Targeted Research and Technology Within NASA's Living With a Star Program
NASA Technical Reports Server (NTRS)
Hesse, Michael
2003-01-01
NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.
Targeted Research and Technology Within NASA's Living With a Star Program
NASA Technical Reports Server (NTRS)
Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Gosling, Jack; Hesse, Michael
2004-01-01
Targeted Research & Technology (TR&T) NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.
Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities
NASA Technical Reports Server (NTRS)
Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald
2004-01-01
NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.
Carrier Plus: A sensor payload for Living With a Star Space Environment Testbed (LWS/SET)
NASA Technical Reports Server (NTRS)
Marshall, Cheryl J.; Moss, Steven; Howard, Regan; LaBel, Kenneth A.; Grycewicz, Tom; Barth, Janet L.; Brewer, Dana
2003-01-01
The Defense Threat Reduction Agency (DTR4) and National Aeronautics and Space Administration (NASA) Goddard Space Flight Center are collaborating to develop the Carrier Plus sensor experiment platform as a capability of the Space Environments Testbed (SET). The Space Environment Testbed (SET) provides flight opportunities for technology experiments as part of NASA's Living With a Star (LWS) program. The Carrier Plus will provide new capability to characterize sensor technologies such as state-of-the-art visible focal plane arrays (FPAs) in a natural space radiation environment. The technical objectives include on-orbit validation of recently developed FPA technologies and performance prediction methodologies, as well as characterization of the FPA radiation response to total ionizing dose damage, displacement damage and transients. It is expected that the sensor experiment will carry 4-6 FPAs and associated radiation correlative environment monitors (CEMs) for a 2006-2007 launch. Sensor technology candidates may include n- and p-charge coupled devices (CCDs), active pixel sensors (APS), and hybrid CMOS arrays. The presentation will describe the Carrier Plus goals and objectives, as well as provide details about the architecture and design. More information on the LWS program can be found at http://lws.gsfc.nasa.gov/. Business announcements for LWS/SET and program briefings are posted at http://lws-set.gsfc.nasa.gov
Evolving the Living With a Star Data System Definition
NASA Astrophysics Data System (ADS)
Otranto, J.; Dijoseph, M.; Worrall, W.
2003-04-01
NASA’s Living With a Star (LWS) Program is a space weather-focused and applications-driven research program. The LWS Program is soliciting input from the solar, space physics, space weather, and climate science communities to develop a system that enables access to science data associated with these disciplines, and advances the development of discipline and interdisciplinary findings. The LWS Program will implement a data system that builds upon the existing and planned data capture, processing, and storage components put in place by individual spacecraft missions and also inter-project data management systems, such as active archives, deep archives, and multi-mission repositories. It is technically feasible for the LWS Program to integrate data from a broad set of resources, assuming they are either publicly accessible or access is permitted by the system’s administrators. The LWS Program data system will work in coordination with spacecraft mission data systems and science data repositories, integrating them into a common data representation. This common representation relies on a robust metadata definition that provides journalistic and technical data descriptions, plus linkages to supporting data products and tools. The LWS Program intends to become an enabling resource to PIs, interdisciplinary scientists, researchers, and students facilitating both access to a broad collection of science data, as well as the necessary supporting components to understand and make productive use of the data. For the LWS Program to represent science data that is physically distributed across various ground system elements, information about the data products stored on each system is collected through a series of LWS-created active agents. These active agents are customized to interface or interact with each one of these data systems, collect information, and forward updates to a single LWS-developed metadata broker. This broker, in turn, updates a centralized repository of LWS-specific metadata. A populated LWS metadata database is a single point-of-contact that can serve all users (the science community) with a “one-stop-shop” for data access. While data may not be physically stored in an LWS-specific repository, the LWS system enables data access from wherever the data are stored. Moreover, LWS provides the user access to information for understanding the data source, format, and calibration, enables access to ancillary and correlative data products, provides links to processing tools and models associated with the data, and any corresponding findings. The LWS may also support an active archive for solar, space physics, space weather, and climate data when these data would otherwise be discarded or archived off-line. This archive could potentially serve as a backup facility for LWS missions. This plan is developed based upon input already received from the science community; the architecture is based on system developed to date that have worked well on a smaller scale. The LWS Program continues to seek constructive input from the science community, examples of both successes and failures in dealing with science data systems, and insights regarding the obstacles between the current state-of-the-practice and this vision for the LWS Program data system.
Evolving the Living With a Star Data System Definition
NASA Astrophysics Data System (ADS)
Otranto, J. F.; Dijoseph, M.
2003-12-01
NASA's Living With a Star (LWS) Program is a space weather-focused and applications-driven research program. The LWS Program is soliciting input from the solar, space physics, space weather, and climate science communities to develop a system that enables access to science data associated with these disciplines, and advances the development of discipline and interdisciplinary findings. The LWS Program will implement a data system that builds upon the existing and planned data capture, processing, and storage components put in place by individual spacecraft missions and also inter-project data management systems, including active and deep archives, and multi-mission data repositories. It is technically feasible for the LWS Program to integrate data from a broad set of resources, assuming they are either publicly accessible or allow access by permission. The LWS Program data system will work in coordination with spacecraft mission data systems and science data repositories, integrating their holdings using a common metadata representation. This common representation relies on a robust metadata definition that provides journalistic and technical data descriptions, plus linkages to supporting data products and tools. The LWS Program intends to become an enabling resource to PIs, interdisciplinary scientists, researchers, and students facilitating both access to a broad collection of science data, as well as the necessary supporting components to understand and make productive use of these data. For the LWS Program to represent science data that are physically distributed across various ground system elements, information will be collected about these distributed data products through a series of LWS Program-created agents. These agents will be customized to interface or interact with each one of these data systems, collect information, and forward any new metadata records to a LWS Program-developed metadata library. A populated LWS metadata library will function as a single point-of-contact that serves the entire science community as a first stop for data availability, whether or not science data are physically stored in an LWS-operated repository. Further, this metadata library will provide the user access to information for understanding these data including descriptions of the associated spacecraft and instrument, data format, calibration and operations issues, links to ancillary and correlative data products, links to processing tools and models associated with these data, and any corresponding findings produced using these data. The LWS may also support an active archive for solar, space physics, space weather, and climate data when these data would otherwise be discarded or archived off-line. This archive could potentially serve also as a data storage backup facility for LWS missions. The plan for the LWS Program metadata library is developed based upon input received from the solar and geospace science communities; the library's architecture is based on existing systems developed for serving science metadata. The LWS Program continues to seek constructive input from the science community, examples of both successes and failures in dealing with science data systems, and insights regarding the obstacles between the current state-of-the-practice and this vision for the LWS Program metadata library.
The Living With a Star Space Environment Testbed Payload
NASA Technical Reports Server (NTRS)
Xapsos, Mike
2015-01-01
This presentation outlines a brief description of the Living With a Star (LWS) Program missions and detailed information about the Space Environment Testbed (SET) payload consisting of a space weather monitor and carrier containing 4 board experiments.
Introduction to NASA Living With a Star (LWS) Institute GIC Working Group Special Collection
NASA Technical Reports Server (NTRS)
Pulkkinen, A.
2017-01-01
This paper is a brief introduction to the NASA Living With a Star (LWS) Institute GIC Working Group Special Collection that is product of work by a group of researchers from more than 20 different international organizations. In this introductory paper, I summarize the group's work in the context of novel NASA LWS Institute element and introduce the individual contributions in the collection.
Vision for the Future of Lws TR&T
NASA Astrophysics Data System (ADS)
Schwadron, N.; Mannucci, A. J.; Antiochos, S. K.; Bhattacharjee, A.; Gombosi, T. I.; Gopalswamy, N.; Kamalabadi, F.; Linker, J.; Pilewskie, P.; Pulkkinen, A. A.; Spence, H. E.; Tobiska, W. K.; Weimer, D. R.; Withers, P.; Bisi, M. M.; Kuznetsova, M. M.; Miller, K. L.; Moretto, T.; Onsager, T. G.; Roussev, I. I.; Viereck, R. A.
2014-12-01
The Living With a Star (LWS) program addresses acute societal needs for understanding the effects of space weather and developing scientific knowledge to support predictive capabilities. Our society's heavy reliance on technologies affected by the space environment, an enormous number of airline customers, interest in space tourism, and the developing plans for long-duration human exploration space missions are clear examples that demonstrate urgent needs for space weather models and detailed understanding of space weather effects and risks. Since its inception, the LWS program has provided a vehicle to innovate new mechanisms for conducting research, building highly effective interdisciplinary teams, and ultimately in developing the scientific understanding needed to transition research tools into operational models that support the predictive needs of our increasingly space-reliant society. The advances needed require broad-based observations that cannot be obtained by large missions alone. The Decadal Survey (HDS, 2012) outlines the nation's needs for scientific development that will build the foundation for tomorrow's space weather services. Addressing these goals, LWS must develop flexible pathways to space utilizing smaller, more diverse and rapid development of observational platforms. Expanding utilization of ground-based assets and shared launches will also significantly enhance opportunities to fulfill the growing LWS data needs. Partnerships between NASA divisions, national/international agencies, and with industry will be essential for leveraging resources to address increasing societal demand for space weather advances. Strengthened connections to user communities will enhance the quality and impact of deliverables from LWS programs. Thus, we outline the developing vision for the future of LWS, stressing the need for deeper scientific understanding to improve forecasting capabilities, for more diverse data resources, and for project deliverables that address the growing needs of user communities.
The Living With a Star Space Environment Testbed Experiments
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.
2014-01-01
The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.
ISO-LWS Spectroscopy of Centaurus A: Extended Star Formation
2000-01-01
Astron. Astrophys. 355, 885–890 (2000) ASTRONOMY AND ASTROPHYSICS ISO-LWS spectroscopy of Centaurus A: extended star formation S.J. Unger1, P.E...University of Maryland, College Park, MD, USA Received 31 August 1999 / Accepted 18 January 2000 Abstract. We present the first full FIR spectrum of Centaurus ...individual: Centaurus A = NGC 5128 – infrared: galaxies – galaxies: ISM – galaxies: starburst – galax- ies: active 1. Introduction Centaurus A (NGC 5128
ISO Key Project: Exploring the Full Range of Quasar/Agn Properties
NASA Technical Reports Server (NTRS)
Wilkes, Belinda; Oliversen, Ronald J. (Technical Monitor)
2003-01-01
While most of the work on this program has been completed, as previously reported, the portion of the program dealing with the subtopic of ISO LWS data analysis and reduction for the LWS Extragalactic Science Team and its leader, Dr. Howard Smith, is still active. This program in fact continues to generate results, and newly available computer modeling has extended the value of the datasets. As a result the team requests a one-year no-cost extension to this program, through 31 December 2004. The essence of the proposal is to perform ISO spectroscopic studies, including data analysis and modeling, of star-formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, but including as well some other spectroscopic databases. Four kinds of regions are considered in the studies: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star-formation regions; (3) star formation in external, bright IR galaxies; and (4) the galactic center. One prime focus of the program is the OH lines in the far infrared. The program has the following goals: 1) Refine the data analysis of ISO observations to obtain deeper and better SNR results on selected sources. The ISO data itself underwent 'pipeline 10' reductions in early 2001, and additional 'hands-on data reduction packages' were supplied by the ISO teams in 2001. The Fabry-Perot database is particularly sensitive to noise and slight calibration errors; 2) Model the atomic and molecular line shapes, in particular the OH lines, using revised Monte-Carlo techniques developed by the SWAS team at the Center for Astrophysics; 3) Attend scientific meetings and workshops; 4) Perform E&PO activities related to infrared astrophysics and/or spectroscopy.
The Objectives of NASA's Living with a Star Space Environment Testbed
NASA Technical Reports Server (NTRS)
Barth, Janet L.; LaBel, Kenneth A.; Brewer, Dana; Kauffman, Billy; Howard, Regan; Griffin, Geoff; Day, John H. (Technical Monitor)
2001-01-01
NASA is planning to fly a series of Space Environment Testbeds (SET) as part of the Living With A Star (LWS) Program. The goal of the testbeds is to improve and develop capabilities to mitigate and/or accommodate the affects of solar variability in spacecraft and avionics design and operation. This will be accomplished by performing technology validation in space to enable routine operations, characterize technology performance in space, and improve and develop models, guidelines and databases. The anticipated result of the LWS/SET program is improved spacecraft performance, design, and operation for survival of the radiation, spacecraft charging, meteoroid, orbital debris and thermosphere/ionosphere environments. The program calls for a series of NASA Research Announcements (NRAs) to be issued to solicit flight validation experiments, improvement in environment effects models and guidelines, and collateral environment measurements. The selected flight experiments may fly on the SET experiment carriers and flights of opportunity on other commercial and technology missions. This paper presents the status of the project so far, including a description of the types of experiments that are intended to fly on SET-1 and a description of the SET-1 carrier parameters.
Solar Sentinels: Report of the Science and Technology Definition Team
NASA Technical Reports Server (NTRS)
2006-01-01
The goal of NASA s Living With a Star (LWS) program is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun Earth system that directly affect life and society. Along with the other elements of LWS, Solar Sentinels aims to discover, understand, and model the heliospheric initiation, propagation, and solar connection of those energetic phenomena that adversely affect space exploration and life and society here on Earth. The Solar Sentinels mission will address the following questions: (1) How, where, and under what circumstances are solar energetic particles (SEPs) accelerated to high energies and how do they propagate through the heliosphere? And (2) How are solar wind structures associated with these SEPs, like CMEs, shocks, and high-speed streams, initiated, propagate, evolve, and interact in the inner heliosphere? The Sentinels STDT recommends implementing this mission in two portions, one optimized for inner heliospheric in-situ measurements and the other for solar remote observations. Sentinels will greatly enhance the overall LWS science return.
NASA Technical Reports Server (NTRS)
Barth, Janet L.; LaBel, Kenneth; Brewer, Dana; Withbroe, George; Kauffman, Billy
2001-01-01
NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. A pre-formulation study determined the optimum combination of science missions, modeling, and technology infusion elements to accomplish this goal. The results of the study are described.
ISO Key Project: Exploring The Full Range of Quasar/AGN Properties
NASA Technical Reports Server (NTRS)
Wilkes, Belinda; West, Donald K. (Technical Monitor)
2002-01-01
While most of the work on this program has been completed, as previously reported, the portion of the program dealing with the sub topic of ISO LWS data analysis and reduction for the LWS Extragalactic Science Team and its leader, Dr. Howard Smith, is still active. This program in fact continues to generate results, and newly available computer modeling has extended the value of the datasets, As a result the team has requested and been granted an obtained a no-cost extension to this program, through December 31, 2003. The essence of the proposal is to perform ISO spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, but including as well some other spectroscopic data bases. Four kinds of regions are considered in the studies: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star formation regions; (3) star formation in external, bright IR galaxies; and (4) the galactic center. One prime focus of the program is the OH lines in the far infrared. The program has the following goals: (1) refine the data analysis of ISO observations, to obtain deeper and better SNR results on selected sources. The ISO data itself underwent "pipeline 10" reductions in early 2001, and additional "hands-on data reduction packages" were supplied by the ISO teams in 2001. The Fabry-Perot database in particularly sensitive to noise can slight calibration errors. (2) model the atomic and molecular line shapes, in particular the OH lines, using revised Monte-Carlo techniques developed by the SWAS team at the Center for Astrophysics; (3) attend scientific meetings and workshops; (4) do E&PO activities related to infrared astrophysics and/or spectroscopy.
LWS/SET End-to-End Data System
NASA Technical Reports Server (NTRS)
Giffin, Geoff; Sherman, Barry; Colon, Gilberto (Technical Monitor)
2002-01-01
This paper describes the concept for the End-to-End Data System that will support NASA's Living With a Star Space Environment Testbed missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap.between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The End-to-end data system allows investigators to access the SET control center, command their experiments, and receive data from their experiments back at their home facility, using the Internet. The logical functioning of major components of the end-to-end data system are described, including the GSFC Payload Operations Control Center (POCC), SET Payloads, the GSFC SET Simulation Lab, SET Experiment PI Facilities, and Host Systems. Host Spacecraft Operations Control Centers (SOCC) and the Host Spacecraft are essential links in the end-to-end data system, but are not directly under the control of the SET Project. Formal interfaces will be established between these entities and elements of the SET Project. The paper describes data flow through the system, from PI facilities connecting to the SET operations center via the Internet, communications to SET carriers and experiments via host systems, to telemetry returns to investigators from their flight experiments. It also outlines the techniques that will be used to meet mission requirements, while holding development and operational costs to a minimum. Additional information is included in the original extended abstract.
The Living With a Star CDAW on the Solar and Geospace Connections of Solar Energetic Particles
NASA Technical Reports Server (NTRS)
Thompson, Barbara J.; Gopalswamy, Nat; Colon, Gilberto (Technical Monitor)
2002-01-01
The Living With a Star Program is sponsoring its first CDAW (Coordinated Data Analysis Workshop) to be held July 23-26, 2002 at a conference support location near the NASA Goddard Space Flight Center. This CDAW's topic is Solar Energetic Particle events. The topic was chosen due to the breadth of the impact of SEP's on the space environment and terrestrial climate. General goals of the LWS CDAW are a) Stimulate LWS Science on the near term, b) Facilitate cross-disciplinary interaction between the LWS scientific and space environment communities, c) Produce science products for all potential users, and d) Assist in the development of the LWS data system. The workshop will proceed similar to a previous CDAW held in 1999 on Interplanetary Type 11 Shocks. A list of target events has been compiled, which can be found at the workshop home page. The page lists all of the SEP events from 1996 January to 2001 December with energy > 10 MeV particle intensities exceeding 10 PFU. Preparation for the workshop consists of identifying relevant data from a wide variety of sources (solar, interplanetary, magnetospheric and climatary), accumulating the data (frequently this consists of both raw data, processed data and plots to ease perusal during the workshop) and gathering the software tools. Participants in the workshop are expected to complete their contributions of data or models prior to arriving at the workshop. Most of the CDAW consists of joint analysis of this data; only a few introductory talks are given at the beginning of the workshop, with the rest of the time being devoted to producing scientific results. Additional symposia may be scheduled at a later date, which will allow a venue for scientific talks on the CDAW results and associated science. The poster will list the scientific goals of the workshop, as well as a scientific discussion of the data which has been accumulated thus far.
NASA LWS Institute GIC Working Group: GIC science, engineering and applications readiness
NASA Astrophysics Data System (ADS)
Pulkkinen, A. A.; Thomson, A. W. P.; Bernabeu, E.
2016-12-01
In recognition of the rapidly growing interest on the topic, this paper is based on the findings of the very first NASA Living With a Star (LWS) Institute Working Group that was specifically targeting the GIC issue. The new LWS Institutes program element was launched 2014 and the concept is built around small working group style meetings that focus on well defined problems that demand intense, direct interactions between colleagues in neighboring disciplines to facilitate the development of a deeper understanding of the variety of processes that link the solar activity to Earth's environment. The LWS Institute Geomagnetically Induced Currents (GIC) Working Group (WG) led by A. Pulkkinen (NASA GSFC) and co-led by E. Bernabeu (PJM) and A. Thomson (BGS) was selected competitively as the pilot activity for the new LWS element. The GIC WG was tasked to 1) identify, advance, and address the open scientific and engineering questions pertaining to GIC, 2) advance predictive modeling of GIC, 3) advocate and act as a catalyst to identify resources for addressing the multidisciplinary topic of GIC. In this paper, we target the goal 1) of the GIC WG. More specifically, the goal of this paper is to review the current status and future challenges pertaining to science, engineering and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allow improved understanding and physics-based modeling of physical processes behind GIC. Engineering in turn is understood here as the "impact" aspect of GIC. The impact includes any physical effects GIC may have on the performance of the manmade infrastructure. Applications is understood as the models, tools and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government for managing any potential consequences from GIC impact to critical infrastructure. In this sense, applications can be considered as the ultimate goal of our GIC work and thus in assessing the status of the field, we specifically will quantify the readiness of various applications in the GIC effects mitigation context.
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Barth, Janet L.; Brewer, Dana A.
2003-01-01
This viewgraph presentation provides information on flight validation experiments for technologies to determine solar effects. The experiments are intended to demonstrate tolerance to a solar variant environment. The technologies tested are microelectronics, photonics, materials, and sensors.
NASA Technical Reports Server (NTRS)
Smith, Howard A.; Oliversen, Ronald J. (Technical Monitor)
2001-01-01
This research program addresses astrophysics research with the Infrared Space Observatory's Long Wavelength Spectrometer (ISO-LWS), including efforts to supply ISO-LWS with superior metal mesh filters. This grant has, over the years, enabled Dr. Smith in his role as a Co-Investigator on the satellite, the PI (Principal Investigator) on the Extragalactic Science Team, and a member of the Calibration and performance working groups. The emphasis of the budget in this proposal is in support of Dr. Smith's Infrared Space Observatory research. This program began (under a different grant number) while Dr. Smith was at the Smithsonian's National Air and Space Museum, and was transferred to SAO with a change in number. While Dr. Smith was a visiting Discipline Scientist at NASA HQ the program was in abeyance, but it has resumed in full since his return to SAO. The Infrared Space Observatory mission was launched in November, 1996, and since then has successfully completed its planned lifetime mission. Data are currently being calibrated to the 2% level.
Living with a Star: New Opportunities in Sun-Climate Research
NASA Technical Reports Server (NTRS)
2003-01-01
Living With a Star is a NASA initiative employing the combination of dedicated spacecraft with targeted research and modeling efforts to improve what we know of solar effects of all kinds on the Earth and its surrounding space environment, with particular emphasis on those that have significant practical impacts on life and society. The highest priority among these concerns is the subject of this report: the potential effects of solar variability on regional and global climate, including the extent to which solar variability has contributed to the well-documented warming of the Earth in the last 100 years. Understanding how the climate system reacts to external forcing from the Sun will also greatly improve our knowledge of how climate will respond to other climate drivers, including those of anthropogenic origin. A parallel element of the LWS program addresses solar effects on space weather : the impulsive emissions of charged particles, short-wave electromagnetic radiation and magnetic disturbances in the upper atmosphere and near-Earth environment that also affect life and society. These include a wide variety of solar impacts on aeronautics, astronautics, electric power transmission, and national defense. Specific examples are (1) the impacts of potentially- damaging high energy radiation and atomic particles of solar origin on satellites and satellite operations, spacecraft electronics systems and components, electronic communications, electric power distribution grids, navigational and GPS systems, and high altitude aircraft; and (2) the threat of sporadic, high-energy solar radiation to astronauts and high altitude aircraft passengers and crews. Elements of the LWS program include an array of dedicated spacecraft in near- Earth and near-Sun orbits that will closely study and observe both the Sun itself and the impacts of its variations on the Earth's radiation belts and magnetosphere, the upper atmosphere, and ionosphere. These spacecraft, positioned to study and monitor changing conditions in the Sun-Earth neighborhood, will also serve as sentinels of solar storms and impulsive events.
The Geospace Mission Definition Team report
NASA Astrophysics Data System (ADS)
Kintner, P.; Spann, J.
The Geospace Mission Definition Team (GMDT) is the portion of the Living With a Star (LWS) Program that has been charged by NASA to examine how the Geospace environment responds to solar variability. The goal is to provide science recommendations that guide NASA in the formulation of Geospace missions. The GMDT's first meeting with September 10, 2001 and has met on four subsequent dates. The top level space weather effects were initially defined by the LWS Science Architecture Team (SAT). From these effects the GMDT has distilled general objectives and specific objectives. These objectives have been prioritized and compelling science questions have been identified that are required to address the objectives. A set of candidate missions has been defined with minimum, baseline, and augmentation measurements identified. The priority science questions focus on two broad areas: (1) ionospheric variability, especially at mid-latitudes, that affects navigation and communications and (2) the source, acceleration mechanisms, and sinks of the radiation belts that degrade satellite lifetimes, produce surface charging, and threaten manned space flight. In addition the measurements required for understanding ionospheric variability will also address science issues associated with thermospheric satellite drag and orbital prediction. Candidate missions to address these science focii have been developed and studied. The team concludes that it is possible to address the compelling science questions with a cost effective program that yields major advances in our understanding of space weather science, that inspires and validates better ionospheric and magnetospheric models, and that will enable operational advances mitigating the societal impacts of space weather.
Solar Cycle Variation and Multipoint Studies of ICME Properties
NASA Technical Reports Server (NTRS)
Russell, C. T.
2005-01-01
The goal of the Living With a Star program is to understand the Sun-Earth connection sufficiently well that we can solve problems critical to life and society. This can most effectively be done in the short term using observations from our past and on-going programs. Not only can this approach solve some of the pressing issues but also it can provide ideas for the deployment of future spacecraft in the LWS program. The proposed effort uses data from NEAR, SOHO, Wind, ACE and Pioneer Venus in quadrature, multipoint, and solar cycle studies to study the interplanetary coronal mass ejection and its role in the magnetic flux cycle of the Sun. ICMEs are most important to the LWS objectives because the solar wind conditions associated with these structures are the most geoeffective of any solar wind phenomena. Their ability to produce strong geomagnetic disturbances arises first because of their high speed. This high speed overtakes the ambient solar wind producing a bow shock wave similar to the terrestrial bow shock. In the new techniques we develop as part of this effort we exploit this feature of ICMEs. This shocked plasma has a greater velocity, higher density and stronger magnetic field than the ambient solar wind, conditions that can enhance geomagnetic activity. The driving ICME is a large magnetic structure expanding outward in the solar wind [Gosling, 19961. The ICMEs magnetic field is generally much higher than that in the ambient solar wind and the velocity is high. The twisted nature of the magnetic field in an ICME almost ensures that sometime during the ICME conditions favorable for geomagnetic storm initiation will occur.
Technology Development Activities for the Space Environment and its Effects on Spacecraft
NASA Technical Reports Server (NTRS)
Kauffman, Billy; Hardage, Donna; Minor, Jody; Barth, Janet; LaBel, Ken
2003-01-01
Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how emerging microelectronics will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the push to use Commercial-off-the-shelf (COTS) and shrinking microelectronics behind less shielding and the potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will describe the relationship between the Living With a Star (LWS): Space Environment Testbeds (SET) Project and NASA's Space Environments and Effects (SEE) Program and their technology development activities funded as a result from the recent SEE Program's NASA Research Announcement.
NASA space shuttle lightweight seat
NASA Technical Reports Server (NTRS)
Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd
1996-01-01
The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.
Kawamura, Shoji; Kasagi, Satoshi; Kasai, Daisuke; Tezuka, Ayumi; Shoji, Ayako; Takahashi, Akiyoshi; Imai, Hiroo; Kawata, Masakado
2016-10-01
The guppy (Poecilia reticulata) shows remarkable variation of photoreceptor cells in the retina, especially those sensitive to middle-to-long wavelengths of light. Microspectrophotometry (MSP) has revealed varying "green", "green-yellow" and "yellow" cone cells among guppies in Trinidad and Venezuela (Cumana). In the guppy genome, there are four "long-wave" opsin loci (LWS-1, -2, -3 and -4). Two LWS-1 alleles have potentially differing spectral sensitivity (LWS-1/180Ser and LWS-1/180Ala). In addition, two "middle-wave" loci (RH2-1 and -2), two "short-wave" loci (SWS2-A and -B), and a single "ultraviolet" locus (SWS1) as well as a single "rhodopsin" locus (RH1) are present. However, the absorption spectra of these photopigments have not been measured directly and the association of cell types with these opsins remains speculative. In the present study, we reconstituted these opsin photopigments in vitro. The wavelengths of maximal absorbance (λmax) were 571nm (LWS-1/180Ser), 562nm (LWS-1/180Ala), 519nm (LWS-3), 516nm (LWS-2), 516nm (RH2-1), 476nm (RH2-2), 438nm (SWS2-A), 408nm (SWS2-B), 353nm (SWS1) and 503nm (RH1). The λmax of LWS-3 is much shorter than the value expected (560nm) from the "five-sites" rule. The two LWS-1 alleles could explain difference of the reported MSP λmax values for the yellow cone class between Trinidad and Cumana guppies. Absence of the short-wave-shifted LWS-3 and the green-yellow cone in the green swordtail supports the hypothesis that this cell class of the guppy co-expresses the LWS-1 and LWS-3. These results reveal the basis of variability in the guppy visual system and provide insight into the behavior and ecology of these tropical fishes. Copyright © 2016. Published by Elsevier Ltd.
LWS/SET Technology Experiment Carrier
NASA Technical Reports Server (NTRS)
Sherman, Barry; Giffin, Geoff
2002-01-01
This paper examines the approach taken to building a low-cost, modular spacecraft bus that can be used to support a variety of technology experiments in different space environments. It describes the techniques used and design drivers considered to ensure experiment independence from as yet selected host spacecraft. It describes the technology experiment carriers that will support NASA's Living With a Star Space Environment Testbed space missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The SET Project is highly budget constrained and must seek to take advantage of as yet undetermined partnering opportunities for access to space. SET will conduct technology validation experiments hosted on available flight opportunities. The SET Testbeds will be developed in a manner that minimizes the requirements for accommodation, and will be flown as flight opportunities become available. To access the widest range of flight opportunities, two key development requirements are to maintain flexibility with respect to accommodation constraints and to have the capability to respond quickly to flight opportunities. Experiments, already developed to the technology readiness level of needing flight validation in the variable Sun-Earth environment, will be selected on the basis of the need for the subject technology, readiness for flight, need for flight resources and particular orbit. Experiments will be accumulated by the Project and manifested for specific flight opportunities as they become available. The SET Carrier is designed to present a standard set of interfaces to SET technology experiments and to be modular and flexible enough to interface to a variety of possible host spacecraft. The Carrier will have core components and mission unique components. Once the core carrier elements have been developed, only the mission unique components need to be defined and developed for any particular mission. This approach will minimize the mission specific cost and development schedule for a given flight opportunity. The standard set of interfaces provided by SET to experiments allows them to be developed independent of the particulars of a host spacecraft. The Carrier will provide the power, communication, and the necessary monitoring features to operate experiments. The Carrier will also provide all of the mechanical assemblies and harnesses required to adapt experiments to a particular host. Experiments may be hosted locally with the Carrier or remotely on the host spacecraft. The Carrier design will allow a single Carrier to support a variable number of experiments and will include features that support the ability to incrementally add experiments without disturbing the core architecture.
Differential expression of appetite-regulating genes in avian models of anorexia and obesity.
Yi, J; Yuan, J; Gilbert, E R; Siegel, P B; Cline, M A
2017-08-01
Chickens from lines that have been selected for low (LWS) or high (HWS) juvenile body weight for more than 57 generations provide a unique model by which to research appetite regulation. The LWS display different severities of anorexia, whereas all HWS become obese. In the present study, we measured mRNA abundance of various factors in appetite-associated nuclei in the hypothalamus. The lateral hypothalamus (LHA), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH), dorsomedial nucleus (DMN) and arcuate nucleus (ARC) were collected from 5 day-old chicks that were fasted for 180 minutes or provided with continuous access to food. Fasting increased neuropeptide Y receptor subtype 1 (NPYR1) mRNA in the LHA and c-Fos in the VMH, at the same time as decreasing c-Fos in the LHA, neuropeptide Y receptor subtype 5 and ghrelin in the PVN, and neuropeptide Y receptor subtype 2 in the ARC. Fasting increased melanocortin receptor subtype 3 (MC3R) expression in the DMN and NPY in the ARC of LWS but not HWS chicks. Expression of NPY was greater in LWS than HWS in the DMN. neuropeptide Y receptor subtype 5 mRNA was greater in LWS than HWS in the LHA, PVN and ARC. Expression of orexin was greater in LWS than HWS in the LHA. There was greater expression of NPYR1, melanocortin receptor subtype 4 and cocaine- and amphetamine-regulated transcript in HWS than LWS and mesotocin in LWS than HWS in the PVN. In the ARC, agouti-related peptide and MC3R were greater in LWS than HWS and, in the VMH, orexin receptor 2 and leptin receptor were greater in LWS than HWS. Greater mesotocin in the PVN, orexin in the LHA and ORXR2 in the VMH of LWS may contribute to their increased sympathetic tone and anorexic phenotype. The results of the present study also suggest that an increased hypothalamic anorexigenic tone in the LWS over-rides orexigenic factors such as NPY and AgRP that were more highly expressed in LWS than HWS in several nuclei. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Smith, Bryan K; Van Walleghen, Emily L; Cook-Wiens, Galen; Martin, Rachael N; Curry, Chelsea R; Sullivan, Debra K; Gibson, Cheryl A; Donnelly, Joseph E
2009-08-01
The purpose of this study was to compare the efficacy of two home-based weight loss interventions that differ only in the amount of outside support provided. This was a 12-week, randomized, controlled trial. One group received limited support (LWS, n = 35) via a single 10 min phone call each week while another group received no weekly support (NWS, n = 28). Both the LWS and NWS received pre-packaged meals (PM) and shakes. A third group served as control (CON, n = 30) and received no components of the intervention. Weight loss at 12 weeks was the primary outcome. Diet (PM, shake, and fruit/vegetable (F/V) intake) and physical activity (PA) were self-monitored, recorded daily and reported weekly. An exit survey was completed by participants in the intervention groups upon completion of the study. Weight loss and percent weight loss in the LWS, NWS, and CON groups were 7.7 ± 4.4 kg (8.5 ± 4.2%), 5.9 ± 4.1 kg (6.0 ± 4.2%), and 0.3 ± 1.9 kg (0.4 ± 1.2%), respectively. The decrease in body weight and percent weight loss was significantly greater in the LWS and NWS groups when compared to the CON group and the percent weight loss was significantly greater in the LWS when compared to both the NWS and CON groups. A home-based weight loss program utilizing PM and shakes results in clinically significant percent weight loss and the addition of a brief weekly call promotes additional percent weight loss. © 2009 Asian Oceanian Association for the Study of Obesity . Published by Elsevier Ltd. All rights reserved.
H2O from R Cas: ISO LWS-SWS observations and detailed modelling
NASA Astrophysics Data System (ADS)
Truong-Bach; Sylvester, R. J.; Barlow, M. J.; Nguyen-Q-Rieu; Lim, T.; Liu, X. W.; Baluteau, J. P.; Deguchi, S.; Justtanont, K.; Tielens, A. G. G. M.
1999-05-01
We present 29-197 mu m spectra of the oxygen-rich Mira variable star, R Cas, obtained with the Long- and Short- Wavelength Spectrometers (LWS and SWS) on board the Infrared Space Observatory (ISO). The LWS grating observations were made during two pulsational stellar phases, phi { ~ } 0.5 and 0.2 in August 1996 and June 1997 when the stellar luminosity was near its minimum and mean values, respectively. The infrared flux at the latter epoch was { ~ } 30-40% stronger than at the former. SWS grating observations were also made in June 1997. The spectrum presents a strong far-infrared (FIR) continuum and is rich in water lines suitable for use as circumstellar diagnostics. We have constructed a circumstellar model which consistently treats radiative transfer, chemical exchanges, photodissociation, and heating and cooling effects. The overall FIR excitation field was scaled by a factor which varied with the stellar phase. By fitting the model to the observed FIR water line fluxes and continuum while adopting the stellar parameters based on the Hipparcos distance we have found a mass-loss rate of dot {M} { ~ } 3.4*E(-7) Msun yr(-1) and a total ortho and para water vapour abundance (relative to {H_2} ) of f { ~ } 1.1x\\ex{-5}. The kinetic temperature and the relative abundances of {H2O} , OH, and O in chemical equilibrium have been derived as functions of radial distance r. {H2O} excitation is mainly dominated by FIR emitted by dust grains. The deduced model continuum flux at 29-197 mu m for the phi ~ 0.5 phase was 61% of the flux at phi ~ 0.2. Photodissociation by the FUV interstellar field and CO cooling effects operate farther out than the {H2O} excitation region. Our derived mass-loss rate of R Cas is similar to the value 6x\\ex{-7} Msun yr(-1) previously published for WHya, another oxygen-rich AGB star. Based on observations with ISO, an ESA project with instruments funded by ESA Members States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.
Complete ISOPHOT (C200) Maps of a Nearby Prototypical GMC: W3 (Spring) or NGC7538 (Fall)
NASA Technical Reports Server (NTRS)
Sanders, David B.
2001-01-01
We were originally awarded Priority 3 time (approximately 60,000 sec) with Infrared Space Observatory (ISO) to obtain a complete ISOPHOT (PHT32-C200) map of a nearby prototypical giant molecular cloud (GMC). Following the FALL launch and revised estimates for the sensitivity of the ISOPHOT detectors, our program was modified to fit within the time constraints while still carrying out the main science requirements. The revised program requested long strip maps of our FALL target (NGC7538) using sequences of PHT37/38/39 observations with LWS observations of the brightest regions. The large number of AOTs required to cover each GMC required that our observations be spread over four separate proposals (PROP-01, PROP-02, PROP-03, PROP-04) which together comprise a single observing program. Our program was executed in early 1997; nearly 50,000 sec of data were obtained, including all of our requested ISOPHOT C200 observations. None of the LWS data were taken.
Differences in alarm events between disposable and reusable electrocardiography lead wires.
Albert, Nancy M; Murray, Terri; Bena, James F; Slifcak, Ellen; Roach, Joel D; Spence, Jackie; Burkle, Alicia
2015-01-01
Disposable electrocardiographic lead wires (ECG-LWs) may not be as durable as reusable ones. To examine differences in alarm events between disposable and reusable ECG-LWs. Two cardiac telemetry units were randomized to reusable ECG-LWs, and 2 units alternated between disposable and reusable ECG-LWs for 4 months. A remote monitoring team, blinded to ECG-LW type, assessed frequency and type of alarm events by using total counts and rates per 100 patient days. Event rates were compared by using generalized linear mixed-effect models for differences and noninferiority between wire types. In 1611 patients and 9385.5 patient days of ECG monitoring, patient characteristics were similar between groups. Rates of alarms for no telemetry, leads fail, or leads off were lower in disposable ECG-LWs (adjusted relative risk [95% CI], 0.71 [0.53-0.96]; noninferiority P < .001; superiority P = .03) and monitoring (artifact) alarms were significantly noninferior (adjusted relative risk [95% CI]: 0.88, [0.62-1.24], P = .02; superiority P = .44). No between-group differences existed in false or true crisis alarms. Disposable ECG-LWs were noninferior to reusable ECG-LWs for all false-alarm events (N [rate per 100 patient days], disposable 2029 [79.1] vs reusable 6673 [97.9]; adjusted relative risk [95% CI]: 0.81 [0.63-1.06], P = .002; superiority P = .12.) Disposable ECG-LWs with patented push-button design had superior performance in reducing alarms created by no telemetry, leads fail, or leads off and significant noninferiority in all false-alarm rates compared with reusable ECG-LWs. Fewer ECG alarms may save nurses time, decrease alarm fatigue, and improve patient safety. ©2015 American Association of Critical-Care Nurses.
Anorexia is Associated with Stress-Dependent Orexigenic Responses to Exogenous Neuropeptide Y.
Yi, J; Delp, M S; Gilbert, E R; Siegel, P B; Cline, M A
2016-05-01
Chicken lines that have been divergently selected for either low (LWS) or high (HWS) body weight at 56 days of age for more than 57 generations have different feeding behaviours in response to a range of i.c.v. injected neurotransmitters. The LWS have different severities of anorexia, whereas the HWS become obese. Previously, we demonstrated that LWS chicks did not respond, whereas HWS chicks increased food intake, after central injection of neuropeptide Y (NPY). The present study aimed to determine the molecular mechanisms underlying the loss of orexigenic function of NPY in LWS. Chicks were divided into four groups: stressed LWS and HWS on day of hatch, and control LWS and HWS. The stressor was a combination of food deprivation and cold exposure. On day 5 post-hatch, each chick received an i.c.v. injection of vehicle or 0.2 nmol of NPY. Only the LWS stressed group did not increase food intake in response to i.c.v. NPY. Hypothalamic mRNA abundance of appetite-associated factors was measured at 1 h post-injection. Interactions of genetic line, stress and NPY treatment were observed for the mRNA abundance of agouti-related peptide (AgRP) and synaptotagmin 1 (SYT1). Intracerebroventricular injection of NPY decreased and increased AgRP and SYT1 mRNA, respectively, in the stressed LWS and increased AgRP mRNA in stressed HWS chicks. Stress was associated with increased NPY, orexin receptor 2, corticotrophin-releasing factor receptor 1, melanocortin receptor 3 (MC3R) and growth hormone secretagogue receptor expression. In conclusion, the loss of responsiveness to exogenous NPY in stressed LWS chicks may be a result of the decreased and increased hypothalamic expression of AgRP and MC3R, respectively. This may induce an intensification of anorexigenic melanocortin signalling pathways in LWS chicks that block the orexigenic effect of exogenous NPY. These results provide insights onto the anorexic condition across species, and especially for forms of inducible anorexia such as human anorexia nervosa. © 2016 British Society for Neuroendocrinology.
Challenges to modeling the Sun-Earth System: A Workshop Summary
NASA Technical Reports Server (NTRS)
Spann, James F.
2006-01-01
This special issue of the Journal of' Atmospheric and Solar-Terrestrial Physics is a compilation of 23 papers presented at The 2004 Huntsville Modeling Workshop: Challenges to Modeling thc San-Earth System held in Huntsville, AB on October 18-22, 2004. The title of the workshop appropriately captures the theme of what was presented and discussed by the 120 participants. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA living with a star (LWS) programs. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales inn time and space. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress
The LWS Geospace Storm Investigations Exploring the Extremes of Space Weather
NASA Technical Reports Server (NTRS)
2002-01-01
The Geospace mission of the Living With a Star program is a family of investigations focusing on the compelling science questions that advance our ability to specify, understand, and predict the societal impact of solar variance. Two key areas have been identified as combining both importance to society and potential for scientific progress: 1) characterization and understanding of the acceleration, global distribution, and variability of energetic electrons and ions in the inner magnetosphere, and 2) characterization and understanding of the ionosphere and irregularities that affect communications, navigation and radar systems. Under these broad categories specific science questions have emerged as the priority science objectives for the first Geospace Investigations: How and why do relativistic electrons in the outer zone and slot region vary during geomagnetic storms? How does the long- and short-term variability of the Sun affect the global-scale behavior of the ionospheric electron density and irregularities, especially during magnetic storms and at mid-latitudes? The first Geospace mission will attempt to answer these questions.
NASA Astrophysics Data System (ADS)
Polehampton, E. T.; Menten, K. M.; van der Tak, F. F. S.; White, G. J.
2010-02-01
Context. The far-infrared spectra of circumstellar envelopes around various oxygen-rich stars were observed using the ISO Long Wavelength Spectrometer (LWS). These have been shown to be spectrally rich, particularly in water lines, indicating a high H2O abundance. Aims: We have examined high signal-to-noise ISO LWS observations of the luminous supergiant star, VY CMa, with the aim of identifying all of the spectral lines. By paying particular attention to water lines, we aim to separate the lines due to other species, in particular, to prepare for forthcoming observations that will cover the same spectral range using Herschel PACS and at higher spectral resolution using Herschel HIFI and SOFIA. Methods: We have developed a fitting method to account for blended water lines using a simple weighting scheme to distribute the flux. We have used this fit to separate lines due to other species which cannot be assigned to water. We have applied this approach to several other stars which we compare with VY CMa. Results: We present line fluxes for the unblended H2O and CO lines, and present detections of several possible ν2=1 vibrationally excited water lines. We also identify blended lines of OH, one unblended and several blended lines of NH3, and one possible detection of H3O+. Conclusions: The spectrum of VY CMa shows a detection of emission from virtually every water line up to 2000 K above the ground state, as well as many additional higher energy and some vibrationally excited lines. A simple rotation diagram analysis shows large scatter (probably due to some optically thick lines). The fit gives a rotational temperature of 670+210-130 K, and lower limit on the water column density of (7.0±1.2) × 1019 cm-2. We estimate a CO column density ~100 times lower, showing that water is the dominant oxygen carrier. The other stars that we examined have similar rotation temperatures, but their H2O column densities are an order of magnitude lower (as are the mass loss rates). Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) with the participation of ISAS and NASA.Current address: Space Science Department, Rutherford Appleton Laboratory, UK
The Infrared Continuum Spectrum of VY Canis Majoris
NASA Astrophysics Data System (ADS)
Harwit, Martin; Malfait, Koen; Decin, Leen; Waelkens, Christoffel; Feuchtgruber, Helmut; Melnick, Gary J.
2001-08-01
We combine spectra of VY CMa obtained with the short- and long-wavelength spectrometers, SWS and LWS, on the Infrared Space Observatory3 to provide a first detailed continuum spectrum of this highly luminous star. The circumstellar dust cloud through which the star is observed is partially self-absorbing, which makes for complex computational modeling. We review previous work and comment on the range of uncertainties about the physical traits and mineralogical composition of the modeled disk. We show that these uncertainties significantly affect the modeling of the outflow and the estimated mass loss. In particular, we demonstrate that a variety of quite diverse models can produce good fits to the observed spectrum. If the outflow is steady, and the radiative repulsion on the dust cloud dominates the star's gravitational attraction, we show that the total dust mass loss rate is ~4×10-6 Msolar yr-1, assuming that the star is at a distance of 1.5 kpc. Several indications, however, suggest that the outflow from the star may be spasmodic. We discuss this and other problems facing the construction of a physically coherent model of the dust cloud and a realistic mass-loss analysis.
90 GHz and 150 GHz Observations of the Orion M42 Region. A Submillimeter to Radio Analysis
NASA Technical Reports Server (NTRS)
Dicker, S. R.; Mason, B. S.; Korngut, P. M.; Cotton, W. D.; Compiegne, M.; Devlin, M. J.; Martin, P. G.; Ade, P. A. R; Benford, D. J.; Irwin, K. D.;
2009-01-01
We have used the new 90GHz MUSTANG camera on the Robert C. Green Bank Telescope (GBT)to map the bright Huygens region of the star-forming region M42 with a resolution of 9" and a sensitivity of 2.8 mJy/beam. Ninety GHz is an interesting transition frequency, as MUSTANG detects both the free-free emission characteristic of the H II region created by the Trapezium stars, normally seen at lower frequencies, and thermal dust emission from the background OMCI molecular cloud, normally mapped at higher frequencies. We also present similar data from the 150 GHz GISMO camera taken on the IRAM 30 m telescope. This map has 15" resolution. By combining the MUSTANG data with 1.4, 8. and 31 GHz radio data from the VLA and GBT, we derive a new estimate of the emission measure averaged electron temperature of T(sub e) = 11376+/-1050 K by an original method relating free-free emission intensities at optically thin and optically thick frequencies. Combining Infrared Space Observatory-long wavelength spectrometer (ISO-LWS) data with our data, we derive a new estimate of the dust temperature and spectral emissivity index within the 80" ISO-LWS beam toward Orion KL/BN, T(sub d) = 42+/-3 K and Beta(sub d) = 1.3+/-0.1. We show that both T(sub d) and Beta(sub d) decrease when going from the H II region and excited OMCI interface to the denser UV shielded part OMCI (Orion KL/BN, Orion S). With a model consisting of only free-free and thermal dust emission, we are able to fit data taken at frequencies from 1.5 GHz to 854 GHz (350 micrometers).
NASA Astrophysics Data System (ADS)
Austin, M.; Guhathakurta, M.; Bhattacharjee, A.; Longcope, D. W.; Sojka, J. J.
2010-12-01
Heliophysics Summer Schools. NASA Living With a Star and the University Corporation for Atmospheric Research, Visiting Scientist Programs sponsor the Heliophysics Summer Schools to build the next generation of scientists in this new field. The series of summer schools (commencing 2007) trains graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth’s troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. The first three years of the school resulted in the publication of three textbooks for use at universities worldwide. Subsequent years will both teach generations of students and faculty and develop the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. Heliophysics is a developing scientific discipline integrating studies of the Sun’s variability, the surrounding heliopsphere, and climate environments. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. The three volumes, “Plasma Physics of the Local Cosmos”, “Space Storms and Radiation: Causes and Effects” and “Evolving Solar Activity and the Climates of Space and Earth”, edited by Carolus J. Schrijver, Lockheed Martin, and George L. Siscoe, Boston University, integrate such diverse topics for the first time as a coherent intellectual discipline. The books may be ordered through Cambridge University Press, and provide a foundational reference for researchers in heliophysics, astrophysics, plasma physics, space physics, solar physics, aeronomy, space weather, planetary science and climate science. Heliophysics Postdoctoral Program. Hosting/mentoring scientists and postdoctoral fellows are invited to apply to this new program designed to train the next generation of researchers in heliophysics. Two major topics of focus for LWS are the science of space weather and of the Sun-climate connection. Preference is given to applicants whose proposed research addresses one of these two foci; but any research program relevant to LWS is considered. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host institutions and mentoring scientists will play critical roles. Interested hosts may submit information about their research on a central database for this program: http://www.vsp.ucar.edu/Heliophysics/
Total Land Water Storage Change over 2003 - 2013 Estimated from a Global Mass Budget Approach
NASA Technical Reports Server (NTRS)
Dieng, H. B.; Champollion, N.; Cazenave, A.; Wada, Y.; Schrama, E.; Meyssignac, B.
2015-01-01
We estimate the total land water storage (LWS) change between 2003 and 2013 using a global water mass budget approach. Hereby we compare the ocean mass change (estimated from GRACE space gravimetry on the one hand, and from the satellite altimetry-based global mean sea level corrected for steric effects on the other hand) to the sum of the main water mass components of the climate system: glaciers, Greenland and Antarctica ice sheets, atmospheric water and LWS (the latter being the unknown quantity to be estimated). For glaciers and ice sheets, we use published estimates of ice mass trends based on various types of observations covering different time spans between 2003 and 2013. From the mass budget equation, we derive a net LWS trend over the study period. The mean trend amounts to +0.30 +/- 0.18 mm/yr in sea level equivalent. This corresponds to a net decrease of -108 +/- 64 cu km/yr in LWS over the 2003-2013 decade. We also estimate the rate of change in LWS and find no significant acceleration over the study period. The computed mean global LWS trend over the study period is shown to be explained mainly by direct anthropogenic effects on land hydrology, i.e. the net effect of groundwater depletion and impoundment of water in man-made reservoirs, and to a lesser extent the effect of naturally-forced land hydrology variability. Our results compare well with independent estimates of human-induced changes in global land hydrology.
An Overview Of NASA's Solar Sail Propulsion Project
NASA Technical Reports Server (NTRS)
Garbe, Gregory; Montgomery, Edward E., IV
2003-01-01
Research conducted by the In-Space Propulsion (ISP) Technologies Projects is at the forefront of NASA's efforts to mature propulsion technologies that will enable or enhance a variety of space science missions. The ISP Program is developing technologies from a Technology Readiness Level (TRL) of 3 through TRL 6. Activities under the different technology areas are selected through the NASA Research Announcement (NRA) process. The ISP Program goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary mission trip time, increased scientific payload mass fraction, and allowing for longer on-station operations. These propulsion technologies will also enable missions with previously inaccessible orbits (e.g., non-Keplerian, high solar latitudes). The ISP Program technology suite has been prioritized by an agency wide study. Solar Sail propulsion is one of ISP's three high-priority technology areas. Solar sail propulsion systems will be required to meet the challenge of monitoring and predicting space weather by the Office of Space Science s (OSS) Living with a Star (LWS) program. Near-to-mid-term mission needs include monitoring of solar activity and observations at high solar latitudes. Near-term work funded by the ISP solar sail propulsion project is centered around the quantitative demonstration of scalability of present solar sail subsystem designs and concepts to future mission requirements through ground testing, computer modeling and analytical simulations. This talk will review the solar sail technology roadmap, current funded technology development work, future funding opportunities, and mission applications.
Sumners, L H; Zhang, W; Zhao, X; Honaker, C F; Zhang, S; Cline, M A; Siegel, P B; Gilbert, E R
2014-06-01
Artificial selection of White Plymouth Rock chickens for juvenile (day 56) body weight resulted in two divergent genetic lines: hypophagic low weight (LWS) chickens and hyperphagic obese high weight (HWS) chickens, with the latter more than 10-fold heavier than the former at selection age. A study was designed to investigate glucose regulation and pancreas physiology at selection age in LWS chickens and HWS chickens. Oral glucose tolerance and insulin sensitivity tests revealed differences in threshold sensitivity to insulin and glucose clearance rate between the lines. Results from real-time PCR showed greater pancreatic mRNA expression of four glucose regulatory genes (preproinsulin, PPI; preproglucagon, PPG; glucose transporter 2, GLUT2; and pancreatic duodenal homeobox 1, Pdx1) in LWS chickens, than HWS chickens. Histological analysis of the pancreas revealed that HWS chickens have larger pancreatic islets, less pancreatic islet mass, and more pancreatic inflammation than LWS chickens, all of which presumably contribute to impaired glucose metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.
A New Wrist Clinical Evaluation Score.
Herzberg, Guillaume; Burnier, Marion; Nakamura, Toshiyasu
2018-04-01
Background The number of available wrist scoring systems is limited; some of them do not include forearm rotation criteria. Purpose To describe a new electronic wrist clinical score and to present a new patient's generated wrist evaluation criterion, the subjective wrist value (SWV). Materials and Methods A new electronic wrist clinical score, the Lyon wrist score (LWS) including wrist VAS pain and function, active range of motion and strength was built into an excel file. VAS flexion-extension pain and function were evaluated independently from pronation-supination pain and function. A new patient's generated wrist evaluation criterion, SWV was described. Results The LWS is available in two versions, standard and full (the latter including forearm rotation strength). Both standard and full LWS are displayed into an automatically generated diamond-shaped graph providing a comprehensive visual display of the clinical status of most osteoarticular wrist disorders. The graph also includes SWV. The LWS, combined with SWV into a graph that may be directly exported to a PowerPoint presentation, provide a new practical and comprehensive tool for following/comparing wrist osteoarticular clinical status/outcomes. Both standard and full LWS charts are available in colored versions on a related website for free download. Conclusion A comprehensive updated electronic display of osteoarticular wrist clinical status including forearm rotation criteria is provided and displayed into a graph which may be exported as such into a PowerPoint presentation for clinical analysis/comparisons. Level of Evidence Level II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, V.; Shah, H.; Bannochie, C. J.
Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed themore » Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated forms in the assembled salt batches in Tanks 21/49 pass through the Actinide Removal Process (ARP) / Modular Caustic Side Solvent Extraction Unit (MCU) process to Tank 50 with no significant change in the mercury chemistry. (3) In Tank 50, Decontaminated Salt Solution (DSS) from ARP/MCU is the major contributor to the total mercury including MHg. (4) Speciation analyses of TCLP leached solutions of the grout samples prepared from Tank 21, as well as Tank 50 samples, show the majority of the mercury released in the solution is MHg.« less
Wang, J; Yi, J; Siegel, P B; Cline, M A; Gilbert, E R
2017-12-01
The Virginia lines of chickens have been selected for low (LWS) or high (HWS) juvenile body weight and have different severities of anorexia and obesity, respectively. The LWS that are exposed to stressors at hatch are refractory to neuropeptide Y (NPY)-induced food intake and the objective of the present study was to determine the underlying mechanisms. Chicks were exposed to a stressor (-20°C for 6 minutes and 22°C and delayed access to food for 24 hours) after hatching and the hypothalamic nuclei, including the lateral hypothalamus (LH), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH) and arcuate nucleus (ARC), were collected 5 days later. In LWS but not HWS, stress exposure up-regulated corticotrophin-releasing factor (CRF), CRF receptor subtypes 1 and 2 (CRFR1 and CRFR2, respectively), melanocortin receptor 4 and urocortin 3 in the PVN, as well as CRFR2 mRNA in the VMH and ARC. In LWS, stress exposure was also associated with greater NPY and NPY receptor subtype 5 mRNA in the ARC and PVN, respectively, as well as decreased agouti-related peptide mRNA in the ARC. In HWS, stress exposure was associated with increased CRFR1 and decreased cocaine- and amphetamine-regulated transcript in the ARC and PVN, respectively. Refractoriness of the food intake response to NPY in LWS may thus result from the over-riding anorexigenic tone in the PVN associated with CRF signalling. Indeed, the orexigenic effect of NPY was restored when LWS were injected with a CRF receptor antagonist, astressin, before stress exposure. The results of the present study provide insights into the molecular basis of eating disorders and suggest that CRF signalling in the PVN may exacerbate the anorexic phenotype in the presence of environmental stressors. © 2017 British Society for Neuroendocrinology.
NASA Astrophysics Data System (ADS)
Yao, Fangfang; Wang, Jida; Yang, Kehan; Wang, Chao; Walter, Blake A.; Crétaux, Jean-François
2018-06-01
Alpine lakes in the interior of Tibet, the endorheic Changtang Plateau (CP), serve as ‘sentinels’ of regional climate change. Recent studies indicated that accelerated climate change has driven a widespread area expansion in lakes across the CP, but comprehensive and accurate quantifications of their storage changes are hitherto rare. This study integrated optical imagery and digital elevation models to uncover the fine spatial details of lake water storage (LWS) changes across the CP at an annual timescale after the new millennium (from 2002–2015). Validated by hypsometric information based on long-term altimetry measurements, our estimated LWS variations outperform some existing studies with reduced estimation biases and improved spatiotemporal coverages. The net LWS increased at an average rate of 7.34 ± 0.62 Gt yr‑1 (cumulatively 95.42 ± 8.06 Gt), manifested as a dramatic monotonic increase of 9.05 ± 0.65 Gt yr‑1 before 2012, a deceleration and pause in 2013–2014, and then an intriguing decline after 2014. Observations from the Gravity Recovery and Climate Experiment satellites reveal that the LWS pattern is in remarkable agreement with that of regional mass changes: a net effect of precipitation minus evapotranspiration (P-ET) in endorheic basins. Despite some regional variations, P-ET explains ~70% of the net LWS gain from 2002–2012 and the entire LWS loss after 2013. These findings clearly suggest that the water budget from net precipitation (i.e. P-ET) dominates those of glacier melt and permafrost degradation, and thus acts as the primary contributor to recent lake area/volume variations in endorheic Tibet. The produced lake areas and volume change dataset is freely available through PANAGEA (https://doi.pangaea.de/10.1594/PANGAEA.888706).
ISO Guest Observer Data Analysis and LWS Instrument Team Activities
NASA Technical Reports Server (NTRS)
Smith, Howard
2001-01-01
The following is an interim annual report. Dr. Smith is currently on an extended TDY to the Istituto di Fisica dello Spazio Interplanetario (IFSI) at the Consilio Nazionale delle Richerche (CNR) in Rome, Italy, where he has been working on a related NASA grant in support of analysis of Infrared Space Observatory (ISO) data on star formation in Ultra Luminous Infrared Galaxies and our galaxy. Work emphasizes development of metal mesh grids for use in spacecraft, and the design and fabrication of test elements by the Naval Research Laboratory, Washington D.C. Work has progressed well, but slowly, on that program due to the departure of a key engineer. NASA has been advised of the delay, and granted a no-cost extension, whereby SAO has authorized a delay in the final report from NRL. Nevertheless NRL has continued to make progress. Two papers have been submitted to refereed journals related to this program, and a new design for mesh operating in the 20-40 micron region has been developed. Meetings continue through the summer on these items. A new technical scientist has been made a job offer and hopefully will be on board NRL shortly, although most of the present grant work is already completed. A more complete report, with copies of the submitted papers, designs, and other measures of progress, will be submitted to NASA in September when Dr. Smith returns from his current TDY.
Radiation Effects on LWS Detectors and Deglitching of LWS Data
NASA Astrophysics Data System (ADS)
Burgdorf, M.; Harwood, A.; Sidher, S. D.
Glitches are caused by the effects of ionising particles (either a primary cosmic ray, interplanetary or belt electron, or a secondary generated in the spacecraft structure) on the detectors. There was roughly one glitch per ten seconds per detector during the normal period of LWS operation. These energetic particles cause a sudden jump in the ramp voltage, due to a quantity of charge being dumped on the integrating amplifier. They also cause a change in the detector responsivity which affects the following ramps. Glitches were detected in the automatic pipeline processing for each observation with the LWS that was performed with a standard Astronomical Observation Template. We describe the method with which this deglitching was carried out. Based on the findings from the deglitching algorithms we compare proton and electron fluences with average glitch rates and look for correlations. >From the glitch statistics one can also derive the energy distribution of the ionising radiation that hit the detectors. This energy spectrum agrees roughly with model predictions and therefore shows that it is in principle possible to predict the properties of the ionising radiation to which the detectors of future missions will be exposed. This is important, because for the LWS we found that the effect of an ionising radiation hit on the detectors was rather different, and more severe, than had been predicted before launch: An ionising particle could cause the detector to become unstable and spike spontaneously for some seconds following a hit, resulting in a strongly increased noise and requiring a re-adjustment of the bias levels.
Photoionization modeling of the LWS fine-structure lines in IR bright galaxies
NASA Technical Reports Server (NTRS)
Satyapal, S.; Luhman, M. L.; Fischer, J.; Greenhouse, M. A.; Wolfire, M. G.
1997-01-01
The long wavelength spectrometer (LWS) fine structure line spectra from infrared luminous galaxies were modeled using stellar evolutionary synthesis models combined with photoionization and photodissociation region models. The calculations were carried out by using the computational code CLOUDY. Starburst and active galactic nuclei models are presented. The effects of dust in the ionized region are examined.
The Solar Probe Plus Mission: Humanity's First Visit to Our Star
NASA Technical Reports Server (NTRS)
Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.;
2015-01-01
Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPPs main science goal is to determine the structure and dynamics of the Suns coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASAs Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPPs perihelion from 35 solar radii (RS) for the first orbit to less than 10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions.
The Solar Probe Plus Mission: Humanity's First Visit to Our Star
NASA Astrophysics Data System (ADS)
Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.; Lockwood, M. K.; McComas, D. J.; Raouafi, N. E.; Szabo, A.
2016-12-01
Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPP's main science goal is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASA's Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPP's perihelion from 35 solar radii (RS) for the first orbit to {<}10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions
Europe's space telescope ISO finds water in distant places
NASA Astrophysics Data System (ADS)
1997-04-01
Equally striking is ISO's discovery of water vapour in the outer planets, Saturn, Uranus and Neptune. As those chilly planets cannot release water from within, they probably have a supply of water coming from elsewhere in the Solar System. Since ISO went into orbit at the end of 1995, it has used its unique power of analysing infrared rays coming from the Universe to identify water vapour and water ice near dying stars and newborn stars. It has also measured the water vapour steaming from Comet Hale-Bopp. "Before ISO no instrument was capable of detecting water in so many places," comments ESA's director of science, Roger Bonnet. "To start revealing the cosmic history of the Earth's water is a big success for ESA and for the astronomers who use our unique infrared observatory. And ISO's discovery that water is commonplace in the Galaxy will encourage renewed speculation about life that may exist in the vicinity of other stars." Water amid the stars Primaeval hydrogen atoms make water by joining with oxygen atoms that are manufactured within stars, in nuclear reactions occurring towards the end of a star's life. Oxygen from defunct stars enriches the Galaxy, and abundant hydrogen is available to react with it. Although the existence of water in interstellar space is not surprising, the Earth's moist atmosphere makes life difficult for any astronomer who wishes to spot water vapour in the Universe with ground-based instruments. Observations from aircraft and balloons gave early hints of cosmic water, but thorough investigations had to wait for ISO's unhampered view from space. Three of the satellite's instruments, the Short Wavelength Spectrometer (SWS), the Long Wavelength Spectrometer (LWS) and the photometer ISOPHOT operating in spectroscopic mode, take part in the hunt for water. Last year, for example, users of both SWS and LWS reported water vapour in the vicinity of the aged star, W Hydrae, from which oxygen-rich winds blow into space. The bright infrared source GL 2591, surrounding a newly formed massive star, revealed to SWS hot and abundant water vapour. Jets of gas from very young stars can create luminous shock waves at great distances, and LWS made the first detection of water vapour in such an object, HH-54. Among the objects subsequently examined by LWS, IRAS 16293-2422 is a cosmic egg in the process of creating a star of about the same size as the Sun. Characteristic emissions from water vapour at 108, 113, 174 and 179 microns show up clearly. The water plays a practical part in starmaking. It helps to radiate away excess heat which could otherwise prevent the parent gas from condensing under gravity to make the star. When ISO looks towards the centre of the Galaxy, which lies about 28,000 light-years away in the constellation of Sagittarius, it sees, not emissions of the the characteristic wavelengths of water, but absorptions. These appear as dips in the infrared spectrum and tell of the presence of dark, cool clouds, called molecular clouds, which are the primary source of new stars. Very close to the true Galactic Centre is the bright infrared source Sagittarius B2, and it too shows the presence of water vapour. In a programme of observations which began in the autumn of 1996 and is still continuing, ISO's Long Wavelength Spectrometer has made observations of such high precision that it distinguishes different molecular clouds on the way towards the Galactic Centre. The clouds are moving at different speeds relative to the Earth. They alter each water wavelength by the Doppler effect, to produce a broad absorption line representing water vapour in the various clouds intervening between the Earth and the bright source Sagittarius B2. The detection by LWS of water molecules containing the rare, heavy form of oxygen, oxygen-18, helps the astronomers to estimate the abundance of water. Other watery clouds show up when ISO aims towards other dense regions of the Galaxy somewhat away from the Galactic Centre. There really is, in the words of an English poet, "Water, water everywhere". A Spanish astronomer, Jose Cernicharo of the Instituto de Estructura de la Materia in Madrid, has played a prominent part in this work. He is delighted by the results. "For the first time, we have a clear impression of the abundance of water in the Galaxy," Cernicharo says. "In relatively dense clouds as many as ten per cent of all oxygen atoms are incorporated into molecules of water vapour. Even more may be in the form of water ice. Water vapour is, after molecular hydrogen and carbon monoxide, one of the most important molecules in space. It plays an important role in the dynamical evolution of the gas inside the molecular clouds of our Galaxy, and hence in the formation of new stars." The water supply of the outer planets The water vapour in Saturn, Uranus and Neptune showed up in analyses of very accurate observations made with ISO's Short Wavelength Spectrometer during October and November 1996. A report to the world's astronomical community tells of a particularly clear water signature from Uranus, in distinctive infrared emissions at eight wavelengths between 28.43 and 44.19 microns. A preliminary analysis indicated that the water vapour exists in the giant planet's outer atmosphere, at a temperature around 0 degrees C. ISO detected six of the same water "lines" in the infrared spectrum of distant Neptune, and three in Saturn, which is closer than Uranus. The puzzle for planetary astronomers is now to figure out where the water comes from. These giant planets are a long way from the Sun. Uranus, for example, is twenty times farther out than the Earth is, and sunlight is feebler by a factor of 400. The planets have their own internal sources of heat, and they are thought to contain plenty of water incorporated when the planets formed. But it would be difficult for water vapour to escape into the outer atmosphere. On the other hand, water in the form of ice is a major constituent of comets, which sometimes collide with the planets, as seen in the spectacular impacts of Comet Shoemaker-Levy 9 on Jupiter in 1994. The leader of the ISO team that found the water vapour in the outer planets is Helmut Feuchtgruber of the Max-Planck Institut fur Extraterrestrische Physik at Garching, Germany. He works at the ISO operations centre at Villafranca, Spain. For him, the theoretical puzzle of the water vapour is full of significance for planetary science. "The upper atmosphere of the Earth is very dry because water vapour rising from the oceans or the land freezes into clouds," Feuchtgruber comments. "We would expect the same kind of lid to seal in the water vapour of the outer planets. What we see in Saturn, Uranus and Neptune probably comes from an outside source. This has important implications for our theories of the origin and evolution of all planetary atmospheres, including the Earth's." Helmut Feuchtgruber, Emmanuel Lellouch and their colleagues are preparing a theoretical analysis of the likely origin of the water vapour in the outer planets, which they hope to publish in the next few months. European success story Rated by a panel of American astronomers as "the major infrared mission of the decade", ISO is a special achievement for ESA -- and for Europe's astronomers and engineers. Advanced technology created ISO's extremely cold telescope capable of observing cool regions of the Universe. Multinational teams, with leaders in France, Germany, the Netherlands and the United Kingdom, developed the special scientific instruments. A European Ariane 44P launcher put ISO into orbit on 17 November 1995. ISO's supply of superfluid helium, which keeps the telescope and instruments cold, is expected to run out at about the end of 1997, giving it a life several months longer than required in the specification. Requests from the world's astronomers for observations with ISO have always far exceeded the available operating time, even though the spacecraft's controllers at ESA Villafranca supervise an average of 45 astronomical observations every day.
Instream wood in a steep headwater channel: geomorphic significance of large and small wood
NASA Astrophysics Data System (ADS)
Galia, Tomáš; Šilhán, Karel; Ruiz-Villanueva, Virginia; Tichavský, Radek
2016-04-01
Besides the well-known significance of large wood (LW), also small woody pieces (SW; here defined as pieces with dimensions at least 0.5 m length and 0.05 m diameter), can play an important role in steep narrow headwaters. We inventoried instream wood in the 0.4 km long Mazák headwater channel, Moravskoslezské Beskydy Mts, Czech Republic (2
Miyagi, Ryutaro; Terai, Yohey; Aibara, Mitsuto; Sugawara, Tohru; Imai, Hiroo; Tachida, Hidenori; Mzighani, Semvua Isa; Okitsu, Takashi; Wada, Akimori; Okada, Norihiro
2012-11-01
Reproductive isolation that prevents interspecific hybridization between closely related coexisting species maintains sympatric species diversity. One of the reproductive isolations is mate choice based on color signals (breeding color perceived by color vision). This is well known in several animal taxa, yet little is known about its genetic and molecular mechanism. Lake Victoria cichlid fishes are thought to be an example of sympatric species diversity. In the species inhabiting different light environments in rocky shore, speciation by sensory drive through color signals has been proposed by analyses of the long wavelength-sensitive (LWS) opsin gene and the male nuptial coloration. However, the genetic and molecular mechanism of how diversity of sympatric species occurring in the same habitat is maintained remains unknown. To address this issue, we determined nucleotide sequences of eight opsins of six sympatric species collected from a sandy-muddy shore--an ideal model system for studying sympatric species. Among eight opsins, the LWS and RH1 alleles were diversified and one particular allele is dominant or fixed in each species, and we propose that this is due to natural selection. The functions of their LWS alleles were also diversified as shown by absorption measurements of reconstituted visual pigments. To analyze the relationship between nuptial coloration and the absorption of LWS pigments, we systematically evaluated and defined nuptial coloration. We showed that the coloration was species specific with respect to hue and significantly differentiated by the index values of hue (dominant wavelength: λ(d)). The λ(d) value of the male nuptial coloration correlated with the absorption of LWS pigments from all the species, suggesting that reproductive isolation through mate choice using color signals may prevent sympatric interspecific hybridization, thereby maintaining the species diversity in sympatric species in Lake Victoria.
Implications of the ISO LWS spectrum of the prototypical ultraluminous galaxy: ARP 220
NASA Technical Reports Server (NTRS)
Fischer, J.; Satyapal, S.; Luhman, M. L.; Melnick, G.; Cox, P.; Cernicharo, J.; Stacey, G. J.; Smith, H. A.; Lord, S. D.; Greenhouse, M. A.
1997-01-01
The low resolution far infrared spectrum of the galaxy Arp 220, obtained with the low wavelength spectrometer (LWS) onboard the Infrared Space Observatory (ISO), is presented. The spectrum is dominated by the OH, H2O, CH, NH3 and O I absorption lines. The upper limits on the far infrared fine structure lines indicate a softer radiation in Arp 220 than in starburst galaxies.
Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS2 Structures.
Lepeshov, Sergey; Wang, Mingsong; Krasnok, Alex; Kotov, Oleg; Zhang, Tianyi; Liu, He; Jiang, Taizhi; Korgel, Brian; Terrones, Mauricio; Zheng, Yuebing; Alú, Andrea
2018-05-16
Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) are extremely attractive materials for optoelectronic applications in the visible and near-infrared range. Coupling these materials to optical nanocavities enables advanced quantum optics and nanophotonic devices. Here, we address the issue of resonance coupling in hybrid exciton-polariton structures based on single Si nanoparticles (NPs) coupled to monolayer (1L)-WS 2 . We predict a strong coupling regime with a Rabi splitting energy exceeding 110 meV for a Si NP covered by 1L-WS 2 at the magnetic optical Mie resonance because of the symmetry of the mode. Further, we achieve a large enhancement in the Rabi splitting energy up to 208 meV by changing the surrounding dielectric material from air to water. The prediction is based on the experimental estimation of TMDC dipole moment variation obtained from the measured photoluminescence spectra of 1L-WS 2 in different solvents. An ability of such a system to tune the resonance coupling is realized experimentally for optically resonant spherical Si NPs placed on 1L-WS 2 . The Rabi splitting energy obtained for this scenario increases from 49.6 to 86.6 meV after replacing air by water. Our findings pave the way to develop high-efficiency optoelectronic, nanophotonic, and quantum optical devices.
Space Weather Modeling Services at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse, Michael
2006-01-01
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the Rapid Prototyping Centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide a description of the current CCMC status, discuss current plans, research and development accomplishments and goals, and describe the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.
Space Weather Modeling at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse M.
2005-01-01
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires dose collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and development accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.
Mid-IR Imaging of Orion BN/KL: Modeling of Physical Conditions and Energy Balance
NASA Technical Reports Server (NTRS)
Gezari, Daniel; Varosi, Frank; Dwek, Eli; Danchi, William C.; Tan, Jonathan; Okumura, Shin-ichiro
2016-01-01
We have modeled two mid-infrared imaging photometry data sets to determine the spatial distribution of physical conditions in the BN/KL (Becklin-Neugebauer / Kleinmann-Low) infrared complex. We observed the BN/KL region using the 10-meter Keck I telescope and the LWS (Living With a Star) in the direct imaging mode, over a 13 inch by 19 inch field . We also modeled images obtained with COMICS (Cooled Mid-Infrared Camera and Spectrometer, Kataza et al. 2000) at the 8.2-meter SUBARU telescope, over a total field of view [which] is 31 inches by 41 inches in a total of nine bands: 7.8, 8.8, 9.7, 10.5, 11.7, 12.4, 18.5, 20.8 and 24.8 microns with 1-micron bandwidth interference filters.
A novel molecular marker for the study of Neotropical cichlid phylogeny.
Fabrin, T M C; Gasques, L S; Prioli, S M A P; Prioli, A J
2015-12-22
The use of molecular markers has contributed to phylogeny and to the reconstruction of species' evolutionary history. Each region of the genome has different evolution rates, which may or may not identify phylogenetic signal at different levels. Therefore, it is important to assess new molecular markers that can be used for phylogenetic reconstruction. Regions that may be associated with species characteristics and are subject to selective pressure, such as opsin genes, which encode proteins related to the visual system and are widely expressed by Cichlidae family members, are interesting. Our aim was to identify a new nuclear molecular marker that could establish the phylogeny of Neotropical cichlids and is potentially correlated with the visual system. We used Bayesian inference and maximum likelihood analysis to support the use of the nuclear opsin LWS gene in the phylogeny of eight Neotropical cichlid species. Their use concatenated to the mitochondrial gene COI was also tested. The LWS gene fragment comprised the exon 2-4 region, including the introns. The LWS gene provided good support for both analyses up to the genus level, distinguishing the studied species, and when concatenated to the COI gene, there was a good support up to the species level. Another benefit of utilizing this region, is that some polymorphisms are associated with changes in spectral properties of the LWS opsin protein, which constitutes the visual pigment that absorbs red light. Thus, utilization of this gene as a molecular marker to study the phylogeny of Neotropical cichlids is promising.
Space Weather Modeling at the Community Coordinated Modeling Center
NASA Astrophysics Data System (ADS)
Hesse, M.; Falasca, A.; Johnson, J.; Keller, K.; Kuznetsova, M.; Rastaetter, L.
2003-04-01
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership aimed at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of NASA's Living With a Star (LWS) initiative, of the National Space Weather Program Implementation Plan, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and development accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate. We will demonstrate the capabilities of models resident at CCMC via the analysis of a geomagnetic storm, driven by a shock in the solar wind.
First light with ISO and its instruments
NASA Astrophysics Data System (ADS)
1995-12-01
On 28 November, the first infrared images were taken with the ISOCAM instrument. The target was the beautiful spiral galaxy, M51, also known as the Whirlpool Galaxy. Images were taken in two infrared colours, at wavelengths of 7 and 15 microns, and at two resolutions, namely 3 and 6 arc seconds. Figure 1 shows the 7 micron ISOCAM image with a spatial resolution of 6 arc seconds. Spiral structure in galaxies was first discovered by observations of M51 taken in 1845 by the third Earl of Rosse in Ireland. At a distance of 20 million light years, M51 is not one of our nearest neighbors in space but it is one of the most spectacular, as it presents its spiral structure face-on to us. M51 is smaller and - at a mass of 50000 million suns - less massive than our galaxy. However, due to intense recent star formation, it is much brighter. While very detailed images have been available for some time in the optical and radio wavelength range, infrared data in the ISO range has been very limited. Figure 2 shows the data from the previous infrared satellite - the American/Dutch/British satellite IRAS; where, in a similar wavelength range, there is not even a hint of the spiral structure. For ISOCAM, with its higher spatial resolution and greater sensitivity, not only the spiral structure but also details within are easily visible, even in a raw first light image. Images from ISOCAM data will be compared with maps at other wavelengths to reveal information about the star formation processes in galaxies. First light for the ISOPHOT instrument was obtained on 29 November 1995 from the star Gamma Draconis. A huge signal was measured in a narrow band filter at 3.29 microns (figure 3). The optical axis of the instrument was found by this observation to be as close as 15 arc seconds to the predicted position. The next target was the interacting galaxy, NGC6090, which was clearly detected for the first time at the longest wavelengths, 120 - 240 microns, exclusively available on ISO. This galaxy is about 320 million light years away from us and has already been detected at shorter wavelengths by IRAS. The newly discovered far-infrared emission arises from cold dust (-250 degrees C) in the galaxies warmed up by recently born stars. The rate of star formation is thought to be increased by the close encounter between the two galaxies. Based on previous measurements, about 50 stars per year are estimated to be born in NGC6090. The new measurements have determined the luminosity much more precisely by including a so far invisible region. This will lead to an accurate calculation of the star formation rate and will give an insight into the secrets of "star bursts" seen in many external galaxies. ISOPHOT will be used in larger programmes to study interacting galaxies from the distant passage of objects via close encounters to finally merging galaxies (cosmic "cannibalism"). The Long-Wavelength Spectrometer made its first astronomical observation on 30 November. It measured the infrared spectrum of a region of dust, gas and newly-formed stars known as S106. Lines from Nitrogen, Carbon and Oxygen are clearly visible in the raw unprocessed spectrum. Intense ultraviolet light from the stars heats up the surrounding dust, which re-radiates this energy in the infrared. It also excites atoms in the gas, causing them to emit radiation at precise infrared wavelengths. Unlike visible light, these infrared rays can emerge from deep within the clouds. Measurements like these will allow astronomers to discover the composition, density and temperature of the material and help us to understand the complex processes by which stars and their planetary systems form. The LWS wavelength range, is completely inaccessible from the ground due to atmospheric absorption and, thus, the LWS provides a unique opportunity of studying star-formation. For the Short-Wavelength Spectrometer, first light was obtained on 1 December, during a measurement to determine the focal plane geometry (i.e. the position of the instrument's entrance slit with respect to the telescope) with the star Gamma Draconis as the target. This detection was achieved with an 11 x 11 point raster map and with the spectrometer set at a wavelength of 3.08 microns. The measured flux appears to be within 10% of pre-launch predictions. Spectral scans of internal wavelength calibrators made during the first check-out show good performance of all scanner mechanisms. For reasons of ISO schedule constraints, SWS - unlike the other instruments - has not yet had the opportunity to make spectral observations of astronomical sources. This will start in the next few days and all indications are that they will be successful. Following these very successful detections of first light in the instruments, work is continuing on the detailed calibration and performance verification of ISO and its four scientific instruments. It is planned to organise a Press Conference around the end of January 1996 to present initial results. Note to Editors: Colour pictures are available upon request. Please send a fax to ESA Public Relations, Paris (+33.1.53.69.76.90) making reference to this press release. The four instruments on-board ISO were built by international consortia of scientific institutes and industry, with each consortium being led by a single Principal Investigator. The Principal Investigators are : Catherine Cesarsky (CEA, Saclay, France) for ISOCAM; Peter Clegg (QMW, London, United Kingdom) for LWS; Thijs de Graauw (SRON, Groningen, the Netherlands) for SWS; and Dietrich Lemke (MPIA, Heidelberg, Germany) for ISOPHOT. Note: ESA press releases can be received automatically by sending an electronic mail message via Internet to "LISTSERV@esoc.esa.de" (do not type the quotes). The body of the message (not the subject line) should just contain one line with the words "subscribe ESAPRESS first_name last_name" (do not type the quotes) where "first_name" and "last_name" is your personal name, i.e. "subscribe ESAPRESS Mario Rossi". The system will reply with a confirmation via e-mail of each subscription.
The visual pigments of the West Indian manatee (Trichechus manatus).
Newman, Lucy A; Robinson, Phyllis R
2006-10-01
Manatees are unique among the fully aquatic marine mammals in that they are herbivorous creatures, with hunting strategies restricted to grazing on sea-grasses. Since the other groups of (carnivorous) marine mammals have been found to possess various visual system adaptations to their unique visual environments, it was of interest to investigate the visual capability of the manatee. Previous work, both behavioral (Griebel & Schmid, 1996), and ultrastructural (Cohen, Tucker, & Odell, 1982; unpublished work cited by Griebel & Peichl, 2003), has suggested that manatees have the dichromatic color vision typical of diurnal mammals. This study uses molecular techniques to investigate the cone visual pigments of the manatee. The aim was to clone and sequence cone opsins from the retina, and, if possible, express and reconstitute functional visual pigments to perform spectral analysis. Both LWS and SWS cone opsins were cloned and sequenced from manatee retinae, which, upon expression and spectral analysis, had lambda(max) values of 555 and 410 nm, respectively. The expression of both the LWS and SWS cone opsin in the manatee retina is unique as both pinnipeds and cetaceans only express a cone LWS opsin.
Multiple Genetic Mechanisms Contribute to Visual Sensitivity Variation in the Labridae
Phillips, Genevieve A.C.; Carleton, Karen L.; Marshall, N. Justin
2016-01-01
Coral reefs are one of the most spectrally diverse environments, both in terms of habitat and animal color. Species identity, sex, and camouflage are drivers of the phenotypic diversity seen in coral reef fishes, but how the phenotypic diversity is reflected in the genotype remains to be answered. The labrids are a large, polyphyletic family of coral reef fishes that display a diverse range of colors, including developmental color morphs and extensive behavioral ecologies. Here, we assess the opsin sequence and expression diversity among labrids from the Great Barrier Reef, Australia. We found that labrids express a diverse palette of visual opsins, with gene duplications in both RH2 and LWS genes. The majority of opsins expressed were within the mid-to-long wavelength sensitive classes (RH2 and LWS). Three of the labrid species expressed SWS1 (ultra-violet sensitive) opsins with the majority expressing the violet-sensitive SWS2B gene and none expressing SWS2A. We used knowledge about spectral tuning sites to calculate approximate spectral sensitivities (λmax) for individual species’ visual pigments, which corresponded well with previously published λmax values for closely related species (SWS1: 356–370 nm; SWS2B: 421–451 nm; RH2B: 452–492 nm; RH2A: 516–528 nm; LWS1: 554–555 nm; LWS2: 561–562 nm). In contrast to the phenotypic diversity displayed via color patterns and feeding ecology, there was little amino acid diversity within the known opsin sequence tuning sites. However, gene duplications and differential expression provide alternative mechanisms for tuning visual pigments, resulting in variable visual sensitivities among labrid species. PMID:26464127
Parker, Grace A; Sumners, Lindsay H; Zhao, Xiaoling; Honaker, Christa F; Siegel, Paul B; Cline, Mark A; Gilbert, Elizabeth R
2015-11-01
Chickens selected for low (LWS) and high (HWS) juvenile body weight (BW) for 55 generations differ in BW by 10-fold at selection age. High (HWR) and low (LWR) body weight-relaxed lines have been random-bred since the 46th generation. Our objective was to evaluate the developmental and nutritional regulation of pancreatic mRNA abundance of pancreatic and duodenal homeobox 1 (PDX1), preproinsulin (PPI), preproglucagon (PPG), and glucose transporter 2 (GLUT2). At day of hatch (DOH) and days 1, 3, 7, and 15 (D1, 3, 7 and 15, respectively), pancreas was collected and real time PCR was performed in Experiment 1. In Experiment 2, HWS and LWS were fed or delayed access to food for 72 h post-hatch, and pancreas collected at D15. There was an interaction of line and age for GLUT2 (P=0.001), PPI (P<0.0001), PPG (P=0.034), and PDX1 (P<0.0001). Expression was greater in chicks from LWR and LWS than HWR and HWS. There was an interaction of line and nutrition on PPG (P<0.0001) and GLUT2 (P=0.001) mRNA, where expression was similar among chicks that were fed but greater in LWS than HWS when chicks were delayed access to food. Thus, the first two weeks is important for maturation of pancreatic endocrine function. Long-term selection for BW is associated with differences in pancreas development, and delaying access to food at hatch may have persisting effects on glucose regulatory function. Copyright © 2015 Elsevier Inc. All rights reserved.
Advance Care Planning in Nursing Homes and Assisted Living Communities
Daaleman, Timothy P.; Williams, Christianna S.; Preisser, John S.; Sloane, Philip D.; Biola, Holly; Zimmerman, Sheryl
2009-01-01
Objectives To determine the prevalence and characteristics of advance care planning (ACP) among persons dying in long-term care (LTC) facilities, and to examine the relationship between respondent, facility, decedent, and family characteristics and ACP. Design After-death interviews of family members of decedents and facility liaisons where decedents received care. Setting Stratified sample of 164 residential care/assisted living facilities and nursing homes in Florida, Maryland, New Jersey, and North Carolina. Subjects Family members and facility liaisons who gave 446 and 1014 reports, respectively, on 1015 decedent residents. Measurements Reports of death/dying discussions, known treatment preferences, and reports and records of signed living wills (LW), health care powers of attorney (HCPOA), do-not-resuscitate orders, and do-not-hospitalize orders. Results Family respondents reported a higher prevalence, compared with facility reports, of HCPOAs (92% vs 49%) and LWs (84% vs 43%). In family reports, non-white race and no private insurance were significantly associated with lower prevalence of LWs and HCPOAs; additionally, residing in nursing homes (vs assisted living facilities) and in North Carolina were associated with lower prevalence of reported LWs. In facility reports, non-white race, unexpected death and residing in North Carolina or Maryland were significantly associated with lower prevalence of LWs, whereas high Medicaid case mix, intact cognitive status and high family involvement were associated with lower prevalence of HCPOAs. Concordance of family and facility reporting of HCPOAs was significantly greater in facilities with fewer than 120 beds. Conclusions The prevalence of ACP in LTC is much higher than previously described, and there is marked variation in characteristics associated with ACP, despite moderately high concordance, when reported by the facility or family caregivers. PMID:19426940
The value of life according to "law as a way to survive".
Roos, N H M
2003-01-01
Law as a Way to Survive is a comprehensive evolution-theory orientated philosophy of law and state that is tested in this article on its pertinence and explanatory power for the following issues: animal rights, abortion, euthanasia and assisted suicide. These subjects are suitable as tests precisely because they are not those for which LWS or rival theories, with which it will be compared, and for which it was primarily developed for. It will be concluded that LWS is very superior in pertinence and explanatory power both because it is much less metaphysical and much more complex than its rivals.
Homma, Noriko; Harada, Yumi; Uchikawa, Tamaki; Kamei, Yasuhiro; Fukamachi, Shoji
2017-02-06
Color perception is important for fish to survive and reproduce in nature. Visual pigments in the retinal photoreceptor cells are responsible for receiving light stimuli, but the function of the pigments in vivo has not been directly investigated in many animals due to the lack of color-blind lines and appropriate color-perception tests. In this study, we established a system for producing color-blind fish and testing their spectral sensitivity. First, we disrupted long-wavelength-sensitive (LWS) opsins of medaka (Oryzias latipes) using the CRISPR/Cas9 system to make red-color-blind lines. Single guide RNAs were designed using the consensus sequences between the paralogous LWSa and LWSb genes to simultaneously introduce double-frameshift mutations. Next, we developed a non-invasive and no-prior-learning test for spectral sensitivity by applying an optomotor response (OMR) test under an Okazaki Large Spectrograph (OLS), termed the O-O test. We constructed an electrical-rotary cylinder with black/white stripes, into which a glass aquarium containing one or more fish was placed under various monochromatic light conditions. The medaka were irradiated by the OLS every 10 nm, from wavelengths of 700 nm to 900 nm, and OMR was evaluated under each condition. We confirmed that the lws - medaka were indeed insensitive to red light (protanopia). While the control fish responded to wavelengths of up to 830 nm (λ = 830 nm), the lws - mutants responded up to λ = 740 nm; however, this difference was not observed after adaptation to dark: both the control and lws - fish could respond up to λ = 820 ~ 830 nm. These results suggest that the lws - mutants lost photopic red-cone vision, but retained scotopic rod vision. Considering that the peak absorption spectra (λ max ) of medaka LWSs are about 560 nm, but the light-adapted control medaka could respond behaviorally to light at λ = 830 nm, red-cone vision could cover an unexpectedly wide range of wavelengths, and behavioral tests could be an effective way to measure spectral sensitivity. Using the CRISPR/Cas9 and O-O systems, the establishment of various other color-blind lines and assessment of their spectra sensitivity could be expected to proceed in the future.
Far-Infrared and Millimeter Continuum Studies of K-Giants: Alpha Boo and Alpha Tau
NASA Technical Reports Server (NTRS)
Cohen, Martin; Carbon, Duane F.; Welch, William J.; Lim, Tanya; Forster, James R.; Goorvitch, David; Thigpen, William (Technical Monitor)
2002-01-01
We have imaged two normal, non-coronal, infrared-bright K-giants, alpha Boo and alpha Tau, in the 1.4-millimeter and 2.8-millimeter continuum using BIMA. These stars have been used as important absolute calibrators for several infrared satellites. Our goals are: (1) to probe the structure of their upper photospheres; (2) to establish whether these stars radiate as simple photospheres or possess long-wavelength chromospheres; and (3) to make a connection between millimeter-wave and far-infrared absolute flux calibrations. To accomplish these goals we also present ISO Long Wavelength Spectrometer (LWS) measurements of both these K-giants. The far-infrared and millimeter continuum radiation is produced in the vicinity of the temperature minimum in a Boo and a Tau, offering a direct test of the model photospheres and chromospheres for these two cool giants. We find that current photospheric models predict fluxes in reasonable agreement with those observed for those wavelengths which sample the upper photosphere, namely less than or equal to 170 micrometers in alpha Tau and less than or equal to 125 micrometers in alpha Boo. It is possible that alpha Tau is still radiative as far as 0.9 - 1.4 millimeters. We detect chromospheric radiation from both stars by 2.8 millimeters (by 1.4 millimeters in alpha Boo), and are able to establish useful bounds on the location of the temperature minimum. An attempt to interpret the chromospheric fluxes using the two-component "bifurcation model" proposed by Wiedemann et al. (1994) appears to lead to a significant contradiction.
The Far Infrared Lines of OH as Molecular Cloud Diagnostics
NASA Technical Reports Server (NTRS)
Smith, Howard A.
2004-01-01
Future IR missions should give some priority to high resolution spectroscopic observations of the set of far-IR transitions of OH. There are 15 far-IR lines arising between the lowest eight rotational levels of OH, and ISO detected nine of them. Furthermore, ISO found the OH lines, sometimes in emission and sometimes in absorption, in a wide variety of galactic and extragalactic objects ranging from AGB stars to molecular clouds to active galactic nuclei and ultra-luminous IR galaxies. The ISO/LWS Fabry-Perot resolved the 119 m doublet line in a few of the strong sources. This set of OH lines provides a uniquely important diagnostic for many reasons: the lines span a wide wavelength range (28.9 m to 163.2 m); the transitions have fast radiative rates; the abundance of the species is relatively high; the IR continuum plays an important role as a pump; the contribution from shocks is relatively minor; and, not least, the powerful centimeter-wave radiation from OH allows comparison with radio and VLBI datasets. The problem is that the large number of sensitive free parameters, and the large optical depths of the strongest lines, make modeling the full set a difficult job. The SWAS montecarlo radiative transfer code has been used to analyze the ISO/LWS spectra of a number of objects with good success, including in both the lines and the FIR continuum; the DUSTY radiative transfer code was used to insure a self-consistent continuum. Other far IR lines including those from H2O, CO, and [OI] are also in the code. The OH lines all show features which future FIR spectrometers should be able to resolve, and which will enable further refinements in the details of each cloud's structure. Some examples are given, including the case of S140, for which independent SWAS data found evidence for bulk flows.
Data Assimilation Into Physics-Based Models Via Kalman Filters
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Scherliess, L.; Sojka, J. J.
2002-12-01
The magnetosphere-ionosphere-thermosphere (M-I-T) system is a highly dynamic, coupled, and nonlinear system that can vary significantly from hour to hour at any location. The coupling is particularly strong during geomagnetic storms and substorms, but there are appreciable time delays associated with the transfer of mass, momentum, and energy between the domains. Therefore, both global physics-based models and vast observational data sets are needed to elucidate the dynamics, energetics, and coupling in the M-I-T system. Fortunately, during the coming decade, tens of millions of measurements of the global M-I-T system could become available from a variety of in situ and remote sensing instruments. Some of the measurements will provide direct information about the state variables (densities, drift velocities, and temperatures), while others will provide indirect information, such as optical emissions and magnetic perturbations. The data sources available could include: thousands of ground-based GPS Total Electron Content (TEC) receivers; a world-wide network of ionosondes; hundreds of magnetometers both on the ground and in space; occultations from the COSMIC Satellites, numerous ground-based tomography chains; auroral images from the POLAR Satellite; images of the magnetosphere and plasmasphere from the IMAGE Satellite; SuperDARN radar measurements in the polar regions; the Living With a Star (LWS) Solar Dynamics Observatory and the LWS Radiation Belt and Ionosphere-Thermosphere Storm Probes; and the world-wide network of incoherent scatter radars. To optimize the scientific return and to provide specifications and forecasts for societal applications, the global models and data must be combined in an optimum way. A powerful way of assimilating multiple data types into a time-dependent, physics-based, numerical model is via a Kalman filter. The basic principle of this approach is to combine measurements from multiple instrument types with the information obtained from a physics-based model, taking into account the uncertainties in both the model and measurements. The advantages of this technique and the data sources that might be available will be discussed.
The Solar Dynamics Observatory: Your Eye On The Sun
NASA Technical Reports Server (NTRS)
Pesnell, William Dean
2008-01-01
The Sun hiccups and satellites die. That is what NASA's Living With a Star Program is all about. The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in LWS. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine E/UV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can "observe the database" to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.
Test of the Angle Detecting Inclined Sensor (ADIS) Technique for Measuring Space Radiation
NASA Astrophysics Data System (ADS)
Connell, J. J.; Lopate, C.; McLaughlin, K. R.
2008-12-01
In February 2008 we exposed an Angle Detecting Inclined Sensor (ADIS) prototype to beams of 150 MeV/u 78Kr and fragments at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). ADIS is a highly innovative and uniquely simple detector configuration used to determine the angles of incidence of heavy ions in energetic charged particle instruments. Corrections for angle of incidence are required for good charge and mass separation. An ADIS instrument is under development to fly on the GOES-R series of weather satellites. The prototype tested consisted of three ADIS detectors, two of which were inclined at an angle to the telescope axis, forming the initial detectors in a five-detector telescope stack. By comparing the signals from the ADIS detectors, the angle of incidence may be determined and a pathlength correction applied to charge and mass determinations. Thus, ADIS replaces complex position sensing detectors with a system of simple, reliable and robust Si detectors. Accelerator data were taken at multiple angles to both primary and secondary beams with a spread of energies. This test instrument represents an improvement over the previous ADIS prototype in that it used oval inclined detectors and a much lower-mass support structure, thus reducing the number of events passing through dead material. We will present the results of this test. The ADIS instrument development project was partially funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).
An Approach to Comprehensive and Sustainable Solar Wind Model Validation
NASA Astrophysics Data System (ADS)
Rastaetter, L.; MacNeice, P. J.; Mays, M. L.; Boblitt, J. M.; Wiegand, C.
2017-12-01
The number of models of the corona and inner heliosphere and of their updates and upgrades grows steadily, as does the number and character of the model inputs. Maintaining up to date validation of these models, in the face of this constant model evolution, is a necessary but very labor intensive activity. In the last year alone, both NASA's LWS program and the CCMC's ongoing support of model forecasting activities at NOAA SWPC have sought model validation reports on the quality of all aspects of the community's coronal and heliospheric models, including both ambient and CME related wind solutions at L1. In this presentation I will give a brief review of the community's previous model validation results of L1 wind representation. I will discuss the semi-automated web based system we are constructing at the CCMC to present comparative visualizations of all interesting aspects of the solutions from competing models.This system is designed to be easily queried to provide the essential comprehensive inputs to repeat andupdate previous validation studies and support extensions to them. I will illustrate this by demonstrating how the system is being used to support the CCMC/LWS Model Assessment Forum teams focused on the ambient and time dependent corona and solar wind, including CME arrival time and IMF Bz.I will also discuss plans to extend the system to include results from the Forum teams addressing SEP model validation.
Rod Monochromacy and the Coevolution of Cetacean Retinal Opsins
Meredith, Robert W.; Gatesy, John; Emerling, Christopher A.; York, Vincent M.; Springer, Mark S.
2013-01-01
Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the “coastal” hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among mammalian species. PMID:23637615
Description of the dynamic infrared background/target simulator (DIBS)
NASA Astrophysics Data System (ADS)
Lujan, Ignacio
1988-01-01
The purpose of the Dynamic Infrared Background/Target Simulator (DIBS) is to project dynamic infrared scenes to a test sensor; e.g., a missile seeker that is sensitive to infrared energy. The projected scene will include target(s) and background. This system was designed to present flicker-free infrared scenes in the 8 micron to 12 micron wavelength region. The major subassemblies of the DIBS are the laser write system (LWS), vanadium dioxide modulator assembly, scene data buffer (SDB), and the optical image translator (OIT). This paper describes the overall concept and design of the infrared scene projector followed by some details of the LWS and VO2 modulator. Also presented are brief descriptions of the SDB and OIT.
NASA Technical Reports Server (NTRS)
Seeley, John S. (Editor); Lear, John W. (Editor); Russak, Sidney L. (Editor); Monfils, Andre (Editor)
1986-01-01
Papers are presented on such topics as the development of the Imaging Spectrometer for Shuttle and space platform applications; the in-flight calibration of pushbroom remote sensing instruments for the SPOT program; buttable detector arrays for 1.55-1.7 micron imaging; the design of the Improved Stratospheric and Mesospheric Sounder on the Upper Atmosphere Research Satellite; and SAGE II design and in-orbit performance. Consideration is also given to the Shuttle Imaging Radar-B/C instruments; the Venus Radar Mapper multimode radar system design; various ISO instruments (ISOCAM, ISOPHOT, and SWS and LWS); and instrumentation for the Space Infrared Telescope Facility.
NASA Astrophysics Data System (ADS)
Connell, J. J.; Lopate, C.; McKibben, R. B.; Enman, A.
2006-12-01
The measurement and identification of high energy ions (> few MeV/n) from events originating on the Sun is of direct interest to the Living With a Star Program. These ions are a major source of Single Event Effects (SEE) in space-based electronics. Measurements of these ions also help in understanding phenomena such as Solar particle events and coronal mass ejections. These disturbances can directly affect the Earth and the near-Earth space environment, and thus human technology. The resource constraints on spacecraft generally mean that instruments that measure cosmic rays and Solar energetic particles must have low mass (a few kg) and power (a few W), be robust and reliable yet highly capable. Such instruments should identify ionic species (at least by element, preferably by isotope) from protons through the iron group. The charge and mass resolution of heavy ion instrument in space depends upon determining ions' angles of incidence. The Angle Detecting Inclined Sensor (ADIS) system is a highly innovative and uniquely simple detector configuration used to determine the angle of incidence of heavy ions in space instruments. ADIS replaces complex position sensing detectors (PSDs) with a system of simple, reliable and robust Si detectors inclined at an angle to the instrument axis. In August 2004 we tested ADIS prototypes with a 48Ca beam at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). We demonstrate that our prototype charged particle instrument design with an ADIS system has a charge resolution of better than 0.25 e. An ADIS based system is being incorporated into the Energetic Heavy Ion Sensor (EHIS), one of the instruments in the Space Environment In-Situ Suite (SEISS) on the next generation of Geostationary Operational Environmental Satellite (GOES-R) System. An ADIS based system was also selected for the High Energy Particle Sensor (HEPS), one of the instruments in the Space Environment Sensor Suite (SESS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS). SESS is presently de-scoped from NPOESS. The ADIS instrument development project was 95% funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).
Yokoyama, Shozo; Takenaka, Naomi
2005-04-01
Red-green color vision is strongly suspected to enhance the survival of its possessors. Despite being red-green color blind, however, many species have successfully competed in nature, which brings into question the evolutionary advantage of achieving red-green color vision. Here, we propose a new method of identifying positive selection at individual amino acid sites with the premise that if positive Darwinian selection has driven the evolution of the protein under consideration, then it should be found mostly at the branches in the phylogenetic tree where its function had changed. The statistical and molecular methods have been applied to 29 visual pigments with the wavelengths of maximal absorption at approximately 510-540 nm (green- or middle wavelength-sensitive [MWS] pigments) and at approximately 560 nm (red- or long wavelength-sensitive [LWS] pigments), which are sampled from a diverse range of vertebrate species. The results show that the MWS pigments are positively selected through amino acid replacements S180A, Y277F, and T285A and that the LWS pigments have been subjected to strong evolutionary conservation. The fact that these positively selected M/LWS pigments are found not only in animals with red-green color vision but also in those with red-green color blindness strongly suggests that both red-green color vision and color blindness have undergone adaptive evolution independently in different species.
Loss and gain of cone types in vertebrate ciliary photoreceptor evolution.
Musser, Jacob M; Arendt, Detlev
2017-11-01
Ciliary photoreceptors are a diverse cell type family that comprises the rods and cones of the retina and other related cell types such as pineal photoreceptors. Ciliary photoreceptor evolution has been dynamic during vertebrate evolution with numerous gains and losses of opsin and phototransduction genes, and changes in their expression. For example, early mammals lost all but two cone opsins, indicating loss of cone receptor types in response to nocturnal lifestyle. Our review focuses on the comparison of specifying transcription factors and cell type-specific transcriptome data in vertebrate retinae to build and test hypotheses on ciliary photoreceptor evolution. Regarding cones, recent data reveal that a combination of factors specific for long-wavelength sensitive opsin (Lws)- cones in non-mammalian vertebrates (Thrb and Rxrg) is found across all differentiating cone photoreceptors in mice. This suggests that mammalian ancestors lost all but one ancestral cone type, the Lws-cone. We test this hypothesis by a correlation analysis of cone transcriptomes in mouse and chick, and find that, indeed, transcriptomes of all mouse cones are most highly correlated to avian Lws-cones. These findings underscore the importance of specifying transcription factors in tracking cell type evolution, and shed new light on the mechanisms of cell type loss and gain in retina evolution. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The Stroop effect in English-Japanese bilinguals: the effect of phonological similarity.
Sumiya, Hiromi; Healy, Alice F
2008-01-01
English-Japanese bilinguals performed a Stroop color-word interference task with both English and Japanese stimuli and responded in both English and Japanese. The Japanese stimuli were either the traditional color terms (TCTs) written in Hiragana or loanwords (LWs) from English written in Katakana. Both within-language and between-language interference were found for all combinations of stimuli and responses. The between-language interference was larger for Katakana LWs (phonologically similar to English) than for Hiragana TCTs, especially with Japanese responses. The magnitude of this phonological effect increased with self-rated reading fluency in Japanese. Overall responding was slower and the Stroop effect larger with English than with Japanese stimuli. These results suggest that unintentional lexical access elicits automatic phonological processing even with intermediate-level reading proficiency.
Kim, Dong Ik; Rhee, Hyug-Gyo; Song, Jae-Bong; Lee, Yun-Woo
2007-10-01
We present experimental results on the output power stabilization of an Ar(+) laser for a direct laser writing system (LWS). Instability of the laser output power in the LWS cause resolution fluctuations of being fabricated diffractive optical elements or computer-generated holograms. For the purpose of reducing the power fluctuations, we have constituted a feedback loop with an acousto-optic modulator, a photodetector, and a servo controller. In this system, we have achieved the stability of +/-0.20% for 12 min and the relative intensity noise level of 2.1 x 10(-7) Hz(-12) at 100 Hz. In addition, we applied our system to a 2 mW internal mirror He-Ne laser. As a consequence, we achieved the output power stability of +/-0.12% for 25 min.
78 FR 76389 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
... Perce and City of Lewiston, Lewiston, Idaho. Application Number: 13-04-C-00-LWS. Application Type... aircraft with a seating capacity of less than 20 passengers operating at Lewiston--Nez Perce County...
Munns, C F J; Berry, M; Vickers, D; Rappold, G A; Hyland, V J; Glass, I A; Batch, J A
2003-09-01
Leri-Weill syndrome (LWS) is a skeletal dysplasia with mesomelic short stature, bilateral Madelung deformity (BMD) and SHOX (short stature homeobox-containing gene) haploinsufficiency. The effect of 24 months of recombinant human growth hormone (rhGH) therapy on the stature and BMD of two females with SHOX haploinsufficiency (demonstrated by fluorescence in situ hybridisation) and LWS was evaluated. Both patients demonstrated an increase in height standard deviation score (SDS) and height velocity SDS over the 24 months of therapy. Patient 1 demonstrated a relative increase in arm-span and upper segment measurements with rhGH while patient 2 demonstrated a relative increase in lower limb length. There was appropriate advancement of bone age, no adverse events and no significant deterioration in BMD. In this study, 24 months of rhGH was a safe and effective therapy for the disproportionate short stature of SHOX haploinsufficiency, with no clinical deterioration of BMD.
Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers
NASA Astrophysics Data System (ADS)
Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.
2003-12-01
An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical formulations as are necessary to express the concept clearly (Invention Phase). To further clarify the concept, exercises will be carried out using Web-accessible SEC mission data to develop facility in use of the mathematical formulations, stimulate a sense of participation in ongoing research, and expand on ways to introduce future pupils to the excitement of real-world exploration (Expansion Phase).
Test of the Angle Detecting Inclined Sensor (ADIS) Technique for Measuring Space Radiation
NASA Astrophysics Data System (ADS)
Connell, J. J.; Lopate, C.; McLaughlin, K. R.
2009-12-01
In February 2008 we exposed an Angle Detecting Inclined Sensor (ADIS) prototype to beams of 150 MeV/u 78Kr and fragments at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). ADIS is a highly innovative and uniquely simple detector configuration used to determine the angles of incidence of heavy ions in energetic charged particle instruments. Corrections for angle of incidence are required for good charge and mass separation. An ADIS instrument is under development to fly on the GOES-R series of weather satellites. The prototype tested consisted of three ADIS detectors, two of which were inclined at an angle to the telescope axis, forming the initial detectors in a five-detector telescope stack. By comparing the signals from the ADIS detectors, the angle of incidence may be determined and a pathlength correction applied to charge and mass determinations. Thus, ADIS replaces complex position sensing detectors with a system of simple, reliable and robust Si detectors. Accelerator data were taken at multiple angles to both primary and secondary beams with a spread of energies. This test instrument represents an improvement over the previous ADIS prototype in that it used oval inclined detectors and a much lower-mass support structure, thus reducing the number of events passing through dead material. These data show a charge peak resolution of 0.18 ± 0.01 e at Br (Z = 35), excellent for such a simple instrument. We will present the results of this test. The ADIS instrument development project was partially funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).
LWS design replacement study: Optimum design and tradeoff analysis
NASA Technical Reports Server (NTRS)
1973-01-01
A design for two long-wavelength (LW) focal-plane and cooler assemblies, including associated preamplifiers and post-amplifiers is presented. The focal-planes and associated electronic assemblies are intended as direct replacement hardware to be installed into the existing 24-channel multispectral scanner used with the NASA Earth Observations Aircraft Program. An organization skilled in the art of LWIR systems can fabricate and deliver the two long-wavelength focal-plane assemblies described in this report when provided with the data and drawings developed during the performance of this contract. The concepts developed during the study including the alternative approaches and selection of components are discussed. Modifications to the preliminary design as reported in a preliminary design review meeting have also been included.
Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science
NASA Astrophysics Data System (ADS)
Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.
2014-12-01
Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the interactive presentation ("A Little") and the movie ("Quite a Bit"). We conclude that our content for digital globes is effective in teaching the STEM principles and exciting viewers about the deep ocean frontier. We attribute this success to the tight collaboration between scientists, educators, and graphic artists in developing the content for public audiences.
NASA Technical Reports Server (NTRS)
Cohen, Martin; Witteborn, Fred C.; Carbon, Duane F.; Davies, John K.; Wooden, Diane H.; Bregman, Jesse D.
1996-01-01
We present five new absolutely calibrated continuous stellar spectra constructed as far as possible from spectral fragments observed from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer. These stars-alpha Boo, gamma Dra, alpha Cet, gamma Cru, and mu UMa-augment our six, published, absolutely calibrated spectra of K and early-M giants. All spectra have a common calibration pedigree. A revised composite for alpha Boo has been constructed from higher quality spectral fragments than our previously published one. The spectrum of gamma Dra was created in direct response to the needs of instruments aboard the Infrared Space Observatory (ISO); this star's location near the north ecliptic pole renders it highly visible throughout the mission. We compare all our low-resolution composite spectra with Kurucz model atmospheres and find good agreement in shape, with the obvious exception of the SiO fundamental, still lacking in current grids of model atmospheres. The CO fundamental seems slightly too deep in these models, but this could reflect our use of generic models with solar metal abundances rather than models specific to the metallicities of the individual stars. Angular diameters derived from these spectra and models are in excellent agreement with the best observed diameters. The ratio of our adopted Sirius and Vega models is vindicated by spectral observations. We compare IRAS fluxes predicted from our cool stellar spectra with those observed and conclude that, at 12 and 25 microns, flux densities measured by IRAS should be revised downwards by about 4.1% and 5.7%, respectively, for consistency with our absolute calibration. We have provided extrapolated continuum versions of these spectra to 300 microns, in direct support of ISO (PHT and LWS instruments). These spectra are consistent with IRAS flux densities at 60 and 100 microns.
NASA Technical Reports Server (NTRS)
Svalbonas, V.; Ogilvie, P.
1973-01-01
The user and programming information necessary for the application of the SATELLITE programs for the STARS system are presented. The individual program functions are: (1) data debugging for the STARS-2S program, (2) Fourier series conversion program, (3) data debugging for the STARS-2B program, and (4) data debugging for the STARS-2V program.
NASA Astrophysics Data System (ADS)
Liseau, R.; White, G. J.; Larsson, B.; Sidher, S.; Olofsson, G.; Kaas, A.; Nordh, L.; Caux, E.; Lorenzetti, D.; Molinari, S.; Nisini, B.; Sibille, F.
1999-04-01
We present far infrared (45-195 mu m) spectrophotometric observations with the Iso-Lws of the active star forming rho Oph main cloud (L 1688). The [C ii] 158 mu m and [O i] 63 mu m lines were detected at each of the 33 positions observed, whereas the [O i] 145 mu m line was clearly seen toward twelve. The principal observational result is that the [C ii] 158 mu m line fluxes exhibit a clear correlation with projected distance from the dominant stellar source in the field (HD 147889). We interpret this in terms of Pdr-type emission from the surface layers of the rho Ophc. The observed [C ii] 158 mu m/[O i] 63 mu m flux ratios are larger than unity everywhere. A comparison of the [C ii] 158 mu m line emission and the Fir dust continuum fluxes yields estimates of the efficiency at which the gas in the cloud converts stellar to [C ii] 158 mu m photons (chi_ {_C II},>_{ ~ },0.5%). We first develop an empirical model, which provides us with a three dimensional view of the far and bright side of the dark rho Ophc, showing that the cloud surface towards the putative energy source is concave. This model also yields quantitative estimates of the incident flux of ultraviolet radiation (G_0 ~ , \\powten{1} - \\powten{2}) and of the degree of clumpiness/texture of the cloud surface (filling of the 80({') '} beam ~ ,0.2). Subsequently, we use theoretical models of Pdr s to derive the particle density, n(H), and the temperature structures, for T_gas and T_dust, in the surface layers of the rho Ophc. T_gas is relatively low, ~ ,60 K, but higher than T_dust ( ~ ,30 K), and densities are generally found within the interval (1-3) \\powten{4} cm(-3) . These Pdr models are moderately successful in explaining the Lws observations. They correctly predict the [O i] 63 mu m and [C ii] 158 mu m line intensities and the observed absence of any molecular line emission. The models do fail, however, to reproduce the observed small [O i] 63 mu m/[O i] 145 mu m ratios. We examine several possible explanations, but are unable to uniquely identify (or to disentangle) the cause(s) of this discrepancy. From pressure equilibrium arguments we infer that the total mass of the rho Oph main cloud (2 pc(2) ) is ~ ,2 500 Msun, which implies that the star formation efficiency to date is <_{ ~ },4%, significantly lower than previous estimates. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.
Visual system evolution and the nature of the ancestral snake.
Simões, B F; Sampaio, F L; Jared, C; Antoniazzi, M M; Loew, E R; Bowmaker, J K; Rodriguez, A; Hart, N S; Hunt, D M; Partridge, J C; Gower, D J
2015-07-01
The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (λmax 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para- or monophyletic. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Kiani, Ali; Fallah, Rozbeh
2016-01-01
This study aimed to determine fatty acid (FA) composition of Longissimus dorsi (LD) and Biceps femoris (BF) muscles of an Iranian indigenous goat (Lori goat) at two live weights at slaughter (LWS). Twenty male Lori goats (5 to 8 months) raised in nomadic system were slaughtered either at LWS less than 20 kg (light) or LWS more than 30 kg (heavy). Carcass dressing and FA composition of intramuscular fat of LD and BF muscles as well as cholesterol content of LD muscle were determined. Heavy goats had higher dressing percentage than light ones (42.7vs.39.3%, P < 0.01). The predominant n-6 FA were C18:2, and C20:4 while C22:5, C20:5, C18:3, C20:3, and C22:6 were the n-3 FA detected. Polyunsaturated and saturated FA contributed 22% and 36% of the total FA in both muscles, respectively. Palmitic acid (C16:0) of LD was higher in heavy compared to the light goats (P < 0.05). BF muscle had higher α-linolenic acid (18:3 n-3) as percentage than LD muscle (P < 0.05). The ratio of n-6/n-3 FA and polyunsaturated/saturated FA were 3.8 and 0.6, respectively. Cholesterol content of LD muscle of light and heavy goats were 71.2 ± 16 and 59.5 ± 14 mg per 100 g fresh meat respectively. In conclusion, desirable PUFA/SFA (0.6) and n-3/n-6 ratio (3.8) found in indigenous Lori goat propose healthy source of lean meat for the consumers.
Mbuthia, Jackson Mwenda; Rewe, Thomas Odiwuor; Kahi, Alexander Kigunzu
2015-02-01
This study estimated economic values for production traits (dressing percentage (DP), %; live weight for growers (LWg), kg; live weight for sows (LWs), kg) and functional traits (feed intake for growers (FEEDg), feed intake for sow (FEEDs), preweaning survival rate (PrSR), %; postweaning survival (PoSR), %; sow survival rate (SoSR), %, total number of piglets born (TNB) and farrowing interval (FI), days) under different smallholder pig production systems in Kenya. Economic values were estimated considering two production circumstances: fixed-herd and fixed-feed. Under the fixed-herd scenario, economic values were estimated assuming a situation where the herd cannot be increased due to other constraints apart from feed resources. The fixed-feed input scenario assumed that the herd size is restricted by limitation of feed resources available. In addition to the tradition profit model, a risk-rated bio-economic model was used to derive risk-rated economic values. This model accounted for imperfect knowledge concerning risk attitude of farmers and variance of input and output prices. Positive economic values obtained for traits DP, LWg, LWs, PoSR, PrSR, SoSR and TNB indicate that targeting them in improvement would positively impact profitability in pig breeding programmes. Under the fixed-feed basis, the risk-rated economic values for DP, LWg, LWs and SoSR were similar to those obtained under the fixed-herd situation. Accounting for risks in the EVs did not yield errors greater than ±50 % in all the production systems and basis of evaluation meaning there would be relatively little effect on the real genetic gain of a selection index. Therefore, both traditional and risk-rated models can be satisfactorily used to predict profitability in pig breeding programmes.
FAA Aviation Forecasts, Fiscal Years 1994-2005
1994-03-01
ID (BOI) Fort Lauderdale Executive, FL (FXE) Idaho Falls Fanning Field, ID (IDA) Fort Myers Page Field, FL (FMY) Lewiston , ID (LWS) Fort Myers...Pacoima/Whitman, California (WHP) 3. Lakeland, Florida (LAL) 4. Valdosta Municipal, Georgia (VLD) 5. Halley, Idaho (SUN) 6. Marion Williamson County
A Universal Model for Solar Eruptions
NASA Astrophysics Data System (ADS)
Wyper, Peter; Antiochos, Spiro K.; DeVore, C. Richard
2017-08-01
We present a universal model for solar eruptions that encompasses coronal mass ejections (CMEs) at one end of the scale, to coronal jets at the other. The model is a natural extension of the Magnetic Breakout model for large-scale fast CMEs. Using high-resolution adaptive mesh MHD simulations conducted with the ARMS code, we show that so-called blowout or mini-filament coronal jets can be explained as one realisation of the breakout process. We also demonstrate the robustness of this “breakout-jet” model by studying three realisations in simulations with different ambient field inclinations. We conclude that magnetic breakout supports both large-scale fast CMEs and small-scale coronal jets, and by inference eruptions at scales in between. Thus, magnetic breakout provides a unified model for solar eruptions. P.F.W was supported in this work by an award of a RAS Fellowship and an appointment to the NASA Postdoctoral Program. C.R.D and S.K.A were supported by NASA’s LWS TR&T and H-SR programs.
NASA Astrophysics Data System (ADS)
Pourteau, Amaury; Scherer, Erik; Schmidt, Alexander; Bast, Rebecca
2015-04-01
The thermal structure of subduction zones plays a key role on mechanical and chemical processes taking place along the slab-mantle interface. Until now, changes through time of this thermal structure have been explored mostly by the means of numerical simulations. However, both "warm" (i.e., epidote-bearing), and "cold" (i.e., lawsonite-bearing) HP oceanic rocks have been reported in some fossil subduction complexes exposed at the Earth's surface (e.g., Franciscan Complex, California; Rio San Juan Complex, Hispañola; Halilbağı Unit, Central Anatolia). These a-priori "incompatible" rocks witness different thermal stages of ancient subduction zones and their study might provide complementary constraints to numerical models. To decipher the meaning of these contrasting metamorphic rocks in the Halilbağı Unit, we are carrying out Lu-Hf geochronology on garnet (grt) and lws from a variety of HP oceanic rocks, as well as the metamorphic sole of the overlying ophiolite. We selected five samples that are representative of the variety of metamorphic evolutions (i.e. peak conditions and P-T paths) encountered in this area. Preliminary analyses yielded 110 Ma (grt-hbl isochron) for a sub-ophiolitic grt amphibolite; 92 Ma (grt-omp) for an eclogite with prograde and retrograde ep; 90 Ma (grt-omp) for an eclogitic metabasite with prograde ep and retrograde ep+lws; 87 Ma (grt-gln) for a lws eclogite with prograde ep; and 86 Ma (grt-gln) for a blueschist with prograde and retrograde lws. These ages are mainly two-point isochrons. Further-refined data will be presented at the EGU General Assembly 2015, in Vienna. The consistent younging trend from "warm" to "cold" metamorphic rocks revealed by these first-order results points to metamorphic-sole formation during the initiation of intra-oceanic subduction at ~110 Ma, and subsequent cooling of the slab-mantle interface between 92 and 86 Ma. Therefore, the contrasting metamorphic evolutions encountered in the Halilbağı Unit record the progressive thermal maturation of the juvenile Neotethyan subduction zone. This period of ~23 myr between subduction initiation and thermal "steady state" is significantly shorter than that obtained for the Rio San Juan Complex (~60 myr; Krebs et al. 2008, Lithos, 103, 106-137), but compares well with that for the Franciscan Complex (~22 myr; Anczkiewicz et al. 2004, EPSL, 225, 147-161) and falls in the range predicted in numerical simulations (e.g., Gerya et al. 2002, Tectonics, 21/6, 1056).
The ISO View of Star Forming Galaxies
NASA Technical Reports Server (NTRS)
Helou, George
1999-01-01
ISO studies of normal galaxies in the local Universe have revealed basic new properties whose significant implications for the star formation process and cosmology are only starting to be understood. This review will touch on the general results of a statistical nature, and provide a quick summary of the profusion of exciting results on individual objects. In the mid-infrared, PHT-S has established that the spectra of star forming galaxies between 6 and-13microns are dominated by the Aromatic Features in Emission (AFE), and show little variation as a function of the heating intensity. The Carriers of the AFE (CAFE) are thus a universal component of dust with standard properties, and contribute between 10 and 25% of the total dust luminosity. In addition to AFE, the spectra show a low-level continuum detectable at wavelengths longer than 3.5microns whose origin is still under investigation. The mid-infrared colors formed as the ratio of flux densities in the 6.75micron and the 15micron bands of ISO-CAM remain essentially constant and near unity for quiescent and mildly active galaxies. As dust heating increases further, the 15micron flux increases steeply compared to 6.75microns, indicating that dust heated to 100K
Cipriani, Thales R; Gracher, Ana Helena P; de Souza, Lauro M; Fonseca, Roberto J C; Belmiro, Celso L R; Gorin, Philip A J; Sassaki, Guilherme L; Iacomini, Marcello
2009-05-01
Evaluated were the anticoagulant and antithrombotic activities, and bleeding effect of two chemically sulfated polysaccharides, obtained from citric pectin, with different average molar masses. Both low-molecular-weight (Pec-LWS, 3,600 g/mol) and high-molecular-weight sulfated pectins (Pec-HWS, 12,000 g/mol) had essentially the same structure, consisting of a (1-->4)-linked alpha-D-GalpA chain with almost all its HO-2 and HO-3 groups substituted by sulfate. Both polysaccharides had anticoagulant activity in vitro, although Pec-HWS was a more potent antithrombotic agent in vivo, giving rise to total inhibition of venous thrombosis at a dose of 3.5 mg/kg body weight. Surprisingly, in contrast with heparin, Pec-HWS and Pec-LWS are able to directly inhibit alpha-thrombin and factor Xa by a mechanism independent of antithrombin (AT) and/or heparin co-factor II (HCII). Moreover, Pec-HWS provided a lower risk of bleeding than heparin at a dose of 100% effectiveness against venous thrombosis, indicating it to be a promising antithrombotic agent.
Katayama, Kota; Furutani, Yuji; Iwaki, Masayo; Fukuda, Tetsuya; Imai, Hiroo; Kandori, Hideki
2018-01-31
Long-wavelength-sensitive (LWS) pigment possesses a chloride binding site in its protein moiety. The binding of chloride alters the absorption spectra of LWS; this is known as the chloride effect. Although the two amino acid substitutions of His197 and Lys200 influence the chloride effect, the molecular mechanism of chloride binding, which underlies the spectral tuning, has yet to be clarified. In this study, we applied ATR-FTIR spectroscopy to monkey green (MG) pigment to gain structural information of the chloride binding site. The results suggest that chloride binding stabilizes the β-sheet structure on the extracellular side loop with perturbation of the retinal polyene chain, promotes a hydrogen bonding exchange with the hydroxyl group of Tyr, and alters the protonation state of carboxylate. Combining with the results of the binding analyses of various anions (Br - , I - and NO 3 - ), our findings suggest that the anion binding pocket is organized for only Cl - (or Br - ) to stabilize conformation around the retinal chromophore, which is functionally relevant with absorbing long wavelength light.
The 1980-90 shuttle star catalog for onboard and ground programs
NASA Technical Reports Server (NTRS)
Richardson, S.; Killen, R.
1978-01-01
The 1980-90 shuttle star catalog for onboard and ground programs is presented. The data used in this catalog are explained according to derivation, input, format for the catalog, and preparation. The tables include the computer program listing, input star position, and the computed star positions for the years 1980-90.
Design and application of star map simulation system for star sensors
NASA Astrophysics Data System (ADS)
Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan
2013-12-01
Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT OTKP Team
2010-01-01
The DIGIT (Dust, Ice, and Gas In Time) Open Time Key Project utilizes the PACS spectrometer (57-210 um) onboard the Herschel Space Observatory to study the colder regions of young stellar objects and protostellar cores, complementary to recent observations from Spitzer and ground-based observatories. DIGIT focuses on 30 embedded sources and 64 disk sources, and includes supporting photometry from PACS and SPIRE, as well as spectroscopy from HIFI, selected from nearby molecular clouds. For the embedded sources, PACS spectroscopy will allow us to address the origin of [CI] and high-J CO lines observed with ISO-LWS. Our observations are sensitive to the presence of cold crystalline water ice, diopside, and carbonates. Additionally, PACS scans are 5x5 maps of the embedded sources and their outflows. Observations of more evolved disk sources will sample low and intermediate mass objects as well as a variety of spectral types from A to M. Many of these sources are extremely rich in mid-IR crystalline dust features, enabling us to test whether similar features can be detected at larger radii, via colder dust emission at longer wavelengths. If processed grains are present only in the inner disk (in the case of full disks) or from the emitting wall surface which marks the outer edge of the gap (in the case of transitional disks), there must be short timescales for dust processing; if processed grains are detected in the outer disk, radial transport must be rapid and efficient. Weak bands of forsterite and clino- and ortho-enstatite in the 60-75 um range provide information about the conditions under which these materials were formed. For the Science Demonstration Phase we are observing an embedded protostar (DK Cha) and a Herbig Ae/Be star (HD 100546), exemplars of the kind of science that DIGIT will achieve over the full program.
Star adaptation for two-algorithms used on serial computers
NASA Technical Reports Server (NTRS)
Howser, L. M.; Lambiotte, J. J., Jr.
1974-01-01
Two representative algorithms used on a serial computer and presently executed on the Control Data Corporation 6000 computer were adapted to execute efficiently on the Control Data STAR-100 computer. Gaussian elimination for the solution of simultaneous linear equations and the Gauss-Legendre quadrature formula for the approximation of an integral are the two algorithms discussed. A description is given of how the programs were adapted for STAR and why these adaptations were necessary to obtain an efficient STAR program. Some points to consider when adapting an algorithm for STAR are discussed. Program listings of the 6000 version coded in 6000 FORTRAN, the adapted STAR version coded in 6000 FORTRAN, and the STAR version coded in STAR FORTRAN are presented in the appendices.
Audit Report on "The Department's Management of the ENERGY STAR Program"
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-01
The American Recovery and Reinvestment Act (Recovery Act) authorized about $300 million in consumer rebate incentives for purchases of products rated under the 'ENERGY STAR' Program. ENERGY STAR, a voluntary labeling program established in 1992, provides consumers with energy efficiency data for a range of products so that they can make informed purchase judgments. The overall goal of the program is to encourage consumers to choose energy efficient products, advancing the nationwide goal of reducing energy consumption. The U.S. Environmental Protection Agency (EPA) managed the ENERGY STAR Program on a stand-alone basis until 1996 when it joined forces with themore » Department of Energy (Department). A Memorandum of Cooperation expanded the ENERGY STAR product categories, giving the Department responsibility for overseeing eight product categories such as windows, dishwashers, clothes washers, and refrigerators, while EPA retained responsibility for electronic product categories and heating, ventilating, and cooling equipment. Each agency is responsible for setting product efficiency specifications for those items under its control and for ensuring the proper use of the ENERGY STAR label in the marketplace. In August 2007, the EPA Office of Inspector General issued an audit report identifying significant control weaknesses in EPA's management of ENERGY STAR. The Department, concerned by the findings at EPA and eager to improve its own program, developed an approach to verify adherence to product specifications, ensure proper use of the ENERGY STAR label in the marketplace, and improve the establishment of product specifications. As evidenced by the commitment of $300 million in Recovery Act funds, the ENERGY STAR Program plays an important role in the U.S. efforts to reduce energy consumption. We initiated this audit to determine whether the Department had implemented the actions it announced in 2007 to strengthen the Program. The Department had not implemented planned improvements in the ENERGY STAR Program. Our audit revealed that officials had not: (1) Developed a formal quality assurance program to help ensure that product specifications were adhered to; (2) Effectively monitored the use of the ENERGY STAR label to ensure that only qualifying products were labeled as compliant; and (3) Formalized procedures for establishing and revising product specifications and for documenting decisions regarding those specifications. In our judgment, the delay in the Department's planned improvements in its management of the ENERGY STAR Program could reduce consumer confidence in the integrity of the ENERGY STAR label. Such loss of credibility could reduce energy savings, increase consumer risk, and diminish the value of the recent infusion of $300 million for ENERGY STAR rebates under the Recovery Act.« less
The detection of planetary systems from Space Station - A star observation strategy
NASA Technical Reports Server (NTRS)
Mascy, Alfred C.; Nishioka, Ken; Jorgensen, Helen; Swenson, Byron L.
1987-01-01
A 10-20-yr star-observation program for the Space Station Astrometric Telescope Facility (ATF) is proposed and evaluated by means of computer simulations. The primary aim of the program is to detect stars with planetary systems by precise determination of their motion relative to reference stars. The designs proposed for the ATF are described and illustrated; the basic parameters of the 127 stars selected for the program are listed in a table; spacecraft and science constraints, telescope slewing rates, and the possibility of limiting the program sample to stars near the Galactic equator are discussed; and the effects of these constraints are investigated by simulating 1 yr of ATF operation. Viewing all sky regions, the ATF would have 81-percent active viewing time, observing each star about 200 times (56 h) per yr; only small decrements in this performance would result from limiting the viewing field.
STAR adaptation of QR algorithm. [program for solving over-determined systems of linear equations
NASA Technical Reports Server (NTRS)
Shah, S. N.
1981-01-01
The QR algorithm used on a serial computer and executed on the Control Data Corporation 6000 Computer was adapted to execute efficiently on the Control Data STAR-100 computer. How the scalar program was adapted for the STAR-100 and why these adaptations yielded an efficient STAR program is described. Program listings of the old scalar version and the vectorized SL/1 version are presented in the appendices. Execution times for the two versions applied to the same system of linear equations, are compared.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.
The purpose of this hearing was to examine the status of the Star Schools program, a federal program enacted by Congress in 1987 that enables students to be linked together via satellite or cable TV hookup with teachers in different parts of the country. Star Schools are a network of distance education programs that link remote classes of students…
The Unintended Consequences of Property Tax Relief: New York's STAR Program
ERIC Educational Resources Information Center
Eom, Tae Ho; Duncombe, William; Nguyen-Hoang, Phuong; Yinger, John
2014-01-01
New York's School Tax Relief Program, STAR, provides state-funded property tax relief for homeowners. Like a matching grant, STAR changes the price of education, thereby altering the incentives of voters and school officials and leading to unintended consequences. Using data for New York State school districts before and after STAR was…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-26
... 2012 Star- Spangled Banner Commemorative Coin Program Products AGENCY: United States Mint, Department... Infantry Soldier Silver Dollar and 2012 Star-Spangled Banner Commemorative Coin Program products. Prices.... Silver Dollar. 2012 Infantry Soldier Silver Dollar N/A $61.95. Defenders of Freedom Set. 2012 Star...
National Alliance of Business Sales Techniques and Results (STAR).
ERIC Educational Resources Information Center
Golightly, Steven J.
This paper presents an overview of the Sales Techniques and Results (STAR) training program developed by the National Alliance of Business in conjunction with IBM. The STAR training program can be used to help vocational directors, teachers, and counselors to be better salespersons for cooperative education or job placement programs. The paper…
The Star Schools Distance-Learning Program: Results from the Mandated Study.
ERIC Educational Resources Information Center
Tushnet, Naida C.; And Others
The Star Schools Assistance Program has been funding activities since 1988. It provides projects with seed money to develop distance learning programming and equip sites. In addition, Star Schools has served as a focal point for demonstrating innovative uses of technology to advance educational opportunity and improvement. This paper represents…
SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars
NASA Technical Reports Server (NTRS)
Tanner, Angelle; Beichman, Charles; Akeson, Rachel; Ghez, Andrea; Grankin, Konstantin N.; Herbst, William; Hillenbrand, Lynne; Huerta, Marcos; Konopacky, Quinn; Metchev, Stanimir;
2008-01-01
We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of <5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1(sigma) >0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that removes the most targets from the SIM-YSO program is photometric variability.
1992-02-01
MKK) Daytona Beach, FL (DAB) Boise, ID (BOI) Fort Lauderdale, FL (FLL) Idaho Falls Fanning Field, ID (IDA) Fort Lauderdale Executive, FL (FXE... Lewiston , ID (LWS) Fort Myers Page Field, FL (FMY) Pocatello, ID (PIH) Fort Myers Regional, FL (RSW) Twin Falls, ID (TWF) Fort Pierce, FL (FPR) Alton St... Idaho (SUN) 6. Marion Williamson County, Illinois (MWA) 7. Waukegan, Illinois (UGN) 8. Topeka-Phillip Ballard, Kansas (TOP) 9. Owensboro-Daviees County
Lord, Nathan P; Plimpton, Rebecca L; Sharkey, Camilla R; Suvorov, Anton; Lelito, Jonathan P; Willardson, Barry M; Bybee, Seth M
2016-05-18
Arthropods have received much attention as a model for studying opsin evolution in invertebrates. Yet, relatively few studies have investigated the diversity of opsin proteins that underlie spectral sensitivity of the visual pigments within the diverse beetles (Insecta: Coleoptera). Previous work has demonstrated that beetles appear to lack the short-wavelength-sensitive (SWS) opsin class that typically confers sensitivity to the "blue" region of the light spectrum. However, this is contrary to established physiological data in a number of Coleoptera. To explore potential adaptations at the molecular level that may compensate for the loss of the SWS opsin, we carried out an exploration of the opsin proteins within a group of beetles (Buprestidae) where short-wave sensitivity has been demonstrated. RNA-seq data were generated to identify opsin proteins from nine taxa comprising six buprestid species (including three male/female pairs) across four subfamilies. Structural analyses of recovered opsins were conducted and compared to opsin sequences in other insects across the main opsin classes-ultraviolet, short-wavelength, and long-wavelength. All nine buprestids were found to express two opsin copies in each of the ultraviolet and long-wavelength classes, contrary to the single copies recovered in all other molecular studies of adult beetle opsin expression. No SWS opsin class was recovered. Furthermore, the male Agrilus planipennis (emerald ash borer-EAB) expressed a third LWS opsin at low levels that is presumed to be a larval copy. Subsequent homology and structural analyses identified multiple amino acid substitutions in the UVS and LWS copies that could confer short-wavelength sensitivity. This work is the first to compare expressed opsin genes against known electrophysiological data that demonstrate multiple peak sensitivities in Coleoptera. We report the first instance of opsin duplication in adult beetles, which occurs in both the UVS and LWS opsin classes. Through structural comparisons of known insect opsins, we suggest that opsin duplication and amino acid variation within the chromophore binding pocket explains sensitivity in the short-wavelength portion of the visible light spectrum in these species. These findings are the first to reveal molecular complexity of the color vision system within beetles.
Solution of a large hydrodynamic problem using the STAR-100 computer
NASA Technical Reports Server (NTRS)
Weilmuenster, K. J.; Howser, L. M.
1976-01-01
A representative hydrodynamics problem, the shock initiated flow over a flat plate, was used for exploring data organizations and program structures needed to exploit the STAR-100 vector processing computer. A brief description of the problem is followed by a discussion of how each portion of the computational process was vectorized. Finally, timings of different portions of the program are compared with equivalent operations on serial machines. The speed up of the STAR-100 over the CDC 6600 program is shown to increase as the problem size increases. All computations were carried out on a CDC 6600 and a CDC STAR 100, with code written in FORTRAN for the 6600 and in STAR FORTRAN for the STAR 100.
The Beta Pictoris Phenomenon in A-Shell Stars: Detection of Accreting Gas
NASA Technical Reports Server (NTRS)
Grady, C. A.; Perez, Mario R.; Talavera, A.; McCollum, B.; Rawley, L. A.; England, M. N.; Schlegel, M.
1996-01-01
We present the results of an expanded survey of A-shell stars using IUE high-dispersion spectra and find accreting, circumstellar gas in the line of sight to nine stars, in addition to the previously identified beta Pic, HR 10, and 131 Tau, which can be followed to between +70 and 100 km/s relative to the star. Two of the program stars, HD 88195 and HD 148283, show variable high-velocity gas. Given the small number of IUE spectra for our program stars, detection of high-velocity, accreting gas in 2/3 of the A-shell stars sampled indicates that accretion is an intrinsic part of the A-shell phenomenon and that beta Pic is not unique among main-sequence A stars in exhibiting such activity. Our program stars, as a group, have smaller column densities of high-velocity gas and smaller near-IR excesses compared with beta Pic. These features are consistent with greater central clearing of a remnant debris disk, compared with beta Pic, and suggest that the majority of field A-shell stars are older than beta Pic.
Assessment of the NASA AvSTAR Project Plan
NASA Technical Reports Server (NTRS)
Ulrey, Michael L.; Haraldsdottir, Aslaug; Berge, Matthew E.; Hopperstad, Craig A.; Schwab, Robert W.
2004-01-01
This report is a preliminary evaluation of NASA's proposed Aviation System Technology Advanced Research (AvSTAR) Program during the early stages of its definition, in the first half of the year 2001. This evaluation focuses on how well the program goals address the needs of the U.S. National Airspace System, the technical feasibility of the program goals, and the logistical feasibility of the program plan. This report also provides recommendations on how the AvSTAR program could be strengthened and improved. This document has two appendices.
NASA Astrophysics Data System (ADS)
Keller, J. M.; Rebar, B.; Buxner, S.
2012-12-01
The STEM Teacher and Researcher (STAR) Program provides pre-service and beginning teachers the opportunity to develop identity as both teachers and researchers early in their careers. Founded and implemented by the Center for Excellence in Science and Mathematics Education (CESaME) at California Polytechnic State University on behalf of the California State University (CSU) system, STAR provides cutting edge research experiences and career development for students affiliated with the CSU system. Over the past three summers, STAR has also partnered with the NSF Robert Noyce Teacher Scholarship Program to include Noyce Scholars from across the country. Key experiences are one to three summers of paid research experience at federal research facilities associated with the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Association (NOAA), and the National Optical Astronomy Observatory (NOAO). Anchoring beginning teachers in the research community enhances participant understanding of what it means to be both researchers and effective teachers. Since its inception in 2007, the STAR Program has partnered with 15 national lab facilities to provide 290 research experiences to 230 participants. Several of the 68 STAR Fellows participating in the program during Summer 2012 have submitted abstracts to the Fall AGU Meeting. Through continued partnership with the Noyce Scholar Program and contributions from outside funding sources, the CSU is committed to sustaining the STAR Program in its efforts to significantly impact teacher preparation. Evaluation results from the program continue to indicate program effectiveness in recruiting high quality science and math majors into the teaching profession and impacting their attitudes and beliefs towards the nature of science and teaching through inquiry. Additionally, surveys and interviews are being conducted of participants who are now teaching in the classroom as part of a project to investigate the impact of the STAR Program on teaching practices. Preliminary analyses indicate that STAR fellows have maintained a strong distributed community of support following their summer experience, including continued contact with their research mentors and other fellows. The STAR research experience has also reinforced and strengthened many of the teachers' commitment to teaching. Additionally, teachers report how their STAR experience contributed to specific practices they use in the classroom to help students develop hypotheses, design experiments, and report their findings to the class. The STAR Program was presented to and cited by the Presidential Council of Advisors on Science and Technology (PCAST) as a national model for addressing K-12 science and math teacher workforce needs. It has also been recognized as a uniquely promising model for recruiting, preparing and retaining outstanding STEM teachers in such national publications as the American Association of Colleges and Universities (AAC&U) Peer Review journal and the National Science Teachers Association NSTA Reports. STAR was also recently cited in an editorial in Science (May 4, 2012) as a model teacher-researcher program that enhances professionalism in science teaching.
Code of Federal Regulations, 2013 CFR
2013-01-01
... for Testing” of DOE's “ENERGY STAR Program Requirements for [Compact Fluorescent Lamps] CFLs,” Version... Specifications for Qualifying Products” of the EPA's “ENERGY STAR Program Requirements for Residential Light... requirements specified in section 4, “CFL Requirements for Testing,” of the “ENERGY STAR Program Requirements...
Code of Federal Regulations, 2014 CFR
2014-01-01
... for Testing” of DOE's “ENERGY STAR Program Requirements for [Compact Fluorescent Lamps] CFLs,” Version... Specifications for Qualifying Products” of the EPA's “ENERGY STAR Program Requirements for Residential Light... requirements specified in section 4, “CFL Requirements for Testing,” of the “ENERGY STAR Program Requirements...
Code of Federal Regulations, 2012 CFR
2012-01-01
... for Testing” of DOE's “ENERGY STAR Program Requirements for [Compact Fluorescent Lamps] CFLs,” Version... Specifications for Qualifying Products” of the EPA's “ENERGY STAR Program Requirements for Residential Light... requirements specified in section 4, “CFL Requirements for Testing,” of the “ENERGY STAR Program Requirements...
A vectorization of the Hess McDonnell Douglas potential flow program NUED for the STAR-100 computer
NASA Technical Reports Server (NTRS)
Boney, L. R.; Smith, R. E., Jr.
1979-01-01
The computer program NUED for analyzing potential flow about arbitrary three dimensional lifting bodies using the panel method was modified to use vector operations and run on the STAR-100 computer. A high speed of computation and ability to approximate the body surface with a large number of panels are characteristics of NUEDV. The new program shows that vector operations can be readily implemented in programs of this type to increase the computational speed on the STAR-100 computer. The virtual memory architecture of the STAR-100 facilitates the use of large numbers of panels to approximate the body surface.
Shedding light on serpent sight: the visual pigments of henophidian snakes.
Davies, Wayne L; Cowing, Jill A; Bowmaker, James K; Carvalho, Livia S; Gower, David J; Hunt, David M
2009-06-10
The biologist Gordon Walls proposed his "transmutation" theory through the 1930s and the 1940s to explain cone-like morphology of rods (and vice versa) in the duplex retinas of modern-day reptiles, with snakes regarded as the epitome of his hypothesis. Despite Walls' interest, the visual system of reptiles, and in particular snakes, has been widely neglected in favor of studies of fishes and mammals. By analyzing the visual pigments of two henophidian snakes, Xenopeltis unicolor and Python regius, we show that both species express two cone opsins, an ultraviolet-sensitive short-wavelength-sensitive 1 (SWS1) (lambda(max) = 361 nm) pigment and a long-wavelength-sensitive (LWS) (lambda(max) = 550 nm) pigment, providing the potential for dichromatic color vision. They also possess rod photoreceptors which express the usual rod opsin (Rh1) pigment with a lambda(max) at 497 nm. This is the first molecular study of the visual pigments expressed in the photoreceptors of any snake species. The presence of a duplex retina and the characterization of LWS, SWS1, and Rh1 visual pigments in henophidian snakes implies that "lower" snakes do not provide support for Walls' transmutation theory, unlike some "higher" (caenophidian) snakes and other reptiles, such as geckos. More data from other snake lineages will be required to test this hypothesis further.
Makarov, G V; Levin, O S
2004-01-01
The study elicited the peculiarities of vertebral and muscular tonic syndromes in acute and remote periods of whip cervical trauma (WCT). Forty patients in acute period of WCT (2nd-3rd degree of severity) and 30 patients in remote period of WCT, who experienced pain and other symptoms 6 months after the trauma (late whip syndrome--LWS) were examined. The control group included 30 patients with neck and arm pain due to cervical osteochondrosis. In WCT, comparing to cervical osteochondrosis, more marked movement restriction in sagittal plane, more frequent blockade of the lower cervical spine segments, stronger correlation between pain syndrome and movement restriction in the cervical segments, more frequent muscular tonic syndrome in the anterior neck muscles and deeper neck flexors were found. In LWS, in contrast to the acute period of WCT, dissociation between more restricted active and more preserved passive movements in the cervical segments, weaker correlation between emerging of pain syndrome and restriction of movement volume, more frequent blockade of the upper cervical segments, more frequent occurrence of supraspinal muscles and shoulder-scapular syndromes were detected. The data obtained revealed a complex mechanism of symptoms formation in WCT that should be taken into account in treatment planning for acute and remote periods of cervical trauma.
Reynolds, Andy M
2010-12-06
For many years, the dominant conceptual framework for describing non-oriented animal movement patterns has been the correlated random walk (CRW) model in which an individual's trajectory through space is represented by a sequence of distinct, independent randomly oriented 'moves'. It has long been recognized that the transformation of an animal's continuous movement path into a broken line is necessarily arbitrary and that probability distributions of move lengths and turning angles are model artefacts. Continuous-time analogues of CRWs that overcome this inherent shortcoming have appeared in the literature and are gaining prominence. In these models, velocities evolve as a Markovian process and have exponential autocorrelation. Integration of the velocity process gives the position process. Here, through a simple scaling argument and through an exact analytical analysis, it is shown that autocorrelation inevitably leads to Lévy walk (LW) movement patterns on timescales less than the autocorrelation timescale. This is significant because over recent years there has been an accumulation of evidence from a variety of experimental and theoretical studies that many organisms have movement patterns that can be approximated by LWs, and there is now intense debate about the relative merits of CRWs and LWs as representations of non-orientated animal movement patterns.
29 CFR 1952.97 - Changes to approved plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... generally identical to the Federal STAR Voluntary Protection Program. South Carolina's “Palmetto” VPP is limited to the STAR Program in general industry, excludes the MERIT AND DEMONSTRATION Programs and...
29 CFR 1952.97 - Changes to approved plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... generally identical to the Federal STAR Voluntary Protection Program. South Carolina's “Palmetto” VPP is limited to the STAR Program in general industry, excludes the MERIT AND DEMONSTRATION Programs and...
29 CFR 1952.97 - Changes to approved plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... generally identical to the Federal STAR Voluntary Protection Program. South Carolina's “Palmetto” VPP is limited to the STAR Program in general industry, excludes the MERIT AND DEMONSTRATION Programs and...
29 CFR 1952.97 - Changes to approved plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... generally identical to the Federal STAR Voluntary Protection Program. South Carolina's “Palmetto” VPP is limited to the STAR Program in general industry, excludes the MERIT AND DEMONSTRATION Programs and...
29 CFR 1952.97 - Changes to approved plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... generally identical to the Federal STAR Voluntary Protection Program. South Carolina's “Palmetto” VPP is limited to the STAR Program in general industry, excludes the MERIT AND DEMONSTRATION Programs and...
YoungStar: We're Turning Five! Five Year Analysis as of July 2015. YoungStar Progress Report 6
ERIC Educational Resources Information Center
Wisconsin Council on Children and Families, 2015
2015-01-01
This report is the sixth in a series of Wisconsin Council on Children & Families (WCCF) reports tracking the progress of Wisconsin's YoungStar program, a quality rating and improvement system (QRIS) launched in 2010 to improve the quality of Wisconsin child care programs. YoungStar focuses on children of low-income working families receiving…
The MiMeS Survey of Magnetism in Massive Stars
NASA Astrophysics Data System (ADS)
Wade, G. A.; Grunhut, J. H.; MiMeS Collaboration
2012-12-01
The Magnetism in Massive Stars (MiMeS) survey represents a high-precision systematic search for magnetic fields in hot, massive OB stars. To date, MiMeS Large Programs (ESPaDOnS@CFHT, Narval@TBL, HARPSpol@ESO3.6 m) and associated PI programs (FORS@VLT) have yielded nearly 1200 circular spectropolarimetric observations of over 350 OB stars. Within this sample, 20 stars are detected as magnetic. Follow-up observations of new detections reveals (i) a large diversity of magnetic properties, (ii) ubiquitous evidence for magnetic wind confinement in optical spectra of all magnetic O stars, and (iii) the presence of strong, organized magnetic fields in all known Galactic Of?p stars, and iv) a complete absence of magnetic fields in classical Be stars.
Lessons Learned from the Arizona Galileoscope Star Party Program
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Sparks, R. T.; Dugan, C.; Walker, C. E.
2013-01-01
The National Optical Astronomy Observatory has joined together multiple audiences in various communities to conduct outreach using Galileoscopes. The audience consists of 5th grade students and teachers, their families and friends, and anyone else who wants to attend a special star party led by students using Galileoscopes. However, across one community there are many subcultures that one should be responsive to in the program design. The program model, which has been independently evaluated, combines professional development and classroom visits by NOAO education practitioners with the goal of a community star party. We have conducted the program in several mid-sized Arizona cities after an initial prototype star party held near the state capitol building in Phoenix. In this program, with Galileoscopes purchased with funding from Science Foundation Arizona, we have now held Galileoscope star parties in Flagstaff, Safford, and Globe, with two programs in Yuma, Arizona. We will discuss planning efforts, professional development plans and lessons learned, and specific logistical issues that have arisen in the program. Although the professional development component for teachers is rather traditional, the overall lessons learned are applicable to many astronomy programs for non-traditional audiences.
SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hai-Ning; Zhao, Gang; Wang, Liang
2015-01-10
We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capturemore » elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.« less
29 CFR 1952.157 - Changes to approved plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... generally identical to the Federal STAR Voluntary Protection Program. North Carolina's “Carolina” VVP is limited to the STAR Program, and excludes the MERIT and DEMONSTRATION Programs. Also, injury rates must be...
29 CFR 1952.157 - Changes to approved plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... generally identical to the Federal STAR Voluntary Protection Program. North Carolina's “Carolina” VVP is limited to the STAR Program, and excludes the MERIT and DEMONSTRATION Programs. Also, injury rates must be...
29 CFR 1952.157 - Changes to approved plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... generally identical to the Federal STAR Voluntary Protection Program. North Carolina's “Carolina” VVP is limited to the STAR Program, and excludes the MERIT and DEMONSTRATION Programs. Also, injury rates must be...
29 CFR 1952.157 - Changes to approved plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... generally identical to the Federal STAR Voluntary Protection Program. North Carolina's “Carolina” VVP is limited to the STAR Program, and excludes the MERIT and DEMONSTRATION Programs. Also, injury rates must be...
29 CFR 1952.157 - Changes to approved plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... generally identical to the Federal STAR Voluntary Protection Program. North Carolina's “Carolina” VVP is limited to the STAR Program, and excludes the MERIT and DEMONSTRATION Programs. Also, injury rates must be...
NASA Astrophysics Data System (ADS)
Meyer, Michael; NIRCam Star and Planet Formation Theme Team
2017-06-01
With its extraordinary sensitivity, wavelength coverage from < 1 to 5 microns, 2.2x4.4 arc minute field of view, and diversity of observing modes, NIRCam on JWST offers very powerful capabilities to explore the origins of stars and planets. Here we describe programs planned within the NIRCam GTO Program including: i) extinction mapping of pre-stellar cores; ii) massive star formation; iii) embedded clusters and the end of the IMF; iv) imaging and spectroscopy of young stellar objects; and v) excitation of PAH features. We will describe the scope of each program, selection of observing modes and rationale, as well as provide some explicit examples of program design. We will also review the expected outcomes, illustrating the power of NIRCam to answer questions fundamental to understanding the origins of stars and planets.
NASA Astrophysics Data System (ADS)
Klopfer, Eric; Scheintaub, Hal; Huang, Wendy; Wendel, Daniel
Computational approaches to science are radically altering the nature of scientific investigatiogn. Yet these computer programs and simulations are sparsely used in science education, and when they are used, they are typically “canned” simulations which are black boxes to students. StarLogo The Next Generation (TNG) was developed to make programming of simulations more accessible for students and teachers. StarLogo TNG builds on the StarLogo tradition of agent-based modeling for students and teachers, with the added features of a graphical programming environment and a three-dimensional (3D) world. The graphical programming environment reduces the learning curve of programming, especially syntax. The 3D graphics make for a more immersive and engaging experience for students, including making it easy to design and program their own video games. Another change to StarLogo TNG is a fundamental restructuring of the virtual machine to make it more transparent. As a result of these changes, classroom use of TNG is expanding to new areas. This chapter is concluded with a description of field tests conducted in middle and high school science classes.
ERIC Educational Resources Information Center
Densmore, Marycay; Kolecki, Joseph C.; Miller, Allan; Petersen, Ruth; Terrell, Mike
2005-01-01
Science Through ARts (STAR) is a free, international, cross-curricular program thematically aligned with "The Vision for Space Exploration," a framework of goals and objectives published by NASA in February 2004. Through the STAR program, students in grades 5 through 12 are encouraged to apply their knowledge in creative ways as they approach a…
Selected highlights from the Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Bowyer, S.; Malina, R. F.
1995-01-01
We present a few scientific highlights from the Extreme Ultraviolet Explorer (EUVE) all-sky and deep surveys, from the EUVE Righ Angle Program, and from the EUVE Guest Observer Program. The First EUVE Source Catalog includes 410 extreme ultraviolet (EUV) sources detected in the initial processing of the EUVE all-sky data. A program of optical identification indicates that counterparts include cool star coronae, flare stars, hot white dwarfs, central stars of planetary nebulae, B star photospheres and winds, an X-ray binary, extragalactic objects (active galactic nuclei, BL Lacertae), solar system objects (Moon, Mars, Io,), supernova remnants, and two novae.
Educational Programs at the Lake Afton Public Observatory
NASA Astrophysics Data System (ADS)
Alexander, D. R.; Novacek, G. R.
1994-05-01
The Lake Afton Public Observatory was founded 14 years ago as a joint project of the city, county, local schools, and Wichita State University to provide educational programs for the public and school children. A staff of 4 professional astronomers presents daytime and evening programs at the Observatory and makes presentations in schools to over 20,000 people per year. Programs are scheduled 6 days a week during the academic year and 3 days a week in the summer. Our public programs deviate significantly from the traditional observatory open house by following a specific theme. Selection and discussion of each object is centered on that theme. For example, a program on The Life Story of a Star would view a diffuse nebula (to discuss star formation), a young star cluster (to discuss one outcome of star formation), a double star (to discuss how the properties of stars are determined), and a planetary nebula (to discuss the death of a star). To complement the observing experiences of our visitors, we have developed a wide range of interactive exhibits to develop the concepts touched on in the viewing programs. We have also developed exhibit lending kits for extended use in school classrooms, educational games, activity manuals for teachers, and short videos to introduce single concepts in the classroom. In the past year we have begun to offer a series of workshops for in-service teachers to expand their knowledge of astronomy and to provide them with additional resources for teaching astronomy. This work is supported in part by NSF EPSCoR grant OSR-9255223.
Intercomparison of Atmospheric Correction Algorithms Applied to HICO Imagery
2011-03-02
photons and shadows a region. The water-leaving radiance from the shadowed region, LwsJu (A) that reaches the sensor results from only skylight ...solar and skylight photons. In addition to the water-leaving radiance, radiance recorded at the sensor also includes path radiance due to molecular (or...one part caused by the backscattering of the diffuse skylight and the other part by backscattering of the direct solar beam. For the sunny and
NASA Technical Reports Server (NTRS)
Falconer, D. A.; Moore, R. L.; Gary, G. A.
2006-01-01
We report further results from our ongoing assessment of magnetogram-based measures of active-region nonpotentiality and size as predictors of coronal mass ejections (CMEs). We have devised improved generalized measures of active-region nonpotentiality that apply to active regions of any degree of magnetic complexity, rather than being limited to bipolar active regions as our initial measures were. From a set of approx.50 active-regions, we have found that measures of total nonpotentiality have a 75-80% success rate n predicting whether an active region will produce a CME in 2 days after the magnetogram. This makes measures of total nonpotentiality a better predictor than either active-region size, or active region twist (size-normalized nonpotentiality), which have a approx.65% success rates. We have also found that we can measure from the line-of-sight magnetograms an active region's total nonpotentiality and the size, which allows use to use MDI to evaluate these quantities for 4-5 consecutive days for each active region, and to investigate if there is some combination of size and total nonpotentiality that have a stronger predictive power than does total nonpotentiality. This work was funded by NASA through its LWS TR&T Program and its Solar and Heliospheric Physics SR&T Program, and by NSF through its Solar Terrestrial Research and SHINE programs.
Radial velocity detection of extra-solar planetary systems
NASA Technical Reports Server (NTRS)
Cochran, William D.
1991-01-01
The goal of this program was to detect planetary systems in orbit around other stars through the ultra high precision measurement of the orbital motion of the star around the star-planet barycenter. The survey of 33 nearby solar-type stars is the essential first step in understanding the overall problem of planet formation. The program will accumulate the necessary statistics to determine the frequency of planet formation as a function of stellar mass, age, and composition.
Challenges in Modeling the Sun-Earth System
NASA Technical Reports Server (NTRS)
Spann, James
2004-01-01
The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales in time and space. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA Living With a Star (LWS) programs. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress. Our limited understanding of the underlying coupling physics is illustrated by the following example questions: how does the propagation of a typical CME/solar flare influence the measured properties of the solar wind at 1 AU? How does the solar wind compel the dynamic response of the Earth's magnetosphere? How is variability in the ionosphere-thermosphere system coupled to magnetospheric variations? Why do these and related important questions remain unanswered? What are the primary problems that need to be resolved to enable significant progress in comprehensive modeling of the Sun-Earth system? Which model/technique improvements are required and what new data coverage is required to enable full model advances? This poster opens the discussion for how these and other important questions can be addressed. A workshop scheduled for October 8-22, 2004 in Huntsville, Alabama, will be a forum for identifying ana exploring promising new directions and approaches for characterizing and understanding the system. To focus the discussion, the workshop will emphasize the genesis, evolution, propagation and interaction of high-speed solar wind streamers or CME/flares with geospace and the subsequent response of geospace from its outer reaches in the magnetosphere to the lower edge of the ionosphere-mesosphere-thermosphere. Particular emphasis will be placed on modeling the coupling aspects of these phenomena across boundaries between regions and on data analysis that guides and constrains model results. Specific topics to be addressed are: Corotating interaction regions, Coronal mass ejections, Energetic particles, System preconditioning, Extreme events and super storms, End-to-End modeling efforts.
NASA Astrophysics Data System (ADS)
Jurdana-Šepić, R.; Poljančić Beljan, I.
Searching for T Tauri stars or related early type variables we carried out a BVRI photometric measurements of five candidates with positions within the field of the pre-main sequence object V733 Cephei (Persson's star) located in the dark cloud L1216 near to Cepheus OB3 Association: VES 946, VES 950, NSV 14333, NSV 25966 and V385 Cep. Their magnitudes are determined on the plates from Asiago Observatory historical photographic archive exposed 1971 - 1978. We provide finding charts for program stars and comparison sequence stars, magnitude estimations, magnitude mean values and BVR_cI_c light curves of program stars.
Efficacy of bolus lukewarm saline and yoga postures as colonoscopy preparation: a pilot study.
Arya, Vijaypal; Gupta, Kalpana A; Arya, Swarn V
2010-12-01
Colonoscopy is now the gold standard for colon cancer screening and a vital diagnostic and therapeutic tool in 21st century medical practice. Although advances have been swift since colonoscopy came into wide use a generation ago, its effectiveness can be compromised by patients' ability to adequately prepare for the procedure. Many patients dread this task more than the procedure itself. While no prep regimen can be ideal for all patients, the authors present a novel approach that represents a potential time-saving improvement for younger, healthier patients. It is a modern version of an Indian practice called shankh prakshalana, in which lukewarm saline is used in combination with five yoga postures to cleanse the bowel. The objective of this study was to examine the safety, efficacy, and tolerability of lukewarm saline and yoga (LWS/yoga) as a colonoscopy preparation in comparison with NuLytely(®) (PEG-3350, sodium chloride, sodium bicarbonate, and potassium chloride solution) used according to the manufacturer's instructions. This was a pilot study comprising 54 healthy adults, ages 18-65, equally divided into two groups: Group A preparing with lukewarm saline and yoga postures (LWS/yoga); and Group B preparing with NuLytely(®) as directed on the label. Data were collected on the quality of bowel preparation, patient safety, patient tolerability, and side-effects. The setting was a Joint Commission accredited outpatient endoscopy clinic. Patients performed the series of five yoga postures known as shankh prakshalana, interrupting the exercises at regular intervals to consume 480 mL of lukewarm saline. The solution was prepared by adding 9 g of sodium chloride per liter of lukewarm water (99°F-102°F/37.2°C-38.9°C). The mean total score was significantly better in Group A versus Group B (20.63 ± 5.09 versus 16.48 ± 5.18, p < 0.0007). In Group A, 24/27 (88.9%) of patients had excellent or optimum total scores, compared with 21/27 (77.8%) in Group B (not significant). In our pilot study, LWS/yoga, used under supervision, produced better colon preparation than Nulytely, used as directed. A randomized, endoscopist-blinded study is needed to confirm these results. Shankh prakshalana is effective as a colonoscopy preparation.
EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Marla Christine; Brown, Richard; Homan, Gregory
2008-11-17
Over a decade ago, the electricity consumption associated with home electronics and other small appliances emerged onto the global energy policy landscape as one of the fastest growing residential end uses with the opportunity to deliver significant energy savings. As our knowledge of this end use matures, it is essential to step back and evaluate the degree to which energy efficiency programs have successfully realized energy savings and where savings opportunities have been missed.For the past fifteen years, we have quantified energy, utility bill, and carbon savings for US EPA?s ENERGY STAR voluntary product labeling program. In this paper, wemore » present a unique look into the US residential program savings claimed to date for EPA?s ENERGY STAR office equipment, consumer electronics, and other small household appliances as well as EPA?s projected program savings over the next five years. We present a top-level discussion identifying program areas where EPA?s ENERGY STAR efforts have succeeded and program areas where ENERGY STAR efforts did not successfully address underlying market factors, technology issues and/or consumer behavior. We end by presenting the magnitude of ?overlooked? savings.« less
ERIC Educational Resources Information Center
Kanu, Mohamed; Hepler, Nancy; Labi, Halima
2015-01-01
Background: Since 1984, Students Taking a Right Stand (STARS) Nashville has implemented Student Assistance Programs (SAPs) in the middle Tennessee area, to include 14 counties and 16 school districts. STARS Nashville serves K-12 with a focus in middle and high schools. Methods: The current study reviewed studies that utilized quasi-experimental…
Yellow supergiants in open clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, J.R.
1986-01-01
Superluminous giant stars (SLGs) have been reported in young globular clusters in the Large Magellanic Cloud (LMC). These stars appear to be in the post-asymptotic-giant-branch phase of evolution. This program was an investigation of galactic SLG candidates in open clusters, which are more like the LMC young globular clusters. These were chosen because luminosity, mass, and age determinations can be made for members since cluster distances and interstellar reddenings are known. Color magnitude diagrams were searched for candidates, using the same selection criteria as for SLGs in the LMC. Classification spectra were obtained of 115 program stars from McGraw-Hill Observatorymore » and of 68 stars from Cerro Tololo Inter-American Observatory Chile. These stars were visually classified on the MK system using spectral scans of standard stars taken at the respective observations. Published information was combined with this program's data for 83 stars in 30 clusters. Membership probabilities were assigned to these stars, and the clusters were analyzed according to age. It was seen that the intrinsically brightest supergiants are found in the youngest clusters. With increasing cluster age, the absolute luminosities attained by the supergiants decline. Also, it appears that the evolutionary tracks of luminosity class II stars are more similar to those of class I than of class III.« less
ERIC Educational Resources Information Center
Tushnet, Naida C.
The Star Schools Program has funded projects to explore innovative educational applications of technology in distance education. Funded projects have applied a variety of technologies, including videodisks, compressed data transmission, fiber optic technology, and computer networks. Program evaluation is a mandated aspect of the program. This…
NASA Technical Reports Server (NTRS)
Svalbonas, V.; Ogilvie, P.
1975-01-01
A special data debugging package called SAT-1P created for the STARS-2P computer program is described. The program was written exclusively in FORTRAN 4 for the IBM 370-165 computer, and then converted to the UNIVAC 1108.
NASA Astrophysics Data System (ADS)
Lubowich, Donald A.
2009-05-01
This NASA-funded Music and Astronomy Under the Stars outreach program brings telescopes and astronomy information (via a video display and outdoor exhibit) to community parks during and after music concerts and outdoor family films attended by 500 to 50,000 people. This program will permit the entire community to participate with telescope observations and will enhance the public appreciation of astronomy. The telescopes will be accessible to those with physical disabilities. This program combines music, telescope observations, and astronomy information and targets people who may not attend star parties, planetariums, or science museums. I update this program and discus the lessons learned such as the importance of coordination with local governments, community park districts, and amateur astronomer clubs. This program can be expanded and modified for the local communities. I have expanded this program to large and small venues from New York Philharmonic concert at Heckscher State Park, the boardwalk and a "tail-gate” star party by at pop-music concerts at Jones Beach State Park, and at the Tanglewood Music Festival in Lenox, MA, summer home of the Boston Symphony Orchestra (http://www.bso.org/bso/mods/perf_detail.jsp?pid=prod2880024). This program is expandable to include outdoor dance or theatre programs, festivals in parks or beaches or amusement parks. Music and Astronomy Under the Stars is program that should continue beyond IYA-2009 beaches. Special events such as a Super Bowl Star Party and Halloween Stars will be presented as will the results form NASA-funded hands-on astronomy activities to children and their families receiving medical treatment at the Children's Medical Center at Winthrop University Hospital (Mineola, NY) and the Ronald McDonald House of Long Island (New Hyde Park, NY).
Evaluation of mercury in the liquid waste processing facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.
2015-08-13
This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.
Suvorov, Anton; Jensen, Nicholas O; Sharkey, Camilla R; Fujimoto, M Stanley; Bodily, Paul; Wightman, Haley M Cahill; Ogden, T Heath; Clement, Mark J; Bybee, Seth M
2017-03-01
Gene duplication plays a central role in adaptation to novel environments by providing new genetic material for functional divergence and evolution of biological complexity. Several evolutionary models have been proposed for gene duplication to explain how new gene copies are preserved by natural selection, but these models have rarely been tested using empirical data. Opsin proteins, when combined with a chromophore, form a photopigment that is responsible for the absorption of light, the first step in the phototransduction cascade. Adaptive gene duplications have occurred many times within the animal opsins' gene family, leading to novel wavelength sensitivities. Consequently, opsins are an attractive choice for the study of gene duplication evolutionary models. Odonata (dragonflies and damselflies) have the largest opsin repertoire of any insect currently known. Additionally, there is tremendous variation in opsin copy number between species, particularly in the long-wavelength-sensitive (LWS) class. Using comprehensive phylotranscriptomic and statistical approaches, we tested various evolutionary models of gene duplication. Our results suggest that both the blue-sensitive (BS) and LWS opsin classes were subjected to strong positive selection that greatly weakens after multiple duplication events, a pattern that is consistent with the permanent heterozygote model. Due to the immense interspecific variation and duplicability potential of opsin genes among odonates, they represent a unique model system to test hypotheses regarding opsin gene duplication and diversification at the molecular level. © 2016 John Wiley & Sons Ltd.
Lee, Jong Joo; Jang, Jeong Hun; Choo, Oak-Sung; Lim, Hye Jin; Choung, Yun-Hoon
2018-01-01
Steroids have been widely used to treat inner-ear diseases such as sudden sensorineural hearing loss, tinnitus, and Meniere's disease. They can be given via either systemic or intratympanic (IT) injection. The purpose of the present study was to explore differences in intracochlear steroid distribution by the administration method employed (systemic vs. IT injection). Animal study. Twenty-three Sprague-Dawley rats were given fluorescein isothiocyanate-labeled dexamethasone (FITC-DEX) three times (on successive days) via intraperitoneal (IP) or IT injection. Cochlear uptake of FITC-DEX was evaluated via immunohistochemistry and flow cytometry at 6 hours, and 3 and 7 days after the final injection. FITC-DEX uptake was evident in spiral ganglion cells (SGs), the organ of Corti (OC), and the lateral walls (LWs), the basal turns of which were stained relatively prominently in both groups. Animals receiving IP injections exhibited higher FITC-DEX uptakes by the SGs and OC, whereas IT injection triggered higher-level FITC-DEX accumulation by the OC and LWs. Flow cytometry revealed that intracochlear FITC-DEX uptake by IT-injected animals was higher and more prolonged than in animals subjected to IP injections. We thus describe differences in cochlear steroid distributions after systemic and IT injections. This finding could help our understanding of the pharmacokinetics of steroids in the cochlea. NA. Laryngoscope, 128:189-194, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Large-wave simulation of spilling breaking and undertow current over constant slope beach
NASA Astrophysics Data System (ADS)
Dimas, Athanassios; Kolokythas, Gerasimos; Dimakopoulos, Aggelos
2011-11-01
The three-dimensional, free-surface flow, developing by the propagation of nonlinear breaking waves over a constant slope bed, is numerically simulated. The main objective is to investigate the effect of spilling breaking on the characteristics of the induced undertow current by performing large-wave simulations (LWS) based on the numerical solution of the Navier-Stokes equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. In the present study, the case of incoming waves with wavelength to inflow depth ratio λ/ d ~ 6.6 and wave steepness H/ λ ~0.025, over bed of slope tan β = 1/35, is investigated. The LWS predicts satisfactorily breaking parameters - height and depth - and wave dissipation in the surf zone, in comparison to experimental data. In the corresponding LES, breaking height and depth are smaller and wave dissipation in the surf zone is weaker. For the undertow current, it is found that it is induced by the breaking process at the free surface, while its strength is controlled by the bed shear stress. Finally, the amplitude of the bed shear stress increases substantially in the breaking zone, becoming up to six times larger than the respective amplitude at the outer region.
Infrared Space Observatory (ISO) Key Project: the Birth and Death of Planets
NASA Technical Reports Server (NTRS)
Stencel, Robert E.; Creech-Eakman, Michelle; Fajardo-Acosta, Sergio; Backman, Dana
1999-01-01
This program was designed to continue to analyze observations of stars thought to be forming protoplanets, using the European Space Agency's Infrared Space Observatory, ISO, as one of NASA Key Projects with ISO. A particular class of Infrared Astronomy Satellite (IRAS) discovered stars, known after the prototype, Vega, are principal targets for these observations aimed at examining the evidence for processes involved in forming, or failing to form, planetary systems around other stars. In addition, this program continued to provide partial support for related science in the WIRE, SOFIA and Space Infrared Telescope Facility (SIRTF) projects, plus approved ISO supplementary time observations under programs MCREE1 29 and VEGADMAP. Their goals include time dependent changes in SWS spectra of Long Period Variable stars and PHOT P32 mapping experiments of recognized protoplanetary disk candidate stars.
Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Marla; Homan, Gregory; Lai, Judy
2009-09-24
This report provides a top-level summary of national savings achieved by the Energy Star voluntary product labeling program. To best quantify and analyze savings for all products, we developed a bottom-up product-based model. Each Energy Star product type is characterized by product-specific inputs that result in a product savings estimate. Our results show that through 2007, U.S. EPA Energy Star labeled products saved 5.5 Quads of primary energy and avoided 100 MtC of emissions. Although Energy Star-labeled products encompass over forty product types, only five of those product types accounted for 65percent of all Energy Star carbon reductions achieved tomore » date, including (listed in order of savings magnitude)monitors, printers, residential light fixtures, televisions, and furnaces. The forecast shows that U.S. EPA?s program is expected to save 12.2 Quads of primary energy and avoid 215 MtC of emissions over the period of 2008?2015.« less
Adaptation of a program for nonlinear finite element analysis to the CDC STAR 100 computer
NASA Technical Reports Server (NTRS)
Pifko, A. B.; Ogilvie, P. L.
1978-01-01
The conversion of a nonlinear finite element program to the CDC STAR 100 pipeline computer is discussed. The program called DYCAST was developed for the crash simulation of structures. Initial results with the STAR 100 computer indicated that significant gains in computation time are possible for operations on gloval arrays. However, for element level computations that do not lend themselves easily to long vector processing, the STAR 100 was slower than comparable scalar computers. On this basis it is concluded that in order for pipeline computers to impact the economic feasibility of large nonlinear analyses it is absolutely essential that algorithms be devised to improve the efficiency of element level computations.
ERIC Educational Resources Information Center
Eom, Tae Ho; Killeen, Kieran M.
2007-01-01
Similar to many property tax relief programs, New York State's School Tax Relief (STAR) program has been shown to exacerbate school resource inequities across urban, suburban, and rural schools. STAR's inherent conflict with the wealth equalization policies of New York State's school finance system are highlighted in a manner that effectively…
10 CFR 431.223 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
... procedures incorporated by reference. (1) Environmental Protection Agency, “ENERGY STAR Program Requirements... Agency “ENERGY STAR Program Requirements for Traffic Signals,” Version 1.1, may be obtained from the...
10 CFR 431.223 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... procedures incorporated by reference. (1) Environmental Protection Agency, “ENERGY STAR Program Requirements... Agency “ENERGY STAR Program Requirements for Traffic Signals,” Version 1.1, may be obtained from the...
10 CFR 431.223 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
... procedures incorporated by reference. (1) Environmental Protection Agency, “ENERGY STAR Program Requirements... Agency “ENERGY STAR Program Requirements for Traffic Signals,” Version 1.1, may be obtained from the...
The NuSTAR Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Cominsky, Lynn R.; McLin, K. M.; NuSTAR Team
2010-01-01
The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team of scientists and engineers, under the direction of CalTech Professor Fiona Harrison, principal investigator. NuSTAR is a pathfinder mission that will open the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at higher energies (up to 79 keV) NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase student and public understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission's objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, by writing articles for Physics Teacher and Science Scope magazines to reach a broader community of educators, and by working with informal educators through museums and planetaria to develop an exhibit that includes a model of NuSTAR and describes the mission's science objectives. We will also develop printed materials such as a mission factsheet that describes the mission.
The NuSTAR Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Cominsky, Lynn R.; McLin, K. M.; NuSTAR Team
2010-03-01
NuSTAR is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team of scientists and engineers, under the direction of CalTech Professor Fiona Harrison, principal investigator. NuSTAR is a pathfinder mission that will open the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at higher energies (up to 79 keV) NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase student and public understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission's objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, by writing articles for Physics Teacher and Science Scope magazines to reach a broader community of educators, and by working with informal educators through museums and planetaria to develop an exhibit that includes a model of NuSTAR and describes the mission's science objectives. We will also develop printed materials such as a mission factsheet that describes the mission.
ERIC Educational Resources Information Center
Child Trends, 2010
2010-01-01
This paper presents a profile of Tennessee's Star-Quality Child Care Program prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4)…
Measuring energy-saving retrofits: Experiences from the Texas LoanSTAR program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haberl, J.S.; Reddy, T.A.; Claridge, D.E.
1996-02-01
In 1988 the Governor`s Energy Management Center of Texas received approval from the US Department of Energy to establish a $98.6 million state-wide retrofit demonstration revolving loan program to fund energy-conserving retrofits in state, public school, and local government buildings. As part of this program, a first-of-its-kind, statewide Monitoring and Analysis Program (MAP) was established to verify energy and dollar savings of the retrofits, reduce energy costs by identifying operational and maintenance improvements, improve retrofit selection in future rounds of the LoanSTAR program, and initiate a data base of energy use in institutional and commercial buildings located in Texas. Thismore » report discusses the LoanSTAR MAP with an emphasis on the process of acquiring and analyzing data to measure savings from energy conservation retrofits when budgets are a constraint. This report includes a discussion of the program structure, basic measurement techniques, data archiving and handling, data reporting and analysis, and includes selected examples from LoanSTAR agencies. A summary of the program results for the first two years of monitoring is also included.« less
The NuSTAR Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Cominsky, Lynn R.; McLin, K. M.; NuSTAR Science Team
2011-09-01
NuSTAR is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team under the direction of CalTech Professor Fiona Harrison. NuSTAR is a pathfinder mission that will open the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at energies up to 79 keV, NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission's objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, a technology education unit for formal educators, articles for Physics Teacher and Science Scope magazines, and work with informal educators on a museum exhibit that includes a model of NuSTAR and describes the mission's science objectives. Extensive outreach is also underway by members of the Science Team, who are working with high school students, undergraduates and graduate students. We will also develop printed materials that describe the mission, and help develop the STEM pipeline through local after-school programs.
Lick Northern Proper Motion Program: NPM2
NASA Astrophysics Data System (ADS)
Jones, B. F.; Hanson, R. B.; Klemola, A. R.
2000-05-01
The Lick Northern Proper Motion (NPM) program is nearing completion after a half-century of work. Two-epoch photography began in 1947 and was completed in 1988. Measurements and reductions for proper motions, positions, and two-color photometry in the sky outside the Milky Way (``NPM1'') began in 1975 and were completed in 1992. The Lick NPM1 Catalog, containing 149,000 stars, was distributed in 1993. Work on the Milky Way sky (``NPM2'') comprising some 300,000 stars, began in 1996, and plate measurements were finished in 1999. The NPM program will be completed with the publication of the Lick NPM2 Catalog in 2003. The NPM program will provide absolute proper motions, measured on an inertial system defined by some 50,000 faint galaxies, for over 400,000 stars from 9 < B < 18, covering the northern two-thirds of the sky. Included in the NPM catalogs are many stars of astrophysical interest, anonymous stars for galactic studies, and stars from positional catalogues and proper motion surveys. Current work at Lick encompasses data reductions and star identifications for NPM2. Procedures are based on NPM1, with appropriate modifications. Reference galaxies are not available in the Milky Way sky, so the Hipparcos Catalogue is used to link the NPM2 proper motions to the inertial system defined by NPM1. The large number of stars in NPM2 reflects the higher density of stars near the Galactic plane and toward the Galactic center. The NPM catalogs will have lasting value as a unique database for future studies in galactic structure, stellar kinematics, and astrometry. As we produce NPM2, we are also applying the NPM data to several outstanding problems in these research fields. We would like to thank Dave Monet and the USNO for measuring the NPM2 plates. We thank the National Science Foundation for its continued support of the NPM program. The work reported here was supported by NSF grant AST 9530632.
SKYMAP system description: Star catalog data base generation and utilization
NASA Technical Reports Server (NTRS)
Gottlieb, D. M.
1979-01-01
The specifications, design, software description, and use of the SKYMAP star catalog system are detailed. The SKYMAP system was developed to provide an accurate and complete catalog of all stars with blue or visual magnitudes brighter than 9.0 for use by attitude determination programs. Because of the large number of stars which are brighter than 9.0 magnitude, efficient techniques of manipulating and accessing the data were required. These techniques of staged distillation of data from a Master Catalog to a Core Catalog, and direct access of overlapping zone catalogs, form the basis of the SKYMAP system. The collection and tranformation of data required to produce the Master Catalog data base is described. The data flow through the main programs and levels of star catalogs is detailed. The mathematical and logical techniques for each program and the format of all catalogs are documented.
NASA Technical Reports Server (NTRS)
Borchardt, G. C.
1994-01-01
The Simple Tool for Automated Reasoning program (STAR) is an interactive, interpreted programming language for the development and operation of artificial intelligence (AI) application systems. STAR provides an environment for integrating traditional AI symbolic processing with functions and data structures defined in compiled languages such as C, FORTRAN and PASCAL. This type of integration occurs in a number of AI applications including interpretation of numerical sensor data, construction of intelligent user interfaces to existing compiled software packages, and coupling AI techniques with numerical simulation techniques and control systems software. The STAR language was created as part of an AI project for the evaluation of imaging spectrometer data at NASA's Jet Propulsion Laboratory. Programming in STAR is similar to other symbolic processing languages such as LISP and CLIP. STAR includes seven primitive data types and associated operations for the manipulation of these structures. A semantic network is used to organize data in STAR, with capabilities for inheritance of values and generation of side effects. The AI knowledge base of STAR can be a simple repository of records or it can be a highly interdependent association of implicit and explicit components. The symbolic processing environment of STAR may be extended by linking the interpreter with functions defined in conventional compiled languages. These external routines interact with STAR through function calls in either direction, and through the exchange of references to data structures. The hybrid knowledge base may thus be accessed and processed in general by either side of the application. STAR is initially used to link externally compiled routines and data structures. It is then invoked to interpret the STAR rules and symbolic structures. In a typical interactive session, the user enters an expression to be evaluated, STAR parses the input, evaluates the expression, performs any file input/output required, and displays the results. The STAR interpreter is written in the C language for interactive execution. It has been implemented on a VAX 11/780 computer operating under VMS, and the UNIX version has been implemented on a Sun Microsystems 2/170 workstation. STAR has a memory requirement of approximately 200K of 8 bit bytes, excluding externally compiled functions and application-dependent symbolic definitions. This program was developed in 1985.
NASA Technical Reports Server (NTRS)
Borchardt, G. C.
1994-01-01
The Simple Tool for Automated Reasoning program (STAR) is an interactive, interpreted programming language for the development and operation of artificial intelligence (AI) application systems. STAR provides an environment for integrating traditional AI symbolic processing with functions and data structures defined in compiled languages such as C, FORTRAN and PASCAL. This type of integration occurs in a number of AI applications including interpretation of numerical sensor data, construction of intelligent user interfaces to existing compiled software packages, and coupling AI techniques with numerical simulation techniques and control systems software. The STAR language was created as part of an AI project for the evaluation of imaging spectrometer data at NASA's Jet Propulsion Laboratory. Programming in STAR is similar to other symbolic processing languages such as LISP and CLIP. STAR includes seven primitive data types and associated operations for the manipulation of these structures. A semantic network is used to organize data in STAR, with capabilities for inheritance of values and generation of side effects. The AI knowledge base of STAR can be a simple repository of records or it can be a highly interdependent association of implicit and explicit components. The symbolic processing environment of STAR may be extended by linking the interpreter with functions defined in conventional compiled languages. These external routines interact with STAR through function calls in either direction, and through the exchange of references to data structures. The hybrid knowledge base may thus be accessed and processed in general by either side of the application. STAR is initially used to link externally compiled routines and data structures. It is then invoked to interpret the STAR rules and symbolic structures. In a typical interactive session, the user enters an expression to be evaluated, STAR parses the input, evaluates the expression, performs any file input/output required, and displays the results. The STAR interpreter is written in the C language for interactive execution. It has been implemented on a VAX 11/780 computer operating under VMS, and the UNIX version has been implemented on a Sun Microsystems 2/170 workstation. STAR has a memory requirement of approximately 200K of 8 bit bytes, excluding externally compiled functions and application-dependent symbolic definitions. This program was developed in 1985.
The Resolved Stellar Populations Early Release Science Program
NASA Astrophysics Data System (ADS)
Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.
2017-11-01
We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.
ISM Parameters in the Normal Galaxy NGC 5713
NASA Technical Reports Server (NTRS)
Lord, S. D.; Malhotra, S.; Lim, T.; Helou, G.; Beichman, C. A.; Dinerstein, H.; Hollenbach, D. J.; Hunter, D. A.; Lo, K. Y.; Lu, N. Y.;
1996-01-01
We report ISO Long Wavelength Spectrometer (LWS) observations fo the Sbc(s) pec galaxy NGC 5713. We have obtained strong detections of the fine-structure forbidden transitions [C(sub ii)] 158(micro)m, [O(sub i)]63(micro)m, and [O(sub iii)] 88(micro)m, and significant upper limits for[N(sub ii)]122(micro)m, [O(sub iii)] 52(micro)m, and [N(sub iii)] 57(micro)m. We also detect the galaxy's dust continuum emission between 43 and 197 microns.
Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, V.; Occhipinti, J.; Shah, H.
2015-07-01
This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.
Evaluation of mercury in liquid waste processing facilities - Phase I report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, V.; Occhipinti, J. E.; Shah, H.
2015-07-01
This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.
Speciation of mercury in sludge solids: washed sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C. J.; Lourie, A. P.
2017-10-24
The objective of this applied research task was to study the type and concentration of mercury compounds found within the contaminated Savannah River Site Liquid Waste System (SRS LWS). A method of selective sequential extraction (SSE), developed by Eurofins Frontier Global Sciences1,2 and adapted by SRNL, utilizes an extraction procedure divided into seven separate tests for different species of mercury. In the SRNL’s modified procedure four of these tests were applied to a washed sample of high level radioactive waste sludge.
Five-Star Schools: Defining Quality in Early Childhood Programs
ERIC Educational Resources Information Center
Hertzog, Nancy B.
2012-01-01
Hakeem, Emily, Jose, and Latisha are all entering preschool in the fall. Their mothers are looking for the highest quality early childhood program they can find. Is there a guide for them to find a five-star program? Are all certified or accredited programs of equal quality? How do these parents and guardians know what defines quality in early…
NASA Technical Reports Server (NTRS)
Rarig, P. L.
1980-01-01
A program to calculate upwelling infrared radiation was modified to operate efficiently on the STAR-100. The modified software processes specific test cases significantly faster than the initial STAR-100 code. For example, a midlatitude summer atmospheric model is executed in less than 2% of the time originally required on the STAR-100. Furthermore, the optimized program performs extra operations to save the calculated absorption coefficients. Some of the advantages and pitfalls of virtual memory and vector processing are discussed along with strategies used to avoid loss of accuracy and computing power. Results from the vectorized code, in terms of speed, cost, and relative error with respect to serial code solutions are encouraging.
STAR Graduate and GRO Undergraduate Fellowship Recipient List
EPA's STAR graduate fellowship program supports masters and doctoral candidates in environmental studies. Each year, students in the United States compete for STAR fellowships through a rigorous review process.
10 CFR 431.203 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Environmental Protection Agency “ENERGY STAR Program Requirements for Exit Signs,” Version 2.0 issued January 1... Protection Agency “ENERGY STAR Program Requirements for Exit Signs,” Version 2.0, may be obtained from the...
10 CFR 431.203 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Environmental Protection Agency “ENERGY STAR Program Requirements for Exit Signs,” Version 2.0 issued January 1... Protection Agency “ENERGY STAR Program Requirements for Exit Signs,” Version 2.0, may be obtained from the...
10 CFR 431.203 - Materials incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Environmental Protection Agency “ENERGY STAR Program Requirements for Exit Signs,” Version 2.0 issued January 1... Protection Agency “ENERGY STAR Program Requirements for Exit Signs,” Version 2.0, may be obtained from the...
10 CFR 431.203 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Environmental Protection Agency “ENERGY STAR Program Requirements for Exit Signs,” Version 2.0 issued January 1... Protection Agency “ENERGY STAR Program Requirements for Exit Signs,” Version 2.0, may be obtained from the...
10 CFR 431.203 - Materials incorporated by reference.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Environmental Protection Agency “ENERGY STAR Program Requirements for Exit Signs,” Version 2.0 issued January 1... Protection Agency “ENERGY STAR Program Requirements for Exit Signs,” Version 2.0, may be obtained from the...
Notification: Review of Science to Achieve Results (STAR) Grant Program
Project #OA-FY12-0606, July 16, 2012. EPA’s Office of Inspector General (OIG) plans to begin preliminary research for an audit of grants awarded under EPA’s Science to Achieve Results (STAR) program.
The Origins of Magnetic Structure in the Corona and Wind
NASA Technical Reports Server (NTRS)
Antiochos, Spiro K.
2010-01-01
One of the most important and most puzzling features of the coronal magnetic field is that it appears to have smooth magnetic structure with little evidence for non-potentiality except at two special locations: photospheric polarity inversions lines. (non-potentiality observed as a filament channel) and coronal hole boundaries, (observed as the slow solar wind). This characteristic feature of the closed-field corona is highly unexpected given that its magnetic field is continuously tangled by photospheric motions. Although reconnection can eliminate some of the injected structure, it cannot destroy the helicity, which should build up to produce observable complexity. I propose that an inverse cascade process transports the injected helicity from the interior of closed flux regions to their boundaries inversion lines and coronal holes, creating both filament channels and the slow wind. We describe how the helicity is injected and transported and calculate the relevant rates. I argue that one process, helicity transport, can explain both the observed lack and presence of structure in the coronal magnetic field. This work has been supported by the NASA HTP, SR&T, and LWS programs.
NASA Technical Reports Server (NTRS)
Nakajima, Tadashi; Golimowski, David A.
1995-01-01
We have obtained R- and I-band coronagraphic images of the vicinities of 11 pre-main sequence (PMS) stars to search for faint, small-scale reflection nebulae. The inner radius of the search and the field of view are 1.9 arcsec and 1x1 arcmin, respectively. Reflection nebulae were imaged around RY Tau, T Tau,DG Tau, SU Aur, AB Aur, FU Ori, and Z CMa. No nebulae were detected around HBC 347, GG Tau, V773 Tau, and V830 Tau. Categorically speaking, most of the classical T Tauri program stars and all the FU Orionis-type program stars are associated with the reflection nebulae, while none of the weak-line T Tauri program stars are associated with nebulae. The detected nebulae range in size from 250 to 37 000 AU. From the brightness ratios of the stars and nebulae, we obtain a lower limit to the visual extinction of PMS star light through the nebulae of (A(sub V))(sub neb) = 0.1. The lower limits of masses and volume densities of the nebulae associated with the classical T Tauri stars are 10(exp-6) Solar mass and N(sub H) = 10(exp 5)/cu cm, respectively. Lower limits for the nebulae around FU Orionis stars are 10(exp -5) Solar mass and n(sub H) = 10 (exp 5)/cu cm, respectively. Some reflection nebulae may trace the illuminated surfaces of the optically thick dust nebulae, so these mass estimates are not stringent. All the PMS stars with associated nebulae are strong far-infrared emitters. Both the far-infrared emission and the reflection nebulae appear to originate from the remnant envelopes of star formation. The 100 micrometers emitting regions of SU Aur and FU Ori are likely to be cospatial with the reflection nebulae. A spatial discontinuity between FU Ori and its reflection nebula may explain the dip in the far-infrared spectral energy distribution at 60 micrometers. The warped, disk-like nebulae around T Tau and Z CMa are aligned with and embrace the inner star/circumstellar disk systems. The arc-shaped nebula around DG Tau may be in contact with the coaligned inner star/disk system. These three-reflection nebulae may trace the surfaces of pseudodisks from which matter accretes onto the stars or the inner circumstellar disks. 19 stellar objects brighter than I = 19 were detected around 9 program stars. Using a color-magnitude diagram, we have identified three new PMS candidates aroun Z CMa and one previously known PMS candidate, GG Tau/c.
Skysurvey Results of RotseIIID Data
NASA Astrophysics Data System (ADS)
Bilir, Cansu; Varol Keskin, MR..
2016-07-01
The aim of this thesis is to find variable stars from the ROTSEIIID fields data files. In order to determine the variable stars, a simple but effective software, that works seamlessly, has been developed. Robotic Optical Transient Search Experiment (ROTSE) is a worldwide project with four robotic telescopes, established in order to follow the optical afterglow radiation of the Gamma-Ray Bursts (GRB). In this study, the observations of the fields obtained from the ROTSEIIID Telescope located in the TÜBİTAK (Scientific and Technological Research Council of Turkey) National Observatory were used. ROTSEIIID creates a calibrated object list (cobj) from the observations gathered automatically. The different values of each star (RA, DEC, Pixel Coordinates, M, MERR, Flags etc.) can be found in this generated list. In this thesis these values are extracted from data files. A php programme was developed in order to extract time series data of every star in a field. It also searches period, and if found, calculates phases for this data. The goal of this study is to determine the variable stars, especially unknown variables. Ds9 and fv programs are used for dealing with FITS files. Also flowchart of program is given in this thesis. In addition Debil (for finding some parameters of detached eclipsing binary stars) and Gnuplot (for drawing graphics) are used by php program. Using gnuplot, magnitude-time and period-time graphics of each star are plotted. The searching program is used for some different fields of RotseIIID data files. On the basis of the results of this research, 42 variable stars found and 14 of them are listed end of the thesis with their light curves. The data used in this thesis will be studied more detailed and research results of new/unknown variable stars will be published along the Msc thesis. We are still studying on the data of new variable stars which were discovered by this research and the results will be published in near future...
A computer program for modeling non-spherical eclipsing binary star systems
NASA Technical Reports Server (NTRS)
Wood, D. B.
1972-01-01
The accurate analysis of eclipsing binary light curves is fundamental to obtaining information on the physical properties of stars. The model described accounts for the important geometric and photometric distortions such as rotational and tidal distortion, gravity brightening, and reflection effect. This permits a more accurate analysis of interacting eclipsing star systems. The model is designed to be useful to anyone with moderate computing resources. The programs, written in FORTRAN 4 for the IBM 360, consume about 80k bytes of core. The FORTRAN program listings are provided, and the computational aspects are described in some detail.
Predicting Success: How Predictive Analytics Are Transforming Student Support and Success Programs
ERIC Educational Resources Information Center
Boerner, Heather
2015-01-01
Every year, Lone Star College in Texas hosts a "Men of Honor" program to provide assistance and programming to male students, but particularly those who are Hispanic and black, in hopes their academic performance will improve. Lone Star might have kept directing its limited resources toward these students--and totally missed the subset…
Morning Star Cycle Two (1977-1979): Evaluation.
ERIC Educational Resources Information Center
Sloan, L. V.
Evaluation of cycle two of the (1977-1979) Morning Star program (a 2-year Native teacher education program at the Blue Quills Native Education Centre leading to a Bachelor of Education degree from the University of Alberta) used a systems model to collect data on 24 variables for the 33 participating students, the academic program, and first and…
Early evolution of vertebrate photoreception: lessons from lampreys and lungfishes.
Collin, Shaun P
2009-03-01
Lampreys (Agnatha) and lungfish (Dipnoi) are representatives of the earliest and the intermediate stages in vertebrate evolution, respectively, and survived in the Cambrian (approximately 540 mA, lampreys) and Devonian (approximately 400 mA, lungfishes) Periods. The unique phylogenetic position of these two groups presents us with an exciting opportunity to understand life in ancient times and to begin to trace the evolution of vision and photoreception in vertebrates. Using a multidisciplinary approach employing anatomical and molecular techniques, the evolution of photoreception is explored in these extant, living fossils to predict the environmental lighting conditions to which our vertebrate ancestors were exposed. Contrary to expectations, the retinae of the southern hemisphere lamprey (Geotria australis Gray, 1851) and the Australian lungfish (Neoceratodus forsteri Krefft, 1870) are far from "primitive," each possessing five types of photoreceptors, many with spectral filters for tuning the light. Detailed ultrastructural analysis reveals that all five receptor types in G. australis are cone-like, whereas N. forsteri possesses four cone types and a single type of rod. Each receptor type also contains a different visual pigment (opsin gene); that is, LWS, SWS1, SWS2, RhA and RhB in G. australis and LWS, SWS1, SWS2, Rh1 and Rh2 in N. forsteri, all of which are expressed within the retina and are sensitive to different parts of the electromagnetic spectrum, providing the potential for pentachromatic and tetrachromatic color vision, respectively. © 2009 ISZS, Blackwell Publishing and IOZ/CAS.
Euarchontan Opsin Variation Brings New Focus to Primate Origins
Melin, Amanda D.; Wells, Konstans; Moritz, Gillian L.; Kistler, Logan; Orkin, Joseph D.; Timm, Robert M.; Bernard, Henry; Lakim, Maklarin B.; Perry, George H.; Kawamura, Shoji; Dominy, Nathaniel J.
2016-01-01
Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. PMID:26739880
The NuSTAR Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Cominsky, Lynn R.; McLin, K. M.; Boggs, S.; Christensen, F.; Craig, W.; Hailey, C. J.; Harrison, F.; Stern, D.; Zhang, W.; NuSTAR Team
2013-01-01
NuSTAR is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team of scientists and engineers, under the direction of CalTech Professor Fiona Harrison, principal investigator. NuSTAR is a pathfinder mission that is opening the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at higher energies (up to 79 keV) NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission’s objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, a technology education unit for formal educators, articles for Physics Teacher and/or Science Scope magazines, and work with informal educators on a museum exhibit that includes a model of NuSTAR and describes the mission’s science objectives. Extensive outreach is also underway by members of the Science Team, who are working with high school students, undergraduates and graduate students. We are also developing printed materials that describe the mission and special workshops for girls at public libraries in order to improve the STEM pipeline.
The NuSTAR Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Cominsky, Lynn R.; McLin, K. M.; Boggs, S. E.; Christensen, F.; Hailey, C. J.; Harrison, F.; Stern, D.; Zhang, W.; NuSTAR Team
2013-04-01
NuSTAR is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team of scientists and engineers, under the direction of CalTech Professor Fiona Harrison, principal investigator. NuSTAR is a pathfinder mission that is opening the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at higher energies (up to 79 keV) NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission’s objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, a technology education unit for formal educators, articles for Physics Teacher and/or Science Scope magazines, and work with informal educators on a museum exhibit that includes a model of NuSTAR and describes the mission’s science objectives. Extensive outreach is also underway by members of the Science Team, who are working with high school students, undergraduates and graduate students. We are also developing printed materials that describe the mission and special workshops for girls at public libraries in order to improve the STEM pipeline.
VizieR Online Data Catalog: HST FGS-1r parallaxes for 8 metal-poor stars (Chaboyer+, 2017)
NASA Astrophysics Data System (ADS)
Chaboyer, B.; McArthur, B. E.; O'Malley, E.; Benedict, G. F.; Feiden, G. A.; Harrison, T. E.; McWilliam, A.; Nelan, E. P.; Patterson, R. J.; Sarajedini, A.
2017-08-01
Each program star was observed with the HST Advanced Camera for Surveys-Wide Field Camera (ACS/WFC) in the F606W and F814W filters. The CTE-corrected ACS/WFC images for the program stars were retrieved from MAST. These instrumental magnitudes were corrected for exposure time, matched to form colors, and calibrated to the VEGAMag and ground-based VI systems using the Sirianni+ (2005PASP..117.1049S) photometric transformations. Ground based photometry for all of our program stars were obtained using the New Mexico State University (NMSU) 1m telescope, the MDM 1.3m telescope, and the SMARTS 0.9m telescope. See appendix A1 for further details. We used HST FGS-1r, a two-axis interferometer, to make the astrometric observations. Eighty-nine orbits of HST astrometric observations were made between 2008 December and 2013 June. Every orbit contained several observations of the target and surrounding reference stars. (4 data files).
The Top 30 Rising Stars Program: an inter-organizational approach to leadership succession planning.
Dilworth, Katie; Lankshear, Sara; Cava, Maureen; Aldred, Jacqueline; Hawkes, Nancy; Lefebre, Nancy; Price, Jennifer; Lawler, Valerie
2011-01-01
An effective leadership development program is an organizational investment that advances individual performance while strengthening organizational capabilities. The Top 30 Rising Stars Program is a leadership succession program designed to enable leadership capacity building within and across organizations. Key components of the program include formal learning, stretch opportunities, and mentorship. Evaluation results reveal high participant satisfaction and an increase in reported self-confidence in their ability to assume a formal leadership position.
STAR grantees will describe their planned research and hear from EPA programs and a regional schools coordinator about EPA’s programs and resources. A guest speaker will provide a lunchtime seminar.
Software and mathematical support of Kazakhstani star tracker
NASA Astrophysics Data System (ADS)
Akhmedov, D.; Yelubayev, S.; Ten, V.; Bopeyev, T.; Alipbayev, K.; Sukhenko, A.
2016-10-01
Currently the specialists of Kazakhstan have been developing the star tracker that is further planned to use on Kazakhstani satellites of various purposes. At the first stage it has been developed the experimental model of star tracker that has following characteristics: field of view 20°, update frequency 2 Hz, exclusion angle 40°, accuracy of attitude determination of optical axis/around optical axis 15/50 arcsec. Software and mathematical support are the most high technology parts of star tracker. The results of software and mathematical support development of experimental model of Kazakhstani star tracker are represented in this article. In particular, there are described the main mathematical models and algorithms that have been used as a basis for program units of preliminary image processing of starry sky, stars identification and star tracker attitude determination. The results of software and mathematical support testing with the help of program simulation complex using various configurations of defects including image sensor noises, point spread function modeling, optical system distortion up to 2% are presented. Analysis of testing results has shown that accuracy of attitude determination of star tracker is within the permissible range
Community Exoplanet Follow-up Program
NASA Technical Reports Server (NTRS)
Howell, Steve
2017-01-01
During the Kepler mission, our team provided the community with the highest resolution images available anywhere of exoplanet host stars. Using speckle interferometry on the 3.5-m WIYN, and 8-m Gemini telescopes, thousands of observations have been obtained reaching the diffraction limit of the telescope. From these public data available at the NASA Exoplanet Archive, numerous publications have resulted and many scientific results have been obtained for exoplanets including the fact that high-resolution imaging is critical to fully characterize the planet host stars and the planets themselves (e.g., planet radius and incident flux). Exoplanet host star observations have also occurred (and continue) for K2 mission candidates with archival data available as well. Observational programs for TESS candidates, WFIRST program stars, and Zodiacal light candidates are currently on-going. Availability to propose or obtain such observations are possible through 1) collaboration with our team, 2) successfully proposing to WIYN or GEMINI for telescope time, or 3) using publically available archival data. This poster will highlight the observational program, how time is allocated and how our queue observational program works, and new features and observational modes that are available now.
NASA Astrophysics Data System (ADS)
Williams, Michael D.; Milone, E. F.
2013-12-01
We describe a variable star search program and present the fully reduced results of a search in a 19 square degree (4.4 × 4.4) field centered on J2000 RA = 22:03:24, DEC= +18:54:32. The search was carried out with the Baker-Nunn Patrol Camera located at the Rothney Astrophysical Observatory in the foothills of the Canadian Rockies. A total of 26,271 stars were detected in the field, over a range of about 11-15 (instrumental) magnitudes. Our image processing made use of the IRAF version of the DAOPHOT aperture photometry routine and we used the ANOVA method to search for periodic variations in the light curves. We formally detected periodic variability in 35 stars, that we tentatively classify according to light curve characteristics: 6 EA (Algol), 5 EB (?? Lyrae), 19 EW (W UMa), and 5 RR (RR Lyrae) stars. Eleven of the detected variable stars have been reported previously in the literature. The eclipsing binary light curves have been analyzed with a package of light curve modeling programs and 25 have yielded converged solutions. Ten of these are of systems that are detached, 3 semi-detached, 10 overcontact, and 2 are of systems that appear to be in marginal contact. We discuss these results as well as the advantages and disadvantages of the instrument and of the program.
Smelter, Andrey; Astra, Morgan; Moseley, Hunter N B
2017-03-17
The Biological Magnetic Resonance Data Bank (BMRB) is a public repository of Nuclear Magnetic Resonance (NMR) spectroscopic data of biological macromolecules. It is an important resource for many researchers using NMR to study structural, biophysical, and biochemical properties of biological macromolecules. It is primarily maintained and accessed in a flat file ASCII format known as NMR-STAR. While the format is human readable, the size of most BMRB entries makes computer readability and explicit representation a practical requirement for almost any rigorous systematic analysis. To aid in the use of this public resource, we have developed a package called nmrstarlib in the popular open-source programming language Python. The nmrstarlib's implementation is very efficient, both in design and execution. The library has facilities for reading and writing both NMR-STAR version 2.1 and 3.1 formatted files, parsing them into usable Python dictionary- and list-based data structures, making access and manipulation of the experimental data very natural within Python programs (i.e. "saveframe" and "loop" records represented as individual Python dictionary data structures). Another major advantage of this design is that data stored in original NMR-STAR can be easily converted into its equivalent JavaScript Object Notation (JSON) format, a lightweight data interchange format, facilitating data access and manipulation using Python and any other programming language that implements a JSON parser/generator (i.e., all popular programming languages). We have also developed tools to visualize assigned chemical shift values and to convert between NMR-STAR and JSONized NMR-STAR formatted files. Full API Reference Documentation, User Guide and Tutorial with code examples are also available. We have tested this new library on all current BMRB entries: 100% of all entries are parsed without any errors for both NMR-STAR version 2.1 and version 3.1 formatted files. We also compared our software to three currently available Python libraries for parsing NMR-STAR formatted files: PyStarLib, NMRPyStar, and PyNMRSTAR. The nmrstarlib package is a simple, fast, and efficient library for accessing data from the BMRB. The library provides an intuitive dictionary-based interface with which Python programs can read, edit, and write NMR-STAR formatted files and their equivalent JSONized NMR-STAR files. The nmrstarlib package can be used as a library for accessing and manipulating data stored in NMR-STAR files and as a command-line tool to convert from NMR-STAR file format into its equivalent JSON file format and vice versa, and to visualize chemical shift values. Furthermore, the nmrstarlib implementation provides a guide for effectively JSONizing other older scientific formats, improving the FAIRness of data in these formats.
The Chemical Abundances of New Extremely Metal-Poor Giants with [Fe/H] < -3.0
NASA Astrophysics Data System (ADS)
Rhee, Jaehyon; Fink, M.; Rhee, W.
2012-01-01
Extremely metal-poor (EMP) stars with [Fe/H] < -3.0 observable in the Galactic halo and thick disk today are believed to be the second-generation stars born out of those materials that were slightly chemically polluted by the extinct, metal-free first stars. If true, these oldest surviving stars with the lowest metal abundances are astrophysical laboratories that may shed essential light on the origins and evolution of the chemical elements and on the formation of the Milky Way. In order to newly discover field metal-deficient stars in the inner halo of the Galaxy, the Purdue Ultra Metal-Poor Star Survey (PUMPSS) program was conducted. Candidate metal-poor stars were initially selected utilizing the photometric data of the GALEX and the 2MASS, and subsequent medium- and high-resolution spectroscopy were carried out for the identification of true metal-poor giant stars and detailed chemical abundance analyses, respectively. We present an overview of the PUMPSS program and the results of the abundance analysis for high-dispersion spectra of EMP giant stars taken at the KPNO 4m telescope. We acknowledge support for this work from NASA grants 07-ADP07-0080 and 05-GALEX05-27.
An expert computer program for classifying stars on the MK spectral classification system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, R. O.; Corbally, C. J.
2014-04-01
This paper describes an expert computer program (MKCLASS) designed to classify stellar spectra on the MK Spectral Classification system in a way similar to humans—by direct comparison with the MK classification standards. Like an expert human classifier, the program first comes up with a rough spectral type, and then refines that spectral type by direct comparison with MK standards drawn from a standards library. A number of spectral peculiarities, including barium stars, Ap and Am stars, λ Bootis stars, carbon-rich giants, etc., can be detected and classified by the program. The program also evaluates the quality of the delivered spectralmore » type. The program currently is capable of classifying spectra in the violet-green region in either the rectified or flux-calibrated format, although the accuracy of the flux calibration is not important. We report on tests of MKCLASS on spectra classified by human classifiers; those tests suggest that over the entire HR diagram, MKCLASS will classify in the temperature dimension with a precision of 0.6 spectral subclass, and in the luminosity dimension with a precision of about one half of a luminosity class. These results compare well with human classifiers.« less
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2004-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.
The Resolved Stellar Populations Early Release Science Program
NASA Astrophysics Data System (ADS)
Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team
2018-06-01
The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.
NASA Astrophysics Data System (ADS)
Gochis, E. E.; Huntoon, J. E.
2015-12-01
Mi-STAR (Michigan Science Teaching and Assessment Reform, http://mi-star.mtu.edu/) was funded by the Herbert H. and Grace A. Dow Foundation to reform K-12 science education to present science as an integrated body of knowledge that is applied to address societal issues. To achieve this goal, Mi-STAR is developing an integrated science curriculum for the middle grades that will be aligned with the Next Generation Science Standards (NGSS). Similar to the geosciences, the curriculum requires the integration of science, engineering and math content to explore 21st-century issues and demonstrates how these concepts can be used in service of society. The curriculum is based on the Mi-STAR Unit Specification Chart which pairs interdisciplinary themes with bundled NGSS Performance Expectations. Each unit is developed by a collaborative team of K-12 teachers, university STEM content experts and science education experts. Prior to developing a unit, each member on the team attends the on-line Mi-STAR Academy, completing 18+ hours of professional development (PD). This on-line PD program familiarizes teachers and experts with necessary pedagogical and content background knowledge, including NGSS and three-dimensional learning. With this background, teams use a staged, backwards design process to craft a multi-week unit based on a series of performance based tasks, or 'challenges' that engage students in actively doing science and engineering. Each unit includes Disciplinary Core Ideas from multiple disciplines, which focus on local and familiar examples that demonstrate the relevance of science in student's lives. Performance-based assessments are interwoven throughout the unit. Mi-STAR units will go through extensive pilot testing in several school districts across the state of Michigan. Additionally, the Mi-STAR program will develop teacher professional development programs to support implementation of the curriculum and design a pre-service teacher program in integrated science. We will share preliminary results on the collaborative Mi-STAR process of designing integrated science curriculum to address NGSS.
Project management lessons learned on SDIO's Delta Star and Single Stage Rocket Technology programs
NASA Technical Reports Server (NTRS)
Klevatt, Paul L.
1992-01-01
The topics are presented in viewgraph form and include the following: a Delta Star (Delta 183) Program Overview, lessons learned, and rapid prototyping and the Single Stage Rocket Technology (SSRT) Program. The basic objective of the Strategic Defense Initiative Programs are to quickly reduce key uncertainties to a manageable range of parameters and solutions, and to yield results applicable to focusing subsequent research dollars on high payoff areas.
Kouchri, Farrokh Mohammadzadeh
2012-11-06
A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.
ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump
Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/
HOBYS and W43-HERO: Two more steps toward a Galaxy-wide understanding of high-mass star formation
NASA Astrophysics Data System (ADS)
Motte, Frédérique; Bontemps, Sylvain; Tigé, Jérémy
The Herschel/HOBYS key program allows to statistically study the formation of 10-20 M ⊙ stars. The IRAM/W43-HERO large program is itself dedicated to the much more extreme W43 molecular complex, which forms stars up to 50 M ⊙. Both reveal high-density cloud filaments of several pc3, which are forming clusters of OB-type stars. Given their activity, these so-called mini-starburst cloud ridges could be seen as ``miniature and instant models'' of starburst galaxies. Both surveys also strongly suggest that high-mass prestellar cores do not exist, in agreement with the dynamical formation of cloud ridges. The HOBYS and W43 surveys are necessary steps towards Galaxy-wide studies of high-mass star formation.
ENERGY STAR Certified Vending Machines
Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Refrigerated Beverage Vending Machines that are effective as of March 1, 2013. A detailed listing of key efficiency criteria are available at
The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy
NASA Astrophysics Data System (ADS)
MacLeod, Chelsea L.; Green, Paul J.; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie; Nielsen Brandt, William; Badenes, Carles; Greene, Jenny; Morganson, Eric; Schmidt, Sarah J.; Schwope, Axel; Shen, Yue; Amaro, Rachael; Lebleu, Amy; Filiz Ak, Nurten; Grier, Catherine J.; Hoover, Daniel; McGraw, Sean M.; Dawson, Kyle; Hall, Patrick B.; Hawley, Suzanne L.; Mariappan, Vivek; Myers, Adam D.; Pâris, Isabelle; Schneider, Donald P.; Stassun, Keivan G.; Bershady, Matthew A.; Blanton, Michael R.; Seo, Hee-Jong; Tinker, Jeremy; Fernández-Trincado, J. G.; Chambers, Kenneth; Kaiser, Nick; Kudritzki, R.-P.; Magnier, Eugene; Metcalfe, Nigel; Waters, Chris Z.
2018-01-01
As astronomers increasingly exploit the information available in the time domain, spectroscopic variability in particular opens broad new channels of investigation. Here we describe the selection algorithms for all targets intended for repeat spectroscopy in the Time Domain Spectroscopic Survey (TDSS), part of the extended Baryon Oscillation Spectroscopic Survey within the Sloan Digital Sky Survey (SDSS)-IV. Also discussed are the scientific rationale and technical constraints leading to these target selections. The TDSS includes a large “repeat quasar spectroscopy” (RQS) program delivering ∼13,000 repeat spectra of confirmed SDSS quasars, and several smaller “few-epoch spectroscopy” (FES) programs targeting specific classes of quasars as well as stars. The RQS program aims to provide a large and diverse quasar data set for studying variations in quasar spectra on timescales of years, a comparison sample for the FES quasar programs, and an opportunity for discovering rare, serendipitous events. The FES programs cover a wide variety of phenomena in both quasars and stars. Quasar FES programs target broad absorption line quasars, high signal-to-noise ratio normal broad line quasars, quasars with double-peaked or very asymmetric broad emission line profiles, binary supermassive black hole candidates, and the most photometrically variable quasars. Strongly variable stars are also targeted for repeat spectroscopy, encompassing many types of eclipsing binary systems, and classical pulsators like RR Lyrae. Other stellar FES programs allow spectroscopic variability studies of active ultracool dwarf stars, dwarf carbon stars, and white dwarf/M dwarf spectroscopic binaries. We present example TDSS spectra and describe anticipated sample sizes and results.
Code of Federal Regulations, 2012 CFR
2012-01-01
... procedures contained in the EnergyStar Version 4.2 test, which is comprised of the ENERGY STAR Program... and 19 hours in sleep (standby) mode per day. These ENERGY STAR requirements are incorporated by... inspected or obtained at the United States Environmental Protection Agency, ENERGY STAR Hotline (6202J...
Code of Federal Regulations, 2013 CFR
2013-01-01
... procedures contained in the EnergyStar Version 4.2 test, which is comprised of the ENERGY STAR Program... and 19 hours in sleep (standby) mode per day. These ENERGY STAR requirements are incorporated by... inspected or obtained at the United States Environmental Protection Agency, ENERGY STAR Hotline (6202J...
Code of Federal Regulations, 2014 CFR
2014-01-01
... procedures contained in the ENERGY STAR Version 4.2 test, which is comprised of the ENERGY STAR Program... and 19 hours in sleep (standby) mode per day. These ENERGY STAR requirements are incorporated by... inspected or obtained at the United States Environmental Protection Agency, ENERGY STAR Hotline (6202J...
Noise measurement flight test for Aerospatiale AS 355F Twin Star helicopter : data and analyses
DOT National Transportation Integrated Search
1999-09-30
This report is the fourth in a series of seven documenting the FAA helicopter noise measurement program conducted at Dulles International Airport during the summer of 1983. The TwinStar test program involved the acquisition of detailed acoustical, po...
Code of Federal Regulations, 2013 CFR
2013-01-01
... “ENERGY STAR Program Requirements for [Compact Fluorescent Lamps] CFLs,” Version dated August 9, 2001... DOE's “ENERGY STAR Program Requirements for [Compact Fluorescent Lamps] CFLs,” Version dated August 9...
Morning Star Students: Looking Back to Find Direction for the Future.
ERIC Educational Resources Information Center
Sloan, Leroy V.
1981-01-01
Follow-up of Morning Star Native teacher education program graduates indicates increased post-secondary educational opportunities, greater numbers of qualified Native teachers, and community acceptance of program graduates. Available from: Canadian Journal of Native Education, Department of Educational Foundations, 5-109 Education North,…
2011-06-09
Stennis Space Center Deputy Director Rick Gilbrech (right) accepts a plaque designating the test facility as a Voluntary Protection Program Star site. Presenting the plaque is Clyde Payne, area director for the Occupational Safety and Health Administration in Jackson, Miss. OSHA established VPP in 1982 as a proactive safety management model to recognize excellence in safety and health. Since then, more than 2,000 organizations have been designated VPP Star sites. To reach that goal, an organization must demonstrate comprehensive and successful safety and health management programs in the workplace.
Oxygen-Sodium Anticorrelation in Field RR Lyr-Type Stars
NASA Astrophysics Data System (ADS)
Andrievsky, S.; Korotin, S.; Lyashko, D.; Tsymbal, V.
2017-06-01
We have performed analysis of a large amount of the fields RR Lyr type stars spectra with the aim to derive NLTE oxygen and sodium abundances in our program stars. Fundamental parameters (Teff, log g, Vt) and metallicity were found using the method of the fitting between synthetic and observed spectra using the SME program which was developed by N. Piskunov and J. A. Valenti. As a result of this analysis anticorrelation between oxygen (O/H) and sodium (Na/H) abundances was found.
Spectrophotometry of stars 9 - 12m north polar spectrophotometric sequence (NPSS) program.
NASA Astrophysics Data System (ADS)
Sharipova, L. M.; Prokof'eva, V. V.
Spectrophotometric observations of stars 9 - 12m of the NPSS program have been made with the use of hgh-sensitivity light-detecting apparatus of the digital television complex of the 0.5-m Maksutov telescope MTM-500 and original slitless spectrograph. Atmospheric extinction was controlled during the night by means of an energetically calibrated brightness standard. Absolute energy distributions of 12 stars, their synthetic magnitudes in the V band, and B-V color indices were obtained.
ISO LWS Spectroscopy of M82: A Unified Evolutionary Model
1999-01-01
ences in the weak [N II] 122 and [O I] 145 km lines. Our continuum measurements, however, go from being 30% higher to 10% lower than the KAO values...due to the hardness of the input SED. The Leitherer & Heckman (1995) SEDs are signiÐcantly harder than the SED Spino- glio & Malkan (1992) used. The ...Spinoglio & Malkan (1992) PDR parameters were also di†erent n \\ 104h5(G0 \\ 104,cm~3), but this can be mainly attributed to the newer PDR models of
Can You See the Stars? Citizen-Science Programs to Measure Night Sky Brightness
NASA Astrophysics Data System (ADS)
Walker, Constance E.
2009-05-01
For the IYA2009 Dark Skies Awareness Cornerstone Project, partners in dark-sky, astronomy and environmental education are promoting three citizen-scientist programs that measure light pollution at local levels worldwide. These programs take the form of "star hunts", providing people with fun and direct ways to acquire heightened awareness about light pollution through first-hand observations of the night sky. Together the programs are spanning the entire IYA, namely: GLOBE at Night in March, Great World Wide Star Count in October, and How Many Stars during the rest of the year. Citizen-scientists - students, educators, amateur astronomers and the general public - measure the darkness of their local skies and contribute observations online to a world map. Anyone anywhere anytime can look within particular constellations for the faintest stars and match them to one of seven star maps. For more precise measurements, digital sky-brightness meters can be used. Measurements, along with the measurement location, time, and date, are submitted online, and within a few days to weeks a world map showing results is available. These measurements can be compared with data from previous years, as well as with satellite data, population densities, and electrical power-usage maps. Measurements are available online via Google Earth or other tools and as downloadable datasets. Data from multiple locations in one city or region are especially interesting, and can be used as the basis of a class project or science fair experiment, or even to inform the development of public policy. In the last few years these programs successfully conducted campaigns in which more than 35,000 observations were submitted from over 100 countries. The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For further information about these and other Dark Skies Awareness programs, please visit www.darkskiesawareness.org.
CU-STARs: Promoting STEM Diversity by Addressing First-year Attrition of Underrepresented Minorities
NASA Astrophysics Data System (ADS)
Battersby, Cara; Silvia, Devin W.; Ellingson, Erica; Sturner, Andrew P.; Peck, Courtney
2015-01-01
Upon first entering university, the fraction of students interested in pursuing a STEM major are distributed according to societal demographics (with 25% being underrepresented minorities), but by graduation, the fraction of students receiving STEM degrees is unbalanced, with underrepresented minorities receiving only 15% of STEM bachelor's degrees. The CU-STARs (CU Science, Technology, and Astronomy Recruits) program at the University of Colorado, Boulder is targeted to address the main triggers of early career attrition for underrepresented minorities in STEM disciplines. A select group of students are given financial support through work-study at the Fiske planetarium on campus, while resources to address other triggers of attrition are available to the entire cohort of interested students (typically ~5-10 per year). These resources are designed to promote social engagement and mentorship, while also providing a support network and resources to combat inadequate high school preparation for STEM courses. We achieve these goals through activities that include social events, mentor meetings, free tutoring, and special events to meet and talk with scientists. The culmination of the program for the recruits are a series of high school outreach events in underserved areas (inner city and rural alike), in which they become the expert. The STARs are paid for their time and take the lead in planning, teaching, and facilitating programs for the high school students, including classroom presentations, interactive lab activities, solar observing, and star parties. The high school outreach events provide role models and STEM exposure for the underserved high school community while simultaneously cementing the personal achievements and successes for the STARs. CU-STARs is now in its 4th year and is still growing. We are beginning the process of formal assessments of the program's success. We present details of the program implementation, a discussion of potential obstacles and future plans, and initial results of the program assessment, which speak highly of the program's contribution to individual student success.
ERIC Educational Resources Information Center
Thompson, Walter R.
2009-01-01
Physical education time has been reduced or even eliminated in middle and high schools in favor of more time for standardized test preparation, especially in urban schools and inner cities. One way to replace the time lost is by providing it after school as part of a comprehensive program. After-School All-Stars (ASAS) is such a program, networked…
Space Motions of Low-Mass Stars. III.
NASA Astrophysics Data System (ADS)
Upgren, A. R.; Sperauskas, J.; Boyle, R. P.
Radial velocity observations are presented for 149 stars taken from the McCormick lists of dwarf K and M stars in a continuing program of radial velocities of faint nearby stars. The data will serve to derive a total stellar density of these kinds of stars in the solar neighborhood. These data were obtained with the spectrometer of the Vilnius University Observatory mounted on the 1.6 m Kuiper Telescope of the Steward Observatory.
TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star Formation
NASA Astrophysics Data System (ADS)
Rigby, Jane; Vieira, Joaquin; Bayliss, M.; Fischer, T.; Florian, M.; Gladders, M.; Gonzalez, A.; Law, D.; Marrone, D.; Phadke, K.; Sharon, K.; Spilker, J.
2017-11-01
We propose high signal-to-noise NIRSpec and MIRI IFU spectroscopy, with accompanying imaging, for 4 gravitationally lensed galaxies at 1
A Decade of Field Changing Atmospheric Aerosol Research: Outcomes of EPA’s STAR Program
Conference: Gordon Research Conference in Atmospheric Chemistry, July 28 – August 2, 2013, VermontPresentation Type: PosterTitle: An Analysis of EPA’s STAR Program and a Decade of Field Changing Research in Atmospheric AerosolsAuthors: Kristina M. Wagstrom1,2, Sherri ...
ERIC Educational Resources Information Center
Kalinowski, Michael
2007-01-01
This article features StarBright Learning Exchange, a program that provides a cross-cultural exchange between Australian and South African early childhood educators. The program was originated when its president, Carol Allen, and her colleague, Karen Williams, decided that they could no longer sit by and watch the unfolding social catastrophe that…
TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation
NASA Astrophysics Data System (ADS)
Spilker, Justin; Rigby, Jane R.; Vieira, Joaquin D.; TEMPLATES Team
2018-06-01
TEMPLATES is a JWST Early Release Science program designed to produce high signal-to-noise imaging and IFU spectroscopic data cubes for four gravitationally lensed galaxies at high redshift. The program will spatially resolve the star formation in galaxies across the peak of cosmic star formation in an extinction-robust manner. Lensing magnification pushes JWST to the highest spatial resolutions possible at these redshifts, to map the key spectral diagnostics of star formation and dust extinction: H-alpha, Pa-alpha, and 3.3um PAH emission within individual distant galaxies. Our targets are among the brightest, best-characterized lensed systems known, and include both UV-bright 'normal' galaxies and heavily dust-obscured submillimeter galaxies, at a range of stellar masses and luminosities. I will describe the scientific motivation for this program, detail the targeted galaxies, and describe the planned data products to be delivered to the community in advance of JWST Cycle 2.
Simple Activities for Powerful Impact
NASA Astrophysics Data System (ADS)
LaConte, K.; Shupla, C. B.; Dusenbery, P.; Harold, J. B.; Holland, A.
2016-12-01
STEM education is having a transformational impact on libraries across the country. The STAR Library Education Network (STAR_Net) provides free Science-Technology Activities & Resources that are helping libraries to engage their communities in STEM learning experiences. Hear the results of a national 2015 survey of library and STEM professionals and learn what STEM programming is currently in place in public libraries and how libraries approach and implement STEM programs. Experience hands-on space science activities that are being used in library programs with multiple age groups. Through these hands-on activities, learners explore the nature of science and employ science and engineering practices, including developing and using models, planning and carrying out investigations, and engaging in argument from evidence (NGSS Lead States, 2013). Learn how STAR_Net can help you print (free!) mini-exhibits and educator guides. Join STAR_Net's online community and access STEM resources and webinars to work with libraries in your local community.
Knowing our neighbors: Fundamental properties of nearby stars
NASA Astrophysics Data System (ADS)
Bartlett, Jennifer Lynn
The stars within 25 parsecs (pc) of our Sun constitute the one stellar sample that we aspire to know thoroughly, but we still have not even identified all of the stars within 10 pc. We have still less knowledge of the nearby substellar population, especially the planets. The four studies described herein expand our knowledge of the solar neighborhood. First, a re-analysis of the Leander McCormick Observatory photographic plates of Barnard's Star failed to detect any planets orbiting it, and this study would have detected planets with 2.2 Jupiter masses or greater. In addition, its parallax, proper motion, and secular acceleration were measured with results comparable with those from more modern equipment. Second, increased information about nearby planets was sought through time series analyses of astrometric residuals to stars observed by the University of Virginia Southern Parallax Program. Of these, LHS 288 displays an intriguing signal, which might be caused by a very low mass companion. Twelve other stars demonstrate no astrometric perturbations. While astrometry could reveal the presence of unseen companions, distances from trigonometric parallaxes define the solar neighborhood and identify its inhabitants. Preliminary parallaxes for 43 potential nearby stars being observed by the Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI) confirmed 28 stars as being within 25 pc, including three stars---LP 991-84, LHS 6167, and LP 876-10---that probably lie within 10 pc. Three more stars lie near the 25-pc boundary and their final parallaxes may qualify them as nearby. One recently established neighbor, LP 869-26, is a potential binary. For many stars in this third sample, preliminary photometry ( V, R, and I bands), spectroscopy, and proper motions are also available. Despite the continuing importance of ground-based parallax measurements, few active programs remain. The final project tested the recently installed infrared camera on the 31-inch (0.8-meter) telescope at Fan Mountain Observatory for astrometric stability. A parallax program would be feasible there and could provide much needed distances for brown dwarfs and very low mass stars. Through this and similar efforts, we are establishing the foundations for understanding our Milky Way Galaxy, including its component stars and populations.
Post-AGB Stars in Nearby Galaxies as Calibrators for HST
NASA Technical Reports Server (NTRS)
Bond, Howard E.
2003-01-01
This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program under Grant NAG 5-6821. The Principal Investigator is Howard E. Bond (Space Telescope Science Institute). STScI Postdoctoral Associates Laura K. Fullton (1998), David Alves (1998-2001), and Michael Siegel (2001) were partially supported by this grant. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic- giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The argument is that, in old populations, the stars that are evolving through the PAGB region of the HR diagram arise from only a single main-sequence turnoff mass. In addition, theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, PAGB stars of these spectral types are very easily identified. because of their large Balmer jumps, which are due to their very low surface gravities. Our approach is first to identify PAGB stars in Milky Way globular clusters and in other Local Group galaxies, which are at known distances, and thus to measure accurate absolute magnitudes for the PAGB stars. With this Milky Way and Local Group luminosity calibration, we will then be in a position to find PAGB stars in more distant galaxies from the ground, and ultimately from the Hubble Space Telescope. and thus derive distances. These PAGB stars are, as noted above, the visually brightest members of Population II, and hence will allow distance measurements to galaxies that do not contain Cepheids, such as elliptical galaxies, as well as distances to spirals using PAGB stars in their halos. Moreover, the method is entirely independent of Cepheids. and thus provides a direct test of the Cepheid distance scale. The program will also provide information on the evolutionary lifetimes of PAGB stars.
Near-Simultaneous Spectroscopic and Broadband Polarimetric Observations of Be Stars
NASA Technical Reports Server (NTRS)
Ghosh, K.; Iyengar, K. V. K.; Ramsey, B. D.; Austin, R. A.
1999-01-01
Near simultaneous optical spectroscopic (on four nights) and broadband linear continuum (B, V, R, and I bands) polarimetric (on seven nights) observations of 29 Be stars were carried out during 1993 November-December. The program Be stars displayed wavelength dependence of intrinsic polarizations with no frequency dependence of polarimetric position angles. Some of the Be stars displayed long-term polarization variability. The Be and Be-shell stars could not be distinguished from one another solely on the basis of their polarization values. Full widths at half-maximum of the H.alpha profiles and the intrinsic linear continuum polarizations are closely correlated with the projected rotational velocities of the program stars. Photospheric-absorption-corrected equivalent widths of H.alpha profiles [W(alpha)] and the radii of H.alpha-emitting or -absorbing envelopes (R(sub e) or R(sub a)) are nonlinearly correlated with the intrinsic continuum polarizations of these stars. However, W(alpha) and R(sub e) are linearly correlated. With large uncertainties, there is a trend of spectral dependence of polarization. Detailed discussion of these results is presented in this paper.
Magic star puzzle for educational mathematics
NASA Astrophysics Data System (ADS)
Gan, Yee Siang; Fong, Wan Heng; Sarmin, Nor Haniza
2013-04-01
One of the interesting fields in recreational mathematics is the magic number arrangement. There are different kinds of arrays in the arrangement for a group of numbers. In particular, one of the arrays in magic number arrangement is called magic star. In fact, magic star involves combinatorics that contributes to geometrical analysis and number theory. Hence, magic star is suitable to be introduced as educational mathematics to cultivate interest in different area of mathematics. To obtain the solutions of normal magic stars of order six, the possible sets of numbers for every line in a magic star have been considered. Previously, the calculation for obtaining the solutions has been done manually which is time-consuming. Therefore, a programming code to generate all the fundamental solutions for normal magic star of order six without including the properties of rotation and reflection has been done. In this puzzle, a magic star puzzle is created by using Matlab software, which enables a user to verify the entries for the cells of magic star of order six. Moreover, it is also user-friendly as it provides interactive commands on the inputs given by the user, which enables the user to detect the incorrect inputs. In addition, user can also choose to view all the fundamental solutions as generated by the programming code.
How Bell Labs creates star performers.
Kelley, R; Caplan, J
1993-01-01
How can managers increase the productivity of professionals when most of their work goes on inside their heads? Robert Kelley and Janet Caplan believe that defining the difference between star performers and average workers is the answer. Many managers assume that top performers are just smarter. But the authors' research at the Bell Laboratories Switching Systems Business Unit (SSBU) has revealed that the real difference between stars and average workers is not IQ but the ways top performers do their jobs. Their study has led to a training program based on the strategies of star performers. The SSBU training program, known as the Productivity Enhancement Group (PEG), uses an expert model to demystify productivity. The star engineers selected to develop the expert model identified and ranked nine work strategies, such as taking initiative, networking, and self-management. Middle performers were also asked what makes for top-quality work, but their definitions and ranking of the strategies differed significantly from those of the top performers. Taking initiative, for example, meant something very different to an average worker than it did to a star. And for the middle performers, the ability to give good presentations was a core strategy, while it was peripheral for the top engineers. Once PEG got underway, respected engineers ran the training sessions, which included case studies, work-related exercises, and frank discussion. The benefits of the program were striking: participants and managers reported substantial productivity increases in both star and average performers. The PEG program may not be a blueprint for other companies, but its message is clear: managers must focus on people, not on technology, to increase productivity in the knowledge economy.
Next Generation Scientists, Next Opportunities: EPA's Science To Achieve Results (STAR) Program
NASA Astrophysics Data System (ADS)
Jones, M.
2004-12-01
Scientific research is one of the most powerful tools we have for understanding and protecting our environment. It provides the foundation for what we know about our planet, how it has changed, and how it could be altered in the future. The National Center for Environmental Research (NCER) in the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) supports high-quality, extramural research by the nation's leading scientists and engineers to strengthen the basis for decisions about local and national environmental issues. NCER works with academia, state and local governments, other federal agencies, and scientists in EPA to increase human knowledge of how to protect our health and natural resources through its three major programs: · Science to Achieve Results (STAR) Grants · Small Business Innovative Research (SBIR) · Science to Achieve Results (STAR) Fellowships STAR, NCER's primary program, funds research grants and graduate fellowships in environmental science and engineering. Developing the next generation of environmental scientists and engineers is one of NCER's most important objectives. Each year, NCER helps between 80 and 160 students achieve Master's or Ph.D. degrees in environmental science and engineering through its STAR and Greater Research Opportunities (GRO) fellowships. Some of these students have moved on to careers in government while others are now full-time professors and researchers. Still others are working for state environmental agencies or furthering their studies through postdoctoral positions at universities. Since the inception of the NCER program, STAR fellowships (along with grants and SBIR projects) have been awarded in every state in the country. With the help of STAR, current and future scientists and engineers have been able to explore ways to preserve and protect human health and our precious resources.
Space Motions of Low-Mass Stars. II: Radial Velocities
NASA Astrophysics Data System (ADS)
Upgren, A. R.; Harlow, J. J. B.
1996-01-01
Radial velocities are presented for 53 dwarf K and M stars, eight of which are radial velocity standards. This is the second list in a program to determine space motions for all of the stars in the McCormick lists of dwarf stars. The observations reported here differ from those of the first list in that they were made using the 1.88m David Dunlap reflector. One of the stars varies in radial velocity, consistent with a spectroscopic binary with a period of about 48 days. (SECTION: Stars)
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility is evaluated of an evolutionary development for use of a single-axis gimbal star tracker from prior two-axis gimbal star tracker based system applications. Detailed evaluation of the star tracker gimbal encoder is considered. A brief system description is given including the aspects of tracker evolution and encoder evaluation. System analysis includes evaluation of star availability and mounting constraints for the geosynchronous orbit application, and a covariance simulation analysis to evaluate performance potential. Star availability and covariance analysis digital computer programs are included.
A spectrum synthesis program for binary stars
NASA Technical Reports Server (NTRS)
Linnell, Albert P.; Hubeny, Ivan
1994-01-01
A new program produces synthetic spectra of binary stars at arbitrary values of orbital longitude, including longitudes of partial or complete eclipse. The stellar components may be distorted, either tidally or rotationally, or both. Either or both components may be rotating nonsynchronously. We illustrate the program performance with two cases: EE Peg, an eclipsing binary with small distortion, and SX Aur, an eclipsing binary that is close to contact.
Coronal Structures in Cool Stars: XMM-NEWTON Hybrid Stars and Coronal Evolution
NASA Technical Reports Server (NTRS)
Dupree, Andrea K.; Mushotzky, Richard (Technical Monitor)
2003-01-01
This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Beta Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, alpha TrA (K2 II-III). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars. We are attempting to determine if this model of coronal evolution is correct by using XMM-NEWTON RGS spectra for the 2 targets we were allocated through the Guest Observer program.
VizieR Online Data Catalog: Very metal-poor stars in the Milky Way's halo (Carollo+, 2014)
NASA Astrophysics Data System (ADS)
Carollo, D.; Freeman, K.; Beers, T. C.; Placco, V. M.; Tumlinson, J.; Martell, S. L.
2017-07-01
The Aoki et al. (2013, J/AJ/145/13) sample comprises 137 stars observed at high spectral resolution (R~30000), in the course of four observing runs between 2008 March and October, using the High Dispersion Spectrograph (Noguchi et al. 2002PASJ...54..855N) at the Subaru Telescope. We also include 190 stars from the Yong et al. (2013, J/ApJ/762/26) sample - the 38 stars from their "program sample," and 152 stars in their literature compilation. High-resolution spectra (22000
This presentation, ANTHC Rural Alaska Monitoring Program (RAMP): Assessing, Monitoring, and Adapting to Emerging Environmental Human and Wildlife Health Threats, was given at the 2016 STAR Tribal Research Meeting held on Sept. 20-21, 2016.
75 FR 32473 - Submission for OMB Review; Comment Request; The STAR METRICS Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Submission for OMB Review..., supported by Federal funds. In subsequent generations of the program, it is hoped that STAR METRICS will... generation (such as citations and patents) as well as on social and health outcomes. Frequency of Response...
Morning Star Cycle Two: Follow-up Study.
ERIC Educational Resources Information Center
Sloan, L. V.
Semi-structured telephone interviews were used to gather follow-up data on students who completed the 1977-1979 Morning Star cycle two program, a community-based Native teacher education program at the Blue Quills Native Education Centre leading to a Bachelor of Education degree from the University of Alberta. Of the 24 students who completed…
Pennsylvania Keystone STARS: QRS Profile. The Child Care Quality Rating System (QRS) Assessment
ERIC Educational Resources Information Center
Child Trends, 2010
2010-01-01
This paper presents a profile of Pennsylvania's Keystone STARS prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators for…
Virginia Star Quality Initiative: QRS Profile. The Child Care Quality Rating System (QRS) Assessment
ERIC Educational Resources Information Center
Child Trends, 2010
2010-01-01
This paper presents a profile of Virginia's Star Quality Initiative prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators…
Starlite Workplace Literacy Program. Final Closeout Performance Report.
ERIC Educational Resources Information Center
Reyes, Lolita C.
The Star Team Acquiring Rewards in Literacy and Insights Through Education (STARLITE) program was implemented to improve the job proficiency of employees at the Pacific Star Hotel, Guam. Its goal was to provide employees with both workplace literacy skills and employability skills. An audit was completed in each department of the hotel. Modules…
Schnakenberg, Rieke; Radbruch, Lukas; Kersting, Christine; Frank, Friederike; Wilm, Stefan; Becka, Denise; Weckbecker, Klaus; Bleckwenn, Markus; Just, Johannes M; Pentzek, Michael; Weltermann, Birgitta
2018-12-01
Although general practitioners (GPs) are among the preferred contact persons for discussing end-of-life issues including advance directives (ADs), there is little data on how GPs manage such consultations. This postal survey asked German GPs about their counselling for end-of-life decisions. In 2015, a two-sided questionnaire was mailed to 959 GPs. GPs were asked for details of their consultations on ADs: frequency, duration, template use, and whether they have own ADs. Statistical analysis evaluated physician characteristics associated with an above-average number of consultations on AD. The participation rate was 50.3% (n = 482), 70.5% of the GPs were male; the average age was 54 years. GPs had an average of 18 years of professional experience, and 61.4% serve more than 900 patients per three months. Most (96.9%) GPs perform consultations on living wills (LW) and/or powers of attorney (PA), mainly in selected patients (72.3%). More than 20 consultations each on LWs and PAs are performed by 60% and 50% of GPs, respectively. The estimated mean duration of consultations was 21 min for LWs and 16 min for PAs. Predefined templates were used in 72% of the GPs, 50% of GPs had their ADs. A statistical model showed that GPs with ADs and/or a qualification in palliative medicine were more likely to counsel ≥20 patients per year for each document. The study confirmed that nearly all German GPs surveyed provide counselling on ADs. Physicians with ADs counsel more frequently than those without such documents.
High blood pressure and visual sensitivity
NASA Astrophysics Data System (ADS)
Eisner, Alvin; Samples, John R.
2003-09-01
The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.
Crowdfunding Astronomy Research With Google Sky
NASA Astrophysics Data System (ADS)
Metcalfe, Travis S.
2015-12-01
For nearly four years, NASA's Kepler space telescope searched for planets like Earth around more than 150,000 stars similar to the Sun. In 2008 with in-kind support from several technology companies, our non-profit organization established the Pale Blue Dot Project, an adopt-a-star program that supports scientific research on the stars observed by the Kepler mission. To help other astronomy educators conduct successful fundraising efforts, I describe how this innovative crowdfunding program successfully engaged the public over the past seven years to help support an international team in an era of economic austerity.
New Brahman breed improvement program at STARS
USDA-ARS?s Scientific Manuscript database
At the USDA, ARS, Subtropical Agricultural Research Station (STARS) in Brooksville, Florida we have initiated a new ambitious research project that many believe will have a positive influence on the Brahman breed. This research was developed from a meeting held at STARS that included past and prese...
ERIC Educational Resources Information Center
Martin, Jean K.
1997-01-01
Presents guiding principles for developing interactive lessons for the World Wide Web. Describes "Amazing Space: Education Online from the Hubble Space Telescope", a program where students study spectacular Hubble Space Telescope images of stars and star-forming regions to learn about the life cycle of stars and the creation of atoms. (JRH)
NASA Technical Reports Server (NTRS)
Svalbonas, V.; Levine, H.; Ogilvie, P.
1975-01-01
Engineering programming information is presented for the STARS-2P (shell theory automated for rotational structures-2P (plasticity)) digital computer program, and FORTRAN 4 was used in writing the various subroutines. The execution of this program requires the use of thirteen temporary storage units. The program was initially written and debugged on the IBM 370-165 computer and converted to the UNIVAC 1108 computer, where it utilizes approximately 60,000 words of core. Only basic FORTRAN library routines are required by the program: sine, cosine, absolute value, and square root.
Computing Models of M-type Host Stars and their Panchromatic Spectral Output
NASA Astrophysics Data System (ADS)
Linsky, Jeffrey; Tilipman, Dennis; France, Kevin
2018-06-01
We have begun a program of computing state-of-the-art model atmospheres from the photospheres to the coronae of M stars that are the host stars of known exoplanets. For each model we are computing the emergent radiation at all wavelengths that are critical for assessingphotochemistry and mass-loss from exoplanet atmospheres. In particular, we are computing the stellar extreme ultraviolet radiation that drives hydrodynamic mass loss from exoplanet atmospheres and is essential for determing whether an exoplanet is habitable. The model atmospheres are computed with the SSRPM radiative transfer/statistical equilibrium code developed by Dr. Juan Fontenla. The code solves for the non-LTE statistical equilibrium populations of 18,538 levels of 52 atomic and ion species and computes the radiation from all species (435,986 spectral lines) and about 20,000,000 spectral lines of 20 diatomic species.The first model computed in this program was for the modestly active M1.5 V star GJ 832 by Fontenla et al. (ApJ 830, 152 (2016)). We will report on a preliminary model for the more active M5 V star GJ 876 and compare this model and its emergent spectrum with GJ 832. In the future, we will compute and intercompare semi-empirical models and spectra for all of the stars observed with the HST MUSCLES Treasury Survey, the Mega-MUSCLES Treasury Survey, and additional stars including Proxima Cen and Trappist-1.This multiyear theory program is supported by a grant from the Space Telescope Science Institute.
Early NICER Observations of Magnetars and Young Pulsars
NASA Astrophysics Data System (ADS)
Nynka, Melania
2018-01-01
Neutron star Interior Composition ExploreR (NICER) is an X-ray telescope attached to the International Space Station (ISS). Launched in June 2017, it is designed to precisely measure the masses and radii of neutron stars (NS) and probe NS equations of state. But its precision timing capabilities and large effective area uniquely position NICER for the study of magnetars. The NICER Magnetar & Magnetosphere (M&M) science working group focuses on studying highly-magnetized neutron stars, a diverse program that includes magnetars, high-B pulsars, rotation powered pulsars, and isolated neutron stars. Our ongoing campaign has already observed targets such as 4U 0142+61, a magnetar in outburst with coincident NuSTAR and Swift observations, the radio rotation powered Vela pulsar PSR B0833-45, and a transient magnetar XTE J1810-197. I will discuss the goals of the M&M program, spectral and temporal results from the observed targets, and an overview of upcoming observations.
NASA Astrophysics Data System (ADS)
Gies, Douglas R.
2017-11-01
Most massive stars are so distant that their angular diameters are too small for direct resolution. However, the observational situation is now much more favorable, thanks to new opportunities available with optical/IR long-baseline interferometry. The Georgia State University Center for High Angular Resolution Astronomy Array at Mount Wilson Observatory is a six-telescope instrument with a maximum baseline of 330 meters, which is capable of resolving stellar disks with diameters as small as 0.2 milliarcsec. The distant stars are no longer out of range, and many kinds of investigations are possible. Here we summarize a number of studies involving angular diameter measurements and effective temperature estimates for OB stars, binary and multiple stars (including the σ Orionis system), and outflows in Luminous Blue Variables. An enlarged visitors program will begin in 2017 that will open many opportunities for new programs in high angular resolution astronomy.
Polarization and studies of evolved star mass loss
NASA Astrophysics Data System (ADS)
Sargent, Benjamin; Srinivasan, Sundar; Riebel, David; Meixner, Margaret
2012-05-01
Polarization studies of astronomical dust have proven very useful in constraining its properties. Such studies are used to constrain the spatial arrangement, shape, composition, and optical properties of astronomical dust grains. Here we explore possible connections between astronomical polarization observations to our studies of mass loss from evolved stars. We are studying evolved star mass loss in the Large Magellanic Cloud (LMC) by using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We use the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS), in order to model this mass loss. To model emission of polarized light from evolved stars, however, we appeal to other radiative transfer codes. We probe how polarization observations might be used to constrain the dust shell and dust grain properties of the samples of evolved stars we are studying.
A 205 {mu}m [N II] MAP OF THE CARINA NEBULA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberst, T. E.; Parshley, S. C.; Nikola, T.
We present the results of a {approx}250 arcmin{sup 2} mapping of the 205 {mu}m [N II] fine-structure emission over the northern Carina Nebula, including the Car I and Car II H II regions. Spectra were obtained using the South Pole Imaging Fabry-Perot Interferometer (SPIFI) at the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) at the South Pole. We supplement the 205 {mu}m data with new reductions of far-IR fine-structure spectra from the Infrared Space Observatory (ISO) Long Wavelength Spectrometer (LWS) in 63 {mu}m [O I], 122 {mu}m [N II], 146 {mu}m [O I], and 158 {mu}m [C II]; the 146more » {mu}m [O I] data include 90 raster positions which have not been previously published. Morphological comparisons are made with optical, radio continuum, and CO maps. The 122/205 line ratio is used to probe the density of the low-ionization gas, and the 158/205 line ratio is used to probe the fraction of C{sup +} arising from photodissociation regions (PDRs). The [O I] and [C II] lines are used to construct a PDR model of Carina. When the PDR properties are compared with other sources, Carina is found to be more akin to 30 Doradus than galactic star-forming regions such as Orion, M17, or W49; this is consistent with the view of Carina as a more evolved region, where much of the parent molecular cloud has been ionized or swept away. These data constitute the first ground-based detection of the 205 {mu}m [N II] line, and the third detection overall since those of COBE FIRAS and the Kuiper Airborne Observatory in the early 1990s.« less
Methods to Directly Image Exoplanets around Alpha Centauri and Other Multi-Star Systems
NASA Astrophysics Data System (ADS)
Belikov, R.; Sirbu, D.; Bendek, E.; Pluzhnik, E.
2017-12-01
The majority of FGK stars exist as multi-star star systems, and thus form a potentially rich target sample for direct imaging of exoplanets. A large fraction of these stars have starlight leakage from their companion that is brighter than rocky planets. This is in particular true of Alpha Centauri, which is 2.4x closer and about an order of magnitude brighter than any other FGK star, and thus may be the best target for any direct imaging mission, if the light of both stars can be suppressed. Thus, the ability to suppress starlight from two stars improves both the quantity and quality of Sun-like targets for missions such as WFIRST, LUVOIR, and HabEx. We present an analysis of starlight leak challenges in multi-star systems and techniques to solve those challenges, with an emphasis on imaging Alpha Centauri with WFIRST. For the case of internal coronagraphs, the fundamental problem appears to be independent wavefront control of multiple stars (at least if the companion is close enough or bright enough that it cannot simply be removed by longer exposure times or post-processing). We present a technique called Multi-Star Wavefront Control (MSWC) as a solution to this challenge and describe the results of our technology development program that advanced MSWC to TRL 3. Our program consisted of lab demonstrations of dark zones in two-star systems, validated simulations, as well as simulated predictions demonstrating that with this technology, contrasts needed for Earth-like planets are in principle achievable. We also demonstrate MSWC in Super-Nyquist mode, which allows suppression of multiple stars at separations greater than the spatial Nyquist limit of the deformable mirror.
Star Schools Projects: Distance Learning Model Practices.
ERIC Educational Resources Information Center
Lane, Carla; Cassidy, Sheila
This document describes model practices of the Star Schools Program, whose purpose is to provide quality, cost-effective instruction and training through distance education technologies. Benefits which have resulted from the Star Schools Projects for local staff, teachers, and parents are identified. The TEAMS Project focuses on a Three-Tier…
ENERGY STAR Certified Audio Video
Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Audio Video Equipment that are effective as of May 1, 2013. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=audio_dvd.pr_crit_audio_dvd
ENERGY STAR Certified Data Center Storage
Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Data Center Storage that are effective as of December 2, 2013. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/certified-products/detail/data_center_storage
ENERGY STAR Certified Ventilating Fans
Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of October 1, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=vent_fans.pr_crit_vent_fans
ENERGY STAR Certified Ceiling Fans
Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Ceiling Fans that are effective as of April 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=ceiling_fans.pr_crit_ceiling_fans
ERIC Educational Resources Information Center
Association for the Advancement of Sustainability in Higher Education, 2011
2011-01-01
The Sustainability Tracking, Assessment & Rating System[TM] (STARS) is a program of AASHE, the Association for the Advancement of Sustainability in Higher Education. AASHE is a member-driven organization with a mission to empower higher education to lead the sustainability transformation. STARS was developed by AASHE with input and insight from…
IUE observations of new A star candidate proto-planetary systems
NASA Technical Reports Server (NTRS)
Grady, Carol A.
1994-01-01
As a result of the detection of accreting gas in the A5e PMS Herbig Ae star, HR 5999, most of the observations for this IUE program were devoted to Herbig Ae stars rather than to main sequence A stars. Mid-UV emission at optical minimum light was detected for UX Ori (A1e), BF Ori (A5e), and CQ Tau (F2e). The presence of accreting gas in HD 45677 and HD 50138 prompted reclassification of these stars as Herbig Be stars rather than as protoplanetary nebulae. Detailed results are discussed.
Embedding Circular Force-Free Flux Ropes in Potential Magnetic Fields
NASA Astrophysics Data System (ADS)
Titov, V. S.; Torok, T.; Mikic, Z.; Linker, J.
2013-12-01
We propose a method for constructing approximate force-free equilibria in active regions that locally have a potential bipolar-type magnetic field with a thin force-free flux rope embedded inside it. The flux rope has a circular-arc axis and circular cross-section in which the interior magnetic field is predominantly toroidal (axial). Its magnetic pressure is balanced outside by that of the poloidal (azimuthal) field created at the boundary by the electric current sheathing the flux rope. To facilitate the implementation of the method in our numerical magnetohydrodynamic (MHD) code, the entire solution is described in terms of the vector potential of the magnetic field. The parameters of the flux rope can be chosen so that a subsequent MHD relaxation of the constructed configuration under line-tied conditions at the boundary provides a numerically exact equilibrium. Such equilibria are an approximation for the magnetic configuration preceding solar eruptions, which can be triggered in our model by imposing suitable photospheric flows beneath the flux rope. The proposed method is a useful tool for constructing pre-eruption magnetic fields in data-driven simulations of solar active events. Research supported by NASA's Heliophysics Theory and LWS Programs, and NSF/SHINE and NSF/FESD.
Self-Organization by Stochastic Reconnection: The Mechanism Underlying CMEs/Flares
NASA Astrophysics Data System (ADS)
Antiochos, S. K.; Knizhnik, K. J.; DeVore, C. R.
2017-12-01
The largest explosions in the solar system are the giant CMEs/flares that produce the most dangerous space weather at Earth, yet may also have been essential for the origin of life. The root cause of CMEs/flares is that the lowest-lying magnetic field lines in the Sun's corona undergo the continual buildup of stress and free energy that can be released only through explosive ejection. We perform the first MHD simulations of a coronal-photospheric magnetic system that is driven by random photospheric convective flows and has a realistic geometry for the coronal field. Furthermore, our simulations accurately preserve the key constraint of magnetic helicity. We find that even though small-scale stress is injected randomly throughout the corona, the net result of "stochastic" coronal reconnection is a coherent stretching of the lowest-lying field lines. This highly counter-intuitive demonstration of self-organization - magnetic stress builds up locally rather than spreading out to a minimum energy state - is the fundamental mechanism responsible for the Sun's magnetic explosions and is likely to be a mechanism that is ubiquitous throughout space and laboratory plasmas. This work was supported in part by the NASA LWS and SR Programs.
Implications of the S-Web Model for Impulsive SEPs
NASA Astrophysics Data System (ADS)
Antiochos, Spiro K.; Higginson, Aleida K.; DeVore, C. Richard
2017-08-01
One of the most important discoveries of the STEREO mission is that impulsive Solar Energetic Particle (SEP) events frequently exhibit large longitudinal spread in the heliosphere, up to 100 degrees or more. This result is especially puzzling given the long-standing observations that impulsive SEPs originate in highly localized regions in the corona, angular extent less than one degree, and that the SEPs frequently show so-called drop-outs, effectively ruling out diffusion as a mechanism for the observed spread. We discuss the implications of the S-Web slow solar wind model for the propagation of SEPs and their distribution in the heliosphere. We present results from 3D MHD simulations demonstrating that for commonly-observed coronal magnetic topologies, the connectivity of the corona to heliosphere will be quasi-singular, with small regions near the Sun dynamically connecting to giant arcs in the heliosphere that span tens of degrees in both latitude and longitude. We show that the S-Web model can account for both SEP longitudinal spread and dropouts, and discuss implications for observations from the upcoming Solar Orbiter and Solar Probe Plus missions.This research was supported, in part, by the NASA LWS Program.
First Demonstration of a Coronal Mass Ejection Driven by Helicity Condensation
NASA Astrophysics Data System (ADS)
Dahlin, J. T.; Antiochos, S. K.; DeVore, C. R.
2017-12-01
Understanding the mechanism for CMEs/eruptive flares is one of the most important problems in all space science. Two classes of theories have been proposed: ideal processes such as the torus instability, or magnetic reconnection as in the breakout model. Previous simulations of eruptions have used special assumptions, such as a particular initial condition ripe for instability and/or particular boundary conditions designed to induce eruption. We report on a simulation in which the initial state is the minimum-energy potential field, and the system is driven solely by the small-scale random motions observed for photospheric convection. The only requirement on the system is that the flows are sufficiently complex to induce pervasive and random reconnection throughout the volume, as expected for coronal heating, and a net helicity is injected into the corona, in agreement with the observed hemispheric helicity preference. We find that as a result of a turbulent-like cascade, the helicity "condenses" onto a polarity inversion line forming a filament channel, which eventually erupts explosively. We discuss the implications of this fully self-consistent eruption simulation for understanding CMEs/flares and for interpreting coronal observations. This work was supported by the NASA LWS and SR Programs.
Are We at the Crossroads for Wisconsin Child Care? Policies in Conflict
ERIC Educational Resources Information Center
Wisconsin Council on Children and Families, 2016
2016-01-01
This report examines the conflicting public policies in child care and their implications. The policy analysis tracks the history of two major child care programs, the Wisconsin Shares child care subsidy program and the YoungStar Quality Rating and Improvement System. While YoungStar shows promising trends in improving the quality of early care…
Scholarly Transition and Resource Systems (Project STARS), 1987-88. OREA Evaluation Report.
ERIC Educational Resources Information Center
Berney, Tomi D.; Moghadam, Val
The Scholastic Transition and Resource System Program (Project STARS) sought to identify gifted and talented students of limited English proficiency and provide them with the help needed to succeed in advanced and basic content area and vocational/technical courses. The 1-year, federally-funded program served 321 students at 3 New York City high…
Delaware Stars for Early Success. QRS Profile. The Child Care Quality Rating System (QRS) Assessment
ERIC Educational Resources Information Center
Child Trends, 2010
2010-01-01
This paper presents a profile of Delaware's Stars for Early Success prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators…
Kentucky STARS for KIDS NOW: QRS Profile. The Child Care Quality Rating System (QRS) Assessment
ERIC Educational Resources Information Center
Child Trends, 2010
2010-01-01
This paper presents a profile of Kentucky's STARS for KIDS NOW prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators for…
ERIC Educational Resources Information Center
Child Trends, 2010
2010-01-01
This paper presents a profile of North Carolina's Star Rated License System prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4)…
Photometric light curves for ten rapidly rotating stars in Alpha Persei, the Pleiades, and the field
NASA Technical Reports Server (NTRS)
Prosser, Charles F.; Schild, Rudolph E.; Stauffer, John R.; Jones, Burton F.
1993-01-01
We present the results from a photometric monitoring program of ten rapidly rotating stars observed during 1991 using the FLWO 48-in. telescope. Brightness variations for an additional six cluster stars observed with the Lick 40-in. telescope are also given. The periods and light curves for seven Alpha Persei members, two Pleiades members, and one naked T Tauri field star are reported.
YoungStar in Wisconsin: Analysis of Data as of July 2014. YoungStar Progress Report #5
ERIC Educational Resources Information Center
Wisconsin Council on Children and Families, 2014
2014-01-01
YoungStar is a program of the Department of Children and Families (DCF) designed to improve the quality of child care for Wisconsin children. YoungStar is designed to: (1) evaluate and rate the quality of care given by child care providers; (2) help parents choose the best child care for their kids; (3) support providers with tools and training to…
Physics of Cool Stars: Densities, Sizes, and Energetics
NASA Technical Reports Server (NTRS)
Dupree, Andrea K.
2001-01-01
The ORFEUS 1 (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer) telescope obtained far ultraviolet spectra (lambda-lambda 912-1218) of luminous cool stars as a part of our observing program. Two classes of objects were measured: luminous single stars beta Dra (HD 159181) and two hybrid stars alpha Aqr (HD 209750) and alpha TrA (HD 150798) and two active binary systems: 44i Boo and UX Ari.
Color-magnitude diagrams for six metal-rich, low-latitude globular clusters
NASA Technical Reports Server (NTRS)
Armandroff, Taft E.
1988-01-01
Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.
STAR (Simple Tool for Automated Reasoning): Tutorial guide and reference manual
NASA Technical Reports Server (NTRS)
Borchardt, G. C.
1985-01-01
STAR is an interactive, interpreted programming language for the development and operation of Artificial Intelligence application systems. The language is intended for use primarily in the development of software application systems which rely on a combination of symbolic processing, central to the vast majority of AI algorithms, with routines and data structures defined in compiled languages such as C, FORTRAN and PASCAL. References to routines and data structures defined in compiled languages are intermixed with symbolic structures in STAR, resulting in a hybrid operating environment in which symbolic and non-symbolic processing and organization of data may interact to a high degree within the execution of particular application systems. The STAR language was developed in the course of a project involving AI techniques in the interpretation of imaging spectrometer data and is derived in part from a previous language called CLIP. The interpreter for STAR is implemented as a program defined in the language C and has been made available for distribution in source code form through NASA's Computer Software Management and Information Center (COSMIC). Contained within this report are the STAR Tutorial Guide, which introduces the language in a step-by-step manner, and the STAR Reference Manual, which provides a detailed summary of the features of STAR.
Highly Insulating Windows Volume Purchase Program Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-04-01
This report documents the development, execution outcomes and lessons learned of the Highly Insulating Windows Volume Purchase (WVP) Program carried out over a three-year period from 2009 through 2012. The primary goals of the program were met: 1) reduce the incremental cost of highly insulating windows compared to ENERGY STAR windows; and 2) raise the public and potential buyers’ awareness of highly insulating windows and their benefits. A key outcome of the program is that the 2013 ENERGY STAR Most Efficient criteria for primary residential windows were adopted from the technical specifications set forth in the WVP program.
Young Brown Dwarfs and Giant Planets as Companions to Weak-Line T Tauri Stars
NASA Astrophysics Data System (ADS)
Brandner, Wolfgang; Frink, Sabine; Kohler, Rainer; Kunkel, Michael
Weak-line T Tauri stars, contrary to classical T Tauri stars, no longer possess massive circumstellar disks. In weak-line T Tauri stars, the circumstellar matter was either accreted onto the T Tauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association. In the course of follow-up observations, we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line T Tauri stars. We have initiated a program to spatially resolve young brown dwarfs and young giant planets as companions to single weak-line T Tauri stars using adaptive optics at the ESO 3.6 m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations. An update on the program status can be found at http://www.astro.uiuc.edu/~brandner/text/bd/bd.html
NASA Astrophysics Data System (ADS)
Guinan, Edward F.; Engle, S. G.
2013-01-01
As part of our NSF/NASA sponsored “Living with a Red Dwarf Star” program, we are carrying out a comprehensive study of red dwarf stars across the electromagnetic spectrum to assess their suitability as hosts for habitable planets. These cool, dim, long-lived, low mass stars comprise >75% of the stars in our Galaxy. Moreover an increasing number of (potentially habitable) large Earth-size planets are being found hosted by red dwarfs. With intrinsically low luminosities (L < 0.02 Lsun), the habitable zones (HZs) of hosted planets are close to their host stars (typically 0.05 AU < HZ <0.4 AU). Our study indicates red dwarf HZ planets without strong (protective) magnetic fields are especially susceptible to atmospheric erosion & loss by the star’s X-UV and wind fluxes. Also, the frequent flaring of young red dwarf stars and tidal-locking of close-in planets could challenge the development of life. But tidal locking of these planets could have some advantages for the developmenet of life. The long lifetimes of the red dwarfs (> 50 BY) could be favorable for the development of complex (possibly even intelligent) life. We discuss our results in the context of nearby red dwarfs as possible destinations for future interstellar missions program. We illustrate this with examples of the red dwarf exoplanet systems: GJ 581 and HD 85512 (both with large HZ Earth-size planets). Also we discuss the nearest star (4.3 LY) - the red dwarf - Proxima Centauri as a potential destination for future interstellar missions such proposed by Icarus Interstellar and the 100-Year Starship and StarVoyager programs. We gratefully acknowledge the support from NSF-Grant AST-10-09903, Chandra Grants GO1-12124X & GO2-13020X and HST Grant GO-10920.
Habitable Zone Planets: PLATO, and the search for Earth 2.0
NASA Astrophysics Data System (ADS)
Brown, D. J. A.
2015-10-01
The PLATO mission, part of ESA's Cosmic Vision program, will launch in 2024 and will revolutionize the field of transiting exoplanets. By observing a large sample of bright stars, PLATO will discover thousands of terrestrial planets, including hundreds in the habitable zones of their host stars. The brightness of PLATO targets allows full characterization of both the planets and their host stars, including asteroseismic analysis to precisely determine masses, radii, and ages. Moreover, PLATO host stars will be bright enough to allow atmospheric spectroscopy. Confirmation and characterization of PLATO planets will require a coordinated, ground-based follow-up program to both eliminate false-positives, and derive planetary masses. I will present an introduction to PLATO, discussing the scientific motivation behind the mission, its aims and goals, and the significant contribution that PLATO will make to the search for a second Earth. I will also talk about the requirements and formulation of the follow-up program, showing that the demands are not as onerous as might be feared.
Star Formation in Nearby Galaxies
NASA Astrophysics Data System (ADS)
O'Connell, Robert
2009-07-01
Star formation is a fundamental astrophysical process; it controls phenomena ranging from the evolution of galaxies and nucleosynthesis to the origins of planetary systems and abodes for life. The WFC3, optimized at both UV and IR wavelengths and equipped with an extensive array of narrow-band filters, brings unique capabilities to this area of study. The WFC3 Scientific Oversight Committee {SOC} proposes an integrated program on star formation in the nearby universe which will fully exploit these new abilities. Our targets range from the well-resolved R136 in 30 Dor in the LMC {the nearest super star cluster} and M82 {the nearest starbursting galaxy} to about half a dozen other nearby galaxies that sample a wide range of star-formation rates and environments. Our program consists of broad-band multiwavelength imaging over the entire range from the UV to the near-IR, aimed at studying the ages and metallicities of stellar populations, revealing young stars that are still hidden by dust at optical wavelengths, and showing the integrated properties of star clusters. Narrow-band imaging of the same environments will allow us to measure star-formation rates, gas pressure, chemical abundances, extinction, and shock morphologies. The primary scientific issues to be addressed are: {1} What triggers star formation? {2} How do the properties of star-forming regions vary among different types of galaxies and environments of different gas densities and compositions? {3} How do these different environments affect the history of star formation? {4} Is the stellar initial mass function universal or determined by local conditions?
Apollo Telescope Mount (ATM) gimballed star tracker. [developed for the Skylab program
NASA Technical Reports Server (NTRS)
Lana, J. D.
1974-01-01
Design and development of six gimballed star trackers for Skylab's Apollo Telescope Mount, which performed successfully on all three manned Skylab missions and accumulated a total usage time of approximately 3,500 hours, is described in terms of configurations, materials and construction, qualification testing, performance, and reliability characteristics. A brief program history and design changes incorporated during the life of the program are also discussed. Extensive drawings, block diagrams, and photographs are provided.
Music and Astronomy Under the Stars
NASA Astrophysics Data System (ADS)
Lubowich, D.
2008-11-01
Bring telescope to where the people are! Music and Astronomy Under the Stars is a public astronomy outreach program at community parks during and after free summer music concerts and outdoor movie nights. This project also includes daytime activities because there are some afternoon concerts and daylight children's concerts, and observations using remotely operated telescopes in cloudy weather. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience---music lovers who are attending free summer concerts held in community parks. The music lovers who may never have visited a science museum, planetarium, or star party will be exposed to telescope observations and astronomy information with no additional travel costs. This program will permit the entire community to participate in telescope observations and view astronomical video information to enhance the public appreciation of astronomy. This program will also reach underrepresented and underserved groups (women, minorities, older adults). The population base for the initial target audience (Nassau and Suffolk Counties, New York) is 2,500,000. My partners are the Amateur Observers' Society of New York (AOS) and the Towns of Oyster Bay, Hempstead, North Hempstead, and Huntington. Music and Astronomy Under the Stars is program that should continue beyond the International Year of Astronomy 2009 (IYA2009) and can be expanded into a national program.
Saintilan, R; Mérour, I; Brossard, L; Tribout, T; Dourmad, J Y; Sellier, P; Bidanel, J; van Milgen, J; Gilbert, H
2013-06-01
Residual feed intake (RFI) is defined as the difference between the observed ADFI and the ADFI predicted from production and maintenance requirements. The objectives of this study were to evaluate RFI as a selection criterion to improve feed efficiency and its potential to reduce N and P excretion in 4 pig breeds. Data were collected between 2000 and 2009 in French central test stations for 2 dam breeds [French Landrace (LR) and Large White (LWD)], and 2 sire breeds [Large White (LWS) and Piétrain (PP)]. Numbers of recorded pigs were 6407, 10,694, 2342, and 2448 for the LR, LWD, LWS, and PP breeds, respectively. All PP animals were genotyped for the halothane mutation. This data set was used to calculate RFI equations for each of the 4 breeds, and to estimate genetic parameters for RFI together with growth, carcass, and meat quality traits, and N and P excretion during the test period (35 to 110 kg BW). The RFI explained 20.1% in PP, 26.5% in LWS, 27.6% in LWD, and 29.5% in LR of the phenotypic variability of ADFI. The PP breed differed from the others in this respect, probably due to a lower impact of the variation of body composition on ADFI. Heritability estimates of RFI ranged from 0.21 ± 0.03 (LWD) to 0.33 ± 0.06 (PP) depending on the breed. Heritabilities of N and P excretion traits ranged from 0.29 ± 0.06 to 0.40 ± 0.06. The RFI showed positive genetic correlations with feed conversion ratio (FCR) and excretion traits, these correlations being greater in the sire breeds (from 0.57 to 0.86) than in the dam breeds (from 0.38 to 0.53). Compared with FCR, RFI had weaker genetic correlations with carcass composition, growth rate, and excretion traits. Estimates of genetic correlations between FCR and excretion traits were very close to 1 for all breeds. Finally, excretion traits were, at the genetic level, correlated positively with ADFI, negatively with growth rate and carcass leanness, whereas the halothane n mutation in PP was shown to reduce N and P excretion levels. To conclude, new selection indexes including RFI can be envisaged to efficiently disentangle the responses to selection on growth rate and body composition from those on feed efficiency, with favorable impacts on N and P excretions, particularly in sire pig breeds. However, the switch from FCR to RFI in selection indexes should not resolve the genetic antagonism between feed efficiency and meat quality.
Efficiency improvements in US Office equipment: Expected policy impacts and uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koomey, J.G.; Cramer, M.; Piette, M.A.
This report describes a detailed end-use forecast of office equipment energy use for the US commercial sector. We explore the likely impacts of the US Environmental Protection Agency`s ENERGY STAR office equipment program and the potential impacts of advanced technologies. The ENERGY STAR program encourages manufacturers to voluntarily incorporate power saving features into personal computers, monitors, printers, copiers, and fax machines in exchange for allowing manufacturers to use the EPA ENERGY STAR logo in their advertising campaigns. The Advanced technology case assumes that the most energy efficient current technologies are implemented regardless of cost.
Legacy ExtraGalactic UV Survey (LEGUS): The HST View of Star Formation in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Calzetti, Daniela; Lee, J. C.; Adamo, A.; Aloisi, A.; Andrews, J. E.; Brown, T. M.; Chandar, R.; Christian, C. A.; Cignoni, M.; Clayton, G. C.; Da Silva, R. L.; de Mink, S. E.; Dobbs, C.; Elmegreen, B.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S.; Gouliermis, D.; Grebel, E.; Herrero-Davo`, A.; Hilbert, B.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R.; Kim, H.; Krumholz, M. R.; Lennon, D. J.; Martin, C. D.; Nair, P.; Nota, A.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Schaerer, D.; Schiminovich, D.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Van Dyk, S. D.; Walterbos, R. A.; Whitmore, B. C.; Wofford, A.
2014-01-01
The Treasury program LEGUS (HST/GO-13364) is the first HST UV Atlas of nearby galaxies, and is aimed at the thorough investigation of star formation and its relation with galaxy environment, from the scales of individual stars to those of ~kpc clustered structures. The 154-orbits program is obtaining NUV,U,B,V,I images of 50 star-forming galaxies in the distance range 4-12 Mpc, covering the full range of morphology, star formation rate (SFR), mass, metallicity, internal structure, and interaction state found in the local Universe. The imaging survey will yield accurate recent (<50 Myr) star formation histories (SFHs) from resolved massive stars, and the extinction-corrected ages and masses of star clusters and associations. These extensive inventories of massive stars, clustered systems, and SFHs will be used to: (1) quantify how the clustering of star formation evolves both in space and in time; (2) discriminate among models of star cluster evolution; (3) investigate the effects of SFH on the UV SFR calibrations; (4) explore the impact of environment on star formation and cluster evolution across the full range of galactic and ISM properties. LEGUS observations will inform theories of star formation and galaxy evolution, and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of the clumpy star formation at high redshift. LEGUS will generate the most homogeneous high-resolution, wide-field UV dataset to date, building and expanding on the GALEX legacy. Data products that will be delivered to the community include: catalogs of massive stars and star clusters, catalogs of star cluster properties (ages, masses, extinction), and a one-stop shop for all the ancillary data available for this well-studied galaxy sample. LEGUS will provide the reference survey and the foundation for future observations with JWST and with ALMA. This abstract accompanies another one from the same project, and presents the status of the project, its structure, and the data products that will be delivered to the community; the other abstract presents the science goals of LEGUS and how these will be addressed by the HST observations.
Crowdfunding Astronomy Research with Google Sky
ERIC Educational Resources Information Center
Metcalfe, Travis S.
2015-01-01
For nearly four years, NASA's Kepler space telescope searched for planets like Earth around more than 150,000 stars similar to the Sun. In 2008 with in-kind support from several technology companies, our non-profit organization established the Pale Blue Dot Project, an adopt-a-star program that supports scientific research on the stars observed by…
ENERGY STAR Certified Geothermal Heat Pumps
Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of January 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=geo_heat.pr_crit_geo_heat_pumps
ENERGY STAR Certified Commercial Hot Food Holding Cabinet
Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Commercial Hot Food Holding Cabinets that are effective as of October 1, 2011. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=hfhc.pr_crit_hfhc
High Resolution Active Optics Observations from the Kepler Follow-up Observation Program
NASA Astrophysics Data System (ADS)
Gautier, Thomas N.; Ciardi, D. R.; Marcy, G. W.; Hirsch, L.
2014-01-01
The ground based follow-up observation program for candidate exoplanets discovered with the Kepler observatory has supported a major effort for high resolution imaging of candidate host stars using adaptive optics wave-front correction (AO), speckle imaging and lucky imaging. These images allow examination of the sky as close as a few tenths of an arcsecond from the host stars to detect background objects that might be the source of the Kepler transit signal instead of the host star. This poster reports on the imaging done with AO cameras on the Keck, Palomar 5m and Shane 3m (Lick Observatory) which have been used to obtain high resolution images of over 500 Kepler Object of Interest (KOI) exoplanet candidate host stars. All observations were made at near infrared wavelengths in the J, H and K bands, mostly using the host target star as the AO guide star. Details of the sensitivity to background objects actually attained by these observations and the number of background objects discovered are presented. Implications to the false positive rate of the Kepler candidates are discussed.
Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity
NASA Astrophysics Data System (ADS)
Gonzalez Ortiz, Andrea
2017-01-01
We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.
The Snapshot A Star SurveY (SASSY)
NASA Astrophysics Data System (ADS)
Garani, Jasmine I.; Nielsen, Eric; Marchis, Franck; Liu, Michael C.; Macintosh, Bruce; Rajan, Abhijith; De Rosa, Robert J.; Jinfei Wang, Jason; Esposito, Thomas M.; Best, William M. J.; Bowler, Brendan; Dupuy, Trent; Ruffio, Jean-Baptiste
2018-01-01
The Snapshot A Star Survey (SASSY) is an adaptive optics survey conducted using NIRC2 on the Keck II telescope to search for young, self-luminous planets and brown dwarfs (M > 5MJup) around high mass stars (M > 1.5 M⊙). We present the results of a custom data reduction pipeline developed for the coronagraphic observations of our 200 target stars. Our data analysis method includes basic near infrared data processing (flat-field correction, bad pixel removal, distortion correction) as well as performing PSF subtraction through a Reference Differential Imaging algorithm based on a library of PSFs derived from the observations using the pyKLIP routine. We present the results from the pipeline of a few stars from the survey with analysis of candidate companions. SASSY is sensitive to companions 600,000 times fainter than the host star withint the inner few arcseconds, allowing us to detect companions with masses ~8MJup at age 110 Myr. This work was supported by the Leadership Alliance's Summer Research Early Identification Program at Stanford University, the NSF REU program at the SETI Institute and NASA grant NNX14AJ80G.
Calibration of Post-AGB Supergiants as Standard Extragalactic Candles for HST
NASA Technical Reports Server (NTRS)
Bond, Howard E.
1998-01-01
This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic-giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The reason for this belief is that in old populations, the stars that are evolving through the PAGB region of the HR (Hertzsprung-Russell) diagram arise from only a single main-sequence turnoff mass. In addition, the theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, the PAGB stars of these spectral types are very easily identified, due to their large Balmer jumps, which are due to their very low surface gravities.
Program Annual Technology Report: Cosmic Origins Program Office
NASA Technical Reports Server (NTRS)
Pham, Thai; Neff, Susan
2017-01-01
What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life, starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy.
A Catalog of Eclipsing Binaries and Variable Stars Observed with ASTEP 400 from Dome C, Antarctica
NASA Astrophysics Data System (ADS)
Chapellier, E.; Mékarnia, D.; Abe, L.; Guillot, T.; Agabi, K.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Aristidi, E.
2016-10-01
We used the large photometric database of the ASTEP program, whose primary goal was to detect exoplanets in the southern hemisphere from Antarctica, to search for eclipsing binaries (EcBs) and variable stars. 673 EcBs and 1166 variable stars were detected, including 31 previously known stars. The resulting online catalogs give the identification, the classification, the period, and the depth or semi-amplitude of each star. Data and light curves for each object are available at http://astep-vo.oca.eu.
Photometric Variations of Solar-type Stars: Results of the Cloudcroft Survey
NASA Technical Reports Server (NTRS)
Giampapa, M. S.
1984-01-01
The results of a synoptic program to search for the occurrence of photometric variability in solar type stars as seen in continuum band photometry are summarized. The survey disclosed the existence of photometric variability in solar type stars that is related to the presence of spots on the stellar surface. The observed variability detected in solar type stars is at enhanced levels compared to that observed for the Sun.
Galactic Astronomy in the Ultraviolet
NASA Astrophysics Data System (ADS)
Rastorguev, A. S.; Sachkov, M. E.; Zabolotskikh, M. V.
2017-12-01
We propose a number of prospective observational programs for the ultraviolet space observatory WSO-UV, which seem to be of great importance to modern galactic astronomy. The programs include the search for binary Cepheids; the search and detailed photometric study and the analysis of radial distribution of UV-bright stars in globular clusters ("blue stragglers", blue horizontal-branch stars, RR Lyrae variables, white dwarfs, and stars with UV excesses); the investigation of stellar content and kinematics of young open clusters and associations; the study of spectral energy distribution in hot stars, including calculation of the extinction curves in the UV, optical and NIR; and accurate definition of the relations between the UV-colors and effective temperature. The high angular resolution of the observatory allows accurate astrometric measurements of stellar proper motions and their kinematic analysis.
ERIC Educational Resources Information Center
Peterangelo, Joe; Carlson, Virginia; Henken, Rob
2014-01-01
The authors' recent research has revealed that most afterschool programs in Milwaukee County have received relatively low ratings, and that their biggest hurdle to improving their scores often involved the educational qualifications of program staff. In light of the potential consequences of that finding--which include the possibility that the…
ERIC Educational Resources Information Center
Gray, Barbara
The Student Training at Retail Stores (STARS) project was evaluated during the 1989-90 school year. With the collaboration of business a 3-semester program of intense occupational, vocational, and career education was developed to enhance job skills and secure retail sales jobs for high school juniors with moderate learning, speech, emotional, and…
ERIC Educational Resources Information Center
Giles, Steven M.; Pankratz, Melinda M.; Ringwalt, Chris; Jackson-Newsom, Julia; Hansen, William B.; Bishop, Dana; Dusenbury, Linda; Gottfredson, Nisha
2012-01-01
We examine whether teachers' communicator style relates to student engagement, teacher-student relationships, student perceptions of teacher immediacy, as well as observer ratings of delivery skills during the implementation of All Stars, a middle school-based substance use prevention program. Data from 48 teachers who taught All Stars up to 3…
ERIC Educational Resources Information Center
Child Trends, 2010
2010-01-01
This paper presents a profile of New Mexico's Look for the STARS--AIM HIGH prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4)…
[Effects of TeenSTAR, an abstinence only sexual education program, on adolescent sexual behavior].
Vigil, Pilar; Riquelme, Rosa; Rivadeneira, Rosario; Aranda, Waldo
2005-10-01
Urgent measures are required to stop the increase in the frequency of pregnancies and sexually transmitted diseases among teenagers. A means of facing this problem is promoting sexual abstinence among youngsters. There are studies that confirm the efficacy of this approach. To show the results of the application of a holistic sexuality program (TeenSTAR) among Chilean teenagers. Students attending basic or high school were divided into a control or study group. The control group (342 students) received the usual education on sexuality given by their schools and the study group (398 students) participated in twelve TeenSTAR sessions lasting 1.5 hours each, given by a trained professor. Assessment of achievements was made using an anonymous questionnaire answered at the start and end of the program. The rates of sexual initiation among control and study groups were 15 and 6.5%, respectively. Among sexually active students, 20% of those in the study group and 9% of those in the control group discontinued sexual activity. A higher proportion of students in the TeenSTAR program retarded their sexual initiation or discontinued sexual activity and found more reasons to maintain sexual abstinence than control students.
ERIC Educational Resources Information Center
Allday, Jonathan
2003-01-01
Offers some suggestions as to how science fiction, especially television science fiction programs such as "Star Trek" and "Star Wars", can be drawn into physics lessons to illuminate some interesting issues. (Author/KHR)
Using a Weak CN Spectral Feature as a Marker for Massive AGB Stars in the Andromeda Galaxy
NASA Astrophysics Data System (ADS)
Guhathakurta, Puragra; Kamath, Anika; Sales, Alyssa; Sarukkai, Atmika; Hays, Jon; PHAT Collaboration; SPLASH Collaboration
2017-01-01
The Panchromatic Hubble Andromeda Treasury (PHAT) survey has produced six-filter photometry at near-ultraviolet, optical and nearly infrared wavelengths (F275W, F336W, F475W, F814W, F110W and F160W) for over 100 million stars in the disk of the of the Andromeda galaxy (M31). As part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey, medium resolution (R ~ 2000) spectra covering the wavelength range 4500-9500A were obtained for over 5000 relatively bright stars from the PHAT source catalog using the Keck II 10-meter telescope and DEIMOS spectrograph. While searching for carbon stars in the spectroscopic data set, we discovered a rare population of stars that show a weak CN spectral absorption feature at ~7900A (much weaker than the CN feature in typical carbon stars) along with other spectral absorption features like TiO and the Ca triplet that are generally not present/visible in carbon star spectra but that are typical for normal stars with oxygen rich atmospheres. These 150 or so "weak CN" stars appear to be fairly localized in six-filter space (i.e., in various color-color and color-magnitude diagrams) but are generally offset from carbon stars. Comparison to PARSEC model stellar tracks indicates that these weak CN stars are probably massive (5-10 Msun) asymptotic giant branch (AGB) stars in a relatively short-lived core helium burning phase of their evolution. Careful spectroscopic analysis indicates that the details of the CN spectral feature are about 3-4x weaker in weak CN stars than in carbon stars. The kinematics of weak CN stars are similar to those of other young stars (e.g., massive main sequence stars) and reflect the well ordered rotation of M31's disk.This research project is funded in part by NASA/STScI and the National Science Foundation. Much of this work was carried out by high school students and undergraduates under the auspices of the Science Internship Program and LAMAT program at the University of California Santa Cruz.
Music and Astronomy Under the Stars 2009
NASA Astrophysics Data System (ADS)
Lubowich, D.
2010-08-01
Bring telescopes to where the people are! Music and Astronomy Under the Stars is a three-year NASA-funded astronomy outreach program at community parks during and after music concerts and outdoor family events—such as a Halloween Stars-Spooky Garden Walk. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience: music lovers who are attending summer concerts held in community parks. These music lovers who may never have visited a science museum, planetarium, or star party are exposed to telescope observations and astronomy information with no additional travel costs. Music and Astronomy Under the Stars increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. This program includes solar observing before the concerts, telescope observations including a live image projection system, an astronomical video presentation, and astronomy banners/posters. Approximately 500-16,000 people attended each event and 25% to 50% of the people at each event participated in the astronomy program. This program also reached underrepresented and underserved groups (women, minorities, older adults). The target audience (Nassau and Suffolk Counties, New York) is 2,900,000 people, which is larger than combined population of Atlanta, Boston, Denver, Minneapolis, and San Francisco. Although eleven events were planned in 2009, two were canceled due to rain and our largest event, the NY Philharmonic in the Park (attended by 67,000 people in 2008), was cancelled for financial reasons. Our largest event in 2009 was the Tanglewood Music Festival, Lenox MA, attended by 16,000 people where over 5000 people participated in astronomy activities. The Amateur Observers' Society of New York assisted with the NY concerts and the Springfield STARS astronomy club assisted at Tanglewood. In 2009 over 15,000 people participated in astronomy activities at these events which were attended by approximately 50,000 people.
NASA Astrophysics Data System (ADS)
Sargent, Benjamin A.; Srinivasan, Sundar; Speck, Angela; Volk, Kevin; Kemper, Ciska; Reach, William T.; Lagadec, Eric; Bernard, Jean-Philippe; McDonald, Iain; Meixner, Margaret
2015-01-01
We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of Oxygen-rich (O-rich) asymptotic giant branch (AGB) and red supergiant (RSG) stars. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We present an update of our investigation of differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.
Spectroscopy of Kepler Exo-planet Transit Candidate Stars
NASA Astrophysics Data System (ADS)
Howell, Steve B.; Everett, Mark; Silva, David; Rowe, Jason; Szkody, Paula; Mighell, Ken; Ciardi, David
2012-02-01
We propose a long term spectroscopic follow-up program in support of the NASA Kepler exo-planet mission. The Kepler project is now focusing on exo-planet candidates which are smaller in radius (down to Earth- size), have longer period orbits and many of which orbit fainter stars. Our program will spend 85% of the time on our primary goal, spectroscopy of the host stars of exoplanet candidates, and 15% of the time on investigation of other astrophysically interesting stars discovered by Kepler. Our prime goal is to obtain reconnaissance spectra of newly discovered exo-planet stars yielding model fits to T_eff and log g. Secondary goals are to obtain velocity information on EBs with a third component aimed toward discovery of circumbinary planets (such as Kepler 16b) and identification spectra of U-band selected targets in order to find more white dwarfs for Kepler focal plane calibration purposes. All of these tasks can be accomplished using the Kitt Peak 4-m telescope and RCspec as shown by our previous time allocations.
Precision Pointing Control System (PPCS) star tracker test
NASA Technical Reports Server (NTRS)
1972-01-01
Tests performed on the TRW precision star tracker are described. The unit tested was a two-axis gimballed star tracker designed to provide star LOS data to an accuracy of 1 to 2 sec. The tracker features a unique bearing system and utilizes thermal and mechanical symmetry techniques to achieve high precision which can be demonstrated in a one g environment. The test program included a laboratory evaluation of tracker functional operation, sensitivity, repeatibility, and thermal stability.
StarTEC: A Technology Project in Education Reform.
ERIC Educational Resources Information Center
Hawley, Helen; Benavides, Otto; Duffy, Sharon; Georgi, David; Guay, Diane; Redmond, Pamela; Richmond, James
StarTEC (Staff, Teacher, and Restructured Technology Education Consortium) was a 3-year technology catalyst program funded by the U.S. Department of Education, and continued for a third year to complete its activities. The goal of StarTEC was to ensure that all teachers prepared by partners in the Consortium would meet the new California standard…
New York: Les ecoles entre SURR et STAR (New York: Schools between SURR and STAR).
ERIC Educational Resources Information Center
Ueberschlag, Roger
1994-01-01
Three problems of New York City (New York) schools--overpopulation, low academic standards, violence--are examined, and an effort led by parent and teacher organizations to improve conditions is described. Threatened closings (schools under registration review, SURR) and a program of violence reduction (Straight Talk about Risks, STAR) are noted.…
LEGUS: A Legacy ExtraGalactic UV Survey of Nearby Galaxies with HST
NASA Astrophysics Data System (ADS)
Lee, Janice C.; Calzetti, D.; Adamo, A.; Aloisi, A.; Andrews, J. E.; Brown, T. M.; Chandar, R.; Christian, C. A.; Cignoni, M.; Clayton, G. C.; Da Silva, R. L.; de Mink, S. E.; Dobbs, C.; Elmegreen, B.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S.; Gouliermis, D.; Grebel, E.; Herrero-Davo`, A.; Hilbert, B.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R.; Kim, H.; Krumholz, M. R.; Lennon, D. J.; Martin, C. D.; Nair, P.; Nota, A.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Schaerer, D.; Schiminovich, D.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Van Dyk, S. D.; Walterbos, R. A.; Whitmore, B. C.; Wofford, A.
2014-01-01
We introduce LEGUS, a Hubble Space Telescope program which will provide a critical missing piece in our efforts to solve the star formation puzzle: a robust characterization of the links between star formation on two fundamental scales, those of individual young stars, stellar clusters and associations over parsec scales, and of galaxy disks over kiloparsec scales. As a 154-orbit Treasury survey, LEGUS has begun obtaining NUV,U,B,V,I imaging of 50 star-forming galaxies, at distances of 4-12 Mpc. The dataset is guaranteed to have exceptional legacy value, as the targets have been carefully selected to uniformly sample a full range of global galaxy properties, as well as have the largest suites of multi-wavelength ancillary data available. The high-resolution HST NUV and U imaging are key for deriving accurate recent (<50 Myr) star formation histories from resolved massive stars, along with the ages and masses for complete samples of star clusters and associations in each galaxy. We present an overview of the sample, the observations, and provide a first look at the science that the LEGUS team is pursuing. A companion poster presents the status of the program, and a more detailed description of the extensive data products being developed which will seed community science, and provide a foundation for studies of star formation with ALMA and JWST.
5 Star Wetland and Urban Waters Restoration Grants
The Five Star Restoration Program brings together students, conservation corps, other youth groups, citizen groups, corporations, landowners and government agencies to provide environmental education and training through projects that restore wetlands
NASA Astrophysics Data System (ADS)
Platco, Nicholas L.., Jr.
2005-06-01
The purpose of this study was to compare the effectiveness of "Star Show" and the "Participatory Oriented Planetarium" (POP) instructional programs in a middle school Starlab setting. The Star Show is a planetarium program that relies heavily on an audiovisual/lecture format to impart information, while the POP method of instruction is an inquiry, activity-based approach to teaching astronomy. All Star Show and POP lessons were conducted in a Starlab planetarium. This study examined the effectiveness of the two methods on the attainment of astronomy knowledge, changes in student attitudes toward astronomy, retention of knowledge, and gender differences. A pilot study (N = 69) was conducted at a middle school near King of Prussia, Pennsylvania. The main study (N = 295) was conducted at a middle school near Reading, Pennsylvania. All students were pretested and posttested in both studies. The testing instruments included a 60-question paper-and-pencil content test and a 22-item Likert-style science attitude test. The content test was judged to be valid and reliable by a panel of science educators. The attitude test is a field-tested attitude survey developed by Michael Zeilik. The topics included in the Star Show and POP lessons were seasons, moon phases, eclipses, stars, and constellations. The Star Show programs used in this study are professionally prepared planetarium programs from Jeff Bowen Productions. Several planetarium educators who have been involved with planetarium training workshops throughout the United States developed the POP lessons used in this study. The Star Show was clearly the more effective method for improving student knowledge in both the pilot and main studies. Both methods were equally effective for improving student attitudes toward astronomy. The POP method was the more effective method of instruction when retention of knowledge was examined four weeks after the treatments ended. Gender did not have any significant effect on this study. In light of the results of this study, it appears that both Star Show and POP methods of instruction should continue to play important roles in planetarium education. A combination of the two methods is clearly the ideal solution when teaching astronomy to middle school students in a Starlab setting.
S cones: Evolution, retinal distribution, development, and spectral sensitivity.
Hunt, David M; Peichl, Leo
2014-03-01
S cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments.
Stieb, Sara M; Cortesi, Fabio; Sueess, Lorenz; Carleton, Karen L; Salzburger, Walter; Marshall, N J
2017-03-01
Coral reefs belong to the most diverse ecosystems on our planet. The diversity in coloration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and examined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, convergent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long-wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Interestingly, not only did all species express SWS1 - a UV-sensitive opsin - and possess UV-transmitting lenses, most species also feature UV-reflective body parts. This suggests that damsels might benefit from a close-range UV-based 'private' communication channel, which is likely to be hidden from 'UV-blind' predators. Finally, we found that LWS expression is highly correlated to feeding strategy in damsels with herbivorous feeders having an increased LWS expression, possibly enhancing the detection of benthic algae. © 2016 John Wiley & Sons Ltd.
The role of ecological factors in shaping bat cone opsin evolution.
Gutierrez, Eduardo de A; Schott, Ryan K; Preston, Matthew W; Loureiro, Lívia O; Lim, Burton K; Chang, Belinda S W
2018-04-11
Bats represent one of the largest and most striking nocturnal mammalian radiations, exhibiting many visual system specializations for performance in light-limited environments. Despite representing the greatest ecological diversity and species richness in Chiroptera, Neotropical lineages have been undersampled in molecular studies, limiting the potential for identifying signatures of selection on visual genes associated with differences in bat ecology. Here, we investigated how diverse ecological pressures mediate long-term shifts in selection upon long-wavelength ( Lws ) and short-wavelength ( Sws1 ) opsins, photosensitive cone pigments that form the basis of colour vision in most mammals, including bats. We used codon-based likelihood clade models to test whether ecological variables associated with reliance on visual information (e.g. echolocation ability and diet) or exposure to varying light environments (e.g. roosting behaviour and foraging habitat) mediated shifts in evolutionary rates in bat cone opsin genes. Using additional cone opsin sequences from newly sequenced eye transcriptomes of six Neotropical bat species, we found significant evidence for different ecological pressures influencing the evolution of the cone opsins. While Lws is evolving under significantly lower constraint in highly specialized high-duty cycle echolocating lineages, which have enhanced sonar ability to detect and track targets, variation in Sws1 constraint was significantly associated with foraging habitat, exhibiting elevated rates of evolution in species that forage among vegetation. This suggests that increased reliance on echolocation as well as the spectral environment experienced by foraging bats may differentially influence the evolution of different cone opsins. Our study demonstrates that different ecological variables may underlie contrasting evolutionary patterns in bat visual opsins, and highlights the suitability of clade models for testing ecological hypotheses of visual evolution. © 2018 The Author(s).
Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera).
Shen, Yong-Yi; Liu, Jie; Irwin, David M; Zhang, Ya-Ping
2010-01-21
Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.
Jacobs, Gerald H
2013-03-01
All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance.
Parallel and Convergent Evolution of the Dim-Light Vision Gene RH1 in Bats (Order: Chiroptera)
Shen, Yong-Yi; Liu, Jie; Irwin, David M.; Zhang, Ya-Ping
2010-01-01
Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats. PMID:20098620
Euarchontan Opsin Variation Brings New Focus to Primate Origins.
Melin, Amanda D; Wells, Konstans; Moritz, Gillian L; Kistler, Logan; Orkin, Joseph D; Timm, Robert M; Bernard, Henry; Lakim, Maklarin B; Perry, George H; Kawamura, Shoji; Dominy, Nathaniel J
2016-04-01
Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Star Power: Providing for the Gifted & Talented. Module 9. Programs for the Gifted/Talented.
ERIC Educational Resources Information Center
Mallis, Jackie; Heinemann, Alison
The document presents Module 9, programs for the gifted/talented, of the Star Power modules developed for school personnel who have an interest in or a need to explore the area of gifted and talented education. It is explained in an introductory section that the modules can be used for independent study, for small group interaction, or for a large…
Qualitative assessment of Diabetes-STAR: a patient portal with disease management functions.
Ross, Stephen E; Nowels, Carolyn T; Haverhals, Leah M; Bull, Sheana S; Lin, Chen-Tan; Main, Deborah S
2007-10-11
Diabetes-STAR is a disease management program integrated with an online patient portal. Of 331 patients enrolled in a randomized trial, we interviewed 37 users about benefits, barriers and recommendations for program improvements. User preferences included 1) addressing differences in types of users, 2) sending out alerts when new information is available, and 3) providing more oversight of user diary data.
Infrared Observations of FS CMa Stars
NASA Astrophysics Data System (ADS)
Sitko, Michael L.; Russell, R. W.; Lynch, D. K.; Grady, C. A.; Hammel, H. B.; Beerman, L. C.; Day, A. N.; Huelsman, D.; Rudy, R. J.; Brafford, S. M.; Halbedel, E. M.
2009-01-01
A subset of non-supergiant B[e] stars has recently been recognized as forming a fairly unique class of objects with very strong emission lines, infrared excesses, and locations not associated with star formation. The exact evolutionary state of these stars, named for the prototype FS CMa, is uncertain, and they have often been classified as isolated Herbig AeBe stars. We present infrared observations of two of these stars, HD 45677 (FS CMa), HD 50138 (MWC 158), and the candidate FS CMa star HD 190073 (V1295 Aql) that span over a decade in time. All three exhibit an emission band at 10 microns due to amorphous silicates, confirming that much (if not all) of the infrared excess is due to dust. HD 50138 is found to exhibit 20% variability between 3-13 microns that resembles that found in pre-main sequence systems (HD 163296 and HD 31648). HD 45677, despite large changes at visual wavelengths, has remained relatively stable in the infrared. To date, no significant changes have been observed in HD 190073. This work is supported in part by NASA Origins of Solar Systems grant NAG5-9475, NASA Astrophysics Data Program contract NNH05CD30C, and the Independent Research and Development program at The Aerospace Corporation.
NASA Astrophysics Data System (ADS)
Sargent, B. A.; Srinivasan, S.; Speck, A.; Volk, K.; Kemper, F.; Reach, W.; Lagadec, E.; Bernard, J.-P.; McDonald, I.; Meixner, M.; Sloan, G. C.; Jones, O.
We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of red supergiant (RSG) and oxygen-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud galaxies and in various Milky Way globular clusters. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper), the Spitzer program SMC-Spec (PI: G. Sloan), and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars and assess effects of varying metallicity (LMC versus SMC versus Milky Way globular cluster) and other properties (mass-loss rate, luminosity, etc.) on the dust originating from these stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.
NASA Astrophysics Data System (ADS)
Nunez, Luis Ernesto; Johnson, John A.
2017-01-01
Hot Jupiters are Jupiter-sized gas giant exoplanets that closely orbit their host star in periods of about 10 days or less. Early models hypothesized that these exoplanets formed away from the star, then over time drifted to their characteristically closer locations. However, new theories predict that Hot Jupiters form at their close proximity during the process of core accretion (Batygin et al. 2015). In fact, a super-Earth and a Neptune-sized exoplanet have already been detected in the Hot Jupiter-hosting star WASP-47 (Becker et al. 2015). We will present our analysis of radial velocity time series plots to determine whether low-mass, short-period planets have been previously overlooked in systems of stars which host Hot Jupiters.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851.
Photographic region elemental abundance analyses of Dr. David S. Leckrone's GTO HST stars 2
NASA Technical Reports Server (NTRS)
Adelman, Saul J.
1994-01-01
Activities are presented for the grant-funded work at the Dominion Astrophysical (DAO) and Casleo Observatories. A comparison is planned for the spectrograms taken at both observatories of similar stars. It is reported that of the Northern Hemisphere program stars, only 112 Her remains to be analyzed. A preliminary solution for the components of this binary system has been found. The new ATLAS9 models have been used to reevaluate the effective temperatures and surface gravities derived for all program stars. Model atmospheres are being calculated by extensive grids on workstations upgraded to the DEC 3000 model 300X running Open VMS. An attached paper describes a plan to obtain the needed gf values as well as some first applications of astrophysical gf values, the most important of which was Vega.
Planetary and Stellar Data Products Expected From The Kepler Mission
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Koch, David G.; Basri, Gibor; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; Kondo, Yoji; Latham, David;
2002-01-01
The Kepler Mission is a Discovery-class mission scheduled to be launched in the 2006-2007 time frame. It is a wide field of view photometer with a 95 m aperture designed to attain a photometric precision of 2 parts in 10^5 for the 12th magnitude stars. It will continually observe 100,000 main-sequence stars from 9th to 14th magnitude for a period of four years with a cadence of 4/hour. This database should be unique in its photometric precision, cadence, and duration of observations. Several hundred terrestrial-size planets will be detected if they are common around solar-like stars. Based on the current results of Doppler-velocity searches, over a thousand giant planets will also be found. A guest investigator program is planned that would provide the opportunity to observe thousands of other objects in the 105 square degree FOV. Such objects could include stars with micro-variability, other intrinsic variables, cataclysmic variables, eclipsing binaries (including x-ray binaries), and possibly AGN. A ground-based program to classify all 225,000 stars in the FOV and to do a detailed examination of a subset of the stars that show planetary companions is planned. Doppler-velocity observations will be made to find the presence of giant planets not seen in transit. The data will be rapidly released to the community for follow up observations and for changes to the guest investigator program.
NASA Technical Reports Server (NTRS)
Henry, Stephen M.; Gillman, Amelie r.; Henry, Gregory W.
2005-01-01
Tennessee State University operates several automatic photometric telescopes (APTs) at Fairborn Observatory in southern Arizona. Four 0.8 m APTs have been dedicated to measuring subtle luminosity variations that accompany magnetic cycles in solar-type stars. Over 1000 program and comparison stars have been observed every clear night in this program for up to 12 years with a precision of approximately 0.0015 mag for a single observation. We have developed a transit-search algorithm, based on fitting a computed transit template for each trial period, and have used it to search our photometric database for transits of unknown companions. Extensive simulations with the APT data have shown that we can reliably recover transits with periods under 10 days as long as the transits have a depth of at least 0.0024 mag, or about 1.6 times the scatter in the photometric observations. Thus, due to our high photometric precision, we are sensitive to transits of possible short-period Neptune-mass planets that likely would have escaped detection by current radial velocity techniques. Our search of the APT data sets for 1087 program and comparison stars revealed no new transiting planets. However, the detection of several unknown grazing eclipsing binaries from among our comparison stars, with eclipse depths of only a few millimags, illustrates the success of our technique. We have used this negative result to place limits on the frequency of Neptune-mass planets in close orbits around solar-type stars in the Sun's vicinity.
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2005-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.
Variable Stars in the Field of TrES-3b (Abstract)
NASA Astrophysics Data System (ADS)
Aadland, E.
2018-06-01
(Abstract only) The star field around the exoplanet TrES-3b has potential for finding unknown variable stars. The field was observed over several nights using Minnesota State University MoorheadÃs Feder Observatory. A light curve for each star was created and are being evaluated for variability and periodicity. A python program is in development to help complete the analysis by automating some of the process. Several stars in the field appear to be variable and are being further analyzed to determine a period and to classify the type of variable.
A magnetic study of spotted UV Ceti flare stars and related late-type dwarfs
NASA Astrophysics Data System (ADS)
Vogt, S. S.
1980-09-01
A multichannel photoelectric Zeeman analyzer has been used to investigate the magnetic nature of the spotted UV Ceti flare stars. Magnetic observations were obtained on a sample of 19 program objects, of which 5 were currently spotted dKe-dMe stars, 7 were normal dK-dM stars, 7 were UV Ceti flare stars, and 1 was a possible post-T Tauri star. Contrary to most previously published observations and theoretical expectations, no magnetic fields were detected on any of these objects from either the absorption lines or the H-alpha emission line down to an observational uncertainty level of 100-160 gauss (standard deviation).
A Photometric Study of Three Eclipsing Binary Stars (Poster abstract)
NASA Astrophysics Data System (ADS)
Ryan, A.
2016-12-01
(Abstract only) As part of a program to study eclipsing binary stars that exhibit the O'Connell Effect (OCE) we are observing a selection of binary stars in a long term study. The OCE is a difference in maximum light across the ligthcurve possibly cause by starspots. We observed for 7 nights at McDonald Observatory using the 30-inch telescope in July 2015, and used the same telescope remotely for a total of 20 additional nights in August, October, December, and January. We will present lightcurves for three stars from this study, characterize the OCE for these stars, and present our model results for the physical parameters of the star making up each of these systems.
The radial velocity technique and the discovery of exoplanets as seen by high school students.
NASA Astrophysics Data System (ADS)
Alves, Mauro; Gusev, Anatoly; Pugacheva, Galina; Martin, Inacio; Lyra, Cassia
2012-07-01
Presently, the existence of more than 750 exoplanets has been confirmed. The radial velocity technique has proven to be the most effective means to detect planets orbiting other stars. In this technique, which is based on the Doppler effect, the observation of the displacement of spectral lines is used to infer the presence of exoplanets orbiting distant stars. Despite the apparent complexity of this technique, high-school students not only can understand its basic principles, but also create simple programs and software to represent and simulate changes in the radial velocity of a star. Thus, as an extracurricular activity, high-school students developed a simple computer program using the C programming language to simulate the influence of a planet orbiting a star in order to obtain radial velocity curves. The radial velocity curve depends on the masses of the star and planet, and orbital parameters such as orbital period, semi-major axis, eccentricity, inclination, argument of periapsis, longitude of the ascending node and mean anomaly. The software allows the variation of these parameters so that the influence of any planet (or system of planets) in orbit of a star can be simulated and the corresponding changes in the radial velocity be observed. For comparison purposes, the radial velocity curve of the Sun under the influence of Jupiter and Saturn are compared with the radial velocity curves of other stars with known exoplanets. This activity became a multidisciplinary study of an interesting physical phenomenon. To obtain the desired results, the students had to learn new concepts and use different tools, which was very rewarding to them.
VizieR Online Data Catalog: High quality Spitzer/MIPS obs. of F4-K2 stars (Sierchio+, 2014)
NASA Astrophysics Data System (ADS)
Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Gaspar, A.
2016-11-01
We used specific criteria to draw samples of stars from the entire Spitzer Debris Disk Database (see section 2.1.1). V magnitudes were taken from Hipparcos and transformed to Johnson V. All stars were also required to have observations on the Two Micron All Sky Survey (2MASS) Ks system. Additional measurements were obtained at SAAO on the 0.75m telescope using the MarkII Infrared Photometer (transformed as described by Koen et al. 2007MNRAS.380.1433K), and at the Steward Observatory 61 in telescope using a NICMOS2-based camera with a 2MASS filter set and a neutral density filter to avoid saturation. These measurements will be described in a forthcoming paper (K. Y. L. Su et al., in preparation). The original programs in which our sample stars were measured are identified in Table 1. A large majority (93%) come from seven Spitzer programs: (1) the MIPS Guaranteed Time Observer (GTO) Sun-like star observations (Trilling+ 2008ApJ...674.1086T); (2) Formation and Evolution of Planetary Systems (FEPS; Meyer+ 2006, J/PASP/118/1690); (3) Completing the Census of Debris Disks (Koerner+ 2010ApJ...710L..26K); (4) potential Space Interferometry Mission/Terrestrial Planet Finder (SIM/TPF) targets (Beichman+ 2006ApJ...652.1674B); (5) an unbiased sample of F-stars (Trilling+ 2008ApJ...674.1086T); and (6) two coordinated programs selecting stars on the basis of indicators of youth (Low+ 2005ApJ...631.1170L; Plavchan+ 2009ApJ...698.1068P). See section 2.1.2. (1 data file).
Development of an integrated aeroservoelastic analysis program and correlation with test data
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Brenner, M. J.; Voelker, L. S.
1991-01-01
The details and results are presented of the general-purpose finite element STructural Analysis RoutineS (STARS) to perform a complete linear aeroelastic and aeroservoelastic analysis. The earlier version of the STARS computer program enabled effective finite element modeling as well as static, vibration, buckling, and dynamic response of damped and undamped systems, including those with pre-stressed and spinning structures. Additions to the STARS program include aeroelastic modeling for flutter and divergence solutions, and hybrid control system augmentation for aeroservoelastic analysis. Numerical results of the X-29A aircraft pertaining to vibration, flutter-divergence, and open- and closed-loop aeroservoelastic controls analysis are compared to ground vibration, wind-tunnel, and flight-test results. The open- and closed-loop aeroservoelastic control analyses are based on a hybrid formulation representing the interaction of structural, aerodynamic, and flight-control dynamics.
2001-12-01
CHARA southern speckle program from 1989 to 1996 (cf. Hartkopf et al. 1996), and by the more recent speckle e†orts of Horch and colleagues (cf. Horch ...Mason, B. D. 2001, Third Catalog of Interferometric Measurements of Binary Stars (CHARA Contrib. No. 4) (Atlanta : Georgia State Univ.) Horch , E
Imaging the Oxygen-Rich Disk Toward the Silicate Carbon Star EU Andromedae
2007-12-01
star EU Andromedae K. Ohnaka1 and D. A. Boboltz2 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: kohnaka...Imaging the Oxygen-Rich Disk Toward the Silicate Carbon Star EU Andromedae 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR
1970-01-01
This photograph shows a telescopic camera for ultraviolet star photography for Skylab's Ultraviolet Panorama experiment (S183) placed in the Skylab airlock. The S183 experiment was designed to obtain ultraviolet photographs, at three wavelengths, of hot stars, clusters of stars, large stellar clouds in the Milky Way, and nuclei of other galaxies. The Marshall Space Flight Center had program responsibility for the development of Skylab hardware and experiments.
Probing Dust Formation Around Evolved Stars with Near-Infrared Interferometry
NASA Astrophysics Data System (ADS)
Sargent, B.; Srinivasan, S.; Riebel, D.; Meixner, M.
2014-09-01
Near-infrared interferometry holds great promise for advancing our understanding of the formation of dust around evolved stars. For example, the Magdalena Ridge Observatory Interferometer (MROI), which will be an optical/near-infrared interferometer with down to submilliarcsecond resolution, includes studying stellar mass loss as being of interest to its Key Science Mission. With facilities like MROI, many questions relating to the formation of dust around evolved stars may be probed. How close to an evolved star such as an asymptotic giant branch (AGB) or red supergiant (RSG) star does a dust grain form? Over what temperature ranges will such dust form? How does dust formation temperature and distance from star change as a function of the dust composition (carbonaceous versus oxygen-rich)? What are the ranges of evolved star dust shell geometries, and does dust shell geometry for AGB and RSG stars correlate with dust composition, similar to the correlation seen for planetary nebula outflows? At what point does the AGB star become a post-AGB star, when dust formation ends and the dust shell detaches? Currently we are conducting studies of evolved star mass loss in the Large Magellanic Cloud using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We model this mass loss using the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS). For simplicity, we assume spherical symmetry, but 2Dust does have the capability to model axisymmetric, non-spherically-symmetric dust shell geometries. 2Dust can also generate images of models at specified wavelengths. We discuss possible connections of our GRAMS modeling using 2Dust of SAGE data of evolved stars in the LMC and also other data on evolved stars in the Milky Way's Galactic Bulge to near-infrared interferometric studies of such stars. By understanding the origins of dust around evolved stars, we may learn more about the later parts of the life of stardust; e.g., its residence in the interstellar medium, its time spent in molecular clouds, and its inclusion into solid bodies in future planetary systems.
NASA Technical Reports Server (NTRS)
Cox, Brian
2003-01-01
e-Stars Template Builder is a computer program that implements a concept of enabling users to rapidly gain access to information on projects of NASA's Jet Propulsion Laboratory. The information about a given project is not stored in a data base, but rather, in a network that follows the project as it develops. e-Stars Template Builder resides on a server computer, using Practical Extraction and Reporting Language (PERL) scripts to create what are called "e-STARS node templates," which are software constructs that allow for project-specific configurations. The software resides on the server and does not require specific software on the user machine except for an Internet browser. A user's computer need not be equipped with special software (other than an Internet-browser program). e-Stars Template Builder is compatible with Windows, Macintosh, and UNIX operating systems. A user invokes e-Stars Template Builder from a browser window. Operations that can be performed by the user include the creation of child processes and the addition of links and descriptions of documentation to existing pages or nodes. By means of this addition of "child processes" of nodes, a network that reflects the development of a project is generated.
ERIC Educational Resources Information Center
Noone, E. T., Jr.
1991-01-01
Presented is an activity in which probability and percents are taught using a basketball computer simulation. Computer programs that replicate the free-throw accuracy of college and professional stars and allow students to compete with those stars are included. (KR)
The feast "STAR NIGHT 2009" in Shumen, Bulgaria
NASA Astrophysics Data System (ADS)
Kyurkchieva, Diana P.
Information about the preparation and realization of the attractive program for the "Star Night" on September 25, 2009, in Shumen, is presented. Its goal is popularization of the European initiative "Research Night" in Bulgaria.
Chromospheric activity of cool giant stars
NASA Technical Reports Server (NTRS)
Steiman-Cameron, T. Y.
1986-01-01
During the seventh year of IUE twenty-six spectra of seventeen cool giant stars ranging in spectral type from K3 thru M6 were obtained. Together with spectra of fifteen stars observed during the sixth year of IUE, these low-resolution spectra have been used to: (1) examine chromospheric activity in the program stars and late type giants in general, and (2) evaluate the extent to which nonradiative heating affects the upper levels of cool giant photospheres. The stars observed in this study all have well determined TiO band strengths, angular diameters (determined from lunar occulations), bolometric fluxes, and effective temperatures. Chromospheric activity can therefore be related to effective temperatures providing a clearer picture of activity among cool giant stars than previously available. The stars observed are listed.
Einstein Observations of X-ray emission from A stars
NASA Astrophysics Data System (ADS)
Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Rosner, R.; Vaiana, G. S.; Cash, W., Jr.; Snow, T. P., Jr.
1983-08-01
Results are reported from the combined CfA Stellar Survey of selected bright A stars and an Einstein Guest Observer program for Ap and Am stars. In an initial report of results from the CfA Stellar Surveys by Vaiana et al. (1981) it was noted that the spread in observed X-ray luminosities among the few A stars observed was quite large. The reasons for this large spread was studied by Pallavicini et al. (1981). It was found that the X-ray emission from normal stars is related very strongly to bolometric luminosity for early-type stars and to rotation rate for late-type stars. However, an exception to this rule has been the apparently anomalous behavior of A star X-ray emission, for which the large spread in luminosity showed no apparent correlation with either bolometric luminosity or stellar rotation rate. In the present study, it is shown that the level of emission from normal A stars agrees with the correlation observed for O and B stars.
Energy Star program benefits Con Edison
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Impressed with savings in energy costs achieved after upgrading the lighting and air conditioning systems at its Manhattan headquarters, Home Box Office (HBO) wanted to do more, James Flock, vice president for computer and office systems, contacted Con Edison Co. of New York in March 1991 to determine what the company could do to save money by reducing energy consumed by personal computers. Arthur Kressner, Con Edison Research and Development manager contacted industry organizations and manufacturers for advice, but was told only to shut off computers at night and on weekends. Kressner arranged a series of meetings with IBM andmore » the Electric Power Research Institute (EPRI) to discuss the issue, then approached the U.S. Environmental Protection Agency (EPA), which was designing a program to promote the introduction and use of energy-efficient office equipment. In 1992, the EPA announced the Energy Star program for PCs, enabling manufacturers to display the Energy Star logo on machines meeting program criteria, including the ability to enter a sleep mode in which neither the computer nor monitor consume more than 30 W or electricity. Industry experts estimate national energy consumption by office equipment could double by the year 2000, but Energy Star equipment is expected to improve efficiency and help maintain electric loads.« less
Research on Spectroscopy, Opacity, and Atmospheres
NASA Technical Reports Server (NTRS)
Oliversen, Ronald (Technical Monitor); Kurucz, Robert L.
2004-01-01
I propose to continue providing observers with basic data for interpreting spectra from stars, novas, supernovas, clusters, and galaxies. These data will include allowed forbidden line lists both laboratory and computed, for the first five to ten ions of all atoms and for all relevant diatomic molecules. I will eventually expend to all ions of the first thirty elements to treat far UV end X-ray spectra, and for envelope opacities. I also include triatomic molecules providing by other researchers. I have made CDs with Partridge and Schwanke's water data for work on M stars.The luna data also serve as input to my model atmosphere and synthesis programs that generated energy distributions, photometry, limb darkening, and spectra that can be used for planning observations and for fitting observed spectra. The spectrum synthesis programs produce detailed plots with the line identified. Grids of stellar spectra can be used for radial velocity-, rotation-, or abundance templates and for population synthesis. I am fitting spectra of bright stars to test the data and to produce atlases to guide observer. For each star the whole spectrum is computed from the UV to the far IR. The line data, opacities, models, spectra, and programs are freely distributed on CDs and on my web site and represent a unique resource for many NASA programs.
NASA Astrophysics Data System (ADS)
Papasotiriou, P. J.; Geroyannis, V. S.
We implement Hartle's perturbation method to the computation of relativistic rigidly rotating neutron star models. The program has been written in SCILAB (© INRIA ENPC), a matrix-oriented high-level programming language. The numerical method is described in very detail and is applied to many models in slow or fast rotation. We show that, although the method is perturbative, it gives accurate results for all practical purposes and it should prove an efficient tool for computing rapidly rotating pulsars.
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta
2015-08-01
What physical processes regulate star formation in dense environments? Understanding why galaxy evolution is environment dependent is one of the key questions of current astrophysics. I will present the first characterization of the spatial distribution of star formation in cluster galaxies at z~0.5, in order to quantify the role of different physical processes that are believed to be responsible for shutting down star formation. The analysis makes use of data from the Grism Lens-Amplified Survey from Space (GLASS), a large HST cycle-21 program targeting 10 massive galaxy clusters with extensive HST imaging from CLASH and the Frontier Field Initiative. The program consists of 140 primary and 140 parallel orbits of near-infrared WCF3 and optical ACS slitless grism observations, which result in 3D spectroscopy of hundreds of galaxies. The grism data are used to produce spatially resolved maps of the star formation density, while the stellar mass density and optical surface brightness are obtained from multiband imaging. I will describe quantitative measures of the spatial location and extend of the star formation rate, showing that about half of the cluster members with significant Halpha detection have diffused star formation, larger than the optical counterpart. This suggests that star formation occurs out to larger radii than the rest frame continuum. For some systems, nuclear star forming regions are found. I will also present a comparison between the Halpha distribution observed in cluster and field galaxies. The characterization of the spatial distribution of Halpha provides a new window, yet poorly exploited, on the mechanisms that regulate star formation and morphological transformation in dense environments.
NASA Astrophysics Data System (ADS)
Carpenter, Kenneth G.; Ayres, T. R.; Nielsen, K. E.; Kober, G. V.; Wahlgren, G. M.; Adelman, S. J.; Cowley, C. R.
2014-01-01
The "Advanced Spectral Library (ASTRAL) Project: Hot Stars" is a Hubble Space Telescope (HST) Cycle 21 Treasury Program (GO-13346: Ayres PI). It is designed to collect a definitive set of representative, high-resolution ( 30,000-100,000), high signal/noise (S/N>100), and full UV coverage 1200 - 3000 A) spectra of 21 early-type stars, utilizing the high-performance Space Telescope Imaging Spectrograph (STIS). The targets span the range of spectral types between early-O and early-A, including both main sequence and evolved stars, fast and slow rotators, as well as chemically peculiar (CP) and magnetic objects. These extremely high-quality STIS UV echelle spectra will be available from the HST archive and, in post-processed and merged form, at http://casa.colorado.edu ayres/ASTRAL/. The UV "atlases" produced by this program will enable investigations of a broad range of problems -- stellar, interstellar, and beyond -- for many years to come. We offer a first look at one of the earliest datasets to come out of this observing program, a "high definition" UV spectrum of the Ap star HR 465, which was chosen as a prototypical example of an A-type magnetic CP star. HR 465 has a global magnetic field of ~2200 Gauss. Earlier analyses of IUE spectra show strong iron-peak element lines, along with heavy elements such as Ga and Pt, while being deficient in the abundance of some ions of low atomic number, such as carbon. We demonstrate the high quality of the ASTRAL data and present the identification of spectral lines for a number of elements. By comparison of the observed spectra with calculated spectra, we also provide estimates of element abundances, emphasizing heavy elements, and place these measurements in the context of earlier results for this and other Ap stars.
NASA Astrophysics Data System (ADS)
Jones, M. I.; Brahm, R.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Melo, C. H. F.; Vos, J.; Rojo, P.
2017-06-01
We report the discovery of a substellar companion around the giant star HIP 67537. Based on precision radial velocity measurements from CHIRON and FEROS high-resolution spectroscopic data, we derived the following orbital elements for HIP 67537 b: mb sin I = 11.1+0.4-1.1Mjup, a =4.9+0.14-0.13 AU and e = 0.59+0.05-0.02 . Considering random inclination angles, this object has ≳65% probability to be above the theoretical deuterium-burning limit, thus it is one of the few known objects in the planet to brown-dwarf (BD) transition region. In addition, we analyzed the Hipparcos astrometric data of this star, from which we derived a minimum inclination angle for the companion of 2 deg. This value corresponds to an upper mass limit of 0.3 M⊙, therefore the probability that HIP 67537 b is stellar in nature is ≲7%. The large mass of the host star and the high orbital eccentricity makes HIP 67537 b a very interesting and rare substellar object. This is the second candidate companion in the brown dwarf desert detected in the sample of intermediate-mass stars targeted by the EXoPlanets aRound Evolved StarS (EXPRESS) radial velocity program, which corresponds to a detection fraction of f = +2.0-0.5 %. This value is larger than the fraction observed in solar-type stars, providing new observational evidence of an enhanced formation efficiency of massive substellar companions in massive disks. Finally, we speculate about different formation channels for this object. Based on observations collected at La Silla - Paranal Observatory under programs ID's 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345 and through the Chilean Telescope Time under programs ID's CN-12A-073, CN-12B-047, CN-13A-111, CN-2013B-51, CN-2014A-52, CN-15A-48, CN-15B-25 and CN-16A-13.
NASA Astrophysics Data System (ADS)
Furlan, E.; Ciardi, D. R.; Everett, M. E.; Saylors, M.; Teske, J. K.; Horch, E. P.; Howell, S. B.; van Belle, G. T.; Hirsch, L. A.; Gautier, T. N., III; Adams, E. R.; Barrado, D.; Cartier, K. M. S.; Dressing, C. D.; Dupree, A. K.; Gilliland, R. L.; Lillo-Box, J.; Lucas, P. W.; Wang, J.
2017-02-01
We present results from high-resolution, optical to near-IR imaging of host stars of Kepler Objects of Interest (KOIs), identified in the original Kepler field. Part of the data were obtained under the Kepler imaging follow-up observation program over six years (2009-2015). Almost 90% of stars that are hosts to planet candidates or confirmed planets were observed. We combine measurements of companions to KOI host stars from different bands to create a comprehensive catalog of projected separations, position angles, and magnitude differences for all detected companion stars (some of which may not be bound). Our compilation includes 2297 companions around 1903 primary stars. From high-resolution imaging, we find that ˜10% (˜30%) of the observed stars have at least one companion detected within 1″ (4″). The true fraction of systems with close (≲4″) companions is larger than the observed one due to the limited sensitivities of the imaging data. We derive correction factors for planet radii caused by the dilution of the transit depth: assuming that planets orbit the primary stars or the brightest companion stars, the average correction factors are 1.06 and 3.09, respectively. The true effect of transit dilution lies in between these two cases and varies with each system. Applying these factors to planet radii decreases the number of KOI planets with radii smaller than 2 {R}\\oplus by ˜2%-23% and thus affects planet occurrence rates. This effect will also be important for the yield of small planets from future transit missions such as TESS.
Hα Monitoring of Early-Type Emission Line Stars
NASA Astrophysics Data System (ADS)
Souza, Steven P.; Boettcher, E.; Wilson, S.; Hosek, M.
2011-05-01
We have begun a narrowband imaging program to monitor Hα emission in early-type stars in young open clusters and associations. A minority of early-type stars, particularly Be stars, show Hα in emission due to extended atmospheres and non-equilibrium conditions. Emission features commonly vary irregularly over a range of timescales (Porter, J.M. & Rivinus, T., P.A.S.P. 115:1153-1170, 2003). Some of the brightest such stars, e.g. γ Cas, have been spectroscopically monitored for Hα variability to help constrain models of the unstable disk, but there is relatively little ongoing monitoring in samples including fainter stars (Peters, G., Be Star Newsletter 39:3, 2009). Our program uses matched 5nm-wide on-band (656nm) and off-band (645nm) filters, in conjunction with the Hopkins Observatory 0.6-m telescope and CCD camera. Aperture photometry is done on all early-type stars in each frame, and results expressed as on-band to off-band ratios. Though wavelength-dependent information is lost compared with spectroscopy, imaging allows us to observe much fainter (and therefore many more) objects. Observing young clusters, rather than individual target stars, allows us to record multiple known and candidate emission line stars per frame, and provides multiple "normal" reference stars of similar spectral type. Observations began in the summer of 2010. This project has the potential to produce significant amounts of raw data, so a semi-automated data reduction process has been developed, including astrometric and photometric tasks. Early results, including some preliminary light curves and recovery of known Be stars at least as faint as R=13.9, are presented. We gratefully acknowledge support for student research through an REU grant to the Keck Northeast Astronomy Consortium from the National Science Foundation, and from the Division III Research Funding Committee of Williams College.
Music and Astronomy Under the Stars - 2009 Update
NASA Astrophysics Data System (ADS)
Lubowich, Donald A.
2010-01-01
Bring telescope to where the people are! Music and Astronomy Under the Stars is a three-year NASA-funded outreach program at parks during and after concerts and family events - a Halloween Spooky Garden Walk. While there have been many outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience - music lovers who attend summer concerts held in community parks. These music lovers who may never have visited a science museum, planetarium, or star party are exposed to telescope observations and astronomy information with no additional travel costs. Music and Astronomy Under the Stars increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. This program includes solar observing before the concerts, telescope observations including a live image projection system, an astronomical video presentation, and astronomy banners/posters. Approximately 500 - 16,000 people attended each event and 25% to 50% of the people at each event participated in the astronomy program. This program also reached underrepresented and underserved groups (women, minorities, older adults). The target audience is 2,900,000 people, which is larger than combined population of Atlanta, Boston, Denver, Minneapolis, and San Francisco. Although eleven events were planned in 2009, two were canceled due to rain and our largest event, the NY Philharmonic in the Park (attended by 67,000 people in 2008), was cancelled for financial reasons. Our largest event in 2009 was the Tanglewood Music Festival, Lenox MA, attended by 16,000 people where 5000 people participated in astronomy activities. The Amateur Observers' Society of NY assisted with the NY concerts and the Springfield STARS club assisted at Tanglewood. 1500 people looked through telescopes at the Halloween program (6000 saw the posters). In 2009 over 15,000 people participated in these astronomy activities which were attended by approximately 50,000 people.
Carbon Stars In Andromeda. II. Demographics and Photometric Properties
NASA Astrophysics Data System (ADS)
Guhathakurta, Puragra; Hamren, K.; Dorman, C.; Toloba, E.; Seth, A.; Dalcanton, J.; Nayak, A.; PHAT Collaboration; SPLASH Collaboration
2014-01-01
This is the second of two talks about a sample of newly-discovered carbon stars in the Andromeda galaxy (M31). As explained in the first talk, these stars were identified on the basis of their spectroscopic characteristics using Keck/DEIMOS spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey. We explore the physical properties of strong and weak carbon stars using photometric data from a Hubble Space Telescope Multi-Cycle Treasury program: Panchromatic Hubble Andromeda Treasury (PHAT). The PHAT data set includes deep photometry in six filters: two in the ultraviolet, two in the optical, and two in the near infrared. The carbon stars appear to be in the asymptotic giant branch stage of their evolution as evidenced by the fact that they lie above the tip of the red giant branch and are cleanly separated from normal (i.e., oxygen-rich) giants in color-magnitude diagrams. We study the spatial distribution of carbon stars in M31 and use kinematics to determine whether they belong to M31's thin disk, thick disk, or spheroid. These carbon stars serve as highly visible tracers of the intermediate-mass, intermediate-age stellar population in M31; they are important markers in the study of the star-formation history of the galaxy. This research was part of the SPLASH and PHAT collaboration. We are grateful to the National Science Foundation and NASA for funding support. AN's participation was under the auspices of UCSC's Science Internship Program.
From hadrons to quarks in neutron stars: a review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru
In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Furthermore, programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. Atmore » the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors.« less
From hadrons to quarks in neutron stars: a review
Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; ...
2018-03-27
In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Furthermore, programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. Atmore » the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors.« less
Chang, Chin-Tung; Chen, Yung-Chang; Fang, Ji-Tseng; Huang, Chiu-Ching
2002-05-01
Star fruit intoxication is a rare cause of consciousness disturbance in patients with renal failure. Most cases in the literature are uremic patients on maintenance dialysis. We present a patient with chronic renal failure, who was not on dialysis program yet, suffered from star fruit intoxication with presentation of consciousness disturbance and successfully managed by a session of hemodialysis.
ERIC Educational Resources Information Center
Smith, Albert, Jr.; Oaks, Merrill
The documents in this collection provide information about the Center for the Study and Teaching of At-Risk Students (C-STARS), a center committed to meeting the challenge of providing integrated services for at-risk youth and their families. Because C-STARS is housed in a university setting, it has the opportunity to promote interprofessional and…
YoungStar in Milwaukee County: An Initial Progress Report as of July 2011
ERIC Educational Resources Information Center
Edie, Dave
2011-01-01
YoungStar is a program of the Department of Children and Families (DCF) created to improve the quality of child care for Wisconsin children. YoungStar is designed to: (1) Evaluate and rate the quality of care given by child care providers; (2) Help parents choose the best child care for their kids; (3) Support providers with tools and training to…
YoungStar in Wisconsin: An Initial Progress Report as of July 2011
ERIC Educational Resources Information Center
Edie, Dave
2011-01-01
YoungStar is a program of the Department of Children and Families (DCF) created to improve the quality of child care for Wisconsin children. YoungStar is designed to: (1) Evaluate and rate the quality of care given by child care providers; (2) Help parents choose the best child care for their kids; (3) Support providers with tools and training to…
ERIC Educational Resources Information Center
Johnson, Mike
The manual provides information to assist administrators in deciding whether to adopt and implement the STARS program, a grade 9 and 10 science, math, and language arts curriculum designed to provide Kodiak Island, Alaska, students with academic skills, vocational training, and village skills to be successful whether they choose to go to college,…
1972-01-01
This photograph describes details of the telescopic camera for ultraviolet star photography for Skylab's Ultraviolet Panorama experiment (S183) placed in the Skylab airlock. The S183 experiment was designed to obtain ultraviolet photographs at three wavelengths of hot stars, clusters of stars, large stellar clouds in the Milky Way, and nuclei of other galaxies. The Marshall Space Flight Center had program responsibility for the development of Skylab hardware and experiments.
Beryllium and Boron abundances in population II stars
NASA Technical Reports Server (NTRS)
1995-01-01
The scientific focus of this program was to undertake UV spectroscopic abundance analyses of extremely metal poor stars with attention to determining abundances of light elements such as beryllium and boron. The abundances are likely to reflect primordial abundances within the early galaxy and help to constrain models for early galactic nucleosynthesis. The general metal abundances of these stars are also important for understanding stellar evolution.
The Space-Time Asymmetry Research (STAR) program
NASA Astrophysics Data System (ADS)
Buchman, Sasha
Stanford University, NASA Ames, and international partners propose the Space-Time Asymme-try Research (STAR) program, a series of three Science and Technology Development Missions, which will probe the fundamental relationships between space, time and gravity. What is the nature of space-time? Is space truly isotropic? Is the speed of light truly isotropic? If not, what is its direction and location dependency? What are the answers beyond Einstein? How will gravity and the standard model ultimately be combined? The first mission, STAR-1, will measure the absolute anisotropy of the velocity of light to one part in 1017 , derive the Kennedy-Thorndike (KT) coefficient to 7x10-10 (150-fold improvement over modern ground measurements), derive the Michelson-Morley (MM) coefficient to 10-11 (confirming the ground measurements), and derive the coefficients of Lorentz violation in the Standard Model Exten-sion (SME), in the range 7x10-17 to 10-13 (an order of magnitude improvement over ground measurements). The follow-on missions will achieve a factor of 100 higher sensitivities. The core instruments are high stability optical cavities and high accuracy gas spectroscopy frequency standards using the "NICE-OHMS technique. STAR-1 is accomplished with a fully redundant instrument flown on a standard bus, spin-stabilized spacecraft with a mission lifetime of two years. Spacecraft and instrument have a total mass of less than 180 kg and consume less than 200 W of power. STAR-1 would launch in 2015 as a secondary payload in a 650 km, sun-synchronous orbit. We describe the STAR-1 mission in detail and the STAR series in general, with a focus on how each mission will build on the development and success of the previous missions, methodically enhancing both the capabilities of the STAR instrument suite and our understanding of this important field. By coupling state-of-the-art scientific instrumentation with proven and cost-effective small satellite technology in an environment designed for re-search and leadership participation by university students the STAR program will bring new answers to some of the most important physics questions of our time -questions that have faced physicists for over 100 years.
NASA Astrophysics Data System (ADS)
Harshaw, Richard
2018-04-01
In the winter and spring of 2017, an aggressive observing program of measuring close double stars with speckle interferometry and CCD imaging was undertaken at Brilliant Sky Observatory, my observing site in Cave Creek, Arizona. A total of 596 stars were observed, 8 of which were rejected for various reasons, leaving 588 pairs. Of these, 427 were observed and measured with speckle interferometry, while the remaining 161 were measured with a CCD. This paper reports the results of the observations of the 427 speckle cases. A separate paper in this issue will report the CCD measurements of the 161 other pairs.
NASA Astrophysics Data System (ADS)
Harshaw, Richard
2018-04-01
In the winter and spring of 2017, an aggressive observing program of measuring close double stars with speckle interferometry and CCD imaging was undertaken at Brilliant Sky Observatory, my observing site in Cave Creek, Arizona. A total of 596 stars were observed, 8 of which were rejected for various reasons, leaving 588 pairs. Of these, 427 were observed and measured with speckle interferometry, while the remaining 161 were measured with a CCD. This paper reports the results of the observations of the 161 CCD cases. A separate paper in this issue will report the speckle measurements of the 427 other pairs.
NASA Technical Reports Server (NTRS)
1976-01-01
The performance capability of each of two precision attitude determination systems (PADS), one using a strapdown star tracker, and the other using a single-axis gimbal star tracker was measured in the laboratory under simulated orbit conditions. The primary focus of the evaluation was on the contribution to the total system accuracy by the star trackers, and the effectiveness of the software algorithms in functioning with actual sensor signals. A brief description of PADS, the laboratory test configuration and the test facility, is given along with a discussion of the data handling and display, laboratory computer programs, PADS performance evaluation programs, and the strapdown and gimbal system tests. Results are presented and discussed.
Rotation periods of open-cluster stars, 3
NASA Technical Reports Server (NTRS)
Prosser, Charles F.; Shetrone, Matthew D.; Dasgupta, Amil; Backman, Dana E.; Laaksonen, Bentley D.; Baker, Shawn W.; Marschall, Laurence A.; Whitney, Barbara A.; Kuijken, Konrad; Stauffer, John R.
1995-01-01
We present the results from a photometric monitoring program of 15 open cluster stars and one weak-lined T Tauri star during late 1993/early 1994. Several show rotators which are members of the Alpha Persei, Pleiades, and Hyades open clusters have been monitored and period estimates derived. Using all available Pleiades stars with photometric periods together with current X-ray flux measurements, we illustrate the X-ray activity/rotation relation among Pleiades late-G/K dwarfs. The data show a clear break in the rotation-activity relation around P approximately 6-7 days -- in general accordance with previous results using more heterogeneous samples of G/K stars.
Crystallization of the Pulsating White Dwarf Star, BPM 37093
NASA Astrophysics Data System (ADS)
Salois, Amee; Winget, D.
2010-01-01
BPM 37093 is unique among pulsating white dwarf stars because it is expected to have a highly crystallized interior. By understanding how this star is crystallizing, we gain a better understanding of extreme physics. Theoretical models of the evolution of white dwarf stars suggest that they crystallize from the inside out. The pulsations of the star, which we see as intensity variations, cannot penetrate this crystallized interior. Therefore, as the star crystallizes there is a smaller volume for the propagation of the pulsations and the pulsation periods are changed accordingly. We studied these changes in the periods of the pulsations of the star over ten weeks during the McDonald Observatory Research Experience for Undergraduates Program. By studying the changes in the pulsations periods of the star we can determine the mass fraction of the star that is crystallized. Comparing Fourier transforms of our observed light curves taken in 2004 and 2005 at CTIO with data taken in 1998 and 1999 by Kanaan et al. we hope to see the changes that have occurred in the star as well as determining a better approximation of the star's crystallized mass fraction.
The BRITE spectropolarimetric survey
NASA Astrophysics Data System (ADS)
Neiner, C.; Lèbre, A.
2014-12-01
The BRITE constellation of nanosatellites observes very bright stars to perform seismology. We have set up a spectropolarimetric survey of all BRITE targets, i.e. all ˜600 stars brighter than V=4, with Narval at TBL, ESPaDOnS at CFHT and HarpsPol at ESO. We plan to reach a magnetic detection threshold of B_{pol} = 50 G for stars hotter than F5 and B_{pol} = 5 G for cooler stars. This program will allow us to combine magnetic information with the BRITE seismic information and obtain a better interpretation and modelling of the internal structure of the stars. It will also lead to new discoveries of very bright magnetic stars, which are unique targets for follow-up and multi-technique studies.
Operation Heli-STAR - Atlanta Communications Experiment (ACE). Volume 9
NASA Technical Reports Server (NTRS)
1996-01-01
Operation Heli-STAR (Helicopter Short-Haul Transportation and Aviation Research) was established and operated in Atlanta, Georgia, during the period of the 1996 Centennial Olympic Games. Heli-STAR had three major thrusts: (1) the establishment and operation of a helicopter-based cargo transportation system, (2) the management of low-altitude air traffic in the airspace of an urban area, and (3) the collection and analysis of research and development data associated with items 1 and 2. Heli-STAR was a cooperative industry/government program that included parcel package shippers and couriers in the Atlanta area, the helicopter industry, aviation electronics manufacturers, the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA), and support contractors. Several detailed reports have been produced as a result of Operation Heli-STAR. These include four reports on acoustic measurements and associated analyses, and reports on the Heli-STAR tracking data including the data processing and retrieval system, the Heli-STAR cargo simulation, and the community response system. In addition, NASA's Advanced General Aviation Transport Experiments (AGATE) program has produced a report describing the Atlanta Communications Experiment (ACE) which produced the avionics and ground equipment using automatic dependent surveillance-broadcast (ADS-B) technology. This latter report is restricted to organizations belonging to NASA's AGATE industry consortium. A complete list of these reports is shown on the following page.
Kepler Mission: Detecting Earth-sized Planets in Habitable Zones
NASA Technical Reports Server (NTRS)
Kondo, Yoji; Fisher, Richard R. (Technical Monitor)
2001-01-01
The Kepler Mission, which is presently in Phase A, is being proposed for launch in 5 years for a 4-year mission to determine the frequency of Earth-sized or larger planets in habitable zones in our galaxy. Kepler will be placed in an Earth-trailing orbit to provide stable physical environments for the sensitive scientific instruments. The satellite is equipped with a photometric system with the precision of 10E-5, which should be sufficient for detecting the transits of Earth-sized or larger planets in front of dwarf stars similar to the Sun. Approximately 100,000 or more sun-like stars brighter than the 14th apparently magnitude will be monitored continuously for 4 years in a preselected region of the sky, which is about 100 square degrees in size. In addition, Kepler will have a participating scientist program that will enable research in intrinsic variable stars, interacting binaries including cataclysmic stars and X-ray binaries, and a large number of solar analogs in our galaxy. Several ten thousand additional stars may be investigated in the guest observer program open to the whole world.
NASA Astrophysics Data System (ADS)
Sargent, Benjamin; Srinivasan, Sundar; Speck, Angela K.; Volk, Kevin; Kemper, Ciska; Reach, William; Lagadec, Eric; Bernard, Jean-Philippe; McDonald, Iain; Meixner, Margaret; Sloan, Greg; Jones, Olivia
2015-08-01
We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of red supergiant (RSG) and oxygen-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud galaxies and in various Milky Way globular clusters. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper), the Spitzer program SMC-Spec (PI: G. Sloan), and other archival Spitzer-IRS programs. The broad 10 and 20 μm emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars and assess effects of varying metallicity (LMC versus SMC versus Milky Way globular cluster) and other properties (mass-loss rate, luminosity, etc.) on the dust originating from these stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.
Astronomical Association of Queensland Program of Measurements of Seven Southern Multiple Stars
NASA Astrophysics Data System (ADS)
Jenkinson, Graeme
2016-04-01
This paper presents the results of a mid-2014 program of the Astronomical Association of Queensland of photographic measurements of seven southern multiple stars. The images were obtained using a Meade DSI CCD camera in conjunction with an equatorially mounted 150mm F8 refractor. For each target pair, either a 2x or 5x barlow lens was used as required. Image processing was carried out using Losse's REDUC software.
NASA Technical Reports Server (NTRS)
Svalbonas, V.
1973-01-01
The theoretical analysis background for the STARS-2 (shell theory automated for rotational structures) program is presented. The theory involved in the axisymmetric nonlinear and unsymmetric linear static analyses, and the stability and vibrations (including critical rotation speed) analyses involving axisymmetric prestress are discussed. The theory for nonlinear static, stability, and vibrations analyses, involving shells with unsymmetric loadings are included.
Cosmic Origins Program Annual Technology Report
NASA Technical Reports Server (NTRS)
Pham, Bruce Thai; Neff, Susan Gale
2015-01-01
What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy, from antiquity to the present.
Polarimetric measures of selected variable stars
NASA Astrophysics Data System (ADS)
Elias, N. M., II; Koch, R. H.; Pfeiffer, R. J.
2008-10-01
Aims: The purpose of this paper is to summarize and interpret unpublished optical polarimetry for numerous program stars that were observed over the past decades at the Flower and Cook Observatory (FCO), University of Pennsylvania. We also make the individual calibrated measures available for long-term comparisons with new data. Methods: We employ three techniques to search for intrinsic variability within each dataset. First, when the observations for a given star and filter are numerous enough and when a period has been determined previously via photometry or spectroscopy, the polarimetric measures are plotted versus phase. If a statistically significant pattern appears, we attribute it to intrinsic variability. Second, we compare means of the FCO data to means from other workers. If they are statistically different, we conclude that the object exhibits long-term intrinsic variability. Third, we calculate the standard deviation for each program star and filter and compare it to the standard deviation estimated from comparable polarimetric standards. If the standard deviation of the program star is at least three times the value estimated from the polarimetric standards, the former is considered intrinsically variable. All of these statements are strengthened when variability appears in multiple filters. Results: We confirm the existence of an electron-scattering cloud at L1 in the β Per system, and find that LY Aur and HR 8281 possess scattering envelopes. Intrinsic polarization was detected for Nova Cas 1993 as early as day +3. We detected polarization variability near the primary eclipse of 32 Cyg. There is marginal evidence for polarization variability of the β Cepheid type star γ Peg. The other objects of this class exhibited no variability. All but one of the β Cepheid objects (ES Vul) fall on a tight linear relationship between linear polarization and E(B-V), in spite of the fact that the stars lay along different lines of sight. This dependence falls slightly below the classical upper limit of Serkowski, Mathewson, and Ford. The table, which contains the polarization observations of the program stars discussed in this paper, is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/489/911
Star Identification Without Attitude Knowledge: Testing with X-Ray Timing Experiment Data
NASA Technical Reports Server (NTRS)
Ketchum, Eleanor
1997-01-01
As the budget for the scientific exploration of space shrinks, the need for more autonomous spacecraft increases. For a spacecraft with a star tracker, the ability to determinate attitude from a lost in space state autonomously requires the capability to identify the stars in the field of view of the tracker. Although there have been efforts to produce autonomous star trackers which perform this function internally, many programs cannot afford these sensors. The author previously presented a method for identifying stars without a priori attitude knowledge specifically targeted for onboard computers as it minimizes the necessary computer storage. The method has previously been tested with simulated data. This paper provides results of star identification without a priori attitude knowledge using flight data from two 8 by 8 degree charge coupled device star trackers onboard the X-Ray Timing Experiment.
Speckle interferometry of Hipparcos link stars. III
NASA Technical Reports Server (NTRS)
White, Graeme L.; Jauncey, David L.; Reynolds, John E.; Blackmore, David R.; Matcher, Steven J.
1991-01-01
A third list of stars is presented which have been tested by speckle interferometry for use in the Hubble Space Telescope link between the Hipparcos astrometric reference frame and the extragalactic VLBI reference frame. Structural information on angular scales of 0.15-1.2 arcsec for 34 Southern Hemisphere stars is reported from observations made with the Imperial College Speckle Interferometer mounted on the Mount Stromlo 1.9-m telescope. Twenty-four percent of the stars (8 out of the 34) show evidence of multiplicity, in agreement with previous observations in this program.
The Center for Star Formation Studies
NASA Technical Reports Server (NTRS)
Hollenbach, D.; Bell, K. R.; Laughlin, G.
2002-01-01
The Center for Star Formation Studies, a consortium of scientists from the Space Science Division at Ames and the Astronomy Departments of the University of California at Berkeley and Santa Cruz, conducts a coordinated program of theoretical research on star and planet formation. Under the directorship of D. Hollenbach (Ames), the Center supports postdoctoral fellows, senior visitors, and students; meets regularly at Ames to exchange ideas and to present informal seminars on current research; hosts visits of outside scientists; and conducts a week-long workshop on selected aspects of star and planet formation each summer.
Early Results from NICER Observations of Accreting Neutron Stars
NASA Astrophysics Data System (ADS)
Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.
2018-01-01
The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.
What drives the formation of massive stars and clusters?
NASA Astrophysics Data System (ADS)
Ochsendorf, Bram; Meixner, Margaret; Roman-Duval, Julia; Evans, Neal J., II; Rahman, Mubdi; Zinnecker, Hans; Nayak, Omnarayani; Bally, John; Jones, Olivia C.; Indebetouw, Remy
2018-01-01
Galaxy-wide surveys allow to study star formation in unprecedented ways. In this talk, I will discuss our analysis of the Large Magellanic Cloud (LMC) and the Milky Way, and illustrate how studying both the large and small scale structure of galaxies are critical in addressing the question: what drives the formation of massive stars and clusters?I will show that ‘turbulence-regulated’ star formation models do not reproduce massive star formation properties of GMCs in the LMC and Milky Way: this suggests that theory currently does not capture the full complexity of star formation on small scales. I will also report on the discovery of a massive star forming complex in the LMC, which in many ways manifests itself as an embedded twin of 30 Doradus: this may shed light on the formation of R136 and 'Super Star Clusters' in general. Finally, I will highlight what we can expect in the next years in the field of star formation with large-scale sky surveys, ALMA, and our JWST-GTO program.
The Mechanism for Energy Buildup in the Solar Corona
NASA Astrophysics Data System (ADS)
Antiochos, Spiro; Knizhnik, Kalman; DeVore, Richard
2017-10-01
Magnetic reconnection and helicity conservation are two of the most important basic processes determining the structure and dynamics of laboratory and space plasmas. The most energetic dynamics in the solar system are the giant CMEs/flares that produce the most dangerous space weather at Earth, yet may also have been essential for the origin of life. The origin of these explosions is that the lowest-lying magnetic flux in the Sun's corona undergoes the continual buildup of stress and free energy that can be released only through explosive ejection. We perform MHD simulations of a coronal volume driven by quasi-random boundary flows designed to model the processes by which the solar interior drives the corona. Our simulations are uniquely accurate in preserving magnetic helicity. We show that even though small-scale stress is injected randomly throughout the corona, the net result of magnetic reconnection is a coherent stressing of the lowest-lying field lines. This highly counter-intuitive result - magnetic stress builds up locally rather than spreading out to a minimum energy state - is the fundamental mechanism responsible for the Sun's magnetic explosions. It is likely to be a mechanism that is ubiquitous throughout laboratory and space plasmas. This work was supported by the NASA LWS and SR Programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn, E-mail: scott.engle@villanova.edu
As part of Villanova’s Living with a Red Dwarf program, we have obtained UV, X-ray, and optical data of the Population II red dwarf—Kapteyn’s Star. Kapteyn’s Star is noteworthy for its large proper motions and high radial velocity of ∼+245 km s{sup −1}. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating activity/irradiance–rotation–age relations, and an important test bed for stellar dynamos and the resulting X-ray–UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn’s Star has recently been reported to host two super-Earth candidates, one of whichmore » (Kapteyn b) is orbiting within the habitable zone. However, Robertson et al. questioned the planet’s existence since its orbital period may be an artifact of activity, related to the star’s rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H i Lyα 1215.67 Å emission line can be reliably made, because it is mostly displaced from ISM and geo-coronal sources. Lyα emission dominates the FUV region of cool stars. Our measures can help determine the X-ray–UV effects on planets hosted by Kapteyn’s Star, and planets hosted by other old red dwarfs. Stellar X-ray and Lyα emissions have strong influences on the heating and ionization of upper planetary atmospheres and can (with stellar winds and flares) erode or even eliminate planetary atmospheres. Using our program stars, we have reconstructed the past exposures of Kapteyn’s Star's planets to coronal—chromospheric XUV emissions over time.« less
NASA Technical Reports Server (NTRS)
Warren, W. H., Jr.
1981-01-01
The magnetic tape version of Volume 2 of the University of Michigan systematic reclassification program for the Henry Draper Catalogue (HD) stars is described. Volume 2 contains all HD stars in the declination range -53 degrees to 40 degrees and also exists in printed form.
The Michigan Binary Star Program
NASA Astrophysics Data System (ADS)
Lindner, Rudi P.
2007-07-01
At the end of the nineteenth century, William J. Hussey and Robert G. Aitken, both at Lick Observatory, began a systematic search for unrecorded binary stars with the aid of the 12" and 36" refracting telescopes at Lick Observatory. Aitken's work (and book on binary stars) are well known, Hussey's contributions less so. In 1905 Hussey, a Michigan engineering graduate, returned to direct the Ann Arbor astronomy program, and immediately he began to design new instrumentation for the study of binary stars and to train potential observers. For a time, he spent six months a year at the La Plata Observatory, where he discovered a number of new pairs and decided upon a major southern hemisphere campaign. He spent a decade obtaining the lenses for a large refractor, through the vicissitudes of war and depression. Finally, he obtained a site in South Africa, a 26" refractor, and a small corps of observers, but he died in London en route to fulfill his dream. His right hand man, Richard Rossiter, established the observatory and spent the next thirty years discovering and measuring binary stars: his personal total is a record for the field. This talk is an account of the methods, results, and utility of the extraordinary binary star factory in the veldt.
Spectral Classification of Heavily Reddened Stars by CO Absorption Strength
NASA Astrophysics Data System (ADS)
Garling, Christopher; Bary, Jeffrey S.; Huard, Tracy L.
2017-01-01
The nature of dust grains in dense molecular clouds can be explored by obtaining spectra of giant stars located behind the clouds and examining the wavelength-dependent attentuation of their light. This approach requires the intrinsic spectra of the background stars to be known, which can be achieved by determining their spectral types. In the K-band spectra of cool giant stars, several temperature-sensitive CO absorption bands serve as good spectral type indicators. Taking advantage of the SpeX Infrared Telescope Facility Spectral Library, near-infrared spectra collected with TripleSpec and the 3.5-meter ARC Telescope at Apache Point Observatory, and a previously constructed CO spectral index, we make precise spectral determinations of 20 giant stars located behind two dense cloud cores: CB188 and L429C. With spectral types in hand, we then utilize Markov Chain Monte Carlo techniques to constrain extinctions along these lines of sight. The spectral typing method will be described and assessed as well as its success at finding a couple of incorrectly spectral typed stars in the SpeX Library. Funding for this program was provided by a NSF REU grant to the Keck Northeast Astronomy Consortium and a grant from the NASA Astrophysics Data Analysis Program.
M Stars in the TW Hydra Association: A Chandra Large Program Survey
NASA Astrophysics Data System (ADS)
Punzi, Kristina; Kastner, Joel; Principe, David; Stelzer, Beate; Gorti, Uma; Pascucci, Illaria; Argiroffi, Costanza
2018-01-01
We have conducted a Cycle 18 Chandra Large Program survey of very cool members of the $\\sim$ 8 Myr-old TW Hydra Association (TWA) to extend our previous study of the potential connections between M star disks and X-rays (Kastner et al. 2016, AJ, 152, 3) to the extreme low-mass end of the stellar initial mass function. The spectral types of our targets extend down to the M/L borderline. Thus we can further investigate the potential connection between the intense X-ray emission from young, low-mass stars and the lifetimes of their circumstellar planet-forming discs, as well as better constrain the age at which coronal activity declines for stellar masses approaching the H-burning limit of $\\sim$ 0.08 M$_{\\odot}$. We present preliminary results from the Cycle 18 survey, including X-ray detection statistics and measurements of relative X-ray luminosities and coronal (X-ray) temperatures for those TWA stars detected by Chandra. This research is supported by SAO/CXC grant GO7-18002A and NASA Astrophysics Data Analysis program grants NNX12AH37G and NNX16AG13G to RIT.
Variability of Massive Young Stellar Objects in Cygnus-X
NASA Astrophysics Data System (ADS)
Thomas, Nancy H.; Hora, J. L.; Smith, H. A.
2013-01-01
Young stellar objects (YSOs) are stars in the process of formation. Several recent investigations have shown a high rate of photometric variability in YSOs at near- and mid-infrared wavelengths. Theoretical models for the formation of massive stars (1-10 solar masses) remain highly idealized, and little is known about the mechanisms that produce the variability. An ongoing Spitzer Space Telescope program is studying massive star formation in the Cygnus-X region. In conjunction with the Spitzer observations, we have conducted a ground-based near-infrared observing program of the Cygnus-X DR21 field using PAIRITEL, the automated infrared telescope at Whipple Observatory. Using the Stetson index for variability, we identified variable objects and a number of variable YSOs in our time-series PAIRITEL data of DR21. We have searched for periodicity among our variable objects using the Lomb-Scargle algorithm, and identified periodic variable objects with an average period of 8.07 days. Characterization of these variable and periodic objects will help constrain models of star formation present. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.
NASA Astrophysics Data System (ADS)
Stringfellow, Guy; Gvaramadze, Vasilii
2010-02-01
Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.
LASL benchmark performance 1978. [CDC STAR-100, 6600, 7600, Cyber 73, and CRAY-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKnight, A.L.
1979-08-01
This report presents the results of running several benchmark programs on a CDC STAR-100, a Cray Research CRAY-1, a CDC 6600, a CDC 7600, and a CDC Cyber 73. The benchmark effort included CRAY-1's at several installations running different operating systems and compilers. This benchmark is part of an ongoing program at Los Alamos Scientific Laboratory to collect performance data and monitor the development trend of supercomputers. 3 tables.
NIRCam Coronagraphic Observations of Disks and Planetary Systems
NASA Astrophysics Data System (ADS)
Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team
2017-06-01
The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.
A Road Map for the Exploration of Neighboring Planetary Systems (ExNPS)
NASA Technical Reports Server (NTRS)
Elachi, Charles; Angel, Roger; Beichman, Charles A. (Editor); Boss, Alan; Brown, Robert; Dressler, Alan; Dyson, Freeman; Fanson, James; Ftaclas, Chris; Goad, Lawrence;
1996-01-01
A brown dwarf star having only 20-50 times the mass of Jupiter is located below and to the left of the bright star GL 229 in this image from the Hubble Space Telescope. At the 19 light year distance to GL 229, the 7.7-arcsec separation between the star and the brown dwarf corresponds to roughly the separation between Pluto and the Sun in our Solar System. The goal of the program described in this report is to detect and characterize Earth-like planets around nearby stars where conditions suitable for life might be found. For a star like the Sun located 30 light years away, the appropriate star-planet separation would be almost 100 times closer than seen here for GL 229B.
NASA Technical Reports Server (NTRS)
Kenner, B. G.; Lincoln, N. R.
1979-01-01
The manual is intended to show the revisions and additions to the current STAR FORTRAN. The changes are made to incorporate an FMP (Flow Model Processor) for use in the Numerical Aerodynamic Simulation Facility (NASF) for the purpose of simulating fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The FORTRAN programming language for the STAR-100 computer contains both CDC and unique STAR extensions to the standard FORTRAN. Several of the STAR FORTRAN extensions to standard FOR-TRAN allow the FORTRAN user to exploit the vector processing capabilities of the STAR computer. In STAR FORTRAN, vectors can be expressed with an explicit notation, functions are provided that return vector results, and special call statements enable access to any machine instruction.
Rotation periods of open-cluster stars, 2
NASA Technical Reports Server (NTRS)
Prosser, Charles F.; Shetrone, Matthew D.; Marilli, Ettore; Catalano, Santo; Williams, Scott D.; Backman, Dana E.; Laaksonen, Bentley D.; Adige, Vikram; Marschall, Laurence A.; Stauffer, John R.
1993-01-01
We present the results from a photometric monitoring program of 21 stars observed during 1992 in the Pleiades and Alpha Persei open clusters. Period determinations for 16 stars are given, 13 of which are the first periods reported for these stars. Brightness variations for an additional five cluster stars are also given. One K dwarf member of the alpha Per cluster is observed to have a period of rotation of only 4.39 hr. perhaps the shortest period currently known among BY Draconis variables. The individual photometric measurements have been deposited with the NSSDC. Combining current X-ray flux determinations with known photometric periods, we illustrate the X-ray activity/rotation relation among Pleiades K dwarfs based on available data.
Solar-like stars as seen by CoRoT
NASA Astrophysics Data System (ADS)
Garcia, R. A.; Appourchaux, T.; Baglin, A.; Auvergne, M.; Barban, C.; Baudin, F.; Michel, E.; Mosser, B.; Samadi, R.; Data Analysis Team D. A. T
2008-12-01
For more than a year, photometric high-quality data have been achieved from the CoRoT (COnvection ROtation and Planetary Transits; Baglin et al. 2006, Michel et al. 2008) min- isatellite developed by the French space agency (CNES) in collaboration with the Science Program of ESA, Austria, Belgium, Brazil Germany and Spain. The power spectrum of 4 dif- ferent solar-like stars (stars having sub-surface convective zones showing an acoustic (p) mode spectrum) has been obtained with unprecedented quality allowing the precise study of their seismic properties. These solar-like stars are F stars with masses in the range 1.0 to 1.4 M⊙ and are significantly hotter than the Sun.
Savage, Nora; Thomas, Treye A; Duncan, Jeremiah S
2007-10-01
Since 2002, the US Environmental Protection Agency (EPA) has been funding research on the environmental aspects of nanotechnology through its Science to Achieve Results (STAR) grants program. In total, more than $25 million has been awarded for 86 research projects on the environmental applications and implications of nanotechnology. In the applications area, grantees have produced promising results in green manufacturing, remediation, sensors, and treatment using nanotechnology and nanomaterials. Although there are many potential benefits of nanotechnology, there has also been increasing concern about the environmental and health effects of nanomaterials, and there are significant gaps in the data needed to address these concerns. Research performed by STAR grantees is beginning to address these needs.
Problems and Projects from Astronomy.
ERIC Educational Resources Information Center
Mills, H. R.
1991-01-01
Describes activities to stimulate school astronomy programs. Topics include: counting stars; the Earth's centripetal force; defining astronomical time; three types of sundials; perceptions of star brightness; sunspots and solar radiation; stellar spectroscopy; number-crunching and the molecular structure of the atmosphere; the Earth-Moon common…
Federal Programs in PUHSS: An Evaluation Report.
ERIC Educational Resources Information Center
Phoenix Union High School District, AZ.
The programs described in this report, including the South Mountain High School Reading Program, the Carl Hayden High School Reading Program, the Phoenix Union High School Reading Program, the South Mountain High School Saturation Guidance and Counseling Program (SGCP), the Work Incentive Program (WIN), the Phoenix Union High School Star Reach…
NASA Astrophysics Data System (ADS)
Sargent, Benjamin A.; Srinivasan, S.; Riebel, D.; Boyer, M.; Meixner, M.
2012-01-01
As proposed in our NASA Astrophysics Data Analysis Program (ADAP) proposal, my colleagues and I are studying mass loss from evolved stars. Such stars lose their own mass in their dying stages, and in their expelled winds they form stardust. To model mass loss from these evolved stars, my colleagues and I have constructed GRAMS: the Grid of Red supergiant and Asymptotic giant branch star ModelS. These GRAMS radiative transfer models are fit to optical through mid-infrared photometry of red supergiant (RSG) stars and asymptotic giant branch (AGB) stars. I will discuss our current studies of mass loss from AGB and RSG stars in the Small Magellanic Cloud (SMC), fitting GRAMS models to the photometry of SMC evolved star candidates identified from the SAGE-SMC (PI: K. Gordon) Spitzer Space Telescope Legacy survey. This work will be briefly compared to similar work we have done for the LMC. I will also discuss Spitzer Infrared Spectrograph (IRS) studies of the dust produced by AGB and RSG stars in the LMC. BAS is grateful for support from the NASA-ADAP grant NNX11AB06G.
NASA Astrophysics Data System (ADS)
Keller, John; Rebar, Bryan
2012-11-01
The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.
HI-STAR. Health Improvements through Space Technologies and Resources: Executive Summary
NASA Technical Reports Server (NTRS)
Finarelli, Margaret G.
2002-01-01
Our mission is to develop and promote a global strategy to help combat malaria using space technology. Like the tiny yet powerful mosquito, HI-STAR (Health Improvements Through Space Technologies and Resources) is a small program that aspires to make a difference. Timely detection of malaria danger zones is essential to help health authorities and policy makers make decisions about how to manage limited resources for combating malaria. In 2001, the technical support network for prevention and control of malaria epidemics published a study. HI-STAR focuses on malaria because it is the most common and deadly of the vector-borne diseases. Malaria also shares many commonalities with other diseases, which means the global strategy developed here may also be applicable to other parasitic diseases. HI-STAR would like to contribute to the many malaria groups already making great strides in the fight against malaria. Some examples include: Roll Back Malaria, The Special Program for Research and Training in Tropical Diseases (TDR) and the Multilateral Initiative on Malaria (MIM). Other important groups that are among the first to include space technologies in their model include: The Center for Health Application of Aerospace Related Technologies (CHAART) and Mapping Malaria Risk in Africa (MARA). Malaria is a complex and multi-faceted disease. Combating it must therefore be equally versatile. HI-STAR incorporates an interdisciplinary, international, intercultural approach.called 'Malaria Early Warning Systems; Concepts, Indicators and Partners.' This study, funded by Roll Back Malaria, a World Health Organization initiative, offers a framework for a monitoring and early warning system. HI-STAR seeks to build on this proposal and enhance the space elements of the suggested framework. It is the work of fifty-three professionals and students from the International Space University's 2002 Summer Session Program held in California, USA.
NASA Astrophysics Data System (ADS)
Guinan, Edward
2012-10-01
We propose HST/COS FUV spectrophotometry of a carefully selected sample of 9 dM1-5 stars with recently reliably determined ages ranging from 1-12 Gyr. This program complements our Chandra Cycle 13 program of the same targets to determine their coronal X-ray properties. Ages {of all but one star} have recently been firmly determined from memberships in wide binaries with white dwarf {WD} companions having reliable cooling time+main-sequence evolution ages {Zhao et al. 2012, Garces et al 2011}. Until these studies, reliable age determinations for dM stars >2 Gyr were nearly impossible. However, we can now carry out a comprehensive UV study of dM star atmospheres across nearly the full age-range of the current Universe. The primary goals are 1} to study the evolution of their dynamo-generated X-ray and UV {XUV} emissions with age/rotation and to better define the heating and energetics of their atmospheres {via Age-Rotation-Activity-XUV Irradiance relations} and 2} to study the effects of the XUV radiation on planets hosted by red dwarfs. The COS UV spectral region contains numerous important diagnostic emission lines for characterizing the energy transfer and atmospheric structure, while line ratios yield valuable information about the electron density. Further, these data {when combined with our coronal X-ray measures} are also important for gauging dM star XUV emissions - critical for assessing the photochemical & photoionization evolution of planetary atmospheres and ionospheres that in turn strongly affect the possible development of life on hosted extrasolar planets. We are requesting a total of 19 HST orbits to achieve the science goals of the program.
IMAGES: An IMage Archive Generated for Exoplanet Surveys
NASA Astrophysics Data System (ADS)
Tanner, A.
2010-10-01
In the past few years, there have been a menagerie of high contrast imaging surveys which have resulted in the detection of the first brown dwarfs orbiting main sequence stars and the first directly imaged exo-planetary systems. While these discoveries are scientifically rewarding, they are rare and the majority of the images collected during these surveys show single target stars. In addition, while papers will report the number of companion non-detections down to a sensitivity limit at a specific distance from the star, the corresponding images are rarely made available to the public. To date, such data exists for over a thousand stars. Thus, we are creating IMAGES, the IMage Archive Generated for Exoplanet Searches, as a repository for high contrast images gathered from published direct imaging sub-stellar and exoplanet companion surveys. This database will serve many purposes such as 1) facilitating common proper motion confirmation for candidate companions, 2) reducing the number of redundant observations of non-detection fields, 3) providing multiplicity precursor information to better select targets for future exoplanet missions, 4) providing stringent limits on the companion fraction of stars for a wide range of age, spectral type and star formation environment, and 5) provide multi-epoch images of stars with known companions for orbital monitoring. This database will be open to the public and will be searchable and sortable and will be extremely useful for future direct imaging programs such as GPI and SPHERE as well as future planet search programs such as JWST and SIM.
NASA Astrophysics Data System (ADS)
Zha, Wangmei
2018-02-01
The Solenoidal Tracker at RHIC (STAR) experiment takes advantage of its excellent tracking and particle identification capabilities at mid-rapidity to explore the properties of strongly interacting QCD matter created in heavy-ion collisions at RHIC. The STAR collaboration presented 7 parallel and 2 plenary talks at Strangeness in Quark Matter 2017 and covered various topics including heavy flavor measurements, bulk observables, electro-magnetic probes and the upgrade program. This paper highlights some of the selected results.
Electron lithography STAR design guidelines. Part 1: The STAR user design manual
NASA Technical Reports Server (NTRS)
Trotter, J. D.; Newman, W.
1982-01-01
The STAR system developed by NASA enables any user with a logic diagram to design a semicustom digital MOS integrated circuit. The system is comprised of a library of standard logic cells and computer programs to place, route, and display designs implemented with cells from the library. Library cells of the CMOS metal gate and CMOS silicon gate technologies were simulated using SPICE, and the results are shown and compared.
Ultraviolet photometry from the orbiting astronomical observatory. 8: The blue Ap stars
NASA Technical Reports Server (NTRS)
Leckrone, D. S.
1973-01-01
The filter photometers in the Wisconsin Experiment Package on OAO-2 were used to obtain data for a carefully selected set of 24 blue Ap stars and 31 comparison standard B and A dwarfs and giants for a program of relative photometry. Observations were made in seven bandpasses over the effective wavelength range 1430A-4250A. The Ap stars observed include members of the Si, Hg-Mn and Sr-Cr-Eu peculiarity classes. Most of them are too blue in B-V for their published MK spectral classes. The blue Ap stars are markedly deficient in emitted ultraviolet flux and are underluminous as compared to normal stars with the same UBV colors. The Hg-Mn stars appear less flux deficient in the ultraviolet for their UBV colors than do Si or Sr-cr-Eu stars. Most of the Ap stars observed possess ultraviolet flux distributions, or ultraviolet color temperatures, consistent with their published MK spectral classes to well within the classification uncertainties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimring, Mark
2011-03-18
Launched in 2006, over 8,700 residential energy upgrades have been completed through Austin Energy's Home Performance with Energy Star (HPwES) program. The program's lending partner, Velocity Credit Union (VCU) has originated almost 1,800 loans, totaling approximately $12.5 million. Residential energy efficiency loans are typically small, and expensive to originate and service relative to larger financing products. National lenders have been hesitant to deliver attractive loan products to this small, but growing, residential market. In response, energy efficiency programs have found ways to partner with local and regional banks, credit unions, community development finance institutions (CDFIs) and co-ops to deliver energymore » efficiency financing to homeowners. VCU's experience with the Austin Energy HPwES program highlights the potential benefits of energy efficiency programs to a lending partner.« less
NASA Technical Reports Server (NTRS)
1975-01-01
NASA structural analysis (NASTRAN) computer program is operational on three series of third generation computers. The problem and difficulties involved in adapting NASTRAN to a fourth generation computer, namely, the Control Data STAR-100, are discussed. The salient features which distinguish Control Data STAR-100 from third generation computers are hardware vector processing capability and virtual memory. A feasible method is presented for transferring NASTRAN to Control Data STAR-100 system while retaining much of the machine-independent code. Basic matrix operations are noted for optimization for vector processing.
Multicolor optical polarimetry of reddened stars in the small Magellanic cloud
NASA Technical Reports Server (NTRS)
Magalhaes, Antonio M.; Coyne, G. V.; Piirola, Valero; Rodrigues, C. V.
1989-01-01
First results of an on-going program to determine the wavelength dependence of the interstellar optical polarization of reddened stars in the Small Magellanic Cloud (SMC) are presented. IUE observations of reddened stars in the SMC (Bouchet et al. 1985) generally show marked differences in the extinction law as compared to both the Galaxy and the Large Megallanic Cloud. The aim here is to determine the wavelength dependence of the optical linear polarization in the direction of several such stars in the SMC in order to further constrain the dust composition and size distribution in that galaxy.
Star-Formation Histories of MUSCEL Galaxies
NASA Astrophysics Data System (ADS)
Young, Jason; Kuzio de Naray, Rachel; Xuesong Wang, Sharon
2018-01-01
The MUSCEL program (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies) uses combined ground-based/space-based data to determine the spatially resolved star-formation histories of low surface brightness (LSB) galaxies. LSB galaxies are paradoxical in that they are gas rich but have low star-formation rates. Here we present our observations and fitting technique, and the derived histories for select MUSCEL galaxies. It is our aim to use these histories in tandem with velocity fields and metallicity profiles to determine the physical mechanism(s) that give these faint galaxies low star-formation rates despite ample gas supplies.
Hazardous Early Days In (and Beyond) the Habitable Zones Around Ultra-Low-Mass Stars
NASA Astrophysics Data System (ADS)
Kastner, Joel
Although a majority of stars in the solar neighborhood are of mid- to late-M type, the magnetically-induced coronal (X-ray) and chromospheric (UV, H-alpha) activity of such stars remain essentially unexplored for the important age range 10-100 Myr. Such information on high-energy processes associated with young M stars would provide much-needed constraints on models of the effects of stellar irradiation on the physics and chemistry of planet-forming disks and newborn planets. In addition, X-ray and UV observations of ultra-low-mass young stars can serve to probe the (presently ill-defined) spectral type boundary that determines which very low-mass objects will eventually become M stars -- as opposed to brown dwarfs (BDs) -- following their pre-main sequence evolutionary stages. Via ADAP support, we have developed the GALEX Nearby Young Star Search (GALNYSS), a search method that combines GALEX, 2MASS, WISE and proper motion catalog information to identify nearby, young, lowmass stars. We have applied this method to identify ~2000 candidate young (10-100 Myr), low-mass (M-type) stars within 150 pc. These GALNYSS-identified young star candidates are distributed over the entire GALEX-covered sky, and their spectral types peak in the M3-4 range; followup optical spectroscopic work is ongoing (Rodriguez et al. 2013, ApJ, 774, 101). We now propose an ADA program to determine the X-ray properties of representative stars among these GALNYSS candidates, so as to confirm their youth and investigate the early evolution of coronal activity near the low-mass star/BD boundary and the effects of such activity on planet formation. Specifically, we will exploit the presence in the HEASARC archives of XMM-Newton and (to a lesser extent) Chandra X-ray Observatory data for a few dozen GALNYSS candidates that have been observed serendipitously by one or both of these space observatories. The proposed ADA program will yield the full reduction and analysis of these as-yet unexplored data. The results will be used to constrain models describing the dispersal of protoplanetary disks and evaporation of planetary atmospheres due to intense irradiation by high-energy photons from young, low-mass stars, and to shed new light on the early evolution of magnetic activity of stars with masses down to near the H-burning limit.
The low-mass star and disk populations in NGC 6611
NASA Astrophysics Data System (ADS)
Oliveira, Joana
2005-07-01
The aim of our observational program is to find empirical answers to two major questions. Do regions of high-mass star formation also produce lots of solar- and low-mass stars, i.e. is the low-mass IMF unaffected by high-mass siblings? Can low-mass stars in hostile environments retain circumstellar disks? We present results of our survey of NGC 6611, a massive cluster with an age of approximately 2 Myr which is currently ionizing the Eagle nebula. This cluster contains a dozen O-stars that emit 10 times more ionizing radiation than the Trapezium, providing a challenging environment for their lower-mass siblings. Our dataset consists of wide field optical and near infrared imaging, intermediate resolution spectroscopy (ESO-VLT) and deep L-band photometry. We have photometrically selected solar- and low-mass stars, placed them on the HR diagram and determined the IMF over an area sufficient to deal with mass segregation. We show that the IMF in NGC6611 is similar to that of the Orion Nebula Cluster down to 0.5Msun. Using K-L indices we search for colour excesses that betray the presence of circumstellar material and study what fraction of solar-mass stars still possess disks as a function of age and proximity to the massive stars. By comparing the disk frequency in NGC6611 with similarly aged but quieter regions, we find no evidence that the harsher environment of NGC6611 significantly hastens disk dissipation. Apparently the massive stars in NGC6611 have no global effect on the probability of low-mass star formation or disk retention. We have an approved HST program that will allows us to investigate the very low-mass and brown dwarf populations in NGC6611. And we complement our IR imaging with Spitzer/ORAC data, extending the area of our ground-based survey.
Software Development for Asteroid and Variable Star Research
NASA Astrophysics Data System (ADS)
Sweckard, Teaghen; Clason, Timothy; Kenney, Jessica; Wuerker, Wolfgang; Palser, Sage; Giles, Tucker; Linder, Tyler; Sanchez, Richard
2018-01-01
The process of collecting and analyzing light curves from variable stars and asteroids is almost identical. In 2016 a collaboration was created to develop a simple fundamental way to study both asteroids and variable stars using methods that would allow the process to be repeated by middle school and high school students.Using robotic telescopes at Cerro Tololo (Chile), Yerkes Observatory (US), and Stone Edge Observatory (US) data were collected on RV Del and three asteroids. It was discovered that the only available software program which could be easily installed on lab computers was MPO Canopus. However, after six months it was determined that MPO Canopus was not an acceptable option because of the steep learning curve, lack of documentation and technical support.Therefore, the project decided that the best option was to design our own python based software. Using python and python libraries we developed code that can be used for photometry and can be easily changed to the user's needs. We accomplished this by meeting with our mentor astronomer, Tyler Linder, and in the beginning wrote two different programs, one for asteroids and one for variable stars. In the end, though, we chose to combine codes so that the program would be capable of performing photometry for both moving and static objects.The software performs differential photometry by comparing the magnitude of known reference stars to the object being studied. For asteroids, the image timestamps are used to obtain ephemeris of the asteroid from JPL Horizons automatically.
NASA Astrophysics Data System (ADS)
Sargent, Benjamin A.; Speck, A.; Volk, K.; Kemper, C.; Reach, W. T.; Lagadec, E.; Bernard, J.; McDonald, I.; Meixner, M.; Srinivasan, S.
2014-01-01
We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of Oxygen-rich (O-rich) asymptotic giant branch (AGB) and red supergiant (RSG) stars. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.
NASA Astrophysics Data System (ADS)
Gillette, S.; Wolf, D.; Harrison, J.
2017-12-01
(Abstract only) The Vanguard Double Star Workshop has been developed to teach eighth graders the technique of measuring position angle and separation of double stars. Through this program, the students follow in the footsteps of a professional scientist by researching the topic, performing the experiment, writing a scientific article, publishing a scientific article, and finally presenting the material to peers. An examination of current educational standards grounds this program in educational practice and philosophy.
NASA Astrophysics Data System (ADS)
Gillette, Sean; Wolf, Debbie; Harrison, Jeremiah
2017-06-01
The Vanguard Double Star Workshop has been developed to teach eighth graders the technique of measuring position angle and separation of double stars. Through this program, the students follow in the footsteps of a professional scientist by researching the topic, performing the experiment, writing a scientific article, publishing a scientific article, and finally presenting the material to peers. An examination of current educational standards grounds this program in educational practice and philosophy.
Infrared Extinction and the Initial Conditions For Star and Planet Formation
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2003-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular clouds and investigate the physical conditions which give rise to star and planet formation. The goals of the this program are to: 1) acquire deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds, 2) reduce and analyze the data obtained in order to produce detailed extinction maps of the clouds, 3) prepare results, where appropriate, for publication.
NASA Technical Reports Server (NTRS)
Svalbonas, V.
1973-01-01
The User's manual for the shell theory automated for rotational structures (STARS) 2B and 2V (buckling, vibrations) is presented. Several features of the program are: (1) arbitrary branching of the shell meridians, (2) arbitrary boundary conditions, (3) minimum input requirements to describe a complex, practical shell of revolution structure, and (4) accurate analysis capability using a minimum number of degrees of freedom.
Insignia for the Apollo program
NASA Technical Reports Server (NTRS)
1966-01-01
The insignia for the Apollo program is a disk circumscribed by a band displaying the words Apollo and NASA. The center disc bears a large letter 'A' with the constellation Orion positioned so its three central stars form the bar of the letter. To the right is a sphere of the earth, with a sphere of the moon in the upper left portion of the center disc. The face on the moon represents the mythical god, Apollo. A double trajectory passes behind both spheres and through the central stars.
Infrared Extinction and the Initial Conditions for Star and Planet Formation
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2002-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular clouds and investigate the physical conditions which give rise to star and planet formation. The goals of the this program are to: (1) acquire deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds; (2) reduce and analyze the data obtained in order to produce detailed extinction maps of the clouds; and (3) prepare results, where appropriate, for publication.
ERIC Educational Resources Information Center
Rubenstein, Eric D.; Thorn, Andrew C.
2014-01-01
Within school-based agricultural education, supervised agricultural experience (SAE) programs remain an integral component of the total program. However, researchers have reported that SAE programs lack focus and direction. Furthermore, SAE programs lack a current definition of successful SAE programs. This study was conducted utilizing…
Measurement of the sizes of circumstellar dust shells around evolved stars with high mass loss rates
NASA Technical Reports Server (NTRS)
Phillips, T. G.; Knapp, G. R.
1992-01-01
The research supported by the NASA ADP contract NAG5-1153 has been completed. The attached paper, which will be submitted for publication in the Astrophysical Journal in January 1992, presents the results of this work. Here is a summary of the project and its results. A set of computer programs was developed to process the raw 60 micron and 100 micron IRAS survey data. The programs were designed to detect faint extended emission surrounding a bright unresolved source. Candidate objects were chosen from a list of red giant stars and young planetary nebulae which have been detected in millimeter/submillimeter lines of CO. Of the 279 stars examined, 55 were resolved at 60 microns. The principle results of the study are given. The average age for the shells surrounding the 9 Mira-type stars which are extended is 6 x 10(exp 4) yr. This suggests that the period during which these stars lose mass lasts for approx 10(exp 5) yr. The oldest shell found surrounds U Ori, and the youngest surrounds Mira itself. Some shells appear to be detached from the central star. This phenomenon is more common among older stars, suggesting that the mass loss becomes more episodic as the star sheds its envelope. Although all 8 stars less distant than 200 pc are resolved in the IRAS 60 micron data, 29 stars within 500 pc were not. These stars probably have younger circumstellar shells than those which were resolved. Almost all the carbon stars with distances of 500 pc or less have resolved shells, while only 1/2 of the oxygen-rich stars do. The resolved carbon star shells also are older on average than the oxygen-rich ones. These facts imply that carbon stars have been losing mass for a longer period, on average, than oxygen-rich red giants. Large circumstellar shells tend to be found at large distances from the galactic plane, confirming that the ISM density limits the size to which a dust shell can grow. Surprisingly, even very large shells seem to be nearly spherical, and do not appear to be distorted by ram-pressure caused by the star's motion with respect to the ISM. Radiative transfer models and the value of I sub 60 microns/I sub 100 microns allow the average dust temperature in the outer regions of a circumstellar shell to be estimated. The typical value obtained in about 35 K.
SKARPS: The Search for Kuiper Belts around Radial-Velocity Planet Stars
NASA Technical Reports Server (NTRS)
Bryden, Geoffrey; Marshall, Jonathan; Stapelfeldt, Karl; Su, Kate; Wyatt, Mark
2011-01-01
The Search for Kuiper belts Around Radial-velocity Planet Stars - SKARPS -is a Herschel survey of solar-type stars known to have orbiting planets. When complete, the 100-star SKARPS sample will be large enough for a meaningful statistical comparison against stars not known to have planets. (This control sample has already been observed by Herschel's DUst around NEarby Stars - DUNES - key program). Initial results include previously known disks that are resolved for the first time and newly discovered disks that are fainter and colder than those typically detected by Spitzer. So far, with only half of the sample in hand, there is no measured correlation between inner RV planets and cold outer debris. While this is consistent with the results from Spitzer, it is in contrast with the relationship suggested by the prominent debris disks in imaged-planet systems.
Astronomers debate diamonds in space
NASA Astrophysics Data System (ADS)
1999-04-01
This is not the first time the intriguing carbonaceous compound has been detected in space. A peculiar elite of twelve stars are known to produce it. The star now added by ISO to this elite is one of the best representatives of this exclusive family, since it emits a very strong signal of the compound. Additionally ISO found a second new member of the group with weaker emission, and also observed with a spectral resolution never achieved before other already known stars in this class. Astronomers think these ISO results will help solve the mystery of the true nature of the compound. Their publication by two different groups, from Spain and Canada, has triggered a debate on the topic, both in astronomy institutes and in chemistry laboratories. At present, mixed teams of astrophysicists and chemists are investigating in the lab compounds whose chemical signature or "fingerprint" matches that detected by ISO. Neither diamonds nor fullerenes have ever been detected in space, but their presence has been predicted. Tiny diamonds of pre-solar origin --older than the Solar System-- have been found in meteorites, which supports the as yet unconfirmed theory of their presence in interstellar space. The fullerene molecule, made of 60 carbon atoms linked to form a sphere (hence the name "buckyball"), has also been extensively searched for in space but never found. If the carbonaceous compound detected by ISO is a fullerene or a diamond, there will be new data on the production of these industrially interesting materials. Fullerenes are being investigated as "capsules" to deliver new pharmaceuticals to the body. Diamonds are commonly used in the electronics industry and for the development of new materials; if they are formed in the dust surrounding some stars, at relatively low temperatures and conditions of low pressure, companies could learn more about the ideal physical conditions to produce them. A textbook case The latest star in which the compound has been found is called IRAS 16594-4656. Like the others, it's a carbon-rich star now in the process of dying. It has been blasting out huge amounts of material over the last thousand years, becoming enclosed within a shell of dust hundreds of times larger than the Solar System --a structure called a "protoplanetary nebula". It was in this dust -- very cold and therefore invisible to non-infrared telescopes-- that the Spanish group using ISO's SWS and LWS spectrometers detected the signature of the carbonaceous compound, in the form of a broad emission band at the wavelength of 21 micron. "We searched for the compound in twenty candidate stars and only this one had it. It is a real textbook case, with one of the strongest emissions ever detected. It gets us closer to solving the mystery and will help us to understand how the "chemical factories" of the Universe work", says ESA astronomer Pedro Garcia-Lario at the ISO Data Centre in Villafranca, Madrid. His group published their results in the March 10 issue of the Astrophysical Journal. They favour the fullerene option. Fullerenes would get formed during decomposition of the solid carbon grains condensed out of the material emitted by the star. The Canadian group obtained high-resolution ISO spectra of seven other stars in this class, and also detected a weak emission of the carbonaceous compound in a new one. They present their data in the May 11 issue of the Astrophysical Journal Letters. "Diamonds, graphite, coal and fullerenes are different forms of carbon. It is quite possible that the 21 micron feature arises from any one of these forms, although not exactly like they are on Earth", says main author Sun Kwok, at the University of Calgary. His group detected the carbonaceous compound a decade ago, for the first time, with the earlier infrared satellite IRAS. Meanwhile, results from the French group led by Louis d'Hendecourt, at the Institut d'Astrophysique Spatiale, in Paris, are adding to the debate. They isolated very tiny diamonds --a million times smaller than a millimetre and thus called "nanodiamonds"-- from a sample of the Orgueil meteorite, and then subjected them to infrared spectroscopy. The researchers conclude that nanodiamonds of a certain kind, defective ones in which some atoms of the lattice are missing, have a "chemical signature" that matches the one detected in the stars very closely. Footnote on ISO ESA's infrared space telescope, ISO, was put into orbit in November 1995, by an Ariane 44P launcher from the European Spaceport in Kourou, French Guiana. Its operational phase lasted till 16 May, 1998, almost a year longer than expected. As an unprecedented observatory for infrared astronomy, able to examine cool and hidden places in the Universe, ISO made nearly 30 000 scientific observations. These are now available to the scientific community via the ISO Archive (http://www.iso.vilspa.esa.es) at the ISO Data Centre, in Villafranca, near Madrid, Spain.
Hybrid Stars and Coronal Evolution
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Dupree, Andrea K.
2004-01-01
This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, TrA (K2 11-111). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars.
NASA Astrophysics Data System (ADS)
Townsley, Leisa
2016-09-01
Massive star-forming regions (MSFRs) are engines of change across the Galaxy, providing its ionization, fueling the hot ISM, and seeding spiral arms with tens of thousands of new stars. Galactic MSFRs are springboards for understanding their extragalactic counterparts, which provide the basis for star formation rate calibrations and form the building blocks of starburst galaxies. This archive program will extend Chandra's lexicon of the Galaxy's MSFRs with in-depth analysis of 16 complexes, studying star formation and evolution on scales of tenths to tens of parsecs, distances <1 to >10 kpc, and ages <1 to >15 Myr. It fuses a "Physics of the Cosmos" mission with "Cosmic Origins" science, bringing new insight into star formation and feedback through Chandra's unique X-ray perspective.
More MAGiX in the Chandra Archive
NASA Astrophysics Data System (ADS)
Townsley, Leisa
2017-09-01
Massive star-forming regions (MSFRs) are engines of change across the Galaxy, providing its ionization, fueling the hot ISM, and seeding spiral arms with tens of thousands of new stars. Resolvable MSFRs are microscopes for understanding their more distant extragalactic counterparts, which provide the basis for star formation rate calibrations and form the building blocks of starburst galaxies. This archive program will extend Chandra's lexicon of MSFRs with in-depth analysis of 16 complexes, studying star formation and evolution on scales of tenths to tens of parsecs, distances <1 to >50 kpc, and ages <1 to 25 Myr. It fuses a "Physics of the Cosmos" mission with "Cosmic Origins" science, bringing new insight into star formation and feedback through Chandra's unique X-ray perspective.
48 CFR 23.103 - Sustainable acquisitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL... the products are— (1) Energy-efficient (ENERGY STAR ® or Federal Energy Management Program (FEMP...
48 CFR 23.103 - Sustainable acquisitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL... the products are— (1) Energy-efficient (ENERGY STAR ® or Federal Energy Management Program (FEMP...
Artist concept of SIM PlanetQuest Artist Concept
2002-12-21
Artist's concept of the current mission configuration. SIM PlanetQuest (formerly called Space Interferometry Mission), currently under development, will determine the positions and distances of stars several hundred times more accurately than any previous program. This accuracy will allow SIM to determine the distances to stars throughout the galaxy and to probe nearby stars for Earth-sized planets. SIM will open a window to a new world of discoveries. http://photojournal.jpl.nasa.gov/catalog/PIA04248
Recent photometry of selected symbiotic stars
NASA Astrophysics Data System (ADS)
Vrašťák, M.
2018-04-01
A new multicolour (BVRcIc) photometric observations of symbiotic stars UV Aur, YY Her, V443 Her, V1016 Cyg, PU Vul, V407 Cyg, V471 Per and suspected symbiotic stars ZZ CMi, NQ Gem, V934 Her, V335 Vul, V627 Cas is presented. The data were obtained from 2016 October to 2018 January by the metod of classical CCD photometry. The monitoring program is still running, so on this paper partial light curves are presented.
Hussein, Ahmed A; Dibaj, Shiva; Hinata, Nobuyuki; Field, Erinn; O'leary, Kathleen; Kuvshinoff, Boris; Mohler, James L; Wilding, Gregory; Guru, Khurshid A
2016-11-01
To develop quality assessment tool to evaluate surgical performance for robot-assisted radical cystectomy program. A prospectively maintained quality assurance database of 425 consecutive robot-assisted radical cystectomies performed by a single surgeon between 2005 and 2015 was retrospectively reviewed. Potentially modifiable factors, related to the management and perioperative care of patients, were used to evaluate patient care. Criteria included the following: preoperative (administration of neoadjuvant chemotherapy); operative (operative time <6.5 hours and estimated blood loss <500 cc); pathologic (negative soft tissue surgical margins and lymph node yield ≥20); and postoperative (no high-grade complications, readmission, or noncancer-related mortality within 30 days).The Quality Cystectomy Score (QCS) was developed (1 star: achieving ≤2 criteria or mortality within 30 days; 2 stars: 3 or 4 criteria met; 3 stars: 5 or 6 criteria met; and 4 stars: 7 or all criteria met). Univariate and multivariate Cox proportional hazard regression models were fitted to test for the association between QCS and survival outcomes. Most patients (85%) achieved at least 3 stars, and more patients achieved 4 stars with time. High QCS was associated with better recurrence-free, cancer-specific, and overall survival (P values <.05). None of the patients with 1-star were alive at 1 year. Patients with 4 stars achieved the best survival rates (recurrence-free survival [62%], cancer-specific survival [70%], and overall survival [53%] at 5 years) (log rank P < .0001). Continuous assessment for quality improvement facilitated implementation and maintenance of robot-assisted program for bladder cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
An Empirical Isochrone of Very Massive Stars in R136a
NASA Astrophysics Data System (ADS)
de Koter, Alex; Heap, Sara R.; Hubeny, Ivan
1998-12-01
We report on a detailed spectroscopic study of 12 very massive and luminous stars (M >~ 35M⊙) in the core of the compact cluster R136a, near the center of the 30 Doradus complex. The three brightest stars of the cluster, R136a1, R136a2, and R136a3, have been investigated earlier by de Koter, Heap, & Hubeny. Low-resolution spectra (<200 km s-1) of the program stars were obtained with the GHRS and FOS spectrographs on the Hubble Space Telescope. These instruments covered the spectral range from 1200 to 1750 Å and from 3200 to 6700 Å, respectively. Fundamental stellar parameters were obtained by fitting the observations by model spectra calculated with the unified ISA-WIND code of de Koter et al. supplemented by synthetic data calculated using the program TLUSTY. We find that the stars are almost exclusively of spectral type O3. They occupy only a relatively narrow range in effective temperatures between 40 and 46 kK. The reason for these similar Teff's is that the isochrone of these very massive stars, which we determined to be at ~2 Myr, runs almost vertically in the H-R diagram. We present a quantitative method of determining the effective temperature of O3-type stars based on the strength of the O V λ1371 line. Present-day evolutionary calculations by Meynet et al. imply that the program stars have initial masses in the range of Mi ~ 37-76 M⊙. The observed mass-loss rates are up to 3 (2) times higher than is assumed in these evolution tracks when adopting a metallicity Z = 0.004 (0.008) for the LMC. The high observed mass-loss rates imply that already at an age of ~2 Myr the most luminous of our program stars will have lost a significant fraction of their respective initial masses. For the least luminous stars investigated in this paper, the observed mass loss agrees with the prediction by the theory of radiation-driven winds (Kudritzki et al.). However, for increasing luminosity the observed mass loss becomes larger, reaching up to 3-4 times what is expected from the theory. Such an increasing discrepancy fits in with the results of de Koter et al., where an observed overpredicted mass-loss ratio of up to 8 was reported for the brightest members of the R136a cluster, for which Mi ~ 100 M⊙ was found. The failure of the theory is also present when one compares observed over predicted wind momentum as a function of wind performance number. This strongly indicates that the shortcoming of the present state of the theory is connected to the neglect of effects of multiple photon momentum transfer. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
Investigation of ultraviolet fluxes of normal and peculiar stars
NASA Technical Reports Server (NTRS)
Deutschman, W. A.; Schild, R. E.
1974-01-01
Data from Project Celescope, a program that photographed the ultraviolet sky, in order to study several problems in current astrophysics are analyzed. Two star clusters, the Pleiades and the Hyades, reveal differences between the two that we are unable to explain simply from their differences in chemical abundance, rotation, or reddening. Data for Orion show large scatter, which appears to be in the sense that the Orion stars are too faint for their ground-based photometry. Similarly, many supergiants in the association Sco OB1 are too faint in the ultraviolet, but the ultraviolet brightness appears to be only poorly correlated with spectral type. Ultraviolet Celescope data for several groups of peculiar stars have also been analyzed. The strong He I stars are too faint in the ultraviolet, possibly owing to enhancement of O II continuous opacity due to oxygen overabundance. The Be stars appear to have ultraviolet colors normal for their MK spectral types. The P Cygni stars are considerably fainter than main-sequence stars of comparable spectral type, probably owing, at least in part, to line blocking by resonance lines of multiply ionized light metals. The Wolf-Rayet stars have ultraviolet color temperatures of O stars.
Reconnaissance of Young M Dwarfs: Locating the Elusive Majority of Nearby Moving Groups
NASA Astrophysics Data System (ADS)
Bowler, Brendan; Liu, Michael; Riaz, Basmah; Gizis, John; Shkolnik, Evgenya
2013-08-01
With ages between ~8-120 Myr and distances lsim;80 pc, young moving group members make excellent targets for detailed studies of pre-main sequence evolution and exoplanet imaging surveys. We propose a multi-semester spectroscopic program to confirm our sample of ~1300 X-ray-selected active M dwarfs, about one-third of which are expected to be members of young moving groups. Our program consists of three parts: a reconnaissance phase of low-resolution spectroscopy to vet unlikely association members, radial velocity observations to confirm group membership, and deep adaptive optics imaging to study the architecture and demographics of giant planets around low-mass stars. We will also exploit our rich sample to study the evolution of chromospheric and coronal activity in low-mass stars with unprecedented precision. Altogether, this program will roughly double the population of M dwarfs in young moving groups, providing new targets for a broad range of star and planet formation studies in the near-future.
Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars
NASA Astrophysics Data System (ADS)
Jones, M. I.; Jenkins, J. S.; Brahm, R.; Wittenmyer, R. A.; Olivares E., F.; Melo, C. H. F.; Rojo, P.; Jordán, A.; Drass, H.; Butler, R. P.; Wang, L.
2016-05-01
Context. Exoplanet searches have revealed interesting correlations between the stellar properties and the occurrence rate of planets. In particular, different independent surveys have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. Aims: During the past six years we have conducted a radial velocity follow-up program of 166 giant stars to detect substellar companions and to characterize their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. Methods: We took multi-epoch spectra using FEROS and CHIRON for all of our targets, from which we computed precision radial velocities and derived atmospheric and physical parameters. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we detected the presence of several substellar companions. Results: We present four new planetary systems around the giant stars HIP 8541, HIP 74890, HIP 84056, and HIP 95124. Additionally, we study the correlation between the occurrence rate of giant planets with the stellar mass and metallicity of our targets. We find that giant planets are more frequent around metal-rich stars, reaching a peak in the detection of f = 16.7+15.5-5.9% around stars with [Fe/H] ~ 0.35 dex. Similarly, we observe a positive correlation of the planet occurrence rate with the stellar mass, between M⋆ ~ 1.0 and 2.1 M⊙, with a maximum of f = 13.0+10.1-4.2% at M⋆ = 2.1 M⊙. Conclusions: We conclude that giant planets are preferentially formed around metal-rich stars. In addition, we conclude that they are more efficiently formed around more massive stars, in the stellar mass range of ~1.0-2.1 M⊙. These observational results confirm previous findings for solar-type and post-MS hosting stars, and provide further support to the core-accretion formation model. Based on observations collected at La Silla - Paranal Observatory under programs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345 and through the Chilean Telescope Time under programs IDs CN 12A-073, CN 12B-047, CN 13A-111, CN 13B-51, CN 14A-52, CN-15A-48, and CN-15B-25.
Reprocessing of Archival Direct Imaging Data of Herbig Ae/Be Stars
NASA Astrophysics Data System (ADS)
Safsten, Emily; Stephens, Denise C.
2017-01-01
Herbig Ae/Be (HAeBe) stars are intermediate mass (2-10 solar mass) pre-main sequence stars with circumstellar disks. They are the higher mass analogs of the better-known T Tauri stars. Observing planets within these young disks would greatly aid in understanding planet formation processes and timescales, particularly around massive stars. So far, only one planet, HD 100546b, has been confirmed to orbit a HAeBe star. With over 250 HAeBe stars known, and several observed to have disks with structures thought to be related to planet formation, it seems likely that there are as yet undiscovered planetary companions within the circumstellar disks of some of these young stars.Direct detection of a low-luminosity companion near a star requires high contrast imaging, often with the use of a coronagraph, and the subtraction of the central star's point spread function (PSF). Several processing algorithms have been developed in recent years to improve PSF subtraction and enhance the signal-to-noise of sources close to the central star. However, many HAeBe stars were observed via direct imaging before these algorithms came out. We present here current work with the PSF subtraction program PynPoint, which employs a method of principal component analysis, to reprocess archival images of HAeBe stars to increase the likelihood of detecting a planet in their disks.
Infrared Submillimeter and Radio Astronomy Research and Analysis Program
NASA Technical Reports Server (NTRS)
Traub, Wesley A.
2000-01-01
This program entitled "Infrared Submillimeter and Radio Astronomy Research and Analysis Program" with NASA-Ames Research Center (ARC) was proposed by the Smithsonian Astrophysical Observatory (SAO) to cover three years. Due to funding constraints only the first year installment of $18,436 was funded, but this funding was spread out over two years to try to maximize the benefit to the program. During the tenure of this contact, the investigators at the SAO, Drs. Wesley A. Traub and Nathaniel P. Carleton, worked with the investigators at ARC, Drs. Jesse Bregman and Fred Wittebom, on the following three main areas: 1. Rapid scanning SAO and ARC collaborated on purchasing and constructing a Rapid Scan Platform for the delay arm of the Infrared-Optical Telescope Array (IOTA) interferometer on Mt. Hopkins, Arizona. The Rapid Scan Platform was tested and improved by the addition of stiffening plates which eliminated a very small but noticeable bending of the metal platform at the micro-meter level. 2. Star tracking Bregman and Wittebom conducted a study of the IOTA CCD-based star tracker system, by constructing a device to simulate star motion having a specified frequency and amplitude of motion, and by examining the response of the tracker to this simulated star input. 3. Fringe tracking. ARC, and in particular Dr. Robert Mah, developed a fringe-packet tracking algorithm, based on data that Bregman and Witteborn obtained on IOTA. The algorithm was tested in the laboratory at ARC, and found to work well for both strong and weak fringes.
AN ELEMENTAL ASSAY OF VERY, EXTREMELY, AND ULTRA-METAL-POOR STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, T.; Christlieb, N.; Hansen, C. J.
2015-07-10
We present a high-resolution elemental-abundance analysis for a sample of 23 very metal-poor ([Fe/H] < −2.0) stars, 12 of which are extremely metal-poor ([Fe/H] < −3.0), and 4 of which are ultra-metal-poor ([Fe/H] < −4.0). These stars were targeted to explore differences in the abundance ratios for elements that constrain the possible astrophysical sites of element production, including Li, C, N, O, the α-elements, the iron-peak elements, and a number of neutron-capture elements. This sample substantially increases the number of known carbon-enhanced metal-poor (CEMP) and nitrogen-enhanced metal-poor (NEMP) stars—our program stars include eight that are considered “normal” metal-poor stars, sixmore » CEMP-no stars, five CEMP-s stars, two CEMP-r stars, and two CEMP-r/s stars. One of the CEMP-r stars and one of the CEMP-r/s stars are possible NEMP stars. We detect lithium for three of the six CEMP-no stars, all of which are Li depleted with respect to the Spite plateau. The majority of the CEMP stars have [C/N] > 0. The stars with [C/N] < 0 suggest a larger degree of mixing; the few CEMP-no stars that exhibit this signature are only found at [Fe/H] < −3.4, a metallicity below which we also find the CEMP-no stars with large enhancements in Na, Mg, and Al. We confirm the existence of two plateaus in the absolute carbon abundances of CEMP stars, as suggested by Spite et al. We also present evidence for a “floor” in the absolute Ba abundances of CEMP-no stars at A(Ba) ∼ −2.0.« less
NASA Technical Reports Server (NTRS)
Stringfellow, Guy
2004-01-01
This program intended to test whether the lowest mass stars at the bottom end of the main sequence and the lower mass brown dwarfs have coronae. If they have coronae, what are the coronal characteristics and what drives them? In the classical dynamo picture, the closed magnetic loop structure is generated near the boundary of the convective envelope and the radiative core. Stars with mass below 0.30 Msun however are fully convective, and the nature of the dynamo responsible for the generation of the coronae in this regime is poorly understood. Previous results from the ROSAT mission (e.g., Fleming et al. 1993, 1995; Schmitt et al. 1995) had confirmed three very important characteristics of M-star coronae: (1) a very high percentage of all M dwarfs have coronae (of order 85% in the local 7 pc sample), (2) those M dwarfs showing high chromospheric activity, such as having the Balmer series in emission or large/numerous optical flaring, indeed exhibit the highest coronal activity, and (3) that the maximum saturation boundary in X-ray luminosity, which amounts to 0.0001-0.001 for Lx/Lbol for the dMe stars, extends down to the current detection limit, through spectral types M7. It was likely that the incompleteness noted for result (1) above was simply a detection limit problem; for more distant sources, the X-ray fainter dM stars will drop below detection thresholds before the more X-ray luminous dMe stars. The latest stars for which direct detection of the corona had been successful were of spectral type dM7 (e.g., VB8, LHS 3003). This program proposed to obtain ROSAT HRI observations for a large number of the coolest known (at that time) stars at the bottom of the main-sequence, which had spectral types of M9 or later. Three stars were approved for observations with ROSAT-HRI totaling 180 ksec. The goal was to obtain X-ray detections or low upper limits for the three approved stars.
A Graduate Course in Energy Conservation.
ERIC Educational Resources Information Center
Fickes, Michael
1999-01-01
Examines the University of Michigan's (Ann Arbor) success with a six-year energy conservation program (The Energy Star Program) offered by the Environmental Protection Agency. Describes the program's components and areas of savings the university has achieved. (GR)
NASA Astrophysics Data System (ADS)
Savanov, I. S.; Dmitrienko, E. S.
2018-03-01
Observations of the K2 mission (continuing the program of the Kepler Space Telescope) are used to estimate the spot coverage S (the fractional area of spots on the surface of an active star) for stars of the Hyades cluster. The analysis is based on data on the photometric variations of 47 confirmed single cluster members, together with their atmospheric parameters, masses, and rotation periods. The resulting values of S for these Hyades objects are lower than those stars of the Pleiades cluster (on average, by Δ S 0.05-0.06). A comparison of the results of studies of cool, low-mass dwarfs in the Hyades and Pleiades clusters, as well as the results of a study of 1570 M stars from the main field observed in the Kepler SpaceMission, indicates that the Hyades stars are more evolved than the Pleiades stars, and demonstrate lower activity. The activity of seven solar-type Hyades stars ( S = 0.013 ± 0.006) almost approaches the activity level of the present-day Sun, and is lower than the activity of solar-mass stars in the Pleiades ( S = 0.031 ± 0.003). Solar-type stars in the Hyades rotate faster than the Sun (< P> = 8.6 d ), but slower than similar Pleiades stars.
SEARCH FOR RED DWARF STARS IN GLOBULAR CLUSTER NGC 6397
NASA Technical Reports Server (NTRS)
2002-01-01
Left A NASA Hubble Space Telescope image of a small region (1.4 light-years across) in the globular star cluster NGC 6397. Simulated stars (diamonds) have been added to this view of the same region of the cluster to illustrate what astronomers would have expected to see if faint red dwarf stars were abundant in the Milky Way Galaxy. The field would then contain 500 stars, according to theoretical calculations. Right The unmodified HST image shows far fewer stars than would be expected, according to popular theories of star formation. HST resolves about 200 stars. The stellar density is so low that HST can literally see right through the cluster and resolve far more distant background galaxies. From this observation, scientists have identified the surprising cutoff point below which nature apparently doesn't make many stars smaller that 1/5 the mass of our Sun. These HST findings provide new insights into star formation in our Galaxy. Technical detail:The globular cluster NGC 6397, one of the nearest and densest agglomerations of stars, is located 7,200 light-years away in the southern constellation Ara. This visible-light picture was taken on March 3, 1994 with the Wide Field Planetary Camera 2, as part the HST parallel observing program. Credit: F. Paresce, ST ScI and ESA and NASA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... www.regulations.gov Web site is an ``anonymous access'' system, which means EPA will not know your... public docket that are available electronically. Once in the system, select ``search,'' then key in the... homes under Home Performance with ENERGY STAR and ENERGY STAR's HVAC Quality Installation program...
Biology Students Building Computer Simulations Using StarLogo TNG
ERIC Educational Resources Information Center
Smith, V. Anne; Duncan, Ishbel
2011-01-01
Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…
Quiescent Giant Molecular Cloud Cores in the Galactic Center
NASA Technical Reports Server (NTRS)
Lis, D. C.; Serabyn, E.; Zylka, R.; Li, Y.
2000-01-01
We have used the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO) to map the far-infrared continuum emission (45-175 micrometer) toward several massive Giant Molecular Cloud (GMC) cores located near the Galactic center. The observed far-infrared and submillimeter spectral energy distributions imply low temperatures (approx. 15 - 22 K) for the bulk of the dust in all the sources, consistent with external heating by the diffuse ISRF and suggest that these GMCs do not harbor high- mass star-formation sites, in spite of their large molecular mass. Observations of FIR atomic fine structure lines of C(sub II) and O(sub I) indicate an ISRF enhancement of approx. 10(exp 3) in the region. Through continuum radiative transfer modeling we show that this radiation field strength is in agreement with the observed FIR and submillimeter spectral energy distributions, assuming primarily external heating of the dust with only limited internal luminosity (approx. 2 x 10(exp 5) solar luminosity). Spectroscopic observations of millimeter-wave transitions of H2CO, CS, and C-34S carried out with the Caltech Submillimeter Observatory (CSO) and the Institut de Radio Astronomie Millimetrique (IRAM) 30-meter telescope indicate a gas temperature of approx. 80 K, significantly higher than the dust temperatures, and density of approx. 1 x 10(exp 5)/cc in GCM0.25 + 0.01, the brightest submillimeter source in the region. We suggest that shocks caused by cloud collisions in the turbulent interstellar medium in the Galactic center region are responsible for heating the molecular gas. This conclusion is supported by the presence of wide-spread emission from molecules such as SiO, SO, and CH3OH, which are considered good shock tracers. We also suggest that the GMCs studied here are representative of the "typical", pre-starforming cloud population in the Galactic center.
Detection of O VII Lambda 1522 in IUE Spectra of Planetary Nebula Nuclei and Other Hot Stars
NASA Technical Reports Server (NTRS)
Feibelman, Walter A.
1999-01-01
We present the first detection of O VII lambda 1522 emission or absorption from archival IUE spectra in 14 planetary nebula nuclei and three PG 1159-type stars. The n = 5 approaching 6 transition of O VII was determined by Kruk & Werner and observed by them in the spectrum of the very hot PG 1159-type star H1504+65 from data obtained with the Hopkins Ultraviolet Telescope (HUT). Emission-line fluxes or absorption equivalent widths as well as radial velocities for the program stars are presented. The precise rest wavelength for the 5 approaching 6 transition requires further investigation.
The Stars Belong to Everyone: Astronomer and Science Writer Dr. Helen Sawyer Hogg (1905-1993)
NASA Astrophysics Data System (ADS)
Cahill, Maria J.
2011-05-01
University of Toronto astronomer and science writer Helen Sawyer Hogg (President of the AAVSO 1939-41) served her field through research, teaching, and administrative leadership. Additionally, she reached out to students and the public through her Toronto Star newspaper column entitled "With the Stars" for thirty years; she wrote The Stars Belong to Everyone, a book that speaks to a lay audience; she hosted a successful television series entitled Ideas; and she delivered numerous speeches at scientific conferences, professional women's associations, school programs, libraries, and other venues. This paper will illumine her life and the personal and professional forces that influenced her work.
The B and Be Star Population of NGC 3766
NASA Astrophysics Data System (ADS)
McSwain, M. V.
2006-12-01
I present results from a spectroscopic monitoring program of B and Be stars in the open cluster NGC 3766. From a 4-year time baseline of photometric and spectroscopic data, I have identified 9 Be stars in the cluster that have undergone disk outbursts or whose disks have disappeared. Using Kurucz ATLAS9 model spectra to measure temperatures, gravities, rotational velocities, and abundances among the cluster members, I present preliminary results of the stellar and cluster properties that may affect the long term variability of Be stars. M.V.M. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401460.
Monitoring solar-type stars for luminosity variations
NASA Technical Reports Server (NTRS)
Lockwood, G. W.; Skiff, B. A.
1988-01-01
Since 1984, researchers have made more than 1500 differential photometric b (471 nm) and y (551 nm) measurements of three dozen solar-like lower main sequence stars whose chromospheric activity was previosly studied by O. C. Wilson. Here, researchers describe their methodology and the statistical tests used to distinguish intrinsic stellar variability from observational and instrument errors. The incidence of detected variability among the program and comparison stars is summarized. Among the 100 plus pairs of stars measured differentially, only a dozen were found that were unusually constant, with peak-to-peak amplitudes of seasonal mean brightness smaller than 0.3 percent (0.003 mag) over a two-to-three-year interval.
From Cosmic Dusk till Dawn with RELICS
NASA Astrophysics Data System (ADS)
Bradac, Marusa
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and the epoch of reionization? What are the conditions in typical lowmass, star-forming galaxies at z 4? Why is galaxy evolution dependent on environment? Recent observations indicate several critical puzzles in studies that address these questions. Chief among these, galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang) and their star formation history differs from what is predicted from simulations. Furthermore, the details of the mechanisms that regulate star formation and morphological transformation in dense environments are still unknown. To solve these puzzles of galaxy evolution, we will use 41 galaxy clusters from the RELICS program (Reionization Lensing Cluster Survey) that are among the most powerful cosmic telescopes. Their magnification will allow us to study stellar properties of a large number of galaxies all the way to the reionization era. Accurate knowledge of stellar masses, ages, and star formation rates (SFRs) requires measuring both rest-frame UV and optical light, which only Spitzer can probe at z>0.5-11 for a sufficiently large sample of typical galaxies. This program will combine Spitzer imaging from two large programs, Director Discretionary Time (DDT) and the SRELICS program led by the PI.The main challenge in a study such as this is the capability to perform reliable photometry in crowded fields. Our team recently helped develop TPHOT, which is a much improved and much faster version of previously available codes. TPHOT is specifically designed to extract fluxes in crowded fields with very different PSFs. We will combine Spitzer photometry with ground based imaging and spectroscopy to obtain robust measurements of galaxy star formation rates, stellar masses, and stellar ages. This program will be a crucial legacy complement to previous Spitzer/IRAC deep blank field surveys and cluster studies, and will open up new parameter space by probing intrinsically fainter objects than most current surveys with a significantly improved sample variance over deep field surveys. It will allow us to study the properties (e.g. SFRs and stellar masses) of a large number of galaxies (200 at z=6-10), thus meeting our goal of reconstructing the cosmic SFR density with sufficient precision to better understand the role of galaxies in the reionization process. We will measure the presence (or absence) of established stellar populations with Spitzer for the largest sample to date. Furthermore this proposal will allow us to study the SFRs of the intrinsically faint (and magnified) intermediate redshift (z 4) galaxies, as well as the stellar mass function of z=0.3-0.7 galaxy members of our cluster sample, thereby expanding our understanding of star formation from reionization to the epoch of galaxy formation and dense environments. Many of the science goals of this proposal are main science drivers for JWST. Due to magnification our effective depth and resolution match those of the JWST blank fields and affords us a sneak preview of JWST sources with Spitzer now. This program will thus provide a valuable test-bed for simulations, observation planning and source selection just in time for JWST Cycle 1.
Radial Velocities and Space Motions for nearby Stars
NASA Astrophysics Data System (ADS)
Upgren, A. R.; Sperauskas, J.
2005-10-01
The McCormick lists of stars and the Fourth Edition of the Catalog of Nearby Stars (CNS4) complement each other. Together they can be used to evaluate sources of systematic error in either of them. In addition to the 900 McCormick dwarf K-M stars brighter than about 11.5, the CNS4 includes all similar dwarfs believed to be within 25 parsecs of the Sun that appear to be missed in the former source. All of the stars from both sources are known to have precise trigonometric parallaxes, proper motions and, of course, positions. At the Moletai Observatory and elsewhere, radial velocities mostly to± 1 km/sec are almost complete for these dwarf stars. The goal is to have a sample of some 1200 dwarf stars with spatial coordinates and their first time derivatives for which the Lutz-Kelker and Malmquist corrections can be evaluated. Hopefully, age-related stellar measures will also be provided in a later phase of the program.
NASA Technical Reports Server (NTRS)
Giampapa, Mark S. (Editor); Bookbinder, Jay A. (Editor)
1992-01-01
Consideration is given to HST observations of late-type stars, molecular absorption in the UV spectrum of Alpha Ori, EUV emission from late-type stars, Rosat observations of the Pleiades cluster, a deep ROSAT observation of the Hyades cluster, optical spectroscopy detected by EXOSAT, stellar photospheric convection, a structure of the solar X-ray corona, magnetic surface images of the BY Dra Star HD 82558, a Zebra interpretatin of BY Dra stars, optical flares on II Peg, a low-resolution spectroscopic survey of post-T tauri candidates, millimeter and sub-millimeter emission from flare stars, and activity in tidally interacting binaries. Attention is also given to modeling stellar angular momentum evolution, extended 60-micron emission from nearby Mira variables, the PANDORA atmosphere program, the global properties of active regions, oscillations in a stratified atmosphere, lithium abundances in northern RS CVn binaries, a new catalog of cool dwarf stars, the Far UV Spectrograph Explorer, and development of reflecting coronagraphs.
The IUE Mega Campaign: Wind Variability and Rotation in Early-Type Stars
NASA Technical Reports Server (NTRS)
Massa, D.; Fullerton, A. W.; Nichols, J. S.; Owocki, S. P.; Prinja, R. K.; St-Louis, N.; Willis, A. J.; Altner, B.; Bolton, C. T.; Cassinelli, J. P.;
1995-01-01
Wind variability in OB stars may be ubiquitous and a connection between projected stellar rotation velocity and wind activity is well established. However, the origin of this connection is unknown. To probe the nature of the rotation connection, several of the attendees at the workshop on Instability and Variability of Hot-Star Winds drafted an IUE observing proposal. The goal of this program was to follow three stars for several rotations to determine whether the rotation connection is correlative or causal. The stars selected for monitoring all have rotation periods less than or equal to 5 days. They were HD 50896 (WN5), HD 64760 (BO.5 Ib), and HD 66811 (zeta Pup; 04 If(n)). During 16 days of nearly continuous observations in 1995 January (dubbed the 'MEGA' campaign), 444 high-dispersion IUE spectra of these stars were obtained. This Letter presents an overview of the results of the MEGA campaign and provides an introduction to the three following Letters, which discuss the results for each star.
Lichtveld, Maureen Y; Shankar, Arti; Mundorf, Chris; Hassan, Anna; Drury, Stacy
2016-12-01
The Scale to Assess the Therapeutic Relationship in Community Mental Health Care (STAR) is a frequently-administered tool for measuring therapeutic relationships between clinicians and patients. This manuscript tested the STAR's psychometric properties within a community health worker (CHW)-led intervention study involving pregnant and postpartum women. Women (n = 141) enrolled in the study completed the 12-item participant STAR survey (STAR-P) at two time points over the course of pregnancy and at two time points after delivery. The factor structure of the STAR-P proved to be unstable with this population. However, a revised 9-item STAR-P revealed a two-factor model of positive and negative interactions, and demonstrated strong internal consistency at postpartum time points. The revised STAR-P shows strong psychometric properties, and is suitable for use to evaluate the relationship developed between CHWs and pregnant and postpartum women in an intervention program.
VizieR Online Data Catalog: Rotation-Activity Correlations in K-M dwarfs II. (Houdebine+, 2017)
NASA Astrophysics Data System (ADS)
Houdebine, E. R.; Mullan, D. J.; Bercu, B.; Paletou, F.; Gebran, M.
2017-10-01
The spectra that we use for determining the CaII and Hα equivalent widths in the present study of dK4-dM4 stars came from three different echelle spectrographs; HARPS (High Accuracy Radial velocity Planet Search, ESO), SOPHIE (OHP), and FEROS (The Fiber-fed Extended Range Optical Spectrograph). The stars in our samples include all stars from all observing programs that have been carried out with HARPS and SOPHIE for stars belonging to the following spectral sub-types: dK4, dK6, dM2, and dM3. For dM4 stars, we compiled all measurements of vsini available in the literature (see Paper I; Houdebine+ 2016, J/ApJ/822/97). For the dK6 and dM3 samples, we also supplemented our own measurements with measurements available in the literature, notably for active stars (see Paper I). (7 data files).
Searching for X-ray Pulsations from Neutron Stars Using NICER
NASA Astrophysics Data System (ADS)
Ray, Paul S.; Arzoumanian, Zaven; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Guillot, Sebastien; Kust Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick K.; Mahmoodifar, Simin; Miller, M. Coleman; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael Thomas
2017-08-01
The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We will present our science plan and initial results from the first months of the NICER mission.
Searching for X-ray Pulsations from Neutron Stars Using NICER
NASA Astrophysics Data System (ADS)
Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination
2018-01-01
The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.
Sweep-twist adaptive rotor blade : final project report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwill, Thomas D.
2010-02-01
Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercialmore » development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.« less
First detection of nonflare microwave emissions from the coronae of single late-type dwarf stars
NASA Technical Reports Server (NTRS)
Gary, D. E.; Linsky, J. L.
1981-01-01
Results are presented of a search for nonflare microwave radiation from the coronae of nearby late-type dwarf stars comparable to the sun: single stars without evidence for either a large wind or circumstellar envelope. The observing program consisted of flux measurements of six stars over a 24-h period with the VLA in the C configuration at a wavelength of 6 cm with 50 MHz bandwidth. Positive detections at 6 cm were made for Chi 1 Ori (0.6 mJy) and the flare star UV Cet (1.55 mJy), and upper limits were obtained for the stars Pi 1 UMa, Xi Boo A, 70 Oph A and Epsilon Eri. It is suggested that Chi 1 Ori, and possibly UV Cet, represent the first detected members of a new class of radio sources which are driven by gyroresonance emission, i.e. cyclotron emission from nonrelativistic Maxwellian electrons.
Line profile variation in delta-Orionis A, l-Orionis A, and 15 Monocerotis
NASA Technical Reports Server (NTRS)
Grady, C. A.; Snow, T. P.; Cash, W. C.
1984-01-01
The results of a monitoring program with IUE and Einstein are presented for three stars, delta-Ori A, l-Ori A, and 15 Mon. Line profile variability is observed in the UV profiles accessible to IUE and the relation between the variation in the different ions suggests that the ionization level is varying in the winds of these stars. This is consistent with Einstein observations of soft X-ray variability for two of the stars.
NASA Astrophysics Data System (ADS)
Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.
2016-10-01
We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.
The 2017 Solar Eclipse Community Impacts through Public Library Engagement
NASA Astrophysics Data System (ADS)
Dusenbery, P.; Holland, A.; LaConte, K.; Mosshammer, G.; Harold, J. B.; Fraknoi, A.; Schatz, D.; Duncan, D. K.
2017-12-01
More than two million pairs of eclipse glasses were distributed free through public libraries in the U.S. for the solar eclipse of the Sun taking place on August 21, 2017. About 7,000 organizations, including public library branches, bookmobiles, tribal libraries, library consortia, and state libraries took part in the celestial event of the century. Many organizations received a package of free safe-viewing glasses, plus a 24-page information booklet about eclipse viewing and suggested program ideas. An educational video was also produced on how best to do public outreach programs about the eclipse. The project was supported, in part, by the Gordon and Betty Moore Foundation, with additional help from Google, NASA, the Research Corporation, and the National Science Foundation (NSF). The program was managed through the Space Science Institute's National Center for Interactive Learning as part of its STAR Library Network (STAR_Net). Resources developed by STAR_Net for this event included an Eclipse Resource Center; a newsletter for participating libraries to learn about eclipses and how to implement an effective and safe eclipse program; eclipse program activities on its STEM Activity Clearinghouse; webinars; and connections to subject matter experts from NASA's and the American Astronomical Society's volunteer networks. This presentation will provide an overview of the extensive collaboration that made this program possible as well as highlight the national impact that public libraries made in their communities.
Nonparametric statistical modeling of binary star separations
NASA Technical Reports Server (NTRS)
Heacox, William D.; Gathright, John
1994-01-01
We develop a comprehensive statistical model for the distribution of observed separations in binary star systems, in terms of distributions of orbital elements, projection effects, and distances to systems. We use this model to derive several diagnostics for estimating the completeness of imaging searches for stellar companions, and the underlying stellar multiplicities. In application to recent imaging searches for low-luminosity companions to nearby M dwarf stars, and for companions to young stars in nearby star-forming regions, our analyses reveal substantial uncertainty in estimates of stellar multiplicity. For binary stars with late-type dwarf companions, semimajor axes appear to be distributed approximately as a(exp -1) for values ranging from about one to several thousand astronomical units. About one-quarter of the companions to field F and G dwarf stars have semimajor axes less than 1 AU, and about 15% lie beyond 1000 AU. The geometric efficiency (fraction of companions imaged onto the detector) of imaging searches is nearly independent of distances to program stars and orbital eccentricities, and varies only slowly with detector spatial limitations.
Theoretical Study of White Dwarf Double Stars
NASA Astrophysics Data System (ADS)
Hira, Ajit; Koetter, Ted; Rivera, Ruben; Diaz, Juan
2015-04-01
We continue our interest in the computational simulation of the astrophysical phenomena with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.0 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We hope to extend our computational studies to blue giant stars in the future. Research Supported by National Science Foundation.
EPA’s Voluntary Methane Programs encourage oil and natural gas companies to adopt cost-effective technologies and practices that improve operational efficiency and reduce emissions of methane, a potent greenhouse gas.
Dávid, Anna; Butz, Henriett; Halász, Zita; Török, Dóra; Nyirő, Gábor; Muzsnai, Ágota; Csákváry, Violetta; Luczay, Andrea; Sallai, Ágnes; Hosszú, Éva; Felszeghy, Enikő; Tar, Attila; Szántó, Zsuzsanna; Fekete, Gy László; Kun, Imre; Patócs, Attila; Bertalan, Rita
2017-08-01
The isolated haploinsufficiency of the SHOX gene is one of the most common cause of short stature determined by monogenic mutations. The heterozygous deviation of the gene can be detected in 2-15% of patients with idiopathic short stature (ISS), in 50-90% of patients with Leri-Weill dyschondrosteosis syndrome (LWS), and in almost 100% of patients with Turner syndrome. The aim of our study was to evaluate the frequency of SHOX gene haploinsufficiency in children with ISS, LWS and in patients having Turner syndrome phenotype (TF), but normal karyotype, and to identify the dysmorphic signs characteristic for SHOX gene deficiency. A total of 144 patients were included in the study. Multiplex Ligation-dependent Probe Amplification (MLPA) method was used to identify the SHOX gene haploinsufficiency. The relationships between clinical data (axiological parameters, skeletal disorders, dysmorphic signs) and genotype were analyzed by statistical methods. 11 (7.6%) of the 144 patients showed SHOX gene deficiency with female dominance (8/11, 81% female). The SHOX positive patients had a significantly higher BMI (in 5/11 vs. 20/133 cases, p<0.02) and presented more frequent dysmorphic signs (9/11vs 62/133, p = 0.02). Madelung deformity of the upper limbs was also significantly more frequent among the SHOX positive patients (4/11, i.e. 36%, vs. 14/133, i.e. 10%, p = 0.0066). There were no statistically significant differences between the mean age, mean height and auxological measurements (sitting height/height, arm span/height) between the two groups of patients. The occurrence of SHOX gene haploinsufficiency observed in our population corresponds to the literature data. In SHOX positive patients, in addition to short stature, the dysmorphic signs have a positive predictive value for SHOX gene alterations. However, the SHOX deletion detected in a patient with idiopathic short stature without dysmorphic signs suggest that SHOX deletion analysis can be recommended in patients with ISS. Orv Hetil. 2017; 158(34): 1351-1356.
Prego-Borges, José L; Zamboni-Rached, Michel; Recami, Erasmo; Costa, Eduardo Tavares
2014-08-01
The so-called Localized Waves (LW), and the "Frozen Waves" (FW), have raised significant attention in the areas of Optics and Ultrasound, because of their surprising energy localization properties. The LWs resist the effects of diffraction for large distances, and possess an interesting self-reconstruction -self-healing- property (after obstacles with size smaller than the antenna's); while the FWs, a sub-class of LWs, offer the possibility of arbitrarily modeling the longitudinal field intensity pattern inside a prefixed interval, for instance 0⩽z⩽L, of the wave propagation axis. More specifically, the FWs are localized fields "at rest", that is, with a static envelope (within which only the carrier wave propagates), and can be endowed moreover with a high transverse localization. In this paper we investigate, by simulated experiments, various cases of generation of ultrasonic FW fields, with the frequency of f0=1 MHz in a water-like medium, taking account of the effects of attenuation. We present results of FWs for distances up to L=80 mm, in attenuating media with absorption coefficient α in the range 70⩽α⩽170 dB/m. Such simulated FW fields are constructed by using a procedure developed by us, via appropriate finite superpositions of monochromatic ultrasonic Bessel beams. We pay due attention to the selection of the FW parameters, constrained by the rather tight restrictions imposed by experimental Acoustics, as well as to some practical implications of the transducer design. The energy localization properties of the Frozen Waves can find application even in many medical apparatus, such as bistouries or acoustic tweezers, as well as for treatment of diseased tissues (in particular, for the destruction of tumor cells, without affecting the surrounding tissues; also for kidney stone shuttering, etc.). Copyright © 2014 Elsevier B.V. All rights reserved.
The Effects of Simulated Live-release Walleye Tournaments on Survival and Blood Chemistry
Loomis, John H.; Schramm, Harold L.; Vondracek, Bruce C.; Gerard, Patrick D.; Chizinski, Christopher J.
2013-01-01
We examined the effects of acclimation water temperature,live-well (LW) water temperature,and LW dissolved oxygen (DO) concentration on survival of adult WalleyesSander vitreus subjected to simulated tournament conditions (angling,LW confinement,and weigh-in procedures) under controlled laboratory conditions. We tested three acclimation temperatures (12,18,and 24°C),and three LW temperature differentials (ΔT = −4,0,and +4°C) were tested at each acclimation temperature. Survival was monitored after 8 h of LW confinement and during a 5-d retention period in 1,700-L tanks. None of the Walleyes that were acclimated to 24°C and subjected to simulated tournament procedures survived the 5-d retention period; for fish subjected only to simulated angling at 24°C,survival during the 5-d retention period was 29%. Five-day survival was generally over 70% at acclimation temperatures of 12°C and 18°C,and we observed a significant interaction between acclimation temperature and ΔT; survival was greatest in LWs at −4°C ΔT for fish acclimated to 18°C and in LWs at +4°C ΔT for fish acclimated to 12°C. Best survival of Walleyes subjected to the stress of angling and tournament procedures was obtained at temperatures 6–8°C below the optimum temperature for adult Walleyes (i.e.,optimum = 20–22°C). Five-day survival exceeded 70% when LW DO was 5 or 12–15 mg/L (at an acclimation and LW temperature of 18°C),but survival was 0% when DO was 2 mg/L. Anglers may increase survival of Walleyes through careful manipulation of LW temperature and DO when ambient temperature is at or below 18°C,but high mortality of angled and LW-retained Walleyes should be expected when ambient water temperatures are 24°C or greater.
Effects of simulated angler capture and live-release tournaments on walleye survival
Loomis, John H.; Schramm, Harold L.; Vondracek, Bruce C.; Gerard, Patrick D.; Chizinski, Christopher J.
2015-01-01
We examined the effects of acclimation water temperature,live-well (LW) water temperature,and LW dissolved oxygen (DO) concentration on survival of adult WalleyesSander vitreus subjected to simulated tournament conditions (angling,LW confinement,and weigh-in procedures) under controlled laboratory conditions. We tested three acclimation temperatures (12,18,and 24°C),and three LW temperature differentials (ΔT = −4,0,and +4°C) were tested at each acclimation temperature. Survival was monitored after 8 h of LW confinement and during a 5-d retention period in 1,700-L tanks. None of the Walleyes that were acclimated to 24°C and subjected to simulated tournament procedures survived the 5-d retention period; for fish subjected only to simulated angling at 24°C,survival during the 5-d retention period was 29%. Five-day survival was generally over 70% at acclimation temperatures of 12°C and 18°C,and we observed a significant interaction between acclimation temperature and ΔT; survival was greatest in LWs at −4°C ΔT for fish acclimated to 18°C and in LWs at +4°C ΔT for fish acclimated to 12°C. Best survival of Walleyes subjected to the stress of angling and tournament procedures was obtained at temperatures 6–8°C below the optimum temperature for adult Walleyes (i.e.,optimum = 20–22°C). Five-day survival exceeded 70% when LW DO was 5 or 12–15 mg/L (at an acclimation and LW temperature of 18°C),but survival was 0% when DO was 2 mg/L. Anglers may increase survival of Walleyes through careful manipulation of LW temperature and DO when ambient temperature is at or below 18°C,but high mortality of angled and LW-retained Walleyes should be expected when ambient water temperatures are 24°C or greater.
NASA Astrophysics Data System (ADS)
dos Santos, Leonardo A.; Meléndez, Jorge; Bedell, Megan; Bean, Jacob L.; Spina, Lorenzo; Alves-Brito, Alan; Dreizler, Stefan; Ramírez, Iván; Asplund, Martin
2017-12-01
Previous studies on the rotation of Sun-like stars revealed that the rotational rates of young stars converge towards a well-defined evolution that follows a power-law decay. It seems, however, that some binary stars do not obey this relation, often by displaying enhanced rotational rates and activity. In the Solar Twin Planet Search program, we observed several solar twin binaries, and found a multiplicity fraction of 42 per cent ± 6 per cent in the whole sample; moreover, at least three of these binaries (HIP 19911, HIP 67620 and HIP 103983) clearly exhibit the aforementioned anomalies. We investigated the configuration of the binaries in the program, and discovered new companions for HIP 6407, HIP 54582, HIP 62039 and HIP 30037, of which the latter is orbited by a 0.06 M⊙ brown dwarf in a 1 m long orbit. We report the orbital parameters of the systems with well-sampled orbits and, in addition, the lower limits of parameters for the companions that only display a curvature in their radial velocities. For the linear trend binaries, we report an estimate of the masses of their companions when their observed separation is available, and a minimum mass otherwise. We conclude that solar twin binaries with low-mass stellar companions at moderate orbital periods do not display signs of a distinct rotational evolution when compared to single stars. We confirm that the three peculiar stars are double-lined binaries, and that their companions are polluting their spectra, which explains the observed anomalies.
NASA Technical Reports Server (NTRS)
Kurucz, Robert L.
1996-01-01
I discuss errors in theory and in interpreting observations that are produced by the failure to consider resolution in space, time, and energy. I discuss convection in stellar model atmospheres and in stars. Large errors in abundances are possible such as the factor of ten error in the Li abundance for extreme Population II stars. Finally I discuss the variation of microturbulent velocity with depth, effective temperature, gravity, and abundance. These variations must be dealt with in computing models and grids and in any type of photometric calibration. I have also developed a new opacity-sampling version of my model atmosphere program called ATLAS12. It recognizes more than 1000 atomic and molecular species, each in up to 10 isotopic forms. It can treat all ions of the elements up through Zn and the first 5 ions of heavier elements up through Es. The elemental and isotopic abundances are treated as variables with depth. The fluxes predicted by ATLAS12 are not accurate in intermediate or narrow bandpass intervals because the sample size is too small. A special stripped version of the spectrum synthesis program SYNTHE is used to generate the surface flux for the converged model using the line data on CD-ROMs 1 and 15. ATLAS12 can be used to produce improved models for Am and Ap stars. It should be very useful for investigating diffusion effects in atmospheres. It can be used to model exciting stars for H II regions with abundances consistent with those of the H II region. These programs and line files will be distributed on CD-ROMs.
VizieR Online Data Catalog: Young star forming region NGC 2264 Spitzer sources (Rapson+, 2014)
NASA Astrophysics Data System (ADS)
Rapson, V. A.; Pipher, J. L.; Gutermuth, R. A.; Megeath, S. T.; Allen, T. S.; Myers, P. C.; Allen, L. E.
2017-05-01
We utilize 3.6-8.0 um images of Mon OB1 East obtained with the Spitzer Space Telescope Infrared Array Camera (IRAC; Fazio et al. 2004ApJS..154...10F), 24 um images obtained with the Multi-Band Imaging Photometer (MIPS; Rieke et al. 2004ApJS..154...25R), along with 1-2.5 um NIR data from the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006AJ....131.1163S, Cat. VII/233) to classify YSOs. These YSOs in Mon OB1 East are classified as either protostars or stars with circumstellar disks by their infrared excess emission above photospheric emission. Spitzer data were gathered as part of two Guaranteed Time Observation programs and one additional program with the goal of studying clustered and distributed star formation throughout Mon OB1 East and comparing the results with those of other molecular clouds. Mon OB1 East was observed by Spitzer in 2004, 2007, and 2008 as part of the Guaranteed Time Observation programs 37 (IRAC data; PI: G. Fazio) and 58 (MIPS data; PI: G. Rieke), as well as program 40006 (IRAC+MIPS data; PI: G. Fazio). (1 data file).
Close Double Stars from Occultation Video Recordings
NASA Astrophysics Data System (ADS)
Waring Dunham, David; George, Anthony; Loader, Brian; Herald, David Russell
2015-08-01
Astronomers around the world, both amateur and professional, have been recording lunar and asteroidal occultations of close double stars during the past several years using inexpensive but quite sensitive video cameras that are now available. Several new double stars have been discovered, and the parameters of many close systems have been determined. Besides rather good measurements of the relative magnitudes of the components, the actual separations and position angles can be measured if observations of the same event are made from two or more separate stations. These observations collected by the International Occultation Timing Association (IOTA) are published in the Journal of Double Star Observations. Recently, IOTA has encouraged the observation of occultations of stars in the Kepler 2 program, which is interested in data about close duplicity that affects their analyses for exoplanet transits.
Ground-Based Calibration Support for Two Approved HST Programs
NASA Technical Reports Server (NTRS)
Stauffer, John R.
1998-01-01
This final report is a summary of the study on ground-based calibration support for two approved HST programs. A large set of new rotational periods for low mass stars in the Pleiades open cluster have been published and used to help interpret chromospheric and coronal activity indicators for low mass stars in the cluster. The Caltech/TJC/NASA Keck telescope in Hawaii has also been used to obtain spectra of brown dwarf candidates in the Pleiades. Those spectra help to derive an accurate and precise new age for that fiducial open cluster.
Orbital Plotting of WDS 04545-0314 and WDS 04478+5318
NASA Astrophysics Data System (ADS)
Smith, Nick; Foster, Chris; Myers, Blake; Sepulveda, Barbel; Genet, Russell
2016-01-01
Students at Lincoln High School used the PlateSolve 3 program to obtain the position angle and separation of two double stars, WDS 04545-0314 and WDS 04478+5318. Both stars were observed at Kitt Peak on October 20, 2013. A java-based program developed by the team was used to plot the new data on the previously published orbital paths. It was determined that WDS 04545-0314 is maintaining the previously published orbital solution but that the orbit of WDS 04478+5318 may need to be revised.
Infrared Extinction and the Initial Conditions for Star and Planet Formation
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2004-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular clouds and investigate the physical conditions which give rise to star and planet formation. The goals of the this program are to: 1) acquire deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds, 2) reduce and analyze the data obtained in order to produce detailed extinction maps of the clouds, 3) prepare results, where appropriate, for publication. A description of how these goals were met are included.
CSC attains VPP Star Demonstration status
2009-12-09
CSC Inc. at NASA's John C. Space Center was presented a Voluntary Protection Programs (VPP) Star Demonstration banner by the Occupational Safety and Health administration (OSHA) during a Dec. 9 ceremony. From left, CSC Employee Safety Committee members LaSonya Pulliam (l to r), Jim Sever, Stacy Brunson, Debbie Duke, Sheliah Wilson, Fred Voss and Beth Nguyen, and CSC Program Manager Tony Lisotta received the banner. OSHA established VPP in 1982 as a proactive safety management model so organizations and their employees could be recognized for excellence in safety and health.
NASA Technical Reports Server (NTRS)
Voigt, S.
1975-01-01
The use of software engineering aids in the design of a structural finite-element analysis computer program for the STAR-100 computer is described. Nested functional diagrams to aid in communication among design team members were used, and a standardized specification format to describe modules designed by various members was adopted. This is a report of current work in which use of the functional diagrams provided continuity and helped resolve some of the problems arising in this long-running part-time project.
Gravitational Interactions of White Dwarf Double Stars
NASA Astrophysics Data System (ADS)
McKeough, James; Robinson, Chloe; Ortiz, Bridget; Hira, Ajit
2016-03-01
In the light of the possible role of White Dwarf stars as progenitors of Type Ia supernovas, we present computational simulations of some astrophysical phenomena associated with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.5 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We will extend our computational studies to blue giant and red giant stars in the future. Funding from National Science Foundation.
The (BETA) Pictoris Phenomenon Among Herbig Ae/Be Stars
NASA Technical Reports Server (NTRS)
Grady, C. A.; Perez, M. R.; Talavera, A.; Bjorkman, K. S.; deWinter, D.; The, P.-S.; Molster, F. J.; vandenAncker, M. E.; Sitko, M. L.; Morrison, N. D.;
1996-01-01
We present a survey of high dispersion UV and optical spectra of Herbig Ae/Be (HAeBe) and related stars. We find accreting, circumstellar gas over the velocity range +100 to +400 km/s, and absorption profiles similar to those seen toward Beta Pic, in 36% of the 33 HAeBe stars with IUE data as well as in 3 non-emission B stars. We also find evidence of accretion in 7 HAeBe stars with optical data only. Line profile variability appears ubiquitous. As a group, the stars with accreting gas signatures have higher v sin i than the stars with outflowing material, and tend to exhibit large amplitude (greater than or equal to 1(sup m)) optical light variations. All of the program stars with polarimetric variations that are anti-correlated with the optical light, previously interpreted as the signature of a dust disk viewed close to equator-on, also show spectral signatures of accreting gas. These data imply that accretion activity in HAeBe stars is preferentially observed when the line of sight transits the circumstellar dust disk. Our data imply that the spectroscopic signatures of accreting circumstellar material seen in Beta Pic are not unique to that object, but instead are consistent with interpretation of Beta Pic as a comparatively young A star with its associated circumstellar disk.
Substellar Companions to weak-line TTauri Stars
NASA Astrophysics Data System (ADS)
Brandner, W.; Alcala, J. M.; Covino, E.; Frink, S.
1997-05-01
Weak-line TTauri stars, contrary to classical TTauri stars, no longer possess massive circumstellar disks. In weak-line TTauri stars, the circumstellar matter was either accreted onto the TTauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line TTauri stars in the Chamaeleon T association and the Scorpius Centaurus OB association. In the course of follow-up observations we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass-ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line TTauri stars. We have initiated a program to spatially RESOLVE young brown dwarfs and young giant planets as companions to single weak-line TTauri stars using adaptive optics at the ESO 3.6m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations.
Chromospheric and Transition Region Emission Properties of G, K, and M dwarf Exoplanet Host Stars
NASA Astrophysics Data System (ADS)
France, Kevin; Arulanantham, Nicole; Fossati, Luca; Lanza, A. F.; Linsky, Jeffrey L.; Redfield, Seth; Loyd, Robert; Schneider, Christian
2018-01-01
Exoplanet magnetic fields have proven notoriously hard to detect, despite theoretical predictions of substantial magnetic field strengths on close-in extrasolar giant planets. It has been suggested that stellar and planetary magnetic field interactions can manifest as enhanced stellar activity relative to nominal age-rotation-activity relationships for main sequence stars or enhanced activity on stars hosting short-period massive planets. In a recent study of M and K dwarf exoplanet host stars, we demonstrated a significant correlation between the relative luminosity in high-temperature stellar emission lines (L(ion)/L_Bol) and the “star-planet interaction strength”, M_plan/a_plan. Here, we expand on that work with a survey of G, K, and M dwarf exoplanet host stars obtained in two recent far-ultraviolet spectroscopic programs with the Hubble Space Telescope. We have measured the relative luminosities of stellar lines C II, Si III, Si IV, and N V (formation temperatures from 30,000 – 150,000 K) in a sample of ~60 exoplanet host stars and an additional ~40 dwarf stars without known planets. We present results on star-planet interaction signals as a function of spectral type and line formation temperature, as well as a statistical comparison of stars with and without planets.
The Efficacy of IRIS "STAR Legacy" Modules under Different Instructional Conditions
ERIC Educational Resources Information Center
Sayeski, Kristin L.; Hamilton-Jones, Bethany; Oh, Susan
2015-01-01
The vast majority of special education teacher preparation programs in the United States incorporate the IRIS Center's "STAR Legacy" modules into their coursework. Given the diversity of module content and ways in which the modules are employed, the purpose of this study was to explore the potential mediating effects of instructional…
76 FR 45453 - New Car Assessment Program (NCAP); Safety Labeling
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... groups, one of which was presented with a sample window sticker that included what was portrayed as a...) subjects vehicles to frontal crash, side crash, and rollover resistance tests and, based on the results... system, with five stars being the highest rating and one star the lowest. The ratings would enable...
Autonomous formation flying sensor for the Star Light Mission
NASA Technical Reports Server (NTRS)
Aung, M.; Purcell, G.; Tien, J.; Young, L.; Srinivasan, J.; Ciminera, M. A.; Chong, Y. J.; Amaro, L. R.; Young, L. E.
2002-01-01
The StarLight Mission, an element of NASA's Origins Program, was designed for first-time demonstration of two technologies: formation flying optical interferometry between spacecraft and autonomous precise formation flying of an array of spacecraft to support optical interferometry. The design overview and results of the technology effort are presented in this paper.