perhaps of a new type can operate inside these stars. These results are being reported at the 185th meeting of the American Astronomical Society in Tucson, Arizona. * * * * * * * * * * * * The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). JILA is a joint institute of the University of Colorado and the National Institute of Standards and Technology (NIST). Dr. Linsky is a staff member of the Quantum Physics Division of NIST.

  20. Relativistic compact stars with charged anisotropic matter

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Banerjee, Ayan; Channuie, Phongpichit

    2018-05-01

    In this article, we perform a detailed theoretical analysis of new exact solutions with anisotropic fluid distribution of matter for compact objects subject to hydrostatic equilibrium. We present a family solution to the Einstein-Maxwell equations describing a spherically symmetric, static distribution of a fluid with pressure anisotropy. We implement an embedding class one condition to obtain a relation between the metric functions. We generalize the properties of a spherical star with hydrostatic equilibrium using the generalised Tolman-Oppenheimer-Volkoff (TOV) equation. We match the interior solution to an exterior Reissner-Nordström one, and study the energy conditions, speed of sound, and mass-radius relation of the star. We also show that the obtained solutions are compatible with observational data for the compact object Her X-1. Regarding our results, the physical behaviour of the present model may serve for the modeling of ultra compact objects.

  1. Converting neutron stars into strange stars

    NASA Technical Reports Server (NTRS)

    Olinto, A. V.

    1991-01-01

    If strange matter is formed in the interior of a neutron star, it will convert the entire neutron star into a strange star. The proposed mechanisms are reviewed for strange matter seeding and the possible strange matter contamination of neutron star progenitors. The conversion process that follows seeding and the recent calculations of the conversion timescale are discussed.

  2. Exploring the Surface Brightness Breaks and Star Formation in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Malko, Bradley Ann; Hunter, Deidre Ann

    2018-06-01

    Stellar surface brightness profiles of both spirals and dwarf irregular galaxies often show breaks in which the exponential fall-off abruptly changes slope. Most often the profile is down-bending (Type II) in the outer disk, but sometimes it is up-bending (Type III). Stellar disks extend a long ways beyond the profile breaks, but we do not understand what happens physically at the breaks. To explore this we are examining the star formation activity, as traced with FUV emission, interior to the break compared to that exterior to the break in both dwarf irregulars and spiral galaxies. We present the results for the spiral galaxy NGC 2500 and compare it to the LITTLE THINGS dwarf irregular galaxies.

  3. 3D Realistic Radiative Hydrodynamic Modeling of a Moderate-Mass Star: Effects of Rotation

    NASA Astrophysics Data System (ADS)

    Kitiashvili, Irina; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2018-01-01

    Recent progress in stellar observations opens new perspectives in understanding stellar evolution and structure. However, complex interactions in the turbulent radiating plasma together with effects of magnetic fields and rotation make inferences of stellar properties uncertain. The standard 1D mixing-length-based evolutionary models are not able to capture many physical processes of stellar interior dynamics, but they provide an initial approximation of the stellar structure that can be used to initialize 3D time-dependent radiative hydrodynamics simulations, based on first physical principles, that take into account the effects of turbulence, radiation, and others. In this presentation we will show simulation results from a 3D realistic modeling of an F-type main-sequence star with mass 1.47 Msun, in which the computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. The simulation results provide new insight into the formation and properties of the convective overshoot region, the dynamics of the near-surface, highly turbulent layer, the structure and dynamics of granulation, and the excitation of acoustic and gravity oscillations. We will discuss the thermodynamic structure, oscillations, and effects of rotation on the dynamics of the star across these layers.

  4. Superfluid Fermi atomic gas as a quantum simulator for the study of the neutron-star equation of state in the low-density region

    NASA Astrophysics Data System (ADS)

    van Wyk, Pieter; Tajima, Hiroyuki; Inotani, Daisuke; Ohnishi, Akira; Ohashi, Yoji

    2018-01-01

    We propose a theoretical idea to use an ultracold Fermi gas as a quantum simulator for the study of the low-density region of a neutron-star interior. Our idea is different from the standard quantum simulator that heads for perfect replication of another system, such as the Hubbard model discussed in high-Tc cuprates. Instead, we use the similarity between two systems and theoretically make up for the difference between them. That is, (1) we first show that the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR) can quantitatively explain the recent experiment on the equation of state (EoS) in a 6Li superfluid Fermi gas in the BCS (Bardeen-Cooper-Schrieffer) unitary limit far below the superfluid phase-transition temperature Tc. This region is considered to be very similar to the low-density region (crust regime) of a neutron star (where a nearly unitary s -wave neutron superfluid is expected). (2) We then theoretically compensate the difference that, while the effective range reff is negligibly small in a superfluid 6Li Fermi gas, it cannot be ignored (reff=2.7 fm) in a neutron star, by extending the NSR theory to include effects of reff. The calculated EoS when reff=2.7 fm is shown to agree well with the previous neutron-star EoS in the low-density region predicted in nuclear physics. Our idea indicates that an ultracold atomic gas may more flexibly be used as a quantum simulator for the study of other complicated quantum many-body systems, when we use not only the experimental high tunability, but also the recent theoretical development in this field. Since it is difficult to directly observe a neutron-star interior, our idea would provide a useful approach to the exploration for this mysterious astronomical object.

  5. Limits on radial differential rotation in Sun-like stars from parametric fits to oscillation power spectra

    NASA Astrophysics Data System (ADS)

    Nielsen, M. B.; Schunker, H.; Gizon, L.; Schou, J.; Ball, W. H.

    2017-06-01

    Context. Rotational shear in Sun-like stars is thought to be an important ingredient in models of stellar dynamos. Thanks to helioseismology, rotation in the Sun is characterized well, but the interior rotation profiles of other Sun-like stars are not so well constrained. Until recently, measurements of rotation in Sun-like stars have focused on the mean rotation, but little progress has been made on measuring or even placing limits on differential rotation. Aims: Using asteroseismic measurements of rotation we aim to constrain the radial shear in five Sun-like stars observed by the NASA Kepler mission: KIC 004914923, KIC 005184732, KIC 006116048, KIC 006933899, and KIC 010963065. Methods: We used stellar structure models for these five stars from previous works. These models provide the mass density, mode eigenfunctions, and the convection zone depth, which we used to compute the sensitivity kernels for the rotational frequency splitting of the modes. We used these kernels as weights in a parametric model of the stellar rotation profile of each star, where we allowed different rotation rates for the radiative interior and the convective envelope. This parametric model was incorporated into a fit to the oscillation power spectrum of each of the five Kepler stars. This fit included a prior on the rotation of the envelope, estimated from the rotation of surface magnetic activity measured from the photometric variability. Results: The asteroseismic measurements without the application of priors are unable to place meaningful limits on the radial shear. Using a prior on the envelope rotation enables us to constrain the interior rotation rate and thus the radial shear. In the five cases that we studied, the interior rotation rate does not differ from the envelope by more than approximately ± 30%. Uncertainties in the rotational splittings are too large to unambiguously determine the sign of the radial shear.

  6. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf.

    PubMed

    Giammichele, N; Charpinet, S; Fontaine, G; Brassard, P; Green, E M; Van Grootel, V; Bergeron, P; Zong, W; Dupret, M-A

    2018-02-01

    White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars-in particular their oxygen content and the stratification of their cores-is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.

  7. Red giants seismology

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Samadi, R.; Belkacem, K.

    2013-11-01

    The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.

  8. Numeric simulation of relativistic stellar core collapse and the formation of Reissner-Nordstroem black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezzi, Cristian R.; Letelier, Patricio S.

    2007-01-15

    The time evolution of a set of 22M{sub {center_dot}} unstable charged stars that collapse is computed integrating the Einstein-Maxwell equations. The model simulates the collapse of a spherical star that had exhausted its nuclear fuel and has or acquires a net electric charge in its core while collapsing. When the charge-to-mass ratio is Q/{radical}(G)M{>=}1, the star does not collapse but spreads. On the other hand, a different physical behavior is observed with a charge-to-mass ratio of 1>Q/{radical}(G)M>0.1. In this case, the collapsing matter forms a bubble enclosing a lower density core. We discuss an immediate astrophysical consequence of these resultsmore » that is a more efficient neutrino trapping during the stellar collapse and an alternative mechanism for powerful supernova explosions. The outer space-time of the star is the Reissner-Nordstroem solution that matches smoothly with our interior numerical solution; thus the collapsing models form Reissner-Nordstroem black holes.« less

  9. A photometric mode identification method, including an improved non-adiabatic treatment of the atmosphere

    NASA Astrophysics Data System (ADS)

    Dupret, M.-A.; De Ridder, J.; De Cat, P.; Aerts, C.; Scuflaire, R.; Noels, A.; Thoul, A.

    2003-02-01

    We present an improved version of the method of photometric mode identification of Heynderickx et al. (\\cite{hey}). Our new version is based on the inclusion of precise non-adiabatic eigenfunctions determined in the outer stellar atmosphere according to the formalism recently proposed by Dupret et al. (\\cite{dup}). Our improved photometric mode identification technique is therefore no longer dependent on ad hoc parameters for the non-adiabatic effects. It contains the complete physical conditions of the outer atmosphere of the star, provided that rotation does not play a key role. We apply our method to the two slowly pulsating B stars HD 74560 and HD 138764 and to the beta Cephei star EN (16) Lac. Besides identifying the degree l of the pulsating stars, our method is also a tool for improving the knowledge of stellar interiors and atmospheres, by imposing constraints on parameters such as the metallicity and the mixing-length parameter alpha (a procedure we label non-adiabatic asteroseismology). The non-adiabatic eigenfunctions needed for the mode identification are available upon request from the authors.

  10. Gravity mode offset and properties of the evanescent zone in red-giant stars

    NASA Astrophysics Data System (ADS)

    Hekker, S.; Elsworth, Y.; Angelou, G. C.

    2018-03-01

    Context. The wealth of asteroseismic data for red-giant stars and the precision with which these data have been observed over the last decade calls for investigations to further understand the internal structures of these stars. Aim. The aim of this work is to validate a method to measure the underlying period spacing, coupling term, and mode offset of pure gravity modes that are present in the deep interiors of red-giant stars. We subsequently investigate the physical conditions of the evanescent zone between the gravity mode cavity and the pressure mode cavity. Methods: We implement an alternative mathematical description compared to what is used in the literature to analyse observational data and to extract the underlying physical parameters that determine the frequencies of mixed modes. This description takes the radial order of the modes explicitly into account, which reduces its sensitivity to aliases. Additionally, and for the first time, this method allows us to constrain the gravity mode offset ɛg for red-giant stars. Results: We find that this alternative mathematical description allows us to determine the period spacing ΔΠ and the coupling term q for the dipole modes within a few percent of values found in the literature. Additionally, we find that ɛg varies on a star-by-star basis and should not be kept fixed in the analysis. Furthermore, we find that the coupling factor is logarithmically related to the physical width of the evanescent region normalised by the radius at which the evanescent zone is located. Finally, the local density contrast at the edge of the core of red-giant branch models shows a tentative correlation with the offset ɛg. Conclusions: We are continuing to exploit the full potential of the mixed modes to investigate the internal structures of red-giant stars; in this case we focus on the evanescent zone. It remains, however, important to perform comparisons between observations and models with great care as the methods employed are sensitive to the range of input frequencies.

  11. Moment of inertia of neutron star crust in alternative and modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Staykov, Kalin V.; Ekşi, K. Yavuz; Yazadjiev, Stoytcho S.; Türkoǧlu, M. Metehan; Arapoǧlu, A. Savaş

    2016-07-01

    The glitch activity of young pulsars arises from the exchange of angular momentum between the crust and the interior of the star. Recently, it was inferred that the moment of inertia of the crust of a neutron star is not sufficient to explain the observed glitches. Such estimates are presumed in Einstein's general relativity in describing the hydrostatic equilibrium of neutron stars. The crust of the neutron star has a spacetime curvature of 14 orders of magnitude larger than that probed in solar system tests. This makes gravity the weakest constrained physics input in the crust-related processes. We calculate the ratio of the crustal to the total moment of inertia of neutron stars in the scalar-tensor theory of gravity and the nonperturbative f (R )=R +a R2 gravity. We find for the former that the crust-to-core ratio of the moment of inertia does not change significantly from what is inferred in general relativity. For the latter, we find that the ratio increases significantly from what is inferred in general relativity in the case of high mass objects. Our results suggest that the glitch activity of pulsars may be used to probe gravity models, although the gravity models explored in this work are not appropriate candidates.

  12. Characterizing the observational properties of δ Sct stars in the era of space photometry from the Kepler mission

    NASA Astrophysics Data System (ADS)

    Bowman, Dominic M.; Kurtz, Donald W.

    2018-05-01

    The δ Sct stars are a diverse group of intermediate-mass pulsating stars located on and near the main sequence within the classical instability strip in the Hertzsprung-Russell diagram. Many of these stars are hybrid stars pulsating simultaneously with pressure and gravity modes that probe the physics at different depths within a star's interior. Using two large ensembles of δ Sct stars observed by the Kepler Space Telescope, the instrumental biases inherent to Kepler mission data and the statistical properties of these stars are investigated. An important focus of this work is an analysis of the relationships between the pulsational and stellar parameters, and their distribution within the classical instability strip. It is found that a non-negligible fraction of main-sequence δ Sct stars exist outside theoretical predictions of the classical instability boundaries, which indicates the necessity of a mass-dependent mixing length parameter to simultaneously explain low and high radial order pressure modes in δ Sct stars within the Hertzsprung-Russell diagram. Furthermore, a search for regularities in the amplitude spectra of these stars is also presented, specifically the frequency difference between pressure modes of consecutive radial order. In this work, it is demonstrated that an ensemble-based approach using space photometry from the Kepler mission is not only plausible for δ Sct stars, but that it is a valuable method for identifying the most promising stars for mode identification and asteroseismic modelling. The full scientific potential of studying δ Sct stars is as yet unrealized. The ensembles discussed in this paper represent a high-quality data set for future studies of rotation and angular momentum transport inside A and F stars using asteroseismology.

  13. LUNA, an underground nuclear astrophysics laboratory: recent results and future perspectives

    NASA Astrophysics Data System (ADS)

    Corvisiero, P.

    2005-05-01

    It is known that the chemical elements and their isotopes were created by nuclear fusion reactions in the hot interiors of remote and long-vanished stars over many billions of years. The present picture is that all elements from carbon to uranium have been produced entirely within stars during their fiery lifetimes and explosive deaths. The detailed understanding of the origin of the chemical elements and their isotopes combines astrophysics and nuclear physics, and forms what is called nuclear astrophysics. In turn, nuclear reactions are at the heart of nuclear astrophysics: they influence sensitively the nucleosynthesis of the elements in the earliest stages of the universe and in all the objects formed thereafter, and control the associated energy generation, neutrino luminosity, and evolution of stars. A good knowledge of the rates of these fusion reactions is essential to understanding this broad picture. Some of the most important experimental techniques to measure the corresponding cross sections, based both on direct and indirect methods, will be described in this paper.

  14. Physical plausibility of cold star models satisfying Karmarkar conditions

    NASA Astrophysics Data System (ADS)

    Fuloria, Pratibha; Pant, Neeraj

    2017-11-01

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9 . The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models.

  15. Asteroseismic modelling of the solar-type subgiant star β Hydri

    NASA Astrophysics Data System (ADS)

    Brandão, I. M.; Doğan, G.; Christensen-Dalsgaard, J.; Cunha, M. S.; Bedding, T. R.; Metcalfe, T. S.; Kjeldsen, H.; Bruntt, H.; Arentoft, T.

    2011-03-01

    Context. Comparing models and data of pulsating stars is a powerful way to understand the stellar structure better. Moreover, such comparisons are necessary to make improvements to the physics of the stellar models, since they do not yet perfectly represent either the interior or especially the surface layers of stars. Because β Hydri is an evolved solar-type pulsator with mixed modes in its frequency spectrum, it is very interesting for asteroseismic studies. Aims: The goal of the present work is to search for a representative model of the solar-type star β Hydri, based on up-to-date non-seismic and seismic data. Methods: We present a revised list of frequencies for 33 modes, which we produced by analysing the power spectrum of the published observations again using a new weighting scheme that minimises the daily sidelobes. We ran several grids of evolutionary models with different input parameters and different physics, using the stellar evolutionary code ASTEC. For the models that are inside the observed error box of β Hydri, we computed their frequencies with the pulsation code ADIPLS. We used two approaches to find the model that oscillates with the frequencies that are closest to the observed frequencies of β Hydri: (i) we assume that the best model is the one that reproduces the star's interior based on the radial oscillation frequencies alone, to which we have applied the correction for the near-surface effects; (ii) we assume that the best model is the one that produces the lowest value of the chi-square (χ2), i.e. that minimises the difference between the observed frequencies of all available modes and the model predictions, after all model frequencies are corrected for near-surface effects. Results: We show that after applying a correction for near-surface effects to the frequencies of the best models, we can reproduce the observed modes well, including those that have mixed mode character. The model that gives the lowest value of the χ2 is a post-main-sequence model with a mass of 1.04 M⊙ and a metallicity slightly lower than that of the Sun. Our results underscore the importance of having individual frequencies to constrain the properties of the stellar model.

  16. Introduction to Asteroseismology: from Dream to Reality

    NASA Astrophysics Data System (ADS)

    Kurtz, Don

    It has been only two years since the birth of asteroseismology for solar-like stars was proclaimed. With the resounding success of Helioseismology in determining the interior structure and rotation of the Sun and in providing unprecedented studies of the interaction of pulsation and magnetic fields in the solar atmosphere astronomers have been thrilled after decades of disappointing attempts with the recent discovery of solar-like oscillations in the other stars. There is now true seismology of a variety of solar-like stars. Asteroseismology also studies stars with a wide variety of interior and surface conditions. For two decades asteroseismic techniques have been applied to many pulsating stars across the HR Diagram. This review will introduce for non-specialists the astrophysics of pulsation modes in stars - p-modes and g-modes; a graphic view of spherical harmonics and their nodes; excitation; the effects of rotation magnetic fields and tides. It will introduce photometric and spectroscopic detection techniques. It will show some of the great successes already accomplished and it will point the way to the next 1.5 days of fascinating discoveries in the seismology of solar-like stars

  17. Asteroseismology: From Dream to Reality

    NASA Astrophysics Data System (ADS)

    Kurtz, D. W.

    2005-01-01

    It has been only two years since the birth of asteroseismology for solar-like stars was proclaimed. With the resounding success of Helioseismology in determining the interior structure and rotation of the Sun and in providing unprecedented studies of the interaction of pulsation and magnetic fields in the solar atmosphere astronomers have been thrilled after decades of disappointing attempts with the recent discovery of solar-like oscillations in the other stars. There is now true seismology of a variety of solar-like stars. Asteroseismology also studies stars with a wide variety of interior and surface conditions. For two decades asteroseismic techniques have been applied to many pulsating stars across the HR Diagram. This review will introduce for non-specialists the astrophysics of pulsation modes in stars - p-modes and g-modes; a graphic view of spherical harmonics and their nodes; excitation; the effects of rotation magnetic fields and tides. It will introduce photometric and spectroscopic detection techniques. It will show some of the great successes already accomplished and it will point the way to the next 1.5 days of fascinating discoveries in the seismology of solar-like stars.

  18. 76 FR 35468 - Star-Spangled Banner National Historic Trail Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... DEPARTMENT OF THE INTERIOR National Park Service Star-Spangled Banner National Historic Trail... the Advisory Committee on the Star-Spangled Banner National Historic Trail will hold a meeting. Designated through an amendment to the National Trails System Act (16 U.S.C. 1241), the trail consists of...

  19. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians prepare the Neutron star Interior Composition Explorer, or NICER, payload for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  20. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured on a special test stand. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  1. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, a technician prepares the Neutron star Interior Composition Explorer, or NICER, payload for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  2. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is being prepared for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  3. NICER Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  4. (2+1)-dimensional stars

    NASA Astrophysics Data System (ADS)

    Lubo, M.; Rooman, M.; Spindel, Ph.

    1999-02-01

    We investigate, in the framework of (2+1)-dimensional gravity, stationary rotationally symmetric gravitational sources of the perfect fluid type, embedded in a space of an arbitrary cosmological constant. We show that the matching conditions between the interior and exterior geometries imply restrictions on the physical parameters of the solutions. In particular, imposing finite sources and the absence of closed timelike curves privileges negative values of the cosmological constant, yielding exterior vacuum geometries of rotating black hole type. In the special case of static sources, we prove the complete integrability of the field equations and show that the sources' masses are bounded from above and, for a vanishing cosmological constant, generally equal to 1. We also discuss and illustrate the stationary configurations by explicitly solving the field equations for constant mass-energy densities. If the pressure vanishes, we recover as interior geometries Gödel-like metrics defined on causally well behaved domains, but with unphysical values of the mass to angular momentum ratio. The introduction of pressure in the sources cures the latter problem and leads to physically more relevant models.

  5. Gravitational wave emission from oscillating millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  6. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    Optics Lead Takashi Okajima prepares to align NICER’s X-ray optics. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf

    NASA Astrophysics Data System (ADS)

    Giammichele, N.; Charpinet, S.; Fontaine, G.; Brassard, P.; Green, E. M.; Van Grootel, V.; Bergeron, P.; Zong, W.; Dupret, M.-A.

    2018-02-01

    White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars—in particular their oxygen content and the stratification of their cores—is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.

  8. Neutron Star Models in Alternative Theories of Gravity

    NASA Astrophysics Data System (ADS)

    Manolidis, Dimitrios

    We study the structure of neutron stars in a broad class of alternative theories of gravity. In particular, we focus on Scalar-Tensor theories and f(R) theories of gravity. We construct static and slowly rotating numerical star models for a set of equations of state, including a polytropic model and more realistic equations of state motivated by nuclear physics. Observable quantities such as masses, radii, etc are calculated for a set of parameters of the theories. Specifically for Scalar-Tensor theories, we also calculate the sensitivities of the mass and moment of inertia of the models to variations in the asymptotic value of the scalar field at infinity. These quantities enter post-Newtonian equations of motion and gravitational waveforms of two body systems that are used for gravitational-wave parameter estimation, in order to test these theories against observations. The construction of numerical models of neutron stars in f(R) theories of gravity has been difficult in the past. Using a new formalism by Jaime, Patino and Salgado we were able to construct models with high interior pressure, namely pc > rho c/3, both for constant density models and models with a polytropic equation of state. Thus, we have shown that earlier objections to f(R) theories on the basis of the inability to construct viable neutron star models are unfounded.

  9. Featured Image: Mixing Chemicals in Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    How do stars mix chemicals in their interiors, leading to the abundances we measure at their surfaces? Two scientists from the Planetary Science Institute in Arizona, Tamara Rogers (Newcastle University, UK) and Jim McElwaine (Durham University, UK), have investigated the role that internal gravity waves have in chemical mixing in stellar interiors. Internal gravity waves not to be confused with the currently topical gravitational waves are waves that oscillate within a fluid that has a density gradient. Rogers and McElwaine used simulations to explore how these waves can cause particles in a stars interior to move around, gradually mixing the different chemical elements. Snapshots from four different times in their simulation can be seen below, with the white dots marking tracer particles and the colors indicating vorticity. You can see how the particles move in response to wave motion after the first panel. For more information, check out the paper below!CitationT. M. Rogers and J. N. McElwaine 2017 ApJL 848 L1. doi:10.3847/2041-8213/aa8d13

  10. Induction heating of planetary interiors

    NASA Astrophysics Data System (ADS)

    Kislyakova, K.; Noack, L.; Johnstone, C. P.; Zaitsev, V. V.; Fossati, L.; Lammer, H.; Khodachenko, M. L.; Odert, P.; Güdel, M.

    2017-09-01

    We present a calculation of the energy release in planetary interiors caused by induction heating. If an exoplanet orbits a host star with a strong magnetic field, it will be embedded in periodically varying magnetic environment. In our work, we consider only a dipole field of the host star and assume the dipole axis to be inclined with respect to the stellar rotational axis, which causes the magnetic field to vary. In this case, the varying magnetic field surrounding the planet will generate induction currents inside the planetary mantle, which will dissipate in the planetary interiors. We show that this energy release can be very substantial and in some cases even lead to complete melting of the planetary mantle over geological timescales, accompanied by the enhanced magnetic activity.

  11. Regular black holes: Electrically charged solutions, Reissner-Nordstroem outside a de Sitter core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemos, Jose P. S.; Zanchin, Vilson T.; Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia, 166, 09210-170, Santo Andre, Sao Paulo

    2011-06-15

    To have the correct picture of a black hole as a whole, it is of crucial importance to understand its interior. The singularities that lurk inside the horizon of the usual Kerr-Newman family of black hole solutions signal an endpoint to the physical laws and, as such, should be substituted in one way or another. A proposal that has been around for sometime is to replace the singular region of the spacetime by a region containing some form of matter or false vacuum configuration that can also cohabit with the black hole interior. Black holes without singularities are called regularmore » black holes. In the present work, regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several types of solutions: regular nonextremal black holes with a null matter boundary, regular nonextremal black holes with a timelike matter boundary, regular extremal black holes with a timelike matter boundary, and regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed.« less

  12. Andromeda is So Hot n Cold

    NASA Image and Video Library

    2011-01-05

    This mosaic of the Andromeda spiral galaxy highlights explosive stars in its interior, and cooler, dusty stars forming in its many rings. This is a combination of observations from the Herschel Space Observatory and the XMM-Newton telescope.

  13. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians assist as a crane is used to lift the Neutron star Interior Composition Explorer, or NICER, payload up from its carrier. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  14. NICER Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container and loaded onto a truck outside the high bay. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  15. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Eric D.; Fortney, Jonathan J.

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiativemore » cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.« less

  16. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.

    1996-01-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  17. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.

    1996-10-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  18. NICER Eyes on Bursting Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    What happens to a neutron stars accretion disk when its surface briefly explodes? A new instrument recently deployed at the International Space Station (ISS) is now watching bursts from neutron stars and reporting back.Deploying a New X-Ray MissionLaunch of NICER aboard a Falcon 9 rocket in June 2017. [NASA/Tony Gray]In early June of 2017, a SpaceX Dragon capsule on a Falcon 9 rocket launched on a resupply mission to the ISS. The pressurized interior of the Dragon contained the usual manifest of crew supplies, spacewalk equipment, and vehicle hardware. But the unpressurized trunk of the capsule held something a little different: the Neutron star Interior Composition Explorer (NICER).In the two weeks following launch, NICER was extracted from the SpaceX Dragon capsule and installed on the ISS. And by the end of the month, the instrument was already collecting its first data set: observations of a bright X-ray burst from Aql X-1, a neutron star accreting matter from a low-mass binary companion.Impact of BurstsNICERs goal is to provide a new view of neutron-star physics at X-ray energies of 0.212 keV a window that allows us to explore bursts of energy that neutron stars sometimes emit from their surfaces.Artists impression of an X-ray binary, in which a compact object accretes material from a companion star. [ESA/NASA/Felix Mirabel]In X-ray burster systems, hydrogen- and helium-rich material from a low-mass companion star piles up in an accretion disk around the neutron star. This material slowly funnels onto the neutron stars surface, forming a layer that gravitationally compresses and eventually becomes so dense and hot that runaway nuclear fusion ignites.Within seconds, the layer of material is burned up, producing a burst of emission from the neutron star that outshines even the inner regions of the hot accretion disk. Then more material funnels onto the neutron star and the process begins again.Though we have a good picture of the physics that causes these bursts, we dont yet understand the impact that these X-ray flashes have on the accretion disk and the environment surrounding the neutron star. In a new study led by Laurens Keek (University of Maryland), a team of scientists now details what NICER has learned on this subject.Extra X-RaysLight curve (top) and hardness ratio (bottom) for the X-ray burst from Aql X-1 captured by NICER on 3 July 2017. [Keek et al. 2018]In addition to thermal emission from the neutron star, NICER revealed an excess of soft X-ray photons below 1 keV during Aql X-1s burst. The authors propose two possible models for this emission:The burst radiation from the neutron stars surface was reprocessed i.e., either scattered or absorbed and re-emitted by the accretion disk.The persistent, usual accretion flow was enhanced as a result of the bursts radiation drag on the disk, briefly bumping up the disks X-ray flux.While we cant yet conclusively statewhich mechanismdominates, NICERs observations do show that bursts have a substantial impact on their accretion environment. And, as there are over 100 such X-ray burster systems in our galaxy, we can expect that NICER will allow us to better explore the effect of X-ray bursts on neutron-star disks and their surroundings inmany different systems in the future.BonusCheck out the awesome gif below, provided by NASA, which shows NICER being extracted fromthe Dragon capsules trunk by a robotic arm.CitationL. Keek et al 2018 ApJL 855 L4. doi:10.3847/2041-8213/aab104

  19. Mass, Radius, and Composition of the Transiting Planet 55 Cnc e: Using Interferometry and Correlations

    NASA Astrophysics Data System (ADS)

    Crida, Aurélien; Ligi, Roxanne; Dorn, Caroline; Lebreton, Yveline

    2018-06-01

    The characterization of exoplanets relies on that of their host star. However, stellar evolution models cannot always be used to derive the mass and radius of individual stars, because many stellar internal parameters are poorly constrained. Here, we use the probability density functions (PDFs) of directly measured parameters to derive the joint PDF of the stellar and planetary mass and radius. Because combining the density and radius of the star is our most reliable way of determining its mass, we find that the stellar (respectively planetary) mass and radius are strongly (respectively moderately) correlated. We then use a generalized Bayesian inference analysis to characterize the possible interiors of 55 Cnc e. We quantify how our ability to constrain the interior improves by accounting for correlation. The information content of the mass–radius correlation is also compared with refractory element abundance constraints. We provide posterior distributions for all interior parameters of interest. Given all available data, we find that the radius of the gaseous envelope is 0.08+/- 0.05{R}p. A stronger correlation between the planetary mass and radius (potentially provided by a better estimate of the transit depth) would significantly improve interior characterization and reduce drastically the uncertainty on the gas envelope properties.

  20. Glitches as probes of neutron star internal structure and dynamics: Effects of the superfluid-superconducting core

    NASA Astrophysics Data System (ADS)

    Gügercinoğlu, Erbil

    2017-12-01

    Glitches, sudden spin-up of pulsars with subsequent recovery, provide us with a unique opportunity to investigate various physical processes, including the crust-core coupling, distribution of reservoir angular momentum within different internal layers, spin-up in neutral and charged superfluids and constraining the equation of state of the neutron star (NS) matter. In this work, depending on the dynamic interaction between the vortex lines and the nuclei in the inner crust, and between the vortex lines and the magnetic flux tubes in the outer core, various types of relaxation behavior are obtained and confronted with the observations. It is shown that the glitches have strong potential to deduce information about the cooling behavior and interior magnetic field configuration of NSs. Some implications of the relative importance of the external spin-down torques and the superfluid internal torques for recently observed unusual glitches are also discussed.

  1. Low energy cross sections and underground laboratories

    NASA Astrophysics Data System (ADS)

    Corvisiero, P.; LUNA Collaboration

    2005-04-01

    It is known that the chemical elements and their isotopes were created by nuclear fusion reactions in the hot interiors of remote and long-vanished stars over many billions of years [C. Rolfs, W.S. Rodney, Cauldrons in the cosmos, University of Ghicago Press, Chicago (1988)]. The present picture is that all elements from carbon to uranium have been produced entirely within stars during their fiery lifetimes and explosive deaths. The detailed understanding of the origin of the chemical elements and their isotopes combines astrophysics and nuclear physics, and forms what is called nuclear astrophysics. In turn, nuclear reactions are at the heart of nuclear astrophysics: they influence sensitively the nucleosynthesis of the elements in the earliest stages of the universe and in all the objects formed thereafter, and control the associated energy generation, neutrino luminosity, and evolution of stars. A good knowledge of the rates of these fusion reactions is essential to understanding this broad picture. Some of the most important experimental techniques to measure the corresponding cross sections, based both on direct and indirect methods, will be described in this paper.

  2. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER’s X-ray concentrator optics are inspected under a black light for dust and foreign object debris that could impair functionality once in space. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER engineer Steven Kenyon prepares seven of the 56 X-ray concentrators for installation in the NICER instrument. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. STARS DO NOT EAT THEIR YOUNG MIGRATING PLANETS: EMPIRICAL CONSTRAINTS ON PLANET MIGRATION HALTING MECHANISMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plavchan, Peter; Bilinski, Christopher

    The discovery of ''hot Jupiters'' very close to their parent stars confirmed that Jovian planets migrate inward via several potential mechanisms. We present empirical constraints on planet migration halting mechanisms. We compute model density functions of close-in exoplanets in the orbital semi-major axis-stellar mass plane to represent planet migration that is halted via several mechanisms, including the interior 1:2 resonance with the magnetospheric disk truncation radius, the interior 1:2 resonance with the dust sublimation radius, and several scenarios for tidal halting. The models differ in the predicted power-law dependence of the exoplanet orbital semi-major axis as a function of stellarmore » mass, and thus we also include a power-law model with the exponent as a free parameter. We use a Bayesian analysis to assess the model success in reproducing empirical distributions of confirmed exoplanets and Kepler candidates that orbit interior to 0.1 AU. Our results confirm a correlation of the halting distance with stellar mass. Tidal halting provides the best fit to the empirical distribution of confirmed Jovian exoplanets at a statistically robust level, consistent with the Kozai mechanism and the spin-orbit misalignment of a substantial fraction of hot Jupiters. We can rule out migration halting at the interior 1:2 resonances with the magnetospheric disk truncation radius and the interior 1:2 resonance with the dust disk sublimation radius, a uniform random distribution, and a distribution with no dependence on stellar mass. Note that our results do not rule out Type-II migration, but rather eliminate the role of a circumstellar disk in stopping exoplanet migration. For Kepler candidates, which have a more restricted range in stellar mass compared to confirmed planets, we are unable to discern between the tidal dissipation and magnetospheric disk truncation braking mechanisms at a statistically significant level. The power-law model favors exponents in the range of 0.38-0.9. This is larger than that predicted for tidal halting (0.23-0.33), which suggests that additional physics may be missing in the tidal halting theory.« less

  5. Single stars in the Hyades open cluster. Fiducial sequence for testing stellar and atmospheric models

    NASA Astrophysics Data System (ADS)

    Kopytova, Taisiya G.; Brandner, Wolfgang; Tognelli, Emanuele; Prada Moroni, Pier Giorgio; Da Rio, Nicola; Röser, Siegfried; Schilbach, Elena

    2016-01-01

    Context. Age and mass determinations for isolated stellar objects remain model-dependent. While stellar interior and atmospheric theoretical models are rapidly evolving, we need a powerful tool to test them. Open clusters are good candidates for this role. Aims: We aim to create a fiducial sequence of stellar objects for testing stellar and atmospheric models. Methods: We complement previous studies on the Hyades multiplicity by Lucky Imaging observations with the AstraLux Norte camera. This allows us to exclude possible binary and multiple systems with companions outside a 2-7 AU separation and to create a single-star sequence for the Hyades. The sequence encompasses 250 main-sequence stars ranging from A5V to M6V. Using the Tool for Astrophysical Data Analysis (TA-DA), we create various theoretical isochrones applying different combinations of interior and atmospheric models. We compare the isochrones with the observed Hyades single-star sequence on J vs. J-Ks, J vs. J-H, and Ks vs. H-Ks color-magnitude diagrams. As a reference we also compute absolute fluxes and magnitudes for all stars from X-ray to mid-infrared based on photometric measurements available in the literature(ROSAT X-ray, GALEX UV, APASS gri, 2MASS JHKs, and WISE W1 to W4). Results: We find that combinations of both PISA and DARTMOUTH stellar interior models with BT-Settl 2010 atmospheric models describe the observed sequence well. We use PISA in combination with BT-Settl 2010 models to derive theoretical predictions for physical parameters (Teff, mass, log g) of 250 single stars in the Hyades. The full sequence covers the mass range of 0.13-2.30 M⊙, and effective temperatures between 3060 K and 8200 K. Conclusions: Within the measurement uncertainties, the current generation of models agree well with the single-star sequence. The primary limitations are the uncertainties in the measurement of the distances to individual Hyades members, and uncertainties in the photometry. Gaia parallaxes, photometry, and spectroscopy will greatly reduce the uncertainties in particular at the lowest mass range, and will enable us to test model predictions with greater confidence. Additionally, a small (~0.05 mag) systematic offset can be noted in J vs. J-K and K vs. H-K diagrams - the observed sequence is shifted to redder colors than the theoretical predictions. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A7

  6. NICER Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container. A technician uses a Hyster forklift to pick up the container and move it outside of the high bay. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  7. Could Ultracool Dwarfs Have Sun-Like Activity?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Solar-like stars exhibit magnetic cycles; our Sun, for instance, displays an 11-year period in its activity, manifesting as cyclic changes in radiation levels, the number of sunspots and flares, and ejection of solar material. Over the span of two activity cycles, the Suns magnetic field flips polarity and then returns to its original state.An artists illustration comparing the Sun to TRAPPIST-1, an ultracool dwarf star known to host several planets. [ESO]But what about the magnetic behavior of objects near the cooler end of the stellar main sequence do they exhibit similar activity cycles?Effects of a Convecting InteriorDwarf stars have made headlines in recent years due to their potential to harbor exoplanets. Because these cooler stars have lower flux levels compared to the Sun, their habitable zones lie much closer to the stars. The magnetic behavior of these stars is therefore important to understand: could ultracool dwarfs exhibit solar-like activity cycles that would affect planets with close orbits?The differences in internal structure between different mass stars. Ultracool dwarfs have fully convective interiors. [www.sun.org]Theres a major difference between ultracool dwarfs (stars of spectral type higher than M7 and brown dwarfs) and Sun-like stars: their internal structures. Sun-like stars have a convective envelope that surrounds a radiative core. The interiors of cool, low-mass objects, on the other hand, are fully convective.Based on theoretical studies of how magnetism is generated in stars, its thought that the fully convective interiors of ultracool dwarfs cant support large-scale magnetic field formation. This should prevent these stars from exhibiting activity cycles like the Sun. But recent radio observations of dwarf stars have led scientist Matthew Route (ITaP Research Computing, Purdue University) to question these models.A Reversing Field?During observations of the brown dwarf star J1047+21 in 20102011, radio flares were detected with emission primarily polarized in a single direction. The dwarfs flares in late 2013, however, all showed polarization in the opposite direction. Could this be an indication that J1047+21 has a stable, global dipolar field that flipped polarity in between the two sets of observations? If so, this could mean that the star has a magnetic cycle similar to the Suns.Artists impression showing the relative sizes and colors of the Sun, a red dwarf (M-dwarf), a hotter brown dwarf (L-dwarf), a cool brown dwarf (T-dwarf) similar to J1047+21, and the planet Jupiter [Credit: NASA/IPAC/R. Hurt (SSC)]Inspired by this possibility, Route conducted an investigation of the long-term magnetic behavior of all known radio-flaring ultracool dwarfs, a list of 14 stars. Using polarized radio emission measurements, he found that many of his targets exhibited similar polarity flips, which he argues is evidence that these dwarfs are undergoing magnetic field reversals on roughly decade-long timescales, analogous to those reversals that occur in the Sun.If this is indeed true, then we need to examine our models of how magnetic fields are generated in stars: the interface between the radiative and convective layers may not be necessary to produce large-scale magnetic fields. Understanding this process is certainly an important step in interpreting the potential habitability of planets around ultracool dwarfs.CitationMatthew Route 2016 ApJL 830 L27. doi:10.3847/2041-8205/830/2/L27

  8. Neutron stars interiors: Theory and reality

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2016-03-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation.

  9. Stability of anisotropic self-gravitating fluids

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Jami, A. Rehman; Mughal, M. Z.

    2018-06-01

    The aim of this paper is to study the stability as well as the existence of self-gravitating anisotropic fluids in Λ-dominated era. Taking a cylindrically symmetric and static spacetime, we computed the corresponding equations of motion in the background of anisotropic fluid distributions. The realistic formulation of energy momentum tensor as well as theoretical model of the scale factors are considered in order to describe some physical properties of the anisotropic fluids. To find the stability of the compact star, we have used Herrera’s technique which is based on finding the radial and the transverse components of the speed of sound. Moreover, the behaviors of other physical quantities are also discussed like anisotropy, matching conditions of interior metric and exterior metric and compactness of the compact structures are also discussed.

  10. An Era of Precision Astrophysics for Exoplanets, Stars, and the Milky Way

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan G.; Kilodegree Extremely Little Telescope (KELT); Transiting Exoplanet Survey Satellite (TESS); Sloan Digital Sky Survey (SDSS)

    2018-06-01

    While observing stars teaches us about the physical properties of the stars themselves, that knowledge also is the key to measuring the properties of nearly all exoplanets, and also the history of the Galaxy. Combining data from current and upcoming all-sky surveys, including Gaia, TESS, and the fifth Sloan Digital Sky Survey (SDSS-V), will enable accurate, empirical measurements of fundamental properties for millions of stars throughout the Milky Way—including an increase by four orders of magnitude in the number of stars with reliable parallaxes, two orders of magnitude in the number with ultraprecise light curves, and two orders of magnitude in the number with detailed chemical abundances. We demonstrate that stellar masses, radii, temperatures, distances, space motions, and detailed chemical abundances can now be measured with precisions of order 1%, and with systematics better than ∼5% in most cases. We discuss the transformational advances that such precise stellar measurements promise for exoplanet science, including studies of planetary system architectures, forensic analyses of planet evolution pathways, testing planet formation theories, and even efforts to infer the mineralogy of planets. We also discuss the similarly transformational advances at hand for Galactic archaeology, including studies of stellar micro-populations, testing theories of star formation and of galaxy assembly, and even efforts to trace the chemical "family tree" of the Galaxy through stellar phylogenics. Finally, we discuss the revolution in stellar astrophysics represented by ultraprecise light curves of stars, specifically as probes of stellar interiors and therefore as stress-tests of stellar theory across the Hertzsprung-Russell diagram.

  11. The HEASARC in 2013 and Beyond: NuSTAR, Astro-H, NICER..

    NASA Astrophysics Data System (ADS)

    Drake, Stephen A.; Smale, A. P.; McGlynn, T. A.; Arnaud, K. A.

    2013-04-01

    The High Energy Astrophysics Archival Research Center or HEASARC (http://heasarc.gsfc.nasa.gov/) is in its third decade as the NASA astrophysics discipline node supporting multi-mission cosmic X-ray and gamma-ray astronomy research. It provides a unified archive and software structure aimed both at 'legacy' missions such as Einstein, EXOSAT, ROSAT and RXTE, contemporary missions such as Fermi, Swift, Suzaku, Chandra, etc., and upcoming missions, such as NuSTAR, Astro-H and NICER. The HEASARC's high-energy astronomy archive has grown so that it presently contains 45 TB of data from 28 orbital missions. The HEASARC is the designated archive which supports NASA's Physics of the Cosmos theme (http://pcos.gsfc.nasa.gov/). We discuss some of the upcoming new initiatives and developments for the HEASARC, including the arrival of public data from the hard X-ray imaging NuSTAR mission in the summer of 2013, and the ongoing preparations to support the JAXA/NASA Astro-H mission and the NASA MoO Neutron Star Interior Composition Explorer (NICER), which are expected to become operational in 2015-2016. We also highlight some of the new software capabilities of the HEASARC, such as Xamin, a next-generation archive interface which will eventually supersede Browse, and the latest update of XSPEC (v 12.8.0).

  12. CHORUS code for solar and planetary convection

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    Turbulent, density stratified convection is ubiquitous in stars and planets. Numerical simulation has become an indispensable tool for understanding it. A primary contribution of this dissertation work is the creation of the Compressible High-ORder Unstructured Spectral-difference (CHORUS) code for simulating the convection and related fluid dynamics in the interiors of stars and planets. In this work, the CHORUS code is verified by using two newly defined benchmark cases and demonstrates excellent parallel performance. It has unique potential to simulate challenging physical phenomena such as multi-scale solar convection, core convection, and convection in oblate, rapidly-rotating stars. In order to exploit its unique capabilities, the CHORUS code has been extended to perform the first 3D simulations of convection in oblate, rapidly rotating solar-type stars. New insights are obtained with respect to the influence of oblateness on the convective structure and heat flux transport. With the presence of oblateness resulting from the centrifugal force effect, the convective structure in the polar regions decouples from the main convective modes in the equatorial regions. Our convection simulations predict that heat flux peaks in both the polar and equatorial regions, contrary to previous theoretical results that predict darker equators. High latitudinal zonal jets are also observed in the simulations.

  13. Buchdahl compactness limit for a pure Lovelock static fluid star

    NASA Astrophysics Data System (ADS)

    Dadhich, Naresh; Chakraborty, Sumanta

    2017-03-01

    We obtain the Buchdahl compactness limit for a pure Lovelock static fluid star and verify that the limit following from the uniform-density Schwarzschild's interior solution, which is universal irrespective of the gravitational theory (Einstein or Lovelock), is true in general. In terms of surface potential Φ (r ) , it means at the surface of the star r =r0, Φ (r0)<2 N (d -N -1 )/(d -1 )2, where d and N indicate spacetime dimensions and Lovelock order, respectively. For a given N , Φ (r0) is maximum for d =2 N +2 , while it is always 4 /9 , Buchdahl's limit, for d =3 N +1 . It is also remarkable that for N =1 Einstein gravity, or for pure Lovelock in d =3 N +1 , Buchdahl's limit is equivalent to the criterion that gravitational field energy exterior to the star must be less than half its gravitational mass, having no reference to the interior at all.

  14. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER Optics Lead Takashi Okajima makes a fine adjustment to the orientation of one X-ray “concentrator” optic. The 56 optics must point in the same direction in order for NICER to achieve its science goals. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER team members Takashi Okajima, Yang Soong, and Steven Kenyon apply epoxy to the X-ray concentrator mounts after alignment. The epoxy holds the optics assemblies fixed in position through the vibrations experienced during launch to the International Space Station. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    Many of NICER’s 56 X-ray “concentrators” seen from within the instrument optical bench. Light reflected from the gold surfaces of the 24 concentric foils in each concentrator is focused onto detectors slightly more than 1 meter (3.5 feet) away. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Electron capture decay in Jovian planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zito, R.R.; Schiferl, D.

    1987-12-01

    Following the commonly acknowledged fact that the decay of K-40 substantially contributes to the heating of planetary interiors, an examination is made of the possibility that interior heat in the Jovian planets and stars, where interior pressures may exceed 45 Mbar, may be generated by the pressure-accelerated electron capture decay of a variety of isotopes. The isotopes considered encompass K-40, V-50, Te-123, La-138, Al-26, and Cl-36. 19 references.

  18. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, David M.; Tomalia, Donald A.

    1995-01-01

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  19. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-28

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  20. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seward, F. D.; Charles, P. A.; Foster, D. L.

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  1. An all-purpose metric for the exterior of any kind of rotating neutron star

    NASA Astrophysics Data System (ADS)

    Pappas, George; Apostolatos, Theocharis A.

    2013-03-01

    We have tested the appropriateness of two-soliton analytic metric to describe the exterior of all types of neutron stars, no matter what their equation of state or rotation rate is. The particular analytic solution of the vacuum Einstein equations proved quite adjustable to mimic the metric functions of all numerically constructed neutron star models that we used as a testbed. The neutron star models covered a wide range of stiffness, with regard to the equation of state of their interior, and all rotation rates up to the maximum possible rotation rate allowed for each such star. Apart from the metric functions themselves, we have compared the radius of the innermost stable circular orbit RISCO, the orbital frequency Ω equiv dφ /dt of circular geodesics, and their epicyclic frequencies Ωρ, Ωz, as well as the change of the energy of circular orbits per logarithmic change of orbital frequency Δ tilde{E}. All these quantities, calculated by means of the two-soliton analytic metric, fitted with good accuracy the corresponding numerical ones as in previous analogous comparisons (although previous attempts were restricted to neutron star models with either high or low rotation rates). We believe that this particular analytic solution could be considered as an analytic faithful representation of the gravitation field of any rotating neutron star with such accuracy, that one could explore the interior structure of a neutron star by using this space-time to interpret observations of astrophysical processes that take place around it.

  2. New color-magnetic defects in dense quark matter

    NASA Astrophysics Data System (ADS)

    Haber, Alexander; Schmitt, Andreas

    2018-06-01

    Color-flavor locked (CFL) quark matter expels color-magnetic fields due to the Meissner effect. One of these fields carries an admixture of the ordinary abelian magnetic field and therefore flux tubes may form if CFL matter is exposed to a magnetic field, possibly in the interior of neutron stars or in quark stars. We employ a Ginzburg–Landau approach for three massless quark flavors, which takes into account the multi-component nature of color superconductivity. Based on the weak-coupling expressions for the Ginzburg–Landau parameters, we identify the regime where CFL is a type-II color superconductor and compute the radial profiles of different color-magnetic flux tubes. Among the configurations without baryon circulation we find a new solution that is energetically preferred over the flux tubes previously discussed in the literature in the parameter regime relevant for compact stars. Within the same setup, we also find a new defect in the 2SC phase, namely magnetic domain walls, which emerge naturally from the previously studied flux tubes if a more general ansatz for the order parameter is used. Color-magnetic defects in the interior of compact stars allow for sustained deformations of the star, potentially strong enough to produce detectable gravitational waves.

  3. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.

    2017-09-01

    We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.

  4. Tides and the evolution of planetary habitability.

    PubMed

    Barnes, Rory; Raymond, Sean N; Jackson, Brian; Greenberg, Richard

    2008-06-01

    Tides raised on a planet by the gravity of its host star can reduce the planet's orbital semi-major axis and eccentricity. This effect is only relevant for planets orbiting very close to their host stars. The habitable zones of low-mass stars are also close in, and tides can alter the orbits of planets in these locations. We calculate the tidal evolution of hypothetical terrestrial planets around low-mass stars and show that tides can evolve planets past the inner edge of the habitable zone, sometimes in less than 1 billion years. This migration requires large eccentricities (>0.5) and low-mass stars ( less or similar to 0.35 M(circle)). Such migration may have important implications for the evolution of the atmosphere, internal heating, and the Gaia hypothesis. Similarly, a planet that is detected interior to the habitable zone could have been habitable in the past. We consider the past habitability of the recently discovered, approximately 5 M(circle) planet, Gliese 581 c. We find that it could have been habitable for reasonable choices of orbital and physical properties as recently as 2 Gyr ago. However, when constraints derived from the additional companions are included, most parameter choices that indicate past habitability require the two inner planets of the system to have crossed their mutual 3:1 mean motion resonance. As this crossing would likely have resulted in resonance capture, which is not observed, we conclude that Gl 581 c was probably never habitable.

  5. Early Results from NICER Observations of Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  6. A key factor to the spin parameter of uniformly rotating compact stars: crust structure

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Zhang, Nai-Bo; Sun, Bao-Yuan; Wang, Shou-Yu; Gao, Jian-Hua

    2016-04-01

    We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that jmax ˜ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M > 0.5 M⊙. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) - 0.42(f/fK)2 + 0.48(f/fK)3 is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.

  7. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER Optics Lead Takashi Okajima installs one of NICER’s 56 X-ray “concentrators,” each consisting of 24 concentric foils. To minimize the effects of Earth’s gravity on their alignment, the concentrator assemblies were installed from the outside edges toward the center of the plate that houses them. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. The Stellar-Solar Connection

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.

    2004-05-01

    Many solar-stellar astronomers believe that the solar-stellar connection primarily is a one-way street: the exquisitely detailed studies of the solar surface, interior, and heliosphere strongly mold our views of the distant, unresolved stars. Perhaps many solar physicists have gone so far as to adopt the myopic view that stellar astronomy, by and large, is merely sponging up the fabulous insights from ever deeper examinations of our local star, but the ``dark side'' is not really capable of returning the favor. What could we possibly learn from the stars, that we don't already know from much better observations of the Sun? In my Introduction to this Topical Session, I will discuss two broad issues: (1) the present divergence between solar and stellar physics (driven by the different goals and tools of the two disciplines); and (2) the diversity of stars in the H-R diagram, to help inform our understanding of solar processes. Today, there are observations of stars that greatly exceed the quality of analogous solar measurements: e.g., HST/STIS UV echelle spectra of Alpha Cen A; Chandra transmission grating spectra of solar-type stars; and only recently have we obtained a definitive understanding of the Sun's soft X-ray luminosity in the key ROSAT/PSPC band. The lack of equivalent solar observations hinders practical applications of the solar-stellar connection. On the more informative side, the evolutionary paths of other stars can be quite different from the Sun's, with potentially dramatic influences on phenomena such as magnetic activity. Equally important, examples of Sun-like stars can be found at all stages of evolution, from proplyds to red giants, in the volume of nearby space out to 500 pc. In short, the solar-stellar connection need not be a one-way street, but rather a powerful tool to explore solar processes within the broader context of stars and stellar evolution. This work was supported by NASA grant NAG5-13058.

  9. Two views of the Andromeda Galaxy H-alpha and far infrared

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas A.; Price, Rob; Wells, Lisa A.; Duric, Neb

    1994-01-01

    A complete H-alpha image of the Andromeda Galaxy (M31) is presented allowing the first direct measurement of the total H-alpha luminosity which is (7.3 +/- 2.4) x 10(exp 6) solar luminosity. The H-alpha emission is associated with three morphologically distinct components; a large scale star-forming ring, approximately 1.65 deg in diameter, contributing 66% of the total H-alpha emission, a bright nucleus contributing 6% of the total H-alpha emission with the remaining 28% contributed by a previously unidentified component of extended and filamentary H-alpha emission interior to the star forming ring. The correspondence between the H-alpha image and the Infrared Astronomy Satellite (IRAS) far-infrared high resolution image is striking when both are convolved to a common resolution of 105 arcsec. The close correspondence between the far-infrared and H-alpha images suggests a common origin for the two emissions. The star-forming ring contributes 70% of the far-infrared luminosity of M31. Evidence that the ring emission is energized by high mass stars includes the fact that peaks in the far-infrared emission coincide identically with H II regions in the H-alpha image. In addition, the far-infrared to H-alpha luminosity ratio within the star-forming ring is similar to what one would expect for H II regions powered by stars of spectral types ranging between O9 and B0. The origin of the filamentary H-alpha and far-infrared luminosity interior to the star-forming ring is less clear, but it is almost certainly not produced by high mass stars.

  10. A POSSIBLE CARBON-RICH INTERIOR IN SUPER-EARTH 55 Cancri e

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhusudhan, Nikku; Lee, Kanani K. M.; Mousis, Olivier, E-mail: Nikku.Madhusudhan@yale.edu

    Terrestrial planets in the solar system, such as the Earth, are oxygen-rich, with silicates and iron being the most common minerals in their interiors. However, the true chemical diversity of rocky planets orbiting other stars is yet unknown. Mass and radius measurements are used to constrain the interior compositions of super-Earths (exoplanets with masses of 1-10 M{sub Circled-Plus }), and are typically interpreted with planetary interior models that assume Earth-centric oxygen-rich compositions. Using such models, the super-Earth 55 Cancri e (mass 8 M{sub Circled-Plus }, radius 2 R{sub Circled-Plus }) has been suggested to bear an interior composition consisting ofmore » Fe, silicates, and an envelope ({approx}> 10% by mass) of supercritical water. We report that the mass and radius of 55 Cancri e can also be explained by a carbon-rich solid interior made of Fe, C, SiC, and/or silicates and without a volatile envelope. While the data allow Fe mass fractions of up to 40%, a wide range of C, SiC, and/or silicate mass fractions are possible. A carbon-rich 55 Cancri e is also plausible if its protoplanetary disk bore the same composition as its host star, which has been reported to be carbon-rich. However, more precise estimates of the stellar elemental abundances and observations of the planetary atmosphere are required to further constrain its interior composition. The possibility of a C-rich interior in 55 Cancri e opens a new regime of geochemistry and geophysics in extraterrestrial rocky planets, compared to terrestrial planets in the solar system.« less

  11. Slowly rotating supercompact Schwarzschild stars

    NASA Astrophysics Data System (ADS)

    Posada, Camilo

    2017-06-01

    The Schwarzschild interior solution, or 'Schwarzschild star', which describes a spherically symmetric homogeneous mass with a constant energy density, shows a divergence in pressure when the radius of the star reaches the Schwarzschild-Buchdahl bound. Recently, Mazur and Mottola showed that this divergence is integrable through the Komar formula, inducing non-isotropic transverse stresses on a surface of some radius R0. When this radius approaches the Schwarzschild radius Rs = 2 M, the interior solution becomes one of negative pressure evoking a de Sitter space-time. This gravitational condensate star, or gravastar, is an alternative solution to the idea of a black hole as the ultimate state of gravitational collapse. Using Hartle's model to calculate equilibrium configurations of slowly rotating masses, we report results of surface and integral properties for a Schwarzschild star in the very little studied region Rs < R < (9/8)Rs. We found that in the gravastar limit, the angular velocity of the fluid relative to the local inertial frame tends to zero, indicating rigid rotation. Remarkably, the normalized moment of inertia I/MR2 and the mass quadrupole moment Q approach the corresponding values for the Kerr metric to second order in Ω. These results provide a solution to the problem of the source of a slowly rotating Kerr black hole.

  12. Thermal states of neutron stars with a consistent model of interior

    NASA Astrophysics Data System (ADS)

    Fortin, M.; Taranto, G.; Burgio, G. F.; Haensel, P.; Schulze, H.-J.; Zdunik, J. L.

    2018-04-01

    We model the thermal states of both isolated neutron stars and accreting neutron stars in X-ray transients in quiescence and confront them with observations. We use an equation of state calculated using realistic two-body and three-body nucleon interactions, and superfluid nucleon gaps obtained using the same microscopic approach in the BCS approximation. Consistency with low-luminosity accreting neutron stars is obtained, as the direct Urca process is operating in neutron stars with mass larger than 1.1 M⊙ for the employed equation of state. In addition, proton superfluidity and sufficiently weak neutron superfluidity, obtained using a scaling factor for the gaps, are necessary to explain the cooling of middle-aged neutron stars and to obtain a realistic distribution of neutron star masses.

  13. Precision Astrophysics Experiments with the Kepler Satellite

    NASA Astrophysics Data System (ADS)

    Jackiewicz, Jason

    2012-10-01

    Long photometric observations from space of tens of thousands of stars, such as those provided by Kepler, offer unique opportunities to carry out ensemble astrophysics as well as detailed studies of individual objects. One of the primary tools at our disposal for understanding pulsating stars is asteroseismology, which uses observed stellar oscillation frequencies to determine interior properties. This can provide very strict constraints on theories of stellar evolution, structure, and the population characteristics of stars in the Milky Way galaxy. This talk will focus on several of the exciting insights Kepler has enabled through asteroseismology of stars across the H-R diagram.

  14. On the free-precession candidate PSR B1828-11: Evidence for increasing deformation

    NASA Astrophysics Data System (ADS)

    Ashton, G.; Jones, D. I.; Prix, R.

    2017-05-01

    We observe that the periodic variations in spin-down rate and beamwidth of the radio pulsar PSR B1828-11 are getting faster. In the context of a free precession model, this corresponds to a decrease in the precession period Pfp. We investigate how a precession model can account for such a decrease in Pfp, in terms of an increase over time in the absolute biaxial deformation (|ɛp| ˜ 10-8) of this pulsar. We perform a Bayesian model comparison against the 'base' precession model (with constant ɛp) developed in Ashton et al., and we obtain decisive odds in favour of a time-varying deformation. We study two types of time variation: (I) a linear drift with a posterior estimate of \\dot{ɛ }_p{˜ }10^{-18} s^{-1} and odds of 1075 compared to the base model, and (II) N discrete positive jumps in ɛp with very similar odds to the linear ɛp drift model. The physical mechanism explaining this behaviour is unclear, but the observation could provide a crucial probe of the interior physics of neutron stars. We also place an upper bound on the rate at which the precessional motion is damped, and translate this into a bound on a dissipative mutual friction-type coupling between the star's crust and core.

  15. Mode identification from spectroscopy of gravity-mode pulsators

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Brunsden, E.; Cottrell, P. L.; Davie, M.; Greenwood, A.; Wright, D. J.; De Cat, P.

    2014-02-01

    The gravity modes present in γ Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. For the MUSICIAN programme at the University of Canterbury, we obtain extensive high-resolution echelle spectra of γ Dor stars from the Mt John University Observatory in New Zealand. We analyze these to obtain the pulsational frequencies and identify these with the multiple pulsational modes excited in the star. A summary of recent results from our spectroscopic mode-identification programme is given.

  16. New Results on Short-Range Correlations in Nuclei

    DOE PAGES

    Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak; ...

    2017-10-12

    Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less

  17. Gravastars in f (G ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Shamir, M. Farasat; Ahmad, Mushtaq

    2018-05-01

    This work proposes a stellar model under Gauss-Bonnet f (G ,T ) gravity with the conjecture theorized by Mazur and Mottola, well known as the gravitational vacuum stars (gravastars). By taking into account the f (G ,T ) stellar model, the structure of the gravastar with its exclusive division of three different regions, namely, (i) the core interior region, (ii) the junction region (shell), and (iii) the exterior region, has been investigated with reference to the existence of energy density, pressure, ultrarelativistic plasma, and repulsive forces. The different physical features, like the equation of state parameter, length of the shell, entropy, and energy-thickness relation of the gravastar shell model, have been discussed. Also, some other physically valid aspects have been presented with the connection to nonsingular and event-horizon-free gravastar solutions, which in contrast to a black hole solution, might be stable without containing any information paradox.

  18. New Results on Short-Range Correlations in Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak

    Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less

  19. How to use the Sun-Earth Lagrange points for fundamental physics and navigation

    NASA Astrophysics Data System (ADS)

    Tartaglia, A.; Lorenzini, E. C.; Lucchesi, D.; Pucacco, G.; Ruggiero, M. L.; Valko, P.

    2018-01-01

    We illustrate the proposal, nicknamed LAGRANGE, to use spacecraft, located at the Sun-Earth Lagrange points, as a physical reference frame. Performing time of flight measurements of electromagnetic signals traveling on closed paths between the points, we show that it would be possible: (a) to refine gravitational time delay knowledge due both to the Sun and the Earth; (b) to detect the gravito-magnetic frame dragging of the Sun, so deducing information about the interior of the star; (c) to check the possible existence of a galactic gravitomagnetic field, which would imply a revision of the properties of a dark matter halo; (d) to set up a relativistic positioning and navigation system at the scale of the inner solar system. The paper presents estimated values for the relevant quantities and discusses the feasibility of the project analyzing the behavior of the space devices close to the Lagrange points.

  20. Peering into the Dark Side: Magnesium Lines Establish a Massive Neutron Star in PSR J2215+5135

    NASA Astrophysics Data System (ADS)

    Linares, M.; Shahbaz, T.; Casares, J.

    2018-05-01

    New millisecond pulsars (MSPs) in compact binaries provide a good opportunity to search for the most massive neutron stars. Their main-sequence companion stars are often strongly irradiated by the pulsar, displacing the effective center of light from their barycenter and making mass measurements uncertain. We present a series of optical spectroscopic and photometric observations of PSR J2215+5135, a “redback” binary MSP in a 4.14 hr orbit, and measure a drastic temperature contrast between the dark/cold (T N = 5660{}-380+260 K) and bright/hot (T D = 8080{}-280+470 K) sides of the companion star. We find that the radial velocities depend systematically on the atmospheric absorption lines used to measure them. Namely, the semi-amplitude of the radial velocity curve (RVC) of J2215 measured with magnesium triplet lines is systematically higher than that measured with hydrogen Balmer lines, by 10%. We interpret this as a consequence of strong irradiation, whereby metallic lines dominate the dark side of the companion (which moves faster) and Balmer lines trace its bright (slower) side. Further, using a physical model of an irradiated star to fit simultaneously the two-species RVCs and the three-band light curves, we find a center-of-mass velocity of K 2 = 412.3 ± 5.0 km s‑1 and an orbital inclination i = 63.°9{}-2.7+2.4. Our model is able to reproduce the observed fluxes and velocities without invoking irradiation by an extended source. We measure masses of M 1 = 2.27{}-0.15+0.17 M ⊙ and M 2 = 0.33{}-0.02+0.03 M ⊙ for the neutron star and the companion star, respectively. If confirmed, such a massive pulsar would rule out some of the proposed equations of state for the neutron star interior.

  1. Design Development of a Combined Deployment and Pointing System for the International Space Station Neutron Star Interior Composition Explorer Telescope

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, Todd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa; hide

    2015-01-01

    This paper describes the design of a unique suite of mechanisms which make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses 4 stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.

  2. Design Development of a Combined Deployment and Pointing System for the International Space Station Neutron Star Interior Composition Explorer Telescope

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, TOdd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa; hide

    2016-01-01

    This paper describes the design of a unique suite of mechanisms that make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses four stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.

  3. Dense matter in strong gravitational field of neutron star

    NASA Astrophysics Data System (ADS)

    Bhat, Sajad A.; Bandyopadhyay, Debades

    2018-02-01

    Mass, radius and moment of inertia are direct probes of compositions and Equation of State (EoS) of dense matter in neutron star interior. These are computed for novel phases of dense matter involving hyperons and antikaon condensate and their observable consequences are discussed in this article. Furthermore, the relationship between moment of inertia and quadrupole moment is also explored.

  4. Theory of Radiation Transfer in Neutron Star Atmospheres

    NASA Technical Reports Server (NTRS)

    Zavlin, Vyacheslav

    2006-01-01

    The possibility for direct investigation of thermal emission from isolated neutron stars opened about a quarter of century ago with the launch of the first X-ray observatories Einstein and EXOSAT stimulated developing models of the neutron star surface radiation which began at the end of 80's. Confronting observational data with theoretical models of thermal emission allows one to infer the surface temperatures, magnetic fields, chemical composition, and neutron star masses and radii. This information, supplemented with the model equations of state and neutron star cooling models, provides an opportunity to understand the fundamental properties of the superdense matter in the stars' interiors. Almost all available models are based on the assumption that thermal radiation emitted by a neutron star is formed in the superficial star's layers--atmosphere. The neutron star atmospheres are very different from those of usual stars due to the immense gravity and huge magnetic fields. In this presentation we review the current status of the neutron star atmosphere modeling, present most important results, discuss problems and possible future developments.

  5. General relativistic treatment of the thermal, magnetic and rotational evolution of isolated neutron stars with crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Page, D.; Geppert, U.; Zannias, T.

    2000-08-01

    We investigate the thermal, magnetic and rotational evolution of isolated neutron stars assuming that the dipolar magnetic field is confined to the crust. Our treatment, for the first time, uses a fully general relativistic formalism not only for the thermal but also for the magnetic part, and includes partial general relativistic effects in the rotational part. Due to the fact that the combined evolution depends crucially upon the compactness of the star, three different equations of state have been employed in the calculations. In the absence of general relativistic effects, while upon increasing compactness a decrease of the crust thickness takes place leading into an accelerating field decay, the inclusion of general relativistic effects intend to "decelerate this acceleration". As a consequence we find that, within the crustal field hypothesis, a given equation of state is compatible with the observed distribution of pulsar periods P and period derivative &mathaccent "705Frelax dot; provided the initial field strength and current location as well as the magnitude of the impurity content are appropriately constrained. Finally, we access the flexibility of the soft, medium and stiff classes of equations of state as candidates in describing the state of the matter in the neutron star interiors. The comparison of our model calculations with observations, together with the consideration of independent information about neutron star evolution, suggests that a not too soft equation of state describes neutron star interiors and its cooling proceeds along the `standard' scenario.

  6. 'Let the stars shine in peace!' Niels Bohr and stellar energy, 1929-1934.

    PubMed

    Kragh, Helge

    2017-04-01

    Faced with various anomalies related to nuclear physics in particular, in 1929 Niels Bohr suggested that energy might not be conserved in the atomic nucleus and the processes involving it. By this radical proposal he hoped not only to get rid of the anomalies but also saw a possibility to explain a puzzle in astrophysics, namely the energy generated by stars. Bohr repeated his suggestion of stellar energy arising ex nihilo on several occasions but without ever going into detail. In fact, it is not very clear what he meant or how seriously he took the stellar energy hypothesis. This paper relates Bohr's comments to the period's attempts to find a mechanism for stellar energy and also to the role played by astrophysics at the Copenhagen institute. Moreover, it looks at how Bohr's hypothesis was received not only by physicists but also by astronomers. In this regard the disciplinary status of astrophysics and its contemporary relation to the new quantum mechanics is of relevance. It turns out that, with very few exceptions, the hypothesis was met with silence by astronomers and astrophysicists concerned with the problem of stellar energy production. And yet, for a brief period of time it did have an impact on how physicists thought about the interior of the stars.

  7. Neutron Star Spin Measurements and Dense Matter with LOFT

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2011-01-01

    Observations over the last decade with RXTE have begun to reveal the X-ray binary progenitors of the fastest spinning neutron stars presently known. Detection and study of the spin rates of binary neutron stars has important implications for constraining the nature of dense matter present in neutron star interiors, as both the maximum spin rate and mass for neutron stars is set by the equation of state. Precision pulse timing of accreting neutron star binaries can enable mass constraints. Particularly promIsing is the combination of the pulse and eclipse timing, as for example, in systems like Swift 11749.4-2807. With its greater sensitivity, LOFT will enable deeper searches for the spin periods of the neutron stars, both during persistent outburst intervals and thermonuclear X-ray bursts, and enable more precise modeling of detected pulsations. I will explore the anticipated impact of LOFT on spin measurements and its potential for constraining dense matter in neutron stars

  8. KIC 9533489: a genuine γ Doradus - δ Scuti Kepler hybrid pulsator with transit events

    NASA Astrophysics Data System (ADS)

    Bognár, Zs.; Lampens, P.; Frémat, Y.; Southworth, J.; Sódor, Á.; De Cat, P.; Isaacson, H. T.; Marcy, G. W.; Ciardi, D. R.; Gilliland, R. L.; Martín-Fernández, P.

    2015-09-01

    Context. Several hundred candidate hybrid pulsators of type A-F have been identified from space-based observations. Their large number allows both statistical analyses and detailed investigations of individual stars. This offers the opportunity to study the full interior of the genuine hybrids, in which both low radial order p- and high-order g-modes are self-excited at the same time. However, a few other physical processes can also be responsible for the observed hybrid nature, related to binarity or to surface inhomogeneities. The finding that most δ Scuti stars also show long-period light variations represents a real challenge for theory. Aims: We aim at determining the pulsation frequencies of KIC 9533489, to search for regular patterns and spacings among them, and to investigate the stability of the frequencies and the amplitudes. An additional goal is to study the serendipitously detected transit events: is KIC 9533489 the host star? What are the limitations on the physical parameters of the involved bodies? Methods: We performed a Fourier analysis of all the available Kepler light curves. We investigated the frequency and period spacings and determined the stellar physical parameters from spectroscopic observations. We also modelled the transit events. Results: The Fourier analysis of the Kepler light curves revealed 55 significant frequencies clustered into two groups, which are separated by a gap between 15 and 27 d-1. The light variations are dominated by the beating of two dominant frequencies located at around 4 d-1. The amplitudes of these two frequencies show a monotonic long-term trend. The frequency spacing analysis revealed two possibilities: the pulsator is either a highly inclined moderate rotator (v ≈ 70 km s-1, i> 70°) or a fast rotator (v ≈ 200 km s-1) with i ≈ 20°. The transit analysis disclosed that the transit events that occur with a ≈197 d period may be caused by a 1.6 RJup body orbiting a fainter star, which would be spatially coincident with KIC 9533489.

  9. Ultrabass Sounds of the Giant Star xi Hya

    NASA Astrophysics Data System (ADS)

    2002-05-01

    First Observations of Solar-type Oscillations in a Star Very Different from the Sun Summary About 30 years ago, astronomers realised that the Sun resonates like a giant musical instrument with well-defined periods (frequencies). It forms a sort of large, spherical organ pipe. The energy that excites these sound waves comes from the turbulent region just below the Sun's visible surface. Observations of the solar sound waves (known as " helioseismology ") have resulted in enormous progress in the exploration of the interior of the Sun, otherwise hidden from view. As is the case on Earth, seismic techniques can be applied and the detailed interpretation of the observed oscillation periods has provided quite accurate information about the structure and motions inside the Sun, our central star. It has now also become possible to apply this technique to some solar-type stars. The first observations concerned the northern star eta Bootis (cf. ESO PR 16/94 ). Last year, extensive and much more accurate observations with the 1.2-m Swiss telescope at the ESO La Silla Observatory proved that Alpha Centauri , a solar "twin", behaves very much like the Sun (cf. ESO PR 15/01 ), and that some of the periods are quite similar to those in the Sun. These new observational data were of a superb quality, and that study marked a true break-through in the new research field of " asteroseismology " (seismology of the stars) for solar-type stars. But what about other types of stars, for instance those that are much larger than the Sun? Based on an extremely intensive observing project with the same telescope, an international group of astronomers [1] has found that the giant star xi Hya ("xi" is the small greek letter [2]; "Hya" is an abbreviation of "Hydrae") behaves like a giant sub-ultra-bass instrument . This star is located in the constellation Hydra (the Water-Monster) at a distance of 130 light-years, it has a radius about 10 times that of the Sun and its luminosity is about 60 times larger. The new observations demonstrate that xi Hya oscillates with several periods of around 3 hours. xi Hya is now approaching the end of its life - it is about to expand its outer envelope and to become a "red giant star" . It is quite different from stars like the Sun, which are only halfway through their active life. xi Hya is considerably more massive than any other star in which solar-like oscillations have so far been detected. This observational feat allows to study for the first time with seismic techniques the interior of such a highly evolved star. It paves the way for similar studies of different types of stars. A new chapter of stellar astrophysics is now opening as asteroseismology establishes itself as an ingenious method that is able to revolutionise our detailed understanding of stellar interiors and the overall evolution of stars . PR Photo 13a/02 : Oscillation frequencies in the Giant Star xi Hya PR Photo 13b/02 : Non-radial oscillations of xi Hya (computer graphics) PR Audio Clip 01/02 : Listen to the sound of xi Hya (RealMedia and MP3) The difficult art of asteroseismology Helioseismology (seismology of the Sun) is based on measurements of the changing radial velocity of the solar upper atmospheric layers (the "surface") by means of the well-known Doppler effect, as this surface moves up and down during acoustic oscillations. The corresponding amplitudes are very small, with velocities of up to 15 - 20 cm/sec, and the typical period is around 5 minutes. Therefore the phenomenon was first known as the "five-minute oscillations". Intensity measurements have also been tried, but the noise level is larger than for velocity data due to the presence of "granulation" (moving cells of hot gas) on the solar surface. In the case of larger and brighter stars like the giant stars, the corresponding amplitudes and periods increase. For instance, theoretical predictions for the giant star xi Hya have indicated that velocity amplitudes of about 7 m/sec and periods of the order of 3 - 4 hours could be expected. Observations of such oscillations are much more difficult, because the demands on the performance of the spectrograph increase dramatically, as this timescale is similar to that of variations of conditions in the Earth's atmosphere during the observing night. Spurious instrumental effects, like mechanical flexure, would be detrimental to such demanding observations. However, the experience from the search for exoplanets orbiting other stars - by observing the periodic change in velocity of the parent star due to the weak pull of the orbiting planet over even longer timescales - has proven to be very useful. Indeed, asteroseismology has benefitted greatly from the development of accurate techniques now employed in the search for exoplanets . The observations of the giant star xi Hya An international team of astronomers [1] observed xi Hya with the Swiss 1.2-m Euler telescope at the ESO La Silla Observatory (Chile). They used the CORALIE spectrograph, which is well known for numerous discoveries of exoplanets (cf. PR 07/01 ), and recently for the detection of 7-min acoustic oscillations in the solar-twin star Alpha Centauri A (cf. PR 15/01 ). The same technique that delivered superb observations of Alpha Centauri A was employed to investigate the oscillations of xi Hya . The sound waves make the surface of the star oscillate periodically in and out, and the CORALIE spectrograph measures the velocities of the up-down motion. As xi Hya is a giant, these waves need more time to propagate through the stellar interior up to the stellar surface than they do in a solar-like star. Thus, the generated oscillations of the surface are slower. An observing campaign lasting no less than one full month, taking about two measurements every hour was necessary to detect the tiny movements of the surface of xi Hya . The detected oscillations have periods of about 3 hours, and have speeds of only up to 2 metres per second . This is somewhat smaller than expected, but the predictions for these amplitudes were very uncertain as the conditions in xi Hya are so very different from those in the Sun. First results for xi Hya ESO PR Photo 13a/02 ESO PR Photo 13a/02 [Preview - JPEG: 492 x 400 pix - 68k] [Normal - JPEG: 983 x 800 pix - 168k] Caption : PR Photo 13a/02 shows the "frequency spectrum" of the giant star xi Hya , as deduced on the basis of extensive velocity measurements with the 1.2-m Leonhard Euler telescope at the ESO La Silla Observatory (Chile). The abscissa unit is microHertz; 100 µHz corresponds to a period of 10,000 seconds (2.78 hours). PR Audio Clip 01/02 : Listen to the sound of xi Hya ! This 15-sec audio clip was produced by mixing the 16 strongest frequencies in the observed sound spectrum ( PR Photo 13a/02 ) with the correct, relative amplitudes. In order to render the signal audible, all frequencies were multiplied by a factor of one million. Note that quality loudspeakers are required to fully appreciate this rich and complex signal, especially the underlying bass tones. Several beat frequencies are obviously present. Available in RealMedia (requires RealPlayer software) and MP3 (264k) formats. PR Photo 13a/02 shows the frequency spectrum of xi Hya , based on these extensive observations. The "power peaks" indicate the frequencies of the oscillation of the stellar atmosphere. The broad distribution means that several different sound waves are clearly present. This is the first time such a spectrum has ever been obtained for a giant star. A first analysis showed the presence of about one dozen significant frequencies and correspondingly, periods . Among those, four have amplitudes above 1 metre per second. In addition to these twelve frequencies, others appear to have been detected as well, but with less certainty and their reality must be confirmed by a subsequent, more detailed study. The "sound of xi Hya" has been synthesized in PR Audio Clip 01/02 . Stellar models A good model of the star is necessary before the observed oscillation frequencies (periods) can be properly interpreted. Current models of the Sun are accurate and represent a typical main-sequence star at midlife, and the oscillations are well understood. The sound spectrum corresponding to the full disk - i.e., what we would observe if the Sun were as distant as other stars and we would therefore see it as a light point in the sky - shows a regular pattern in which the observed frequencies are separated by two different and constant intervals, the "large" and the "small" separations. It is much more difficult to "model" the interior of a giant star as the core has changed a lot during the evolution of the star. The nuclear fuel has been exhausted, the stellar core has contracted and the envelope has expanded substantially [3]. The resulting sound spectrum has therefore also changed considerably. Now there is only a small group of oscillating modes that display the same regular pattern as seen in the Sun. They are the radial modes , pressure modes that correspond to a radial expansion and contraction of the star (up and down motion of the surface). The modes in the Sun are sound waves for which most of the oscillation energy is concentrated in the outer parts of the Sun. In stars as highly evolved as xi Hya , they partly take on the character of gravity modes in the interior of the star. Gravity modes are oscillations that move matter up and down in the gravity field, under the influence of buoyancy, with only small changes of the pressure. This is the same effect that makes an air-filled ball pop to the surface when released under water. Gravity modes are normally trapped in the stable interior inside the upper (convective) envelope of a star. So far gravity modes have not been detected in the Sun. In a giant star, however, there is a chance to see some, because some of the oscillations have a mixed character : they behave like gravity modes in the interior and like sound waves in the envelope. The nature of the oscillations observed in xi Hya ESO PR Photo 13b/02 ESO PR Photo 13b/02 [Preview - JPEG: 400 x 461 pix - 112k] [Normal - JPEG: 800 x 922 pix - 232k] Caption : PR Photo 13b/02 is a computer-generated illustration of one possible non-radial oscillation mode in the giant star xi Hya . The blue parts contain particles in the upper stellar atmosphere moving away from the stellar centre, hence they cause a "blue-shift" (towards shorter wavelengths) in the spectrum for the observer. At the same time, particles in the red parts move towards the stellar centre and cause a "red-shift" (towards longer wavelengths). Particles in the white regions do not move during the oscillation cycle. Half an oscillation cycle later, the red parts will have become blue and vice versa. The high-resolution spectra of xi Hya were also used to determine improved values of the fundamental parameters of this star: its temperature is 4950 ± 100 K, the mass is 3.31 ± 0.17 times that of the Sun, and the age is 276 ± 21 million years [3]. These values may be refined in a subsequent, more extensive analysis. With this improved model for xi Hya , the astronomers calculated the frequencies of all oscillations likely to be observed. As in the Sun, the radial modes are expected to be the dominating ones. In fact, three out of the four modes actually observed in xi Hya coincide within the errors with the predicted radial modes. The fourth mode seems not to be radial, but agrees with a non-radial mode with 2 or 3 wave peaks and valleys over the surface. PR Photo 13b/02 provides a graphical illustration of this in the case of a star seen almost equator-on. Some of the observed lower-amplitude modes must be mixed non-radial modes , since more modes are detected than can be accounted for by the radial modes of the models alone. Future plans Moving directly from stars of about one solar mass to the giant star xi Hya is a rather great leap. With the CORALIE and HARPS instruments (the latter soon to be installed on the ESO 3.6-m telescope at La Silla), an entire sequence of stars at different evolutionary stages will be observed next: from newly born to middle-aged stars like the Sun, and also old ones that are near retirement. The new observations of xi Hya show that this is now technically feasible. Once more stars have been observed, changes in the interior structure and composition can be followed and current theories of the internal stellar structure can be verified and improved. Clearly, asteroseismology is bound to have a major impact on the understanding of stellar evolution . The detection of oscillations in the giant star xi Hya also has implications for the target selection of several space missions aiming at seismic measurements: the Canadian MOST mission, the French-led European COROT mission (with launch expected in 2005), and some that are still under consideration, as the Danish Rømer mission (now in the detailed design phase) and the ESA Eddington mission. The present observations have proven that these space missions will be able to observe oscillations in a wide range of stars, and thus will constitute a major new source of detailed information about the interior of stars, not accessible from the ground. More information The results described in this Press Release are about to be submitted to the research journal Astronomy & Astrophysics (Letters) by the present team. Notes [1]: The team consists of Conny Aerts and Thomas Maas (Dept. of Physics and Astronomy, Catholic University of Leuven, Belgium), Fabien Carrier, Michel Burnet, Jose de Medeiros and Francois Bouchy (Geneva Observatory, Switzerland), Søren Frandsen, Dennis Stello, Hans Kjeldsen, Teresa C. Teixeira, Frank Pijpers, Jørgen Christensen-Dalsgaard and Hans Bruntt (Dept. of Physics and Astronomy, Aarhus University; and Theoretical Astrophysics Center, Aarhus University, Denmark). [2]: Some HTML-browsers support character entities for greek letters - "xi" is then represented by "ξ" . [3]: In astrophysical terms, xi Hya is currently in the hydrogen shell-burning phase, having left the main sequence some time ago and now near the sub-giant/giant border.

  10. Spherically symmetric solutions and gravitational collapse in brane-worlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe; Sepangi, Hamid R., E-mail: heydarifard@qom.ac.ir, E-mail: hr-sepangi@sbu.ac.ir

    2009-02-15

    We consider spherically symmetric solutions within the context of brane-world theory without mirror symmetry or any form of junction conditions. For a constant curvature bulk, we obtain the modified Tolman-Oppenheimer-Volkoff (TOV) interior solutions in two cases where one is matched to a schwarzschild-de Sitter exterior while the other is consistent with an exterior solution whose structure can be used to explain the galaxy rotation curves without postulating dark matter. We also find the upper bound to the mass of a static brane-world star and show that the influence of the bulk effects on the interior solutions is small. Finally, wemore » investigate the gravitational collapse on the brane and show that the exterior of a collapsing star can be static in this scenario.« less

  11. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  12. Crustal Cooling in the Neutron Star Low-Mass X-Ray Binary KS 1731-260

    NASA Astrophysics Data System (ADS)

    Merritt, Rachael L.

    Neutron stars in binary systems can undergo periods of accretion (outburst), where in- falling material heats the crust of the star out of thermal equilibrium with the core. When accretion stops (quiescence), we can directly observe the thermal relaxation of the crust. Crustal cooling of accretion-heated neutron stars provides insight into the stellar interior of neutron stars. The neutron star X-ray transient, KS 1731-260, was in outburst for 12.5 years before returning to quiescence in 2001. Here, we present a 150 ks Chandra observation of KS 1731-260 taken in August 2015, about 14.5 years into quiescence. We find that the neutron star surface temperature is consistent with the previous observation, suggesting the crust has reached thermal equilibrium with the core. Using a theoretical thermal evolution code, we fit the observed cooling curves and constrain the core temperature, composition, and the required level of extra shallow heating.

  13. Compact Stars with Sequential QCD Phase Transitions.

    PubMed

    Alford, Mark; Sedrakian, Armen

    2017-10-20

    Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting (2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.

  14. Superfluidity in the Core of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2013-04-01

    The year (1958) after the publication of the BCS theory, Bohr, Mottelson & Pines showed that nuclei should also contain superfluid neutrons and superconducting protons. In 1959, A. Migdal proposed that neutron superfluidity should also occur in the interior of neutron stars. Pairing in nuclei forms Cooper pairs with zero spin, but the relevant component of the nuclear interaction becomes repulsive at densities larger than the nuclear matter density. It has been proposed that neutron-neutron interaction in the spin-triplet state, and L=1 orbital angular momentum, that is known to be attractive from laboratory experiments, may result in a new form of neutron superfluidity in the neutron star interior. I will review our present understanding of the structure of neutron stars and describe how superfluidity strongly affects their thermal evolution. I will show how a ``Minimal Model'' that excludes the presence of ``exotic'' matter (Bose condensates, quarks, etc.) is compatible with most observations of the surface temperatures of young isolated neutron stars in the case this neutron superfluid exists. Compared to the case of isotropic spin-zero Cooper pairs, the formation of anisotropic spin-one Cooper pairs results in a strong neutrino emission that leads to an enhanced cooling of neutron stars after the onset of the pairing phase transition and allows the Minimal Cooling scenario to be compatible with most observations. In the case the pairing critical temperature Tc is less than about 6 x10^8 K, the resulting rapid cooling of the neutron star may be observable. It was recently reported that 10 years of Chandra observations of the 333 year young neutron star in the Cassiopeia A supernova remnant revealed that its temperature has dropped by about 5%. This result indicates that neutrons in this star are presently becoming superfluid and, if confirmed, provides us with the first direct observational evidence for neutron superfluidity at supra-nuclear densities.

  15. Kepler-432: A Red Giant Interacting with One of its Two Long-period Giant Planets

    NASA Astrophysics Data System (ADS)

    Quinn, Samuel N.; White, Timothy. R.; Latham, David W.; Chaplin, William J.; Handberg, Rasmus; Huber, Daniel; Kipping, David M.; Payne, Matthew J.; Jiang, Chen; Silva Aguirre, Victor; Stello, Dennis; Sliski, David H.; Ciardi, David R.; Buchhave, Lars A.; Bedding, Timothy R.; Davies, Guy R.; Hekker, Saskia; Kjeldsen, Hans; Kuszlewicz, James S.; Everett, Mark E.; Howell, Steve B.; Basu, Sarbani; Campante, Tiago L.; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne P.; Karoff, Christoffer; Kawaler, Steven D.; Lund, Mikkel N.; Lundkvist, Mia; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry

    2015-04-01

    We report the discovery of Kepler-432b, a giant planet ({{M}b}=5.41-0.18+0.32 {{M}Jup}, {{R}b}=1.145-0.039+0.036 {{R}Jup}) transiting an evolved star ({{M}\\star }=1.32-0.07+0.10 {{M}⊙ },{{R}\\star }=4.06-0.08+0.12 {{R}⊙ }) with an orbital period of {{P}b}=52.501129-0.000053+0.000067 days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of e=0.5134-0.0089+0.0098, which we also measure independently with asterodensity profiling (AP; e=0.507-0.114+0.039), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; {{M}c}sin {{i}c}=2.43-0.24+0.22 {{M}Jup}, {{P}c}=406.2-2.5+3.9 days), and adaptive optics imaging revealed a nearby (0\\buildrel{\\prime\\prime}\\over{.} 87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise ratio asteroseismic oscillations, which enable precise measurements of the stellar mass, radius, and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5 day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU.

  16. The Stellar Imager (SI) Mission Concept: Imaging the Surfaces and Interiors of Other Stars

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The Stellar Imager (SI) is envisioned as a space-based, uv-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum. baseline of 0.5-km and providing a resolution of 60 micro-arcseconds at 1550 A. It will image stars and binaries with one hundred to one thousand resolution elements on their surface and enable long-term studies of stellar magnetic activity patterns and their evolution with time, for comparison with those on the sun. It will also sound their interiors through asteroseismology to image internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamic the stars in which these dynamos operate. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on times scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the universe. The road to that goal will revolutionize our understanding of stars and stellar systems, the building blocks of the universe. Fitting naturally within the NASA and ESA long-term time lines, SI complements defined missions, and with them will show us entire other solar systems, from the central star to their orbiting planets. in this paper we describe the scientific goals of the mission, the performance requirements needed to address those goals, and the design concepts now under study.

  17. A Dream of a Mission: Stellar Imager and Seismic Probe

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The Stellar Imager and Seismic Probe (SISP) is a mission to understand the various effects of magnetic fields of stars, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best-possible forecasting of solar activity on times scales ranging up to decades, and an understanding of the impact of stellar magnetic activity on astrobiology and life in the Universe. The road to that goal will revolutionize our understanding of stars and stellar systems, the building blocks of the Universe. SISP will zoom in on what today - with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool to astrophysics as fundamental as the microscope is to the study of life on Earth. SISP is an ultraviolet aperture-synthesis imager with 8-10 telescopes with meter-class apertures, and a central hub with focal-plane instrumentation that allows spectrophotometry in passbands as narrow as a few Angstroms up to hundreds of Angstroms. SISP will image stars and binaries with one hundred to one thousand resolution elements on their surface, and sound their interiors through asteroseismology to image internal structure, differential rotation, and large-scale circulations; this will provide accurate knowledge of stellar structure and evolution and complex transport processes, and will impact numerous branches of (astro)physics ranging from the Big Bang to the future of the Universe. Fitting naturally within the NASA long-term time line, SISP complements defined missions, and with them will show us entire other solar systems, from the central star to their orbiting planets.

  18. Analytical solution to the fractional polytropic gas spheres

    NASA Astrophysics Data System (ADS)

    Nouh, Mohamed I.; Abdel-Salam, Emad A.-B.

    2018-04-01

    The Lane-Emden equation can be used to model stellar interiors, star clusters and many configurations in astrophysics. Unfortunately, there is an exact solution only for the polytropic indices n = 0, 1 and 5. In the present paper, a series solution for the fractional Lane-Emden equation is presented. The solution is performed in the frame of modified Rienmann Liouville derivatives. The obtained results recover the well-known series solutions when α =1. The fractional model of n = 3 is calculated and the mass-radius relation, density ratio, pressure ratio and temperature ratio are investigated. The fractional star appears much different than the integer star, as it is denser, more stressed and hotter than the integer star.

  19. The Neutron Star Interior Composition Explorer (NICER): Design and Development

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.; Arzoumanian, Zaven; Adkins, Phillip W.; Albert, Cheryl L.; Anders, John F.; Aylward, Andrew T.; Baker, Charles L.; Balsamo, Erin R.; Bamford, William A.; Benegalrao, Suyog S.; hide

    2016-01-01

    During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded successfully through Phase C, Design and Development. An X-ray (0.2{12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During Phase C, flight components including optics, detectors, the optical bench, pointing actuators, electronics, and others were subjected to environmental testing and integrated to form the flight payload. A custom-built facility was used to co-align and integrate the X-ray \\concentrator" optics and silicon-drift detectors. Ground calibration provided robust performance measures of the optical (at NASA's Goddard Space Flight Center) and detector (at the Massachusetts Institute of Technology) subsystems, while comprehensive functional tests prior to payload-level environmental testing met all instrument performance requirements. We describe here the implementation of NICER's major subsystems, summarize their performance and calibration, and outline the component-level testing that was successfully applied.

  20. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    A NICER team member measures the focused optical power of each X-ray concentrator in a clean tent at NASA’s Goddard Space Flight Center. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. The Neutron star Interior Composition Explorer (NICER): design and development

    NASA Astrophysics Data System (ADS)

    Gendreau, Keith C.; Arzoumanian, Zaven; Adkins, Phillip W.; Albert, Cheryl L.; Anders, John F.; Aylward, Andrew T.; Baker, Charles L.; Balsamo, Erin R.; Bamford, William A.; Benegalrao, Suyog S.; Berry, Daniel L.; Bhalwani, Shiraz; Black, J. Kevin; Blaurock, Carl; Bronke, Ginger M.; Brown, Gary L.; Budinoff, Jason G.; Cantwell, Jeffrey D.; Cazeau, Thoniel; Chen, Philip T.; Clement, Thomas G.; Colangelo, Andrew T.; Coleman, Jerry S.; Coopersmith, Jonathan D.; Dehaven, William E.; Doty, John P.; Egan, Mark D.; Enoto, Teruaki; Fan, Terry W.; Ferro, Deneen M.; Foster, Richard; Galassi, Nicholas M.; Gallo, Luis D.; Green, Chris M.; Grosh, Dave; Ha, Kong Q.; Hasouneh, Monther A.; Heefner, Kristofer B.; Hestnes, Phyllis; Hoge, Lisa J.; Jacobs, Tawanda M.; Jørgensen, John L.; Kaiser, Michael A.; Kellogg, James W.; Kenyon, Steven J.; Koenecke, Richard G.; Kozon, Robert P.; LaMarr, Beverly; Lambertson, Mike D.; Larson, Anne M.; Lentine, Steven; Lewis, Jesse H.; Lilly, Michael G.; Liu, Kuochia Alice; Malonis, Andrew; Manthripragada, Sridhar S.; Markwardt, Craig B.; Matonak, Bryan D.; Mcginnis, Isaac E.; Miller, Roger L.; Mitchell, Alissa L.; Mitchell, Jason W.; Mohammed, Jelila S.; Monroe, Charles A.; Montt de Garcia, Kristina M.; Mulé, Peter D.; Nagao, Louis T.; Ngo, Son N.; Norris, Eric D.; Norwood, Dwight A.; Novotka, Joseph; Okajima, Takashi; Olsen, Lawrence G.; Onyeachu, Chimaobi O.; Orosco, Henry Y.; Peterson, Jacqualine R.; Pevear, Kristina N.; Pham, Karen K.; Pollard, Sue E.; Pope, John S.; Powers, Daniel F.; Powers, Charles E.; Price, Samuel R.; Prigozhin, Gregory Y.; Ramirez, Julian B.; Reid, Winston J.; Remillard, Ronald A.; Rogstad, Eric M.; Rosecrans, Glenn P.; Rowe, John N.; Sager, Jennifer A.; Sanders, Claude A.; Savadkin, Bruce; Saylor, Maxine R.; Schaeffer, Alexander F.; Schweiss, Nancy S.; Semper, Sean R.; Serlemitsos, Peter J.; Shackelford, Larry V.; Soong, Yang; Struebel, Jonathan; Vezie, Michael L.; Villasenor, Joel S.; Winternitz, Luke B.; Wofford, George I.; Wright, Michael R.; Yang, Mike Y.; Yu, Wayne H.

    2016-07-01

    During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded success- fully through Phase C, Design and Development. An X-ray (0.2-12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During Phase C, flight components including optics, detectors, the optical bench, pointing actuators, electronics, and others were subjected to environmental testing and integrated to form the flight payload. A custom-built facility was used to co-align and integrate the X-ray "con- centrator" optics and silicon-drift detectors. Ground calibration provided robust performance measures of the optical (at NASA's Goddard Space Flight Center) and detector (at the Massachusetts Institute of Technology) subsystems, while comprehensive functional tests prior to payload-level environmental testing met all instrument performance requirements. We describe here the implementation of NICER's major subsystems, summarize their performance and calibration, and outline the component-level testing that was successfully applied.

  2. Spectroscopic mode identification of γ Doradus stars: frequencies, modes, rotation and wave leakage

    NASA Astrophysics Data System (ADS)

    Pollard, Karen R.; Brunsden, E.; Davie, M.; Greenwood, A.; Cottrell, P. L.

    The gravity modes present in γ Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. The MUSICIAN programme at the University of Canterbury has been successfully identifying frequencies and pulsation modes in many γ Doradus stars using hundreds of precise, high resolution spectroscopic observations obtained with the 1.0 m telescope and HERCULES spectrograph at the Mt John Observatory in New Zealand. In this paper we present a summary of our spectroscopic frequency and mode identifications. Of particular interest from our spectroscopic analyses are: the prevalence of (l, m) = 1, 1 modes in many γ Dor stars; the importance of stellar rotation in the interpretation of the frequency and mode identification; and finally, possible evidence of wave leakage in one of these stars.

  3. Searching for X-ray Pulsations from Neutron Stars Using NICER

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Arzoumanian, Zaven; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Guillot, Sebastien; Kust Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick K.; Mahmoodifar, Simin; Miller, M. Coleman; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael Thomas

    2017-08-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We will present our science plan and initial results from the first months of the NICER mission.

  4. Searching for X-ray Pulsations from Neutron Stars Using NICER

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.

  5. Influence of the outer boundary condition on models of AGB stars

    NASA Astrophysics Data System (ADS)

    Wagstaff, G.; Weiss, A.

    2018-07-01

    Current implementations of the stellar atmosphere typically derive boundary conditions for the interior model from either grey plane-parallel atmospheres or scaled solar atmospheres, neither of which can be considered to have appropriate underlying assumptions for the Thermally Pulsing Asymptotic Giant Branch (TP-AGB). This paper discusses the treatment and influence of the outer boundary condition within stellar evolution codes, and the resulting effects on the AGB evolution. The complex interaction of processes, such as the third dredge up and mass-loss, governing the TP-AGB can be affected by varying the treatment of this boundary condition. Presented here are the results from altering the geometry, opacities, and the implementation of a grid of MARCS/COMARCS model atmospheres in order to improve this treatment. Although there are changes in the TP-AGB evolution, observable quantities, such as the final core mass, are not significantly altered as a result of the change of atmospheric treatment. During the course of the investigation, a previously unseen phenomenon in the AGB models was observed and further investigated. This is believed to be physical, although arising from specific conditions which make its presence unlikely. If it were present in stars, this phenomenon would increase the carbon-star lifetime above 10 Myr and increase the final core mass by ˜0.1 M⊙ in the narrow initial-mass range where it was observed (˜2-2.3 M⊙).

  6. Influence of the Outer Boundary Condition on models of AGB stars

    NASA Astrophysics Data System (ADS)

    Wagstaff, G.; Weiss, A.

    2018-04-01

    Current implementations of the stellar atmosphere typically derive boundary conditions for the interior model from either grey plane-parallel atmospheres or scaled solar atmospheres, neither of which can be considered to have appropriate underlying assumptions for the Thermally Pulsing Asymptotic Giant Branch (TP-AGB). This paper discusses the treatment and influence of the outer boundary condition within stellar evolution codes, and the resulting effects on the AGB evolution. The complex interaction of processes, such as the third dredge up and mass loss, governing the TP-AGB can be affected by varying the treatment of this boundary condition. Presented here are the results from altering the geometry, opacities and the implementation of a grid of MARCS/COMARCS model atmospheres in order to improve this treatment. Although there are changes in the TP-AGB evolution, observable quantities, such as the final core mass, are not significantly altered as a result of the change of atmospheric treatment. During the course of the investigation, a previously unseen phenomena in the AGB models was observed and further investigated. This is believed to be physical, although arising from specific conditions which make its presence unlikely. If it were present in stars, this phenomenon would increase the carbon-star lifetime above 10Myr and increase the final core mass by ˜0.1M⊙ in the narrow initial-mass range where it was observed (˜2 - 2.3M⊙).

  7. The physics of neutron stars.

    PubMed

    Lattimer, J M; Prakash, M

    2004-04-23

    Neutron stars are some of the densest manifestations of massive objects in the universe. They are ideal astrophysical laboratories for testing theories of dense matter physics and provide connections among nuclear physics, particle physics, and astrophysics. Neutron stars may exhibit conditions and phenomena not observed elsewhere, such as hyperon-dominated matter, deconfined quark matter, superfluidity and superconductivity with critical temperatures near 10(10) kelvin, opaqueness to neutrinos, and magnetic fields in excess of 10(13) Gauss. Here, we describe the formation, structure, internal composition, and evolution of neutron stars. Observations that include studies of pulsars in binary systems, thermal emission from isolated neutron stars, glitches from pulsars, and quasi-periodic oscillations from accreting neutron stars provide information about neutron star masses, radii, temperatures, ages, and internal compositions.

  8. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes.

    PubMed

    García-Berro, Enrique; Torres, Santiago; Althaus, Leandro G; Renedo, Isabel; Lorén-Aguilar, Pablo; Córsico, Alejandro H; Rohrmann, René D; Salaris, Maurizio; Isern, Jordi

    2010-05-13

    NGC 6791 is a well studied open cluster that it is so close to us that can be imaged down to very faint luminosities. The main-sequence turn-off age ( approximately 8 Gyr) and the age derived from the termination of the white dwarf cooling sequence ( approximately 6 Gyr) are very different. One possible explanation is that as white dwarfs cool, one of the ashes of helium burning, (22)Ne, sinks in the deep interior of these stars. At lower temperatures, white dwarfs are expected to crystallize and phase separation of the main constituents of the core of a typical white dwarf ((12)C and (16)O) is expected to occur. This sequence of events is expected to introduce long delays in the cooling times, but has not hitherto been proven. Here we report that, as theoretically anticipated, physical separation processes occur in the cores of white dwarfs, resolving the age discrepancy for NGC 6791.

  9. Before Biology: Geologic Habitability and Setting the Chemical and Physical Foundations for Life

    NASA Astrophysics Data System (ADS)

    Unterborn, Cayman Thomas

    The Earth is a habitable, dynamic planet, with plate tectonics creating a deep water and carbon cycle. These cycles regulate surface and atmospheric C and water abundances, and therefore long-term climate, which is vital to Earths habitability. The driving force behind plate tectonics is the convection of the mantle. The fact that the Earth transports its interior heat via convection instead of conduction is a result of a confluence of factors that include the internal energy budget as well as mantle size and composition. Relative to the Sun stars that host extrasolar planets vary in their refractory rock-building element proportions relative to Si by an order of magnitude. This variation will create terrestrial planets with unique mineralogies and dynamical behavior. How similar these planets are to Earth, chemically and physically, is the focus of this proposal with the end goal being to answer: "What variation in planetary chemical composition is capable of supporting the geochemical cycles necessary for life?".

  10. Adiabatic Mass Loss Model in Binary Stars

    NASA Astrophysics Data System (ADS)

    Ge, H. W.

    2012-07-01

    Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical time scale mass transfer; if the ratio of donor to accretor masses exceeds this critical value, the dynamical time scale mass transfer ensues. The grid of criterion for all stars can be used to be the basic input as the binary population synthetic method, which will be improved absolutely. In common envelope evolution, the dissipation of orbital energy of the binary provides the energy to eject the common envelope; the energy budget for this process essentially consists of the initial orbital energy of the binary and the initial binding energies of the binary components. We emphasize that, because stellar core and envelope contribute mutually to each other's gravitational potential energy, proper evaluation of the total energy of a star requires integration over the entire stellar interior, not the ejected envelope alone as commonly assumed. We show that the change in total energy of the donor star, as a function of its remaining mass along an adiabatic mass-loss sequence, can be calculated. This change in total energy of the donor star, combined with the requirement that both remnant donor and its companion star fit within their respective Roche lobes, then circumscribes energetically possible survivors of common envelope evolution. It is the first time that we can calculate the accurate total energy of the donor star in common envelope evolution, while the results with the old method are inconsistent with observations.

  11. Observational knowledge about the physical properties of O stars

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1983-01-01

    Information about the effective temperatures, radii, and masses of O-type stars is presented. It is argued that rapid variations in the amount of light from O stars and the spectral distribution are a result chiefly of changes which occur in the envelope of the star. The stability of the photospheric layers of O stars against convection is reviewed and it is noted that late O stars and early B stars have a convection zone in the deeper parts of the photosphere. This convection zone is due to the second ionization of helium. Evidence is reviewed that most of the line-profile changes seen for O stars are generated by changes in the physical state of the mantle of the star, that is of the outer atmosphere where the deposition of non-radiative energy and momentum controls the physical state of the atmosphere. The physical state of the mantle may change in response to changes in the upper envelope of a star with a different time constant than the photosphere does.

  12. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.

  13. Exact solution of equations for proton localization in neutron star matter

    NASA Astrophysics Data System (ADS)

    Kubis, Sebastian; Wójcik, Włodzimierz

    2015-11-01

    The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of energy is obtained in the Wigner-Seitz approximation of a spherically symmetric cell. The analysis of four different nuclear models suggests that the proton localization is likely to take place in the interior of a neutron star.

  14. Evidence for free precession in a pulsar

    PubMed

    Stairs; Lyne; Shemar

    2000-08-03

    Pulsars are rotating neutron stars that produce lighthouse-like beams of radio emission from their magnetic poles. The observed pulse of emission enables their rotation rates to be measured with great precision. For some young pulsars, this provides a means of studying the interior structure of neutron stars. Most pulsars have stable pulse shapes, and slow down steadily (for example, see ref. 20). Here we report the discovery of long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of the pulsar PSR B1828-11. The variations are best described as harmonically related sinusoids, with periods of approximately 1,000, 500 and 250 days, probably resulting from precession of the spin axis caused by an asymmetry in the shape of the pulsar. This is difficult to understand theoretically, because torque-free precession of a solitary pulsar should be damped out by the vortices in its superfluid interior.

  15. Sounds of a Star

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Acoustic Oscillations in Solar-Twin "Alpha Cen A" Observed from La Silla by Swiss Team Summary Sound waves running through a star can help astronomers reveal its inner properties. This particular branch of modern astrophysics is known as "asteroseismology" . In the case of our Sun, the brightest star in the sky, such waves have been observed since some time, and have greatly improved our knowledge about what is going on inside. However, because they are much fainter, it has turned out to be very difficult to detect similar waves in other stars. Nevertheless, tiny oscillations in a solar-twin star have now been unambiguously detected by Swiss astronomers François Bouchy and Fabien Carrier from the Geneva Observatory, using the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. This telescope is mostly used for discovering exoplanets (see ESO PR 07/01 ). The star Alpha Centauri A is the nearest star visible to the naked eye, at a distance of a little more than 4 light-years. The new measurements show that it pulsates with a 7-minute cycle, very similar to what is observed in the Sun . Asteroseismology for Sun-like stars is likely to become an important probe of stellar theory in the near future. The state-of-the-art HARPS spectrograph , to be mounted on the ESO 3.6-m telescope at La Silla, will be able to search for oscillations in stars that are 100 times fainter than those for which such demanding observations are possible with CORALIE. PR Photo 23a/01 : Oscillations in a solar-like star (schematic picture). PR Photo 23b/01 : Acoustic spectrum of Alpha Centauri A , as observed with CORALIE. Asteroseismology: listening to the stars ESO PR Photo 23a/01 ESO PR Photo 23a/01 [Preview - JPEG: 357 x 400 pix - 96k] [Normal - JPEG: 713 x 800 pix - 256k] [HiRes - JPEG: 2673 x 3000 pix - 2.1Mb Caption : PR Photo 23a/01 is a graphical representation of resonating acoustic waves in the interior of a solar-like star. Red and blue colours show element displacements in opposite directions. Geologists monitor how seismic waves generated by earthquakes propagate through the Earth, and thus learn about the inner structure of our planet. The same technique works for stars. The Sun, our nearest star and a typical middle-age member of its class, has been investigated in this way since the 1960's. With "solar seismology" , astronomers have been able to learn much about the inner parts of the star, and not only the outer layers normally visible to the telescopes. In the Sun, heat is bubbling up from the central regions where enormous amount of energy is created by nuclear reactions . In the so-called convective zone , the gas is virtually boiling, and hot gas-bubbles are rising with a speed that is close to that of sound. Much like you can hear when water starts to boil, the turbulent convection in the Sun creates noise . These sound waves then propagate through the solar interior and are reflected on the surface, making it oscillate. This "ringing" is well observed in the Sun, where the amplitude and frequency of the oscillations provide astronomers with plenty of information about the physical conditions in the solar interior. From the Sun to the stars There is every reason to believe that our Sun is a quite normal star of its type. Other stars that are similar to the Sun are therefore likely to pulsate in much the same way as the Sun. The search for such oscillations in other solar-like stars has, however, been a long and difficult one. The problem is simply that the pulsations are tiny, so very great precision is needed in the measurements. However, the last few years have seen considerable progress in asteroseismology, and François Bouchy and Fabien Carrier from the Geneva Observatory have now been able to detect unambiguous acoustic oscillations in the Solar-twin star, Alpha Centauri A. The bright and nearby star Alpha Centauri Alpha Centauri (Alpha Cen) [1] is the brightest star in the constellation Centaurus in the southern hemisphere. It is actually a double star, consisting of the solar twin Alpha Cen A and its fainter companion Alpha Cen B . A third star, Proxima Centauri , seems to be loosely connected with the binary. Proxima is, after the Sun, the nearest star we know now, only 4.3 light years away. However, Proxima is such a faint star that it can only be seen with a good telescope. Alpha Centauri A is one of the brightest stars on the southern sky, and the closest star observable with the naked eye. Being a near twin to the Sun and very nearby - in astronomical terms - made this star the ideal candidate in the search for tiny oscillations. The observational technique The observations of Alpha Cen A were conducted in May 2001 during five nights at the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. The CORALIE spectrograph at this telescope is well known for its very successful programme of detecting exoplanets, cf. PR 07/01. In searching for exoplanets close to nearby stars, the spectrograph identifies the tiny wobbling motion of the star, induced by the gravitational pull of the unseen planetary companion. The same technique was used for the investigation of oscillations in Alpha Cen A . The acoustic waves make the surface of the star periodically pulsate in and out, and the spectra of the stellar surface will show corresponding (very) small velocity shifts. The detected oscillations only move with speeds of up to 35 cm per second. This means that the perturbations on the stellar surface only amount to some 40 metres up and down on a star with a radius of 875,000 kilometres, see also the illustration ( PR Photo 23a/01 ). A very small change indeed, and not easy to detect with current astronomical instruments! Acoustic waves in Alpha Centauri A ESO PR Photo 23b/01 ESO PR Photo 23b/01 [Preview - JPEG: 369 x 400 pix - 22k] [Normal - JPEG: 738 x 800 pix - 45k] Caption : PR Photo 23b/01 represents the spectrum of acoustic modes , as observed in Alpha Cen A with the CORALIE spectrograph on the 1.2-m Swiss telescope at the ESO La Silla observatory. Several "eigenmodes" appear as high peaks in the frequency interval between 1.7 and 3 mHz; they correspond to oscillation periods in the range from 5 to 10 min. A very similar pattern is observed in the Sun. The data from five nights of observations were then searched to detect any changes of velocity and hence, oscillations. Astronomers use sophisticated mathematical methods for this kind of analysis, and normally present their results in terms of a "power spectrum" ( PR Photo 23b/01 ). It displays the "intensity" of oscillations at different frequencies, that is, of different periods; particularly high "peaks" indicate a "real" oscillation of that frequency. The comb of peaks visible between 2-3 mHz is the unambiguous and typical signature of solar-like oscillations . This frequency corresponds to a period of about 7 minutes, close to the well-known 5-minute oscillations of our Sun. This is in full agreement with expectations from theoretical models of the two stars. Continued detailed modeling of these new results will further improve the associated determination of the mass, radius, age, chemical composition and other properties of Alpha Cen A . This result is another proof of the excellent performance of the CORALIE spectrograph, providing extremely accurate measurements without the present investigation would have been impossible. Models of stellar interiors Our current understanding of stellar interiors is severely limited by lack of detailed and accurate observations of stars other than the Sun. In technical terms, for a complete description of the conditions inside a star, we need detailed knowledge of at least five stellar parameters (mass, age, initial content of helium and heavier elements, and a parameter describing the convection). However, in most cases, only two stellar properties can be measured directly (the temperature and the luminosity), so the models are necessarily quite uncertain (i.e., they are not well "constrained"). It is therefore imperative to enlarge the number of observables and this is possible with asteroseismology. Helioseismology has opened up the way. These observations severely constrain the possible models of the Sun's internal structure. But, depending on their mass and age, stars have very different internal structures, and may also harbour physical processes that are quite different from those in the Sun. Asteroseismological observations of stellar oscillations add crucial information that constrain the models of their inner structure, since the measured frequencies may be compared directly with those computed for the models. The observation of the full stellar disk allows to characterize certain (low degree) oscillation modes which penetrate deep inside the star and it is not necessary to resolve the stellar disk (as we can do for the Sun) in order to obtain useful seismological information. More stars to be observed Observations of bright solar-like stars are already planned with the CORALIE spectrograph. Even fainter stars can be observed with the HARPS spectrograph which will be installed on the 3.6-m telescope at La Silla Observatory at the end of 2002. It will be able to observe stars that are one hundred times fainter than those now reachable with CORALIE and with even better accuracy of the velocity measurements. While it will be mostly dedicated to the search of exoplanets, HARPS will be able to conduct an asteroseismological study of about 100 solar-like stars. More information The research reported in this Press Release is described in a scientific article ("P-mode observations on Alpha Cen A" by François Bouchy and Fabien Carrier) that has been accepted for publication as a Letter in the European journal "Astronomy & Astrophysics". Note [1]: Alpha Centauri was earlier known as Rigil Centauri , but that name is not much used because of the similarity with the name of the bright star Rigel in Orion. Alpha Centauri is one of the brightest stars in the sky (visual magnitude 0) and is a splendid view in the southern Milky Way, next to Beta Centauri . It was an object of worship on the Nile and the first visible emergence in the morning sky at the autumn equinox has been connected with the orientation of several temples in Northern and Southern Egypt from the fourth millenium B.C.

  16. High-mass twins & resolution of the reconfinement, masquerade and hyperon puzzles of compact star interiors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaschke, David; Instytut Fizyki Teoretycznej, Uniwersytet Wroclawski, 50-204 Wroclaw; Alvarez-Castillo, David E.

    2016-01-22

    We aim at contributing to the resolution of three of the fundamental puzzles related to the still unsolved problem of the structure of the dense core of compact stars (CS): (i) the hyperon puzzle: how to reconcile pulsar masses of 2 M{sub ⊙} with the hyperon softening of the equation of state (EoS); (ii) the masquerade problem: modern EoS for cold, high density hadronic and quark matter are almost identical; and (iii) the reconfinement puzzle: what to do when after a deconfinement transition the hadronic EoS becomes favorable again? We show that taking into account the compositeness of baryons (bymore » excluded volume and/or quark Pauli blocking) on the hadronic side and confining and stiffening effects on the quark matter side results in an early phase transition to quark matter with sufficient stiffening at high densities which removes all three present-day puzzles of CS interiors. Moreover, in this new class of EoS for hybrid CS falls the interesting case of a strong first order phase transition which results in the observable high mass twin star phenomenon, an astrophysical observation of a critical endpoint in the QCD phase diagram.« less

  17. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER engineer Steven Kenyon installs an X-ray detector onto the payload’s detector plate. The detectors are protected by red caps during installation because they are very sensitive to dust and other foreign object debris. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    A photo taken during the NICER range-of-motion test at NASA’s Goddard Space Flight Center shows the photographer’s reflection in the mirror-like radiator surface of the detector plate. Teflon-coated silver tape is used to keep NICER’s detectors cool. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    The NICER payload, blanketed and waiting for launch in the Space Station Processing Facility at NASA’s Kennedy Space Center in Cape Canaveral, Florida. The instrument is in its stowed configuration for launch. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. By Inferno's Light: Characterizing TESS Object of Interest Host Stars for Prioritizing Our Search for Habitable Planets

    NASA Astrophysics Data System (ADS)

    Unterborn, C. T.; Desch, S. J.; Johnson, J. A.; Panero, W. R.; Teske, J. K.; Hinkel, N. R.

    2016-12-01

    The Earth is unique in our Solar System. It is the only planet known to undergo plate tectonics. It has a magnetic field as result of an outer liquid iron core that protects the surface from Solar radiation. What is not known, however, is whether the Earth is unique among all terrestrial planets outside our Solar System. The population of potentially Earth-like planets will only continue to grow. The TESS mission, launching in 2017, is designed to identify rocky planets around bright, nearby stars across the whole sky. Of the 5,000 potential transit-like signals detected, only 100 will be selected for follow-up spectroscopy. From this subsample, only 50 planets are expected to have both mass and radius measurements, thus allowing for detailed modeling of the planetary interior and potential surface processes. As we search for habitable worlds within this sample, then, understanding which TESS objects of interest (TOI) warrant detailed and time-intensive follow-up observations is of paramount importance. Recent surveys of dwarf planetary host and non-host stars find variations in the major terrestrial planet element abundances (Mg, Fe, Si) of between 10% and 400% of Solar. Additionally, the terrestrial exoplanet record shows planets ranging in size from sub-Mercury to super-Earth. How this stellar compositional diversity is translated into resultant exoplanet physical properties including its mineralogy and structure is not known. Here, we present results of models blending equilibrium condensation sequence computations for determining initial planetesimal composition with geophysical interior calculations for multiple stellar abundance catalogues. This benchmarked and generalized approach allows us to predict the mineralogy and structure of an "average" exoplanet in these planetary systems, thus informing their potential to be "Earth-like." This combination of astro- and geophysical models provides us with a self-consistent method with which to compare planetary systems, thus improving our ability to prioritize "Earth-like" targets for follow-up observations within the TOI dataset. Furthermore, the methods described herein afford us an opportunity to explore rocky planet diversity as a whole and truly begin to answer the question, "Is the Earth special?"

  1. Observations of hot stars and eclipsing binaries with FRESIP

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.

    1994-01-01

    The FRESIP project offers an unprecedented opportunity to study pulsations in hot stars (which vary on time scales of a day) over a several year period. The photometric data will determine what frequencies are present, how or if the amplitudes change with time, and whether there is a connection between pulsation and mass loss episodes. It would initiate a new field of asteroseismology studies of hot star interiors. A search should be made for selected hot stars for inclusion in the list of project targets. Many of the primary solar mass targets will be eclipsing binaries, and I present estimates of their frequency and typical light curves. The photometric data combined with follow up spectroscopy and interferometric observations will provide fundamental data on these stars. The data will provide definitive information on the mass ratio distribution of solar-mass binaries (including the incidence of brown dwarf companions) and on the incidence of planets in binary systems.

  2. Early NICER Observations of Magnetars and Young Pulsars

    NASA Astrophysics Data System (ADS)

    Nynka, Melania

    2018-01-01

    Neutron star Interior Composition ExploreR (NICER) is an X-ray telescope attached to the International Space Station (ISS). Launched in June 2017, it is designed to precisely measure the masses and radii of neutron stars (NS) and probe NS equations of state. But its precision timing capabilities and large effective area uniquely position NICER for the study of magnetars. The NICER Magnetar & Magnetosphere (M&M) science working group focuses on studying highly-magnetized neutron stars, a diverse program that includes magnetars, high-B pulsars, rotation powered pulsars, and isolated neutron stars. Our ongoing campaign has already observed targets such as 4U 0142+61, a magnetar in outburst with coincident NuSTAR and Swift observations, the radio rotation powered Vela pulsar PSR B0833-45, and a transient magnetar XTE J1810-197. I will discuss the goals of the M&M program, spectral and temporal results from the observed targets, and an overview of upcoming observations.

  3. The occurrence of non-pulsating stars in the γ Dor and δ Sct pulsation instability regions: Results from Kepler quarter 14–17 data

    DOE PAGES

    Guzik, J. A.; Bradley, P. A.; Jackiewicz, J.; ...

    2015-04-21

    In this study, the high precision long time-series photometry of the NASA Kepler spacecraft provides an excellent means to discover and characterize variability in main-sequence stars, and to make progress in interpreting the pulsations to derive stellar interior structure and test stellar models. For stars of spectral types A–F, the Kepler data revealed a number of surprises, such as more hybrid pulsating Sct and Dor pulsators than expected, pulsators lying outside of the instability regions predicted by theory, and stars that were expected to pulsate, but showed no variability. In our 2013 Astronomical Review article, we discussed the statistics ofmore » variability for 633 faint (Kepler magnitude 14–16) spectral type A–F stars observed by Kepler during Quarters 6–13 (June 2010–June 2012).« less

  4. The occurrence of non-pulsating stars in the γ Dor and δ Sct pulsation instability regions: Results from Kepler quarter 14–17 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzik, J. A.; Bradley, P. A.; Jackiewicz, J.

    In this study, the high precision long time-series photometry of the NASA Kepler spacecraft provides an excellent means to discover and characterize variability in main-sequence stars, and to make progress in interpreting the pulsations to derive stellar interior structure and test stellar models. For stars of spectral types A–F, the Kepler data revealed a number of surprises, such as more hybrid pulsating Sct and Dor pulsators than expected, pulsators lying outside of the instability regions predicted by theory, and stars that were expected to pulsate, but showed no variability. In our 2013 Astronomical Review article, we discussed the statistics ofmore » variability for 633 faint (Kepler magnitude 14–16) spectral type A–F stars observed by Kepler during Quarters 6–13 (June 2010–June 2012).« less

  5. Non-rigid precession of magnetic stars

    NASA Astrophysics Data System (ADS)

    Lander, S. K.; Jones, D. I.

    2017-06-01

    Stars are, generically, rotating and magnetized objects with a misalignment between their magnetic and rotation axes. Since a magnetic field induces a permanent distortion to its host, it provides effective rigidity even to a fluid star, leading to bulk stellar motion that resembles free precession. This bulk motion is, however, accompanied by induced interior velocity and magnetic field perturbations, which are oscillatory on the precession time-scale. Extending previous work, we show that these quantities are described by a set of second-order perturbation equations featuring cross-terms scaling with the product of the magnetic and centrifugal distortions to the star. For the case of a background toroidal field, we reduce these to a set of differential equations in radial functions, and find a method for their solution. The resulting magnetic field and velocity perturbations show complex multipolar structure and are strongest towards the centre of the star.

  6. Observations of Pre-Stellar Cores

    NASA Astrophysics Data System (ADS)

    Tafalla, M.

    2005-08-01

    Our understanding of the physical and chemical structure of pre-stellar cores, the simplest star-forming sites, has significantly improved since the last IAU Symposium on Astrochemistry (South Korea, 1999). Research done over these years has revealed that major molecular species like CO and CS systematically deplete onto dust grains in the interior of pre-stellar cores, while species like N2H+ and NH3 survive in the gas phase and can usually be detected toward the core centers. Such a selective behavior of molecular species gives rise to a differentiated (onion-like) chemical composition, and manifests itself in molecular maps as a dichotomy between centrally peaked and ring-shaped distributions. From the point of view of star-formation studies, the identification of molecular inhomogeneities in cores helps to resolve past discrepancies between observations made using different tracers, and brings the possibility of self-consistent modelling of the core internal structure. Here I present recent work on determining the physical and chemical structure of two pre-stellar cores, L1498 and L1517B, using observations in a large number of molecules and Monte Carlo radiative transfer analysis. These two cores are typical examples of the pre-stellar core population, and their chemical composition is characterized by the presence of large `freeze out holes' in most molecular species. In contrast with these chemically processed objects, a new population of chemically young cores has begun to emerge. The characteristics of its most extreme representative, L1521E, are briefly reviewed.

  7. VLT observations of the two Fermi pulsars PSR J1357$-$6429 and PSR J1048$-$5832

    DOE PAGES

    Mignani, R. P.; Shearer, A.; De Luca, A.; ...

    2011-09-07

    Optical observations of pulsars are crucial to studying the neutron star properties from the structure and composition of the interior to the properties and geometry of the magnetosphere. Historically, X and γ-ray observations have paved the way to pulsar optical identifications. Furthermore, the launch of the Fermi Gamma-ray Space Telescope opened new perspectives in the optical-to-γ-ray studies of neutron stars with the detection of more than 80 γ-ray pulsars.

  8. Exo-geneology: Stellar Abundances in Solar-like Stars with Planets

    NASA Astrophysics Data System (ADS)

    Teske, Johanna; SDSS-IV APOGEE-2

    2018-01-01

    Through the process of star and planet formation, we think that the chemical abundances, or ``genes’’, of host stars are passed on to their orbiting planets. One prominent example of this is the giant planet-metallicity (iron abundance) correlation, but could other stellar ``genes’’ help explain the growing menagerie of exoplanets? Particularly interesting is the relative importance of C, O, Mg, and Si – for instance, are giant planet cores dominated by ice-forming or rock-forming elements? The ratios of these elements in terrestrial planets also control their interior structure and mineralogy, and can thus affect their similarity (or not) to Earth. In this talk I will discuss how high resolution spectroscopic studies of host stars have been and are being used to investigate how/to what extent planet properties are dependent on host star properties, focusing on solar-like (FGK) stars. I will also highlight the role that upcoming facilities can play in understanding the diversity of planets in the Galaxy.

  9. Preface (for CUP)

    NASA Technical Reports Server (NTRS)

    Pap, Judit

    1993-01-01

    Study of changes in solar and stellar irradiances has been of high interest for a long time. Determining the absolute value of the luminosity of stars with different ages is a crucial question for the theory of stellar evolution and energy production in stellar interiors.

  10. Physical Conditions in Shocked Interstellar Gas Interacting with the Supernova Remnant IC 443

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam M.; Federman, Steven Robert; Jenkins, Edward B.; Caprioli, Damiano; Wallerstein, George

    2018-06-01

    We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on an examination of high-resolution HST/STIS spectra of two stars probing predominantly neutral gas located both ahead of and behind the supernova shock front. The pre-shock neutral gas is characterized by densities and temperatures typical of diffuse interstellar clouds, while the post-shock material exhibits a range of more extreme physical conditions, including high temperatures (>104 K) in some cases, which may require a sudden heating event to explain. The ionization level is enhanced in the high-temperature post-shock material, which could be the result of enhanced radiation from shocks or from an increase in cosmic-ray ionization. The gas-phase abundances of refractory elements are also enhanced in the high-pressure gas, suggesting efficient destruction of dust grains by shock sputtering. Observations of highly-ionized species at very high velocity indicate a post-shock temperature of 107 K for the hot X-ray emitting plasma of the remnant’s interior, in agreement with studies of thermal X-ray emission from IC 443.

  11. The lithium-rotation connection in the 125 Myr-old Pleiades cluster

    NASA Astrophysics Data System (ADS)

    Bouvier, J.; Barrado, D.; Moraux, E.; Stauffer, J.; Rebull, L.; Hillenbrand, L.; Bayo, A.; Boisse, I.; Bouy, H.; DiFolco, E.; Lillo-Box, J.; Calderón, M. Morales

    2018-06-01

    Context. The evolution of lithium abundance over a star's lifetime is indicative of transport processes operating in the stellar interior. Aims: We revisit the relationship between lithium content and rotation rate previously reported for cool dwarfs in the Pleiades cluster. Methods: We derive new LiI 670.8 nm equivalent width measurements from high-resolution spectra obtained for low-mass Pleiades members. We combine these new measurements with previously published ones, and use the Kepler K2 rotational periods recently derived for Pleiades cool dwarfs to investigate the lithium-rotation connection in this 125 Myr-old cluster. Results: The new data confirm the correlation between lithium equivalent width and stellar spin rate for a sample of 51 early K-type members of the cluster, where fast rotating stars are systematically lithium-rich compared to slowly rotating ones. The correlation is valid for all stars over the (J-Ks) color range 0.50-0.70 mag, corresponding to a mass range from about 0.75 to 0.90 M⊙, and may extend down to lower masses. Conclusions: We argue that the dispersion in lithium equivalent widths observed for cool dwarfs in the Pleiades cluster reflects an intrinsic scatter in lithium abundances, and suggest that the physical origin of the lithium dispersion pattern is to be found in the pre-main sequence rotational history of solar-type stars. Based on observations made at Observatoire de Haute Provence (CNRS), France, at the Nordic Optical Telescope (IAC), Spain, and at the W. M. Keck Observatory, Hawaii, USA.Full Table B.1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A63

  12. The Beta Pictoris Phenomenon in Young Stars With Accreting Gas

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1999-01-01

    Program Hae2BPIC resulted in usable ISO spectra of three young, Herbig Ae stars: HR 5999 (A7e, t=0.6 Myr), SV Cep (al-2e, t=1-3 Myr), and MW Vul (Al-2e, t=1-3 Myr). While too small a sample to pursue our original goal of surveying the silicate emission in these young, protoplanetary disk systems, comparison of these data with ground-based IR spectra, and published ISO observations of other HAe stars (especially the posters at PPIV) reveals the following: The known binary stars in the sample show signatures of partially crystal line silicate features by t=0.6 Myr, at an epoch when ostensibly single Herbig Ae stars have substantially stronger silicate emission dominated by amorphous grains. The known binary stars also show deficits in the optically thick continuum flux relative to coeval single stars. Comparison of ISO spectra indicates that the flux deficit seen in WD 163296 over 10-100 microns relative to AB Aur reflects a real deficit of material interior to 300.

  13. Nuclear Physics of neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, Jorge

    2015-04-01

    One of the overarching questions posed by the recent community report entitled ``Nuclear Physics: Exploring the Heart of Matter'' asks How Does Subatomic Matter Organize Itself and What Phenomena Emerge? With their enormous dynamic range in both density and neutron-proton asymmetry, neutron stars provide ideal laboratories to answer this critical challenge. Indeed, a neutron star is a gold mine for the study of physical phenomena that cut across a variety of disciplines, from particle physics to general relativity. In this presentation--targeted at non-experts--I will focus on the essential role that nuclear physics plays in constraining the dynamics, structure, and composition of neutron stars. In particular, I will discuss some of the many exotic states of matter that are speculated to exist in a neutron star and the impact of nuclear-physics experiments on elucidating their fascinating nature. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.

  14. Following the Interstellar History of Carbon: From the Interiors of Stars to the Surfaces of Planets.

    PubMed

    Ziurys, L M; Halfen, D T; Geppert, W; Aikawa, Y

    2016-12-01

    The chemical history of carbon is traced from its origin in stellar nucleosynthesis to its delivery to planet surfaces. The molecular carriers of this element are examined at each stage in the cycling of interstellar organic material and their eventual incorporation into solar system bodies. The connection between the various interstellar carbon reservoirs is also examined. Carbon has two stellar sources: supernova explosions and mass loss from evolved stars. In the latter case, the carbon is dredged up from the interior and then ejected into a circumstellar envelope, where a rich and unusual C-based chemistry occurs. This molecular material is eventually released into the general interstellar medium through planetary nebulae. It is first incorporated into diffuse clouds, where carbon is found in polyatomic molecules such as H 2 CO, HCN, HNC, c-C 3 H 2 , and even C 60 + . These objects then collapse into dense clouds, the sites of star and planet formation. Such clouds foster an active organic chemistry, producing compounds with a wide range of functional groups with both gas-phase and surface mechanisms. As stars and planets form, the chemical composition is altered by increasing stellar radiation, as well as possibly by reactions in the presolar nebula. Some molecular, carbon-rich material remains pristine, however, encapsulated in comets, meteorites, and interplanetary dust particles, and is delivered to planet surfaces. Key Words: Carbon isotopes-Prebiotic evolution-Interstellar molecules-Comets-Meteorites. Astrobiology 16, 997-1012.

  15. Carbon and oxygen abundances in cool metal-rich exoplanet hosts: A case study of the C/O ratio of 55 Cancri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teske, Johanna K.; Cunha, Katia; Schuler, Simon C.

    2013-12-01

    The super-Earth exoplanet 55 Cnc e, the smallest member of a five-planet system, has recently been observed to transit its host star. The radius estimates from transit observations, coupled with spectroscopic determinations of mass, provide constraints on its interior composition. The composition of exoplanetary interiors and atmospheres are particularly sensitive to elemental C/O ratio, which to first order can be estimated from the host stars. Results from a recent spectroscopic study analyzing the 6300 Å [O I] line and two C I lines suggest that 55 Cnc has a carbon-rich composition (C/O = 1.12 ± 0.09). However, oxygen abundances derivedmore » using the 6300 Å [O I] line are highly sensitive to a Ni I blend, particularly in metal-rich stars such as 55 Cnc ([Fe/H] =0.34 ± 0.18). Here, we further investigate 55 Cnc's composition by deriving the carbon and oxygen abundances from these and additional C and O absorption features. We find that the measured C/O ratio depends on the oxygen lines used. The C/O ratio that we derive based on the 6300 Å [O I] line alone is consistent with the previous value. Yet, our investigation of additional abundance indicators results in a mean C/O ratio of 0.78 ± 0.08. The lower C/O ratio of 55 Cnc determined here may place this system at the sensitive boundary between protoplanetary disk compositions giving rise to planets with high (>0.8) versus low (<0.8) C/O ratios. This study illustrates the caution that must applied when determining planet host star C/O ratios, particularly in cool, metal-rich stars.« less

  16. Relativistic stars in degenerate higher-order scalar-tensor theories after GW170817

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tsutomu; Hiramatsu, Takashi

    2018-05-01

    We study relativistic stars in degenerate higher-order scalar-tensor theories that evade the constraint on the speed of gravitational waves imposed by GW170817. It is shown that the exterior metric is given by the usual Schwarzschild solution if the lower order Horndeski terms are ignored in the Lagrangian and a shift symmetry is assumed. However, this class of theories exhibits partial breaking of Vainshtein screening in the stellar interior and thus modifies the structure of a star. Employing a simple concrete model, we show that for high-density stars the mass-radius relation is altered significantly even if the parameters are chosen so that only a tiny correction is expected in the Newtonian regime. We also find that, depending on the parameters, there is a maximum central density above which solutions cease to exist.

  17. A New Mass Criterium for Electron Capture Supernovae

    NASA Astrophysics Data System (ADS)

    Poelarends, Arend

    2016-06-01

    Electron capture supernovae (ECSN) are thought to populate the mass range between massive white dwarf progenitors and core collapse supernovae. It is generally believed that the initial stellar mass range for ECSN from single stars is about 0.5-1.0 M⊙ wide and centered around a value of 8.5 or 9 M⊙, depending on the specifics of the physics of convection and mass loss one applies. Since mass loss in a binary system is able to delay or cancel the second dredge-up, it is also believed that the initial mass range for ECSN in binary systems is wider than in single stars, but an initial mass range has not been defined yet.The last phase of stars in this particular mass range, however, is challenging to compute, either due to recurring Helium shell flashes, or due to convectively bound flames in the degenerate interior of the star. It would be helpful, nevertheless, to know before we enter these computationally intensive phases whether a star will explode as an ECSN or not. The mass of the helium core after helium core burning is one such criterium (Nomoto, 1984), which predicts that ECSN will occur if the helium core mass is between 2.0 M⊙ and 2.5 M⊙. However, since helium cores can be subject to erosion due to mass loss — even during helium core burning, this criterium will not yield accurate predictions for stars in binary systems.We present a dense grid of stellar evolution models that allow us to put constraints on the final fate of their cores, based on a combination of Carbon/Oxygen core mass, the mass of the surrounding Helium layer and C/O abundance. We find that CO cores with masses between 1.365 and 1.420 M⊙ at the end of Carbon burning will result in ECSN, with some minor adjustments of these ranges due to the mass of the Helium layer and the C/O ratio. While detailed models of stars within the ECSN mass range remain necessary to understand the details of pre-ECSN evolution, our research refines the Helium core criterion and provides a useful way to determine the final fate of stars in this complicated mass range early on.

  18. Photometric Determination of the Mass Accretion Rates of Pre-main-sequence Stars. V. Recent Star Formation in the 30 Dor Nebula

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino; Beccari, Giacomo

    2017-09-01

    We report on the properties of the low-mass stars that recently formed in the central ˜ 2\\buildrel{ \\prime}\\over{.} 7× 2\\buildrel{ \\prime}\\over{.} 7 of 30 Dor, including the R136 cluster. Using the photometric catalog of De Marchi et al., based on observations with the Hubble Space Telescope, and the most recent extinction law for this field, we identify 1035 bona fide pre-main-sequence (PMS) stars showing {{H}}α excess emission at the 4σ level with an {{H}}α equivalent width of 20 Å or more. We find a wide spread in age spanning the range ˜ 0.1{--}50 {Myr}. We also find that the older PMS objects are placed in front of the R136 cluster and are separated from it by a conspicuous amount of absorbing material, indicating that star formation has proceeded from the periphery into the interior of the region. We derive physical parameters for all PMS stars, including masses m, ages t, and mass accretion rates {\\dot{M}}{acc}. To identify reliable correlations between these parameters, which are intertwined, we use a multivariate linear regression fit of the type {log}{\\dot{M}}{acc}=a× {log}t+b× {log}m+c. The values of a and b for 30 Dor are compatible with those found in NGC 346 and NGC 602. We extend the fit to a uniform sample of 1307 PMS stars with 0.5< m/{M}⊙ < 1.5 and t< 16 {Myr} in six star-forming regions in the Large and Small Magellanic Clouds and Milky Way with metallicities in the range of 0.1-1.0 {{Z}}⊙ . We find a=-0.59+/- 0.02 and b=0.78+/- 0.08. The residuals are systematically different between the six regions and reveal a strong correlation with metallicity Z, of the type c=(-3.69+/- 0.02)-(0.30+/- 0.04)× {log}Z/{Z}⊙ . A possible interpretation of this trend is that when the metallicity is higher so is the radiation pressure, and this limits the accretion process, in both its rate and duration. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  19. Physics of Neutron Star Crusts.

    PubMed

    Chamel, Nicolas; Haensel, Pawel

    2008-01-01

    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  20. Gravitational waves from neutron stars and asteroseismology.

    PubMed

    Ho, Wynn C G

    2018-05-28

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  1. Gravitational waves from neutron stars and asteroseismology

    NASA Astrophysics Data System (ADS)

    Ho, Wynn C. G.

    2018-05-01

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  2. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions

    PubMed Central

    Barnes, R.

    2015-01-01

    Abstract The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the “tidal zone,” where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. Key Words: Tidal dissipation—Thermal history—Planetary interiors—Magnetic field. Astrobiology 15, 739–760. PMID:26393398

  3. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    PubMed

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  4. The neutron star interior composition explorer (NICER): mission definition

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Z.; Gendreau, K. C.; Baker, C. L.; Cazeau, T.; Hestnes, P.; Kellogg, J. W.; Kenyon, S. J.; Kozon, R. P.; Liu, K.-C.; Manthripragada, S. S.; Markwardt, C. B.; Mitchell, A. L.; Mitchell, J. W.; Monroe, C. A.; Okajima, T.; Pollard, S. E.; Powers, D. F.; Savadkin, B. J.; Winternitz, L. B.; Chen, P. T.; Wright, M. R.; Foster, R.; Prigozhin, G.; Remillard, R.; Doty, J.

    2014-07-01

    Over a 10-month period during 2013 and early 2014, development of the Neutron star Interior Composition Explorer (NICER) mission [1] proceeded through Phase B, Mission Definition. An external attached payload on the International Space Station (ISS), NICER is scheduled to launch in 2016 for an 18-month baseline mission. Its prime scientific focus is an in-depth investigation of neutron stars—objects that compress up to two Solar masses into a volume the size of a city—accomplished through observations in 0.2-12 keV X-rays, the electromagnetic band into which the stars radiate significant fractions of their thermal, magnetic, and rotational energy stores. Additionally, NICER enables the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) demonstration of spacecraft navigation using pulsars as beacons. During Phase B, substantive refinements were made to the mission-level requirements, concept of operations, and payload and instrument design. Fabrication and testing of engineering-model components improved the fidelity of the anticipated scientific performance of NICER's X-ray Timing Instrument (XTI), as well as of the payload's pointing system, which enables tracking of science targets from the ISS platform. We briefly summarize advances in the mission's formulation that, together with strong programmatic performance in project management, culminated in NICER's confirmation by NASA into Phase C, Design and Development, in March 2014.

  5. Density Functional Approach to Superfluid Phonon in Inner Crust of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Inakura, Tsunenori; Matsuo, Masayuki

    We investigate superfluid phonon emerging in inner crust of neutron stars by means of the nuclear density functional theory. Adopting the Wigner-Seitz approximation and a single spherical cell, we describe low-lying collective excitation with the dipole multipolarity. It is found that the superfluid phonon standing on the low-density neutron superfluid does not penetrate into the interior of the nuclear cluster. This suggests that the coupling between the superfluid phonon and the lattice phonon could be weak, and it may affect the thermal conductivity of inner crust.

  6. Gravitational Wave Signatures of Crystalline Color Superconductors

    NASA Astrophysics Data System (ADS)

    Lin, Lap-Ming

    Deconfined quark matter may exist in a crystalline color-superconducing phase in the interiors of compact stars. One of the special properties of this exotic phase of matter is that it is extremely rigid and the corresponding shear modulus can be up to 1000 times larger than that of the neutron-star crust. In this paper, we review how the extreme rigidity of this crystalline phase of quark matter can lead to unique gravitational-wave signatures that may be detectable by the current or the next-generation gravitational-wave detectors.

  7. Nested Shells Reveal the Rejuvenation of the Orion-Eridanus Superbubble

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Brown, Anthony G. A.; Bally, John; Tielens, Alexander G. G. M.

    2015-08-01

    The Orion-Eridanus superbubble is the prototypical superbubble owing to its proximity and evolutionary state. Here we provide a synthesis of recent observational data from WISE and Planck with archival data, allowing us to draw a new and more complete picture on the history and evolution of the Orion-Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble and derive quantitative properties of the gas and dust inside Barnard’s Loop. We reveal that Barnard’s Loop is a complete bubble structure that, together with the λ Ori region and other smaller-scale bubbles, expands within the Orion-Eridanus superbubble. We argue that the Orion-Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, Hii region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB association rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than previously thought. The cycle of mass loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years.

  8. NESTED SHELLS REVEAL THE REJUVENATION OF THE ORION–ERIDANUS SUPERBUBBLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochsendorf, Bram B.; Brown, Anthony G. A.; Tielens, Alexander G. G. M.

    2015-08-01

    The Orion–Eridanus superbubble is the prototypical superbubble owing to its proximity and evolutionary state. Here we provide a synthesis of recent observational data from WISE and Planck with archival data, allowing us to draw a new and more complete picture on the history and evolution of the Orion–Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble and derive quantitative properties of the gas and dust inside Barnard’s Loop. We reveal that Barnard’s Loop is a complete bubble structure that, together with the λ Ori region and other smaller-scale bubbles, expands within the Orion–Eridanus superbubble. We argue that themore » Orion–Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, Hii region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB association rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than previously thought. The cycle of mass loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years.« less

  9. NICER observations of highly magnetized neutron stars: Initial results

    NASA Astrophysics Data System (ADS)

    Enoto, Teruaki; Arzoumanian, Zaven; Gendreau, Keith C.; Nynka, Melania; Kaspi, Victoria; Harding, Alice; Guver, Tolga; Lewandowska, Natalia; Majid, Walid; Ho, Wynn C. G.; NICER Team

    2018-01-01

    The Neutron star Interior Composition Explorer (NICER) was launched on June 3, 2017, and attached to the International Space Station. The large effective area of NICER in soft X-rays makes it a powerful tool not only for its primary science objective (diagnostics of the nuclear equation state) but also for studying neutron stars of various classes. As one of the NICER science working groups, the Magnetars and Magnetospheres (M&M) team coordinates monitoring and target of opportunity (ToO) observations of magnetized neutron stars, including magnetars, high-B pulsars, X-ray dim isolated neutron stars, and young rotation-powered pulsars. The M&M working group has performed simultaneous X-ray and radio observations of the Crab and Vela pulsars, ToO observations of the active anomalous X-ray pulsar 4U 0142+61, and a monitoring campaign for the transient magnetar SGR 0501+4516. Here we summarize the current status and initial results of the M&M group.

  10. Observations and modeling of cool, evolved stars: from chromospheric to wind regions

    NASA Astrophysics Data System (ADS)

    Rau, Gioia; Carpenter, Ken G.; Nielsen, Krister E.; Kober, Gladys V.; Josef Hron, Bernard Aringer, Kjell Eriksson, Paola Marigo, Claudia Paladini

    2018-01-01

    Evolved stars are fundamental contributors to the enrichment of the interstellar medium, via their mass loss, with heavy elements produced in their interior, and with the dust formed in their envelope. We present the results of the first systematic comparison (Rau et al. 2017, 2015) of multi-technique observations of a sample of C-rich Mira, semi-regular and irregular stars with the predictions from dynamic model atmospheres (Mattsson et al. 2010) and simpler models based on hydrostatic atmospheres combined with dusty envelopes. The chromosphere, located in the outer atmosphere of these stars, plays a crucial role in driving the mass loss in evolved K-M giant stars (see e.g. Carpenter et al. 2014, 1988). Despite recent efforts, details of the mass-loss scenario remain mysterious, as well as a complete understanding of the dynamic line formation regions, profiles, and structures. To solve these riddles, we present observation of flow and turbulent velocities, together with preliminary derivation of thermodynamic constraints for theoretical models (Rau, Carpenter, et al., in prep).

  11. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  12. Performance of the Satellite Test Assistant Robot in JPL's Space Simulation Facility

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas; Long, Mark; Johnson, Ken; Siebes, Georg

    1995-01-01

    An innovative new telerobotic inspection system called STAR (the Satellite Test Assistant Robot) has been developed to assist engineers as they test new spacecraft designs in simulated space environments. STAR operates inside the ultra-cold, high-vacuum, test chambers and provides engineers seated at a remote Operator Control Station (OCS) with high resolution video and infrared (IR) images of the flight articles under test. STAR was successfully proof tested in JPL's 25-ft (7.6-m) Space Simulation Chamber where temperatures ranged from +85 C to -190 C and vacuum levels reached 5.1 x 10(exp -6) torr. STAR's IR Camera was used to thermally map the entire interior of the chamber for the first time. STAR also made several unexpected and important discoveries about the thermal processes occurring within the chamber. Using a calibrated test fixture arrayed with ten sample spacecraft materials, the IR camera was shown to produce highly accurate surface temperature data. This paper outlines STAR's design and reports on significant results from the thermal vacuum chamber test.

  13. Implications of the Occurrence of Glitches in Pulsar Free Precession Candidates.

    PubMed

    Jones, D I; Ashton, G; Prix, R

    2017-06-30

    The timing properties of radio pulsars provide a unique probe of neutron star interiors. Recent observations have uncovered quasiperiodicities in the timing and pulse properties of some pulsars, a phenomenon that has often been attributed to free precession of the neutron star, with profound implications for the distribution of superfluidity and superconductivity in the star. We advance this program by developing consistency relations between free precession and pulsars glitches, and we show that there are difficulties in reconciling the two phenomena in some precession candidates. This indicates that the precession model used here needs to be modified or some other phenomenon is at work in producing the quasiperiodicities, or even that there is something missing in terms of our understanding of glitches.

  14. Those Elusive Gravitational Waves

    ERIC Educational Resources Information Center

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  15. General relativity: An erfc metric

    NASA Astrophysics Data System (ADS)

    Plamondon, Réjean

    2018-06-01

    This paper proposes an erfc potential to incorporate in a symmetric metric. One key feature of this model is that it relies on the existence of an intrinsic physical constant σ, a star-specific proper length that scales all its surroundings. Based thereon, the new metric is used to study the space-time geometry of a static symmetric massive object, as seen from its interior. The analytical solutions to the Einstein equation are presented, highlighting the absence of singularities and discontinuities in such a model. The geodesics are derived in their second- and first-order differential formats. Recalling the slight impact of the new model on the classical general relativity tests in the solar system, a number of facts and open problems are briefly revisited on the basis of a heuristic definition of σ. A special attention is given to gravitational collapses and non-singular black holes.

  16. Which evolutionary status does the Blue Large-Amplitude Pulsators stay at?

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Li, Yan

    2018-05-01

    Asteroseismology is a very useful tool for exploring the stellar interiors and evolutionary status and for determining stellar fundamental parameters, such as stellar mass, radius, surface gravity, and the stellar mean density. In the present work, we use it to preliminarily analyze the 14 new-type pulsating stars: Blue Large-Amplitude Pulsators (BLAPs) which is observed by OGLE project, to roughly analyze their evolutionary status. We adopt the theory of single star evolution and artificially set the mass loss rate of \\dot{M}=-2× 10^{-4} M_{⊙}/year and mass loss beginning at the radius of R = 40 R_{⊙} on red giant branch to generate a series of theoretical models. Based on these theoretical models and the corresponding observations, we find that those BLAP stars are more likely to be the core helium burning stars. Most of them are in the middle and late phase of the helium burning.

  17. REVIEWS OF TOPICAL PROBLEMS: The theory of nucleosynthesis in stars: the slow neutron capture process

    NASA Astrophysics Data System (ADS)

    Chechev, Valerii P.; Kramarovskiĭ, Ya M.

    1981-07-01

    The theory of the s process of nucleosynthesis has received considerable development during recent years, mainly as the result of more detailed physical and mathematical treatments and also as a result of the accumulation of new observational data on stellar evolution and the abundance of the elements in the solar system, and accumulation of experimental data on neutron-capture cross sections. The exact solution of the s process equations obtained recently by Newman (1978) is discussed. It confirms the correctness of the initial s process theory (Clayton, Fowler, Hull, and Zimmerman, 1961). At the same time for small neutron exposures the exact and initial solutions differ. The influence of branching of the s-process due to competition between β decay and neutron capture is analyzed; it is noted that at a temperature ~3·108 K and a density of free neutrons 1.6·107 cm-3 the s process theory is in good agreement with observational data on the yields of the various nuclides. Models are discussed for the pulsed neutron s process, which leads to formation of heavy elements in the interior of a star as the result of periodic flares of the helium shell and subsequent remixing of the material.

  18. High-density QCD phase transitions inside neutron stars: Glitches and gravitational waves

    NASA Astrophysics Data System (ADS)

    Srivastava, A. M.; Bagchi, P.; Das, A.; Layek, B.

    2017-10-01

    We discuss physics of exotic high baryon density QCD phases which are believed to exist in the core of a neutron star. This can provide a laboratory for exploring exotic physics such as axion emission, KK graviton production etc. Much of the physics of these high-density phases is model-dependent and not very well understood, especially the densities expected to occur inside neutron stars. We follow a different approach and use primarily universal aspects of the physics of different high-density phases and associated phase transitions. We study effects of density fluctuations during transitions with and without topological defect production and study the effect on pulsar timings due to changing moment of inertia of the star. We also discuss gravitational wave production due to rapidly changing quadrupole moment of the star due to these fluctuations.

  19. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi

    2018-03-01

    The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.

  20. The Effect of Interior Design Improvements on the Quality of Learning for Graduate Level Military Officer Students

    DTIC Science & Technology

    1991-05-13

    for the model classroom. Nevertheless, findings about the impact of interior design improvements 14 on student perceptions about the physical...from the impact of the model classroom interior design improvements on student perceptions about their physical learning environment. Delimitations of...their perceptions about places through personal experience. The intensity and quality of these personal experiences have a greater impact on people’s

  1. LITHIUM DEPLETION IS A STRONG TEST OF CORE-ENVELOPE RECOUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somers, Garrett; Pinsonneault, Marc H., E-mail: somers@astronomy.ohio-state.edu

    2016-09-20

    Rotational mixing is a prime candidate for explaining the gradual depletion of lithium from the photospheres of cool stars during the main sequence. However, previous mixing calculations have relied primarily on treatments of angular momentum transport in stellar interiors incompatible with solar and stellar data in the sense that they overestimate the internal differential rotation. Instead, recent studies suggest that stars are strongly differentially rotating at young ages but approach a solid body rotation during their lifetimes. We modify our rotating stellar evolution code to include an additional source of angular momentum transport, a necessary ingredient for explaining the openmore » cluster rotation pattern, and examine the consequences for mixing. We confirm that core-envelope recoupling with a ∼20 Myr timescale is required to explain the evolution of the mean rotation pattern along the main sequence, and demonstrate that it also provides a more accurate description of the Li depletion pattern seen in open clusters. Recoupling produces a characteristic pattern of efficient mixing at early ages and little mixing at late ages, thus predicting a flattening of Li depletion at a few Gyr, in agreement with the observed late-time evolution. Using Li abundances we argue that the timescale for core-envelope recoupling during the main sequence decreases sharply with increasing mass. We discuss the implications of this finding for stellar physics, including the viability of gravity waves and magnetic fields as agents of angular momentum transport. We also raise the possibility of intrinsic differences in initial conditions in star clusters using M67 as an example.« less

  2. Shocks in Dense Clouds in the Vela Supernova Remnant: FUSE

    NASA Technical Reports Server (NTRS)

    Nichols, Joy; Sonneborn, George (Technical Monitor)

    2002-01-01

    We have obtained 8 LWRS FUSE spectra to study a recently identified interaction of the Vela supernova remnant with a dense cloud region along its western edge. The goal is to quantify the temperature, ionization, density, and abundance characteristics associated with this shock/dense cloud interface by means of UV absorption line studies. Our detection of high-velocity absorption line C I at +90 to +130 km/s with IUE toward a narrow region interior to the Vela SNR strongly suggests the Vela supernova remnant is interacting with a dense ISM or molecular cloud. The shock/dense cloud interface is suggested by (1) the rarity of detection of high-velocity C I seen in IUE spectra, (2) its very limited spatial distribution in the remnant, and (3) a marked decrease in X-ray emission in the region immediately west of the position of these stars where one also finds a 100 micron emission ridge in IRAS images. We have investigated the shock physics and general properties of this interaction region through a focussed UV absorption line study using FUSE spectra. We have FUSE data on OVI absorption lines observed toward 8 stars behind the Vela supernova remnant (SNR). We compare the OVI observations with IUE observations of CIV absorption toward the same stars. Most of the stars, which are all B stars, have complex continua making the extraction of absorption lines difficult. Three of the stars, HD 72088, HD 72089 and HD 72350, however, are rapid rotators (v sin i less than 100 km/s) making the derivation of absorption column densities much easier. We have measured OVI and CIV column densities for the "main component" (i.e. the low velocity component) for these stars. In addition, by removing the H2 line at 1032.35A (121.6 km/s relative to OVI), we find high velocity components of OVI at approximately 150 km/s that we attribute to the shock in the Vela SNR. The column density ratios and magnitudes are compared to both steady shock models and results of hydrodynamical SNR modeling. We find that the models require the shock to be relatively slow (approximately 100 - 170 km/s) to match the FUSE data. We discuss the implications of our results for models of the evolution of the Vela SNR.

  3. Airtightness Results of Roof-Only Air Sealing Strategies on 1 ½-Story Homes in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojczyk, C.; Murry, T.; Mosiman, G.

    In this second study on solutions to ice dams in 1-1/2 story homes, the NorthernSTAR Building America Partnership team analyzed five test homes located in both cold and very cold climates for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. These homes were chosen for testing as they are common in Minnesota and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach formore » whole house (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled the team to compare air tightness data from over 220 homes using similar air seal methods.« less

  4. Technology Solutions Case Study: Durable Interior Foundation Insulation Retrofits for Cold Climates, Cloquet, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Thermal and moisture problems in existing basements create a unique challenge as the exterior face of the wall is not easily or inexpensively accessible. This approach by the NorthernSTAR Building America Partnership team addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. It is effective at reducing energy loss through the wall principally during the heating season. The team conducted experiments at the Cloquet Residential Research Facility to test the heat and moisture performance of four hollow masonry block wall systems and two rim-joist systems. These systems were retrofitted withmore » interior insulation in compliance with the 2012 IECC. The research showed for the first time that, for masonry block walls in a cold climate, a solid bond beam or equivalent provides adequate resistance to moisture transport from a hollow core to the rim-joist cavity. Thus, a solid top course is a minimum requirement for an interior retrofit insulation system.« less

  5. Tiny Stars, Strong Fields: Exploring the Origin of Intense Magnetism in M Stars

    NASA Astrophysics Data System (ADS)

    Toomre, Juri

    The M-type stars are becoming dominant targets in searches for Earth-like planets that could occupy their habitable zones. The low masses and luminosities of M-dwarf central stars make them very attractive for such exoplanetary hunts. The habitable zone of M dwarfs is close to the star due to their low luminosity. Thus possibly habitable planets will have short orbital periods, making their detection feasible both with the transit method (used by Kepler, K2 and soon with TESS) and with the radial velocity approaches. Yet habitability on a planet likely requires both solid surfaces and atmospheres, but also a favorable radiation environment. It is here that the M-dwarf central stars raise major theoretical puzzles, for many of them exhibit remarkably intense and frequent flaring, despite their modest intrinsic luminosities. The super-flares release their energy both in white light and in X-rays, and can be thousands of times brighter than the strongest solar flares. Such striking events must have magnetic origins, likely from fields built by convective dynamos operating in their interiors. Further, recent observations suggest that the surface of some M stars is carpeted with magnetic fields of 3 kG or more. Such field strengths are reminiscent of a sunspot, but here instead cover much of the stellar surface. With M stars now taking center stage in the search for Earthlike planets, it is crucial to begin to understand how convective dynamos may be able to build intense magnetic fields involved with super-flares and vast star spots, and how they depend upon the mass and rotation rate of these stars. We propose to use major 3-D MHD simulations with our Anelastic Spherical Harmonic (ASH) code to study the coupling of turbulent convection, rotation, and magnetism within full spherical domains such as the interior of an M dwarf. This permits the exploration of the magnetic dynamos that must be responsible for the evolving magnetism and intense activity of many M dwarfs. We bring to this our prior experience with studying dynamo processes in the outer convective envelopes of G- (the Sun) and Ftype stars, briefly of M dwarfs, and in full convective cores within more massive A- and B-type stars. Our previous work suggests that M dwarfs could display a broad range of dynamo behavior, from cyclic reversals to more chaotic variations, and further to both weak and strong dynamo states. We will focus on the latter, exploring how superequipartition magnetic fields could be achieved by dynamo action in M dwarfs, as are likely needed to energize super-flares and huge active regions, and what limits the peak field strengths. M-type stars are distinctive in becoming fully convective with decreasing mass at about M3.5 in spectral type (or about 0.35 solar masses). At this transition, a steep rise in the fraction of magnetically active stars is observed that is accompanied by an increasing rotational velocity. Clearly how mass-loss and spin-down can lead to this is of interest in itself. However, here we propose to study the manner in which dynamos operating in fully convective M dwarf interiors beyond the transition may be able to achieve very strong magnetic fields, and how field strengths and apparent magnetic activity increases with rotation rate as suggested by observations. We believe that global connectivity of flows and fields across the core center will admit new classes of strong behavior, as revealed by our B star core dynamos, not realized when a convective envelope is bounded below by a tachocline. These ideas need to be tested in a self-consistent manner with global ASH simulations to gain theoretical insights into what is the origin of the fierce magnetic activity in some of M dwarfs that may be potential hosts to Earth-like planets. Such 3-D MHD simulations, though challenging, are now feasible and would complement the intensive observational searches under way.

  6. Stellar Wind Retention and Expulsion in Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.

    2018-05-01

    Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).

  7. Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.

    PubMed

    Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua

    2018-02-01

    Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.

  8. Neutron star dynamics under time dependent external torques

    NASA Astrophysics Data System (ADS)

    Alpar, M. A.; Gügercinoğlu, E.

    2017-12-01

    The two component model of neutron star dynamics describing the behaviour of the observed crust coupled to the superfluid interior has so far been applied to radio pulsars for which the external torques are constant on dynamical timescales. We recently solved this problem under arbitrary time dependent external torques. Our solutions pertain to internal torques that are linear in the rotation rates, as well as to the extremely non-linear internal torques of the vortex creep model. Two-component models with linear or nonlinear internal torques can now be applied to magnetars and to neutron stars in binary systems, with strong variability and timing noise. Time dependent external torques can be obtained from the observed spin-down (or spin-up) time series, \\dot Ω ≤ft( t \\right).

  9. Outer magnetospheric fluctuations and pulsar timing noise

    NASA Technical Reports Server (NTRS)

    Cheng, K. S.

    1987-01-01

    The Cheng, Ho, and Ruderman (1986) outer-magnetosphere gap model was used to investigate the stability of Crab-type outer magnetosphere gaps for pulsars having the parameter (Omega-square B) similar to that of the Crab pulsar. The Lamb, Pines, and Shaham (1978) fluctuating magnetosphere noise model was applied to the Crab pulsar to examine the type of the equation of state that best describes the structure of the neutron star. The noise model was also applied to other pulsars, and the theoretical results were compared with observational data. The results of the comparison are consistent with the stiff equation of state, as suggested by the vortex creep model of the neutron star interior. The timing-noise observations also contribute to the evidence for the existence of superfluid in the core of the neutron star.

  10. Meteoritic Stardust and the Presolar History of the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Nittler, Larry R.

    Presolar stardust is present at low levels in meteorites and cometary dust and identified as ancient stellar matter by unusual isotopic compositions reflecting nuclear processes in stellar interiors and galactic chemical evolution. Most grains originated in winds from asymptotic giant branch (AGB) stars and supernova and their isotopic compositions provide important constraints on models of evolution and nucleosynthesis in these environments. The presolar grains from AGB stars appear to have formed in a lower-mass population of stars than predicted by GCE models. A merger of the Milky Way with a dwarf galaxy some 1 Gyr before the birth of the Solar System may explain this and other grain observations and the data thus can provide a unique window into the presolar history of the solar neighborhood.

  11. The elastic energy and character of quakes in solid stars and planets

    NASA Technical Reports Server (NTRS)

    Pines, D.; Shaham, J.

    1972-01-01

    The quadrupolar mechanical energy of a rotating axially symmetric solid planet (with or without a liquid interior) is calculated using methods previously developed for neutron stars in which an elastic reference tensor is introduced to describe the build-up of elastic energy in the star. The basic parameters of the theory (the gravitational energy A and elastic energy B) depend upon the internal structure of the planet and may be calculated from specific planetary models. Explicit expressions are obtained for the Love numbers, and for the planetary wobble frequency. The theory provides a simple relationship between changes in shape or axis of figure of the planet and elastic energy release. The theory is extended to describe the Earth by taking into account isostasy, triaxiality and the observed lithospheric configuration.

  12. Physical properties of the WR stars in Westerlund 1

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.; Clark, J. S.; Negueruela, I.

    The Westerlund 1 (Wd1) cluster hosts a rich and varied collection of massive stars. Its dynamical youth and the absence of ongoing star formation indicate a coeval population. As such, the simultaneous presence of both late-type supergiants and Wolf-Rayet stars has defied explanation in the context of single-star evolution. Observational evidence points to a high binary fraction, hence this stellar population offers a robust test for stellar models accounting for both single-star and binary evolution. We present an optical to near-IR (VLT & NTT) spectroscopic analysis of 22 WR stars in Wd 1, delivering physical properties for the WR stars. We discuss how these differ from the Galactic field population, and how they may be reconciled with the predictions of single and binary evolutionary models.

  13. Sizing Up Red-Giant Twins

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    In KIC 9246715, two red-giant stars twins in nearly every way circle each other in a 171-day orbit. This binary pair may be a key to learning about masses and radii of stars with asteroseismology, the study of oscillations in the interiors of stars.Two Ways to MeasureIn order to understand a stars evolution, it is critical that we know its mass and radius. Unfortunately, these quantities are often difficult to pin down!One of the few cases in which we can directly measure stars masses and radii is in eclipsing binaries, wherein two stars eclipse each other as they orbit. If we have a well-sampled light curve for the binary, as well as radial velocities for both stars, then we can determine the stars complete orbital information, including their masses and radii.But there may be another way to obtain stellar mass and radius: asteroseismology. In asteroseismology, oscillations inside stars are used to characterize the stellar interiors. Conveniently, if a star with a convective envelope exhibits solar-like oscillations, these oscillations can be directly compared to those of the Sun. Mass and radius scaling relations which use the Sun as a benchmark and scale based on the stars temperature can then be used to derive the mass and radius of the star.Test Subjects from KeplerSolar-like oscillations from KIC 9246715 are shown in red across different resonant frequencies. The oscillations of a single red-giant star with similar properties are shown upside down in grey for reference. [Rawls et al. 2016]Of course, scaling relations are only useful if we can test them! A team of scientists including Meredith Rawls (New Mexico State University) has identified 18 red-giant eclipsing binaries in the Kepler field of view that also exhibit solar-like oscillations perfect for testing the scaling relations.In a recent study led by Rawls, the team analyzed the first of these binaries, KIC 9246715. Using the Kepler light curves in addition to radial velocity measurements from high-resolution ground-based spectroscopy at the Fred Lawrence Whipple Observatory and Apache Point Observatory, Rawls and collaborators established that the two stars have masses of 2.17 and 2.15 solar masses, and radii of 8.4 and 8.3 solar radii.Not Quite Twins?Intriguingly, when the authors measured the stellar oscillations from the binary, they were only able to pick out one signal. Using the scaling relations, their measurements reveal that the star producing the oscillations has a mass of 2.17 solar masses and radius of 8.3 radii consistent with both red giants in the system, within error bars. This provides excellent confirmation of the scaling relations for obtaining mass and radius, but it also raises a new question: why is only one star of this twin system producing oscillations?Rawls and collaborators have an idea: one star might be more magnetically active than the other, causing the suppression of oscillations in the more active star. The authors observations and detailed modeling support this idea, but similar analyses of the rest of the red-giant eclipsing binaries identified in the Kepler field will help to determine if KIC 9246715 is unusual, or if this behavior is common among such systems.CitationMeredith L. Rawls et al 2016 ApJ 818 108. doi:10.3847/0004-637X/818/2/108

  14. Star-disk interaction in Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Speights, Christa Marie

    2012-09-01

    The question of the mechanism of certain types of stars is important. Classical T Tauri (CTTS) stars accrete magnetospherically, and Herbig Ae/Be stars (higher-mass analogs to CTTS) are thought to also accrete magnetospherically, but the source of a kG magnetic field is unknown, since these stars have radiative interiors. For magnetospheric accretion, an equation has been derived (Hartmann, 2001) which relates the truncation radius, stellar radius, stellar mass, mass accretion rate and magnetic field strength. Currently the magnetic field of Herbig stars is known to be somewhere between 0.1 kG and 10 kG. One goal of this research is to further constrain the magnetic field. In order to do that, I use the magnetospheric accretion equation. For CTTS, all of the variables used in the equation can be measured, so I gather this data from the literature and test the equation and find that it is consistent. Then I apply the equation to Herbig Ae stars and find that the error introduced from using random inclinations is too large to lower the current upper limit of the magnetic field range. If Herbig Ae stars are higher-mass analogs to CTTS, then they should have a similar magnetic field distribution. I compare the calculated Herbig Ae magnetic field distribution to several typical magnetic field distributions using the Kolmogorov-Smirnov test, and find that the data distribution does not match any of the distributions used. This means that Herbig Ae stars do not have well ordered kG fields like CTTS.

  15. ON THE TIDAL ORIGIN OF HOT JUPITER STELLAR OBLIQUITY TRENDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Rebekah I., E-mail: rdawson@berkeley.edu

    It is debated whether the two hot Jupiter populations—those on orbits misaligned from their host star's spin axis and those well-aligned—result from two migration channels or from two tidal realignment regimes. Here I demonstrate that equilibrium tides raised by a planet on its star can account for three observed spin-orbit alignment trends: the aligned orbits of hot Jupiters orbiting cool stars, the planetary mass cut-off for retrograde planets, and the stratification by planet mass of cool host stars' rotation frequencies. The first trend can be caused by strong versus weak magnetic braking (the Kraft break), rather than realignment of themore » star's convective envelope versus the entire star. The second trend can result from a small effective stellar moment of inertia participating in the tidal realignment in hot stars, enabling massive retrograde planets to partially realign to become prograde. The third trend is attributable to higher-mass planets more effectively counteracting braking to spin up their stars. Both hot and cool stars require a small effective stellar moment of inertia participating in the tidal realignment, e.g., an outer layer weakly coupled to the interior. I demonstrate via Monte Carlo that this model can match the observed trends and distributions of sky-projected misalignments and stellar rotation frequencies. I discuss implications for inferring hot Jupiter migration mechanisms from obliquities, emphasizing that even hot stars do not constitute a pristine sample.« less

  16. ESTIMATING THE RADIUS OF THE CONVECTIVE CORE OF MAIN-SEQUENCE STARS FROM OBSERVED OSCILLATION FREQUENCIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wuming, E-mail: yangwuming@bnu.edu.cn, E-mail: yangwuming@ynao.ac.cn

    The determination of the size of the convective core of main-sequence stars is usually dependent on the construction of models of stars. Here we introduce a method to estimate the radius of the convective core of main-sequence stars with masses between about 1.1 and 1.5 M {sub ⊙} from observed frequencies of low-degree p -modes. A formula is proposed to achieve the estimation. The values of the radius of the convective core of four known stars are successfully estimated by the formula. The radius of the convective core of KIC 9812850 estimated by the formula is 0.140 ± 0.028 Rmore » {sub ⊙}. In order to confirm this prediction, a grid of evolutionary models was computed. The value of the convective-core radius of the best-fit model of KIC 9812850 is 0.149 R {sub ⊙}, which is in good agreement with that estimated by the formula from observed frequencies. The formula aids in understanding the interior structure of stars directly from observed frequencies. The understanding is not dependent on the construction of models.« less

  17. Imaging the Effects of Rotation in Altair and Vega

    NASA Astrophysics Data System (ADS)

    Peterson, D. M.; Hummel, C. A.; Pauls, T. A.; Armstrong, J. T.; Benson, J. A.; Gilbreath, C. G.; Hindsley, R. B.; Hutter, D. J.; Johnston, K. J.; Mozurkewich, D.

    After a brief review of rotation among upper main sequence stars and von Zeipel's vZ24 theory for the interiors, we describe our interferometric measurements of two bright A stars, Altair and Vega. The Navy Prototype Optical Interferometer (jointly operated by the US Naval Observatory, the Naval Research Laboratory and Lowell Observatory) which works at visible wavelengths has implemented baselines of sufficient length to initiate true imaging of the disks of the brightest A stars. We report here measurements of Altair, the third brightest A star in the sky. "Closure phase" techniques show that Altair deviates dramatically from a normal limb-darkened isk, indicating a strongly asymmetric intensity distribution. A oche model provides a good fit to the data, indicating that Altair is rotating at about 90% of its breakup (angular) velocity. We find that a gravity darkening law exponent appropriate for a radiative star is required by the observations and we describe the potential of this object for testing the assumption of solid body rotation throughout its envelope. We will also describe recent measurements of Vega which confirm the proposed interpretation of spectral line measurements indicating that this star is also rapidly rotating, but seen nearly pole on.

  18. Modern alchemy: Fred Hoyle and element building by neutron capture

    NASA Astrophysics Data System (ADS)

    Burbidge, E. Margaret

    Fred Hoyle's fundamental work on building the chemical elements by nuclear processes in stars at various stages in their lives began with the building of elements around iron in the very dense hot interiors of stars. Later, in the paper by Burbidge, Burbidge, Fowler and Hoyle, we four showed that Hoyle's "equilibrium process" is one of eight processes required to make all of the isotopes of all the elements detected in the Sun and stars. Neutron capture reactions, which Fred had not considered in his epochal 1946 paper, but for which experimental data were just becoming available in 1957, are very important, in addition to the energy-generating reactions involving hydrogen, helium, carbon, nitrogen and oxygen, for building all of the elements. They are now providing clues to the late stages of stellar evolution and the earliest history of our Galaxy. I describe here our earliest observational work on neutron capture processes in evolved stars, some new work on stars showing the results of the neutron capture reactions, and data relating to processes ending in the production of lead, and I discuss where this fits into the history of stars in our own Galaxy.

  19. Isoscalar-vector interaction and hybrid quark core in massive neutron stars

    NASA Astrophysics Data System (ADS)

    Shao, G. Y.; Colonna, M.; Di Toro, M.; Liu, Y. X.; Liu, B.

    2013-05-01

    The hadron-quark phase transition in the core of massive neutron stars is studied with a newly constructed two-phase model. For nuclear matter, a nonlinear Walecka type model with general nucleon-meson and meson-meson couplings, recently calibrated by Steiner, Hemper and Fischer, is taken. For quark matter, a modified Polyakov-Nambu—Jona-Lasinio model, which gives consistent results with lattice QCD data, is used. Most importantly, we introduce an isoscalar-vector interaction in the description of quark matter, and we study its influence on the hadron-quark phase transition in the interior of massive neutron stars. With the constraints of neutron star observations, our calculation shows that the isoscalar-vector interaction between quarks is indispensable if massive hybrids star exist in the universe, and its strength determines the onset density of quark matter, as well as the mass-radius relations of hybrid stars. Furthermore, as a connection with heavy-ion-collision experiments we give some discussions about the strength of isoscalar-vector interaction and its effect on the signals of hadron-quark phase transition in heavy-ion collisions, in the energy range of the NICA at JINR-Dubna and FAIR at GSI-Darmstadt facilities.

  20. Observational Effects of Magnetism in O Stars: Surface Nitrogen Abundances

    NASA Technical Reports Server (NTRS)

    Martins, F.; Escolano, C.; Wade, G. A.; Donati, J. F.; Bouret, J. C.

    2011-01-01

    Aims. We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star Tau Sco.. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the transport of elements in stellar interiors. Methods. We conduct a quantitative spectroscopic analysis of the ample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. Results. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results shOuld be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.

  1. I-Love-Q anisotropically: Universal relations for compact stars with scalar pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2015-06-01

    Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum, and quadrupole moment) have recently been found to be interrelated in a manner that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis and model selection for future radio, x-ray, and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to magnetic fields or phase transitions in their interior. We investigate here whether pressure anisotropy affects the approximate universal relations and, if so, whether it prevents their use in future astrophysical observations. We achieve this by numerically constructing slowly rotating and tidally deformed, anisotropic, compact stars in general relativity to third order in stellar rotation relative to the mass shedding limit. We adopt simple models for pressure anisotropy where the matter stress-energy tensor is diagonal for a spherically symmetric spacetime but the tangential pressure differs from the radial one. We find that the equation-of-state variation increases as one increases the amount of anisotropy, but within the anisotropy range studied in this paper (motivated from anisotropy due to crystallization of the core and pion condensation), anisotropy affects the universal relations only weakly. The relations become less universal by a factor of 1.5-3 relative to the isotropic case when anisotropy is maximal, but even then they remain approximately universal to 10%. We find evidence that this increase in variability is strongly correlated to an increase in the eccentricity variation of isodensity contours, which provides further support for the emergent approximate symmetry explanation of universality. Whether one can use universal relations in actual observations ultimately depends on the currently unknown amount of anisotropy inside stars, but within the range studied in this paper, anisotropy does not prevent the use of universal relations in gravitational wave astrophysics or in experimental relativity. We provide an explicit example of the latter by simulating a binary pulsar/gravitational wave test of dynamical Chern-Simons gravity with anisotropic neutron stars. The increase in variability of the universal relations due to pressure anisotropy could affect their use in future x-ray observations of hot spots on rotating compact stars. Given expected observational uncertainties, however, the relations remain sufficiently universal for use in such observations if the anisotropic modifications to the moment of inertia and the quadrupole moment are less than 10% of their isotropic values.

  2. THE BERLIN EXOPLANET SEARCH TELESCOPE II CATALOG OF VARIABLE STARS. I. CHARACTERIZATION OF THREE SOUTHERN TARGET FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruth, T.; Cabrera, J.; Csizmadia, Sz.

    2013-11-01

    A photometric survey of three southern target fields with BEST II yielded the detection of 2406 previously unknown variable stars and an additional 617 stars with suspected variability. This study presents a catalog including their coordinates, magnitudes, light curves, ephemerides, amplitudes, and type of variability. In addition, the variability of 17 known objects is confirmed, thus validating the results. The catalog contains a number of known and new variables that are of interest for further astrophysical investigations, in order to, e.g., search for additional bodies in eclipsing binary systems, or to test stellar interior models. Altogether, 209,070 stars were monitoredmore » with BEST II during a total of 128 nights in 2009/2010. The overall variability fraction of 1.2%-1.5% in these target fields is well comparable to similar ground-based photometric surveys. Within the main magnitude range of R in [11, 17], we identify 0.67(3)% of all stars to be eclipsing binaries, which indicates a completeness of about one third for this particular type in comparison to space surveys.« less

  3. A survey of nebulae around Galactic Wolf-Rayet stars in the southern sky, 1

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Chu, Y.-H.; Garcia-Segura, G.

    1994-01-01

    Images are presented from the first half of a survey of all Galactic Wolf-Rayet stars in the catalog of van der Hucht et al. (1981) residing in the southern skies. Previous surveys used only existing broad-band photographic plates. Encouraged by successes using CCD imaging with interference filters of the LMC and northern Galaxy (Miller & Chu 1993), we have expanded the survey to the southern hemisphere. In the first half of our southern survey, H alpha and (O III) narrow-band CCD images of fields centered on known Wolf-Rayet stars have indicated the existence of six new ring nebulae as well as revealing previously unobserved morphological features in the known ring nebulae. An example of this is an almost perfect ring of (O III) emission residing interior to the previously observed H alpha filaments of the Wolf-Rayet ring nebulae RCW 104. Our surveys to date indicate that 21% of all Wolf-Rayet stars have ring nebulae, with WN-type Wolf-Rayet stars having a greater likelihood for an associated ring.

  4. REVIEWS OF TOPICAL PROBLEMS: The differential rotation of stars

    NASA Astrophysics Data System (ADS)

    Kitchatinov, Leonid L.

    2005-05-01

    Astronomical observations of recent years have substantially extended our knowledge of the rotation of stars. Helioseismology has found out that the equator-to-pole decline in the angular velocity observed on the solar surface traces down to the deep interior of the Sun. New information has been gained regarding the dependence of the rotational nonuniformities on the angular velocity and mass of the star. These achievements have prompted the development of the theory of differential rotation, which is the focal point of this review. Nonuniform rotation results from the interaction of turbulent convection with rotation. The investigation into the turbulent mechanisms of angular-momentum transport has reached a level at which the obtained results can serve as the basis for developing quantitative models of stellar rotation. Such models contain virtually no free parameters but closely reproduce the helioseismological data on the internal rotation of the Sun. The theoretical predictions on the differential rotation of the stars agree with observations. A brief discussion is held here on the relation between the magnetic activity of stars and the nonuniformity of their rotation and on prospects for further development of the theory.

  5. Discovering the interior of black holes

    NASA Astrophysics Data System (ADS)

    Brustein, Ram; Medved, A. J. M.; Yagi, K.

    2017-12-01

    The detection of gravitational waves (GWs) from black hole (BH) mergers provides an inroad toward probing the interior of astrophysical BHs. The general-relativistic description of the BH interior is that of empty spacetime with a (possibly) singular core. Recently, however, the hypothesis that the BH interior does not exist has been gaining traction, as it provides a means for resolving the BH information-loss problem. Here, we propose a simple method for answering the following question: Does the BH interior exist and, if so, does it contain some distribution of matter or is it mostly empty? Our proposal is premised on the idea that, similar to the case of relativistic, ultracompact stars, any BH-like object whose interior has some matter distribution should support fluid modes in addition to the conventional spacetime modes. In particular, the Coriolis-induced Rossby (r-) modes, whose spectrum is mostly insensitive to the composition of the interior matter, should be a universal feature of such BH-like objects. In fact, the frequency and damping time of these modes are determined by only the object's mass and speed of rotation. The r-modes oscillate at a lower frequency, decay at a slower rate, and produce weaker GWs than do the spacetime modes. Hence, they imprint a model-insensitive signature of a nonempty interior in the GW spectrum resulting from a BH merger. We find that future GW detectors, such as Advanced LIGO with its design sensitivity, have the potential of detecting such r-modes if the amount of GWs leaking out quantum mechanically from the interior of a BH-like object is sufficiently large.

  6. Stability analysis of magnetized neutron stars - a semi-analytic approach

    NASA Astrophysics Data System (ADS)

    Herbrik, Marlene; Kokkotas, Kostas D.

    2017-04-01

    We implement a semi-analytic approach for stability analysis, addressing the ongoing uncertainty about stability and structure of neutron star magnetic fields. Applying the energy variational principle, a model system is displaced from its equilibrium state. The related energy density variation is set up analytically, whereas its volume integration is carried out numerically. This facilitates the consideration of more realistic neutron star characteristics within the model compared to analytical treatments. At the same time, our method retains the possibility to yield general information about neutron star magnetic field and composition structures that are likely to be stable. In contrast to numerical studies, classes of parametrized systems can be studied at once, finally constraining realistic configurations for interior neutron star magnetic fields. We apply the stability analysis scheme on polytropic and non-barotropic neutron stars with toroidal, poloidal and mixed fields testing their stability in a Newtonian framework. Furthermore, we provide the analytical scheme for dropping the Cowling approximation in an axisymmetric system and investigate its impact. Our results confirm the instability of simple magnetized neutron star models as well as a stabilization tendency in the case of mixed fields and stratification. These findings agree with analytical studies whose spectrum of model systems we extend by lifting former simplifications.

  7. Magnetorotational collapse of supermassive stars: Black hole formation, gravitational waves, and jets

    NASA Astrophysics Data System (ADS)

    Sun, Lunan; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.

    2017-08-01

    We perform magnetohydrodynamic simulations in full general relativity of uniformly rotating stars that are marginally unstable to collapse. These simulations model the direct collapse of supermassive stars (SMSs) to seed black holes that can grow to become the supermassive black holes at the centers of quasars and active galactic nuclei. They also crudely model the collapse of massive Population III stars to black holes, which could power a fraction of distant, long gamma-ray bursts. The initial stellar models we adopt are Γ =4 /3 polytropes initially with a dynamically unimportant dipole magnetic field. We treat initial magnetic-field configurations either confined to the stellar interior or extending out from the stellar interior into the exterior. We find that the black hole formed following collapse has mass MBH≃0.9 M (where M is the mass of the initial star) and dimensionless spin parameter aBH/MBH≃0.7 . A massive, hot, magnetized torus surrounds the remnant black hole. At Δ t ˜400 - 550 M ≈2000 -2700 (M /106 M⊙)s following the gravitational wave peak amplitude, an incipient jet is launched. The disk lifetime is Δ t ˜105(M /106 M⊙)s , and the outgoing Poynting luminosity is LEM˜1 051 -52 ergs /s . If≳1 %-10 % of this power is converted into gamma rays, Swift and Fermi could potentially detect these events out to large redshifts z ˜20 . Thus, SMSs could be sources of ultra-long gamma-ray bursts (ULGRBs), and massive Population III stars could be the progenitors that power a fraction of the long GRBs observed at redshift z ˜5 - 8 . Gravitational waves are copiously emitted during the collapse and peak at ˜15 (106 M⊙/M ) mHz [˜0.15 (104 M⊙/M ) Hz ], i.e., in the LISA (DECIGO/BBO) band; optimally oriented SMSs could be detectable by LISA (DECIGO/BBO) at z ≲3 (z ≲11 ). Hence, 1 04 M⊙ SMSs collapsing at z ˜10 are promising multimessenger sources of coincident gravitational and electromagnetic waves.

  8. Density is not Destiny: Characterizing Terrestrial Exoplanet Geology from Stellar Compositional Abundances

    NASA Astrophysics Data System (ADS)

    Unterborn, Cayman T.

    2018-01-01

    A planet’s mass-radius relationship alone is not a good indicator for its potential to be "Earth-like." While useful in coarse characterizations for distinguishing whether an exoplanet is water/atmosphere- or rock/iron-dominated, there is considerable degeneracy in using the mass-radius relation to determine the mineralogy and structure of a purely terrestrial planet like the Earth. The chemical link between host-stars and rocky planets and the utility of this connection in breaking the degeneracy in the mass-radius relationship is well documented. Given the breadth of observed stellar compositions, modeling the complex effects of these compositional variations on a terrestrial planet’s mineralogy, structure and temperature profile, and the potential pitfalls therein, falls within the purview of the geosciences.I will demonstrate here, the utility in adopting the composition of a terrestrial planet’s host star for contextualizing individual systems (e.g. TRAPPIST-1), as well as for the more general case of quantifying the geophysical consequences of stellar compositional diversity. This includes the potential for a host-star to produce planets able to undergo mantle convection, surface-to-interior degassing and long-term plate tectonics. As we search for truly “Earth-like” planets, we must move away from the simple density-driven definition of “Earth-like” and towards a more holistic view that includes both geochemistry and geophysics. Combining geophysical models and those of planetary formation with host-star abundance data, then, is of paramount importance. This will aid not only in our understanding of the mass-radius relationship but also provide foundational results necessary interpreting future atmospheric observations through the lens of surface-interior interactions (e.g. volcanism) and planetary evolution as a whole.

  9. Limits on magnetic field amplification from the r -mode instability

    NASA Astrophysics Data System (ADS)

    Friedman, John L.; Lindblom, Lee; Rezzolla, Luciano; Chugunov, Andrey I.

    2017-12-01

    At second order in perturbation theory, the unstable r -mode of a rotating star includes growing differential rotation whose form and growth rate are determined by gravitational-radiation reaction. With no magnetic field, the angular velocity of a fluid element grows exponentially until the mode reaches its nonlinear saturation amplitude and remains nonzero after saturation. With a background magnetic field, the differential rotation winds up and amplifies the field, and previous work where large mode amplitudes were considered [L. Rezzolla, F. K. Lamb, and S. L. Shapiro, Astrophys. J. 531, L139 (2000)., 10.1086/312539], suggests that the amplification may damp out the instability. A background magnetic field, however, turns the saturated time-independent perturbations corresponding to adding differential rotation into perturbations whose characteristic frequencies are of order the Alfvén frequency. As found in previous studies, we argue that magnetic-field growth is sharply limited by the saturation amplitude of an unstable mode. In contrast to previous work, however, we show that if the amplitude is small, i.e., ≲10-4 , then the limit on the magnetic-field growth is stringent enough to prevent the loss of energy to the magnetic field from damping or significantly altering an unstable r -mode in nascent neutron stars with normal interiors and in cold stars whose interiors are type II superconductors. We show this result first for a toy model, and we then obtain an analogous upper limit on magnetic-field growth using a more realistic model of a rotating neutron star. Our analysis depends on the assumption that there are no marginally unstable perturbations, and this may not hold when differential rotation leads to a magnetorotational instability.

  10. On the physical association of the peculiar emission: Line stars HD 122669 and HD 122691

    NASA Technical Reports Server (NTRS)

    Garrison, R. F.; Hiltner, W. A.; Sanduleak, N.

    1975-01-01

    Spectroscopic and photometric observations indicate a physical association between the peculiar early-type emission-line stars HD 122669 and HD 122691. The latter has undergone a drastic change in the strength of its emission lines during the past twenty years. There is some indication that both stars vary with shorter time scales.

  11. Solidification of liposomes by freeze-drying: the importance of incorporating gelatin as interior support on enhanced physical stability.

    PubMed

    Guan, Peipei; Lu, Yi; Qi, Jianping; Niu, Mengmeng; Lian, Ruyue; Wu, Wei

    2015-01-30

    The main purpose of this study was to investigate the effect of gelatin as interior support on the physical stability of freeze-dried liposomes. Anticancer agent paclitaxel (PTX) was selected as a model drug. Freeze-dried liposomes containing interior gelatin support (GLs) were prepared by thin-film dispersion/freeze-drying method. Several properties of the GLs, including entrapment efficiency, particle size and gelation temperature, were extensively characterized. Encapsulation efficiency of conventional liposomes (CLs) and liposomes containing lyoprotectants as interior support dropped to lower than 20% after reconstitution, while GLs still maintained an entrapment efficiency of over 84%. Scanning electron microscopy revealed well preserved liposomal structure of GLs after reconstitution. Meanwhile, the particle size and entrapment efficiency of GLs were also well preserved after reconstitution. In contrary, deformation of CLs and recrystallization of PTX were observed, as well as significant changes in particle size and entrapment efficiency. Taken together, interior gelatin support obviously enhanced the physical stability of liposomes against the lyophilization stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Influence of Projection Operator on Oxygen Line Shapes and its effect on Rosseland-Mean Opacity in Stellar Interiors

    NASA Astrophysics Data System (ADS)

    Gomez, Thomas; Nagayama, Taisukue; Kilcrease, David; Hansen, Stephanie; Montgomery, Mike; Winget, Don

    2018-01-01

    The Rosseland-Mean opacity (RMO) is an important quantity in determining radiation transport through stars. The solar-convection-zone boundary predicted by the standard solar model disagrees with helioseismology measurements by many sigma; a 14% increase in the RMO would resolve this discrepancy. Experiments at Sandia National Laboratories are now measuring iron opacity at solar-interior conditions, and significant discrepancies are already observed. Highly-ionized oxygen is one of the dominant contributions to the RMO. The strongest line, Lyman alpha, is at the peak of the Rosseland weighting function. The accuracy of line-broadening calculations has been called into question due to various experimental results and comparisons between theory. We have developed an ab-initio calculation to explore different physical effects, our current focus is treating penetrating collisions explicitly. The equation of motion used to calculate line shapes within the relaxation and unified theories includes a projection operator, which performs an average over plasma electron states; this is neglected due to past calculations approximate treatment of penetrations. We now include this projection term explicitly, which results in a significant broadening of spectral lines from highly-charged ions (low-Z elements are not much affected). The additional broadening raises the O Ly-alpha wing opacity by a factor of 5; we examine the consequences of this additional broadening on the Rosseland mean.

  13. TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star Formation

    NASA Astrophysics Data System (ADS)

    Rigby, Jane; Vieira, Joaquin; Bayliss, M.; Fischer, T.; Florian, M.; Gladders, M.; Gonzalez, A.; Law, D.; Marrone, D.; Phadke, K.; Sharon, K.; Spilker, J.

    2017-11-01

    We propose high signal-to-noise NIRSpec and MIRI IFU spectroscopy, with accompanying imaging, for 4 gravitationally lensed galaxies at 1

  14. A brittle star-like robot capable of immediately adapting to unexpected physical damage.

    PubMed

    Kano, Takeshi; Sato, Eiki; Ono, Tatsuya; Aonuma, Hitoshi; Matsuzaka, Yoshiya; Ishiguro, Akio

    2017-12-01

    A major challenge in robotic design is enabling robots to immediately adapt to unexpected physical damage. However, conventional robots require considerable time (more than several tens of seconds) for adaptation because the process entails high computational costs. To overcome this problem, we focus on a brittle star-a primitive creature with expendable body parts. Brittle stars, most of which have five flexible arms, occasionally lose some of them and promptly coordinate the remaining arms to escape from predators. We adopted a synthetic approach to elucidate the essential mechanism underlying this resilient locomotion. Specifically, based on behavioural experiments involving brittle stars whose arms were amputated in various ways, we inferred the decentralized control mechanism that self-coordinates the arm motions by constructing a simple mathematical model. We implemented this mechanism in a brittle star-like robot and demonstrated that it adapts to unexpected physical damage within a few seconds by automatically coordinating its undamaged arms similar to brittle stars. Through the above-mentioned process, we found that physical interaction between arms plays an essential role for the resilient inter-arm coordination of brittle stars. This finding will help develop resilient robots that can work in inhospitable environments. Further, it provides insights into the essential mechanism of resilient coordinated motions characteristic of animal locomotion.

  15. Galactic evolution. I - Single-zone models. [encompassing stellar evolution and gas-star dynamic theories

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Hart, M. H.; Ostriker, J. P.

    1975-01-01

    The two basic approaches of physical theory required to calculate the evolution of a galactic system are considered, taking into account stellar evolution theory and the dynamics of a gas-star system. Attention is given to intrinsic (stellar) physics, extrinsic (dynamical) physics, and computations concerning the fractionation of an initial mass of gas into stars. The characteristics of a 'standard' model and its variants are discussed along with the results obtained with the aid of these models.

  16. Revised physical elements of the astrophysically important O9.5+O9.5V eclipsing binary system Y Cygni

    NASA Astrophysics Data System (ADS)

    Harmanec, P.; Holmgren, D. E.; Wolf, M.; Božić, H.; Guinan, E. F.; Kang, Y. W.; Mayer, P.; McCook, G. P.; Nemravová, J.; Yang, S.; Šlechta, M.; Ruždjak, D.; Sudar, D.; Svoboda, P.

    2014-03-01

    Context. Rapid advancements in light-curve and radial-velocity curve modelling, as well as improvements in the accuracy of observations, allow more stringent tests of the theory of stellar evolution. Binaries with rapid apsidal advance are particularly useful in this respect since the internal structure of the stars can also be tested. Aims: Thanks to its long and rich observational history and rapid apsidal motion, the massive eclipsing binary Y Cygrepresents one of the cornerstones of critical tests of stellar evolutionary theory for massive stars. Nevertheless, the determination of the basic physical properties is less accurate than it could be given the existing number of spectral and photometric observations. Our goal is to analyse all these data simultaneously with the new dedicated series of our own spectral and photometric observations from observatories widely separated in longitude. Methods: We obtained new series of UBV observations at three observatories separated in local time to obtain complete light curves of Y Cygfor its orbital period close to 3 days. This new photometry was reduced and carefully transformed to the standard UBV system using the HEC22 program. We also obtained new series of red spectra secured at two observatories and re-analysed earlier obtained blue electronic spectra. Reduction of the new spectra was carried out in the IRAF and SPEFO programs. Orbital elements were derived independently with the FOTEL and PHOEBE programs and via disentangling with the program KOREL . The final combined solution was obtained with the program PHOEBE . Results: Our analyses provide the most accurate value of the apsidal period of (47.805 ± 0.030) yr published so far and the following physical elements: M1 = 17.72 ± 0.35 M⊙, M2 = 17.73 ± 0.30 M⊙, R1 = 5.785 ± 0.091 R⊙, and R2 = 5.816 ± 0.063 R⊙. The disentangling thus resulted in the masses, which are somewhat higher than all previous determinations and virtually the same for both stars, while the light curve implies a slighly higher radius and luminosity for star 2. The above empirical values imply the logarithm of the internal structure constant log k2 = -1.937. A comparison with Claret's stellar interior models implies an age close to 2 × 106 yr for both stars. Conclusions: The claimed accuracy of modern element determination of 1-2 per cent still seems a bit too optimistic and obtaining new high-dispersion and high-resolution spectra is desirable. Based on new spectral and photometric observations from the following observatories: Dominion Astrophysical Observatory, Hvar, Ondřejov, Fairborn, and Sejong.Appendix A is available in electronic form at http://www.aanda.orgTables 4 and 5 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A120

  17. Hans Bethe, Powering the Stars, and Nuclear Physics

    Science.gov Websites

    dropdown arrow Site Map A-Z Index Menu Synopsis Hans Bethe, Energy Production in Stars, and Nuclear Physics physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of Laboratory] from 1943 to 1946. Prior to joining the Manhattan Project, Bethe taught physics at Cornell

  18. How do stars affect ψDM halos?

    NASA Astrophysics Data System (ADS)

    Chan, James H. H.; Schive, Hsi-Yu; Woo, Tak-Pong; Chiueh, Tzihong

    2018-04-01

    Wave dark matter (ψDM) predicts a compact soliton core and a granular halo in every galaxy. This work presents the first simulation study of an elliptical galaxy by including both stars and ψDM, focusing on the systematic changes of the central soliton and halo granules. With the addition of stars in the inner halo, we find the soliton core consistently becomes more prominent by absorbing mass from the host halo than that without stars, and the halo granules become "non-isothermal", "hotter" in the inner halo and "cooler" in the outer halo, as opposed to the isothermal halo in pure ψDM cosmological simulations. Moreover, the composite (star+ψDM) mass density is found to follow a r-2 isothermal profile near the half-light radius in most cases. Most striking is the velocity dispersion of halo stars that increases rapidly toward the galactic center by a factor of at least 2 inside the half-light radius caused by the deepened soliton gravitational potential, a result that compares favorably with observations of elliptical galaxies and bulges in spiral galaxies. However in some rare situations we find a phase segregation turning a compact distribution of stars into two distinct populations with high and very low velocity dispersions; while the high-velocity component mostly resides in the halo, the very low-velocity component is bound to the interior of the soliton core, resembling stars in faint dwarf spheroidal galaxies.

  19. Chandra Maps Vital Elements From Supernova

    NASA Astrophysics Data System (ADS)

    1999-12-01

    A team of astronomers led by Dr. John Hughes of Rutgers University in Piscataway, NJ has used observations from NASA's orbital Chandra X-ray Observatory to make an important new discovery that sheds light on how silicon, iron, and other elements were produced in supernova explosions. An X-ray image of Cassiopeia A (Cas A), the remnant of an exploded star, reveals gaseous clumps of silicon, sulfur, and iron expelled from deep in the interior of the star. The findings appear online in the Astrophysical Journal Letters at http://www.journals.uchicago.edu/ and are slated for print publication on Jan. 10, 2000. Authors of the paper, "Nucleosynthesis and Mixing in Cassiopeia A", are Hughes, Rutgers graduate student Cara Rakowski, Dr. David Burrows of the Pennsylvania State University, University Park, PA and Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics, Cambridge, MA. According to Hughes, one of the most profound accomplishments of twentieth century astronomy is the realization that nearly all of the elements other than hydrogen and helium were created in the interiors of stars. "During their lives, stars are factories that take the simplest element, hydrogen, and convert it into heavier ones," he said. "After consuming all the hydrogen in their cores, stars begin to evolve rapidly, until they finally run out of fuel and begin to collapse. In stars ten times or so more massive than our Sun, the central parts of the collapsing star may form a neutron star or a black hole, while the rest of the star is blown apart in a tremendous supernova explosion." Supernovae are rare, occurring only once every 50 years or so in a galaxy like our own. "When I first looked at the Chandra image of Cas A, I was amazed by the clarity and definition," said Hughes. "The image was much sharper than any previous one and I could immediately see lots of new details." Equal in significance to the image clarity is the potential the Chandra data held for measuring the composition of the various knots and filaments of stellar material visible in Cas A. Not only could the astronomers determine the composition of many knots in the remnant from the Chandra data, they were also able to infer where in the exploding star the knots had originated. For example, the most compact and brightest knots were composed mostly of silicon and sulfur, with little or no iron. This pointed to an origin deep in the star's interior where the temperatures had reached three billion degrees during the collapse and resulting supernova. Elsewhere, they found fainter features that contained significant amounts of iron as well as some silicon and sulfur. This material was produced even deeper in the star, where the temperatures during the explosion had reached higher values of four to five billion degrees. When Hughes and his collaborators compared where the compact silicon-rich knots and fainter iron-rich features were located in Cas A, they discovered that the iron-rich features from deepest in the star were near the outer edge of the remnant. This meant that they had been flung the furthest by the explosion that created Cas A. Even now this material appears to be streaming away from the site of the explosion with greater speed than the rest of the remnant. By studying the Cas A Chandra data further, astronomers hope to identify which of the several processes proposed by theoretical studies is likely to be the correct mechanism for explaining supernova explosions, both in terms of the dynamics and elements they produce. "In addition to understanding how iron and the other elements are produced in stars, we also want to learn how it gets out of stars and into the interstellar medium. This is why the study of supernovas and supernova remnants is so important," said Hughes. "Once released from stars, newly-created elements can then participate in the formation of new stars and planets in a great cycle that has gone on numerous times already. It is remarkable to realize that our planet Earth and indeed even humanity itself is part of this vast cosmic cycle." The Chandra observation was taken with the Advanced CCD Imaging Spectrometer (ACIS) on August 19, 1999. ACIS was built by Pennsylvania State University, and the Massachusetts Institute of Technology, Cambridge, MA. Press: Fact Sheet (08/99) To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  20. A Herschel-Resolved Debris Disk Around the Nearby G Star HIP 32480

    NASA Technical Reports Server (NTRS)

    Stapelfeldt, K.

    2011-01-01

    The Herschel Space Observatory is providing unprecedented sensitivity and angular resolution in the far-infrared. The DUNES Key Project (DUst around NEarby Stars, PI Carlos Eiroa) has finished its survey of 133 FGK stars within 25 pc of the Sun using the PACS photometer at 100 and 160 microns. We report the detection of a resolved debris ring around HIP 32480, a G0 star 16.5 parsecs distant. The ring is almost 300 AU in diameter and inclined 30 degrees from edge-on. We present a thermal emission model for the system that fits the Spitzer spectroscopy and Herschel images of the system. We find a minimum grainsize of approximately 4 microns in the main ring and a distinct warm dust population interior to it. Faint detached emission features just outside the ring may trace a separate, more distant ring in the system. The non-detection of the ring in archival HST/ACS coronagraphic images limits the dust grain albedo in the ring to be no more than 10%.

  1. A Resolved Debris Disk Around the Nearby G Star HIP 32480

    NASA Technical Reports Server (NTRS)

    Stapelfeldt, K. R.; Bryden, G. C.; Marshall, J.; Eiroa, C.; Absil, O.; Mora, A.; Krist, J. E.; Su, K. Y. L.

    2012-01-01

    The Herschel Space Observatory is providing unprecedented sensitivity and angular resolution in the far-infrared. The DUNES Key Project (DUst around NEarby Stars, PI Carlos Eiroa) has finished its survey of 133 FGK stars within 25 pc of the Sun using the PACS photometer at 100 and 160 microns. We report the detection of a resolved debris ring around HIP 32480, a GO star 16.5 parsecs distant. The ring is almost 300 AU in diameter and inclined 30 degrees from edge-on. We present a thermal emission model for the system that fits the Spitzer spectroscopy and Herschel images of the system. We find a minimum grain-size of 4 microns in the main ring and a distinct warm dust population interior to it. Faint detached emission features just outside the ring may trace a separate, more distant ring in the system. The non-detection of the ring in archival HST/ACS coronagraphic images limits the dust grain albedo in the ring to be no more than 10%.

  2. Replacing colour blindness with Depth Perception

    NASA Astrophysics Data System (ADS)

    Matthews, Jaymie M.

    Until recently, most work on rapidly oscillating Ap (roAp) stars has concentrated on rapid single-bandpass photometry, which efficiently samples their short periods even with telescopes of modest aperture. Global campaigns of this nature have yielded eigenfrequency spectra essential to asteroseismology. However, we have reached a threshold where such data must be supplemented with rapid spectroscopy and photometry at many bandpasses if we are to (a) identify the modes in roAp stars, and (b) fully exploit those modes to probe the stars' atmospheres and interiors. Studies by Medupe & Kurtz and Matthews raise the prospect of using the wavelength dependence of oscillation amplitude to map pulsational dynamics and/or atmospheric structure in roAp stars. Also, precise measurements of velocity oscillations through rapid high-resolution spectroscopy suggest that spectral lines from different ions behave differently. Given the chemical stratification and inhomogeneities of peculiar atmospheres, this may be a way to map spherical harmonic modes in 3-D (i.e., depths of upper radial nodes and positions of the surface nodes).

  3. Star formation trends in high-redshift galaxy surveys: the elephant or the tail?

    NASA Astrophysics Data System (ADS)

    Stringer, Martin; Cole, Shaun; Frenk, Carlos S.; Stark, Daniel P.

    2011-07-01

    Star formation rate and accumulated stellar mass are two fundamental physical quantities that describe the evolutionary state of a forming galaxy. Two recent attempts to determine the relationship between these quantities, by interpreting a sample of star-forming galaxies at redshift of z˜ 4, have led to opposite conclusions. Using a model galaxy population, we investigate possible causes for this discrepancy and conclude that minor errors in the conversion from observables to physical quantities can lead to a major misrepresentation when applied without awareness of sample selection. We also investigate, in a general way, the physical origin of the correlation between star formation rate and stellar mass within the hierarchical galaxy formation theory.

  4. Order-of-magnitude physics of neutron stars. Estimating their properties from first principles

    NASA Astrophysics Data System (ADS)

    Reisenegger, Andreas; Zepeda, Felipe S.

    2016-03-01

    We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of "everyday" matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties.

  5. Hayashi and the thermal physics of star-forming clouds

    NASA Astrophysics Data System (ADS)

    Larson, Richard B.

    2012-09-01

    This brief historical review highlights the early work of Hayashi and his associates on the thermal physics of star-forming clouds, as summarized in the temperature-density diagrams first presented by this group. Some of the more recent developments in this subject, including its application to understanding stellar masses and to understanding the formation of the first stars, are also briefly reviewed.

  6. The Value of Change: Surprises and Insights in Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Bildsten, Lars

    2018-01-01

    Astronomers with large-format cameras regularly scan the sky many times per night to detect what's changing, and telescopes in space such as Kepler and, soon, TESS obtain very accurate brightness measurements of nearly a million stars over time periods of years. These capabilities, in conjunction with theoretical and computational efforts, have yielded surprises and remarkable new insights into the internal properties of stars and how they end their lives. I will show how asteroseismology reveals the properties of the deep interiors of red giants, and highlight how astrophysical transients may be revealing unusual thermonuclear outcomes from exploding white dwarfs and the births of highly magnetic neutron stars. All the while, stellar science has been accelerated by the availability of open source tools, such as Modules for Experiments in Stellar Astrophysics (MESA), and the nearly immediate availability of observational results.

  7. Crystallization of carbon-oxygen mixtures in white dwarf stars.

    PubMed

    Horowitz, C J; Schneider, A S; Berry, D K

    2010-06-11

    We determine the phase diagram for dense carbon-oxygen mixtures in white dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and from Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the 12C(α,γ)16O reaction to S(300)≤170  keV b.

  8. Black Holes and Pulsars in the Introductory Physics Course

    ERIC Educational Resources Information Center

    Orear, Jay; Salpeter, E. E.

    1973-01-01

    Discusses the phenomenon of formation of white dwarfs, neutron stars, and black holes from dying stars for the purpose of providing college teachers with materials usable in the introductory physics course. (CC)

  9. Understanding Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Lamers, Henny J. G. L. M.; Levesque, Emily M.

    2017-12-01

    'Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of stars, with emphasis on the basic physical principles and the interplay between the different processes inside stars such as nuclear reactions, energy transport, chemical mixing, pulsation, mass loss, and rotation. Based on these principles, the evolution of low- and high-mass stars is explained from their formation to their death. In addition to homework exercises for each chapter, the text contains a large number of questions that are meant to stimulate the understanding of the physical principles. An extensive set of accompanying lecture slides is available for teachers in both Keynote® and PowerPoint® formats.

  10. Stromgren photometry of A-stars - A test of physical parameter determination

    NASA Astrophysics Data System (ADS)

    Torra, J.; Figueras, F.; Jordi, C.; Rossello, G.

    1990-08-01

    By use of known published values for Teff, log g, and Mv, a check on a procedure (Figueras et al, 1990) for determining the physical parameters of A v-type stars from Stromgren photometry has been performed. External errors for the calculated physical parameters have been obtained.

  11. Identification of the central compact object in the young supernova remnant 1E 0102.2-7219

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.

    2018-04-01

    Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.

  12. FAIR - Cosmic Matter in the Laboratory

    NASA Astrophysics Data System (ADS)

    Stöcker, Horst; Stöhlker, Thomas; Sturm, Christian

    2015-06-01

    To explore cosmic matter in the laboratory - this fascinating research prospect becomes available at the Facility for Antiproton and Ion Research, FAIR. The new facility is being constructed within the next five years adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. This includes new insights into the dynamics of supernovae depending on the properties of short-lived neutron-rich nuclei which will be investigated with intense rare isotope beams. New insights will be provided into the interior of stars by exploring dense plasmas with intense heavy-ion beams combined with a high-performance laser - or into neutron star cores by probing the highest baryon densities in relativistic nucleus-nucleus collisions at unprecedented collision rates. To the latter, the properties of hadrons play an important part which will be systematically studied by high precision hadron spectroscopy with antiproton beams at unmatched intensities. The worldwide unique accelerator and experimental facilities of FAIR will open the way for a broad spectrum of unprecedented fore-front research supplying a large variety of experiments in hadron, nuclear, atomic and plasma physics as well as biomedical and material science which will be briefly described in this article. This article is based on the FAIR Green Paper [4] and gives an update of former publications [5] - [12].

  13. Autonomous Navigation Above the GNSS Constellations and Beyond: GPS Navigation for the Magnetospheric Multiscale Mission and SEXTANT Pulsar Navigation Demonstration

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke

    2017-01-01

    This talk will describe two first-of-their-kind technology demonstrations attached to ongoing NASA science missions, both of which aim to extend the range of autonomous spacecraft navigation far from the Earth. First, we will describe the onboard GPS navigation system for the Magnetospheric Multiscale (MMS) mission which is currently operating in elliptic orbits reaching nearly halfway to the Moon. The MMS navigation system is a key outgrowth of a larger effort at NASA Goddard Space Flight Center to advance high-altitude Global Navigation Satellite System (GNSS) navigation on multiple fronts, including developing Global Positioning System receivers and onboard navigation software, running simulation studies, and leading efforts to characterize and protect signals at high-altitude in the so-called GNSS Space-Service Volume (SSV). In the second part of the talk, we will describe the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) mission that aims to make the first in-space demonstration of X-ray pulsar navigation (XNAV). SEXTANT is attached to the NASA astrophysics mission Neutron-star Interior Composition ExploreR (NICER) whose International Space Station mounted X-ray telescope is investigating the fundamental physics of extremes in gravity, material density, and electromagnetic fields found in neutron stars, and whose instrument provides a nearly ideal navigation sensor for XNAV.

  14. Identification of the central compact object in the young supernova remnant 1E 0102.2-7219

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.

    2018-06-01

    Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.

  15. Ultraviolet spectroscopy of the blue supergiant SBW1: the remarkably weak wind of a SN 1987A analogue

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Groh, Jose H.; France, Kevin; McCray, Richard

    2017-06-01

    The Galactic blue supergiant SBW1 with its circumstellar ring nebula represents the best known analogue of the progenitor of SN 1987A. High-resolution imaging has shown Hα and infrared structures arising in an ionized flow that partly fills the ring's interior. To constrain the influence of the stellar wind on this structure, we obtained an ultraviolet (UV) spectrum of the central star of SBW1 with the Hubble Space Telescope Cosmic Origins Spectrograph. The UV spectrum shows none of the typical wind signatures, indicating a very low mass-loss rate. Radiative transfer models suggest an extremely low rate below 10-10 M⊙ yr-1, although we find that cooling time-scales probably become comparable to (or longer than) the flow time below 10-8 M⊙ yr-1. We therefore adopt this latter value as a conservative upper limit. For the central star, the model yields Teff = 21 000 ± 1000 K, log(geff) = 3.0, L ≃ 5 × 104 L⊙, and roughly Solar composition except for enhanced N abundance. SBW1's very low mass-loss rate may hinder the wind's ability to shape its nebula and to shed angular momentum. The spin-down time-scale for magnetic breaking is more than 500 times longer than the age of the ring. This, combined with the star's slow rotation rate, constrains merger scenarios to form ring nebulae. The mass-loss rate is at least 10 times lower than expected from mass-loss recipes, without any account of clumping. The physical explanation for why SBW1's wind is so weak presents an interesting mystery.

  16. THE INSIDIOUS BOOSTING OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS IN INTERMEDIATE-AGE MAGELLANIC CLOUD CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardi, Léo; Marigo, Paola; Bressan, Alessandro

    2013-11-10

    In the recent controversy about the role of thermally pulsing asymptotic giant branch (TP-AGB) stars in evolutionary population synthesis (EPS) models of galaxies, one particular aspect is puzzling: TP-AGB models aimed at reproducing the lifetimes and integrated fluxes of the TP-AGB phase in Magellanic Cloud (MC) clusters, when incorporated into EPS models, are found to overestimate, to various extents, the TP-AGB contribution in resolved star counts and integrated spectra of galaxies. In this paper, we call attention to a particular evolutionary aspect, linked to the physics of stellar interiors, that in all probability is the main cause of this conundrum.more » As soon as stellar populations intercept the ages at which red giant branch stars first appear, a sudden and abrupt change in the lifetime of the core He-burning phase causes a temporary 'boost' in the production rate of subsequent evolutionary phases, including the TP-AGB. For a timespan of about 0.1 Gyr, triple TP-AGB branches develop at slightly different initial masses, causing their frequency and contribution to the integrated luminosity of the stellar population to increase by a factor of ∼2. The boost occurs for turn-off masses of ∼1.75 M{sub ☉}, just in the proximity of the expected peak in the TP-AGB lifetimes (for MC metallicities), and for ages of ∼1.6 Gyr. Coincidently, this relatively narrow age interval happens to contain the few very massive MC clusters that host most of the TP-AGB stars used to constrain stellar evolution and EPS models. This concomitance makes the AGB-boosting particularly insidious in the context of present EPS models. As we discuss in this paper, the identification of this evolutionary effect brings about three main consequences. First, we claim that present estimates of the TP-AGB contribution to the integrated light of galaxies derived from MC clusters are biased toward too large values. Second, the relative TP-AGB contribution of single-burst populations falling in this critical age range cannot be accurately derived by approximations such as the fuel consumption theorem, which ignore, by construction, the above evolutionary effect. Third, a careful revision of AGB star populations in intermediate-age MC clusters is urgently demanded, promisingly with the aid of detailed sets of stellar isochrones.« less

  17. Unsolved problems. [the physics of B stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The level of understanding of the physics of single, isolated B stars is assessed and unresolved problems are defined. The significant observational results concerning the effective temperatures, radii, masses and mantles are summarized. The results of the theory of the evolution of massive stars are confronted with the observed luminosities and effective temperatures of B stars. In addition the implications of stellar spectra theory are compared with observed spectra and a heuristic model for a mantle is developed. The chief unresolved problems for B stars concern developing detailed models for (1) the internal structure of massive stars which are beginning to evolve rapidly as they complete burning hydrogen in their cores; (2) mantles; and (3) the transfer of radiation in high temperature inhomogeneous moving bodies of gas.

  18. The Galactic Distribution of OB Associations in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; McKee, Christopher F.

    1997-02-01

    Molecular clouds account for half of the mass of the interstellar medium interior to the solar circle and for all current star formation. Using cloud catalogs of two CO surveys of the first quadrant, we have fitted the mass distribution of molecular clouds to a truncated power law in a similar manner as the luminosity function of OB associations in the companion paper to this work. After extrapolating from the first quadrant to the entire inner Galaxy, we find that the mass of cataloged clouds amounts to only 40% of current estimates of the total Galactic molecular mass. Following Solomon & Rivolo, we have assumed that the remaining molecular gas is in cold clouds, and we normalize the distribution accordingly. The predicted total number of clouds is then shown to be consistent with that observed in the solar neighborhood where cloud catalogs should be more complete. Within the solar circle, the cumulative form of the distribution is \\Nscrc(>M)=105[(Mu/M)0.6-1], where \\Nscrc is the number of clouds, and Mu = 6 × 106 M⊙ is the upper mass limit. The large number of clouds near the upper cutoff to the distribution indicates an underlying physical limit to cloud formation or destruction processes. The slope of the distribution corresponds to d\\Nscrc/dM~M-1.6, implying that although numerically most clouds are of low mass, most of the molecular gas is contained within the most massive clouds. The distribution of cloud masses is then compared to the Galactic distribution of OB association luminosities to obtain statistical estimates of the number of massive stars expected in any given cloud. The likelihood of massive star formation in a cloud is determined, and it is found that the median cloud mass that contains at least one O star is ~105 M⊙. The average star formation efficiency over the lifetime of an association is about 5% but varies by more than 2 orders of magnitude from cloud to cloud and is predicted to increase with cloud mass. O stars photoevaporate their surrounding molecular gas, and even with low rates of formation, they are the principal agents of cloud destruction. Using an improved estimate of the timescale for photoevaporation and our statistics on the expected numbers of stars per cloud, we find that 106 M⊙ giant molecular clouds (GMCs) are expected to survive for about 3 × 107 yr. Smaller clouds are disrupted, rather than photoionized, by photoevaporation. The porosity of H II regions in large GMCs is shown to be of order unity, which is consistent with self-regulation of massive star formation in GMCs. On average, 10% of the mass of a GMC is converted to stars by the time it is destroyed by photoevaporation.

  19. Massive Stars as Cosmic Engines Through the Ages

    NASA Astrophysics Data System (ADS)

    Maeder, André; Meynet, Georges; Ekström, Sylvia; Hirschi, Raphael; Georgy, Cyril

    2008-06-01

    Some useful developments in the model physics are briefly presented, followed by model results on chemical enrichments and WR stars. We discuss the expected rotation velocities of WR stars. We emphasize that the (C+O)/He ratio is a better chemical indicator of evolution for WC stars than the C/He ratios. With or without rotation, at a given luminosity the (C+O)/He ratios should be higher in regions of lower metallicity Z. Also, for a given (C+O)/He ratio the WC stars in lower Z regions have higher luminosities. The WO stars, which are likely the progenitors of supernovae SNIc and of some GRBs, should preferentially be found in regions of low Z and be the descendants of very high initial masses. Finally, we emphasize the physical reasons why massive rotating low Z stars may also experience heavy mass loss.

  20. The development of early pulsation theory, or, how Cepheids are like steam engines"

    NASA Astrophysics Data System (ADS)

    Stanley, Matthew

    2011-05-01

    The pulsation theory of Cepheid variable stars was a major breakthrough of early twentieth-century astrophysics. At the beginning of that century, the basic physics of normal stars was very poorly understood, and variable stars were even more mysterious. Breaking with accepted explanations in terms of eclipsing binaries, Harlow Shapley and A.S. Eddington pioneered novel theories that considered Cepheids as pulsating spheres of gas. These theoretical models relied on highly speculative physics, but nonetheless returned very impressive results despite attacks from figures such as James Jeans. Surprisingly, the pulsation theory not only depended on developments in stellar physics, but also drove many of those developments. In particular, models of stars in radiative balance and theories of stellar energy were heavily inspired and shaped by ideas about variable stars. Further, the success of the pulsation theory helped justify the new approaches to astrophysics being developed before World War II.

  1. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    NASA Astrophysics Data System (ADS)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  2. Metal-rich RRc Stars in the Carnegie RR Lyrae Survey

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Preston, George W.; Kollmeier, Juna A.; Crane, Jeffrey D.; Morrell, Nidia; Prieto, José L.; Shectman, Stephen A.; Skowron, Dorota M.; Thompson, Ian B.

    2018-01-01

    We describe and employ a stacking procedure to investigate abundances derived from the low signal-to-noise ratio spectra obtained in the Carnegie RR Lyrae Survey (CARRS). We find iron metallicities that extend from [Fe/H] ∼ ‑2.5 to values at least as large as [Fe/H] ∼ ‑0.5 in the 274-spectrum CARRS RRc data set. We consider RRc sample contamination by high amplitude solar metallicity δ Scuti stars (HADS) at periods less than 0.3 days, where photometric discrimination between RRc and δ Scuti stars has proven to be problematic. We offer a spectroscopic discriminant, the well-marked overabundance of heavy elements, principally [Ba/H], that is a common, if not universal, characteristic of HADS of all periods and axial rotations. No bona fide RRc stars known to us have verified heavy-element overabundances. Three out of 34 stars in our sample with [Fe/H] > ‑0.7 exhibit anomalously strong features of Sr, Y, Zr, Ba, and many rare earths. However, carbon is not enhanced in these three stars, and we conclude that their elevated n-capture abundances have not been generated in interior neutron-capture nucleosynthesis. Contamination by HADS appears to be unimportant, and metal-rich RRc stars occur in approximately the same proportion in the Galactic field as do metal-rich RRab stars. An apparent dearth of metal-rich RRc is probably a statistical fluke. Finally, we show that RRc stars have a similar inverse period–metallicity relationship as has been found for RRab stars.

  3. The use of quizStar application for online examination in basic physics course

    NASA Astrophysics Data System (ADS)

    Kustijono, R.; Budiningarti, H.

    2018-03-01

    The purpose of the study is to produce an online Basic Physics exam system using the QuizStar application. This is a research and development with ADDIE model. The steps are: 1) analysis; 2) design; 3) development; 4) implementation; 5) evaluation. System feasibility is reviewed for its validity, practicality, and effectiveness. The subjects of research are 60 Physics Department students of Universitas Negeri Surabaya. The data analysis used is a descriptive statistic. The validity, practicality, and effectiveness scores are measured using a Likert scale. Criteria feasible if the total score of all aspects obtained is ≥ 61%. The results obtained from the online test system by using QuizStar developed are 1) conceptually feasible to use; 2) the system can be implemented in the Basic Physics assessment process, and the existing constraints can be overcome; 3) student's response to system usage is in a good category. The results conclude that QuizStar application is eligible to be used for online Basic Physics exam system.

  4. On the physical parameters for Centaurus X-3 and Hercules X-1.

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E., Jr.; Kondo, Y.

    1972-01-01

    It is shown how upper and lower limits on the physical parameters of X-ray sources in Centaurus X-3 and Hercules X-1 may be determined from a reasonably simple and straightforward consideration. The basic assumption is that component A (the non-X-ray emitting component) is not a star collapsing toward its Schwartzschild radius (i.e., a black hole). This assumption appears reasonable since component A (the radius of the central occulting star) appears to physically occult component X. If component A is a 'normal' star, both observation and theory indicate that its mass is not greater than about 60 solar masses. The possibility in which component X is either a neutron star or a white dwarf is considered.

  5. Physics in strong magnetic fields near neutron stars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1991-01-01

    Electromagnetic phenomena occurring in the strong magnetic fields of neutron stars are currently of great interest in high-energy astrophysics. Observations of rotation rate changes and cyclotron lines in pulsars and gamma-ray bursts indicate that surface magnetic fields of neutron stars often exceed a trillion gauss. In fields this strong, where electrons behave much as if they were in bound atomic states, familiar processes undergo profound changes, and exotic processes become important. Strong magnetic fields affect the physics in several fundamental ways: energies perpendicular to the field are quantized, transverse momentum is not conserved, and electron-positron spin is important. Neutron stars therefore provide a unique laboratory for the study of physics in extremely high fields that cannot be generated on earth.

  6. Minute Temperature Fluctuations Detected in Eta Bootis

    NASA Astrophysics Data System (ADS)

    1994-11-01

    A group of astronomers from the Aarhus University (Denmark) and the European Southern Observatory (2) have for the first time succeeded in detecting solar-type oscillations in another star. They observed the temperature of the bright northern star Eta Bootis during six nights with the 2.5-metre Nordic Optical Telescope at the Roque de los Muchachos observatory on the island of La Palma (Canary Islands) and were able to show that it varies periodically by a few hundredths of a degree. These changes are caused by pressure waves in the star and are directly dependent on its inner structure. A detailed analysis by the astronomers has shown that the observed effects are in good agreement with current stellar models. This is a most important, independent test of stellar theory. The Sun is an Oscillating Star About twenty years ago, it was discovered that the nearest star, our Sun, oscillates like the ringing of a bell with a period of about 5 minutes. The same phenomenon is known in the Earth, which begins to vibrate after earthquakes; in this way seismologists have been able to discern a layered structure in the Earth's interior. The recent impacts of a comet on Jupiter most likely had a similar effect on that planet. The observed solar oscillations concern the entire gaseous body of the Sun, but we can of course only observe them on its surface. It has been found that each mode moves the surface up and down by less than 25 metres; the combined motion is very complicated, because there are many different, simultaneous modes, each of which has a slightly different period. The exact values of these periods are sensitive to the speed of sound in the Sun's interior, which in turn depends on the density of the material there. Thus, by measuring the periods of solar oscillations, we may probe the internal structure of the Sun, that is otherwise inaccessible to observations. Why does the Sun oscillate and what is the cause of these oscillations ? We do not know yet, but it is thought that the driving force is convective motion in the interior. For a better understanding of this basic phenomenon, we may compare the Sun with a pot of boiling water on the stove. The "bubbles" in the pot, known as solar convection cells, rise upwards towards the surface and jostle the Sun from the inside. This causes it to oscillate, although we still do not know the details of how these oscillations are triggered. We can just be grateful they exist, and by measuring their periods we obtain important information about the inside of the Sun. A great deal of progress has recently been made in this way. Do Other Stars Oscillate Like the Sun? The Sun is a normal star. It oscillates, and we would therefore expect that other, similar stars also do. Indeed, large-amplitude stellar oscillations have been known for centuries to manifest themselves as significant changes in the observed brightness of some "variable stars". However, in most cases, for example in the so-called Cepheid and RR Lyrae variable stars, only one or two periods have been detected. What distinguishes solar-type oscillations is the large number of observed periods, that potentially gives a great deal of information about the stellar interiors, as well as their much smaller amplitudes. During the past decade, astronomers have been trying to detect this type of oscillations in stars other than the Sun, but with little success. Such oscillations are much more difficult to detect, because the stars are much further away and therefore fainter than the Sun. Most observational attempts have tried to detect the movement of the stellar surface directly, by measuring velocity (Doppler) shifts in the stellar spectra, cf. the Appendix. Due to the up-down motion of less than 1 metre/sec, the spectral lines should shift backwards and forwards by about 1 part in 300,000,000, or less than 0.00002 nanometres in red light, a minuscule shift that is very difficult to measure with current astronomical instrumentation, even in the very brightest stars. Faced with this problem, the Danish/ESO group came up with an entirely new method. It relies on the fact that the oscillations are sound waves which deposit energy in the various stellar layers and therefore intermittently heat the star very slightly. For example, each mode changes the temperature on the surface of the Sun by about 0.005 degrees during the oscillation. But how to measure such small temperature changes? It turns out that this is possible by recording the strengths of the spectral lines, specifically, the absorption lines due to hydrogen. Their strengths change slightly with the changes in temperature (see Appendix). Although this is still a very small effect, it should be easier to measure than the velocity shifts. Yes, Eta Bootis does! To test their method, the astronomers used the ESO 3.5-metre New Technology Telescope (NTT) with the ESO Multi-Mode Instrument (EMMI) to observe a bright star for a few hours. This was too short to detect actual oscillations, but it did show that the technique works: it was in principle possible to measure the temperature accurately enough. The target for the real observations was the 2.68-magnitude, naked-eye star Eta Bootis (Greek letter "eta"). It has the common name of Muphrid and is located just north of the celestial equator in Bootes, one of the oldest constellation names still in use (it was mentioned already in the Odyssey). This particular star is somewhat more evolved and bigger than the Sun and, according to stellar theory, should have stronger oscillations than the Sun, hence increasing the chance that they could be detected. The observations were performed with the 2.5-metre Nordic Optical Telescope (NOT) during six, mostly clear nights in April 1994. A careful data analysis has now shown that the temperature of Eta Bootis is indeed changing periodically, around a mean value of about 6000 K. It seems to be oscillating in at least ten different modes simultaneously, with periods around 20 minutes. These periods are longer than those of the Sun, as expected for a star that is larger and heavier than the Sun. The figure accompanying this Press Release shows these oscillations in the form of a "power spectrum", i.e., the amount of temperature change at different values of the period. Most of the highest peaks correspond to the real oscillations in the star. The changes (fluctuations) of the temperature of Eta Bootis vary with the oscillation mode and, at the time of these observations, were mostly between 0.03 and 0.08 degrees. This diagramme provides the first strong evidence ever for solar-type oscillations in a star other than the Sun. An article with the detailed results will soon appear in the "Astronomical Journal". Agreement with Stellar Theory The measured periods of the main oscillation modes give important information about the interior of Eta Bootis. Theoretical models of the star have now been compared with these observations and the astronomers were pleased to find that the agreement is excellent, implying that current stellar theory is remarkably good. This shows that we apparently understand stars quite well, but there is of course still much to be learned. Future observations of this kind, with ground-based telescopes and possibly in a more distant future also from space, promise to open up a new and exciting way of studying stars. From now on, we will be able "to look inside" stars in great detail. Appendix: Spectral Analysis Dark spectral lines were first seen in the solar spectrum by the German physicist Johann Fraunhofer in 1814. Later, in the mid-nineteenth century, such lines were also seen in the spectra of other stars. It is now known that they are due to the upper, cooler layers in the solar and stellar atmospheres, whose atoms and molecules absorb the radiation from the hotter, deeper layers at specific wavelengths. These wavelengths serve as "footprints" of these atoms and molecules and allow astronomers to determine which chemical elements are present in the Sun and the stars. The exact position of a dark line in the spectrum (its wavelength) depends on the velocity along the line of sight of the corresponding atoms or molecules. If they move in our direction, the wavelength of the line becomes slightly shorter; if they move away from us, it will be a little longer. This is referred to as the Doppler effect and is well known also from sound waves, cf. the sound of a passing ambulance. Moreover, at a given stellar surface temperature, the "strengths" of these lines (a measure of how dark and broad they are) permit to measure directly the quantities present of the individual elements and hence the chemical composition. Conversely, observed changes in the line-strengths of the spectra of certain peculiar types of stars indicate changes in the composition, or of the ambient temperature. Until now, all observed temperature changes in stars have been much larger than those caused by solar-type oscillations as now observed in Eta Bootis, and of different nature. (1) This is a joint Press Release of ESO and the Institute of Physics and Astronomy, Aarhus University, Denmark (IFA). (2) The group consists of Hans Kjeldsen, Michael Viskum and Soren Frandsen (IFA), Jorgen Christensen-Dalsgaard (IFA; and Theoretical Astrophysics Center, Danish National Research Foundation), and Tim Bedding (ESO). Hans Kjeldsen was supported by a grant from the Carlsberg Foundation. Figure Caption This figure shows the oscillations now observed in the star Eta Bootis, in the form of a "power spectrum", i.e., the amount of temperature change at different values of the period. See the text of the Press Release for more details.

  7. An uncertainty principle for star formation - II. A new method for characterising the cloud-scale physics of star formation and feedback across cosmic history

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik; Schruba, Andreas; Hygate, Alexander P. S.; Hu, Chia-Yu; Haydon, Daniel T.; Longmore, Steven N.

    2018-05-01

    The cloud-scale physics of star formation and feedback represent the main uncertainty in galaxy formation studies. Progress is hampered by the limited empirical constraints outside the restricted environment of the Local Group. In particular, the poorly-quantified time evolution of the molecular cloud lifecycle, star formation, and feedback obstructs robust predictions on the scales smaller than the disc scale height that are resolved in modern galaxy formation simulations. We present a new statistical method to derive the evolutionary timeline of molecular clouds and star-forming regions. By quantifying the excess or deficit of the gas-to-stellar flux ratio around peaks of gas or star formation tracer emission, we directly measure the relative rarity of these peaks, which allows us to derive their lifetimes. We present a step-by-step, quantitative description of the method and demonstrate its practical application. The method's accuracy is tested in nearly 300 experiments using simulated galaxy maps, showing that it is capable of constraining the molecular cloud lifetime and feedback time-scale to <0.1 dex precision. Access to the evolutionary timeline provides a variety of additional physical quantities, such as the cloud-scale star formation efficiency, the feedback outflow velocity, the mass loading factor, and the feedback energy or momentum coupling efficiencies to the ambient medium. We show that the results are robust for a wide variety of gas and star formation tracers, spatial resolutions, galaxy inclinations, and galaxy sizes. Finally, we demonstrate that our method can be applied out to high redshift (z≲ 4) with a feasible time investment on current large-scale observatories. This is a major shift from previous studies that constrained the physics of star formation and feedback in the immediate vicinity of the Sun.

  8. MEASURING NEUTRON STAR RADII VIA PULSE PROFILE MODELING WITH NICER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özel, Feryal; Psaltis, Dimitrios; Bauböck, Michi

    2016-11-20

    The Neutron-star Interior Composition Explorer is an X-ray astrophysics payload that will be placed on the International Space Station . Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgroundsmore » need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated.« less

  9. Externally fed star formation: a numerical study

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Motahareh; Stahler, Steven W.

    2013-08-01

    We investigate, through a series of numerical calculations, the evolution of dense cores that are accreting external gas up to and beyond the point of star formation. Our model clouds are spherical, unmagnetized configurations with fixed outer boundaries, across which gas enters subsonically. When we start with any near-equilibrium state, we find that the cloud's internal velocity also remains subsonic for an extended period, in agreement with observations. However, the velocity becomes supersonic shortly before the star forms. Consequently, the accretion rate building up the protostar is much greater than the benchmark value c_s^3/G, where cs is the sound speed in the dense core. This accretion spike would generate a higher luminosity than those seen in even the most embedded young stars. Moreover, we find that the region of supersonic infall surrounding the protostar races out to engulf much of the cloud, again in violation of the observations, which show infall to be spatially confined. Similar problematic results have been obtained by all other hydrodynamic simulations to date, regardless of the specific infall geometry or boundary conditions adopted. Low-mass star formation is evidently a quasi-static process, in which cloud gas moves inward subsonically until the birth of the star itself. We speculate that magnetic tension in the cloud's deep interior helps restrain the infall prior to this event.

  10. Careers and people

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Douglas Gough of the University of Cambridge in the UK has won this year's gold medal for astronomy from the Royal Astronomical Society (RAS). Gough is best known for his work on stellar astrophysics, in particular for recognizing that oscillations of the Sun's surface could be used to probe its interior. He then applied the technique to other stars, coining the term "astroseismology". Meanwhile, the RAS has awarded its gold medal for geophysics to John Woodhouse of the University of Oxford. Woodhouse has advanced our theoretical understanding of the Earth's interior and helped to produce some of the first reliable maps of it. The medals and the society's other awards will be presented at its national meeting in Glasgow on 12-16 April.

  11. The influence of radiative core growth on coronal X-ray emission from pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Gregory, Scott G.; Adams, Fred C.; Davies, Claire L.

    2016-04-01

    Pre-main-sequence (PMS) stars of mass ≳0.35 M⊙ transition from hosting fully convective interiors to configurations with a radiative core and outer convective envelope during their gravitational contraction. This stellar structure change influences the external magnetic field topology and, as we demonstrate herein, affects the coronal X-ray emission as a stellar analogue of the solar tachocline develops. We have combined archival X-ray, spectroscopic, and photometric data for ˜1000 PMS stars from five of the best studied star-forming regions: the Orion Nebula Cluster, NGC 2264, IC 348, NGC 2362, and NGC 6530. Using a modern, PMS calibrated, spectral type-to-effective temperature and intrinsic colour scale, we de-redden the photometry using colours appropriate for each spectral type, and determine the stellar mass, age, and internal structure consistently for the entire sample. We find that PMS stars on Henyey tracks have, on average, lower fractional X-ray luminosities (LX/L*) than those on Hayashi tracks, where this effect is driven by changes in LX. X-ray emission decays faster with age for higher mass PMS stars. There is a strong correlation between L* and LX for Hayashi track stars but no correlation for Henyey track stars. There is no correlation between LX and radiative core mass or radius. However, the longer stars have spent with radiative cores, the less X-ray luminous they become. The decay of coronal X-ray emission from young early K to late G-type PMS stars, the progenitors of main-sequence A-type stars, is consistent with the dearth of X-ray detections of the latter.

  12. The California- Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, John Asher; Cargile, Phillip A.; Sinukoff, Evan

    We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California- Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetarymore » radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.« less

  13. Grand unification of neutron stars

    PubMed Central

    Kaspi, Victoria M.

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205

  14. A brittle star-like robot capable of immediately adapting to unexpected physical damage

    PubMed Central

    Sato, Eiki; Ono, Tatsuya; Aonuma, Hitoshi; Matsuzaka, Yoshiya; Ishiguro, Akio

    2017-01-01

    A major challenge in robotic design is enabling robots to immediately adapt to unexpected physical damage. However, conventional robots require considerable time (more than several tens of seconds) for adaptation because the process entails high computational costs. To overcome this problem, we focus on a brittle star—a primitive creature with expendable body parts. Brittle stars, most of which have five flexible arms, occasionally lose some of them and promptly coordinate the remaining arms to escape from predators. We adopted a synthetic approach to elucidate the essential mechanism underlying this resilient locomotion. Specifically, based on behavioural experiments involving brittle stars whose arms were amputated in various ways, we inferred the decentralized control mechanism that self-coordinates the arm motions by constructing a simple mathematical model. We implemented this mechanism in a brittle star-like robot and demonstrated that it adapts to unexpected physical damage within a few seconds by automatically coordinating its undamaged arms similar to brittle stars. Through the above-mentioned process, we found that physical interaction between arms plays an essential role for the resilient inter-arm coordination of brittle stars. This finding will help develop resilient robots that can work in inhospitable environments. Further, it provides insights into the essential mechanism of resilient coordinated motions characteristic of animal locomotion. PMID:29308250

  15. Distance biases in the estimation of the physical properties of Hi-GAL compact sources - I. Clump properties and the identification of high-mass star-forming candidates

    NASA Astrophysics Data System (ADS)

    Baldeschi, Adriano; Elia, D.; Molinari, S.; Pezzuto, S.; Schisano, E.; Gatti, M.; Serra, A.; Merello, M.; Benedettini, M.; Di Giorgio, A. M.; Liu, J. S.

    2017-04-01

    The degradation of spatial resolution in star-forming regions, observed at large distances (d ≳ 1 kpc) with Herschel, can lead to estimates of the physical parameters of the detected compact sources (clumps), which do not necessarily mirror the properties of the original population of cores. This paper aims at quantifying the bias introduced in the estimation of these parameters by the distance effect. To do so, we consider Herschel maps of nearby star-forming regions taken from the Herschel Gould Belt survey, and simulate the effect of increased distance to understand what amount of information is lost when a distant star-forming region is observed with Herschel resolution. In the maps displaced to different distances we extract compact sources, and we derive their physical parameters as if they were original Herschel infrared Galactic Plane Survey maps of the extracted source samples. In this way, we are able to discuss how the main physical properties change with distance. In particular, we discuss the ability of clumps to form massive stars: we estimate the fraction of distant sources that are classified as high-mass stars-forming objects due to their position in the mass versus radius diagram, that are only 'false positives'. We also give a threshold for high-mass star formation M>1282 (r/ [pc])^{1.42} M_{⊙}. In conclusion, this paper provides the astronomer dealing with Herschel maps of distant star-forming regions with a set of prescriptions to partially recover the character of the core population in unresolved clumps.

  16. Well behaved anisotropic compact star models in general relativity

    NASA Astrophysics Data System (ADS)

    Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.

    2016-11-01

    Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).

  17. Dark gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  18. Singularity-free anisotropic strange quintessence star

    NASA Astrophysics Data System (ADS)

    Bhar, Piyali

    2015-04-01

    Present paper provides a new model of anisotropic strange star corresponding to the exterior Schwarzschild metric. The Einstein field equations have been solved by utilizing the Krori-Barua (KB) ansatz (Krori and Barua in J. Phys. A, Math. Gen. 8:508, 1975) in presence of quintessence field characterized by a parameter ω q with . The obtained solutions are free from central singularity. Our model is potentially stable. The numerical values of mass of the different strange stars SAXJ1808.4-3658(SS1) (radius=7.07 km), 4U1820-30 (radius=10 km), Vela X-12 (radius=9.99 km), PSR J 1614-2230 (radius=10.3 km) obtained from our model is very close to the observational data that confirms the validity of our proposed model. The interior solution is also matched to the exterior Schwarzschild spacetime in presence of thin shell where negative surface pressure is required to hold the thin shell against collapsing.

  19. Neutron star dynamics under time-dependent external torques

    NASA Astrophysics Data System (ADS)

    Gügercinoǧlu, Erbil; Alpar, M. Ali

    2017-11-01

    The two-component model describes neutron star dynamics incorporating the response of the superfluid interior. Conventional solutions and applications involve constant external torques, as appropriate for radio pulsars on dynamical time-scales. We present the general solution of two-component dynamics under arbitrary time-dependent external torques, with internal torques that are linear in the rotation rates, or with the extremely non-linear internal torques due to vortex creep. The two-component model incorporating the response of linear or non-linear internal torques can now be applied not only to radio pulsars but also to magnetars and to neutron stars in binary systems, with strong observed variability and noise in the spin-down or spin-up rates. Our results allow the extraction of the time-dependent external torques from the observed spin-down (or spin-up) time series, \\dot{Ω }(t). Applications are discussed.

  20. A new model for soft gamma-ray repeaters and anomalous x-ray pulsars using quark stars

    NASA Astrophysics Data System (ADS)

    Niebergal, Brian Phillip

    2007-05-01

    If indeed the strange quark matter (SQM) hypothesis is true, then it is highly probable that some stars exist with an interior composed entirely of deconfined quarks. In this thesis the consequences of this SQM hypothesis are explored in the context of strange quark stars (QSs), and the manner in which they manifest themselves, namely Soft-Gamma ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs). Discussed in this thesis is the effect of the highly superconducting SQM, which is the formation of an Abrikosov lattice occupying the entire QS, and the result of spin-down on this lattice due to magnetic braking. By including a degenerate shell or torus surrounding the QS in this model, created during the quark-nova, SGRs and AXPs can be linked into a single classification and every observation of SGRs/AXPs to date can be explained.

  1. ROSAT X-ray detection of a young brown dwarf in the chamaeleon I dark cloud

    PubMed

    Neuhauser; Comeron

    1998-10-02

    Photometry and spectroscopy of the object Cha Halpha 1, located in the Chamaeleon I star-forming cloud, show that it is a approximately 10(6)-year-old brown dwarf with spectral type M7.5 to M8 and 0.04 +/- 0.01 solar masses. Quiescent x-ray emission was detected in a 36-kilosecond observation with 31.4 +/- 7.7 x-ray photons, obtained with the Rontgen Satellite (ROSAT), with 9final sigma detection significance. This corresponds to an x-ray luminosity of 2.57 x 10(28) ergs per second and an x-ray to bolometric luminosity ratio of 10(-3.44). These are typical values for late M-type stars. Because the interior of brown dwarfs may be similar to that of convective late-type stars, which are well-known x-ray sources, x-ray emission from brown dwarfs may indicate magnetic activity.

  2. Ground Vehicle CFD at TARDEC

    DTIC Science & Technology

    2012-05-21

    Cooling Sytem: StarCCM+ Blast / Crew Safety: LS- Dyna Fatigue & FEA: Abaqus / NCode Each code run with ~40-80 CPUs on TARDEC HPC Models...suppression, blast solid modeling have particular scaling problems because of the use of Lagrangian particles Example: Dust modeling for engine...for technology demonstrator vehicles UNCLASSIFIED 9 Example CFD Interest Areas • Underbody mine blast • HVAC design / interior cooling

  3. Tidal Disruptions of Main Sequence Stars: Inferences from the Composition of the Fallback Material

    NASA Astrophysics Data System (ADS)

    Gallegos, Monica; Law-Smith, Jamie; Ramírez-Ruiz, Enrico

    2018-01-01

    We study black holes within galactic nuclei by analyzing the motions of stars swarming around them. When the conditions are right we can observe and analyze characteristics of the black hole’s destructive power. In this paper we analyze the case when a star lurks close enough to these gravity giants to be ripped apart. After disruption, material that is bound to the supermassive black hole accretes onto it and creates a powerful flare. The standard light curve of these flares is classically described by a t-5/3 power law in time. In this paper we adopt an analytical method to calculate the fallback rate and use Modules for Experiments in Stellar Astrophysics (MESA) to study the disruption of stars with masses between 0.8-3 M⊙ at various evolutionary stages. We move beyond the analysis of the light curve and peer into the interiors of the disrupted stars by studying the compositional features of the fallback material. With this work we can begin to constrain the nature of the stars that are tidally disrupted. We find that most stars develop nitrogen (14N) enhancements with carbon (12C) and oxygen (16O) depletion relative to solar abundance and find that these features are more pronounced for higher mass stars. We also find that these features become prominent only after the time of maximum fallback rate, tpeak, and are observed to appear at earlier times for stars of increasing mass. This work provides a clear spectral method to help classify the transient events we observe at the centers of galaxies.

  4. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  5. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  6. Compact objects in relativistic theories of gravity

    NASA Astrophysics Data System (ADS)

    Okada da Silva, Hector

    2017-05-01

    In this dissertation we discuss several aspects of compact objects, i.e. neutron stars and black holes, in relativistic theories of gravity. We start by studying the role of nuclear physics (encoded in the so-called equation of state) in determining the properties of neutron stars in general relativity. We show that low-mass neutron stars are potentially useful astrophysical laboratories that can be used to constrain the properties of the equation of state. More specifically, we show that various bulk properties of these objects, such as their quadrupole moment and tidal deformability, are tightly correlated. Next, we develop a formalism that aims to capture how generic modifications from general relativity affect the structure of neutron stars, as predicted by a broad class of gravity theories, in the spirit of the parametrized post-Newtonian formalism (PPN). Our "post-Tolman-Oppenheimer-Volkoff" formalism provides a toolbox to study both stellar structure and the interior/exterior geometries of static, spherically symmetric relativistic stars. We also apply the formalism to parametrize deviations from general relativity in various astrophysical observables related with neutron stars, including surface redshift, apparent radius, Eddington luminosity. We then turn our attention to what is arguably the most well-motivated and well-investigated generalization of general relativity: scalar-tensor theory. We start by considering theories where gravity is mediated by a single extra scalar degree of freedom (in addition to the metric tensor). An interesting class of scalar-tensor theories passes all experimental tests in the weak-field regime of gravity, yet considerably deviates from general relativity in the strong-field regime in the presence of matter. A common assumption in modeling neutron stars is that the pressure within these object is spatially isotropic. We relax this assumption and examine how pressure anisotropy affects the mass, radius and moment of inertia of slowly rotating neutron stars, both in general relativity and in scalar-tensor gravity. We show that a sufficient amount of pressure anisotropy results in neutron star models whose properties in scalar-tensor theory deviate significantly from their general relativistic counterparts. Moreover, the presence of anisotropy allows these deviations to be considerable even for values of the theory's coupling parameter for which neutron stars in scalar-tensor theory would be otherwise indistinguishable from those in general relativity. Within scalar-tensor theory we also investigate the effects of the scalar field on the crustal torsional oscillations of neutron stars, which have been associated to quasi-periodic oscillations in the X-ray spectra in the aftermath of giant flares. We show that the presence of the scalar field has an influence on the thickness of the stellar crust, and investigate how it affects the oscillation frequencies. Deviations from the predictions of general relativity can be large for certain values of the theory's coupling parameter. However, the influence of the scalar field is degenerate with uncertainties in the equation of state of the star's crust and microphysics effects (electron screening) for values of the coupling allowed by binary pulsar observations. We also derive the stellar structure equations for slowly-rotating neutron stars in a broader class of scalar-tensor theories in which matter and scalar field are coupled through the so-called disformal coupling. We study in great detail how the disformal coupling affects the structure of neutron stars, and we investigate the existence of universal (equation of state-independent) relations connecting the stellar compactness and moment of inertia. In particular, we find that these universal relations can deviate considerably from the predictions of general relativity. (Abstract shortened by ProQuest.).

  7. Neutron Star Astronomy in the era of the European Extremely Large Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignani, Roberto P.

    About 25 isolated neutron stars (INSs) are now detected in the optical domain, mainly thanks to the HST and to VLT-class telescopes. The European Extremely Large Telescope(E-ELT) will yield {approx}100 new identifications, many of which from the follow-up of SKA, IXO, and Fermi observations. Moreover, the E-ELT will allow to carry out, on a much larger sample, INS observations which still challenge VLT-class telescopes, enabling studies on the structure and composition of the NS interior, of its atmosphere and magnetosphere, as well as to search for debris discs. In this contribution, I outline future perspectives for NS optical astronomy withmore » the E-ELT.« less

  8. Axisymmetric force-free magnetosphere in the exterior of a neutron star - II. Maximum storage and open field energies

    NASA Astrophysics Data System (ADS)

    Kojima, Yasufumi; Okamoto, Satoki

    2018-04-01

    A magnetar's magnetosphere gradually evolves by the injection of energy and helicity from the interior. Axisymmetric static solutions for a relativistic force-free magnetosphere with a power-law current model are numerically obtained. They provide information about the configurations in which the stored energy is large. The energy along a sequence of equilibria increases and becomes sufficient to open the magnetic field. A magnetic flux rope, in which a large amount of toroidal field is confined, is formed in the vicinity of the star, for states exceeding the open field energy. These states are energetically metastable, and the excess energy may be ejected as a magnetar outburst.

  9. Physics of primordial star formation

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki

    2012-09-01

    The study of primordial star formation has a history of nearly sixty years. It is generally thought that primordial stars are one of the key elements in a broad range of topics in astronomy and cosmology, from Galactic chemical evolution to the formation of super-massive blackholes. We review recent progress in the theory of primordial star formation. The standard theory of cosmic structure formation posits that the present-day rich structure of the Universe developed through gravitational amplification of tiny matter density fluctuations left over from the Big Bang. It has become possible to study primordial star formation rigorously within the framework of the standard cosmological model. We first lay out the key physical processes in a primordial gas. Then, we introduce recent developments in computer simulations. Finally, we discuss prospects for future observations of the first generation of stars.

  10. The Eclipsing Central Stars of the Planetary Nebulae Lo 16 and PHR J1040-5417

    NASA Astrophysics Data System (ADS)

    Hillwig, Todd C.; Frew, David; Jones, David; Crispo, Danielle

    2017-01-01

    Binary central stars of planetary nebula are a valuable tool in understanding common envelope evolution. In these cases both the resulting close binary system and the expanding envelope (the planetary nebula) can be studied directly. In order to compare observed systems with common envelope evolution models we need to determine precise physical parameters of the binaries and the nebulae. Eclipsing central stars provide us with the best opportunity to determine high precision values for mass, radius, and temperature of the component stars in these close binaries. We present photometry and spectroscopy for two of these eclipsing systems; the central stars of Lo 16 and PHR 1040-5417. Using light curves and radial velocity curves along with binary modeling we provide physical parameters for the stars in both of these systems.

  11. Spectral Confirmation of New Galactic LBV and WN Stars Associated With Mid-IR Nebulae

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy; Gvaramadze, Vasilii V.

    2014-08-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class and short-lived phase in the lives of very luminous massive stars with high mass loss rates. Extragalactic LBVs are responsible for producing false supernovae (SN), the SN Impostors, and have been directly linked with the progenitors of actual SN, indicating the LBV phase can be a final endpoint for massive star evolution. Yet only a few confirmed LBVs have been identified in the Galaxy. Their stellar evolution is poorly constrained by observations, and the physical reason for their unstable nature, both in terms of moderate spectral and photometric variability of a few magnitudes and the giant eruptions a la η Car that rival SN explosions, remains a mystery. Newly discovered mid-IR shells act as signposts, pointing to the central massive stars (LBV and Wolf-Rayet [WR] stars) that produced them. We have undertaken a spectroscopic survey of possible progenitor stars within these shells and are discovering that many are LBVs and WN-type WR transitional stars. We propose to extend this IR spectral survey to the south to search for new progenitor stars associated with dozens of newly identified shells. This survey should result in a substantial increase of new WRs and candidate LBVs for continued future study. Spectral analysis will yield new insights into the winds and physical properties of these rare and important objects, and lead to a better understanding of the physics driving giant eruptions.

  12. Massive black hole factories: Supermassive and quasi-star formation in primordial halos

    NASA Astrophysics Data System (ADS)

    Schleicher, Dominik R. G.; Palla, Francesco; Ferrara, Andrea; Galli, Daniele; Latif, Muhammad

    2013-10-01

    Context. Supermassive stars and quasi-stars (massive stars with a central black hole) are both considered as potential progenitors for the formation of supermassive black holes. They are expected to form from rapidly accreting protostars in massive primordial halos. Aims: We explore how long rapidly accreting protostars remain on the Hayashi track, implying large protostellar radii and weak accretion luminosity feedback. We assess the potential role of energy production in the nuclear core, and determine what regulates the evolution of such protostars into quasi-stars or supermassive stars. Methods: We followed the contraction of characteristic mass shells in rapidly accreting protostars, and inferred the timescales for them to reach nuclear densities. We compared the characteristic timescales for nuclear burning with those for which the extended protostellar envelope can be maintained. Results: We find that the extended envelope can be maintained up to protostellar masses of 3.6 × 108 ṁ3 M⊙, where ṁ denotes the accretion rate in solar masses per year. We expect the nuclear core to exhaust its hydrogen content in 7 × 106 yr. If accretion rates ṁ ≫ 0.14 can still be maintained at this point, a black hole may form within the accreting envelope, leading to a quasi-star. Alternatively, the accreting object will gravitationally contract to become a main-sequence supermassive star. Conclusions: Due to the limited gas reservoir in typical 107 M⊙ dark matter halos, the accretion rate onto the central object may drop at late times, implying the formation of supermassive stars as the typical outcome of direct collapse. However, if high accretion rates are maintained, a quasi-star with an interior black hole may form.

  13. Modelling Pulsar Glitches: The Hydrodynamics of Superfluid Vortex Avalanches in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Khomenko, V.; Haskell, B.

    2018-05-01

    The dynamics of quantised vorticity in neutron star interiors is at the heart of most pulsar glitch models. However, the large number of vortices (up to ≈1013) involved in a glitch and the huge disparity in scales between the femtometre scale of vortex cores and the kilometre scale of the star makes quantum dynamical simulations of the problem computationally intractable. In this paper, we take a first step towards developing a mean field prescription to include the dynamics of vortices in large-scale hydrodynamical simulations of superfluid neutron stars. We consider a one-dimensional setup and show that vortex accumulation and differential rotation in the neutron superfluid lead to propagating waves, or `avalanches', as solutions for the equations of motion for the superfluid velocities. We introduce an additional variable, the fraction of free vortices, and test different prescriptions for its advection with the superfluid flow. We find that the new terms lead to solutions with a linear component in the rise of a glitch, and that, in specific setups, they can give rise to glitch precursors and even to decreases in frequency, or `anti-glitches'.

  14. Asteroseismic Constraints on the Models of Hot B Subdwarfs: Convective Helium-Burning Cores

    NASA Astrophysics Data System (ADS)

    Schindler, Jan-Torge; Green, Elizabeth M.; Arnett, W. David

    2017-10-01

    Asteroseismology of non-radial pulsations in Hot B Subdwarfs (sdB stars) offers a unique view into the interior of core-helium-burning stars. Ground-based and space-borne high precision light curves allow for the analysis of pressure and gravity mode pulsations to probe the structure of sdB stars deep into the convective core. As such asteroseismological analysis provides an excellent opportunity to test our understanding of stellar evolution. In light of the newest constraints from asteroseismology of sdB and red clump stars, standard approaches of convective mixing in 1D stellar evolution models are called into question. The problem lies in the current treatment of overshooting and the entrainment at the convective boundary. Unfortunately no consistent algorithm of convective mixing exists to solve the problem, introducing uncertainties to the estimates of stellar ages. Three dimensional simulations of stellar convection show the natural development of an overshooting region and a boundary layer. In search for a consistent prescription of convection in one dimensional stellar evolution models, guidance from three dimensional simulations and asteroseismological results is indispensable.

  15. Asteroseismic Diagram for Subgiants and Red Giants

    NASA Astrophysics Data System (ADS)

    Gai, Ning; Tang, Yanke; Yu, Peng; Dou, Xianghua

    2017-02-01

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ1-Δν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ1-Δν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M ⊙, the ΔΠ1-Δν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ, which indicate similar evolution states especially for similar mass stars, on the ΔΠ1-Δν diagram.

  16. Vortex creep and the internal temperature of neutron stars - Linear and nonlinear response to a glitch

    NASA Technical Reports Server (NTRS)

    Alpar, M. A.; Cheng, K. S.; Pines, D.

    1989-01-01

    The dynamics of pinned superfluid in neutron stars is determined by the thermal 'creep' of vortices. Vortex creep can respond to changes in the rotation rate of the neutron star crust and provide the observed types of dynamical relaxation following pulsar glitches. It also gives rise to energy dissipation, which determines the thermal evolution of pulsars once the initial heat content has been radiated away. The different possible regimes of vortex creep are explored, and it is shown that the nature of the dynamical response of the pinned superfluid evolves with a pulsar's age. Younger pulsars display a linear regime, where the response is linear in the initial perturbation and is a simple exponential relaxation as a function of time. A nonliner response, with a characteristic nonlinear dependence on the initial perturbation, is responsible for energy dissipation and becomes the predominant mode of response as the pulsar ages. The transition from the linear to the nonlinear regime depends sensitively on the temperature of the neutron star interior. A preliminary review of existing postglitch observations is given within this general evolutionary framework.

  17. Dynamical Tidal Response of a Rotating Neutron Star

    NASA Astrophysics Data System (ADS)

    Landry, Philippe; Poisson, Eric

    2017-01-01

    The gravitational wave phase of a neutron star (NS) binary is sensitive to the deformation of the NS that results from its companion's tidal influence. In a perturbative treatment, the tidal deformation can be characterized by a set of dimensionless constants, called Love numbers, which depend on the NS equation of state. For static NSs, one type of Love number encodes the response to gravitoelectric tidal fields (associated with mass multipole moments), while another does likewise for gravitomagnetic fields (associated with mass currents). A NS subject to a gravitomagnetic tidal field develops internal fluid motions through gravitomagnetic induction; the fluid motions are irrotational, provided the star is non-rotating. When the NS is allowed to rotate, the situation is complicated by couplings between the tidal field and the star's spin. The problem becomes tractable in the slow-rotation limit. In this case, the fluid motions induced by an external gravitomagnetic field are fully dynamical, even if the tidal field is stationary: interior metric and fluid variables are time-dependent, and vary on the timescale of the rotation period. Remarkably, the exterior geometry of the NS remains time-independent.

  18. Gamma-ray bursts from stellar mass accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1993-01-01

    A cosmological model for gamma-ray bursts is explored in which the radiation is produced as a broadly beamed pair fireball along the rotation axis of an accreting black hole. The black hole may be a consequence of neutron star merger or neutron star-black hole merger, but for long complex bursts, it is more likely to come from the collapse of a single Wolf-Rayet star endowed with rotation ('failed' Type Ib supernova). The disk is geometrically thick and typically has a mass inside 100 km of several tenths of a solar mass. In the failed supernova case, the disk is fed for a longer period of time by the collapsing star. At its inner edge the disk is thick to its own neutrino emission and evolves on a viscous time scale of several seconds. In a region roughly 30 km across, interior to the accretion disk and along its axis of rotation, a pair fireball is generated by neutrino annihilation and electron-neutrino scattering which deposit approximately 10 exp 50 ergs/s.

  19. NICER: Mission Overview and Status

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Zaven; Gendreau, Keith C.

    2016-04-01

    NASA's Neutron star Interior Composition Explorer (NICER) mission will explore the structure, dynamics, and energetics of neutron stars through soft X-ray (0.2-12 keV) timing and spectroscopy. An external attached payload on the International Space Station (ISS), NICER is manifested on the Commercial Resupply Services SpaceX-11 flight, with launch scheduled for late 2016. The NICER payload is currently in final integration and environmental testing. Ground calibration has provided robust performance measures of the optical and detector subsystems, demonstrating that the instrument meets or surpasses its effective area, timing resolution, energy resolution, etc., requirements. We briefly describe the NICER hardware, its continuing testing, operations and environment on ISS, and the objectives of NICER's prime mission—including precise radius measurements for a handful of neutron stars to constrain the equation of state of cold, ultra-dense matter. Other contributions at this meeting address specific scientific investigations that are enabled by NICER, for neutron stars in their diverse manifestations as well as for broader X-ray astrophysics through a brief, approved Guest Observer program beginning in 2018.

  20. The circumstellar environment of evolved stars as traced by molecules and dust. The diagnostic power of Herschel

    NASA Astrophysics Data System (ADS)

    Lombaert, Robin

    2013-12-01

    Low-to-intermediate mass stars end their life on the asymptotic giant branch (AGB), an evolutionary phase in which the star sheds most of its mantle into the circumstellar environment through a stellar wind. This stellar wind expands at relatively low velocities and enriches the interstellar medium with elements newly made in the stellar interior. The physical processes controlling the gas and dust chemistry in the outflow, as well as the driving mechanism of the wind itself, are poorly understood and constitute the broader context of this thesis work. In a first chapter, we consider the thermodynamics of the high-density wind of the oxygen-rich star oh, using observations obtained with the PACS instrument onboard the Herschel Space Telescope. Being one of the most abundant molecules, water vapor can be dominant in the energy balance of the inner wind of these types of stars, but to date, its cooling contribution is poorly understood. We aim to improve the constraints on water properties by careful combination of both dust and gas radiative-transfer models. This unified treatment is needed due to the high sensitivity of water excitation to dust properties. A combination of three types of diagnostics reveals a positive radial gradient of the dust-to-gas ratio in oh. The second chapter deals with the dust chemistry of carbon-rich winds. The 30-mic dust emission feature is commonly identified as due to magnesium sulfide (MgS). However, the lack of short-wavelength measurements of the optical properties of this dust species prohibits the determination of the temperature profile of MgS, and hence its feature strength and shape, questioning whether this species is responsible for the 30-mic feature. By considering the very optically thick wind of the extreme carbon star LL Peg, this problem can be circumvented because in this case the short-wavelength optical properties are not important for the radial temperature distribution. We attribute the 30-mic feature to MgS, but require that the dust species is embedded in a heterogeneous composite grain structure together with carbonaceous compounds. The final chapter considers the circumstellar gas chemistry of carbon-rich AGB stars. The recent discovery of warm water vapor in carbon-rich winds challenges our understanding of chemical processes ongoing in the wind. Two mechanisms for producing warm water were proposed: water formation induced by interstellar ultraviolet photons penetrating into the inner region of a clumpy wind, and water formation induced by shocks passing through the atmospheric and inner-wind molecular gas. A sample of eighteen carbon-rich AGB stars has been observed with the Herschel Space Telescope and offers insights into the dependence of water properties on the stellar and circumstellar conditions. We suggest that both proposed water formation mechanisms must be at work to account for the following findings: 1) warm water is present in all observed carbon stars; 2) water formation efficiency decreases with higher circumstellar column density; 3) water properties strongly depend on the variability characteristics of the AGB stars; and 4) a positive water abundance gradient is present up to at most ˜ 50 rstar in individual stars.

  1. BOOK REVIEW: Rotation and Accretion Powered Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, V. M.

    2008-03-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Mészáros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you ever wanted to know about pulsars but were afraid to ask. Chapter 1 begins a brief and interesting account of the discovery of pulsars, followed by an overview of the rotation-powered and accretion-powered populations. The following four chapters are fairly detailed and reasonably quantitative descriptions of neutron star interiors. This is no easy feat, given that a description of the physics of neutron stars demands a deep understanding of all major physical forces, and must include general relativity as well as detailed particle physics. The historical notes at the beginning of Chapter 2 are particularly fascinating, recounting the path to today's understanding of neutron stars in very interesting detail. Chapter 7 presents rotation-powered pulsar radio properties, and a nice description of pulsar timing, including relativistic and non-relativistic binaries and GR tests. The remaining chapters tackle a variety of topics including binary evolution, superfluidity, accretion-powered pulsar properties, magnetospheres and emission mechanisms, magnetic fields, spin evolution and strange stars. The coverage is somewhat uneven, with the strange star chapter, for example, an obvious afterthought. The utility of an encyclopedia lies in its breadth and in how up-to-date it is. Although admirable in its intentions, the Ghosh book does omit some major pulsar topics. This book leaves the impression that rotation-powered pulsars produce only radio emission; hardly (if at all) mentioned is the vast literature on their infrared, optical, and even more importantly, x-ray and gamma-ray emission, the latter being far more relevant to the pulsar 'machine' than the energetically puny radio output. Also absent are pulsar winds; this is particularly puzzling given both the lovely wind nebula that graces the book's cover, and the central role the wind plays as primary sink of the rotation power. One of the most actively pursued topics in pulsar astrophysics in the past decade, magnetars, receives only a passing mention, though admittedly, they are neither rotation- nor accretion-powered. Also, some sections are slightly out of date: the fastest known pulsar has frequency 716 Hz, not 642 Hz; there are more braking indexes measured as well as a second braking index; nulling has been tied to spin-down. Still, this book stands alone in its bold attempt at a unifying, advanced picture of the two main areas of neutron-star science: rotation and accretion powered pulsars. It is thus a valuable and unique asset for anyone interested in the topic; I am delighted to own a copy. I personally very much hope author Ghosh will consider filling in some of the gaps in his book in a second edition, as his text is accessible and a pleasure to read, and his vision and ambition are admirable.

  2. Hubble peers inside a celestial geode

    NASA Astrophysics Data System (ADS)

    2004-08-01

    celestial geode hi-res Size hi-res: 148 Kb Credits: ESA/NASA, Yäel Nazé (University of Liège, Belgium) and You-Hua Chu (University of Illinois, Urbana, USA) Hubble peers inside a celestial geode In this unusual image, the NASA/ESA Hubble Space Telescope captures a rare view of the celestial equivalent of a geode - a gas cavity carved by the stellar wind and intense ultraviolet radiation from a young hot star. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. Low resolution version (JPG format) 148 Kb High resolution version (TIFF format) 1929 Kb Acknowledgment: This image was created with the help of the ESA/ESO/NASA Photoshop FITS Liberator. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. The object, called N44F, is being inflated by a torrent of fast-moving particles (what astronomers call a 'stellar wind') from an exceptionally hot star (the bright star just below the centre of the bubble) once buried inside a cold dense cloud. Compared with our Sun (which is losing mass through the so-called 'solar wind'), the central star in N44F is ejecting more than a 100 million times more mass per second and the hurricane of particles moves much faster at 7 million km per hour (as opposed to less than 1.5 million km per hour for our Sun). Because the bright central star does not exist in empty space but is surrounded by an envelope of gas, the stellar wind collides with this gas, pushing it out, like a snow plough. This forms a bubble, whose striking structure is clearly visible in the crisp Hubble image. The nebula N44F is one of a handful of known interstellar bubbles. Bubbles like these have been seen around evolved massive stars (called 'Wolf-Rayet stars'), and also around clusters of stars (where they are called 'super-bubbles'). But they have rarely been viewed around isolated stars, as is the case here. On closer inspection N44F harbours additional surprises. The interior wall of its gaseous cavity is lined with several four to eight light-year high finger-like columns of cool dust and gas. (The structure of these 'columns' is similar to the Eagle Nebula’s iconic 'Pillars of Creation' photographed by Hubble a decade ago, and is seen in a few other nebulae as well). The fingers are created by a blistering ultraviolet radiation from the central star. Like wind socks caught in a gale, they point in the direction of the energy flow. These pillars look small in this image only because they are much farther away from us then the Eagle Nebula’s pillars. N44F is located about 160 000 light-years in the neighbouring dwarf galaxy the Large Magellanic Cloud, in the direction of the southern constellation Dorado. N44F is part of the larger N44 complex, which contains a large super-bubble, blown out by the combined action of stellar winds and multiple supernova explosions. N44 itself is roughly 1000 light-years across. Several compact star-forming regions, including N44F, are found along the rim of the central super-bubble. This image was taken with Hubble's Wide Field Planetary Camera 2, using filters that isolate light emitted by sulphur (shown in blue, a 1200-second exposure) and hydrogen gas (shown in red, a 1000-second exposure).

  3. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Cores: Towards a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2004-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.

  4. Physics in Strong Magnetic Fields Near Neutron Stars.

    ERIC Educational Resources Information Center

    Harding, Alice K.

    1991-01-01

    Discussed are the behaviors of particles and energies in the magnetic fields of neutron stars. Different types of possible research using neutron stars as a laboratory for the study of strong magnetic fields are proposed. (CW)

  5. Hubble View of a Dying Star

    NASA Image and Video Library

    2003-05-21

    This image of a dying star, protoplanetary nebula IRAS22036+5306, containing strange, complex structures may help explain the death throes of stars and defy our current understanding of physics. Taken by NASA Wide Field and Planetary Camera 2.

  6. Estimating the Magnetic Field Strength in Hot Jupiters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Rakesh K.; Thorngren, Daniel P., E-mail: rakesh_yadav@fas.harvard.edu

    A large fraction of known Jupiter-like exoplanets are inflated as compared to Jupiter. These “hot” Jupiters orbit close to their parent star and are bombarded with intense starlight. Many theories have been proposed to explain their radius inflation and several suggest that a small fraction of the incident starlight is injected into the planetary interior, which helps to puff up the planet. How will such energy injection affect the planetary dynamo? In this Letter, we estimate the surface magnetic field strength of hot Jupiters using scaling arguments that relate energy available in planetary interiors to the dynamo-generated magnetic fields. Wemore » find that if we take into account the energy injected in the planetary interior that is sufficient to inflate hot Jupiters to observed radii, then the resulting dynamo should be able generate magnetic fields that are more than an order of magnitude stronger than the Jovian values. Our analysis highlights the potential fundamental role of the stellar light in setting the field strength in hot Jupiters.« less

  7. Gamma-ray lines from neutron stars as probes of fundamental physics

    NASA Technical Reports Server (NTRS)

    Brecher, K.

    1978-01-01

    The detection of gamma-ray lines produced at the surface of neutron stars will serve to test both the strong and gravitational interactions under conditions unavailable in terrestrial laboratories. Observation of a single redshifted gamma-ray line, combined with an estimate of the mass of the star will serve as a strong constraint on allowable equations of state of matter at supernuclear densities. Detection of two redshifted lines arising from different physical processes at the neutron star surface can provide a test of the strong principle of equivalence. Expected fluxes of nuclear gamma-ray lines from accreting neutron stars were calculated, including threshold, radiative transfer and redshift effects. The most promising probes of neutron star structure are the deuterium formation line and the positron annihilation line. Detection of sharp redshifted gamma-ray lines from X-ray sources such as Cyg X-1 would argue strongly in favor of a neutron star rather than black hole identification for the object.

  8. Accreting neutron stars, black holes, and degenerate dwarf stars.

    PubMed

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  9. HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meidt, Sharon E.

    2016-02-10

    In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itselfmore » inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.« less

  10. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars

    NASA Astrophysics Data System (ADS)

    Townsend, R. H. D.; Goldstein, J.; Zweibel, E. G.

    2018-03-01

    Motivated by recent interest in the phenomenon of waves transport in massive stars, we examine whether the heat-driven gravity (g) modes excited in slowly pulsating B (SPB) stars can significantly modify the stars' internal rotation. We develop a formalism for the differential torque exerted by g modes, and implement this formalism using the GYRE oscillation code and the MESASTAR stellar evolution code. Focusing first on a 4.21M⊙ model, we simulate 1 000 yr of stellar evolution under the combined effects of the torque due to a single unstable prograde g mode (with an amplitude chosen on the basis of observational constraints), and diffusive angular momentum transport due to convection, overshooting, and rotational instabilities. We find that the g mode rapidly extracts angular momentum from the surface layers, depositing it deeper in the stellar interior. The angular momentum transport is so efficient that by the end of the simulation, the initially non-rotating surface layers are spun in the retrograde direction to ≈ 30 per cent of the critical rate. However, the additional inclusion of magnetic stresses in our simulations almost completely inhibits this spin-up. Expanding our simulations to cover the whole instability strip, we show that the same general behaviour is seen in all SPB stars. After providing some caveats to contextualize our results, we hypothesize that the observed slower surface rotation of SPB stars (as compared to other B-type stars) may be the direct consequence of the angular momentum transport that our simulations demonstrate.

  11. Interior phase transformations and mass-radius relationships of silicon-carbon planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Hugh F.; Militzer, Burkhard, E-mail: hughfw@gmail.com

    2014-09-20

    Planets such as 55 Cancri e orbiting stars with a high carbon-to-oxygen ratio may consist primarily of silicon and carbon, with successive layers of carbon, silicon carbide, and iron. The behavior of silicon-carbon materials at the extreme pressures prevalent in planetary interiors, however, has not yet been sufficiently understood. In this work, we use simulations based on density functional theory to determine high-pressure phase transitions in the silicon-carbon system, including the prediction of new stable compounds with Si{sub 2}C and SiC{sub 2} stoichiometry at high pressures. We compute equations of state for these silicon-carbon compounds as a function of pressure,more » and hence derive interior structural models and mass-radius relationships for planets composed of silicon and carbon. Notably, we predict a substantially smaller radius for SiC planets than in previous models, and find that mass radius relationships for SiC planets are indistinguishable from those of silicate planets. We also compute a new equation of state for iron. We rederive interior models for 55 Cancri e and are able to place more stringent restrictions on its composition.« less

  12. The Interior Angular Momentum of Core Hydrogen Burning Stars from Gravity-mode Oscillations

    NASA Astrophysics Data System (ADS)

    Aerts, C.; Van Reeth, T.; Tkachenko, A.

    2017-09-01

    A major uncertainty in the theory of stellar evolution is the angular momentum distribution inside stars and its change during stellar life. We compose a sample of 67 stars in the core hydrogen burning phase with a {log} g value from high-resolution spectroscopy, as well as an asteroseismic estimate of the near-core rotation rate derived from gravity-mode oscillations detected in space photometry. This assembly includes 8 B-type stars and 59 AF-type stars, covering a mass range from 1.4 to 5 M ⊙, I.e., it concerns intermediate-mass stars born with a well-developed convective core. The sample covers projected surface rotation velocities v\\sin I\\in [9,242] km s-1 and core rotation rates up to 26 μHz, which corresponds to 50% of the critical rotation frequency. We find deviations from rigid rotation to be moderate in the single stars of this sample. We place the near-core rotation rates in an evolutionary context and find that the core rotation must drop drastically before or during the short phase between the end of the core hydrogen burning and the onset of core helium burning. We compute the spin parameter, which is the ratio of twice the rotation rate to the mode frequency (also known as the inverse Rossby number), for 1682 gravity modes and find the majority (95%) to occur in the sub-inertial regime. The 10 stars with Rossby modes have spin parameters between 14 and 30, while the gravito-inertial modes cover the range from 1 to 15.

  13. Using BIM Technology to Optimize the Traditional Interior Design Work Mode

    NASA Astrophysics Data System (ADS)

    Zhu, Ning Ke

    2018-06-01

    the development of BIM technology and application in the field of architecture design has produced results, but BIM technology and application in the field of interior design is still immaturity because of construction and decoration engineering separation. The article analyzes the problems that BIM technology lead to the interior design work mode optimization, from the 3D visualization work environment, real-time collaborative design mode, physical analysis design mode, information integration design mode state the application in interior design.

  14. The Concise Knowledge Astronomy

    NASA Astrophysics Data System (ADS)

    Clerke, Agnes Mary; Fowler, Alfred; Ellard Gore, John

    2011-01-01

    Preface; Section I. History Agnes M. Clerke: 1. From Hipparchus to Laplace; 2. A century of progress; Section II. Geometrical Astronomy and Astronomical Instruments A. Fowler: 1. The Earth and its rotation; 2. The Earth's revolution round the Sun; 3. How the positions of the heavenly bodies are defined; 4. The Earth's orbit; 5. Mean solar time; 6. The movements of the Moon; 7. Movements of planets, satellites, and comets; 8. Eclipses and occultations; 9. How to find our situation on the Earth; 10. The exact size and shape of the earth; 11. The distances and dimensions of the heavenly bodies; 12. The masses of celestial bodies; 13. Gravitational effects of Sun and moon upon the Earth; 14. Instrumental measurement of angles and time; 15. Telescopes; 16. Instruments of precision; 17. Astrophysical instruments; Section III. The Solar System Agnes M. Clerke: 1. The solar system as a whole; 2. The Sun; 3. The Sun's surroundings; 4. The interior planets; 5. The Earth and Moon; 6. The planet Mars; 7. The asteroids; 8. The planet Jupiter; 9. The Saturnian system; 10. Uranus and Neptune; 11. Famous comets; 12. Nature and origin of comets; 13. Meteorites and shooting stars; Section IV. The Sidereal Heavens J.E. Gore: 1. The stars and constellations; 2. Double, multiple, and coloured stars; 3. The distances and motions of the stars; 4. Binary stars; 5. Variable and temporary stars; 6. Clusters and nebulae; 7. The construction of the heavens; Index.

  15. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  16. The Development of Early Pulsation Theory, or, How Cepheids Are Like Steam Engines

    NASA Astrophysics Data System (ADS)

    Stanley, M.

    2012-06-01

    The pulsation theory of Cepheid variable stars was a major breakthrough of early twentieth-century astrophysics. At the beginning of that century, the basic physics of normal stars was very poorly understood, and variable stars were even more mysterious. Breaking with accepted explanations in terms of eclipsing binaries, Harlow Shapley and A. S. Eddington pioneered novel theories that considered Cepheids as pulsating spheres of gas. Surprisingly, the pulsation theory not only depended on novel developments in stellar physics, but the theory also drove many of those developments. In particular, models of stars in radiative balance and theories of stellar energy were heavily inspired and shaped by ideas about variable stars. Further, the success of the pulsation theory helped justify the new approaches to astrophysics being developed before World War II.

  17. Conformally non-flat spacetime representing dense compact objects

    NASA Astrophysics Data System (ADS)

    Singh, Ksh. Newton; Bhar, Piyali; Rahaman, Farook; Pant, Neeraj; Rahaman, Mansur

    2017-06-01

    A new conformally non-flat interior spacetime embedded in five-dimensional (5D) pseudo Euclidean space is explored in this paper. We proceed our calculation with the assumption of spherically symmetric anisotropic matter distribution and Karmarkar condition (necessary condition for class one). This solution is free from geometrical singularity and well-behaved in all respects. We ansatz a new type of metric potential g11 and solve for the metric potential g00 via Karmarkar condition. Further, all the physical parameters are determined from Einstein’s field equations using the two metric potentials. All the constants of integration are determined using boundary conditions. Due to its conformally non-flat character, it can represent bounded configurations. Therefore, we have used it to model two compact stars Vela X-1 and Cyg X-2. Indeed, the obtained masses and radii of these two objects from our solution are well matched with those observed values given in [T. Gangopadhyay et al., Mon. Not. R. Astron. Soc. 431, 3216 (2013)] and [J. Casares et al., Mon. Not. R. Astron. Soc. 401, 2517 (2010)]. The equilibrium of the models is investigated from generalized TOV-equation. We have adopted [L. Herrera’s, Phys. Lett. A 165, 206 (1992)] method and static stability criterion of Harisson-Zeldovich-Novikov [B. K. Harrison et al., Gravitational Theory and Gravitational Collapse (University of Chicago Press, 1965); Ya. B. Zeldovich and I. D. Novikov, Relativistic Astrophysics, Vol. 1, Stars and Relativity (University of Chicago Press, 1971)] to analyze the stability of the models.

  18. The Rotation of M Dwarfs Observed by the Apache Point Galactic Evolution Experiment

    NASA Astrophysics Data System (ADS)

    Gilhool, Steven H.; Blake, Cullen H.; Terrien, Ryan C.; Bender, Chad; Mahadevan, Suvrath; Deshpande, Rohit

    2018-01-01

    We present the results of a spectroscopic analysis of rotational velocities in 714 M-dwarf stars observed by the SDSS-III Apache Point Galactic Evolution Experiment (APOGEE) survey. We use a template-fitting technique to estimate v\\sin i while simultaneously estimating {log}g, [{{M}}/{{H}}], and {T}{eff}. We conservatively estimate that our detection limit is 8 km s‑1. We compare our results to M-dwarf rotation studies in the literature based on both spectroscopic and photometric measurements. Like other authors, we find an increase in the fraction of rapid rotators with decreasing stellar temperature, exemplified by a sharp increase in rotation near the M4 transition to fully convective stellar interiors, which is consistent with the hypothesis that fully convective stars are unable to shed angular momentum as efficiently as those with radiative cores. We compare a sample of targets observed both by APOGEE and the MEarth transiting planet survey and find no cases where the measured v\\sin i and rotation period are physically inconsistent, requiring \\sin i> 1. We compare our spectroscopic results to the fraction of rotators inferred from photometric surveys and find that while the results are broadly consistent, the photometric surveys exhibit a smaller fraction of rotators beyond the M4 transition by a factor of ∼2. We discuss possible reasons for this discrepancy. Given our detection limit, our results are consistent with a bimodal distribution in rotation that is seen in photometric surveys.

  19. Bursting at the seams

    NASA Image and Video Library

    2016-06-27

    This NASA/ESA Hubble Space Telescope image reveals the iridescent interior of one of the most active galaxies in our local neighbourhood — NGC 1569, a small galaxy located about eleven million light-years away in the constellation of Camelopardalis (The Giraffe). This galaxy is currently a hotbed of vigorous star formation. NGC 1569 is a starburst galaxy, meaning that — as the name suggests — it is bursting at the seams with stars, and is currently producing them at a rate far higher than that observed in most other galaxies. For almost 100 million years, NGC 1569 has pumped out stars over 100 times faster than the Milky Way! As a result, this glittering galaxy is home to super star clusters, three of which are visible in this image — one of the two bright clusters is actually  the superposition of two massive clusters. Each containing more than a million stars, these brilliant blue clusters reside within a large cavity of gas carved out by multiple supernovae, the energetic remnants of massive stars. In 2008, Hubble observed the galaxy's cluttered core and sparsely populated outer fringes. By pinpointing individual red giant stars, Hubble’s Advanced Camera for Surveys enabled astronomers to calculate a new — and much more precise — estimate for NGC 1569’s distance. This revealed that the galaxy is actually one and a half times further away than previously thought, and a member of the IC 342 galaxy group. Astronomers suspect that the IC 342 cosmic congregation is responsible for the star-forming frenzy observed in NGC 1569. Gravitational interactions between this galactic group are believed to be compressing the gas within NGC 1569. As it is compressed, the gas collapses, heats up and forms new stars.

  20. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A., E-mail: wbrown@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ∼1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes thatmore » these sdA stars are metal-poor ≃1.2 M {sub ⊙} main sequence stars with ≃0.8 M {sub ⊙} companions. While WDs must exist at sdA temperatures, only ∼1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A–F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.« less

  1. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A.

    2017-04-01

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ˜1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M ⊙ main sequence stars with ≃0.8 M ⊙ companions. While WDs must exist at sdA temperatures, only ˜1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A-F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  2. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observedmore » colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.« less

  3. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David

    2017-06-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  4. The evolution of massive stars and their spectra. I. A non-rotating 60 M⊙ star from the zero-age main sequence to the pre-supernova stage

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.; Meynet, Georges; Ekström, Sylvia; Georgy, Cyril

    2014-04-01

    For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and stellar atmospheric/wind models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and photometry, thereby aiding the comparison between evolution models and observed data. Here we analyze the evolution of a non-rotating 60 M⊙ star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class I) even at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 I (middle of the H-core burning phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle of He-core burning), and WO (end of He-core burning until core collapse). We find the following spectroscopic phase lifetimes: 3.22 × 106 yr for the O-type, 0.34 × 105 yr (BSG), 0.79 × 105 yr (BHG), 2.35 × 105 yr (LBV), 1.05 × 105 yr (WN), 2.57 × 105 yr (WC), and 3.80 × 104 yr (WO). Compared to previous studies, we find a much longer (shorter) duration for the early WN (late WN) phase, as well as a long-lived LBV phase. We show that LBVs arise naturally in single-star evolution models at the end of the MS when the mass-loss rate increases as a consequence of crossing the bistability limit. We discuss the evolution of the spectra, magnitudes, colors, and ionizing flux across the star's lifetime, and the way they are related to the evolution of the interior. We find that the absolute magnitude of the star typically changes by ~6 mag in optical filters across the evolution, with the star becoming significantly fainter in optical filters at the end of the evolution, when it becomes a WO just a few 104 years before the SN explosion. We also discuss the origin of the different spectroscopic phases (i.e., O-type, LBV, WR) and how they are related to evolutionary phases (H-core burning, H-shell burning, He-core burning). Tables 1, 4 and 5 are available in electronic form at http://www.aanda.orgSynthetic spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A30

  5. 'Peony Nebula' Star Settles for Silver Medal

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie

    If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way.

    Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina.

    If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity.

    The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle.

    The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

  6. VizieR Online Data Catalog: USNO Photographic Parallaxes. I. (Monet+, 1992)

    NASA Astrophysics Data System (ADS)

    Monet, D. G.; Dahn, C. C.; Vrba, F. J.; Harris, H. C.; Pier, J. R.; Luginbuhl, C. B.; Ables, H. D.

    2000-11-01

    The U.S. Naval Observatory CCD trigonometric parallax program is described in detail, including the instrumentation employed, observing procedures followed, and reduction procedures applied. Astrometric results are presented for 72 stars ranging in apparent brightness from V=15.16 to 19.58. Photometry (V and V-I on the Kron-Cousins system) is presented for the parallax stars and for all 426 individual reference stars employed in the astrometric solutions. Corrections for differential color refraction, calibrated to the observed V-I colors, have been applied to all astrometric measures. The mean errors in the relative parallaxes range from ±0.0005" to ±0.0027" with a median value of ±0.0010". Seventeen of the 23 stars with Vtan>200km/s form a well-delineated sequence of extreme subdwarfs covering 11.5

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Li; Jacobsen, Stein B., E-mail: astrozeng@gmail.com, E-mail: jacobsen@neodymium.harvard.edu

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equationsmore » into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.« less

  8. Understand B-type stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    When observations of B stars made from space are added to observations made from the ground and the total body of observational information is confronted with theoretical expectations about B stars, it is clear that nonthermal phenomena occur in the atmospheres of B stars. The nature of these phenomena and what they imply about the physical state of a B star and how a B star evolves are examined using knowledge of the spectrum of a B star as a key to obtaining an understanding of what a B star is like. Three approaches to modeling stellar structure (atmospheres) are considered, the characteristic properties of a mantle, and B stars and evolution are discussed.

  9. Strongly Interacting Multi-component Fermions: From Ultracold Atomic Fermi Gas to Asymmetric Nuclear Matter in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki; Hatsuda, Tetsuo; Ohashi, Yoji

    2018-03-01

    We investigate an asymmetric nuclear matter consisting of protons and neutrons with spin degrees of freedom (σ = ↑, ↓). By generalizing the Nozières and Schmitt-Rink theory for two-component Fermi gases to the four-component case, we analyze the critical temperature T c of the superfluid phase transition. Although the pure neutron matter exhibits the dineutron condensation in the low-density region, the superfluid instability toward the deuteron condensation is found to take place as the proton fraction increases. We clarify the mechanism of the competition between the deuteron condensation and dineutron condensation. Our results would serve for understanding the properties of asymmetric nuclear matter realized in the interior of neutron stars.

  10. Perturbations in the upper layers of α Centauri A

    NASA Astrophysics Data System (ADS)

    Brito, A.; Lopes, I.

    2016-01-01

    The emerging field of asteroseismology allows the direct study of stellar interiors with an incredibly high precision. We used a seismic parameter based on the phase shift as a diagnostic tool to infer the presence of a new layer of rapid variation in the external layers of the primary component of the stellar system Alpha Centauri AB. This layer is, apparently, a thin region where the acoustic modes suffer a strong scattering. Our tests indicate that this layer should be located at an acoustical depth of approximately 1400 s (0.939 R), which corresponds to a depth of 6% below the surface of the star. This is somehow unexpected since the internal structure of this sun-like star is predicted to be similar to the Sun.

  11. The postcollapse core of M15 imaged with the HST planetary camera

    NASA Technical Reports Server (NTRS)

    Lauer, Tod R.; Holtzman, Jon A.; Faber, S. M.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.

    1991-01-01

    It is shown here that, despite the severe spherical aberration present in the HST, the Wide Field/Planetary Camera (WFPC) images still present useful high-resolution information on M15, the classic candidate for a cluster with a collapsed core. The stars in M15 have been resolved down to the main-sequence turnoff and have been subtracted from the images. The remaining faint, unresolved stars form a diffuse background with a surprisingly large core with r(c) = 0.13 pc. The existence of a large core interior to the power-law cusp may imply that M15 has evolved well past maximum core collapse and may rule out the presence of a massive central black hole as well.

  12. News Quantum physics: German Physical Society spring meeting Journal access: American Physical Society's online journals will be available for free in all US high schools Award: High-school physics teacher receives American award for excellence Teacher training: Fobinet offers coordination of teacher-training activities Astronomy: Astronomy fans see stars at Astrofest Conference: Delegates enjoy the workshops and activities at CPD conference Forthcoming events

    NASA Astrophysics Data System (ADS)

    2011-05-01

    Quantum physics: German Physical Society spring meeting Journal access: American Physical Society's online journals will be available for free in all US high schools Award: High-school physics teacher receives American award for excellence Teacher training: Fobinet offers coordination of teacher-training activities Astronomy: Astronomy fans see stars at Astrofest Conference: Delegates enjoy the workshops and activities at CPD conference Forthcoming events

  13. Habitable zones around main sequence stars

    NASA Technical Reports Server (NTRS)

    Kasting, James F.; Whitmire, Daniel P.; Reynolds, Ray T.

    1993-01-01

    A mechanism for stabilizing climate on the earth and other earthlike planets is described, and the physical processes that define the inner and outer boundaries of the habitable zone (HZ) around the sun and main sequence stars are discussed. Physical constraints on the HZ obtained from Venus and Mars are taken into account. A 1D climate model is used to estimate the width of the HZ and the continuously habitable zone around the sun, and the analysis is extended to other main sequence stars. Whether other stars have planets and where such planets might be located with respect to the HZ is addressed. The implications of the findings for NASA's SETI project are considered.

  14. Semi-physical simulation test for micro CMOS star sensor

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Guang-jun; Jiang, Jie; Fan, Qiao-yun

    2008-03-01

    A designed star sensor must be extensively tested before launching. Testing star sensor requires complicated process with much time and resources input. Even observing sky on the ground is a challenging and time-consuming job, requiring complicated and expensive equipments, suitable time and location, and prone to be interfered by weather. And moreover, not all stars distributed on the sky can be observed by this testing method. Semi-physical simulation in laboratory reduces the testing cost and helps to debug, analyze and evaluate the star sensor system while developing the model. The test system is composed of optical platform, star field simulator, star field simulator computer, star sensor and the central data processing computer. The test system simulates the starlight with high accuracy and good parallelism, and creates static or dynamic image in FOV (Field of View). The conditions of the test are close to observing real sky. With this system, the test of a micro star tracker designed by Beijing University of Aeronautics and Astronautics has been performed successfully. Some indices including full-sky autonomous star identification time, attitude update frequency and attitude precision etc. meet design requirement of the star sensor. Error source of the testing system is also analyzed. It is concluded that the testing system is cost-saving, efficient, and contributes to optimizing the embed arithmetic, shortening the development cycle and improving engineering design processes.

  15. GALEX Grism Spectroscopy of the Globular Cluster Omega Centauri

    NASA Astrophysics Data System (ADS)

    Sweigart, Allen

    We propose to obtain GALEX FUV-only grism spectroscopy of the hot stars in omega Centauri, the most massive globular cluster in our Galaxy. Previous UIT imagery of omega Cen showed that it contains about 2000 hot horizontal branch (HB) stars, and we estimate that GALEX spectra can be obtained for about 500 of these stars in the outer regions of the cluster, including about 50 of the hot ``blue hook'' stars discovered with UIT. The blue hook stars appear to be both hotter (35,000 K) and less luminous in the UIT color-magnitude diagram than predicted by canonical HB models and, indeed, are unexplained by standard evolutionary theory. Brown et al. (2001) have suggested that the blue hook stars are the progeny of stars which mixed their surface hydrogen into their hot He-burning interior during a delayed helium flash subsequent to leaving the red giant branch. This ``flash-mixing'' results in a hot hydrogen-deficient star with a typical surface abundance of 96% He and 4% C by mass. The GALEX spectral region includes the strong lines of C III 1426, 1578 A, C IV 1550 A, and He II 1640 A which will allow this predicted carbon and helium enrichment to be detected. These observations will therefore provide a crucial test of the Brown et al. flash-mixing hypothesis and will determine if flash mixing represents a new evolutionary channel for populating the hot HB. The GALEX spectra will also address other questions concerning the hot HB in omega Cen including (1) the metallicity distribution of HB stars with 9,000 K < Teff < 11,000 K, (2) the effect of radiative levitation on the UV spectra of stars with Teff > 11,000 K, and (3) the origin of the subluminous HB stars found in the UIT photometry with 15,000K < Teff < 30,000 K.

  16. CoRoT-2b: a Tidally Inflated, Young Exoplanet?

    NASA Astrophysics Data System (ADS)

    Guillot, Tristan; Havel, M.

    2009-09-01

    CoRoT-2b is among the most anomalously large transiting exoplanet known. Due to its large mass (3.3 Mjup), its large radius ( 1.5 Rjup) cannot be explained by standard evolution models. Recipes that work for other anomalously large exoplanets (e.g. HD209458b), such as invoking kinetic energy transport in the planetary interior or increased opacities, clearly fail for CoRoT-2b. Interestingly, the planet's parent star is an active star with a large fraction (7 to 20%) of spots and a rapid rotation (4.5 days). We first model the star's evolution to accurately constrain the planetary parameters. We find that the stellar activity has little influence on the star's evolution and inferred parameters. However, stellar evolution models point towards two kind of solutions for the star-planet system: (i) a very young system (20-40 Ma) with a star still undergoing pre-main sequence contraction, and a planet which could have a radius as low as 1.4 Rjup, or (ii) a young main-sequence star (40 to 500 Ma) with a planet that is slightly more inflated ( 1.5 Rjup). In either case, planetary evolution models require a significant added internal energy to explain the inferred planet size: from a minimum of 3x1028 erg/s in case (i), to up to 1.5x1029 erg/s in case (ii). We find that evolution models consistently including planet/star tides are able to reproduce the inferred radius but only for a short period of time ( 10 Ma). This points towards a young age for the star/planet system and dissipation by tides due to either circularization or synchronization of the planet. Additional observations of the star (infrared excess due to disk?) and of the planet (precise Rossiter effect, IR secondary eclispe) would be highly valuable to understand the early evolution of star-exoplanet systems.

  17. A full-spectrum analysis of high-speed train interior noise under multi-physical-field coupling excitations

    NASA Astrophysics Data System (ADS)

    Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie

    2016-06-01

    High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show that the trend of the simulated 1/3 octave band sound pressure spectrum agrees well with that of the on-site-measured one. The deviation between the simulated and measured overall sound pressure level (SPL) is 2.6 dB(A) and well controlled below the engineering tolerance limit, which has validated the SAEF model in the full-spectrum analysis of the high speed train interior noise.

  18. Convective Overshoot in Stellar Interior

    NASA Astrophysics Data System (ADS)

    Zhang, Q. S.

    2015-07-01

    In stellar interiors, the turbulent thermal convection transports matters and energy, and dominates the structure and evolution of stars. The convective overshoot, which results from the non-local convective transport from the convection zone to the radiative zone, is one of the most uncertain and difficult factors in stellar physics at present. The classical method for studying the convective overshoot is the non-local mixing-length theory (NMLT). However, the NMLT bases on phenomenological assumptions, and leads to contradictions, thus the NMLT was criticized in literature. At present, the helioseismic studies have shown that the NMLT cannot satisfy the helioseismic requirements, and have pointed out that only the turbulent convection models (TCMs) can be accepted. In the first part of this thesis, models and derivations of both the NMLT and the TCM were introduced. In the second part, i.e., the work part, the studies on the TCM (theoretical analysis and applications), and the development of a new model of the convective overshoot mixing were described in detail. In the work of theoretical analysis on the TCM, the approximate solution and the asymptotic solution were obtained based on some assumptions. The structure of the overshoot region was discussed. In a large space of the free parameters, the approximate/asymptotic solutions are in good agreement with the numerical results. We found an important result that the scale of the overshoot region in which the thermal energy transport is effective is 1 HK (HK is the scale height of turbulence kinetic energy), which does not depend on the free parameters of the TCM. We applied the TCM and a simple overshoot mixing model in three cases. In the solar case, it was found that the temperature gradient in the overshoot region is in agreement with the helioseismic requirements, and the profiles of the solar lithium abundance, sound speed, and density of the solar models are also improved. In the low-mass stars of open clusters Hyades, Praesepe, NGC6633, NGC752, NGC3680, and M67, using the model and parameter same to the solar case to deal with the convective envelope overshoot mixing, the lithium abundances on the surface of the stellar models were consistent with the observations. In the case of the binary HY Vir, the same model and parameter also make the radii and effective temperatures of HY Vir stars with convective cores be consistent with the observations. Based on the implications of the above results, we found that the simple overshoot mixing model may need to be improved significantly. Motivated by those implications, we established a new model of the overshoot mixing based on the fluid dynamic equations, and worked out the diffusion coefficient of convective mixing. The diffusion coefficient shows different behaviors in convection zone and overshoot region. In the overshoot region, the buoyancy does negative works on flows, thus the fluid flows around the equilibrium location, which leads to a small scale and low efficiency of overshoot mixing. The physical properties are significantly different from the classical NMLT, and consistent with the helioseismic studies and numerical simulations. The new model was tested in stellar evolution, and its parameter was calibrated.

  19. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  20. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Carpenter, K. G.; Schrijver, C. J.; Karovska, M.; Si Vision Mission Team

    2009-09-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a ``Flagship and Landmark Discovery Mission'' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a ``Pathways to Life Observatory'' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) and its ability to image the Biggest, Baddest, Coolest Stars.

  1. A pitfall of piecewise-polytropic equation of state inference

    NASA Astrophysics Data System (ADS)

    Raaijmakers, Geert; Riley, Thomas E.; Watts, Anna L.

    2018-05-01

    The only messenger radiation in the Universe which one can use to statistically probe the Equation of State (EOS) of cold dense matter is that originating from the near-field vicinities of compact stars. Constraining gravitational masses and equatorial radii of rotating compact stars is a major goal for current and future telescope missions, with a primary purpose of constraining the EOS. From a Bayesian perspective it is necessary to carefully discuss prior definition; in this context a complicating issue is that in practice there exist pathologies in the general relativistic mapping between spaces of local (interior source matter) and global (exterior spacetime) parameters. In a companion paper, these issues were raised on a theoretical basis. In this study we reproduce a probability transformation procedure from the literature in order to map a joint posterior distribution of Schwarzschild gravitational masses and radii into a joint posterior distribution of EOS parameters. We demonstrate computationally that EOS parameter inferences are sensitive to the choice to define a prior on a joint space of these masses and radii, instead of on a joint space interior source matter parameters. We focus on the piecewise-polytropic EOS model, which is currently standard in the field of astrophysical dense matter study. We discuss the implications of this issue for the field.

  2. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth; Schrijver, Carolus J.; Karovska, Margarita

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a 'Flagship and Landmark Discovery Mission' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a 'Pathways to Life Observatory' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) its ability to image the 'Biggest, Baddest, Coolest Stars'.

  3. Estrellas asociadas con planetas extrasolares vs. estrellas de tipo β Pictoris

    NASA Astrophysics Data System (ADS)

    Chavero, C.; Gómez, M.

    In this contribution we initially confront physical properties of two groups of stars: the Planet Host Stars and the Vega-like objects. The Planet Host Star group has one or more planet mass object associated and the Vega-like stars have circumstellar disks. We have compiled magnitudes, colors, parallaxes, spectral types, etc. for these objects from the literature and analyzed the distribution of both groups. We find that the samples are very similar in metallicities, ages, and spatial distributions. Our analysis suggests that the circumstellar environments are probably different while the central objects have similar physical properties. This difference may explain, at least in part, why the Planet Host Stars form extra-solar planetary objects such as those detected by the Doppler effect while the Vega-like objects are not commonly associated with these planet-mass bodies.

  4. Future of Ultraviolet Astronomy Based on Six Years of IUE Research

    NASA Technical Reports Server (NTRS)

    Mead, J. M. (Editor); Chapman, R. D. (Editor); Kondo, Y. (Editor)

    1984-01-01

    Physical insights into the various astronomical objects which were studied using the International Ultraviolet Explorer (IUE) satellite. Topics covered included galaxies, cool stars, hot stars, close binaries, variable stars, the interstellar medium, the solar system, and IUE follow-on missions.

  5. Well behaved parametric class of relativistic charged fluid ball in general relativity

    NASA Astrophysics Data System (ADS)

    Pant, Neeraj

    2011-04-01

    The paper presents a class of interior solutions of Einstein-Maxwell field equations of general relativity for a static, spherically symmetric distribution of the charged fluid. This class of solutions describes well behaved charged fluid balls. The class of solutions gives us wide range of parameter K (0≤ K≤42) for which the solution is well behaved hence, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degree of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=2 and X=0.30, the maximum mass of the star comes out to be 4.96 M Θ with linear dimension 34.16 km and central redshift and surface redshift 2.1033 and 0.683 respectively. In absence of the charge we are left behind with the well behaved fourth model of Durgapal (J. Phys., A, Math. Gen. 15:2637, 1982).

  6. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1995-01-01

    These eerie, dark, pillar-like structures are actually columns of cool interstellar hydrogen gas and dust that are also incubators for new stars. The pillars protrude from the interior wall of a dark molecular cloud like stalagmites from the floor of a cavern. They are part of the Eagle Nebula (also called M16), a nearby star-forming region 7,000 light-years away, in the constellation Serpens. The ultraviolet light from hot, massive, newborn stars is responsible for illuminating the convoluted surfaces of the columns and the ghostly streamers of gas boiling away from their surfaces, producing the dramatic visual effects that highlight the three-dimensional nature of the clouds. This image was taken on April 1, 1995 with the Hubble Space Telescope Wide Field Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emissions from singly-ionized sulfur atoms, green shows emissions from hydrogen, and blue shows light emitted by doubly-ionized oxygen atoms.

  7. Strange stars in f( R) theories of gravity in the Palatini formalism

    NASA Astrophysics Data System (ADS)

    Panotopoulos, Grigoris

    2017-05-01

    In the present work we study strange stars in f( R) theories of gravity in the Palatini formalism. We consider two concrete well-known cases, namely the R+R^2/(6 M^2) model as well as the R-μ ^4/R model for two different values of the mass parameter M or μ . We integrate the modified Tolman-Oppenheimer-Volkoff equations numerically, and we show the mass-radius diagram for each model separately. The standard case corresponding to the General Relativity is also shown in the same figure for comparison. Our numerical results show that the interior solution can be vastly different depending on the model and/or the value of the parameter of each model. In addition, our findings imply that (i) for the cosmologically interesting values of the mass scales M,μ the effect of modified gravity on strange stars is negligible, while (ii) for the values predicting an observable effect, the modified gravity models discussed here would be ruled out by their cosmological effects.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, D. T.; Sayre, D. B.; Brune, C. R.

    Stars are giant thermonuclear plasma furnaces that slowly fuse the lighter elements in the universe into heavier elements, releasing energy, and generating the pressure required to prevent collapse. To understand stars, we must rely on nuclear reaction rate data obtained, up to now, under conditions very different from those of stellar cores. Here we show thermonuclear measurements of the 2H(d, n) 3He and 3H(t,2n) 4He S-factors at a range of densities (1.2–16 g cm –3) and temperatures (2.1–5.4 keV) that allow us to test the conditions of the hydrogen-burning phase of main-sequence stars. The relevant conditions are created using inertial-confinementmore » fusion implosions at the National Ignition Facility. Here, our data agree within uncertainty with previous accelerator-based measurements and establish this approach for future experiments to measure other reactions and to test plasma-nuclear effects present in stellar interiors, such as plasma electron screening, directly in the environments where they occur.« less

  9. X-ray Emission from Pre-Main-Sequence Stars - Testing the Solar Analogy

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2000-01-01

    This LTSA award funded my research on the origin of stellar X-ray emission and the validity of the solar-stellar analogy. This research broadly addresses the relevance of our current understanding of solar X-ray physics to the interpretation of X-ray emission from stars in general. During the past five years the emphasis has been on space-based X-ray observations of very young stars in star-forming regions (T Tauri stars and protostars), cool solar-like G stars, and evolved high-mass Wolf-Rayet (WR) stars. These observations were carried out primarily with the ASCA and ROSAT space-based observatories (and most recently with Chandra), supplemented by ground-based observations. This research has focused on the identification of physical processes that are responsible for the high levels of X-ray emission seen in pre-main-sequence (PMS) stars, active cool stars, and WR stars. A related issue is how the X-ray emission of such stars changes over time, both on short timescales of days to years and on evolutionary timescales of millions of years. In the case of the Sun it is known that magnetic fields play a key role in the production of X-rays by confining the coronal plasma in loop-like structures where it is heated to temperatures of several million K. The extent to which the magnetically-confined corona interpretation can be applied to other X-ray emitting stars is the key issue that drives the research summarized here.

  10. A Star on Earth

    ScienceCinema

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2018-02-14

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  11. SPIPS: Spectro-Photo-Interferometry of Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Mérand, Antoine

    2017-10-01

    SPIPS (Spectro-Photo-Interferometry of Pulsating Stars) combines radial velocimetry, interferometry, and photometry to estimate physical parameters of pulsating stars, including presence of infrared excess, color excess, Teff, and ratio distance/p-factor. The global model-based parallax-of-pulsation method is implemented in Python. Derived parameters have a high level of confidence; statistical precision is improved (compared to other methods) due to the large number of data taken into account, accuracy is improved by using consistent physical modeling and reliability of the derived parameters is strengthened by redundancy in the data.

  12. Cooling of Accretion-Heated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  13. Overview of the observations of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Viotti, Roberto

    1993-01-01

    The term Symbiotic stars commonly denotes variable stars whose optical spectra simultaneously present a cool absorption spectrum (typically TiO absorption bands) and emission lines of high ionization energy. This term is now used for the category of variable stars with composite spectrum. The main spectral features of these objects are: (1) the presence of the red continuum typical of a cool star, (2) the rich emission line spectrum, and (3) the UV excess, frequently with the Balmer continuum in emission. In addition to the peculiar spectrum, the very irregular photometric and spectroscopic variability is the major feature of the symbiotic stars. Moreover, the light curve is basic to identify the different phases of activity in a symbiotic star. The physical mechanisms that cause the symbiotic phenomenon and its variety are the focus of this paper. An astronomical phenomenon characterized by a composite stellar spectrum with two apparently conflicting features, and large variability has been observed. Our research set out to find the origin of this behavior and, in particular, to identify and measure the physical mechanism(s) responsible for the observed phenomena.

  14. Chemically-Deduced Star Formation Histories Of Dwarf Galaxies Using Barium

    NASA Astrophysics Data System (ADS)

    Duggan, Gina; Kirby, Evan

    2017-06-01

    Dwarf galaxies offer a unique opportunity to study the competing forces of galaxy evolution. Their simpler history (i.e., small size, fewer major mergers, and lack of active galactic nuclei) enables us to isolate different physical mechanisms more easily. The effects of these mechanisms are imprinted on the galaxy's star formation history. Traditionally, star formation histories are determined from color-magnitude diagrams. However, chemical abundances can increase the precision of this measurement. Here we present a simplistic galactic chemical evolution model to infer the star formation history. Chemical abundances are measured from spectra obtained with Keck/DEIMOS medium-resolution spectroscopy for over a hundred red giant stars from several satellite dwarf spheroidal galaxies and globular clusters. We focus our work on iron and barium abundances because they predominantly trace Type Ia supernovae and asymptotic giant branch stars, respectively. The different timescales of these two nucleosynthetic sources can be used to measure a finely resolved star formation history, especially when combined with existing [α/Fe] measurements. These models will inform the details of early star formation in dwarf galaxies and how it is affected by various physical processes, such as reionization and tidal stripping.

  15. Probing Massive Star Cluster Formation with ALMA

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2015-08-01

    Observationally constraining the physical conditions that give rise to massive star clusters has been a long-standing challenge. Now with the ALMA Observatory coming on-line, we can finally begin to probe the birth environments of massive clusters in a variety of galaxies with sufficient angular resolution. In this talk I will give an overview of ALMA observations of galaxies in which candidate proto-super star cluster molecular clouds have been identified. These new data probe the physical conditions that give rise to super star clusters, providing information on their densities, pressures, and temperatures. In particular, the observations indicate that these clouds may be subject to external pressures of P/k > 108 K cm-3, which is consistent with the prevalence of optically observed adolescent super star clusters in interacting galaxy systems and other high pressure environments. ALMA observations also enable an assessement of the molecular cloud chemical abundances in the regions surrounding super star clusters. Molecular clouds associated with existing super star clusters are strongly correlated with HCO+ emission, but appear to have relatively low ratio of CO/HCO+ emission compared to other clouds, indicating that the super star clusters are impacting the molecular abundances in their vicinity.

  16. INTERIOR VIEW, SALOON FROM THE SOUTHWEST CABINET. THE MIRRORED DOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, SALOON FROM THE SOUTHWEST CABINET. THE MIRRORED DOOR PANELS AND SALOON LIGHT FIXTURES WERE INSTALLED IN 1981, BASED ON PHYSICAL AND DOCUMENTARY EVIDENCE INDICATING THEIR HISTORICAL PRESENCE - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  17. An Archival COS Study of Multi-phase Galactic Outflows and Their Dependence on Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Chisholm, John

    2013-10-01

    Galactic outflows have become vital for understanding galaxy evolution. Outflows have been used to explain the mass-metallicity relation, the star formation history of the universe, and the shape of the baryonic mass function. However, few studies have focused on the basic question of how outflow velocities depend upon the physical properties of their host galaxies. Here we propose an archival project utilizing 52 COS spectra of local star-forming galaxies spanning four decades of star formation rate, and stellar mass. We will preform a self-consistent analysis of trends between galactic properties {star formation rate, stellar mass, specific star formation rate and star formation rate surface density} and outflow velocities measured from interstellar metal absorption lines {e.g., CII 1335}. We will extend this analysis to different gas phases - cold, warm, and hot - to gain a more comprehensive understanding of the physics of multi-phase outflows. The trends we observe will provide insights into the feedback process and will be crucial new benchmarks for simulations.

  18. Astroseismology of neutron stars from gravitational waves in the limit of perfect measurement

    NASA Astrophysics Data System (ADS)

    Suvorov, A. G.

    2018-04-01

    The oscillation spectrum of a perturbed neutron star is intimately related to the physical properties of the star, such as the equation of state. Observing pulsating neutron stars therefore allows one to place constraints on these physical properties. However, it is not obvious exactly how much can be learnt from such measurements. If we observe for long enough, and precisely enough, is it possible to learn everything about the star? A classical result in the theory of spectral geometry states that one cannot uniquely `hear the shape of a drum'. More formally, it is known that an eigenfrequency spectrum may not uniquely correspond to a particular geometry; some `drums' may be indistinguishable from a normal-mode perspective. In contrast, we show that the drum result does not extend to perturbations of simple neutron stars within general relativity - in the case of axial (toroidal) perturbations of static, perfect fluid stars, a quasi-normal mode spectrum uniquely corresponds to a stellar profile. We show in this paper that it is not possible for two neutron stars, with distinct fluid profiles, to oscillate in an identical manner. This result has the information-theoretic consequence that gravitational waves completely encode the properties of any given oscillating star: unique identifications are possible in the limit of perfect measurement.

  19. Surprising dissimilarities in a newly formed pair of `identical twin' stars

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan G.; Mathieu, Robert D.; Cargile, Phillip A.; Aarnio, Alicia N.; Stempels, Eric; Geller, Aaron

    2008-06-01

    The mass and chemical composition of a star are the primary determinants of its basic physical properties-radius, temperature and luminosity-and how those properties evolve with time. Accordingly, two stars born at the same time, from the same natal material and with the same mass, are `identical twins,' and as such might be expected to possess identical physical attributes. We have discovered in the Orion nebula a pair of stellar twins in a newborn binary star system. Each star in the binary has a mass of 0.41+/-0.01 solar masses, identical to within 2per cent. Here we report that these twin stars have surface temperatures differing by ~300K (~10per cent) and luminosities differing by ~50per cent, both at high confidence level. Preliminary results indicate that the stars' radii also differ, by 5-10per cent. These surprising dissimilarities suggest that one of the twins may have been delayed by several hundred thousand years in its formation relative to its sibling. Such a delay could only have been detected in a very young, definitively equal-mass binary system. Our findings reveal cosmic limits on the age synchronization of young binary stars, often used as tests for the age calibrations of star-formation models.

  20. Astroseismology of neutron stars from gravitational waves in the limit of perfect measurement

    NASA Astrophysics Data System (ADS)

    Suvorov, A. G.

    2018-07-01

    The oscillation spectrum of a perturbed neutron star is intimately related to the physical properties of the star, such as the equation of state. Observing pulsating neutron stars therefore allows one to place constraints on these physical properties. However, it is not obvious exactly how much can be learnt from such measurements. If we observe for long enough, and precisely enough, is it possible to learn everything about the star? A classical result in the theory of spectral geometry states that one cannot uniquely `hear the shape of a drum'. More formally, it is known that an eigenfrequency spectrum may not uniquely correspond to a particular geometry; some `drums' may be indistinguishable from a normal-mode perspective. In contrast, we show that the drum result does not extend to perturbations of simple neutron stars within general relativity - in the case of axial (toroidal) perturbations of static, perfect fluid stars, a quasi-normal mode spectrum uniquely corresponds to a stellar profile. We show in this paper that it is not possible for two neutron stars, with distinct fluid profiles, to oscillate in an identical manner. This result has the information-theoretic consequence that gravitational waves completely encode the properties of any given oscillating star: unique identifications are possible in the limit of perfect measurement.

  1. From gas to stars in energetic environments: dense gas clumps in the 30 Doradus region within the Large Magellanic Cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Crystal N.; Meier, David S.; Ott, Jürgen

    2014-09-20

    We present parsec-scale interferometric maps of HCN(1-0) and HCO{sup +}(1-0) emission from dense gas in the star-forming region 30 Doradus, obtained using the Australia Telescope Compact Array. This extreme star-forming region, located in the Large Magellanic Cloud (LMC), is characterized by a very intense ultraviolet ionizing radiation field and sub-solar metallicity, both of which are expected to impact molecular cloud structure. We detect 13 bright, dense clumps within the 30 Doradus-10 giant molecular cloud. Some of the clumps are aligned along a filamentary structure with a characteristic spacing that is consistent with formation via varicose fluid instability. Our analysis showsmore » that the filament is gravitationally unstable and collapsing to form stars. There is a good correlation between HCO{sup +} emission in the filament and signatures of recent star formation activity including H{sub 2}O masers and young stellar objects (YSOs). YSOs seem to continue along the same direction of the filament toward the massive compact star cluster R136 in the southwest. We present detailed comparisons of clump properties (masses, linewidths, and sizes) in 30Dor-10 to those in other star forming regions of the LMC (N159, N113, N105, and N44). Our analysis shows that the 30Dor-10 clumps have similar masses but wider linewidths and similar HCN/HCO{sup +} (1-0) line ratios as clumps detected in other LMC star-forming regions. Our results suggest that the dense molecular gas clumps in the interior of 30Dor-10 are well shielded against the intense ionizing field that is present in the 30 Doradus region.« less

  2. Magnetic Inflation and Stellar Mass. I. Revised Parameters for the Component Stars of the Kepler Low-mass Eclipsing Binary T-Cyg1-12664

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eunkyu; Muirhead, Philip S.; Swift, Jonathan J.

    Several low-mass eclipsing binary stars show larger than expected radii for their measured mass, metallicity, and age. One proposed mechanism for this radius inflation involves inhibited internal convection and starspots caused by strong magnetic fields. One particular eclipsing binary, T-Cyg1-12664, has proven confounding to this scenario. Çakırlı et al. measured a radius for the secondary component that is twice as large as model predictions for stars with the same mass and age, but a primary mass that is consistent with predictions. Iglesias-Marzoa et al. independently measured the radii and masses of the component stars and found that the radius ofmore » the secondary is not in fact inflated with respect to models, but that the primary is, which is consistent with the inhibited convection scenario. However, in their mass determinations, Iglesias-Marzoa et al. lacked independent radial velocity measurements for the secondary component due to the star’s faintness at optical wavelengths. The secondary component is especially interesting, as its purported mass is near the transition from partially convective to a fully convective interior. In this article, we independently determined the masses and radii of the component stars of T-Cyg1-12664 using archival Kepler data and radial velocity measurements of both component stars obtained with IGRINS on the Discovery Channel Telescope and NIRSPEC and HIRES on the Keck Telescopes. We show that neither of the component stars is inflated with respect to models. Our results are broadly consistent with modern stellar evolutionary models for main-sequence M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.« less

  3. The NuSTAR View of the Non-Thermal Emission from PSR J0437-4715

    NASA Technical Reports Server (NTRS)

    Guillot, S.; Kaspi, V. M.; Archibald, R. F.; Bachetti, M.; Flynn, C.; Jankowski, F.; Bailes, M.; Boggs, S.; Christensen, F. E.; Craig, W. W.; hide

    2016-01-01

    We present a hard X-ray Nuclear Spectroscopic Telescope Array (NuSTAR) observation of PSR J0437-4715, the nearest millisecond pulsar. The known pulsations at the apparent pulse period approximately 5.76 ms are observed with a significance of 3.7sigma, at energies up to 20 keV above which the NuSTAR background dominates. We measure a photon index gamma = 1.50 +/- 0.25(90 per cent confidence) for the power-law fit to the non-thermal emission. It had been shown that spectral models with two or three thermal components fit the XMM-Newton spectrum of PSR J0437-4715, depending on the slope of the power-law component, and the amount of absorption of soft X-rays. The new constraint on the high-energy emission provided by NuSTAR removes ambiguities regarding the thermal components of the emission below 3 keV. We performed a simultaneous spectral analysis of the XMM-Newton and NuSTAR data to confirm that three thermal components and a power law are required to fit the 0.3-20 keV emission of PSR J0437-4715. Adding a ROSAT-PSPC spectrum further confirmed this result and allowed us to better constrain the temperatures of the three thermal components. A phase resolved analysis of the NuSTAR data revealed no significant change in the photon index of the high-energy emission. This NuSTAR observation provides further impetus for future observations with the NICER mission (Neutron Star Interior Composition Explorer) whose sensitivity will provide much stricter constraints on the equation of state of nuclear matter by combining model fits to the pulsars phase-folded light curve with the pulsars well-defined mass and distance from radio timing observations.

  4. Colloquium: Astromaterial science and nuclear pasta

    NASA Astrophysics Data System (ADS)

    Caplan, M. E.; Horowitz, C. J.

    2017-10-01

    "Astromaterial science" is defined as the study of materials in astronomical objects that are qualitatively denser than materials on Earth. Astromaterials can have unique properties related to their large density, although they may be organized in ways similar to more conventional materials. By analogy to terrestrial materials, this study of astromaterials is divided into hard and soft and one example of each is discussed. The hard astromaterial discussed here is a crystalline lattice, such as the Coulomb crystals in the interior of cold white dwarfs and in the crust of neutron stars, while the soft astromaterial is nuclear pasta found in the inner crusts of neutron stars. In particular, how molecular dynamics simulations have been used to calculate the properties of astromaterials to interpret observations of white dwarfs and neutron stars is discussed. Coulomb crystals are studied to understand how compact stars freeze. Their incredible strength may make crust "mountains" on rotating neutron stars a source for gravitational waves that the Laser Interferometer Gravitational-Wave Observatory (LIGO) may detect. Nuclear pasta is expected near the base of the neutron star crust at densities of 1014 g /cm3 . Competition between nuclear attraction and Coulomb repulsion rearranges neutrons and protons into complex nonspherical shapes such as sheets (lasagna) or tubes (spaghetti). Semiclassical molecular dynamics simulations of nuclear pasta have been used to study these phases and calculate their transport properties such as neutrino opacity, thermal conductivity, and electrical conductivity. Observations of neutron stars may be sensitive to these properties and can be used to interpret observations of supernova neutrinos, magnetic field decay, and crust cooling of accreting neutron stars. This Colloquium concludes by comparing nuclear pasta shapes with some similar shapes seen in biological systems.

  5. Mass loss from solar-type stars

    NASA Technical Reports Server (NTRS)

    Hartmann, L.

    1985-01-01

    The present picture of mass loss from solar-type (low-mass) stars is described, with special emphasis on winds from pre-main-sequence stars. Attention is given to winds from T Tauri stars and to angular momentum loss. Prospects are good for further advances in our understanding of the powerful mass loss observed from young stars; ultraviolet spectra obtainable with the Space Telescope should provide better estimates of mass loss rates and a clearer picture of physical conditions in the envelopes of these stars. To understand the mass ejection from old, slowly rotating main-sequence stars, we will have to study the sun.

  6. RCW 108: Massive Young Stars Trigger Stellar Birth

    NASA Technical Reports Server (NTRS)

    2008-01-01

    RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars.

    This image is a composite of X-ray data from NASA's Chandra X-ray Observatory (blue) and infrared emission detected by NASA's Spitzer Space Telescope (red and orange). More than 400 X-ray sources were identified in Chandra's observations of RCW 108. About 90 percent of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image.

    The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193.

    Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas clouds in RCW 108 to be compressed, leading to gravitational collapse and the formation of new stars.

  7. SMHASH: Anatomy of the Orphan Stream using RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Hendel, David; Scowcroft, Victoria; Johnston, Kathryn V.; Fardal, Mark A.; van der Marel, Roeland P.; Sohn, Sangmo Tony; Price-Whelan, Adrian M.; Beaton, Rachael L.; Besla, Gurtina; Bono, Giuseppe; Cioni, Maria-Rosa L.; Clementini, Gisella; Cohen, Judith G.; Fabrizio, Michele; Freedman, Wendy L.; Garofalo, Alessia; Grillmair, Carl J.; Kallivayalil, Nitya; Kollmeier, Juna A.; Law, David R.; Madore, Barry F.; Majewski, Steven R.; Marengo, Massimo; Monson, Andrew J.; Neeley, Jillian R.; Nidever, David L.; Pietrzyński, Grzegorz; Seibert, Mark; Sesar, Branimir; Smith, Horace A.; Soszyński, Igor; Udalski, Andrzej

    2018-06-01

    Stellar tidal streams provide an opportunity to study the motion and structure of the disrupting galaxy as well as the gravitational potential of its host. Streams around the Milky Way are especially promising as phase space positions of individual stars will be measured by ongoing or upcoming surveys. Nevertheless, it remains a challenge to accurately assess distances to stars farther than 10 kpc from the Sun, where we have the poorest knowledge of the Galaxy's mass distribution. To address this we present observations of 32 candidate RR Lyrae stars in the Orphan tidal stream taken as part of the Spitzer Merger History and Shape of the Galactic Halo (SMHASH) program. The extremely tight correlation between the periods, luminosities, and metallicities of RR Lyrae variable stars in the Spitzer IRAC 3.6μm band allows the determination of precise distances to individual stars; the median statistical relative distance uncertainty to each RR Lyrae star is 2.5%. By fitting orbits in an example potential we obtain an upper limit on the mass of the Milky Way interior to 60 kpc of 5.6_{-1.1^{+1.2}× 10^{11} M_⊙ }, bringing estimates based on the Orphan Stream in line with those using other tracers. The SMHASH data also resolve the stream in line-of-sight depth, allowing a new perspective on the internal structure of the disrupted dwarf galaxy. Comparing with N-body models we find that the progenitor had an initial dark halo mass of approximately 3.2 × 109 M⊙, placing the Orphan Stream's progenitor amongst the classical dwarf spheroidals.

  8. Out of the Dust, A Planet is Born Artist Concept

    NASA Image and Video Library

    2004-05-27

    In this artist's conception, a possible newfound planet spins through a clearing in a nearby star's dusty, planet-forming disc. This clearing was detected around the star CoKu Tau 4 by NASA's Spitzer Space Telescope. Astronomers believe that an orbiting massive body, like a planet, may have swept away the star's disc material, leaving a central hole. The possible planet is theorized to be at least as massive as Jupiter, and may have a similar appearance to what the giant planets in our own solar system looked like billions of years ago. A graceful ring, much like Saturn's, spins high above the planet's cloudy atmosphere. The ring is formed from countless small orbiting particles of dust and ice, leftovers from the initial gravitational collapse that formed the possible giant planet. If we were to visit a planet like this, we would have a very different view of the universe. The sky, instead of being the familiar dark expanse lit by distant stars, would be dominated by the thick disc of dust that fills this young planetary system. The view looking toward CoKu Tau 4 would be relatively clear, as the dust in the interior of the disc has fallen into the accreting star. A bright band would seem to surround the central star, caused by light scattered back by the dust in the disc. Looking away from CoKu Tau 4, the dusty disc would appear dark, blotting out light from all the stars in the sky except those which lie well above the plane of the disc. http://photojournal.jpl.nasa.gov/catalog/PIA05988

  9. The Ice Cap Zone: A Unique Habitable Zone for Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Levi, Amit

    2018-03-01

    Traditional definitions of the habitable zone assume that habitable planets contain a carbonate-silicate cycle that regulates CO2 between the atmosphere, surface, and the interior. Such theories have been used to cast doubt on the habitability of ocean worlds. However, Levi et al (2017) have recently proposed a mechanism by which CO2 is mobilized between the atmosphere and the interior of an ocean world. At high enough CO2 pressures, sea ice can become enriched in CO2 clathrates and sink after a threshold density is achieved. The presence of subpolar sea ice is of great importance for habitability in ocean worlds. It may moderate the climate and is fundamental in current theories of life formation in diluted environments. Here, we model the Levi et al. mechanism and use latitudinally-dependent non-grey energy balance and single-column radiative-convective models and find that this mechanism may be sustained on ocean worlds that rotate at least 3 times faster than the Earth. We calculate the circumstellar region in which this cycle may operate for G-M-stars (Teff = 2,600-5,800 K), extending from ˜1.23 - 1.65, 0.69 - 0.873, 0.38-0.528 AU, 0.219-0.308 AU, 0.146-0.206 AU, and 0.0428-0.0617 AU for G2, K3, M0, M3, M5, and M8 stars, respectively. However, unless planets are very young and not tidally-locked, our mechanism would be unlikely to apply to stars cooler than a ˜M3. We predict C/O ratios for our atmospheres (˜0.5) that can be verified by the JWST mission.

  10. The ice cap zone: a unique habitable zone for ocean worlds

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Levi, Amit

    2018-07-01

    Traditional definitions of the habitable zone assume that habitable planets contain a carbonate-silicate cycle that regulates CO2 between the atmosphere, surface, and the interior. Such theories have been used to cast doubt on the habitability of ocean worlds. However, Levi et al. have recently proposed a mechanism by which CO2 is mobilized between the atmosphere and the interior of an ocean world. At high enough CO2 pressures, sea ice can become enriched in CO2 clathrates and sink after a threshold density is achieved. The presence of subpolar sea ice is of great importance for habitability in ocean worlds. It may moderate the climate and is fundamental in current theories of life formation in diluted environments. Here, we model the Levi et al. mechanism and use latitudinally dependent non-grey energy balance and single-column radiative-convective climate models and find that this mechanism may be sustained on ocean worlds that rotate at least 3 times faster than the Earth. We calculate the circumstellar region in which this cycle may operate for G-M stars (Teff = 2600-5800 K), extending from ˜1.23-1.65, 0.69-0.954, 0.38-0.528, 0.219-0.308 , 0.146-0.206, and 0.0428-0.0617 au for G2, K2, M0, M3, M5, and M8 stars, respectively. However, unless planets are very young and not tidally locked, our mechanism would be unlikely to apply to stars cooler than a ˜M3. We predict C/O ratios for our atmospheres (˜0.5) that can be verified by the James Webb Space Telescope mission.

  11. A Search for Thorne-Zytkow Objects

    NASA Astrophysics Data System (ADS)

    Levesque, Emily M.; Massey, P.; Morrell, N.; Zytkow, A.

    2014-01-01

    Thorne-Zytkow objects (TZOs) are a theoretical class of star in which a compact neutron star is surrounded by a large, diffuse envelope. Supergiant TZOs are predicted to be almost identical in appearance to red supergiants (RSGs), with their very red colors and cool temperatures placing them at the Hayashi limit on the H-R diagram. The best features that can be used at present to distinguish TZOs from the general RSG population are the unusually strong heavy-element lines present in their spectra. These elements are the unique products of the star's fully convective envelope linking the photosphere with the extraordinarily hot burning region in the vicinity of the neutron star core. The positive detection of a TZO would provide the first direct evidence for a completely new model of stellar interiors, a theoretically predicted fate for massive binary systems, and never-before-seen nucleosynthesis processes that would offer a new channel for heavy-element production in our universe. We recently conducted a high-resolution spectroscopic search for TZOs within our previously-studied samples of RSGs in the Milky Way and Magellanic Clouds. Did we find any? We'll know soon! Come to this talk and find out!

  12. Asteroseismic Diagram for Subgiants and Red Giants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, Ning; Tang, Yanke; Yu, Peng

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ{sub 1}–Δ ν asteroseismic diagram from models ofmore » subgiants and red giants with various masses and metallicities. The relationship ΔΠ{sub 1}–Δ ν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M {sub ⊙}, the ΔΠ{sub 1}–Δ ν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ , which indicate similar evolution states especially for similar mass stars, on the ΔΠ{sub 1}–Δ ν diagram.« less

  13. The Thermal State of KS 1731-260 after 14.5 years in Quiescence

    NASA Astrophysics Data System (ADS)

    Merritt, Rachael L.; Cackett, Edward M.; Brown, Edward F.; Page, Dany; Cumming, Andrew; Degenaar, Nathalie; Deibel, Alex; Homan, Jeroen; Miller, Jon M.; Wijnands, Rudy

    2016-12-01

    Crustal cooling of accretion-heated neutron stars provides insight into the stellar interior of neutron stars. The neutron star X-ray transient, KS 1731-260, was in outburst for 12.5 years before returning to quiescence in 2001. We have monitored the cooling of this source since then through Chandra and XMM-Newton observations. Here we present a 150 ks Chandra observation of KS 1731-260 taken in 2015 August, about 14.5 years into quiescence and 6 years after the previous observation. We find that the neutron star surface temperature is consistent with the previous observation, suggesting that crustal cooling has likely stopped and the crust has reached thermal equilibrium with the core. Using a theoretical crust thermal evolution code, we fit the observed cooling curves and constrain the core temperature (T c = 9.35 ± 0.25 × 107 K), composition (Q {}{imp}={4.4}-0.5+2.2), and level of extra shallow heating required (Q sh = 1.36 ± 0.18 MeV/nucleon). We find that the presence of a low thermal conductivity layer, as expected from nuclear pasta, is not required to fit the cooling curve well, but cannot be excluded either.

  14. The thermal state of KS 1731-260 after 14.5 years in quiescence

    NASA Astrophysics Data System (ADS)

    Merritt, R.; Cackett, E.; Brown, E.; Page, D.; Cumming, A.; Degenaar, N.; Deibel, A.; Homan, J.; Miller, J.; Wijnands, R.

    2017-10-01

    Crustal cooling of accretion-heated neutron stars provides insight into the stellar interior of neutron stars. The neutron star X-ray transient, KS 1731-260, was in outburst for 12.5 years before returning to quiescence in 2001. We have monitored the cooling of this source since then through Chandra and XMM-Newton observations. Here, we present a 150 ks Chandra observation of KS 1731-260 taken in August 2015, about 14.5 years into quiescence, and 6 years after the previous observation. We find that the neutron star surface temperature is consistent with the previous observation, suggesting that crustal cooling has likely stopped and the crust has reached thermal equilibrium with the core. Using a theoretical crust thermal evolution code, we fit the observed cooling curves and constrain the core temperature (T_c = 9.35±0.25×10^7 K), composition (Q_{imp} = 4.4^{+2.2}_{-0.5}) and level of extra shallow heating required (Q_{sh} = 1.36±0.18 MeV/nucleon). We find that the presence of a low thermal conductivity layer, as expected from nuclear pasta, is not required to fit the cooling curve well, but cannot be excluded either.

  15. Influence of Solvent on the Drug-Loading Process of Amphiphilic Nanogel Star Polymers.

    PubMed

    Carr, Amber C; Piunova, Victoria A; Maarof, Hasmerya; Rice, Julia E; Swope, William C

    2018-05-31

    We present an all-atom molecular dynamics study of the effect of a range of organic solvents (dichloromethane, diethyl ether, toluene, methanol, dimethyl sulfoxide, and tetrahydrofuran) on the conformations of a nanogel star polymeric nanoparticle with solvophobic and solvophilic structural elements. These nanoparticles are of particular interest for drug delivery applications. As drug loading generally takes place in an organic solvent, this work serves to provide insight into the factors controlling the early steps of that process. Our work suggests that nanoparticle conformational structure is highly sensitive to the choice of solvent, providing avenues for further study as well as predictions for both computational and experimental explorations of the drug-loading process. Our findings suggest that when used in the drug-loading process, dichloromethane, tetrahydrofuran, and toluene allow for a more extensive and increased drug-loading into the interior of nanogel star polymers of the composition studied here. In contrast, methanol is more likely to support shallow or surface loading and, consequently, faster drug release rates. Finally, diethyl ether should not work in a formulation process since none of the regions of the nanogel star polymer appear to be sufficiently solvated by it.

  16. Physical and Hydraulic Properties at Recently Burned and Long-Unburned Boreal Forest Areas in Interior Alaska, USA

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.; Koch, J. C.; Walvoord, M. A.

    2017-12-01

    Boreal forest regions in interior Alaska, USA are subject to recurring wildfire disturbance and climate shifts. These "press" and "pulse" disturbances impact water, solute, carbon, and energy fluxes, with feedbacks and consequences that are not adequately characterized. The NASA Arctic Boreal Vulnerability Experiment (ABoVE) seeks to understand susceptibility to disturbance in boreal regions. Subsurface physical and hydraulic properties are among the largest uncertainties in cryohydrogeologic modeling aiming to predict impacts of disturbance in Arctic and boreal regions. We address this research gap by characterizing physical and hydraulic properties of soil across a gradient of sites covering disparate soil textures and wildfire disturbance in interior Alaska. Samples were collected in the field within the domain of the NASA ABoVE project and analyzed in the laboratory. Physical properties measured include soil organic matter fraction, soil-particle size distribution, dry bulk density, and saturated soil-water content. Hydraulic properties measured include soil-water retention and field-saturated hydraulic conductivity using tension infiltrometers (-1 cm applied pressure head). The physical and hydraulic properties provide the foundation for site conceptual model development, cryohydrogeologic model parameterization, and integration with geophysical data. This foundation contributes to the NASA ABoVE objectives of understanding the underlying physical processes that control vulnerability in Arctic and Boreal landscapes.

  17. UTILIZING SYNTHETIC UV SPECTRA TO EXPLORE THE PHYSICAL BASIS FOR THE CLASSIFICATION OF LAMBDA BOÖTIS STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kwang-Ping; Johnson, Dustin M.; Tarbell, Erik S.

    2016-04-15

    Lambda Boo-type stars are a group of late B to early F-type Population I dwarfs that show mild to extreme deficiencies of iron-peak elements (up to 2 dex), but their C, N, O, and S abundances are near solar. This intriguing stellar class has recently regained the spotlight because of the directly imaged planets around a confirmed Lambda Boo star, HR 8799, and a suggested Lambda Boo star, Beta Pictoris. The discovery of a giant asteroid belt around Vega, another possible Lambda Boo star, also suggests hidden planets. The possible link between Lambda Boo stars and planet-bearing stars motivates usmore » to study Lambda Boo stars systematically. Since the peculiar nature of the prototype Lambda Boötis was first noticed in 1943, Lambda Boo candidates published in the literature have been selected using widely different criteria. In order to determine the origin of Lambda Boo stars’ unique abundance pattern and to better discriminate between theories explaining the Lambda Boo phenomenon, a consistent working definition of Lambda Boo stars is needed. We have re-evaluated all published Lambda Boo candidates and their available ultraviolet and visible spectra. In this paper, using observed and synthetic spectra, we explore the physical basis for the classification of Lambda Boo stars, and develop quantitative criteria that discriminate metal-poor stars from bona fide Lambda Boo stars. Based on these stricter Lambda Boo classification criteria, we conclude that neither Beta Pictoris nor Vega should be classified as Lambda Boo stars.« less

  18. KEY ISSUES REVIEW: Insights from simulations of star formation

    NASA Astrophysics Data System (ADS)

    Larson, Richard B.

    2007-03-01

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604)

  19. Progress on Magnetism in Massive Stars (MiMeS)

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Alecian, E.; Mathis, S.

    2011-12-01

    We present the MiMeS project, which aims at studying all aspects of magnetism in massive stars to understand their characteristics, origin, incidence, evolution, and impact on other physical processes. We show examples of recent observational results obtained within this project on pulsating B stars (β Cephei and SPB stars) as well as Herbig Ae/Be stars. Recent theoretical progress obtained within MiMeS on the configuration and stability of magnetic fields is also summarized.

  20. Gas and dust from solar metallicity AGB stars

    NASA Astrophysics Data System (ADS)

    Ventura, P.; Karakas, A.; Dell'Agli, F.; García-Hernández, D. A.; Guzman-Ramirez, L.

    2018-04-01

    We study the asymptotic giant branch (AGB) evolution of stars with masses between 1 M⊙and8.5 M⊙. We focus on stars with a solar chemical composition, which allows us to interpret evolved stars in the Galaxy. We present a detailed comparison with models of the same chemistry, calculated with a different evolution code and based on a different set of physical assumptions. We find that stars of mass ≥3.5 M⊙ experience hot bottom burning at the base of the envelope. They have AGB lifetimes shorter than ˜3 × 105 yr and eject into their surroundings gas contaminated by proton-capture nucleosynthesis, at an extent sensitive to the treatment of convection. Low-mass stars with 1.5 M⊙ ≤ M ≤ 3 M⊙ become carbon stars. During the final phases, the C/O ratio grows to ˜3. We find a remarkable agreement between the two codes for the low-mass models and conclude that predictions for the physical and chemical properties of these stars, and the AGB lifetime, are not that sensitive to the modelling of the AGB phase. The dust produced is also dependent on the mass: low-mass stars produce mainly solid carbon and silicon carbide dust, whereas higher mass stars produce silicates and alumina dust. Possible future observations potentially able to add more robustness to the present results are also discussed.

  1. Star Formation in Merging Galaxies Using FIRE

    NASA Astrophysics Data System (ADS)

    Perez, Adrianna; Hung, Chao-Ling; Naiman, Jill; Moreno, Jorge; Hopkins, Philip

    2018-01-01

    Galaxy interactions and mergers are efficient mechanisms to birth stars at rates that are significantly higher than found in our Milky Way galaxy. The Kennicut-Schmidt (KS) relation is an empirical relationship between the star-forming rate and gas surface densities of galaxies (Schmidt 1959; Kennicutt 1998). Although most galaxies follow the KS relation, the high levels of star formation in galaxy mergers places them outside of this otherwise tight relationship. The goal of this research is to analyze the gas content and star formation of simulated merging galaxies. Our work utilizes the Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high-resolution cosmological simulation that resolves star-forming regions and incorporates stellar feedback in a physically realistic way. In this work, we have noticed a significant increase in the star formation rate at first and second passage, when the two black holes of each galaxy approach one other. Next, we will analyze spatially resolved star-forming regions over the course of the interacting system. Then, we can study when and how the rates that gas converts into stars deviate from the standard KS. These analyses will provide important insights into the physical mechanisms that regulate star formation of normal and merging galaxies and valuable theoretical predictions that can be used to compare with current and future observations from ALMA or the James Webb Space Telescope.

  2. The Mathematics of "Star Trek"--An Honors Colloquium

    ERIC Educational Resources Information Center

    Karls, Michael A.

    2011-01-01

    After the success of a course on cryptography for a general audience, based on Simon Singh's "The Code Book" [49], I decided to try again and create a mathematics course for a general audience based on "The Physics of Star Trek" by Lawrence Krauss [32]. This article looks at the challenges of designing a physics-based mathematics course "from…

  3. A Study of the Long Term Behavior of the SX Phe Star KZ Hya1

    NASA Astrophysics Data System (ADS)

    Peña, J. H.; Piña, D. S.; Rentería, A.; Villarreal, C.; Soni, A. A.; Guillen, J.; Calderón, J.

    2018-04-01

    From the newly determined times of maximum light of the SX Phe star KZ Hya and others from the literature, as well as from uvby - β photoelectric photometry, we determined the nature of this star and its physical parameters.

  4. Accurate Ray-tracing of Realistic Neutron Star Atmospheres for Constraining Their Parameters

    NASA Astrophysics Data System (ADS)

    Vincent, Frederic H.; Bejger, Michał; Różańska, Agata; Straub, Odele; Paumard, Thibaut; Fortin, Morgane; Madej, Jerzy; Majczyna, Agnieszka; Gourgoulhon, Eric; Haensel, Paweł; Zdunik, Leszek; Beldycki, Bartosz

    2018-03-01

    Thermal-dominated X-ray spectra of neutron stars in quiescent, transient X-ray binaries and neutron stars that undergo thermonuclear bursts are sensitive to mass and radius. The mass–radius relation of neutron stars depends on the equation of state (EoS) that governs their interior. Constraining this relation accurately is therefore of fundamental importance to understand the nature of dense matter. In this context, we introduce a pipeline to calculate realistic model spectra of rotating neutron stars with hydrogen and helium atmospheres. An arbitrarily fast-rotating neutron star with a given EoS generates the spacetime in which the atmosphere emits radiation. We use the LORENE/NROTSTAR code to compute the spacetime numerically and the ATM24 code to solve the radiative transfer equations self-consistently. Emerging specific intensity spectra are then ray-traced through the neutron star’s spacetime from the atmosphere to a distant observer with the GYOTO code. Here, we present and test our fully relativistic numerical pipeline. To discuss and illustrate the importance of realistic atmosphere models, we compare our model spectra to simpler models like the commonly used isotropic color-corrected blackbody emission. We highlight the importance of considering realistic model-atmosphere spectra together with relativistic ray-tracing to obtain accurate predictions. We also insist upon the crucial impact of the star’s rotation on the observables. Finally, we close a controversy that has been ongoing in the literature in the recent years, regarding the validity of the ATM24 code.

  5. Neutron Skins and Neutron Stars in the Multimessenger Era

    NASA Astrophysics Data System (ADS)

    Fattoyev, F. J.; Piekarewicz, J.; Horowitz, C. J.

    2018-04-01

    The historical first detection of a binary neutron star merger by the LIGO-Virgo Collaboration [B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017), 10.1103/PhysRevLett.119.161101] is providing fundamental new insights into the astrophysical site for the r process and on the nature of dense matter. A set of realistic models of the equation of state (EOS) that yield an accurate description of the properties of finite nuclei, support neutron stars of two solar masses, and provide a Lorentz covariant extrapolation to dense matter are used to confront its predictions against tidal polarizabilities extracted from the gravitational-wave data. Given the sensitivity of the gravitational-wave signal to the underlying EOS, limits on the tidal polarizability inferred from the observation translate into constraints on the neutron-star radius. Based on these constraints, models that predict a stiff symmetry energy, and thus large stellar radii, can be ruled out. Indeed, we deduce an upper limit on the radius of a 1.4 M⊙ neutron star of R⋆1.4<13.76 km . Given the sensitivity of the neutron-skin thickness of Pb 208 to the symmetry energy, albeit at a lower density, we infer a corresponding upper limit of about Rskin208≲0.25 fm . However, if the upcoming PREX-II experiment measures a significantly thicker skin, this may be evidence of a softening of the symmetry energy at high densities—likely indicative of a phase transition in the interior of neutron stars.

  6. Effects of mass variation on structures of differentially rotating polytropic stars

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Saini, Seema; Singh, Kamal Krishan

    2018-07-01

    A method is proposed for determining equilibrium structures and various physical parameters of differentially rotating polytropic models of stars, taking into account the effect of mass variation inside the star and on its equipotential surfaces. The law of differential rotation has been assumed to be the form of ω2(s) =b1 +b2s2 +b3s4 . The proposed method utilizes the averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential to incorporate the effects of differential rotation on the equilibrium structures of polytropic stellar models. Mathematical expressions of determining the equipotential surfaces, volume, surface area and other physical parameters are also obtained under the effects of mass variation inside the stars. Some significant conclusions are also drawn.

  7. Lunar Seismology

    ERIC Educational Resources Information Center

    Latham, Gary V.

    1973-01-01

    Summarizes major findings from the passive seismic experiment on the Moon with the Apollo seismic network illustrated in a map. Concludes that human beings may have discovered something very basic about the physics of planetary interiors because of the affirmation of the presence of a warm'' lunar interior. (CC)

  8. Simulating Shock Triggered Star Formation with AstroBEAR2.0

    NASA Astrophysics Data System (ADS)

    Li, Shule; Frank, Adam; Blackman, Eric

    2013-07-01

    Star formation can be triggered by the compression from shocks running over stable clouds. Triggered star formation is a favored explanation for the traces of SLRI's in our solar system. Previous research has shown that when parameters such as shock speed are within a certain range, the gravitational collapse of otherwise stable, dense cloud cores is possible. However, these studies usually focus on the precursors of star formation, and the conditions for the triggering. We use AstroBEAR2.0 code to simulate the collapse and subsequent evolution of a stable Bonnor-Ebert cloud by an incoming shock. Through our simulations, we show that interesting physics happens when the newly formed star interacts with the cloud residue and the post-shock flow. We identify these interactions as controlled by the initial conditions of the triggering and study the flow pattern as well as the evolution of important physics quantities such as accretion rate and angular momentum.

  9. Planets Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander; Kulkarni, Shrinivas R; Anderson, Stuart B.

    2003-01-01

    The objective of this proposal was to continue investigations of neutron star planetary systems in an effort to describe and understand their origin, orbital dynamics, basic physical properties and their relationship to planets around normal stars. This research represents an important element of the process of constraining the physics of planet formation around various types of stars. The research goals of this project included long-term timing measurements of the planets pulsar, PSR B1257+12, to search for more planets around it and to study the dynamics of the whole system, and sensitive searches for millisecond pulsars to detect further examples of old, rapidly spinning neutron stars with planetary systems. The instrumentation used in our project included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM), the 100-m Green Bank Telescope with the Berkeley- Caltech Pulsar Machine (BCPM), and the 100-m Effelsberg and 64-m Parkes telescopes equipped with the observatory supplied backend hardware.

  10. Topology and symmetry of surface Majorana arcs in cyclic superconductors

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi; Nitta, Muneto

    2018-01-01

    We study the topology and symmetry of surface Majorana arcs in superconductors with nonunitary "cyclic" pairing. Cyclic p -wave pairing may be realized in a cubic or tetrahedral crystal, while it is a candidate for the interior P32 superfluids of neutron stars. The cyclic state is an admixture of full gap and nodal gap with eight Weyl points and the low-energy physics is governed by itinerant Majorana fermions. We here show the evolution of surface states from Majorana cone to Majorana arcs under rotation of surface orientation. The Majorana cone is protected solely by an accidental spin rotation symmetry and fragile against spin-orbit coupling, while the arcs are attributed to two topological invariants: the first Chern number and one-dimensional winding number. Lastly, we discuss how topologically protected surface states inherent to the nonunitary cyclic pairing can be captured from surface probes in candidate compounds, such as U1 -xThxBe13 . We examine tunneling conductance spectra for two competitive scenarios in U1 -xThxBe13 —the degenerate Eu scenario and the accidental scenario.

  11. White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.

    2014-10-01

    White dwarfs are the evolutionary endpoint for nearly 95% of all stars born in our Galaxy, the final stages of evolution of all low- and intermediate mass stars, i.e., main sequence stars with masses below (8.5± 1.5) M_{odot}, depending on metallicity of the progenitor, mass loss and core overshoot. Massive white dwarfs are intrinsically rare objects, tand produce a gap in the determination of the initial vs. final mass relation at the high mass end (e.g. Weidemann 2000 A&A, 363, 647; Kalirai et al. 2008, ApJ, 676, 594; Williams, Bolte & Koester 2009, ApJ, 693, 355). Main sequences stars with higher masses will explode as SNII (Smartt S. 2009 ARA&A, 47, 63), but the limit does depend on the metallicity of the progenitor. Massive white dwarfs are probably SNIa progenitors through accretion or merger. They are rare, being the final product of massive stars (less common) and have smaller radius (less luminous). Kepler et al. 2007 (MNRAS, 375, 1315), Kleinman et al. 2013 (ApJS, 204, 5) estimate only 1-2% white dwarfs have masses above 1 M_{odot}. The final stages of evolution after helium burning are a race between core growth and loss of the H-rich envelope in a stellar wind. When the burning shell is exposed, the star rapidly cools and burning ceases, leaving a white dwarf. As they cool down, the magnetic field freezes in, ranging from a few kilogauss to a gigagauss. Peculiar type Ia SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg suggest progenitors in the range 2.4-2.8 M_{odot}, and Das U. & Mukhopadhyay B. (2012, Phys. Rev. D, 86, 042001) estimate that the Chandrasekhar limit increases to 2.3-2.6 M_{odot} for extremely high magnetic field stars, but differential rotation induced by accretion could also increase it, according to Hachisu I. et al. 2012 (ApJ, 744, 69). García-Berro et al. 2012, ApJ, 749, 25, for example, proposes double degenerate mergers are the progenitors of high-field magnetic white dwarfs. We propose magnetic fields enhance the line broadening in WDs, causing an overestimated surface gravity, and ultimately determine if these magnetic fields are likely developed through the star's own surface convection zone, or inherited from massive Ap/Bp progenitors. We discovered around 20 000 spectroscopic white dwarfs with the Sloan Digital Sky Survey (SDSS), with a corresponding increase in relatively rare varieties of white dwarfs, including the massive ones (Kleinman et al. 2013, ApJS, 204, 5, Kepler et al. 2013, MNRAS, 439, 2934). The mass distributions of the hydrogen-rich (DA) measured from fitting the spectra with model atmospheres calculated using unidimensinal mixing lenght-theory (MLT) shows the average mass (as measured by the surface gravity) increases apparently below 13 000K for DAs (e.g. Bergeron et al. 1991, ApJ, 367, 253; Tremblay et al. 2011, ApJ, 730, 128; Kleinman et al. 2013). Only with the tridimensional (3D) convection calculations of Tremblay et al. 2011 (A&A, 531, L19) and 2013 (A&A, 552, 13; A&A, 557, 7; arXiv 1309.0886) the problem has finally been solved, but the effects of magnetic fields are not included yet in the mass determinations. Pulsating white dwarf stars are used to measure their interior and envelope properties through seismology, and together with the luminosity function of white dwarf stars in clusters and around the Sun are valuable tools for the study of high density physics, and the history of stellar formation.

  12. Water, Methane Depletion, and High-Altitude Condensates in the Atmosphere of the Warm Super-Neptune WASP-107b

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura; Line, Michael; Thorngren, Daniel; Morley, Caroline; Stevenson, Kevin

    2018-01-01

    The super-Neptune exoplanet WASP-107b is an exciting target for atmosphere characterization. It has an unusually large atmospheric scale height and a small, bright host star, raising the possibility of precise constraints on its current nature and formation history. In this talk, I will present the first atmospheric study of WASP-107b, a Hubble Space Telescope measurement of its near-infrared transmission spectrum. We determined the planet's composition with two techniques: atmospheric retrieval based on the transmission spectrum and interior structure modeling based on the observed mass and radius. The interior structure models set a 3σ upper limit on the atmospheric metallicity of 30x solar. The transmission spectrum shows strong evidence for water absorption (6.5σ confidence), and we infer a water abundance consistent with expectations for a solar abundance pattern. On the other hand, methane is depleted relative to expectations (at 3σ confidence), suggesting a low carbon-to-oxygen ratio or high internal heat flux. The water features are smaller than predicted for a cloudless atmosphere, crossing less than one scale height. A thick condensate layer at high altitudes (0.1 - 3 mbar) is needed to match the observations; however, we find that it is challenging for physically motivated cloud and haze models to produce opaque condensates at these pressures. Taken together, these findings serve as an illustration of the diversity and complexity of exoplanet atmospheres. The community can look forward to more such results with the high precision and wide spectral coverage afforded by future observing facilities.

  13. The Impact Of Galactic Environment On Star Formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn

    2016-09-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well@corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=35pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic@scale dynamical processes dominate GMC disruption.

  14. The impact of galactic environment on star formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn; Blanc, Guillermo A.; Schinnerer, Eva; Groves, Brent; Adamo, Angela; Hughes, Annie; Meidt, Sharon; SFNG Collaboration

    2017-01-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well-corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=50pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic-scale dynamical processes dominate GMC disruption.

  15. Absolute densities in exoplanetary systems. Photodynamical modelling of Kepler-138.

    NASA Astrophysics Data System (ADS)

    Almenara, J. M.; Díaz, R. F.; Dorn, C.; Bonfils, X.; Udry, S.

    2018-04-01

    In favourable conditions, the density of transiting planets in multiple systems can be determined from photometry data alone. Dynamical information can be extracted from light curves, providing modelling is done self-consistently, i.e. using a photodynamical model, which simulates the individual photometric observations instead of the more generally used transit times. We apply this methodology to the Kepler-138 planetary system. The derived planetary bulk densities are a factor of two more precise than previous determinations, and we find a discrepancy in the stellar bulk density with respect to a previous study. This leads, in turn, to a discrepancy in the determination of masses and radii of the star and the planets. In particular, we find that interior planet, Kepler-138 b, has a size in between Mars and the Earth. Given our mass and density estimates, we characterize the planetary interiors using a generalized Bayesian inference model. This model allows us to quantify for interior degeneracy and calculate confidence regions of interior parameters such as thicknesses of the core, the mantle, and ocean and gas layers. We find that Kepler-138 b and Kepler-138 d have significantly thick volatile layers, and that the gas layer of Kepler-138 b is likely enriched. On the other hand, Kepler-138 c can be purely rocky.

  16. Absolute densities in exoplanetary systems: photodynamical modelling of Kepler-138

    NASA Astrophysics Data System (ADS)

    Almenara, J. M.; Díaz, R. F.; Dorn, C.; Bonfils, X.; Udry, S.

    2018-07-01

    In favourable conditions, the density of transiting planets in multiple systems can be determined from photometry data alone. Dynamical information can be extracted from light curves, providing modelling is done self-consistently, i.e. using a photodynamical model, which simulates the individual photometric observations instead of the more generally used transit times. We apply this methodology to the Kepler-138 planetary system. The derived planetary bulk densities are a factor of 2 more precise than previous determinations, and we find a discrepancy in the stellar bulk density with respect to a previous study. This leads, in turn, to a discrepancy in the determination of masses and radii of the star and the planets. In particular, we find that interior planet, Kepler-138b, has a size in between Mars and the Earth. Given our mass and density estimates, we characterize the planetary interiors using a generalized Bayesian inference model. This model allows us to quantify for interior degeneracy and calculate confidence regions of interior parameters such as thicknesses of the core, the mantle, and ocean and gas layers. We find that Kepler-138b and Kepler-138 d have significantly thick volatile layers and that the gas layer of Kepler-138b is likely enriched. On the other hand, Kepler-138c can be purely rocky.

  17. Building No. 9975B. Interior view looking north in large main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building No. 9975-B. Interior view looking north in large main room of physical therapy clinic (closed in late 1993). Note windows on both walls. This room was photographed because the entire width of the building was visible. The interiors of all other Medical Attachment Barracks had been partitioned fully into offices and clinics. - Madigan Hospital, Medical Detachment Barracks, Bounded by Wilson & McKinley Avenues & Garfield & Lincoln Streets, Tacoma, Pierce County, WA

  18. Optimal Target Stars in the Search for Life

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Loeb, Abraham

    2018-04-01

    The selection of optimal targets in the search for life represents a highly important strategic issue. In this Letter, we evaluate the benefits of searching for life around a potentially habitable planet orbiting a star of arbitrary mass relative to a similar planet around a Sun-like star. If recent physical arguments implying that the habitability of planets orbiting low-mass stars is selectively suppressed are correct, we find that planets around solar-type stars may represent the optimal targets.

  19. Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune

    NASA Astrophysics Data System (ADS)

    Gaulme, Patrick

    2017-10-01

    For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the K2 observations are the clear detection of the well-known differential rotation of Neptune, measured for the first time through the rotational modulation of its photometry, and the detection of the Sun's oscillations, for the first time in an indirect way in intensity measurements.

  20. Research in astrophysical processes

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin A.

    1994-01-01

    Work completed under this grant is summarized in the following areas:(1) radio pulsar turn on and evaporation of companions in very low mass x-ray binaries and in binary radio pulsar systems; (2) effects of magnetospheric pair production on the radiation from gamma-ray pulsars; (3) radiation transfer in the atmosphere of an illuminated companion star; (4) evaporation of millisecond pulsar companions;(5) formation of planets around pulsars; (6) gamma-ray bursts; (7) quasi-periodic oscillations in low mass x-ray binaries; (8) origin of high mass x-ray binaries, runaway OB stars, and the lower mass cutoff for core collapse supernovae; (9) dynamics of planetary atmospheres; (10) two point closure modeling of stationary, forced turbulence; (11) models for the general circulation of Saturn; and (12) compressible convection in stellar interiors.

  1. NICER ground verification: as-built timing, spectroscopy, and throughout performance of NASA's next X-raytiming astrophysics mission

    NASA Astrophysics Data System (ADS)

    Gendreau, Keith; Arzoumanian, Zaven; NICER Team

    2017-01-01

    The Neutron star Interior Composition Explorer (NICER) Mission of Opportunity will fly to the International Space Station (ISS) in 2017 aboard a SpaceX resupply vehicle. Once installed as an external attached payload, NICER will provide an unprecedented soft X-ray timing spectroscopy capability for neutron stars and other phenomena. In June 2016, the NICER payload was delivered from NASA Goddard Space Flight Center to Cape Canaveral to await launch processing. We present measurements made as part of NICER's preship testing to verify performance of its X-ray Timing Instrument and associated subsystems; these measurements demonstrate that NICER meets or surpasses its design requirements in the areas of photon time-tagging resolution, energy resolution, effective collecting area, and high-rate throughput.

  2. Discovery of a Thorne-Żytkow object candidate in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Levesque, Emily M.; Massey, Philip; Żytkow, Anna N.; Morrell, Nidia

    2015-01-01

    Thorne-Żytkow objects (TŻOs) are a theoretical class of star in which a compact neutron star is surrounded by a large, diffuse envelope. Supergiant TŻOs are predicted to be almost identical in appearance to red supergiants (RSGs), with their very red colors and cool temperatures placing them at the Hayashi limit on the H-R diagram. The only features that can be used at present to distinguish TŻOs from the general RSG population are the unusually strong heavy-element and lithium lines present in their spectra. These elements are the unique products of the stars fully convective envelope linking the photosphere with the extraordinarily hot burning region in the vicinity of the neutron star core. We have recently discovered a TŻO candidate in the Small Magellanic Cloud. It is the first star to display the distinctive chemical profile of anomalous element enhancements thought to be characteristic of TŻOs however, up-to-date models and additional observable predictions (including potential asteroseismological signatures) are required to solidify this discovery. The definitive detection of a TŻO would provide the first direct evidence for a completely new model of stellar interiors, a theoretically predicted fate for massive binary systems, and never-before-seen nucleosynthesis processes that would offer a new channel for heavy-element and lithium production in our universe.

  3. Anelastic Models of Fully-Convective Stars: Differential Rotation, Meridional Circulation and Residual Entropy

    NASA Astrophysics Data System (ADS)

    Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.

    2018-01-01

    Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.

  4. Equatorial Geodesics Around the Magnetars

    NASA Astrophysics Data System (ADS)

    Alfradique, Viviane A. P.; Troconis, Orlenys N.; Negreiros, Rodrigo P.

    Neutron stars manifest themselves as different classes of astrophysical sources that are associated to distinct phenomenology. Here we focus our attention on magnetars (or strongly magnetized neutron stars) that are associated to Soft Gamma Repeaters and Anomalous X-ray Pulsars. The magnetic field on surface of these objects, reaches values greater than 1015 G. Under intense magnetic fields, relativistic effects begin to be decisive for the definition of the structure and evolution of these objects. We are tempted to question ourselves to how strengths fields affect the structure of neutron star. In this work, our objective is study and compare two solutions of Einstein-Maxwell equations: the Bonnor solution, which is an analytical solution that describe the exterior spacetime for a massive compact object which has a magnetic field that is characterize as a dipole field and a complete solution that describe the interior and exterior spacetime for the same source found by numerical methods). For this, we describe the geodesic equations generated by such solutions. Our results show that the orbits generated by the Bonnor solution are the same as described by numerical solution. Also, show that the inclusion of magnetic fields with values up to 1017G in the center of the star does not modify sharply the particle orbits described around this star, so the use of Schwarzschild solution for the description of these orbits is a reasonable approximation.

  5. Common Warm Dust Temperatures Around Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Morales, Farisa; Rieke, George; Werner, Michael; Stapelfeldt, Karl; Bryden, Geoffrey; Su, Kate

    2011-01-01

    We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-KO) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures (∼ 190 K and ∼60 K for the inner and outer dust components, respectively)-slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at ∼ 150 K can deposit particles into an inner/warm belt, where the small grains are heated to dust Temperatures of -190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-KO stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon.

  6. Portent of Heine's Reciprocal Square Root Identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohl, H W

    Precise efforts in theoretical astrophysics are needed to fully understand the mechanisms that govern the structure, stability, dynamics, formation, and evolution of differentially rotating stars. Direct computation of the physical attributes of a star can be facilitated by the use of highly compact azimuthal and separation angle Fourier formulations of the Green's functions for the linear partial differential equations of mathematical physics.

  7. Embedded class solutions compatible for physical compact stars in general relativity

    NASA Astrophysics Data System (ADS)

    Newton Singh, Ksh.; Pant, Neeraj; Tewari, Neeraj; Aria, Anil K.

    2018-05-01

    We have explored a family of new solutions satisfying Einstein's field equations and Karmarkar condition. We have assumed an anisotropic stress-tensor with no net electric charge. Interestingly, the new solutions yield zero values of all the physical quantities for all even integer n > 0. However, for all n >0 (n ≠ even numbers) they yield physically possible solutions. We have tuned the solution for neutron star Vela X-1 so that the solutions matches the observed mass and radius. For the same star we have extensively discussed the behavior of the solutions. The solutions yield a stiffer equation of state for larger values of n since the adiabatic index increases and speed of sound approaches the speed of light. It is also found that the solution is physically possible for Vela X-1 if 1.8 ≤ n < 7 (with n≠ 2,4,6). All the solutions for n ≥ 7 violates the causality condition and all the solutions with 0 < n < 1.8 lead to complex values of transverse sound speed vt. The range of well-behaved n depends on the mass and radius of compact stars.

  8. A new survey of nebulae around Galactic Wolf-Rayet stars in the northern sky

    NASA Technical Reports Server (NTRS)

    Miller, Grant J.; Chu, You-Hua

    1993-01-01

    Interference filter CCD images have been obtained in H-alpha and forbidden O III 5007 A for 62 Wolf-Rayet (W-R) stars, representing a complete survey of nebulae around Galactic W-R stars in the northern sky. We find probable new ring nebulae around W-R stars number 113, 116 and 132, and possible new ring nebulae around W-R stars number 133 and 153. All survey images showing nebulosities around W-R stars are presented in this paper. New physical information is derived from the improved images of known ring nebulae. The absence of ring nebulae around most W-R stars is discussed.

  9. The turbulent formation of stars

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph

    2018-06-01

    How stars are born from clouds of gas is a rich physics problem whose solution will inform our understanding of not just stars but also planets, galaxies, and the universe itself. Star formation is stupendously inefficient. Take the Milky Way. Our galaxy contains about a billion solar masses of fresh gas available to form stars-and yet it produces only one solar mass of new stars a year. Accounting for that inefficiency is one of the biggest challenges of modern astrophysics. Why should we care about star formation? Because the process powers the evolution of galaxies and sets the initial conditions for planet formation and thus, ultimately, for life.

  10. Do All O Stars Form in Star Clusters?

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  11. High resolution of fast-rotating stars across the H-R diagram: photosphere and circumstellar environment

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, Armando

    2014-12-01

    Rotation is a fundamental parameter that governs the physical structure and evolution of stars, for example by generating internal circulations of matter and angular momentum, which in turn change the stellar lifetime. Massive stars (spectral types OBA) are those presenting the highest rotation velocities and thus those for which the consequences of rotation are the strongest. On the external layers of the star, fast-rotation induces in particular (1) a flattening (equatorial radius higher than the polar radius) and (2) a gravity darkening (non-uniform distribution of flux, and thus effective temperature, between the poles and the equator). This important modification in the photospheric physical structure can also drive an anisotropic (axisymmetric) mass and angular momentum loss, originating for example the complex circumstellar environments around Be and supergiant B[e] stars. The techniques of high angular and high spectral resolution allow a detailed study of the effects of rotation on the stellar photosphere and circumstellar environment across the H-R diagram. Thanks to these techniques, and in particular to the optical/infrared long-baseline interferometry, our knowledge on the impact of rotation in stellar physics was highly deepened since the beginning of the XXI century. The results described in this Habilitation Thesis are placed in this context and are the fruit a double approach combining both (1) observation, mainly with the ESO-VLT(I) instruments (e.g. NACO, VISIR, MIDI, AMBER, PIONIER) and (2) astrophysical modeling with different codes, including also radiation transfer (CHARRON, HDUST, FRACS). I present, in particular, the results obtained on three fast-rotating stars: Altair (A7V; delta Scuti), Achernar (B6Ve; Be star), and CPD-57° 2874 (supergiant B[e] star).

  12. The Drifting Star

    NASA Astrophysics Data System (ADS)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its temperature is 6150 K, its mass is 1.25 times that of the Sun, and its age is 625 million years. Moreover, the star is found to be more metal-rich than the Sun by about 50%. ESO PR Photo 09b/08 ESO PR Photo 09b/08 Constellations "These results show the power of asteroseismology when using a very precise instrument such as HARPS," says Vauclair. "It also shows that Iota Horologii has the same metal abundance and age as the Hyades cluster and this cannot be a coincidence." The Hyades is an ensemble of stars that is seen with the unaided eye in the Northern constellation Taurus ("The Bull"). This open cluster, located 151 light-years away, contains stars that were formed together 625 million years ago. The star Iota Horologii must have thus formed together with the stars of the Hyades cluster but must have slowly drifted away, being presently more than 130 light-years away from its original birthplace. This is an important result to understand how stars move on the galactic highways of the Milky Way. This also means that the amount of metals present in the star is due to the original cloud from which it formed and not because it engulfed planetary material. "The chicken and egg question of whether the star got planets because it is metal-rich, or whether it is metal-rich because it made planets that were swallowed up is at least answered in one case," says Vauclair. More information The astronomers' study is being published as a Letter to the Editor in Astronomy and Astrophysics ("The exoplanet-host star iota Horologii: an evaporated member of the primordial Hyades cluster", by S. Vauclair et al.). The team is composed of Sylvie Vauclair, Marion Laymand, Gérard Vauclair, Alain Hui Bon Hoa, and Stéphane Charpinet (LATT, Toulouse, France), François Bouchy (IAP, Paris, France), and Michaël Bazot (University of Porto, Portugal).

  13. Physics of Cool Stars: Densities, Sizes, and Energetics

    NASA Technical Reports Server (NTRS)

    Dupree, Andrea K.

    2001-01-01

    The ORFEUS 1 (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer) telescope obtained far ultraviolet spectra (lambda-lambda 912-1218) of luminous cool stars as a part of our observing program. Two classes of objects were measured: luminous single stars beta Dra (HD 159181) and two hybrid stars alpha Aqr (HD 209750) and alpha TrA (HD 150798) and two active binary systems: 44i Boo and UX Ari.

  14. Jets from Merging Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially radiated away in gravitational waves, the hypermassive neutron star loses its support and collapses to a black hole.Plasma velocities turn around (51.5 ms)Initially the plasma was falling inward, but as the disk of neutron-star debris is accreted onto the black hole, energy is released. This turns the plasma near the black hole poles around and flings it outward.Magnetic field forms a helical funnel (62.5 ms)The fields near the poles of the black hole amplify as they are wound around, creating a funnel that provides the wall of the jet.Jet outflow extends to heights greater than 445 km (64.5 ms)The disk is all accreted and, since the fuel is exhausted, the outflow shuts off (within 100ms)Neutron-Star SuccessPlot showing the gravitational wave signature for one of the authors simulations. The moments of merger of the neutron stars and collapse to a black hole are marked. [Adapted from Ruiz et al. 2016]These simulations show that no initial black hole is needed to launch outflows; a merger of two neutron stars can result in an sGRB-like jet. Another interesting result is that the magnetic field configuration doesnt affect the formation of a jet: neutron stars with magnetic fields confined to their interiors launch jets as effectively as those with pulsar-like magnetic fields. The accretion timescale for both cases is consistent with the duration of an sGRB.While this simulation models milliseconds of real time, its enormously computationally challenging and takes months to simulate. The successes of this simulation represent exciting advances in numerical relativity, as well as in our understanding of the electromagnetic counterparts that may accompany gravitational waves.BonusCheck out this awesome video of the authors simulations. The colors differentiate the plasma density and the white lines depict the pulsar-like magnetic field that initially threads the two merging neutron stars. Watch as the neutron stars evolve through the different stages outlined above, eventually forming a black hole and launching a powerful jet.[Simulations and visualization by M. Ruiz, R. Lang, V. Paschalidis, S. Shapiro and the Illinois Relativity Group REU team: S. Connelly, C. Fan, A. Khan, and P. Wongsutthikoson]CitationMilton Ruiz et al 2016 ApJ 824 L6. doi:10.3847/2041-8205/824/1/L6

  15. Self-consistent semi-analytic models of the first stars

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2018-04-01

    We have developed a semi-analytic framework to model the large-scale evolution of the first Population III (Pop III) stars and the transition to metal-enriched star formation. Our model follows dark matter haloes from cosmological N-body simulations, utilizing their individual merger histories and three-dimensional positions, and applies physically motivated prescriptions for star formation and feedback from Lyman-Werner (LW) radiation, hydrogen ionizing radiation, and external metal enrichment due to supernovae winds. This method is intended to complement analytic studies, which do not include clustering or individual merger histories, and hydrodynamical cosmological simulations, which include detailed physics, but are computationally expensive and have limited dynamic range. Utilizing this technique, we compute the cumulative Pop III and metal-enriched star formation rate density (SFRD) as a function of redshift at z ≥ 20. We find that varying the model parameters leads to significant qualitative changes in the global star formation history. The Pop III star formation efficiency and the delay time between Pop III and subsequent metal-enriched star formation are found to have the largest impact. The effect of clustering (i.e. including the three-dimensional positions of individual haloes) on various feedback mechanisms is also investigated. The impact of clustering on LW and ionization feedback is found to be relatively mild in our fiducial model, but can be larger if external metal enrichment can promote metal-enriched star formation over large distances.

  16. STAR FORMATION AT Z = 2.481 IN THE LENSED GALAXY SDSS J1110+6459: STAR FORMATION DOWN TO 30 PARSEC SCALES.

    PubMed

    Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T

    2017-07-10

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r <100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z ∼ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.

  17. Starless Clumps and the Earliest Phases of High-mass Star Formation in the Milky Way

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian

    2018-01-01

    High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I report on observational studies of dense starless clump candidates (SCCs) that show no signatures of star formation activity. I identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyze their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, I study the 12 most high-mass SCCs within 5 kpc using ALMA. I report previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation effeciency in this sample, these observational facts are consistent with models where high-mass stars form from intially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump.

  18. The past, present and future of pulsars

    NASA Astrophysics Data System (ADS)

    Bell Burnell, Jocelyn

    2017-12-01

    On the 50th anniversary of the accidental discovery of pulsars (pulsating radio stars, also known as neutron stars) I reflect on the process of their detection and how our understanding of these stars gradually grew. Fifty years on, we have a much better (but still incomplete) understanding of these extreme objects, which I summarize here. The study of pulsars is advancing several areas of fundamental physics, including general relativity, particle physics, condensed-matter physics, and radiation processes in extreme electric and magnetic fields. New observational facilities coming online in the radio regime (such as the Five hundred meter Aperture Spherical Telescope and the Square Kilometre Array precursors) will revolutionize the search for pulsars by accessing thousands more, thus ushering in a new era of discovery for the field.

  19. 36 CFR 14.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....2 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Rights-of-Way: General § 14.2 Definitions. (a) Secretary means the Secretary of the Interior. (b... representative. (e) Project means the physical structures in connection with which the right-of-way is approved...

  20. New insight into the physics of atmospheres of early type stars

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.

    1981-01-01

    The phenomenon of mass loss and stellar winds from hot stars are discussed. The mass loss rate of early type stars increases by about a factor of 100 to 1000 during their evolution. This seems incompatible with the radiation driven wind models and may require another explanation for the mass loss from early type stars. The winds of early type stars are strongly variable and the stars may go through active phases. Eclipses in binary systems by the stellar winds can be used to probe the winds. A few future IUE studies are suggested.

  1. Study of Molecular Clouds, Variable Stars and Related Topics at NUU and UBAI

    NASA Astrophysics Data System (ADS)

    Hojaev, A. S.

    2017-07-01

    The search of young PMS stars made by our team at Maidanak, Lulin and Beijing observatories, especially in NGC 6820/23 area, as well as monitoring of a sample of open clusters will be described and results will be presented. We consider physical conditions in different star forming regions, particularly in TDC and around Vul OB1, estimate SFE and SFR, energy balance and instability processes in these regions. We also reviewed all data on molecular clouds in the Galaxy and in other galaxies where the clouds were observed to prepare general catalog of molecular clouds, to study physical conditions, unsteadiness and possible star formation in them, the formation and evolution of molecular cloud systems, to analyze their role in formation of different types of galaxies and structural features therein.

  2. Self-relevant beauty evaluation: Evidence from an event-related potentials study.

    PubMed

    Kong, Fanchang; Zhang, Yan; Tian, Yuan; Fan, Cuiying; Zhou, Zongkui

    2015-03-01

    This study examines the electrophysiological correlates of beauty evaluation when participants performed the self-reference task. About 13 (7 men, 6 women) undergraduates participated in the experiment using event-related potentials. Results showed that the response to self-relevant information was faster compared to other-relevant information and no significant differences for self-relevant relative to mother-relevant information were observed. Both physical and interior beauty words for self-relevant information showed an enhanced late positive component as compared to other-relevant information. Physical beauty for self-relevant information yielded a larger late positive component in contrast to mother-relevant information but not for interior beauty. This study indicates that beauty is specific to the person who judges it though an individual and one's mother may hold similar views of interior beauty.

  3. Deriving physical parameters of unresolved star clusters. V. M 31 PHAT star clusters

    NASA Astrophysics Data System (ADS)

    de Meulenaer, P.; Stonkutė, R.; Vansevičius, V.

    2017-06-01

    Context. This study is the fifth of a series that investigates the degeneracy and stochasticity problems present in the determination of physical parameters such as age, mass, extinction, and metallicity of partially resolved or unresolved star cluster populations in external galaxies when using HST broad-band photometry. Aims: In this work we aim to derive parameters of star clusters using models with fixed and free metallicity based on the HST WFC3+ACS photometric system. The method is applied to derive parameters of a subsample of 1363 star clusters in the Andromeda galaxy observed with the HST. Methods: Following Paper III, we derive the star cluster parameters using a large grid of stochastic models that are compared to the six observed integrated broad-band WFC3+ACS magnitudes of star clusters. Results: We show that the age, mass, and extinction of the M 31 star clusters, derived assuming fixed solar metallicity, are in agreement with previous studies. We also demonstrate the ability of the WFC3+ACS photometric system to derive metallicity of star clusters older than 1 Gyr. We show that the metallicity derived using broad-band photometry of 36 massive M 31 star clusters is in good agreement with the metallicity derived using spectroscopy. Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A112

  4. The HEASARC in 2016: 25 Years and Counting

    NASA Astrophysics Data System (ADS)

    Drake, Stephen Alan; Smale, Alan P.

    2016-04-01

    The High Energy Astrophysics Archival Research Center or HEASARC (http://heasarc.gsfc.nasa.gov/) has been the NASA astrophysics discipline archive supporting multi-mission cosmic X-ray and gamma-ray astronomy research for 25 years, and, through its LAMBDA (Legacy Archive for Microwave Background Data Analysis: http://lambda.gsfc.nasa.gov/) component, the archive for cosmic microwave background data for the last 8 years. The HEASARC is the designated archive which supports NASA's Physics of the Cosmos theme (http://pcos.gsfc.nasa.gov/).The HEASARC provides a unified archive and software structure aimed both at 'legacy' high-energy missions such as Einstein, EXOSAT, ROSAT, RXTE, and Suzaku, contemporary missions such as Fermi, Swift, XMM-Newton, Chandra, NuSTAR, etc., and upcoming missions, such as Astro-H and NICER. The HEASARC's high-energy astronomy archive has grown so that it presently contains more than 80 terabytes (TB) of data from 30 past and present orbital missions. The user community downloaded 160 TB of high-energy data from the HEASARC last year, i.e., an amount equivalent to twice the size of the archive.We discuss some of the upcoming new initiatives and developments for the HEASARC, including the arrival of public data from the JAXA/NASA Astro-H mission, expected to have been launched in February 2016, and the NASA mission of opportunity Neutron Star Interior Composition Explorer (NICER), expected to be deployed in late summer 2016. We also highlight some of the new software and web initiatives of the HEASARC, and discuss our plans for the next 3 years.

  5. Differential rotation in solar-like stars from global simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, G.; Kosovichev, A. G.; Smolarkiewicz, P. K.

    2013-12-20

    To explore the physics of large-scale flows in solar-like stars, we perform three-dimensional anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridionalmore » cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a sub-adiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear similar to the solar tachocline. Similarly, enhanced super-adiabaticity at the top results in a near-surface shear layer located mainly at lower latitudes. The models reveal a latitudinal entropy gradient localized at the base of the convection zone and in the stable region, which, however, does not propagate across the convection zone. In consequence, baroclinicity effects remain small, and the rotation isocontours align in cylinders along the rotation axis. Our results confirm the alignment of large convective cells along the rotation axis in the deep convection zone and suggest that such 'banana-cell' pattern can be hidden beneath the supergranulation layer.« less

  6. Exo-Mercury Analogues and the Roche Limit for Close-Orbiting Rocky Planets

    NASA Astrophysics Data System (ADS)

    Rogers, Leslie A.; Price, Ellen

    2015-12-01

    The origin of Mercury's enhanced iron content is a matter of ongoing debate. The characterization of rocky exoplanets promises to provide new independent insights on this topic, by constraining the occurrence rate and physical and orbital properties of iron-enhanced planets orbiting distant stars. The ultra-short-period transiting planet candidate KOI-1843.03 (0.6 Earth-radius, 4.245 hour orbital period, 0.46 Solar-mass host star) represents the first exo-Mercury planet candidate ever identified. For KOI-1843.03 to have avoided tidal disruption on such a short orbit, Rappaport et al. (2013) estimate that it must have a mean density of at least 7g/cc and be at least as iron rich as Mercury. This density lower-limit, however, relies upon interpolating the Roche limits of single-component polytrope models, which do not accurately capture the density profiles of >1000 km differentiated rocky bodies. A more exact calculation of the Roche limit for the case of rocky planets of arbitrary composition and central concentration is needed. We present 3D interior structure simulations of ultra-short-period tidally distorted rocky exoplanets, calculated using a modified version of Hachisu’s self-consistent field method and realistic equations of state for silicates and iron. We derive the Roche limits of rocky planets as a function of mass and composition, and refine the composition constraints on KOI-1843.03. We conclude by discussing the implications of our simulations for the eventual characterization of short-period transiting planets discovered by K2, TESS, CHEOPS and PLATO.

  7. Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243

    NASA Astrophysics Data System (ADS)

    Cidale, L. S.; Borges Fernandes, M.; Andruchow, I.; Arias, M. L.; Kraus, M.; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W. J.; Muratore, M. F.

    2012-12-01

    Context. The formation and evolution of gas and dust environments around B[e] supergiants are still open issues. Aims: We intend to study the geometry, kinematics and physical structure of the circumstellar environment (CE) of the B[e] supergiant CPD-52 9243 to provide further insights into the underlying mechanism causing the B[e] phenomenon. Methods: The influence of the different physical mechanisms acting on the CE (radiation pressure, rotation, bi-stability or tidal forces) is somehow reflected in the shape and kinematic properties of the gas and dust regions (flaring, Keplerian, accretion or outflowing disks). To investigate these processes we mainly used quasi-simultaneous observations taken with high spatial resolution optical long-baseline interferometry (VLTI/MIDI), near-IR spectroscopy of CO bandhead features (Gemini/Phoenix and VLT/CRIRES) and optical spectra (CASLEO/REOSC). Results: High angular resolution interferometric measurements obtained with VLTI/MIDI provide strong support for the presence of a dusty disk(ring)-like structure around CPD-52 9243, with an upper limit for its inner edge of ~8 mas (~27.5 AU, considering a distance of 3.44 kpc to the star). The disk has an inclination angle with respect to the line of sight of 46 ± 7°. The study of CO first overtone bandhead evidences a disk structure in Keplerian rotation. The optical spectrum indicates a rapid outflow in the polar direction. Conclusions: The IR emission (CO and warm dust) indicates Keplerian rotation in a circumstellar disk while the optical line transitions of various species are consistent with a polar wind. Both structures appear simultaneously and provide further evidence for the proposed paradigms of the mass-loss in supergiant B[e] stars. The presence of a detached cold CO ring around CPD-52 9243 could be due to a truncation of the inner disk caused by a companion, located possibly interior to the disk rim, clearing the center of the system. More spectroscopic and interferometric data are necessary to determine a possible binary nature of the star. Based on observations taken with: 1) Telescopes at Paranal ESO Observatory under the program 085.D-0454 and 385.D-0513A; 2) Gemini South/Phoenix instrument, science program GS-2010A-Q-41; 3) J. Sahade Telescope at Complejo Astronómico El Leoncito (CASLEO), operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, the Secretaría de Ciencia y Tecnología de la Nación and the National Universities of La Plata, Córdoba and San Juan.

  8. The national ignition facility high-energy ultraviolet laser system

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2004-09-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500 TW, ultraviolet laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10 8 K and 10 11 Bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. The first four beams of the NIF laser system have generated 106 kJ of infrared light and over 10 kJ at the third harmonic (351 nm). NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This paper provides a detailed look the NIF laser systems, the significant laser and optical systems breakthroughs that were developed, the results of recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.

  9. Molecular Astrophysics from Space: the Physical and Chemical Effects of Star Formation and the Destruction of Planetary Systems around Evolved Stars

    NASA Technical Reports Server (NTRS)

    Neufeld, David

    2005-01-01

    The research conducted during the reporting period is grouped into three sections: 1) Warm molecular gas in the interstellar medium (ISM); 2) Absorption line studies of "cold" molecular clouds; 3) Vaporization of comets around the AGB star IRC+10216.

  10. THREE FUNDAMENTAL PERIODS IN AN 87 YEAR LIGHT CURVE OF THE SYMBIOTIC STAR MWC 560

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leibowitz, Elia M.; Formiggini, Liliana, E-mail: elia@astro.tau.ac.il

    2015-08-15

    We construct a visual light curve of the symbiotic star MWC covering the last 87 years of its history. The data were assembled from the literature and from the AAVSO data bank. Most of the periodic components of the system brightness variation can be accounted for by the operation of three basic clocks of the periods P1 = 19,000 days, P2 = 1943 days, and P3 = 722 days. These periods can plausibly, and consistently with the observations, be attributed to three physical mechanisms in the system: the working of a solar-like magnetic dynamo cycle in the outer layers ofmore » the giant star of the system, the binary orbit cycle, and the sidereal rotation cycle of the giant star. MWC 560 is the seventh symbiotic star with historical light curves that reveal similar basic characteristics of the systems. The light curves of all these stars are well interpreted on the basis of the current understanding of the physical processes that are the major sources of the optical luminosity of these symbiotic systems.« less

  11. The d*(2380) in Neutron Stars - A New Degree of Freedom?

    NASA Astrophysics Data System (ADS)

    Vidaña, I.; Bashkanov, M.; Watts, D. P.; Pastore, A.

    2018-06-01

    Elucidating the appropriate microscopic degrees of freedom within neutron stars remains an open question which impacts nuclear physics, particle physics and astrophysics. The recent discovery of the first non-trivial dibaryon, the d* (2380), provides a new candidate for an exotic degree of freedom in the nuclear equation of state at high matter densities. In this paper a first calculation of the role of the d* (2380) in neutron stars is performed based on a relativistic mean field description of the nucleonic degrees of freedom supplemented by a free boson gas of d* (2380). The calculations indicate that the d* (2380) would appear at densities around three times normal nuclear matter saturation density and comprise around 20% of the matter in the centre of heavy stars with higher fractions possible in the higher densities of merger processes. The d* (2380) would also reduce the maximum star mass by around 15% and have significant influence on the fractional proton/neutron composition. New possibilities for neutron star cooling mechanisms arising from the d* (2380) are also predicted.

  12. Science in Science Fiction.

    ERIC Educational Resources Information Center

    Allday, Jonathan

    2003-01-01

    Offers some suggestions as to how science fiction, especially television science fiction programs such as "Star Trek" and "Star Wars", can be drawn into physics lessons to illuminate some interesting issues. (Author/KHR)

  13. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  14. Why I-Love-Q: Explaining why universality emerges in compact objects

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Stein, Leo C.; Pappas, George; Yunes, Nicolás; Apostolatos, Theocharis A.

    2014-09-01

    Black holes are said to have no hair because all of their multipole moments can be expressed in terms of just their mass, charge and spin angular momentum. The recent discovery of approximately equation-of-state-independent relations among certain multipole moments in neutron stars suggests that they are also approximately bald. We here explore the yet unknown origin for this universality. First, we investigate which region of the neutron star's interior and of the equation of state is most responsible for the universality. We find that the universal relation between the moment of inertia and the quadrupole moment is dominated by the star's outer core, a shell of width 50%-95% of the total radius, which corresponds to the density range 1014-1015 g/cm3. In this range, realistic neutron star equations of state are not sufficiently similar to each other to explain the universality observed. Second, we study the impact on the universality of approximating stellar isodensity contours as self-similar ellipsoids. An analytical calculation in the nonrelativistic limit reveals that the shape of the ellipsoids per se does not affect the universal relations much, but relaxing the self-similarity assumption can completely destroy it. Third, we investigate the eccentricity profiles of rotating relativistic stars and find that the stellar eccentricity is roughly constant, with variations of roughly 20%-30% in the region that matters to the universal relations. Fourth, we repeat the above analysis for differentially rotating, noncompact, regular stars and find that this time the eccentricity is not constant, with variations that easily exceed 100%, and moreover universality is lost. These findings suggest that universality arises as an emergent approximate symmetry: as one flows in the stellar-structure phase space from noncompact star region to the relativistic star region, the eccentricity variation inside stars decreases, leading to approximate self-similarity in their isodensity contours, which then leads to the universal behavior observed in their exterior multipole moments.

  15. The Evolution and Physical Parameters of WN3/O3s: A New Type of Wolf–Rayet Star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugent, Kathryn F.; Massey, Philip; Hillier, D. John

    As part of a search for Wolf–Rayet (WR) stars in the Magellanic Clouds, we have discovered a new type of WR star in the Large Magellanic Cloud (LMC). These stars have both strong emission lines, as well as He ii and Balmer absorption lines and spectroscopically resemble a WN3 and O3V binary pair. However, they are visually too faint to be WN3+O3V binary systems. We have found nine of these WN3/O3s, making up ∼6% of the population of LMC WRs. Using cmfgen, we have successfully modeled their spectra as single stars and have compared the physical parameters with those ofmore » more typical LMC WNs. Their temperatures are around 100,000 K, a bit hotter than the majority of WN stars (by around 10,000 K), though a few hotter WNs are known. The abundances are what you would expect for CNO equilibrium. However, most anomalous are their mass-loss rates, which are more like that of an O-type star than a WN star. While their evolutionary status is uncertain, their low mass-loss rates and wind velocities suggest that they are not products of homogeneous evolution. It is possible instead that these stars represent an intermediate stage between O stars and WNs. Since WN3/O3 stars are unknown in the Milky Way, we suspect that their formation depends upon metallicity, and we are investigating this further by a deep survey in M33, which possesses a metallicity gradient.« less

  16. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1983-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. Previously announced in STAR as N80-25055

  17. Modeling of exoplanets interiors in the framework of future space missions

    NASA Astrophysics Data System (ADS)

    Brugger, B.; Mousis, O.; Deleuil, M.

    2017-12-01

    Probing the interior of exoplanets with known masses and radii is possible via the use of models of internal structure. Here we present a model able to handle various planetary compositions, from terrestrial bodies to ocean worlds or carbon-rich planets, and its application to the case of CoRoT-7b. Using the elemental abundances of an exoplanet’s host star, we significantly reduce the degeneracy limiting such models. This further constrains the type and state of material present at the surface, and helps estimating the composition of a secondary atmosphere that could form in these conditions through potential outgassing. Upcoming space missions dedicated to exoplanet characterization, such as PLATO, will provide accurate fundamental parameters of Earth-like planets orbiting in the habitable zone, for which our model is well adapted.

  18. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  19. Flash Mixing on the White-Dwarf Cooling Curve: Understanding Hot Horizontal Branch Anomalies in NGC 2808

    NASA Technical Reports Server (NTRS)

    Brown, Thomas M.; Sweigart, Allen V.; Lanz, Thierry; Landsman, Wayne B.; Hubeny, Ivan; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present an ultraviolet color-magnitude diagram (CMD) spanning the hot horizontal branch (HB), blue straggler, and white dwarf populations of the globular cluster NGC 2808. These data, obtained with the Space Telescope Imaging Spectrograph (STIS), demonstrate that NGC 2808 harbors a significant population of hot subluminous HB stars, an anomaly only previously reported for the globular cluster omega Cen. Our theoretical modeling indicates that the location of these subluminous stars in the CMD, as well as the high temperature gap along the HB of NGC 2808, can be explained if these stars underwent a late helium-core flash while descending the white dwarf cooling curve. We show that the convective zone produced by such a late helium flash will penetrate into the hydrogen envelope, thereby mixing hydrogen into the hot helium-burning interior, where it is rapidly consumed. This phenomenon is analogous to the "born again" scenario for producing hydrogen-deficient stars following a late helium-shell flash. The flash mixing of the envelope greatly enhances the envelope helium and carbon abundances that, in turn, leads to a discontinuous increase in the HB effective temperatures. We argue that the hot HB gap is associated with this theoretically predicted dichotomy in the HB properties. Moreover, the changes in the emergent spectral energy distribution caused by these abundance changes are primarily responsible for explaining the hot subluminous HB stars. Although further evidence is needed to confirm that a late helium-core flash can account for the subluminous HB stars and the hot HB gap, we demonstrate that an understanding of these stars requires the use of appropriate theoretical models for their evolution, atmospheres, and spectra.

  20. I-Love-Q: unexpected universal relations for neutron stars and quark stars.

    PubMed

    Yagi, Kent; Yunes, Nicolás

    2013-07-26

    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star's internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star's internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.

  1. After-School All-Stars: Providing Structured Health and Physical Activity Programs in Urban Environments

    ERIC Educational Resources Information Center

    Thompson, Walter R.

    2009-01-01

    Physical education time has been reduced or even eliminated in middle and high schools in favor of more time for standardized test preparation, especially in urban schools and inner cities. One way to replace the time lost is by providing it after school as part of a comprehensive program. After-School All-Stars (ASAS) is such a program, networked…

  2. 25 CFR 37.101 - What definitions apply to the terms in this part?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Section 37.101 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION GEOGRAPHIC... Elementary and Secondary Education Act (ESEA) and the amended Education Amendments of 1978. Bureau means the Bureau of Indian Affairs in the Department of the Interior. Geographic attendance area means a physical...

  3. Technical Drafting and Mental Visualization in Interior Architecture Education

    ERIC Educational Resources Information Center

    Arslan, Ali Riza; Dazkir, Sibel Seda

    2017-01-01

    We explored how beginning-level interior architecture students develop skills to create mental visualizations of three-dimensional objects and environments, how they develop their technical drawing skills, and whether or not physical and computer generated models aid this design process. We used interviews and observations to collect data. The…

  4. MASSIVE STARS IN THE LOCAL GROUP: Implications for Stellar Evolution and Star Formation

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    The galaxies of the Local Group serve as important laboratories for understanding the physics of massive stars. Here I discuss what is involved in identifying various kinds of massive stars in nearby galaxies: the hydrogen-burning O-type stars and their evolved He-burning evolutionary descendants, the luminous blue variables, red supergiants, and Wolf-Rayet stars. Primarily I review what our knowledge of the massive star population in nearby galaxies has taught us about stellar evolution and star formation. I show that the current generation of stellar evolutionary models do well at matching some of the observed features and provide a look at the sort of new observational data that will provide a benchmark against which new models can be evaluated.

  5. A new family of magnetic stars: the Am stars

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Petit, P.; Lignières, F.

    2016-12-01

    We presented the discovery of an ultra-weak field in three Am stars, β UMa, θ Leo, and Alhena, thanks to ultra-deep spectropolarimetric observations. Two of the three stars of this study shown peculiar magnetic signatures with prominent positive lobes like the one of Sirius A that are not expected in the standard theory of the Zeeman effect. Alhena, contrary to Sirius A, β UMa and θ Leo, show normal signatures. These detections of ultra-weak fields in Am stars suggest the existence of a new family of magnetic intermediate-mass stars: the Am stars. However the various shapes of the signatures required further observation to identify the physical processes at work in these stars. A preliminary explanation is based on microturbulence.

  6. B Stars with and without emission lines, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Underhill, A. (Editor); Doazan, V. (Editor)

    1982-01-01

    The spectra for B stars for which emission lines occur not on the main sequence, but only among the supergiants, and those B stars for which the presence of emission in H ahlpa is considered to be a significant factor in delineating atmospheric structure are examined. The development of models that are compatible with all known facts about a star and with the laws of physics is also discussed.

  7. "Star Light, Star Bright..."

    ERIC Educational Resources Information Center

    Moore, Gil; Doop, Skip; Millson, David

    1998-01-01

    Describes Student-Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), which enables students to explore optical astronomy, orbital dynamics, space and atmospheric physics, mathematics and international cooperation by tracking a satellite. (Author)

  8. High Speed White Dwarf Asteroseismology with the Herty Hall Cluster

    NASA Astrophysics Data System (ADS)

    Gray, Aaron; Kim, A.

    2012-01-01

    Asteroseismology is the process of using observed oscillations of stars to infer their interior structure. In high speed asteroseismology, we complete that by quickly computing hundreds of thousands of models to match the observed period spectra. Each model on a single processor takes five to ten seconds to run. Therefore, we use a cluster of sixteen Dell Workstations with dual-core processors. The computers use the Ubuntu operating system and Apache Hadoop software to manage workloads.

  9. Sleuthing the Dynamo: the Final Frontier

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas

    1996-07-01

    Innovative technologies are opening new windows into the Sun;from its hidden interior to the far reaches of its turbulentouter envelope: rare-earth detectors for solar neutrinos; theGONG project for helioseismology; SOHO for high-resolutionXUV spectroscopy, and YOHKOH for coronal X-ray imaging. Atthe same time, a fleet of space observatories--ROSAT, EUVE,ASCA, and HST itself--are providing unprecedented views ofthe vacuum-UV and X-ray emissions of stars in our Galacticneighborhood. These seemingly unrelated developments are infact deeply connected. A central issue of solar-stellarphysics is the nature and origin of magnetic activity: thelink between the interior dynamics of a late-type star and theviolent state of its outermost coronal layers. As solarphysicists are unlocking the secrets of the hydromagneticDynamo deep inside the Sun, we and others have beendocumenting the early evolution of the Dynamo and itsassociated external gas-dynamic activity. In particular, wehave obtained HST/FOS spectra of ten young solar-type starsin three nearby open clusters--the Hyades, Pleiades, andAlpha Persei--ranging in age from 50 Myr to 600 Myr. We havesupplemented the HST spectroscopy with deep ROSAT pointings, and ground-based studies. Here, we will continue the HSTside of our project by obtaining FUV spectra of two AlphaPerseids from our original program (but not yet observed),and high-S/N follow-up measurements of the hyperactive PleiadH II 314.

  10. False star detection and isolation during star tracking based on improved chi-square tests.

    PubMed

    Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Yang, Yanqiang; Su, Guohua

    2017-08-01

    The star sensor is a precise attitude measurement device for a spacecraft. Star tracking is the main and key working mode for a star sensor. However, during star tracking, false stars become an inevitable interference for star sensor applications, which may result in declined measurement accuracy. A false star detection and isolation algorithm in star tracking based on improved chi-square tests is proposed in this paper. Two estimations are established based on a Kalman filter and a priori information, respectively. The false star detection is operated through adopting the global state chi-square test in a Kalman filter. The false star isolation is achieved using a local state chi-square test. Semi-physical experiments under different trajectories with various false stars are designed for verification. Experiment results show that various false stars can be detected and isolated from navigation stars during star tracking, and the attitude measurement accuracy is hardly influenced by false stars. The proposed algorithm is proved to have an excellent performance in terms of speed, stability, and robustness.

  11. The Origin of Hot Subluminous Horizontal-Branch Stars in (omega) Centauri and NGC 2808

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.; Brown, Thomas M.; Lanz, Thierry; Landsman, Wayne B.; Hubeny, Ivan

    2001-01-01

    Hot subluminous stars lying up to 0.7 mag below the extreme horizontal branch (EHB) are found in the ultraviolet (UV) color magnitude diagrams of both (omega) Cen and NGC 2808. In order to explore the evolutionary status of these subluminous stars, we have evolved a set of low-mass stars continuously from the main sequence through the helium-core flash to the HB (horizontal branch) for a wide range in the mass loss along the red-giant branch (RGB). Stars with the largest mass loss evolve off the RGB to high effective temperatures before igniting helium in their cores. Our results indicate that the subluminous EHB stars, as well as the gap within the EHB of NGC 2808, can be explained if these stars undergo a late helium-core flash while descending the white-dwarf cooling curve. Under these conditions the convection zone produced by the helium flash will penetrate into the stellar envelope, thereby mixing most, if not all, of the envelope hydrogen into the hot helium-burning interior, where it is rapidly consumed. This phenomenon is analogous to the 'born-again' scenario for producing hydrogen-deficient stars following a very late helium-shell flash. This 'flash mixing' of the stellar envelope greatly enhances the envelope helium and carbon abundances and, as a result, leads to a discontinuous jump in the HB effective temperature. We argue that the EHB gap in NGC 2808 is associated with this theoretically predicted dichotomy in the HB morphology. Using new helium- and carbon-rich stellar atmospheres, we show that these changes in the envelope abundances of the flash-mixed stars will suppress the UV flux by the amount needed to explain the hot subluminous EHB stars in (omega) Cen and NGC 2808. Moreover, we demonstrate that models without flash mixing lie, at most, only approximately 0.1 mag below the EHB, and hence fail to explain the observations. Flash mixing may also provide a new evolutionary channel for producing the high gravity, helium-rich sdO and sdB stars.

  12. Invited Talk: Photometry of Bright Variable Stars with the BRITE Constellation Nano-Satellites: Opportunities for Amateur Astronomers

    NASA Astrophysics Data System (ADS)

    Guinan, E. F.

    2014-06-01

    (Abstract only) The BRIght Target Explorer (BRITE) is a joint Austrian-Canadian-Polish Astronomy mission to carry out high precision photometry of bright (mv < 4 mag.) variable stars. BRITE consists of a "Constellation" of 20 × 20 × 20-cm nano-satellite cubes equipped with wide field (20 × 24 deg.) CCD cameras, control systems, solar panels, onboard computers, and so on. The first two (of up to six) satellites were successfully launched during February 2013. After post-launch commissioning, science operations commenced during October 2013. The primary goals are to carry out continuous multi-color (currently blue and red filters) high-precision millimag (mmag) photometry in particular locations in the sky. Typically these pointings will last for two to four months and secure simultaneous blue/red photometry of bright variable stars within the field. The first science pointing is centered on the Orion region. Since most bright stars are intrinsically luminous, hot O/B stars, giants, and supergiants will be the most common targets. However, some bright eclipsing binaries (such as Algol, b Lyr, e Aur) and a few chromospherically-active RS CVn stars (such as Capella) may be eventually be monitored. The BRITE-Constellation program of high precision, two color photometry of bright stars offers a great opportunity to study a wide range of stellar astrophysical problems. Bright stars offer convenient laboratories to study many current and important problems in stellar astrophysics. These include probing stellar interiors and pulsation in pulsating stars, tests of stellar evolution and structure for Cepheids and other luminous stars. To scientifically enhance the BRITE science returns, the BRITE investigators are very interested in securing contemporaneous ground-based spectroscopy and standardized photometry of target stars. The BRITE Ground Based Observations Team is coordinating ground-based observing efforts for BRITE targets. The team helps coordinate collaborations with amateur and professional astronomer. The ground-based coordinators are: Thomas Eversberg (thomas.eversberg@dlr.de) and, for spectroscopy, Contanze Zwintz (konstanze@ster.kuleuven.be). Detailed information about the BRITE Mission is provided at: www.brite-contellation.at.

  13. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    NASA Astrophysics Data System (ADS)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  14. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. V. Asteroseismology of ELMV white dwarf stars

    NASA Astrophysics Data System (ADS)

    Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-11-01

    Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand, and that some improvements of the theoretical models are required on the other hand in order to place the asteroseismological results on a firmer ground.

  15. Phantom stars and topology change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBenedictis, Andrew; Garattini, Remo; Lobo, Francisco S. N.

    2008-11-15

    In this work, we consider time-dependent dark-energy star models, with an evolving parameter {omega} crossing the phantom divide {omega}=-1. Once in the phantom regime, the null energy condition is violated, which physically implies that the negative radial pressure exceeds the energy density. Therefore, an enormous negative pressure in the center may, in principle, imply a topology change, consequently opening up a tunnel and converting the dark-energy star into a wormhole. The criteria for this topology change are discussed and, in particular, we consider a Casimir energy approach involving quasilocal energy difference calculations that may reflect or measure the occurrence ofmore » a topology change. We denote these exotic geometries consisting of dark-energy stars (in the phantom regime) and phantom wormholes as phantom stars. The final product of this topological change, namely, phantom wormholes, have far-reaching physical and cosmological implications, as in addition to being used for interstellar shortcuts, an absurdly advanced civilization may manipulate these geometries to induce closed timelike curves, consequently violating causality.« less

  16. Star formation history: Modeling of visual binaries

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  17. Physical parameters of lambda Bootis stars

    NASA Astrophysics Data System (ADS)

    Solano, E.; Paunzen, E.; Pintado, O. I.; Córdoba; Varela, J.

    2001-08-01

    This is the first of two papers whose main goal is to update and improve the information available on the physical properties of the lambda Bootis stars. The determination of the stellar parameters is of fundamental importance to shed light into the different theories proposed to explain the lambda Bootis phenomenon. With this aim, projected rotational velocities, effective temperatures, surface gravities and chemical abundances of a sample of suspected lambda Bootis stars have been calculated. Five objects showing composite spectra typical of binary systems were found in our analysis. The abundance distribution of the program stars does not resemble the chemical composition of the class prototype, lambda Boo, which poses some concerns regarding the idea of a well-defined, chemically homogeneous group of stars. A possible relation between rotational velocities and the lambda Bootis phenomenon has been found. This result would be in agreement with the accretion scenario proposed by Turcotte & Charbonneau (\\cite{Turcotte93}). Figure 3 is only available in electronic form at http://www.edpsciences.org

  18. A Clue to the Extent of Convective Mixing Inside Massive Stars: The Surface Hydrogen Abundances of Luminous Blue Variables and Hydrogen-Poor Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-wen

    1999-01-01

    Interior layers of stars that have been exposed by surface mass loss reveal aspects of their chemical and convective histories that are otherwise inaccessible to observation. It must be significant that the surface hydrogen abundances of luminous blue variables (LBVs) show a remarkable uniformity, specifically X(sub surf) = 0.3 - 0.4, while those of hydrogen-poor Wolf-Rayet (WN) stars fall, almost without exception, below these values, ranging down to X(sub surf) = 0. According to our stellar model calculations, most LBVs are post-red-supergiant objects in a late blue phase of dynamical instability, and most hydrogen-poor WN stars are their immediate descendants. If this is so, stellar models constructed with the Schwarzschild (temperature-gradient) criterion for convection account well for the observed hydrogen abundances, whereas models built with the Ledoux (density-gradient) criterion fail. At the brightest luminosities, the observed hydrogen abundances of LBVs are too large to be explained by any of our highly evolved stellar models, but these LBVs may occupy transient blue loops that exist during an earlier phase of dynamical instability when the star first becomes a yellow supergiant. Independent evidence concerning the criterion for convection, which is based mostly on traditional color distributions of less massive supergiants on the Hertzsprung-Russell diagram, tends to favor the Ledoux criterion. It is quite possible that the true criterion for convection changes over from something like the Ledoux criterion to something like the Schwarzschild criterion as the stellar mass increases.

  19. MODELING THE RISE OF FIBRIL MAGNETIC FIELDS IN FULLY CONVECTIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Maria A.; Browning, Matthew K., E-mail: mweber@astro.ex.ac.uk

    Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFTs). Here we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 M {sub ⊙} main-sequence star. This is the first studymore » to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis. However, the presence of strong differential rotation allows some initially low-latitude flux tubes of moderate strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for fully convective stars.« less

  20. A STATISTICAL RECONSTRUCTION OF THE PLANET POPULATION AROUND KEPLER SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silburt, Ari; Wu, Yanqin; Gaidos, Eric

    2015-02-01

    Using the cumulative catalog of planets detected by the NASA Kepler mission, we reconstruct the intrinsic occurrence of Earth- to Neptune-size (1-4 R {sub ⊕}) planets and their distributions with radius and orbital period. We analyze 76,711 solar-type (0.8 < R {sub *}/R {sub ☉} < 1.2) stars with 430 planets on 20-200 day orbits, excluding close-in planets that may have been affected by the proximity to the host star. Our analysis considers errors in planet radii and includes an ''iterative simulation'' technique that does not bin the data. We find a radius distribution that peaks at 2-2.8 Earth radii, with lowermore » numbers of smaller and larger planets. These planets are uniformly distributed with logarithmic period, and the mean number of such planets per star is 0.46 ± 0.03. The occurrence is ∼0.66 if planets interior to 20 days are included. We estimate the occurrence of Earth-size planets in the ''habitable zone'' (defined as 1-2 R {sub ⊕}, 0.99-1.7 AU for solar-twin stars) as 6.4{sub −1.1}{sup +3.4}%. Our results largely agree with those of Petigura et al., although we find a higher occurrence of 2.8-4 Earth-radii planets. The reasons for this excess are the inclusion of errors in planet radius, updated Huber et al. stellar parameters, and also the exclusion of planets that may have been affected by proximity to the host star.« less

  1. Effect of catalogues coordinate errors of a star onto determination of the physical libration of the Moon from the observations of stars

    NASA Astrophysics Data System (ADS)

    Petrova, Natalia; Kocoulin, Valerii; Nefediev, Yurii

    2016-07-01

    In the Kazan University computer simulation is carried out for observation of lunar physical libration in projects planned installation of measuring equipment on the lunar surface. One such project is the project of ILOM (Japan), in which on the lunar pole an optical telescope with CCD will be equipped. As a result, the determining the selenographic coordinates (x and y) of a star with an accuracy of 1 ms of arc will be achieved. On the basis of the analytical theory of physical libration we developed a technique for solving the inverse problem of the libration. And we have already shown, for example, that the error in determining selenographic coordinates about ɛ seconds does not lead to errors in the determination of the libration angles ρ and Iσ larger than the 1.414ɛ. Libration in longitude is not determined from observations of the polar star (Petrova et al., 2012). The accuracy of the libration in the inverse problem depends on accuracy of the coordinates of the stars - α and δ - taken from the star catalogs. Checking this influence is the task of the present study. To do simulation we have developed that allows to choose the stars, falling in the field of view of the lunar telescope on observation period. Equatorial coordinates of stars were chosen by us from several fundamental catalogs: UCAC2-BSS, Hipparcos, Tycho, FK6 (part I, III) and the Astronomical Almanac. An analysis of these catalogues from the point of view accuracy of coordinates of stars represented in them was performed by Nefediev et al., 2013. The largest error, 20-70 ms, found in the catalogues UCAC2 and Tycho, the others have an error about a millisecond of arc. We simulated the observations with mentioned errors and got the following results. 1. The error in the declination Δδ of the star causes the same order error in libration parameters ρ and Iσ , while the sensitivity of libration to errors in Δα is ten time smaller. Fortunately, due to statistics (30 to 70, depending on the time of observation), this error is reduced by an order, i.e. does not exceed the error of observation selenographic coordinates. 2. The worst thing - errors in coordinates of catalogue causes though a small but constant shift in the ρ and Iσ. So, when Δα, Δδ ˜0.01", then the shift reaches 0.0025". Moreover there is a trend, with a slight, but noticeable slope. 3. Effect of error in declination of a stars is substantially strong than the error in right ascension. Perhaps it is characteristic only for polar observations. For the required accuracy in determination of the physical libration these phenomena must be taken into account when processing the planned observations. Referencies. Nefediev et al., 2013. Uchenye zapiski Kazanskogo universiteta, v. 155, 1, p.188-194. Petrova, N., Abdulmyanov T., Hanada H. Some qualitative manifestations of the physical libration of the Moon by observing stars from the lunar surface. //J. Adv. Space Res., 2012a. V. 50, p. 1702-1711

  2. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Core: Toward a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2005-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.

  3. A new exact anisotropic solution of embedding class one

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; T. T., Smitha; Rahaman, Farook

    2016-07-01

    We have presented a new anisotropic solution of Einstein's field equations for compact-star models. Einstein's field equations are solved by using the class-one condition (S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14, 113 (1982)). We constructed the expression for the anisotropy factor ( Δ by using the pressure anisotropy condition and thereafter we obtained the physical parameters like energy density, radial and transverse pressure. These models parameters are well-behaved inside the star and satisfy all the required physical conditions. Also we observed the very interesting result that all physical parameters depend upon the anisotropy factor ( Δ. The mass and radius of the present compact-star models are quite compatible with the observational astrophysical compact stellar objects like Her X-1, RXJ 1856-37, SAX J1808.4-3658(SS1), SAX J1808.4-3658(SS2).

  4. From Stars to Superplanets: The Low-Mass Initial Mass Function in the Young Cluster IC 348

    DTIC Science & Technology

    2000-10-01

    both baryonic dark matter in the Galaxy and, perhaps more importantly, the formation processes governing stars, brown dwarfs, and planets. In the...on the role of physical processes such as fragmentation in the star and planet formation process and the fraction of dark matter in the Galactic halo

  5. Astronomers Reveal Extinct Extra-Terrestrial Fusion Reactor

    NASA Astrophysics Data System (ADS)

    2004-06-01

    An international team of astronomers, studying the left-over remnants of stars like our own Sun, have found a remarkable object where the nuclear reactor that once powered it has only just shut down. This star, the hottest known white dwarf, H1504+65, seems to have been stripped of its entire outer regions during its death throes leaving behind the core that formed its power plant. Scientists from the United Kingdom, Germany and the USA focused two of NASA's space telescopes, the Chandra X-ray Observatory and the Far Ultraviolet Spectroscopic Explorer (FUSE), onto H1504+65 to probe its composition and measure its temperature. The data revealed that the stellar surface is extremely hot, 200,000 degrees, and is virtually free of hydrogen and helium, something never before observed in any star. Instead, the surface is composed mainly of carbon and oxygen, the 'ashes' of the fusion of helium in a nuclear reactor. An important question we must answer is why has this unique star lost the hydrogen and helium, which usually hide the stellar interior from our view? Professor Martin Barstow (University of Leicester) said. 'Studying the nature of the ashes of dead stars give us important clues as to how stars like the Sun live their lives and eventually die. The nuclear waste of carbon and oxygen produced in the process are essential elements for life and are eventually recycled into interstellar space to form new stars, planets and, possibly, living beings.' Professor Klaus Werner (University of Tübingen) said. 'We realized that this star has, on astronomical time scales, only very recently shut down nuclear fusion (about a hundred years ago). We clearly see the bare, now extinct reactor that once powered a bright giant star.' Dr Jeffrey Kruk (Johns Hopkins University) said: 'Astronomers have long predicted that many stars would have carbon-oxygen cores near the end of their lives, but I never expected we would actually be able to see one. This is a wonderful opportunity to improve our understanding of the life-cycle of stars.' The Chandra X-ray data also reveal the signatures of neon, an expected by-product of helium fusion. However, a big surprise was the presence of magnesium in similar quantities. This result may provide a key to the unique composition of H1504+65 and validate theoretical predictions that, if massive enough, some stars can extend their lives by tapping yet another energy source: the fusion of carbon into magnesium. However, as magnesium can also be produced by helium fusion, proof of the theory is not yet ironclad. The final link in the puzzle would be the detection of sodium, which will require data from yet another observatory: the Hubble Space Telescope. The team has already been awarded time on the Hubble Space Telescope to search for sodium in H1504+65 next year, and will, hopefully, discover the final answer as to the origin of this unique star. This work will be published in July in the 'Astronomy & Astrophysics' journal. The Chandra X-ray Observatory and the Far Ultraviolet Spectroscopic Explorer (FUSE) were both launched into orbit by NASA in 1999. Their instruments make use of a technique called spectroscopy, which spreads the light obtained from astronomical objects into its constituent X-ray and ultraviolet 'colours', in the same way visible light is dispersed into a rainbow naturally, by water droplets in the atmosphere, or artificially, by a prism. When studied in fine detail each spectrum is a unique 'fingerprint' which tells us what elements are present and reveals the physical conditions in the object being studied. Related Internet Address http://www.ras.org.uk/index.php?option=com_content&task=view&id=673&Itemid=2

  6. Planetary nebulae: 20 years of Hubble inquiry

    NASA Astrophysics Data System (ADS)

    Balick, Bruce

    2012-08-01

    The Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (``PNe''). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s-1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.

  7. Star Power

    ScienceCinema

    None

    2018-01-16

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  8. Searching For Low-mass Companions Of Cepheids

    NASA Astrophysics Data System (ADS)

    Remage Evans, Nancy; Bond, H.; Schaefer, G.; Karovska, M.; Mason, B.; DePasquale, J.; Pillitteri, I.; Guinan, E.; Engle, S.

    2011-05-01

    The role played by binary and multiple stars in star formation is receiving a great deal of attention, both theoretically and observationally. Two questions under discussion are how wide physical companions can be and how frequently massive stars have low mass companions. An important new observational tool is the development of high resolution imaging, both from space and from the ground (Adaptive Optics and interferometry). We are conducting a snapshot survey of the nearest Cepheids using the Hubble Space Telescope Wide Field Camera 3 (WFC3). The aim is to discover possible resolved low mass companions. Results from this survey will be discussed, including images of Eta Aql. X-ray luminosity can confirm or refute that putative low mass companions are young enough to be physical companions. This project tests the reality of both wide and low mass companions of these intermediate-mass stars.

  9. Condensation onto grains in the outflows from mass-losing red giants

    NASA Technical Reports Server (NTRS)

    Jura, M.; Morris, M.

    1985-01-01

    In the outflows from red giants, grains are formed which are driven by radiation pressure. For the development of a model of the outflows, a detailed understanding of the interaction between the gas and dust is critical. The present investigation is concerned with condensation processes which occur after the grains nucleate near the stars. A physical process considered results from the cooling of the grains as they flow away from the star. Molecules which initially do not condense onto the grains can do so far from the star. It is shown that for some species this effect can be quite important in determining their gas-phase abundances in the outer circumstellar envelope. One of the major motivations of this investigation was provided by the desire to understand the physical conditions and molecular abundances in the outflows from the considered stars.

  10. Anatomy of the Orphan Stream using RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Hendel, David; Johnston, Kathryn; Scowcroft, Victoria; SMHASH

    2018-01-01

    Stellar tidal streams provide an opportunity to study the motion and structure of the disrupting galaxy as well as the gravitational potential of its host. Streams around the Milky Way are especially promising as new datasets make additional phase space dimensions available as constraints. We present observations of 32 stars thought to be RR Lyrae in the Orphan tidal stream as part of the {\\it Spitzer} Merger History and Shape of the Galactic Halo (SMHASH) program. The extremely tight correlation between the periods, luminosities, and metallicities of RR Lyrae variable stars in the {\\it Spitzer} IRAC $3.6\\mu$m band allows the determination of precise distances to individual stars; the median statistical distance uncertainty in this sample is $2.5\\%$. By fitting orbits in an example potential we obtain an upper limit on the mass of the Milky Way interior to 60 kpc of $\\mathrm{3.9_{-0.8}^{+1.2}\\times 10^{11} M_\\odot}$, bringing estimates based on the Orphan stream in line with those using other tracers. The SMHASH data also resolves the stream in line-of-sight depth, allowing unprecedented access its internal structure. Comparing this structure with n-body models we find that Orphan had an initial dark halo mass $\\sim \\mathrm{3 \\times 10^{9} M_\\odot}$, placing the progenitor amongst the classical dwarf spheriodals.

  11. Detection of Reflection Features in the Neutron Star Low-mass X-Ray Binary Serpens X-1 with NICER

    NASA Astrophysics Data System (ADS)

    Ludlam, R. M.; Miller, J. M.; Arzoumanian, Z.; Bult, P. M.; Cackett, E. M.; Chakrabarty, D.; Dauser, T.; Enoto, T.; Fabian, A. C.; García, J. A.; Gendreau, K. C.; Guillot, S.; Homan, J.; Jaisawal, G. K.; Keek, L.; La Marr, B.; Malacaria, C.; Markwardt, C. B.; Steiner, J. F.; Strohmayer, T. E.

    2018-05-01

    We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in addition to the signature broad, asymmetric Fe K line. We confirm the presence of these lines by comparing the NICER data to archival observations with XMM-Newton/Reflection Grating Spectrometer (RGS) and NuSTAR. Both features originate close to the innermost stable circular orbit (ISCO). When modeling the lines with the relativistic line model RELLINE, we find that the Fe L blend requires an inner disk radius of {1.4}-0.1+0.2 R ISCO and Fe K is at {1.03}-0.03+0.13 R ISCO (errors quoted at 90%). This corresponds to a position of {17.3}-1.2+2.5 km and {12.7}-0.4+1.6 km for a canonical NS mass ({M}NS}=1.4 {M}ȯ ) and dimensionless spin value of a = 0. Additionally, we employ a new version of the RELXILL model tailored for NSs and determine that these features arise from a dense disk and supersolar Fe abundance.

  12. The Origin of Scales and Scaling Laws in Star Formation

    NASA Astrophysics Data System (ADS)

    Guszejnov, David; Hopkins, Philip; Grudich, Michael

    2018-01-01

    Star formation is one of the key processes of cosmic evolution as it influences phenomena from the formation of galaxies to the formation of planets, and the development of life. Unfortunately, there is no comprehensive theory of star formation, despite intense effort on both the theoretical and observational sides, due to the large amount of complicated, non-linear physics involved (e.g. MHD, gravity, radiation). A possible approach is to formulate simple, easily testable models that allow us to draw a clear connection between phenomena and physical processes.In the first part of the talk I will focus on the origin of the IMF peak, the characteristic scale of stars. There is debate in the literature about whether the initial conditions of isothermal turbulence could set the IMF peak. Using detailed numerical simulations, I will demonstrate that not to be the case, the initial conditions are "forgotten" through the fragmentation cascade. Additional physics (e.g. feedback) is required to set the IMF peak.In the second part I will use simulated galaxies from the Feedback in Realistic Environments (FIRE) project to show that most star formation theories are unable to reproduce the near universal IMF peak of the Milky Way.Finally, I will present analytic arguments (supported by simulations) that a large number of observables (e.g. IMF slope) are the consequences of scale-free structure formation and are (to first order) unsuitable for differentiating between star formation theories.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winn, Joshua N.; Albrecht, Simon; Johnson, John Asher

    We present new radial velocity (RV) measurements of HAT-P-13, a star with two previously known companions: a transiting giant planet 'b' with an orbital period of 3 days and a more massive object 'c' on a 1.2 yr, highly eccentric orbit. For this system, dynamical considerations would lead to constraints on planet b's interior structure, if it could be shown that the orbits are coplanar and apsidally locked. By modeling the Rossiter-McLaughlin effect, we show that planet b's orbital angular momentum vector and the stellar spin vector are well aligned on the sky ({lambda} = 1.9 {+-} 8.6 deg). Themore » refined orbital solution favors a slightly eccentric orbit for planet b (e = 0.0133 {+-} 0.0041), although it is not clear whether it is apsidally locked with c's orbit ({Delta}{omega} = 36{sup +27}{sub -36} deg). We find a long-term trend in the star's RV and interpret it as evidence for an additional body 'd', which may be another planet or a low-mass star. Predictions are given for the next few inferior conjunctions of c, when transits may happen.« less

  14. KSC-2011-6853

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. – Actress Nichelle Nichols (Lt. Uhura on Star Trek) signs autographs for a guest at the Kennedy Space Center Visitor Complex in Florida during activities for the agency’s Gravity Recovery and Interior Laboratory mission (GRAIL). Nichols was on hand to celebrate the 45th anniversary of the first airing of the Star Trek television series. The Kennedy Space Center Visitor Complex is hosting “Star Trek: The Exhibition” to show visitors where “science fiction meets science fact.” GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Frankie Martin

  15. Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion

    DOE PAGES

    Casey, D. T.; Sayre, D. B.; Brune, C. R.; ...

    2017-08-07

    Stars are giant thermonuclear plasma furnaces that slowly fuse the lighter elements in the universe into heavier elements, releasing energy, and generating the pressure required to prevent collapse. To understand stars, we must rely on nuclear reaction rate data obtained, up to now, under conditions very different from those of stellar cores. Here we show thermonuclear measurements of the 2H(d, n) 3He and 3H(t,2n) 4He S-factors at a range of densities (1.2–16 g cm –3) and temperatures (2.1–5.4 keV) that allow us to test the conditions of the hydrogen-burning phase of main-sequence stars. The relevant conditions are created using inertial-confinementmore » fusion implosions at the National Ignition Facility. Here, our data agree within uncertainty with previous accelerator-based measurements and establish this approach for future experiments to measure other reactions and to test plasma-nuclear effects present in stellar interiors, such as plasma electron screening, directly in the environments where they occur.« less

  16. Multicompartmental Microcapsules with Orthogonal Programmable Two-Way Sequencing of Hydrophobic and Hydrophilic Cargo Release.

    PubMed

    Xu, Weinan; Ledin, Petr A; Iatridi, Zacharoula; Tsitsilianis, Constantinos; Tsukruk, Vladimir V

    2016-04-11

    Multicompartmental responsive microstructures with the capability for the pre-programmed sequential release of multiple target molecules of opposite solubility (hydrophobic and hydrophilic) in a controlled manner have been fabricated. Star block copolymers with dual-responsive blocks (temperature for poly(N-isopropylacrylamide) chains and pH for poly(acrylic acid) and poly(2-vinylpyridine) arms) and unimolecular micellar structures serve as nanocarriers for hydrophobic molecules in the microcapsule shell. The interior of the microcapsule can be loaded with water-soluble hydrophilic macromolecules. For these dual-loaded microcapsules, a programmable and sequential release of hydrophobic and hydrophilic molecules from the shell and core, respectively, can be triggered independently by temperature and pH variations. These stimuli affect the hydrophobicity and chain conformation of the star block copolymers to initiate out-of-shell release (elevated temperature), or change the overall star conformation and interlayer interactions to trigger increased permeability of the shell and out-of-core release (pH). Reversing stimulus order completely alters the release process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Spin-Orbit Misalignment of Two-Planet-System KOI-89 Via Gravity Darkening

    NASA Astrophysics Data System (ADS)

    Ahlers, Jonathon; Barnes, Jason W.; Barnes, Rory

    2015-12-01

    We investigate the potential causes of spin-orbit misalignment in multiplanetary systems via two-planet-system KOI-89. We focus on this system because it can experimentally constrain the outstanding hypotheses that have been proposed to cause misalignments. Using gravity darkening, we constrain both the spin-orbit angles and the angle between the planes of the orbits. Our best-fit model shows that the 85-day-orbit and 208-day-orbit planets are misaligned from the host star's rotation axis by 72° ± 3° and 73° (+11 -5°), respectively. From these results, we limit KOI-89's potential causes of spin-orbit misalignment based on three criteria: agreement with KOI-89's fundamental parameters, the capability to cause extreme misalignment, and conformance with mutually aligned planets. Our results disfavor planet-embryo collisions, chaotic evolution of stellar spin, magnetic torquing, coplanar high-eccentricity migration, and inclination resonance, limiting possible causes to star-disk binary interactions, disk warping via planet-disk interactions, Kozai resonance, planet-planet scattering, or internal gravity waves in the convective interior of the star.

  18. Cloud physics laboratory project science and applications working group

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1977-01-01

    The conditions of the expansion chamber under zero gravity environment were simulated. The following three branches of fluid mechanics simulation under low gravity environment were accomplished: (1) oscillation of the water droplet which characterizes the nuclear oscillation in nuclear physics, bubble oscillation of two phase flow in chemical engineering, and water drop oscillation in meteorology; (2) rotation of the droplet which characterizes nuclear fission in nuclear physics, formation of binary stars and rotating stars in astrophysics, and breakup of the water droplet in meteorology; and (3) collision and coalescence of the water droplets which characterizes nuclear fusion in nuclear physics and processes of rain formation in meteorology.

  19. Are anharmonicity corrections needed for temperature-profile calculations of interiors of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Anderson, O. L.

    1982-07-01

    The temperature profile of planetary interiors is an important item of information, because many thermodynamic or geodynamic investigations of a planet's interior require an estimate of the temperature profile. Modeling studies of the thermal history or convective processes focus in detail on the thermal profile of the planet. A description is presented of results which show how the present (or equilibrium) interior temperature profile is related to certain constraints placed on the planet, especially the physical properties of the mantle material. These properties depend upon a priori assumptions of chemical composition. The investigation is mainly concerned with experimental and theoretical data appropriate to mantle minerals, in order to justify the use of a simple equation-of-state for planet interiors. It is found that anharmonicity does not seem to be required for calculations of interior properties of the terrestrial planets.

  20. Physical properties of PNe: what IFU spectrographs can do?

    NASA Astrophysics Data System (ADS)

    Costa, R.; Lago, P. J. A.; Faes, D., M.

    2014-04-01

    Structure, kinematics and physical parameters of planetary nebulae are related to their progenitor stars. A better understanding of these properties is essential to improve the knowledge of the late stages of evolution of intermediate-mass stars, as well as to better understand the chemical enrichment mechanisms that feed the interstellar medium with the nucleosynthesis yields from such stars. Integral Field Unit (IFU) spectrographs can provide valuable information from these objects, mapping such properties point-to-point over the projected nebulae. In this communication we present the results of a survey of physical properties for southern PNe. We have used IFU spectroscopy in order to derive the angular distribution of electron densities and ionic abundances, and also to map the ionization profiles. The aim is to characterize their physical properties and structures, and results can be used in morpho-kinematical models (such as SHAPE) or in photoionization models (such as CLOUDY) to describe in detail the 3D structure and evolution of these objects.

Top