Science.gov

Sample records for starch phosphorylase mutational

  1. The relation of starch phosphorylases to starch metabolism in wheat.

    PubMed

    Schupp, Nicole; Ziegler, Paul

    2004-10-01

    Tissues of wheat (Triticum aestivum L., var. Star) exhibit three starch phosphorylase activity forms resolved by non-denaturing polyacrylamide gel affinity electrophoresis (P1, P2 and P3). Compartmentation analysis of young leaf tissues showed that P3 is plastidic, whereas P1 and P2 are cytosolic. P1 exhibits a strong binding affinity to immobilized glycogen upon electrophoresis, whereas P2 and the chloroplastic P3 do not. Cytosolic leaf phosphorylase was purified to homogeneity by affinity chromatography. The single polypeptide product constituted both the P1 and P2 activity forms. Probes for the detection of phosphorylase transcripts were derived from cDNA sequences of cytosolic and plastidic phosphorylases, and these-together with activity assays and a cytosolic phosphorylase-specific antiserum-were used to monitor phosphorylase expression in leaves and seeds. Mature leaves contained only plastidic phosphorylase, which was also strongly evident in the endosperm of developing seeds at the onset of reserve starch accumulation. Germinating seeds contained only cytosolic phosphorylase, which was restricted to the embryo. Plastidic phosphorylase thus appears to be associated with transitory leaf starch metabolism and with the initiation of seed endosperm reserve starch accumulation, but it plays no role in the degradation of the reserve starch. Cytosolic phosphorylase may be involved in the processing of incoming carbohydrate during rapid tissue growth.

  2. Characterization of plastidial starch phosphorylase in Triticum aestivum L. endosperm.

    PubMed

    Tickle, Paul; Burrell, Michael M; Coates, Stephen A; Emes, Michael J; Tetlow, Ian J; Bowsher, Caroline G

    2009-09-15

    Starch phosphorylase (Pho) catalyses the reversible transfer of glucosyl units from glucose1-phosphate to the non-reducing end of an alpha-1,4-linked glucan chain. Two major isoforms of Pho exist in the plastid (Pho1) and cytosol (Pho2). In this paper it is proposed that Pho1 may play an important role in recycling glucosyl units from malto-oligosaccharides back into starch synthesis in the developing wheat endosperm. Pho activity was observed in highly purified amyloplast extracts prepared from developing wheat endosperms, representing the first direct evidence of plastidial Pho activity in this tissue. A full-length cDNA clone encoding a plastidial Pho isoform, designated TaPho1, was also isolated from a wheat endosperm cDNA library. The TaPho1 protein and Pho1 enzyme activity levels were shown to increase throughout the period of starch synthesis. These observations add to the growing body of evidence which indicates that this enzyme class has a role in starch synthesis in wheat endosperm and indeed all starch storing tissues.

  3. High phosphorylase activity is correlated with increased potato minituber formation and starch content during extended clinorotation

    NASA Astrophysics Data System (ADS)

    Nedukha, O. M.; Schnyukova, E. I.; Leach, J. E.

    2003-05-01

    The major purpose of these experiments were to investigate growth of potato storage organs and starch synthesis in minitubers at slow horizontal clinorotation (2 rpm), which partly mimics microgravity, and a secondary goal was to study the activity and localization of phosphorylase (EC 2.4.1.1) in storage parenchyma under these conditions. Miniplants of Solanum tuberosum L. (cv Adreta) were grown in culture for 30 days for both the vertical control and the horizontal clinorotation. During long-term clinorotation, an acceleration of minituber formation, and an increase of amyloplast number and size in storage parenchyma cells, as well as increased starch content, was observed in the minitubers. The differences among cytochemical reaction intensity, activity of phosphorylase, and carbohydrate content in storage parenchyma cells of minitubers grown in a horizontal clinostat were established by electron-cytochemical and biochemical methods. It is shown that high phosphorylase activity is correlated with increased starch content during extended clinorotation. The results demonstrate the increase in carbohydrate metabolism and possible accelerated growth of storage organs under the influence of microgravity, as mimicked by clinorotation; therefore, clinorotation can be used as a basis for future studies on mechanisms of starch synthesis under microgravity.

  4. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    PubMed Central

    Ruzanski, Christian; Krucewicz, Katarzyna; Meier, Sebastian; Hägglund, Per; Svensson, Birte; Palcic, Monica M.

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley. PMID:28407006

  5. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development.

    PubMed

    Cuesta-Seijo, Jose A; Ruzanski, Christian; Krucewicz, Katarzyna; Meier, Sebastian; Hägglund, Per; Svensson, Birte; Palcic, Monica M

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley.

  6. Regulation of the catalytic behaviour of L-form starch phosphorylase from sweet potato roots by proteolysis.

    PubMed

    Chen, Han-Min; Chang, Shih-Chung; Wu, Chi-Chen; Cuo, Ting-Shen; Wu, Jiann-Shing; Juang, Rong-Huay

    2002-04-01

    Starch phosphorylase (SP) is an enzyme used for the reversible phosphorolysis of the alpha-glucan in plant cells. When compared to its isoform in an animal cell, glycogen phosphorylase, a peptide containing 78 amino acids (L78) is inserted in the centre of the low-affinity type starch phosphorylase (L-SP). We found that the amino acid sequence of L78 had several interesting features including the presence of a PEST region, which serves as a signal for rapid degradation. Indeed, most L-SP molecules isolated from mature sweet potato roots were nicked in the middle of a molecule, but still retained their tertiary or quaternary structures, as well as full catalytic activity. The nicking sites on the L78 were identified by amino acid sequencing of these peptides, which also enabled us to propose a proteolytic process for L-SP. Enzyme kinetic studies of L-SP in the direction of starch synthesis indicated that the Km decreased during the proteolytic process when starch was used as the limiting substrate, but the Km for the other substrate (Glc-1-P) increased. On the other hand, the maximum velocities (Vmax) increased for both substrates. Mobility of the nicked L-SP was retarded on a native polyacrylamide gel containing soluble starch, indicating the increased affinity for starch. Results in this study suggested that L78 and its proteolytic modifications might play a regulatory role on the catalytic behaviour of L-SP in starch biosynthesis.

  7. Purification and characterization of the maize amyloplast stromal 112-kDa starch phosphorylase.

    PubMed

    Mu, H H; Yu, Y; Wasserman, B P; Carman, G M

    2001-04-01

    A plastidic 112-kDa starch phosphorylase (SP) has been identified in the amyloplast stromal fraction of maize. This starch phosphorylase was purified 310-fold from maize endosperm and characterized with respect to its enzymological and kinetic properties. The purification procedure included ammonium sulfate fractionation, Sephacryl 300 HR chromatography, affinity starch adsorption, Q-Sepharose, and Mono Q chromatography. The procedure resulted in a nearly homogeneous enzyme preparation as determined by native and SDS-polyacrylamide gel electrophoresis. Anti-SP antibodies recognized the purified 112-kDa SP enzyme and N-terminal amino acid sequence analysis confirmed that the purified enzyme is the amyloplast stromal 112-kDa SP. Analysis of the purified enzyme by Superose 6 gel filtration chromatography indicated that the native enzyme consisted of two identical subunits. The pH optimum for the enzyme was 6.0 in the synthetic direction and 5.5 in the phosphorolytic direction. SP activity was inhibited by thioreactive agents, diethyl pyrocarbonate, phenylglyoxal, and ADP-glucose. The activation energies for the synthetic and phosphorolytic reactions were 11.1 and 16.9 kcal/mol, respectively, and the enzyme was thermally labile above 50 degrees C. Results of kinetic experiments indicated that the enzyme catalyzes its reaction via a sequential Bi Bi mechanism. The Km value for amylopectin was eight-fold lower than that of glycogen. A kinetic analysis indicated that the phosphorolytic reaction was favored over the synthetic reaction when malto-oligosaccharides (4 to 7 units) were used as substrates. The specificity constants (Vmax/Km) of the enzyme measured in either the synthetic or the phosphorolytic directions increased with increasing chain length.

  8. The identification of starch phosphorylase in the developing mungbean (Vigna radiata L.).

    PubMed

    Ko, Yuan-Tih; Chang, Jin-Yi; Lee, Ya-Ting; Wu, Yi-Hui

    2005-07-13

    Starch phosphorylase (SP) in immature mungbean (Vigna radiata L. cv KPS1) seed soluble extract was detected by in situ activity staining and identified by MALDI-TOF mass analysis. After in situ SP assay on native-PAGE, a major starch-enzyme complex was located on the gel zymogram in a dose-dependent manner. This complex depicted two major SP-activity related proteins, 105 kDa and 55 kDa, by SDS-PAGE. The mass and predicted sequence of the tryptic fragments of the isolated 105 kDa protein, analyzed by MALDI-TOF spectroscopy and bioinformatic analysis, confirmed it to be mungbean SP as a result of high similarity to the L-SP of known plant. Polyclonal antibodies raised from the 55 kDa recognized both the 105 kDa and the 55 kDa proteins on the Western blot and neutralized partial SP activity, indicating that the two proteins were immunologically related. The 55 kDa protein possess high similarity to the N-terminal half of the 105 kDa SP was further confirmed. The SP activity and the activity stained protein density in mungbean soluble extract decreased as the seed size increased during early seed growth. These data indicate that mungbean 105 kDa SP and SP activity-related 55 kDa were identified in the developing mungbean.

  9. Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation.

    PubMed

    Chomvong, Kulika; Lin, Eric; Blaisse, Michael; Gillespie, Abigail E; Cate, Jamie H D

    2017-02-17

    Cellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks only a single hydroxymethyl group relative to glucose, from binding to the CBP active site poses a spatial challenge for protein engineering, since simple steric occlusion cannot be used to block xylose binding without also preventing glucose binding. Using CRISPR-based chromosomal library selection, we identified a distal mutation in CBP, Y47H, responsible for improved cellobiose consumption in the presence of xylose. In silico analysis suggests this mutation may alter the conformation of the cellobiose phosphorylase dimer complex to reduce xylose binding to the active site. These results may aid in engineering carbohydrate phosphorylases for improved specificity in biofuel production, and also in the production of industrially important oligosaccharides.

  10. Overexpression of the Starch Phosphorylase-Like Gene (PHO3) in Lotus japonicus has a Profound Effect on the Growth of Plants and Reduction of Transitory Starch Accumulation

    PubMed Central

    Qin, Shanshan; Tang, Yuehui; Chen, Yaping; Wu, Pingzhi; Li, Meiru; Wu, Guojiang; Jiang, Huawu

    2016-01-01

    Two isoforms of starch phosphorylase (PHO; EC 2.4.1.1), plastidic PHO1 and cytosolic PHO2, have been found in all plants studied to date. Another starch phosphorylase-like gene, PHO3, which is an ortholog of Chlamydomonas PHOB, has been detected in some plant lineages. In this study, we identified three PHO isoform (LjPHO) genes in the Lotus japonicus genome. Expression of the LjPHO3 gene was observed in all tissues tested in L. japonicus, and the LjPHO3 protein was located in the chloroplast. Overexpression of LjPHO3 in L. japonicus resulted in a drastic decline in starch granule sizes and starch content in leaves. The LjPHO3 overexpression transgenic seedlings were smaller, and showed decreased pollen fertility and seed set rate. Our results suggest that LjPHO3 may participate in transitory starch metabolism in L. japonicus leaves, but its catalytic properties remain to be studied. PMID:27630651

  11. Double knockout mutants of Arabidopsis grown under normal conditions reveal that the plastidial phosphorylase isozyme participates in transitory starch metabolism.

    PubMed

    Malinova, Irina; Mahlow, Sebastian; Alseekh, Saleh; Orawetz, Tom; Fernie, Alisdair R; Baumann, Otto; Steup, Martin; Fettke, Joerg

    2014-02-01

    In leaves of two starch-related single-knockout lines lacking either the cytosolic transglucosidase (also designated as disproportionating enzyme 2, DPE2) or the maltose transporter (MEX1), the activity of the plastidial phosphorylase isozyme (PHS1) is increased. In both mutants, metabolism of starch-derived maltose is impaired but inhibition is effective at different subcellular sites. Two constitutive double knockout mutants were generated (designated as dpe2-1×phs1a and mex1×phs1b) both lacking functional PHS1. They reveal that in normally grown plants, the plastidial phosphorylase isozyme participates in transitory starch degradation and that the central carbon metabolism is closely integrated into the entire cell biology. All plants were grown either under continuous illumination or in a light-dark regime. Both double mutants were compromised in growth and, compared with the single knockout plants, possess less average leaf starch when grown in a light-dark regime. Starch and chlorophyll contents decline with leaf age. As revealed by transmission electron microscopy, mesophyll cells degrade chloroplasts, but degradation is not observed in plants grown under continuous illumination. The two double mutants possess similar but not identical phenotypes. When grown in a light-dark regime, mesophyll chloroplasts of dpe2-1×phs1a contain a single starch granule but under continuous illumination more granules per chloroplast are formed. The other double mutant synthesizes more granules under either growth condition. In continuous light, growth of both double mutants is similar to that of the parental single knockout lines. Metabolite profiles and oligoglucan patterns differ largely in the two double mutants.

  12. X-linked liver phosphorylase kinase deficiency is associated with mutations in the human liver phosphorylase kinase alpha subunit.

    PubMed Central

    van den Berg, I E; van Beurden, E A; Malingré, H E; van Amstel, H K; Poll-The, B T; Smeitink, J A; Lamers, W H; Berger, R

    1995-01-01

    Two Dutch patients with liver phosphorylase kinase (PhK) deficiency were studied for abnormalities in the PhK liver alpha (alpha L) subunit mRNA by reversed-transcribed-PCR (RT-PCR) and RNase protection assays. One patient, belonging to a large Dutch family that expresses X-linked liver PhK deficiency, had a C3614T mutation in the PhK alpha L coding sequence. The C3614T mutation leads to replacement of proline 1205 with leucine, which changes the composition of an amino acid region, containing amino acids 1195-1214 of the PhK alpha L subunit, that is highly conserved in different species. The patient showed normal levels of PhK alpha L mRNA. The second patient, from an unrelated family, was found to have a TCT (bp 419-421) deletion in the PhK alpha L coding sequence, resulting in a phenylalanine 141 deletion. The same deletion was found in the PhK alpha L coding sequence from lymphocytes of the patient's mother, together with a normal PhK alpha L coding sequence. The phenylalanine that is absent in the PhK alpha L coding sequence of the second patient is a highly conserved amino acid between species. Both the C3614T mutation and the TCT (bp 419-421) deletion were not found in a panel of 80 control X chromosomes. On the basis of these results, it is postulated that the mutations found are responsible for liver PhK deficiency in the two patients investigated. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7847371

  13. Polynucleotide phosphorylase plays an important role in the generation of spontaneous mutations in Escherichia coli.

    PubMed

    Becket, Elinne; Tse, Lawrence; Yung, Madeline; Cosico, Alexander; Miller, Jeffrey H

    2012-10-01

    Polynucleotide phosphorylase (PNP) plays a central role in RNA degradation, generating a pool of ribonucleoside diphosphates (rNDPs) that can be converted to deoxyribonucleoside diphosphates (dNDPs) by ribonucleotide reductase. We report here that spontaneous mutations resulting from replication errors, which are normally repaired by the mismatch repair (MMR) system, are sharply reduced in a PNP-deficient Escherichia coli strain. This is true for base substitution mutations that occur in the rpoB gene leading to Rif(r) and the gyrB gene leading to Nal(r) and for base substitution and frameshift mutations that occur in the lacZ gene. These results suggest that the increase in the rNDP pools generated by polynucleotide phosphorylase (PNP) degradation of RNA is responsible for the spontaneous mutations observed in an MMR-deficient background. The PNP-derived pool also appears responsible for the observed mutations in the mutT mutator background and those that occur after treatment with 5-bromodeoxyuridine, as these mutations are also drastically reduced in a PNP-deficient strain. However, mutation frequencies are not reduced in a mutY mutator background or after treatment with 2-aminopurine. These results highlight the central role in mutagenesis played by the rNDP pools (and the subsequent dNTP pools) derived from RNA degradation.

  14. Plastidial Starch Phosphorylase in Sweet Potato Roots Is Proteolytically Modified by Protein-Protein Interaction with the 20S Proteasome

    PubMed Central

    Lin, Yi-Chen; Chen, Han-Min; Chou, I-Min; Chen, An-Na; Chen, Chia-Pei; Young, Guang-Huar; Lin, Chi-Tsai; Cheng, Chiung-Hsiang; Chang, Shih-Chung; Juang, Rong-Huay

    2012-01-01

    Post-translational regulation plays an important role in cellular metabolism. Earlier studies showed that the activity of plastidial starch phosphorylase (Pho1) may be regulated by proteolytic modification. During the purification of Pho1 from sweet potato roots, we observed an unknown high molecular weight complex (HX) showing Pho1 activity. The two-dimensional gel electrophoresis, mass spectrometry, and reverse immunoprecipitation analyses showed that HX is composed of Pho1 and the 20S proteasome. Incubating sweet potato roots at 45°C triggers a stepwise degradation of Pho1; however, the degradation process can be partially inhibited by specific proteasome inhibitor MG132. The proteolytically modified Pho1 displays a lower binding affinity toward glucose 1-phosphate and a reduced starch-synthesizing activity. This study suggests that the 20S proteasome interacts with Pho1 and is involved in the regulation of the catalytic activity of Pho1 in sweet potato roots under heat stress conditions. PMID:22506077

  15. Plastidial starch phosphorylase in sweet potato roots is proteolytically modified by protein-protein interaction with the 20S proteasome.

    PubMed

    Lin, Yi-Chen; Chen, Han-Min; Chou, I-Min; Chen, An-Na; Chen, Chia-Pei; Young, Guang-Huar; Lin, Chi-Tsai; Cheng, Chiung-Hsiang; Chang, Shih-Chung; Juang, Rong-Huay

    2012-01-01

    Post-translational regulation plays an important role in cellular metabolism. Earlier studies showed that the activity of plastidial starch phosphorylase (Pho1) may be regulated by proteolytic modification. During the purification of Pho1 from sweet potato roots, we observed an unknown high molecular weight complex (HX) showing Pho1 activity. The two-dimensional gel electrophoresis, mass spectrometry, and reverse immunoprecipitation analyses showed that HX is composed of Pho1 and the 20S proteasome. Incubating sweet potato roots at 45°C triggers a stepwise degradation of Pho1; however, the degradation process can be partially inhibited by specific proteasome inhibitor MG132. The proteolytically modified Pho1 displays a lower binding affinity toward glucose 1-phosphate and a reduced starch-synthesizing activity. This study suggests that the 20S proteasome interacts with Pho1 and is involved in the regulation of the catalytic activity of Pho1 in sweet potato roots under heat stress conditions.

  16. Mitochondrial neurogastrointestinal encephalomyopathy: novel pathogenic mutations in thymidine phosphorylase gene in two Italian brothers.

    PubMed

    Libernini, Laura; Lupis, Chiara; Mastrangelo, Mario; Carrozzo, Rosalba; Santorelli, Filippo Maria; Inghilleri, Maurizio; Leuzzi, Vincenzo

    2012-08-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE, MIM 603041) is an autosomal recessive multisystem disorder occurring due to mutations in a nuclear gene coding for the enzyme thymidine phosphorylase (TYMP). Clinical features of MNGIE include gastrointestinal dysmotility, cachexia, ptosis or ophthalmoparesis, peripheral neuropathy, diffuse leukoencephalopathy, and signs of mitochondrial dysfunction in tissues. We report the clinical and molecular findings in two brothers in whom novel TYMP gene mutations (c.215-13_215delinsGCGTGA; c.1159 + 2T > A) were associated with different clinical presentations and outcomes.

  17. Site-specific phosphorylation of L-form starch phosphorylase by the protein kinase activity from sweet potato roots.

    PubMed

    Young, Guang-Huar; Chen, Han-Min; Lin, Chi-Tsai; Tseng, Kuang-Ching; Wu, Jiann-Shing; Juang, Rong-Huay

    2006-02-01

    A 78-amino acid insertion (L78) is found in the low-affinity type (L-form) of starch phosphorylase (L-SP, EC 2.4.1.1). This insertion blocks the starch-binding site on the L-SP molecule, and it decreases the binding affinity of L-SP toward starch. The computational analysis of the amino acid sequence on L78 predicts several phosphorylation sites at its Ser residues. Indeed, from the immunoblotting results using antibodies against phosphoamino acids, we observed that the purified L-SP from mature sweet potato (Ipomoea batatas) roots is phosphorylated. This observation led us to the detection of a protein kinase activity in the protein fraction of the crude extract from the sweet potato roots. The kinase was partially purified by liquid chromatography, and its native molecular mass was estimated as 338 kDa. An expressed peptide (L78P) containing the essential part of L78 was intensively phosphorylated by the kinase. However, H-SP (the high-affinity isomer of SP lacking the L78 insertion) and the proteolytic modified L-SP, which lost its L78 fragment, could not be phosphorylated. Furthermore, using L78P mutants by site-directed mutagenesis at Ser residues on L78, we demonstrate that only one Ser residue on L78 is phosphorylated by the kinase. These results imply that this kinase is specific to L-SP, or more precisely, to the L78 insertion. The in vitro phosphorylated L-SP shows higher sensitivity to proteolytic modification, but has no change in its kinetic parameters.

  18. Reduction of the plastidial phosphorylase in potato (Solanum tuberosum L.) reveals impact on storage starch structure during growth at low temperature.

    PubMed

    Orawetz, Tom; Malinova, Irina; Orzechowski, Slawomir; Fettke, Joerg

    2016-03-01

    Tubers of potato (Solanum tuberosum L.), one of the most important crops, are a prominent example for an efficient production of storage starch. Nevertheless, the synthesis of this storage starch is not completely understood. The plastidial phosphorylase (Pho1; EC 2.4.1.1) catalyzes the reversible transfer of glucosyl residues from glucose-1-phosphate to the non-reducing end of α-glucans with the release of orthophosphate. Thus, the enzyme is in principle able to act during starch synthesis. However, so far under normal growth conditions no alterations in tuber starch metabolism were observed. Based on analyses of other species and also from in vitro experiments with potato tuber slices it was supposed, that Pho1 has a stronger impact on starch metabolism, when plants grow under low temperature conditions. Therefore, we analyzed the starch content, granule size, as well as the internal structure of starch granules isolated from potato plants grown under low temperatures. Besides wild type, transgenic potato plants with a strong reduction in the Pho1 activity were analyzed. No significant alterations in starch content and granule size were detected. In contrast, when plants were cultivated at low temperatures the chain length distributions of the starch granules were altered. Thus, the granules contained more short glucan chains. That was not observed in the transgenic plants, revealing that Pho1 in wild type is involved in the formation of the short glucan chains, at least at low temperatures. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Double Knockout Mutants of Arabidopsis Grown under Normal Conditions Reveal that the Plastidial Phosphorylase Isozyme Participates in Transitory Starch Metabolism1[C][W

    PubMed Central

    Malinova, Irina; Mahlow, Sebastian; Alseekh, Saleh; Orawetz, Tom; Fernie, Alisdair R.; Baumann, Otto; Steup, Martin; Fettke, Joerg

    2014-01-01

    In leaves of two starch-related single-knockout lines lacking either the cytosolic transglucosidase (also designated as disproportionating enzyme 2, DPE2) or the maltose transporter (MEX1), the activity of the plastidial phosphorylase isozyme (PHS1) is increased. In both mutants, metabolism of starch-derived maltose is impaired but inhibition is effective at different subcellular sites. Two constitutive double knockout mutants were generated (designated as dpe2-1 × phs1a and mex1 × phs1b) both lacking functional PHS1. They reveal that in normally grown plants, the plastidial phosphorylase isozyme participates in transitory starch degradation and that the central carbon metabolism is closely integrated into the entire cell biology. All plants were grown either under continuous illumination or in a light-dark regime. Both double mutants were compromised in growth and, compared with the single knockout plants, possess less average leaf starch when grown in a light-dark regime. Starch and chlorophyll contents decline with leaf age. As revealed by transmission electron microscopy, mesophyll cells degrade chloroplasts, but degradation is not observed in plants grown under continuous illumination. The two double mutants possess similar but not identical phenotypes. When grown in a light-dark regime, mesophyll chloroplasts of dpe2-1 × phs1a contain a single starch granule but under continuous illumination more granules per chloroplast are formed. The other double mutant synthesizes more granules under either growth condition. In continuous light, growth of both double mutants is similar to that of the parental single knockout lines. Metabolite profiles and oligoglucan patterns differ largely in the two double mutants. PMID:24302650

  20. Mutations Affecting Starch Synthase III in Arabidopsis Alter Leaf Starch Structure and Increase the Rate of Starch Synthesis1

    PubMed Central

    Zhang, Xiaoli; Myers, Alan M.; James, Martha G.

    2005-01-01

    The role of starch synthase (SS) III (SSIII) in the synthesis of transient starch in Arabidopsis (Arabidopsis thaliana) was investigated by characterizing the effects of two insertion mutations at the AtSS3 gene locus. Both mutations, termed Atss3-1 and Atss3-2, condition complete loss of SSIII activity and prevent normal gene expression at both the mRNA and protein levels. The mutations cause a starch excess phenotype in leaves during the light period of the growth cycle due to an apparent increase in the rate of starch synthesis. In addition, both mutations alter the physical structure of leaf starch. Significant increases were noted in the mutants in the frequency of linear chains in amylopectin with a degree of polymerization greater than approximately 60, and relatively small changes were observed in chains of degree of polymerization 4 to 50. Furthermore, starch in the Atss3-1 and Atss3-2 mutants has a higher phosphate content, approximately two times that of wild-type leaf starch. Total SS activity is increased in both Atss3 mutants and a specific SS activity appears to be up-regulated. The data indicate that, in addition to its expected direct role in starch assembly, SSIII also has a negative regulatory function in the biosynthesis of transient starch in Arabidopsis. PMID:15908598

  1. Muscle glycogenosis with low phosphorylase kinase activity: mutations in PHKA1, PHKG1 or six other candidate genes explain only a minority of cases.

    PubMed

    Burwinkel, Barbara; Hu, Bin; Schroers, Anja; Clemens, Paula R; Moses, Shimon W; Shin, Yoon S; Pongratz, Dieter; Vorgerd, Matthias; Kilimann, Manfred W

    2003-07-01

    Muscle-specific deficiency of phosphorylase kinase (Phk) causes glycogen storage disease, clinically manifesting in exercise intolerance with early fatiguability, pain, cramps and occasionally myoglobinuria. In two patients and in a mouse mutant with muscle Phk deficiency, mutations were previously found in the muscle isoform of the Phk alpha subunit, encoded by the X-chromosomal PHKA1 gene (MIM # 311870). No mutations have been identified in the muscle isoform of the Phk gamma subunit (PHKG1). In the present study, we determined Q1the structure of the PHKG1 gene and characterized its relationship to several pseudogenes. In six patients with adult- or juvenile-onset muscle glycogenosis and low Phk activity, we then searched for mutations in eight candidate genes. The coding sequences of all six genes that contribute to Phk in muscle were analysed: PHKA1, PHKB, PHKG1, CALM1, CALM2 and CALM3. We also analysed the genes of the muscle isoform of glycogen phosphorylase (PYGM), of a muscle-specific regulatory subunit of the AMP-dependent protein kinase (PRKAG3), and the promoter regions of PHKA1, PHKB and PHKG1. Only in one male patient did we find a PHKA1 missense mutation (D299V) that explains the enzyme deficiency. Two patients were heterozygous for single amino-acid replacements in PHKB that are of unclear significance (Q657K and Y770C). No sequence abnormalities were found in the other three patients. If these results can be generalized, only a fraction of cases with muscle glycogenosis and a biochemical diagnosis of low Phk activity are caused by coding, splice-site or promoter mutations in PHKA1, PHKG1 or other Phk subunit genes. Most patients with this diagnosis probably are affected either by elusive mutations of Phk subunit genes or by defects in other, unidentified genes.

  2. Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat (Triticum aestivum) and identification of candidate genes responsible for amylose variation.

    PubMed

    Mishra, Ankita; Singh, Anuradha; Sharma, Monica; Kumar, Pankaj; Roy, Joy

    2016-10-06

    Starch is a major part of cereal grain. It comprises two glucose polymer fractions, amylose (AM) and amylopectin (AP), that make up about 25 and 75 % of total starch, respectively. The ratio of the two affects processing quality and digestibility of starch-based food products. Digestibility determines nutritional quality, as high amylose starch is considered a resistant or healthy starch (RS type 2) and is highly preferred for preventive measures against obesity and related health conditions. The topic of nutrition security is currently receiving much attention and consumer demand for food products with improved nutritional qualities has increased. In bread wheat (Triticum aestivum L.), variation in amylose content is narrow, hence its limited improvement. Therefore, it is necessary to produce wheat lines or populations showing wide variation in amylose/resistant starch content. In this study, a set of EMS-induced M4 mutant lines showing dynamic variation in amylose/resistant starch content were produced. Furthermore, two diverse mutant lines for amylose content were used to study quantitative expression patterns of 20 starch metabolic pathway genes and to identify candidate genes for amylose biosynthesis. A population comprising 101 EMS-induced mutation lines (M4 generation) was produced in a bread wheat (Triticum aestivum) variety. Two methods of amylose measurement in grain starch showed variation in amylose content ranging from ~3 to 76 % in the population. The method of in vitro digestion showed variation in resistant starch content from 1 to 41 %. One-way ANOVA analysis showed significant variation (p < 0.05) in amylose and resistant starch content within the population. A multiple comparison test (Dunnett's test) showed that significant variation in amylose and resistant starch content, with respect to the parent, was observed in about 89 and 38 % of the mutant lines, respectively. Expression pattern analysis of 20 starch metabolic pathway genes in

  3. Induced mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat.

    PubMed

    Hazard, Brittany; Zhang, Xiaoqin; Colasuonno, Pasqualina; Uauy, Cristobal; Beckles, Diane M; Dubcovsky, Jorge

    2012-01-01

    Starch is the largest component of the wheat (Triticum aestivum L.) grain and consists of approximately 70-80% amylopectin and 20-30% amylose. Amylopectin is a highly-branched, readily digested polysaccharide, whereas amylose has few branches and forms complexes that resist digestion and mimic dietary fiber (resistant starch). Down-regulation of the starch branching enzyme II (SBEII) gene by RNA interference (RNAi) was previously shown to increase amylose content in both hexaploid and tetraploid wheat. We generated ethyl methane sulphonate (EMS) mutants for the SBEIIa-A and SBEIIa-B homoeologs in the tetraploid durum wheat variety Kronos (T. turgidum ssp. durum L.). Single-gene mutants showed non-significant increases in amylose and resistant starch content, but a double mutant combining a SBEIIa-A knock-out mutation with a SBEIIa-B splice-site mutation showed a 22% increase in amylose content (P<0.0001) and a 115% increase in resistant starch content (P<0.0001). In addition, we obtained mutants for the A and B genome copies of the paralogous SBEIIb gene, mapped them 1-2 cM from SBEIIa, and generated double SBEIIa-SBEIIb mutants to study the effect of the SBEIIb gene in the absence of SBEIIa. These mutants are available to those interested in increasing amylose content and resistant starch in durum wheat.

  4. Induced mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Colasuonno, Pasqualina; Uauy, Cristobal; Beckles, Diane M.; Dubcovsky, Jorge

    2016-01-01

    Starch is the largest component of the wheat (Triticum aestivum L.) grain and consists of approximately 70-80% amylopectin and 20-30% amylose. Amylopectin is a highly-branched, readily digested polysaccharide, whereas amylose has few branches and forms complexes that resist digestion and mimic dietary fiber (resistant starch). Down-regulation of the starch branching enzyme II (SBEII) gene by RNA interference (RNAi) was previously shown to increase amylose content in both hexaploid and tetraploid wheat. We generated ethyl methane sulphonate (EMS) mutants for the SBEIIa-A and SBEIIa-B homoeologs in the tetraploid durum wheat variety Kronos (T. turgidum ssp. durum L.). Single-gene mutants showed non-significant increases in amylose and resistant starch content, but a double mutant combining a SBEIIa-A knock-out mutation with a SBEIIa-B splice-site mutation showed a 22% increase in amylose content (P<0.0001) and a 115% increase in resistant starch content (P<0.0001). In addition, we obtained mutants for the A and B genome copies of the paralogous SBEIIb gene, mapped them 1-2 cM from SBEIIa, and generated double SBEIIa-SBEIIb mutants to study the effect of the SBEIIb gene in the absence of SBEIIa. These mutants are available to those interested in increasing amylose content and resistant starch in durum wheat. PMID:26924849

  5. Starch-Branching Enzyme I-Deficient Mutation Specifically Affects the Structure and Properties of Starch in Rice Endosperm1

    PubMed Central

    Satoh, Hikaru; Nishi, Aiko; Yamashita, Kazuhiro; Takemoto, Yoko; Tanaka, Yasumasa; Hosaka, Yuko; Sakurai, Aya; Fujita, Naoko; Nakamura, Yasunori

    2003-01-01

    We have isolated a starch mutant that was deficient in starch-branching enzyme I (BEI) from the endosperm mutant stocks of rice (Oryza sativa) induced by the treatment of fertilized egg cells with N-methyl-N-nitrosourea. The deficiency of BEI in this mutant was controlled by a single recessive gene, tentatively designated as starch-branching enzyme mutant 1 (sbe1). The mutant endosperm exhibited the normal phenotype and contained the same amount of starch as the wild type. However, the mutation apparently altered the fine structure of amylopectin. The mutant amylopectin was characterized by significant decrease in both long chains with degree of polymerization (DP) ≥ 37 and short chains with DP 12 to 21, marked increase in short chains with DP ≤ 10 (A chains), and slight increase in intermediate chains with DP 24 to 34, suggesting that BEI specifically synthesizes B1 and B2–3 chains. The endosperm starch from the sbe1 mutant had a lower onset concentration for urea gelatinization and a lower onset temperature for thermo-gelatinization compared with the wild type, indicating that the genetic modification of amylopectin fine structure is responsible for changes in physicochemical properties of sbe1 starch. PMID:14526120

  6. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm.

    PubMed

    Satoh, Hikaru; Nishi, Aiko; Yamashita, Kazuhiro; Takemoto, Yoko; Tanaka, Yasumasa; Hosaka, Yuko; Sakurai, Aya; Fujita, Naoko; Nakamura, Yasunori

    2003-11-01

    We have isolated a starch mutant that was deficient in starch-branching enzyme I (BEI) from the endosperm mutant stocks of rice (Oryza sativa) induced by the treatment of fertilized egg cells with N-methyl-N-nitrosourea. The deficiency of BEI in this mutant was controlled by a single recessive gene, tentatively designated as starch-branching enzyme mutant 1 (sbe1). The mutant endosperm exhibited the normal phenotype and contained the same amount of starch as the wild type. However, the mutation apparently altered the fine structure of amylopectin. The mutant amylopectin was characterized by significant decrease in both long chains with degree of polymerization (DP) > or = 37 and short chains with DP 12 to 21, marked increase in short chains with DP < or = 10 (A chains), and slight increase in intermediate chains with DP 24 to 34, suggesting that BEI specifically synthesizes B1 and B2-3 chains. The endosperm starch from the sbe1 mutant had a lower onset concentration for urea gelatinization and a lower onset temperature for thermo-gelatinization compared with the wild type, indicating that the genetic modification of amylopectin fine structure is responsible for changes in physicochemical properties of sbe1 starch.

  7. Fatal infantile cardiac glycogenosis with phosphorylase kinase deficiency and a mutation in the gamma2-subunit of AMP-activated protein kinase.

    PubMed

    Akman, Hasan O; Sampayo, James N; Ross, Fiona A; Scott, John W; Wilson, Gregory; Benson, Lee; Bruno, Claudio; Shanske, Sara; Hardie, D Grahame; Dimauro, Salvatore

    2007-10-01

    A 10-wk-old infant girl with severe hypertrophy of the septal and atrial walls by cardiac ultrasound, developed progressive ventricular wall thickening and died of aspiration pneumonia at 5 mo of age. Postmortem examination revealed ventricular hypertrophy and massive atrial wall thickening due to glycogen accumulation. A skeletal muscle biopsy showed increased free glycogen and decreased activity of phosphorylase b kinase (PHK). The report of a pathogenic mutation (R531Q) in the gene (PRKAG2) encoding the gamma2 subunit of AMP-activated protein kinase (AMPK) in three infants with congenital hypertrophic cardiomyopathy, glycogen storage, and "pseudo PHK deficiency" prompted us to screen this gene in our patient. We found a novel (R384T) heterozygous mutation in PRKAG2, affecting an arginine residue in the N-terminal AMP-binding domain. Like R531Q, this mutation reduces the binding of AMP and ATP to the isolated nucleotide-binding domains, and prevents activation of the heterotrimer by metabolic stress in intact cells. The mutation was not found in DNA from the patient's father, the only available parent, and is likely to have arisen de novo. Our studies confirm that mutations in PRKAG2 can cause fatal infantile cardiomyopathy, often associated with apparent PHK deficiency.

  8. Use of advanced recombinant lines to study the impact and potential of mutations affecting starch synthesis in barley☆

    PubMed Central

    Howard, Thomas P.; Fahy, Brendan; Leigh, Fiona; Howell, Phil; Powell, Wayne; Greenland, Andy; Trafford, Kay; Smith, Alison M.

    2014-01-01

    The effects on barley starch and grain properties of four starch synthesis mutations were studied during the introgression of the mutations from diverse backgrounds into an elite variety. The lys5f (ADPglucose transporter), wax (granule-bound starch synthase), isa1 (debranching enzyme isoamylase 1) and sex6 (starch synthase IIa) mutations were introgressed into NFC Tipple to give mutant and wild-type BC2F4 families with different genomic contributions of the donor parent. Comparison of starch and grain properties between the donor parents, the BC2F4 families and NFC Tipple allowed the effects of the mutations to be distinguished from genetic background effects. The wax and sex6 mutations had marked effects on starch properties regardless of genetic background. The sex6 mutation conditioned low grain weight and starch content, but the wax mutation did not. The lys5 mutation conditioned low grain weight and starch content, but exceptionally high β-glucan contents. The isa1 mutation promotes synthesis of soluble α-glucan (phytoglycogen). Its introgression into NFC Tipple increased grain weight and total α-glucan content relative to the donor parent, but reduced the ratio of phytoglycogen to starch. This study shows that introgression of mutations into a common, commercial background provides new insights that could not be gained from the donor parent. PMID:24748716

  9. Use of advanced recombinant lines to study the impact and potential of mutations affecting starch synthesis in barley.

    PubMed

    Howard, Thomas P; Fahy, Brendan; Leigh, Fiona; Howell, Phil; Powell, Wayne; Greenland, Andy; Trafford, Kay; Smith, Alison M

    2014-03-01

    The effects on barley starch and grain properties of four starch synthesis mutations were studied during the introgression of the mutations from diverse backgrounds into an elite variety. The lys5f (ADPglucose transporter), wax (granule-bound starch synthase), isa1 (debranching enzyme isoamylase 1) and sex6 (starch synthase IIa) mutations were introgressed into NFC Tipple to give mutant and wild-type BC2F4 families with different genomic contributions of the donor parent. Comparison of starch and grain properties between the donor parents, the BC2F4 families and NFC Tipple allowed the effects of the mutations to be distinguished from genetic background effects. The wax and sex6 mutations had marked effects on starch properties regardless of genetic background. The sex6 mutation conditioned low grain weight and starch content, but the wax mutation did not. The lys5 mutation conditioned low grain weight and starch content, but exceptionally high β-glucan contents. The isa1 mutation promotes synthesis of soluble α-glucan (phytoglycogen). Its introgression into NFC Tipple increased grain weight and total α-glucan content relative to the donor parent, but reduced the ratio of phytoglycogen to starch. This study shows that introgression of mutations into a common, commercial background provides new insights that could not be gained from the donor parent.

  10. Monogenic Recessive Mutations Causing Both Late Floral Initiation and Excess Starch Accumulation in Arabidopsis.

    PubMed Central

    Eimert, K.; Wang, S. M.; Lue, W. I.; Chen, J.

    1995-01-01

    A recessive Arabidopsis mutation, carbohydrate accumulation mutant1 (cam1), which maps to position 22.8 on chromosome 3, was identified by screening leaves of ethyl methanesulfonate-mutagenized M2 plants stained with iodine for altered starch content. Increased starch content in leaves of the cam1 mutant was observed at the onset of flowering. This mutant also had a delayed floral initiation phenotype with more rosette leaves than the parental line. In addition, activities of several enzymes associated with starch metabolism were altered in the cam1 mutant. The late-flowering mutant gigantea (gi) also manifested an elevated starch level in leaves. However, not all late-flowering mutants had increased leaf starch content. Double mutants cam1 adg1 (for ADP-glucose pyrophosphorylase), cam1 pgm (for phosphoglucomutase), and gi pgm had no observable starch in leaves but showed the late-flowering phenotype, demonstrating that the elevated starch content is not the cause of late floral initiation. The pleiotropic effects of cam1 and gi suggest that they may play regulatory roles in starch metabolism and floral initiation. These data suggest that starch accumulation and floral initiation may share a common regulatory pathway. PMID:12242359

  11. Frequent p53 mutation in brain (fetal)-type glycogen phosphorylase positive foci adjacent to human ‘de novo’olorectal carcinomas

    PubMed Central

    Shimada, S; Shiomori, K; Tashima, S; Tsuruta, J; Ogawa, M

    2001-01-01

    ‘de novo’ carcinogenesis has been advocated besides ‘adenoma carcinoma sequence’ as another dominant pathway leading to colorectal carcinoma. Our recent study has demonstrated that the distribution of brain (fetal)-type glycogen phosphorylase (BGP) positive foci (BGP foci) has a close relationship with the location of ‘de novo’ carcinoma. The aims of the present study are to investigate genetic alteration in the BGP foci and to characterize them in the ‘de novo’ carcinogenesis. 17 colorectal carcinomas without any adenoma component expressing both immunoreactive p53 and BGP protein were selected from 96 resected specimens from our previous study. Further investigations to examine the proliferating cell nuclear antigen (PCNA)-labelling index, and the p53 and the codon 12 of K-ras mutation using the polymerase chain reaction-single strand conformation polymorphism were performed in the BGP foci, BGP negative mucosa and carcinoma. The BGP foci were observed sporadically in the transitional mucosa adjacent to the carcinoma in all cases. The PCNA labelling index in the BGP foci was significantly higher than that in the BGP negative mucosa (P< 0.001). p53 mutations were observed in 8 carcinomas, but no K-ras mutation was detected. Interestingly, although none of the overexpressions of p53 protein was detected immunohistochemically in the BGP positive foci, the p53 gene frequently (41.2% of the BGP foci tested) mutated in spite of no K-ras mutation. The present study demonstrates potentially premalignant foci in the colorectal transitional mucosa with frequent p53 gene mutation. It is suggested that BGP foci are promising candidates for the further investigation of ‘de novo’ colorectal carcinogenesis. © 2001Cancer Research Campaign http://www.bjcancer.com PMID:11384100

  12. Current models for starch synthesis and the sugary enhancer1 (se1) mutation in Zea mays.

    PubMed

    Schultz, Jennifer A; Juvik, John A

    2004-06-01

    Among the desirable quality traits essential for commercial production of fresh or processed sweet corn, kernel sugar content is universally important. In sweet corn genotypes the primary kernel sugar is sucrose, which is elevated at the expense of starch, particularly amylopectin. Sweet corn mutations have been traditionally divided into two classes. Generally speaking, class one mutations affect cytosolic reactions early in the process of starch synthesis, before starch is synthesized, and class two mutations affect reactions within the amyloplast directly involving starch granule assembly. Two widely used but previously unclassified mutations are sugary1 (su1) and sugary enhancer1 (se1). The se1 gene is a recessive modifier of su1; therefore, both genes require mutual discussion. This review provides current information about the su1 and se1 maize endosperm mutations and describes evidence further supporting previous suggestions that they fit criteria for categorization as class two mutants [Science 151 (1966) 341]. Information on the genetics and phenotype of se1 will be summarized and the hypothesized role of the se1 gene product discussed within the context of current models for starch synthesis in Zea mays L.

  13. Spinach Leaf Intra and Extra Chloroplast Phosphorylase Activities during Growth 1

    PubMed Central

    Hammond, John B. W.; Preiss, Jack

    1983-01-01

    The amino terminal sequence of the spinach (Spinacia oleracea L. cv Bloomsdale Long Standing) leaf cytoplasmic phosphorylase was determined and shown to have little similarity to the known sequence of the potato tuber phosphorylase. The antigenic reaction of spinach chloroplast phosphorylase and rabbit muscle phosphorylase a to antiserum prepared against spinach leaf cytoplasmic phosphorylase was tested. Neither phosphorylase gave a positive reaction when tested by immunodiffusion or neutralization of enzyme activity. The two spinach phosphorylases were assayed throughout the growth of the plant. Activity of cytoplasmic phosphorylase increased 4- to 8-fold at 30 to 35 days from sowing. Enzyme protein levels, as measured by antibody neutralization, increased by a similar amount. There was no corresponding increase in chloroplast phosphorylase activity. The chloroplast phosphorylase varied in parallel with the chloroplast enzyme ADPglucose pyrophosphorylase. Starch levels were high during the earlier stages of growth and then fell to a constant low level just before the increase in cytoplasmic phosphorylase. The results are discussed with respect to the relationship and functions of the two phosphorylases. PMID:16663287

  14. Mice heterozygous for germ-line mutations in methylthioadenosine phosphorylase (MTAP) die prematurely of T-cell lymphoma.

    PubMed

    Kadariya, Yuwaraj; Yin, Bu; Tang, Baiqing; Shinton, Susan A; Quinlivan, Eoin P; Hua, Xiang; Klein-Szanto, Andres; Al-Saleem, Tahseen I; Bassing, Craig H; Hardy, Richard R; Kruger, Warren D

    2009-07-15

    Large homozygous deletions of 9p21 that inactivate CDKN2A, ARF, and MTAP are common in a wide variety of human cancers. The role for CDKN2A and ARF in tumorigenesis is well established, but whether MTAP loss directly affects tumorigenesis is unclear. MTAP encodes the enzyme methylthioadenosine phosphorylase, a key enzyme in the methionine salvage pathway. To determine if loss of MTAP plays a functional role in tumorigenesis, we have created an MTAP-knockout mouse. Mice homozygous for a MTAP null allele (Mtap(lacZ)) have an embryonic lethal phenotype dying around day 8 postconception. Mtap/Mtap(lacZ) heterozygotes are born at Mendelian frequencies and appear indistinguishable from wild-type mice during the first year of life, but they tend to die prematurely with a median survival of 585 days. Autopsies on these animals reveal that they have greatly enlarged spleens, altered thymic histology, and lymphocytic infiltration of their livers, consistent with lymphoma. Immunohistochemical staining and fluorescence-activated cell sorting analysis indicate that these lymphomas are primarily T-cell in origin. Lymphoma-infiltrated tissues tend to have reduced levels of Mtap mRNA and MTAP protein in addition to unaltered levels of methyldeoxycytidine. These studies show that Mtap is a tumor suppressor gene independent of CDKN2A and ARF.

  15. Expression of Glycogen Phosphorylase Isoforms in Cultured Muscle from Patients with McArdle's Disease Carrying the p.R771PfsX33 PYGM Mutation

    PubMed Central

    García-Consuegra, Inés; Rubio, Juan C.; Orozco, Anna; Arenas, Joaquin; Martín, Miguel A.; Lucia, Alejandro; Gómez-Foix, Anna M.; Martí, Ramon; Andreu, Antoni L.

    2010-01-01

    Background Mutations in the PYGM gene encoding skeletal muscle glycogen phosphorylase (GP) cause a metabolic disorder known as McArdle's disease. Previous studies in muscle biopsies and cultured muscle cells from McArdle patients have shown that PYGM mutations abolish GP activity in skeletal muscle, but that the enzyme activity reappears when muscle cells are in culture. The identification of the GP isoenzyme that accounts for this activity remains controversial. Methodology/Principal Findings In this study we present two related patients harbouring a novel PYGM mutation, p.R771PfsX33. In the patients' skeletal muscle biopsies, PYGM mRNA levels were ∼60% lower than those observed in two matched healthy controls; biochemical analysis of a patient muscle biopsy resulted in undetectable GP protein and GP activity. A strong reduction of the PYGM mRNA was observed in cultured muscle cells from patients and controls, as compared to the levels observed in muscle tissue. In cultured cells, PYGM mRNA levels were negligible regardless of the differentiation stage. After a 12 day period of differentiation similar expression of the brain and liver isoforms were observed at the mRNA level in cells from patients and controls. Total GP activity (measured with AMP) was not different either; however, the active GP activity and immunoreactive GP protein levels were lower in patients' cell cultures. GP immunoreactivity was mainly due to brain and liver GP but muscle GP seemed to be responsible for the differences. Conclusions/Significance These results indicate that in both patients' and controls' cell cultures, unlike in skeletal muscle tissue, most of the protein and GP activities result from the expression of brain GP and liver GP genes, although there is still some activity resulting from the expression of the muscle GP gene. More research is necessary to clarify the differential mechanisms of metabolic adaptations that McArdle cultures undergo in vitro. PMID:20957198

  16. Biochemical properties of potato phosphorylase change with its intracellular localization as revealed by immunological methods.

    PubMed

    Schneider, E M; Becker, J U; Volkmann, D

    1981-02-01

    Phosphorylase was purified from young and senescent potato tubers. Antibodies raised against the enzyme from young tubers crossreacted with phosphorylase from old tissue, although the latter exhibited different physico-chemical properties. In polyacrylamide gel electrophoresis it migrated with higher mobility, its subunit molecular weight was determined in the range of 40,000 in contrast to 100,000 of the phosphorylase in young tubers. The enzyme of senescent tubers displayed an isoelectric point of 5.4 different from the one of young tubers with 5.0, and the diffusion coefficients of the two enzymes varied. The appearance of the phosphorylase form typical for senescent tissue is connected with changes in the intracellular localization as revealed by immunofluorescence. Before massive starch accumulation is initiated, non-vacuolated subepidermal cells contain antigenically active material in their cytoplasm. During starch accumulation in fully differentiated storage parenchyma, only amyloplasts fluoresce, indicating the presence of adsorbed phosphorylase protein. Cytoplasmic phosphorylase can be detected in the continuance of senescence and, finally, after 16 months of tuber storage, the particle-bound enzyme had mostly disappeared. Simultaneously, we observed membrane destruction and decomposition on the ultrastructural level. The phosphorylase from senescent potatoes is a converted molecule and seems to be formed by proteolytic cleavage. The location of phosphorylase in the amyloplasts during starch synthesis indicates that it also plays a role in starch synthesis and not only in its degradation.

  17. Registration of Common Wheat Germplasm with Mutations in SBEII Genes Conferring Increased Grain Amylose and Resistant Starch Content

    PubMed Central

    Schönhofen, André; Hazard, Brittany; Zhang, Xiaoqin; Dubcovsky, Jorge

    2016-01-01

    Starch present in the endosperm of common wheat (Triticum aestivum L.) grains is an important source of carbohydrates worldwide. Starches with a greater proportion of amylose have increased levels of resistant starch, a dietary fiber that can provide human health benefits. Induced mutations in STARCH BRANCHING ENZYME II (SBEII) genes in wheat are associated with increased amylose and resistant starch. Ethyl methane sulfonate mutations in SBEIIa and SBEIIb paralogs were combined in the hexaploid wheat cultivar Lassik. Four mutant combinations were generated: SBEIIa/b-AB (Reg. No. GP-997, PI 675644); SBEIIa/b-A, SBEIIa-D (Reg. No. GP-998, PI 675645); SBEIIa/b-B, SBEIIa-D (Reg. No. GP-999, PI 675646); and SBEIIa/b-AB, SBEIIa-D (Reg. No. GP-1000, PI 675647). The SBEII mutant lines were compared with a wild-type control in a greenhouse and field experiment. The quintuple mutant line (SBEIIa/b-AB, SBEIIa-D) presented significant increases in both amylose (51% greenhouse; 63% field) and resistant starch (947% greenhouse; 1057% field) relative to the control. A decrease in total starch content (7.8%) was observed in the field experiment. The quintuple mutant also differed in starch viscosity parameters. Registration of the hexaploid wheat SBEII-mutant lines by University of California, Davis can help expedite the development of common wheat cultivars with increased amylose and resistant starch content. PMID:27818720

  18. Registration of Durum Wheat Germplasm Lines with Combined Mutations in SBEIIa and SBEIIb Genes Conferring Increased Amylose and Resistant Starch.

    PubMed

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Dubcovsky, Jorge

    2014-08-25

    Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], used in pasta, couscous, and flatbread production, is an important source of starch food products worldwide. The amylose portion of the starch forms resistant starch complexes that resist digestion and contribute to dietary fiber. Increasing the amount of amylose and resistant starch in wheat by mutating the STARCH BRANCHING ENZYME II (SBEII) genes has potential to provide human health benefits. Ethyl methane sulfonate mutations in the linked SBEIIa and SBEIIb paralogs were combined on chromosomes 2A (SBEIIa/b-A; Reg. No. GP-968, PI 670159), 2B (SBEIIa/b-B; Reg. No. GP-970, PI 670161), and on both chromosomes (SBEIIa/b-AB; Reg. No. GP-969, PI 670160) in the tetraploid wheat cultivar Kronos, a semidwarf durum wheat cultivar that has high yield potential and excellent pasta quality. These three double and quadruple SBEII-mutant lines were compared with a control sib line with no SBEII mutations in two field locations in California. The SBEIIa/b-AB line with four mutations showed dramatic increases in amylose (average 66%) and resistant starch (average 753%) relative to the control. However, the SBEIIa/b-AB line also showed an average 7% decrease in total starch and an 8% decrease in kernel weight. The release by the University of California-Davis of the durum wheat germplasm combining four SBEIIa and SBEIIb mutations will accelerate the deployment of these mutations in durum wheat breeding programs and the development of durum wheat varieties with increased resistant starch.

  19. Registration of Durum Wheat Germplasm Lines with Combined Mutations in SBEIIa and SBEIIb Genes Conferring Increased Amylose and Resistant Starch

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Dubcovsky, Jorge

    2016-01-01

    Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], used in pasta, couscous, and flatbread production, is an important source of starch food products worldwide. The amylose portion of the starch forms resistant starch complexes that resist digestion and contribute to dietary fiber. Increasing the amount of amylose and resistant starch in wheat by mutating the STARCH BRANCHING ENZYME II (SBEII) genes has potential to provide human health benefits. Ethyl methane sulfonate mutations in the linked SBEIIa and SBEIIb paralogs were combined on chromosomes 2A (SBEIIa/b-A; Reg. No. GP-968, PI 670159), 2B (SBEIIa/b-B; Reg. No. GP-970, PI 670161), and on both chromosomes (SBEIIa/b-AB; Reg. No. GP-969, PI 670160) in the tetraploid wheat cultivar Kronos, a semidwarf durum wheat cultivar that has high yield potential and excellent pasta quality. These three double and quadruple SBEII-mutant lines were compared with a control sib line with no SBEII mutations in two field locations in California. The SBEIIa/b-AB line with four mutations showed dramatic increases in amylose (average 66%) and resistant starch (average 753%) relative to the control. However, the SBEIIa/b-AB line also showed an average 7% decrease in total starch and an 8% decrease in kernel weight. The release by the University of California–Davis of the durum wheat germplasm combining four SBEIIa and SBEIIb mutations will accelerate the deployment of these mutations in durum wheat breeding programs and the development of durum wheat varieties with increased resistant starch. PMID:27110322

  20. Mutational Analysis of the Pullulanase-Type Debranching Enzyme of Maize Indicates Multiple Functions in Starch Metabolism

    PubMed Central

    Dinges, Jason R.; Colleoni, Christophe; James, Martha G.; Myers, Alan M.

    2003-01-01

    Plants contain two types of α(1→6) glucan hydrolase (starch-debranching enzyme [DBE]). Mutations that affect the pullulanase-type DBE have not been described, although defects in isoamylase-type DBE, known in many plant species, indicate a function in starch biosynthesis. We describe a null mutation of a pullulanase-type DBE gene, a Mutator insertion in maize Zpu1. Plants homozygous for the zpu1-204 mutation are impaired in transient and storage starch degradation. Thus, hydrolytic activity of pullulanase-type DBE contributes to starch catabolism. Developing zpu1-204 endosperm accumulates branched maltooligosaccharides not found in the wild type and is deficient in linear maltooligosaccharides, indicating that the pullulanase-type DBE functions in glucan hydrolysis during kernel starch formation. Furthermore, in a background deficient in isoamylase-type DBE, zpu1-204 conditions a significant accumulation of phytoglycogen in the kernel that is not seen in the wild type. Therefore, pullulanase-type DBE partially compensates for the defect in isoamylase-type DBE, suggesting a function during starch synthesis as well as degradation. PMID:12615940

  1. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.).

    PubMed

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-07-31

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. Copyright © 2014 Schreiber et al.

  2. SNPs in Genes Functional in Starch-Sugar Interconversion Associate with Natural Variation of Tuber Starch and Sugar Content of Potato (Solanum tuberosum L.)

    PubMed Central

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-01-01

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. PMID:25081979

  3. Mutants of Arabidopsis with altered regulation of starch degradation

    SciTech Connect

    Caspar, T.; Lin, Tsanpiao; Kakefuda, G.; Benbow, L.; Preiss, J.; Somerville, C. )

    1991-04-01

    Mutants of Arabidopsis thaliana (L.) Heynh. with altered regulation of starch degradation were identified by screening for plants that retained high levels of leaf starch after a period of extended darkness. The mutant phenotype was also expressed in seeds, flowers, and roots, indicating that the same pathway of starch degradation is used in these tissues. In many respects, the physiological consequences of the mutations were equivalent to the effects observed in previously characterized mutants of Arabidopsis that are unable to synthesize starch. One mutant line, which was characterized in detail, had normal levels of activity of the starch degradative enzymes {alpha}-amylase, {beta}-amylase, phosphorylase, D-enzyme, and debranching enzyme. Thus, it was not possible to establish a biochemical basis for the phenotype, which was due to a recessive mutant at a locus designated sex 1 at position 12.2 on chromosome 1. This raises the possibility that hitherto unidentified factors, altered by the mutation, play a key role in regulating or catalyzing starch degradation.

  4. In situ mapping of the effect of additional mutations on starch granule structure in amylose-extender (ae) maize kernels.

    PubMed

    Liu, Dongli; Wellner, Nikolaus; Parker, Mary L; Morris, Victor J; Cheng, Fang

    2015-03-15

    Optical (KI/I2-staining, polarised) and FTIR microscopy has been used to monitor starch granule structure within wild-type (wt), GEMS-0067 and waxy-amylose-extender (wx-ae) maize mutant kernels. In the GEMS-0067 mutant containing the high amylose modifier (HAM) gene(s) plus the recessive ae gene, structural heterogeneity characteristic of the ae mutation was reduced markedly. However, enhanced variation in granule shape and size was observed distributed spatially within the kernel, which appears to be related to new heterogeneity in internal starch granule structure. In wx-ae starch mutants the ae gene led to heterogeneity of starch granule structure equivalent to that in single ae mutants, plus new structural heterogeneity coincident with novel induced variation in granule size and shape. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Enzymatic synthesis using glycoside phosphorylases

    PubMed Central

    O’Neill, Ellis C.; Field, Robert A.

    2015-01-01

    Carbohydrate phosphorylases are readily accessible but under-explored catalysts for glycoside synthesis. Their use of accessible and relatively stable sugar phosphates as donor substrates underlies their potential. A wide range of these enzymes has been reported of late, displaying a range of preferences for sugar donors, acceptors and glycosidic linkages. This has allowed this class of enzymes to be used in the synthesis of diverse carbohydrate structures, including at the industrial scale. As more phosphorylase enzymes are discovered, access to further difficult to synthesise glycosides will be enabled. Herein we review reported phosphorylase enzymes and the glycoside products that they have been used to synthesise. PMID:25060838

  6. The Crystal Structure of Streptococcus pyogenes Uridine Phosphorylase Reveals a Distinct Subfamily of Nucleoside Phosphorylases

    SciTech Connect

    Tran, Timothy H.; Christoffersen, S.; Allan, Paula W.; Parker, William B.; Piskur, Jure; Serra, I.; Terreni, M.; Ealick, Steven E.

    2011-09-20

    Uridine phosphorylase (UP), a key enzyme in the pyrimidine salvage pathway, catalyzes the reversible phosphorolysis of uridine or 2'-deoxyuridine to uracil and ribose 1-phosphate or 2'-deoxyribose 1-phosphate. This enzyme belongs to the nucleoside phosphorylase I superfamily whose members show diverse specificity for nucleoside substrates. Phylogenetic analysis shows Streptococcus pyogenes uridine phosphorylase (SpUP) is found in a distinct branch of the pyrimidine subfamily of nucleoside phosphorylases. To further characterize SpUP, we determined the crystal structure in complex with the products, ribose 1-phosphate and uracil, at 1.8 {angstrom} resolution. Like Escherichia coli UP (EcUP), the biological unit of SpUP is a hexamer with an ?/? monomeric fold. A novel feature of the active site is the presence of His169, which structurally aligns with Arg168 of the EcUP structure. A second active site residue, Lys162, is not present in previously determined UP structures and interacts with O2 of uracil. Biochemical studies of wild-type SpUP showed that its substrate specificity is similar to that of EcUP, while EcUP is {approx}7-fold more efficient than SpUP. Biochemical studies of SpUP mutants showed that mutations of His169 reduced activity, while mutation of Lys162 abolished all activity, suggesting that the negative charge in the transition state resides mostly on uracil O2. This is in contrast to EcUP for which transition state stabilization occurs mostly at O4.

  7. Mutation of the maize sbe1a and ae genes alters morphology and physical behavior of wx-type endosperm starch granules.

    PubMed

    Li, Ji-Hong; Guiltinan, Mark J; Thompson, Donald B

    2007-12-10

    In maize, three isoforms of starch-branching enzyme, SBEI, SBEIIa, and SBEIIb, are encoded by the Sbe1a, Sbe2a, and Amylose extender (Ae) genes, respectively. The objective of this research was to explore the effects of null mutations in the Sbe1a and Ae genes alone and in combination in wx background on kernel characteristics and on the morphology and physical behavior of endosperm starch granules. Differences in kernel morphology and weight, starch accumulation, starch granule size and size distribution, starch microstructure, and thermal properties were observed between the ae wx and sbe1a ae wx plants but not between the sbe1a wx mutants when compared to wx. Starch from sbe1a ae wx plants exhibited a larger granule size with a wider gelatinization temperature range and a lower endotherm enthalpy than ae wx. Microscopy shows weaker iodine staining in sbe1a ae wx starch granules. X-ray diffraction revealed A-type crystallinity in wx and sbe1a wx starches and B-type in sbe1a ae wx and ae wx. This study suggests that, while the SBEIIb isoform plays a dominant role in maize endosperm starch synthesis, SBEI also plays a role, which is only observable in the presence of the ae mutation.

  8. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L.).

    PubMed

    Yang, Ruifang; Sun, Chunlong; Bai, Jianjiang; Luo, Zhixiang; Shi, Biao; Zhang, Jianming; Yan, Wengui; Piao, Zhongze

    2012-01-01

    Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancers, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world population. A japonica mutant 'Jiangtangdao 1' (RS = 11.67%) was crossed with an indica cultivar 'Miyang 23' (RS = 0.41%). The mutant sbe3-rs that explained 60.4% of RS variation was mapped between RM6611 and RM13366 on chromosome 2 (LOD = 36) using 178 F(2) plants genotyped with 106 genome-wide polymorphic SSR markers. Using 656 plants from four F(3:4) families, sbe3-rs was fine mapped to a 573.3 Kb region between InDel 2 and InDel 6 using one STS, five SSRs and seven InDel markers. SBE3 which codes for starch branching enzyme was identified as a candidate gene within the putative region. Nine pairs of primers covering 22 exons were designed to sequence genomic DNA of the wild type for SBE3 and the mutant for sbe3-rs comparatively. Sequence analysis identified a missense mutation site where Leu-599 of the wild was changed to Pro-599 of the mutant in the SBE3 coding region. Because the point mutation resulted in the loss of a restriction enzyme site, sbe3-rs was not digested by a CAPS marker for SpeI site while SBE3 was. Co-segregation of the digestion pattern with RS content among 178 F(2) plants further supported sbe3-rs responsible for RS in rice. As a result, the CAPS marker could be used in marker-assisted breeding to develop rice cultivars with elevated RS which is otherwise difficult to accurately assess in crops. Transgenic technology should be employed for a definitive conclusion of the sbe3-rs.

  9. A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice.

    PubMed

    Yang, Ruifang; Bai, Jianjiang; Fang, Jun; Wang, Ying; Lee, Gangseob; Piao, Zhongze

    2016-09-01

    Foods rich in resistant starch can help prevent various diseases, including diabetes, colon cancers, diarrhea, and chronic renal and hepatic diseases. Variations in starch biosynthesis enzymes could contribute to the high content of resistant starch in some cultivars of rice (Oryza sativa L.). Our previously published work indicated that the sbe3-rs gene in the rice mutant line, 'Jiangtangdao1' was a putative allele of the rice starch branching enzyme gene SBEIIb (previously known as SBE3); sbe3-rs might control the biosynthesis of the high resistant starch content in the rice line. Biomolecular analysis showed that the activity of SBEs was significantly lower in soluble extracts of immature seeds harvested from 'Jiangtangdao1' 15 days after flowering than in the extracts of the wild-type rice line 'Huaqingdao'. We performed gene complementation assays by introducing the wild-type OsSBEIIb into the sbe3-rs mutant 'Jiangtangdao1'. The genetically complemented lines demonstrated restored seed-related traits. The structures of endosperm amylopectin and the morphological and physicochemical properties of the starch granules in the transformants recovered to wild-type levels. This study provides evidence that sbe3-rs is a novel allele of OsSBEIIb, responsible for biosynthesis of high resistant starch in 'Jiangtangdao1'.

  10. A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice

    PubMed Central

    Yang, Ruifang; Bai, Jianjiang; Fang, Jun; Wang, Ying; Lee, Gangseob; Piao, Zhongze

    2016-01-01

    Foods rich in resistant starch can help prevent various diseases, including diabetes, colon cancers, diarrhea, and chronic renal and hepatic diseases. Variations in starch biosynthesis enzymes could contribute to the high content of resistant starch in some cultivars of rice (Oryza sativa L.). Our previously published work indicated that the sbe3-rs gene in the rice mutant line, ‘Jiangtangdao1’ was a putative allele of the rice starch branching enzyme gene SBEIIb (previously known as SBE3); sbe3-rs might control the biosynthesis of the high resistant starch content in the rice line. Biomolecular analysis showed that the activity of SBEs was significantly lower in soluble extracts of immature seeds harvested from ‘Jiangtangdao1’ 15 days after flowering than in the extracts of the wild-type rice line ‘Huaqingdao’. We performed gene complementation assays by introducing the wild-type OsSBEIIb into the sbe3-rs mutant ‘Jiangtangdao1’. The genetically complemented lines demonstrated restored seed-related traits. The structures of endosperm amylopectin and the morphological and physicochemical properties of the starch granules in the transformants recovered to wild-type levels. This study provides evidence that sbe3-rs is a novel allele of OsSBEIIb, responsible for biosynthesis of high resistant starch in ‘Jiangtangdao1’. PMID:27795673

  11. Role of phosphorylase in the mechanism of potato minituber storage cell changes during clinorotation

    NASA Astrophysics Data System (ADS)

    Nedukha, O.; Shnyukova, E.

    The differences between the cytochemical reaction intensity and activity of phosphorylase (EC 2.4.1.1) and carbohydrate content in storage parenchyma cells of Solanum tuberosum L. (cv Adreta) minitubers grown for 30 days in the horizontal clinostate (2 rev/min) and in the control have been studied by electroncytochemical and biochemical methods. It is established an acceleration of minitubers formation and storage parenchyma cell differentiation at clinorotation. Electroncytochemical investigation of phosphorylase activity localization in the storage parenchyma cells of minitubers grown in control and at clinorotation showed the product of the reaction as electron-dense precipitate was marked plastids. Intensity and density of precipitate was increase in stroma of plastids and on starch grain surface during of intensive growth of starch in amyloplast (on 10- and 20-days of the minituber formation) of clinorotated minitubers in comparison with that in the control. The precipitate amount was decreased in the plastids on 30 day of growth in both variants. Using biochemical methods it is found that activity of phosphorylase and content of mono- and disaccharide and also starch content changed in minitubers formed during clinorotation and in the control. Data obtained are discussed regarding the possible mechanism of phosphorylase activity change and the role of mono- and disaccharide in acceleration of storage organ formation during clinorotation.

  12. Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids

    PubMed Central

    Vonlanthen, Sofie; Dauvillée, David; Purton, Saul

    2015-01-01

    When green algae are exposed to physiological stresses such as nutrient deprivation, growth is arrested and the cells channel fixed carbon instead into storage compounds, accumulating first starch granules and then lipid bodies containing triacylglycerides. In recent years there has been significant interest in the commercial exploitation of algal lipids as a sustainable source of biodiesel. Since starch and lipid biosynthesis involves the same C3 precursor pool, it has been proposed that mutations blocking starch accumulation should result in increased lipid yields, and indeed several studies have supported this. The fast-growing, thermotolerant alga Chlorella sorokiniana represents an attractive strain for industrial cultivation. We have therefore generated and characterized starch-deficient mutants of C. sorokiniana and determined whether lipid levels are increased in these strains under stress conditions. One mutant (ST68) is shown to lack isoamylase, whilst two others (ST3 and ST12) are defective in starch phosphorylase. However, we find no significant change in the accumulation or profile of fatty acids in these mutants compared to the wild-type, suggesting that a failure to accumulate starch per se is not sufficient for the hyper-accumulation of lipid, and that more subtle regulatory steps underlie the partitioning of carbon to the two storage products. PMID:26865991

  13. Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein–protein interactions

    PubMed Central

    Liu, Fushan; Ahmed, Zaheer; Lee, Elizabeth A.; Donner, Elizabeth; Liu, Qiang; Ahmed, Regina; Morell, Matthew K.; Emes, Michael J.; Tetlow, Ian J.

    2012-01-01

    amylose extender (ae−) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae− maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein–protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae− mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272–Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16–20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-32P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the

  14. Characterization of a starch-hydrolyzing α-amylase produced by Aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment

    PubMed Central

    Wang, Shihui; Lin, Chaoyang; Liu, Yun; Shen, Zhicheng; Jeyaseelan, Jenasia; Qin, Wensheng

    2016-01-01

    Aspergillus niger is the most commonly used fungus for commercial amylase production, the increase of amylase activity will be beneficial to the amylase industry. Herein we report a high α-amylase producing (HAP) A. niger WLB42 mutated from A. niger A4 by ethyl methanesulfonate treatment. The fermentation conditions for the amylase production were optimized. The results showed that both the amylase activity and total protein content reached highest after 48-h incubation in liquid medium using starch as the sole carbon source. The enzyme production reached maximum at temperature of 30°C, pH 7, with 40 g/L starch in the medium inoculated with 1.4% v/v spore. When 0.3% w/v urea was added to the liquid medium as a nitrogen source, the amylase activity was elevated by 20%. Nine monosaccharides and derivatives were tested for α-amylase induction, glucose was the best inducer. Furthermore, the enzymology characterization of amylase was conducted. The molecular weight of amylase was determined to be 50 kD by SDS-PAGE. The amylase had maximum activity at 45°C and pH 7. The activity could be dramatically triggered by adding 1 mM Co2+, increased to 250%. The activity was inhibited by detergents SDS and Triton X-100. Six different brands of starch were tested for amylase activity, the results demonstrated that the more soluble of the starch, the higher hydrolyzability of the substrate by amylase. PMID:27335681

  15. Low phytic acid 1 mutation in maize modifies density, starch properties, cations, and fiber contents in the seed.

    PubMed

    Landoni, Michela; Cerino Badone, Francesco; Haman, Nabil; Schiraldi, Alberto; Fessas, Dimitrios; Cesari, Valentina; Toschi, Ivan; Cremona, Roberta; Delogu, Chiara; Villa, Daniela; Cassani, Elena; Pilu, Roberto

    2013-05-15

    Monogastric animals are unable to digest phytic acid, so it represents an antinutritional factor and also an environmental problem. One strategy to solve this problem is the utilization of low phytic acid (lpa) mutants that accumulate low levels of phytic P and high levels of free phosphate in the seeds; among the lpa maize mutants lpa1 exhibited the highest reduction of phytic acid in the seed. This study indicated that the low phytic acid mutations exerted pleiotropic effects not directly connected to the phytic acid pathway, such as on seed density, content of ions, and the antioxidant compounds present in the kernels. Furthermore some nutritional properties of the flour were altered by the lpa1 mutations, in particular lignin and protein content, while the starch does not seem to be modified as to the total amount and in the amylose/amylopectin ratio, but alterations were noticed in the structure and size of granules.

  16. Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis.

    PubMed

    Grimaud, Florent; Rogniaux, Hélène; James, Martha G; Myers, Alan M; Planchot, Véronique

    2008-01-01

    In addition to the exclusively granule-bound starch synthase GBSSI, starch granules also bind significant proportions of other starch biosynthetic enzymes, particularly starch synthases (SS) SSI and SSIIa, and starch branching enzyme (BE) BEIIb. Whether this association is a functional aspect of starch biosynthesis, or results from non-specific entrapment during amylopectin crystallization, is not known. This study utilized genetic, immunological, and proteomic approaches to investigate comprehensively the proteome and phosphoproteome of Zea mays endosperm starch granules. SSIII, BEI, BEIIa, and starch phosphorylase were identified as internal granule-associated proteins in maize endosperm, along with the previously identified proteins GBSS, SSI, SSIIa, and BEIIb. Genetic analyses revealed three instances in which granule association of one protein is affected by the absence of another biosynthetic enzyme. First, eliminating SSIIa caused reduced granule association of SSI and BEIIb, without affecting GBSS abundance. Second, eliminating SSIII caused the appearance of two distinct electrophoretic mobility forms of BEIIb, whereas only a single migration form of BEIIb was observed in wild type or any other mutant granules examined. Third, eliminating BEIIb caused significant increases in the abundance of BEI, BEIIa, SSIII, and starch phosphorylase in the granule, without affecting SSI or SSIIa. Analysis of the granule phosphoproteome with a phosphorylation-specific dye indicated that GBSS, BEIIb, and starch phosphorylase are all phosphorylated as they occur in the granule. These results suggest the possibility that starch metabolic enzymes located in granules are regulated by post-translational modification and/or protein-protein interactions.

  17. Purine nucleoside phosphorylase deficiency in a patient with spastic paraplegia and recurrent infections.

    PubMed

    Ozkinay, Ferda; Pehlivan, Sacide; Onay, Huseyin; van den Berg, Paul; Vardar, Fadil; Koturoglu, Guldane; Aksu, Guzide; Unal, Durisehvar; Tekgul, Hasan; Can, Sema; Ozkinay, Cihangir

    2007-06-01

    Purine nucleoside phosphorylase deficiency is a rare autosomal recessive immunodeficiency disease. The characteristic features of the disease include severe T cell immune defects with recurrent infections, a failure to thrive, and progressive neurological findings. To date, 35 cases of purine nucleosidase phosphorylase deficiency have been reported worldwide. A 2-year-old female patient was hospitalized due to recurrent infections starting from 6 months and a fever that had continued for a month. The parents were first cousins. Physical examination showed a failure to thrive, herpetic lesions around the lips, painful lesions on the tongue and the buccal mucosa, lung infection, and spastic paraparesis in the lower extremities. She had motor and mental retardation. Laboratory tests revealed lymphopenia; low CD3, CD4, and CD8 counts; normal immunoglobulin levels; low uric acid; and very low purine nucleoside phosphorylase enzyme activity (1.4 nmol/h/mg; normal range, 490-1530). DNA sequencing of the purine nucleosidase phosphorylase gene revealed a missense homozygous mutation, a G to A transition at exon 4 position 64 (349G>A transition), which led to a substitution of alanine by threonine at codon 117 (Ala117Thr). Both parents were heterozygous for the mutation. This is the second purine nucleosidase phosphorylase deficient case to have been presented and carrying this mutation worldwide. Various antibiotics, antifungal drugs, and intravenous immunoglobulin were used to treat the infections during her 3 months. This form of treatment proved to be unresponsive, resulting in her subsequent death at 26 months of age.

  18. Starch biosynthesis in cereal endosperm.

    PubMed

    Jeon, Jong-Seong; Ryoo, Nayeon; Hahn, Tae-Ryong; Walia, Harkamal; Nakamura, Yasunori

    2010-06-01

    Stored starch generally consists of two d-glucose homopolymers, the linear polymer amylose and a highly branched glucan amylopectin that connects linear chains. Amylopectin structurally contributes to the crystalline organization of the starch granule in cereals. In the endosperm, amylopectin biosynthesis requires the proper execution of a coordinated series of enzymatic reactions involving ADP glucose pyrophosphorylase (AGPase), soluble starch synthase (SS), starch branching enzyme (BE), and starch debranching enzyme (DBE), whereas amylose is synthesized by AGPase and granule-bound starch synthase (GBSS). It is highly possible that plastidial starch phosphorylase (Pho1) plays an important role in the formation of primers for starch biosynthesis in the endosperm. Recent advances in our understanding of the functions of individual enzyme isoforms have provided new insights into how linear polymer chains and branch linkages are synthesized in cereals. In particular, genetic analyses of a suite of mutants have formed the basis of a new model outlining the role of various enzyme isoforms in cereal starch production. In our current review, we summarize the recent research findings related to starch biosynthesis in cereal endosperm, with a particular focus on rice.

  19. A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme.

    PubMed

    Zeeman, S C; Northrop, F; Smith, A M; Rees, T

    1998-08-01

    The aim of this work was to identify enzymes that participate in the degradation of transitory starch in Arabidopsis. A mutant line was isolated by screening leaves at the end of the night for the presence of starch. The mutant had a higher starch content than the wild-type throughout the diurnal cycle. This accumulation was due to a reduction in starch breakdown, leading to an imbalance between the rates of synthesis and degradation. No reduction in the activity of endo-amylase (alpha-amylase), beta-amylase, starch phosphorylase, maltase, pullulanase or D-enzyme could be detected in crude extracts of leaves of the mutant. However, native PAGE in gels containing amylopectin revealed that a starch-hydrolysing activity, putatively identified as an endo-amylase and present in wild-type chloroplasts, was absent or appreciably reduced in the mutant. This is the first time that a specific enzyme required for starch degradation has been identified in leaves.

  20. The lys5 Mutations of Barley Reveal the Nature and Importance of Plastidial ADP-Glc Transporters for Starch Synthesis in Cereal Endosperm1

    PubMed Central

    Patron, Nicola J.; Greber, Boris; Fahy, Brendan F.; Laurie, David A.; Parker, Mary L.; Denyer, Kay

    2004-01-01

    Much of the ADP-Glc required for starch synthesis in the plastids of cereal endosperm is synthesized in the cytosol and transported across the plastid envelope. To provide information on the nature and role of the plastidial ADP-Glc transporter in barley (Hordeum vulgare), we screened a collection of low-starch mutants for lines with abnormally high levels of ADP-Glc in the developing endosperm. Three independent mutants were discovered, all of which carried mutations at the lys5 locus. Plastids isolated from the lys5 mutants were able to synthesize starch at normal rates from Glc-1-P but not from ADP-Glc, suggesting a specific lesion in the transport of ADP-Glc across the plastid envelope. The major plastidial envelope protein was purified, and its sequence showed it to be homologous to the maize (Zea mays) ADP-Glc transporter BRITTLE1. The gene encoding this protein in barley, Hv.Nst1, was cloned, sequenced, and mapped. Like lys5, Hv.Nst1 lies on chromosome 6(6H), and all three of the lys5 alleles that were examined were shown to carry lesions in Hv.Nst1. Two of the identified mutations in Hv.Nst1 lead to amino acid substitutions in a domain that is conserved in all members of the family of carrier proteins to which Hv.NST1 belongs. This strongly suggests that Hv.Nst1 lies at the Lys5 locus and encodes a plastidial ADP-Glc transporter. The low-starch phenotype of the lys5 mutants shows that the ADP-Glc transporter is required for normal rates of starch synthesis. This work on Hv.NST1, together with the earlier work on BRITTLE1, suggests that homologous transporters are probably present in the endosperm of all cereals. PMID:15299120

  1. A Putative Gene sbe3-rs for Resistant Starch Mutated from SBE3 for Starch Branching Enzyme in Rice (Oryza sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancer, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world’s population. A japonica mutant ‘Jiang...

  2. Genetics Home Reference: purine nucleoside phosphorylase deficiency

    MedlinePlus

    ... patients with purine nucleoside phosphorylase deficiency. Nucleosides Nucleotides Nucleic Acids. 2004 Oct;23(8-9):1411-5. Erratum in: Nucleosides Nucleotides Nucleic Acids. 2005;24(4):303. Citation on PubMed Nyhan ...

  3. Glycal Formation in Crystals of Uridine Phosphorylase

    SciTech Connect

    Paul, Debamita; O’Leary, Sen E.; Rajashankar, Kanagalaghatta; Bu, Weiming; Toms, Angela; Settembre, Ethan C.; Sanders, Jennie M.; Begley, Tadhg P.; Ealick, Steven E.

    2010-06-22

    Uridine phosphorylase is a key enzyme in the pyrimidine salvage pathway. This enzyme catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate (or 2{prime}-deoxyuridine to 2{prime}-deoxyribose 1-phosphate). Here we report the structure of hexameric Escherichia coli uridine phosphorylase treated with 5-fluorouridine and sulfate and dimeric bovine uridine phosphorylase treated with 5-fluoro-2{prime}-deoxyuridine or uridine, plus sulfate. In each case the electron density shows three separate species corresponding to the pyrimidine base, sulfate, and a ribosyl species, which can be modeled as a glycal. In the structures of the glycal complexes, the fluorouracil O2 atom is appropriately positioned to act as the base required for glycal formation via deprotonation at C2{prime}. Crystals of bovine uridine phosphorylase treated with 2{prime}-deoxyuridine and sulfate show intact nucleoside. NMR time course studies demonstrate that uridine phosphorylase can catalyze the hydrolysis of the fluorinated nucleosides in the absence of phosphate or sulfate, without the release of intermediates or enzyme inactivation. These results add a previously unencountered mechanistic motif to the body of information on glycal formation by enzymes catalyzing the cleavage of glycosyl bonds.

  4. Enzymatic transformation of nonfood biomass to starch.

    PubMed

    You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y-H Percival

    2013-04-30

    The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world's future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture's environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma.

  5. Enzymatic transformation of nonfood biomass to starch

    PubMed Central

    You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y.-H. Percival

    2013-01-01

    The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world’s future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma. PMID:23589840

  6. alpha-1,4-D-glucan phosphorylase of gram-positive Corynebacterium callunae: isolation, biochemical properties and molecular shape of the enzyme from solution X-ray scattering.

    PubMed Central

    Weinhäusel, A; Griessler, R; Krebs, A; Zipper, P; Haltrich, D; Kulbe, K D; Nidetzky, B

    1997-01-01

    The alpha-1,4-D-glucan phosphorylase from gram-positive Corynebacterium callunae has been isolated and characterized. The enzyme is inducible approx. 2-fold by maltose, but remarkably not repressed by D-glucose. The phosphorylase is a homodimer with a stoichiometric content of the cofactor pyridoxal 5'-phosphate per 88-kDa protein subunit. The specificity constants (kcat/Km, glucan) in the directions of glucan synthesis and degradation are used for the classification of the enzyme as the first bacterial starch phosphorylase. A preference for large over small substrates is determined by variations in the apparent binding constants rather than catalytic-centre activities. The contribution of substrate chain length to binding energy is explained assuming two glucan binding sites in C. callunae phosphorylase: an oligosaccharide binding site composed of five subsites and a high-affinity polysaccharide site separated from the active site. A structural model of the molecular shape of the phosphorylase was obtained from small-angle solution X-ray scattering measurements. A flat, slightly elongated, ellipsoidal model with the three axes related to each other as 1:(0.87-0.95):0.43 showed scattering equivalence with the enzyme molecule. The model of C. callunae phosphorylase differs from the structurally well-characterized rabbit-muscle phosphorylase in size and axial dimensions. PMID:9307027

  7. Starch Metabolism in the Leaf Sheaths and Culm of Rice 1

    PubMed Central

    Perez, Consuelo M.; Palmiano, Evelyn P.; Baun, Lyda C.; Juliano, Bienvenido O.

    1971-01-01

    The levels of starch and dextrin, free sugars, soluble protein, and enzymes involved in starch metabolism—α-amylase, β-amylase, phosphorylase, Q-enzyme, R-enzyme, and ADP-glucose starch synthetases—were assayed in the leaf sheaths and culm of the rice plant (Oryza sativa L., variety IR8) during growth. Starch accumulation in the leaf sheaths reached a maximum 10 to 11 weeks after transplanting, the time of development of the rice panicle. Maximal concentration of free sugars occurred earlier. Starch and sugars in the leaf sheaths and culm decreased rapidly during grain development. During starch accumulation, the starch granules of the leaf sheaths increased slightly in size and its gelatinization temperature decreased. The molecular size of amylose and amylopectin and amylose content of the starch were similar in both culm and leaf sheaths. Changes in the level of soluble protein paralleled changes in starch level in the leaf sheaths. Among the enzymes, only synthetase bound to the starch granule paralleled the level of starch in the leaf sheaths and in the culm. ADP-glucose, but not UDP-glucose, was utilized as a glucosyl donor by these starch synthetases. Zymograms of these extracts showed only one α-amylase band, one β-amylase band, two phosphorylase bands, and one Q-enzyme band. PMID:16657631

  8. Starch poisoning

    MedlinePlus

    Cooking starch poisoning; Laundry starch poisoning ... Cooking and laundry starch are both made from vegetable products, most commonly: Corn Potatoes Rice Wheat Both are usually considered nonpoisonous (nontoxic), but ...

  9. Soybean cotyledon starch metabolism is sensitive to altered gravity conditions

    NASA Technical Reports Server (NTRS)

    Brown, C. S.; Piastuch, W. C.; Knott, W. M.

    1994-01-01

    We have demonstrated that etiolated soybean seedlings grown under the altered gravity conditions of clinorotation (1 rpm) and centrifugation (5xg) exhibit changes in starch metabolism. Cotyledon starch concentration was lower (-28%) in clinorotated plants and higher (+24%) in centrifuged plants than in vertical control plants. The activity of ADP-glucose pyrophosphorylase in the cotyledons was affected in a similar way, i.e. lower (-37%) in the clinorotated plants and higher (+22%) in the centrifuged plants. Other starch metabolic enzyme activities, starch synthase, starch phosphorylase and total hydrolase were not affected by the altered gravity treatments. We conclude that the observed changes in starch concentrations were primarily due to gravity-mediated differences in ADP-glucose pyrophosphorylase activity.

  10. Soybean cotyledon starch metabolism is sensitive to altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Brown, C. S.; Piastuch, W. C.; Knott, W. M.

    1994-08-01

    We have demonstrated that etiolated soybean seedlings grown under the altered gravity conditions of clinorotation (1 rpm) and centrifugation (5xg) exhibit changes in starch metabolism. Cotyledon starch concentration was lower (-28%) in clinorotated plants and higher (+24%) in centrifuged plants than in vertical control plants. The activity of ADP-glucose pyrophosphorylase in the cotyledons was affected in a similar way, i.e. lower (-37%) in the clinorotated plants and higher (+22%) in the centrifuged plants. Other starch metabolic enzyme activities, starch synthase, starch phosphorylase and total hydrolase were not affected by the altered gravity treatments. We conclude that the observed changes in starch concentrations were primarily due to gravity-mediated differences in ADP-glucose pyrophosphorylase activity.

  11. Soybean cotyledon starch metabolism is sensitive to altered gravity conditions

    NASA Technical Reports Server (NTRS)

    Brown, C. S.; Piastuch, W. C.; Knott, W. M.

    1994-01-01

    We have demonstrated that etiolated soybean seedlings grown under the altered gravity conditions of clinorotation (1 rpm) and centrifugation (5xg) exhibit changes in starch metabolism. Cotyledon starch concentration was lower (-28%) in clinorotated plants and higher (+24%) in centrifuged plants than in vertical control plants. The activity of ADP-glucose pyrophosphorylase in the cotyledons was affected in a similar way, i.e. lower (-37%) in the clinorotated plants and higher (+22%) in the centrifuged plants. Other starch metabolic enzyme activities, starch synthase, starch phosphorylase and total hydrolase were not affected by the altered gravity treatments. We conclude that the observed changes in starch concentrations were primarily due to gravity-mediated differences in ADP-glucose pyrophosphorylase activity.

  12. Zero-order ultrasensitivity in the regulation of glycogen phosphorylase.

    PubMed Central

    Meinke, M H; Bishop, J S; Edstrom, R D

    1986-01-01

    The activity of glycogen phosphorylase (1,4-alpha-D-glucan:orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1) is controlled by a cyclic phosphorylation-dephosphorylation process through the action of the interconverting enzymes, phosphorylase b kinase (ATP:phosphorylase-b phosphotransferase, EC 2.7.1.38) and phosphorylase a phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17). In muscle tissue, the combined concentration of the activated (phospho-) form, phosphorylase a, and the nonactivated (dephospho-) form, phosphorylase b, is substantially greater than the Km of either of the interconverting enzymes for its phosphorylase substrate. It has been predicted that, under such a set of conditions, a sensitivity amplification will occur for phosphorylase regulation due to the zero-order ultrasensitivity effect [LaPorte, D. C. & Koshland, D. E., Jr. (1983) Nature (London) 305, 286-290]. The sensitivity amplification will enhance the responsiveness of the phosphorylase interconversion cycle to changes in the ratio of activities of the kinase to phosphatase. We have studied the cyclic interconversion process using purified muscle enzymes in steady-state reactions and found that there is an enhancement in the control sensitivity of the process due to the zero-order ultrasensitivity effect. The potential for the in vivo enhancement of sensitivity in glycogen degradation by this effect is discussed. PMID:3458247

  13. The quest for a thermostable sucrose phosphorylase reveals sucrose 6'-phosphate phosphorylase as a novel specificity.

    PubMed

    Verhaeghe, Tom; Aerts, Dirk; Diricks, Margo; Soetaert, Wim; Desmet, Tom

    2014-08-01

    Sucrose phosphorylase is a promising biocatalyst for the glycosylation of a wide range of compounds, but its industrial application has been hampered by the low thermostability of known representatives. Hence, in this study, the putative sucrose phosphorylase from the thermophile Thermoanaerobacterium thermosaccharolyticum was recombinantly expressed and fully characterised. The enzyme showed significant activity on sucrose (optimum at 55 °C), and with a melting temperature of 79 °C and a half-life of 60 h at the industrially relevant temperature of 60 °C, it is far more stable than known sucrose phosphorylases. Substrate screening and detailed kinetic characterisation revealed however a preference for sucrose 6'-phosphate over sucrose. The enzyme can thus be considered as a sucrose 6'-phosphate phosphorylase, a specificity not yet reported to date. Homology modelling and mutagenesis pointed out particular residues (Arg134 and His344) accounting for the difference in specificity. Moreover, phylogenetic and sequence analysis suggest that glycoside hydrolase 13 subfamily 18 might harbour even more specificities. In addition, the second gene residing in the same operon as sucrose 6'-phosphate phosphorylase was identified as well, and found to be a phosphofructokinase. The concerted action of both these enzymes implies a new pathway for the breakdown of sucrose, in which the reaction products end up at different stages of the glycolysis.

  14. Isolation, identification and characterisation of starch-interacting proteins by 2-D affinity electrophoresis.

    PubMed

    Kosar-Hashemi, Behjat; Irwin, Jennifer A; Higgins, Jody; Rahman, Sadequr; Morell, Matthew K

    2006-05-01

    A 2-D affinity electrophoretic technique (2-DAE) has been used to isolate proteins that interact with various starch components from total barley endosperm extracts. In the first dimension, proteins are separated by native PAGE. The second-dimensional gel contains polysaccharides such as amylopectin and glycogen. The migration of starch-interacting proteins in this dimension is determined by their affinity towards a particular polysaccharide and these proteins are therefore spatially separated from the bulk of proteins in the crude extract. Four distinct proteins demonstrate significant affinity for amylopectin and have been identified as starch branching enzyme I (SBEI), starch branching enzyme IIa (SBEIIa), SBEIIb and starch phosphorylase using polyclonal antibodies and zymogram activity analysis. In the case of starch phosphorylase, a protein spot was excised from a 2-DAE polyacrylamide gel and analysed using Q-TOF MS/MS, resulting in the alignment of three internal peptide sequences with the known sequence of the wheat plastidic starch phosphorylase isoform. This assignment was confirmed by the determination of the enzyme's function using zymogram analysis. Dissociation constants (Kd) were calculated for the three enzymes at 4 degrees C and values of 0.20, 0.21 and 1.3 g/L were determined for SBEI, SBEIIa and starch phosphorylase, respectively. Starch synthase I could also be resolved from the other proteins in the presence of glycogen and its identity was confirmed using a polyclonal antibody and by activity analysis. The 2-DAE method described here is simple, though powerful, enabling protein separation from crude extracts on the basis of function.

  15. Plantain and banana starches: granule structural characteristics explain the differences in their starch degradation patterns.

    PubMed

    Soares, Claudinéia Aparecida; Peroni-Okita, Fernanda Helena Gonçalves; Cardoso, Mateus Borba; Shitakubo, Renata; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2011-06-22

    Different banana cultivars were used to investigate the influences of starch granule structure and hydrolases on degradation. The highest degrees of starch degradation were observed in dessert bananas during ripening. Scanning electron microscopy images revealed smooth granule surface in the green stage in all cultivars, except for Mysore. The small and round granules were preferentially degraded in all of the cultivars. Terra demonstrated a higher degree of crystallinity and a short amylopectin chain length distribution, resulting in high starch content in the ripe stage. Amylose content and the crystallinity index were more strongly correlated than the distribution of amylopectin branch chain lengths in banana starches. α- and β-amylase activities were found in both forms, soluble in the pulp and associated with the starch granule. Starch-phosphorylase was not found in Mysore. On the basis of the profile of α-amylase in vitro digestion and the structural characteristics, it could be concluded that the starch of plantains has an arrangement of granules more resistant to enzymes than the starch of dessert bananas.

  16. Starch gelatinization.

    PubMed

    Ratnayake, Wajira S; Jackson, David S

    2009-01-01

    Starch occurs as highly organized structures, known as starch granules. Starch has unique thermal properties and functionality that have permitted its wide use in food products and industrial applications. When heated in water, starch undergoes a transition process, during which the granules break down into a mixture of polymers-in-solution, known as gelatinization. The sequence of structural transformations that the starch granule undergoes during this order-to-disorder transition has been extensively researched. None of the published starch gelatinization theories can fully and adequately explain the exact mechanism of sequential structural changes that starch granules undergo during gelatinization. This chapter analyzes several published theories and summarizes our current understanding of the starch gelatinization process.

  17. Mutations in durum wheat SBEII genes conferring increased amylose and resistant starch affect grain yield components, semolina and pasta quality and fermentation responses in rats

    USDA-ARS?s Scientific Manuscript database

    Increased amylose in wheat (Triticum spp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that provide human health benefits. Since wheat foods are an important component of t...

  18. Glycogen phosphorylase and its converter enzymes in haemolysates of normal human subjects and of patients with type VI glycogen-storage disease. A study of phosphorylase kinase deficiency.

    PubMed Central

    Lederer, B; Van Hoof, F; Van den Berghe, G; Hers, H

    1975-01-01

    1. The properties of phosphorylase a, phosphorylase b, phosphorylase kinase and phosphorylase phosphatase present in a human haemolysate were investigated. The two forms of phosphorylase have the same affinity for glucose 1-phosphate but greatly differ in Vmax. Phosphorylase b is only partially stimulated by AMP, since, in the presence of the nucleotide, it is about tenfold less active than phosphorylase a. In a fresh human haemolysate phosphorylase is mostly in the b form; it is converted into phosphorylase a by incubation at 20degreesC, and this reaction is stimulated by glycogen and cyclic AMP. Once activated, the enzyme can be inactivated after filtration of the haemolysate on Sephadex G-25. This inactivation is stimulated by caffeine and glucose and inhibited by AMP and fluoride. The phosphorylase kinase present in the haemolysate can also be measured by the rate of activation of added muscle phosphorylase b, on addition of ATP and Mg2+. 2. The activity of phosphorylase kinase was measured in haemolysates obtained from a series of patients who had been classified as suffering from type VI glycogenosis. In nine patients, all boys, an almost complete deficiency of phosphorylase kinase was observed in the haemolysate and, when it could be assayed, in the liver. A residual activity, about 20% of normal, was found in the leucocyte fraction, whereas the enzyme activity was normal in the muscle. These patients suffer from the sex-linked phosphorylase kinase deficiency previously described by others. Two pairs of siblings, each time brother and sister, displayed a partial deficiency of phosphorylase kinase in the haemolysate and leucocytes and an almost complete deficiency in the liver. This is considered as being the autosomal form of phosphorylase kinase deficiency. Other patients were characterized by a low activity of total (a+b) phosphorylase and a normal or high activity of phosphorylase kinase in their haemolysate. PMID:168880

  19. Modified 5-fluorouracil: Uridine phosphorylase inhibitor

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Shchekotikhin, A. A.; Shtil, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2016-09-01

    5-Fluorouracil (5-FU) is a medication widely used in chemotherapy to treat various types of cancer. Being a substrate for the reverse reaction catalyzed by uridine phosphorylase (UPase), 5-FU serves as a promising prototype molecule (molecular scaffold) for the design of a selective UPase inhibitor that enhances the antitumor activity of 5-FU and exhibits intrinsic cytostatic effects on cancer cells. The chemical formula of the new compound, which binds to the uracil-binding site and, in the presence of a phosphate anion, to the phosphate-binding site of UPase, is proposed and investigated by molecular simulation methods.

  20. Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules.

    PubMed

    Fettke, Joerg; Albrecht, Tanja; Hejazi, Mahdi; Mahlow, Sebastian; Nakamura, Yasunori; Steup, Martin

    2010-02-01

    Reserve starch is an important plant product but the actual biosynthetic process is not yet fully understood. Potato (Solanum tuberosum) tuber discs from various transgenic plants were used to analyse the conversion of external sugars or sugar derivatives to starch. By using in vitro assays, a direct glucosyl transfer from glucose 1-phosphate to native starch granules as mediated by recombinant plastidial phosphorylase was analysed. Compared with labelled glucose, glucose 6-phosphate or sucrose, tuber discs converted externally supplied [(14)C]glucose 1-phosphate into starch at a much higher rate. Likewise, tuber discs from transgenic lines with a strongly reduced expression of cytosolic phosphoglucomutase, phosphorylase or transglucosidase converted glucose 1-phosphate to starch with the same or even an increased rate compared with the wild-type. Similar results were obtained with transgenic potato lines possessing a strongly reduced activity of both the cytosolic and the plastidial phosphoglucomutase. Starch labelling was, however, significantly diminished in transgenic lines, with a reduced concentration of the plastidial phosphorylase isozymes. Two distinct paths of reserve starch biosynthesis are proposed that explain, at a biochemical level, the phenotype of several transgenic plant lines.

  1. Enhancement of photoassimilate utilization by manipulation of starch regulatory enzymes

    SciTech Connect

    Okita, Thomas W.

    2016-05-11

    ADPglucose pyrophosphorylase (AGPase) and the plastidial starch phosphorylase1 (Pho1) are two regulatory enzymes whose catalytic activities are essential for starch granule synthesis. Conversion of the pre-starch granule to the mature form is dependent on AGPase, which produces ADPglucose, the substrate used by starch synthases. The catalytic activity of AGPase is controlled by small effector molecules and a prime goal of this project was to decipher the role of the two subunit types that comprise the heterotetrameric enzyme structure. Extensive genetic and biochemical studies showed that catalysis was contributed mainly by the small subunit although the large subunit was required for maximum activity. Both subunits were needed for allosteric regulatory properties. We had also demonstrated that the AGPase catalyzed reaction limits the amount of starch accumulation in developing rice seeds and that carbon flux into rice seed starch can be increased by expression of a cytoplasmic-localized, up-regulated bacterial AGPase enzyme form. Results of subsequent physiological and metabolite studies showed that the AGPase reaction is no longer limiting in the AGPase transgenic rice lines and that one or more downstream processes prevent further increases in starch biosynthesis. Further studies showed that over-production of ADPglucose dramatically alters the gene program during rice seed development. Although the expression of nearly all of the genes are down-regulated, levels of a starch binding domain containing protein (SBDCP) are elevated. This SBDCP was found to bind to and inhibit the catalytic activity of starch synthase III and, thereby preventing maximum starch synthesis from occurring. Surprisingly, repression of SBDCP elevated expression of starch synthase III resulting in increasing rice grain weight. A second phase of this project examined the structure-function of Pho1, the enzyme required during the initial phase of pre-starch granule formation and its

  2. Tests for the mechanism of starch biosynthesis: de novo synthesis or an amylogenin primer synthesis.

    PubMed

    Mukerjea, Rupendra; Robyt, John F

    2013-05-03

    Studies in 1940 on potato phosphorylase reaction with starch found that d-glucopyranose from α-d-glucopyranosyl-1-phosphate was added to the nonreducing-ends of starch chains. This led to the hypothesis that the biosynthesis of starch required a preformed primer. Later it was found that phosphorylase was exclusively a degradative enzyme in vivo and that starch-synthase was the enzyme that reacted with ADPGlc to biosynthesize starch. Amylogenin, a putative self-glycosylated protein, was postulated to be the primer, although it was never demonstrated or found. In the present study, three reactions were performed in sequence with a highly purified potato starch-synthase to determine whether an amylogenin primer was present and required or whether the biosynthesis was de novo. Reaction 1 was performed by adding 2.0mM ADPGlc to synthesize the putative primer to a possible amylogenin in the preparation; in Reaction 2, 10mM ADP-[(14)C]Glc was added; and in Reaction 3, 10mM nonlabeled ADPGlc was added. After the isolation, reduction, and acid hydrolysis of the products of Reactions 2 and 3, (14)C-d-glucitol was obtained from Reaction 2 and was decreased by Reaction 3. The formation of (14)C-d-glucitol and its decrease showed that an amylogenin, protein primer was not involved in starch biosynthesis and the synthesis is de novo by the addition of d-glucose to the reducing-ends of growing starch chains.

  3. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    SciTech Connect

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E.

    2012-03-01

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2–1.4 Å). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  4. Immobilized phosphorylase for synthesis of polysaccharides from glucose

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed.

  5. Structure of grouper iridovirus purine nucleoside phosphorylase

    SciTech Connect

    Kang, You-Na; Zhang, Yang; Allan, Paula W.; Parker, William B.; Ting, Jing-Wen; Chang, Chi-Yao; Ealick, Steven E.

    2010-02-01

    The crystal structure of purine nucleoside phosphorylase from grouper iridovirus was solved at 2.38 Å resolution. Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides to the corresponding free bases and ribose 1-phosphate. The crystal structure of grouper iridovirus PNP (givPNP), corresponding to the first PNP gene to be found in a virus, was determined at 2.4 Å resolution. The crystals belonged to space group R3, with unit-cell parameters a = 193.0, c = 105.6 Å, and contained four protomers per asymmetric unit. The overall structure of givPNP shows high similarity to mammalian PNPs, having an α/β structure with a nine-stranded mixed β-barrel flanked by a total of nine α-helices. The predicted phosphate-binding and ribose-binding sites are occupied by a phosphate ion and a Tris molecule, respectively. The geometrical arrangement and hydrogen-bonding patterns of the phosphate-binding site are similar to those found in the human and bovine PNP structures. The enzymatic activity assay of givPNP on various substrates revealed that givPNP can only accept 6-oxopurine nucleosides as substrates, which is also suggested by its amino-acid composition and active-site architecture. All these results suggest that givPNP is a homologue of mammalian PNPs in terms of amino-acid sequence, molecular mass, substrate specificity and overall structure, as well as in the composition of the active site.

  6. Starch-related cytosolic heteroglycans in roots from Arabidopsis thaliana.

    PubMed

    Malinova, Irina; Steup, Martin; Fettke, Joerg

    2011-08-15

    Both photoautotrophic and heterotrophic plant cells are capable of accumulating starch inside the plastid. However, depending on the metabolic state of the respective cell the starch-related carbon fluxes are different. The vast majority of the transitory starch biosynthesis relies on the hexose phosphate pools derived from the reductive pentose phosphate cycle and, therefore, is restricted to ongoing photosynthesis. Transitory starch is usually degraded in the subsequent dark period and mainly results in the formation of neutral sugars, such as glucose and maltose, that both are exported into the cytosol. The cytosolic metabolism of the two carbohydrates includes reversible glucosyl transfer reactions to a heteroglycan that are mediated by two glucosyl transferases, DPE2 and PHS2 (or, in all other species, Pho2). In heterotrophic cells, accumulation of starch mostly depends on the long distance transport of reduced carbon compounds from source to sink organs and, therefore, includes as an essential step the import of carbohydrates from the cytosol into the starch forming plastids. In this communication, we focus on starch metabolism in heterotrophic tissues from Arabidopsis thaliana wild type plants (and in various starch-related mutants as well). By using hydroponically grown A. thaliana plants, we were able to analyse starch-related biochemical processes in leaves and roots from the same plants. Within the roots we determined starch levels and the morphology of native starch granules. Cytosolic and apoplastic heteroglycans were analysed in roots and compared with those from leaves of the same plants. A. thaliana mutants lacking functional enzymes either inside the plastid (such as phosphoglucomutase) or in the cytosol (disproportionating isoenzyme 2 or the phosphorylase isozyme, PHS2) were included in this study. In roots and leaves from the three mutants (and from the respective wild type organ as well), starch and heteroglycans as well as enzyme patterns were

  7. Making starch.

    PubMed

    Smith, A M

    1999-06-01

    Improvements in understanding the structure of the starch granule and the nature and roles of starch-synthesising enzymes have allowed detailed mechanisms of the synthesis of the amylopectin and amylose components of the granule to be suggested. However, none of these proposed mechanisms has yet been shown to operate in vivo. Several critical aspects of granule synthesis, including granule initiation and the formation of the growth rings, remain a mystery.

  8. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    SciTech Connect

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E.

    2012-10-08

    Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2{prime}-deoxy)nucleosides, generating the corresponding free base and (2{prime}-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2-1.4 {angstrom}). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  9. Starch Synthesis in Arabidopsis. Granule Synthesis, Composition, and Structure1

    PubMed Central

    Zeeman, Samuel C.; Tiessen, Axel; Pilling, Emma; Kato, K. Lisa; Donald, Athene M.; Smith, Alison M.

    2002-01-01

    The aim of this work was to characterize starch synthesis, composition, and granule structure in Arabidopsis leaves. First, the potential role of starch-degrading enzymes during starch accumulation was investigated. To discover whether simultaneous synthesis and degradation of starch occurred during net accumulation, starch was labeled by supplying 14CO2 to intact, photosynthesizing plants. Release of this label from starch was monitored during a chase period in air, using different light intensities to vary the net rate of starch synthesis. No release of label was detected unless there was net degradation of starch during the chase. Similar experiments were performed on a mutant line (dbe1) that accumulates the soluble polysaccharide, phytoglycogen. Label was not released from phytoglycogen during the chase indicating that, even when in a soluble form, glucan is not appreciably degraded during accumulation. Second, the effect on starch composition of growth conditions and mutations causing starch accumulation was studied. An increase in starch content correlated with an increased amylose content of the starch and with an increase in the ratio of granule-bound starch synthase to soluble starch synthase activity. Third, the structural organization and morphology of Arabidopsis starch granules was studied. The starch granules were birefringent, indicating a radial organization of the polymers, and x-ray scatter analyses revealed that granules contained alternating crystalline and amorphous lamellae with a periodicity of 9 nm. Granules from the wild type and the high-starch mutant sex1 were flattened and discoid, whereas those of the high-starch mutant sex4 were larger and more rounded. These larger granules contained “growth rings” with a periodicity of 200 to 300 nm. We conclude that leaf starch is synthesized without appreciable turnover and comprises similar polymers and contains similar levels of molecular organization to storage starches, making Arabidopsis

  10. Starch synthesis in Arabidopsis. Granule synthesis, composition, and structure.

    PubMed

    Zeeman, Samuel C; Tiessen, Axel; Pilling, Emma; Kato, K Lisa; Donald, Athene M; Smith, Alison M

    2002-06-01

    The aim of this work was to characterize starch synthesis, composition, and granule structure in Arabidopsis leaves. First, the potential role of starch-degrading enzymes during starch accumulation was investigated. To discover whether simultaneous synthesis and degradation of starch occurred during net accumulation, starch was labeled by supplying (14)CO(2) to intact, photosynthesizing plants. Release of this label from starch was monitored during a chase period in air, using different light intensities to vary the net rate of starch synthesis. No release of label was detected unless there was net degradation of starch during the chase. Similar experiments were performed on a mutant line (dbe1) that accumulates the soluble polysaccharide, phytoglycogen. Label was not released from phytoglycogen during the chase indicating that, even when in a soluble form, glucan is not appreciably degraded during accumulation. Second, the effect on starch composition of growth conditions and mutations causing starch accumulation was studied. An increase in starch content correlated with an increased amylose content of the starch and with an increase in the ratio of granule-bound starch synthase to soluble starch synthase activity. Third, the structural organization and morphology of Arabidopsis starch granules was studied. The starch granules were birefringent, indicating a radial organization of the polymers, and x-ray scatter analyses revealed that granules contained alternating crystalline and amorphous lamellae with a periodicity of 9 nm. Granules from the wild type and the high-starch mutant sex1 were flattened and discoid, whereas those of the high-starch mutant sex4 were larger and more rounded. These larger granules contained "growth rings" with a periodicity of 200 to 300 nm. We conclude that leaf starch is synthesized without appreciable turnover and comprises similar polymers and contains similar levels of molecular organization to storage starches, making Arabidopsis

  11. Uridine phosphorylase in biomedical, structural, and functional aspects: A review

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Zhukhlistova, N. E.; Seregina, T. A.; Gabdulkhakov, A. G.; Mikhailov, A. M.

    2011-07-01

    The activation of xenobiotics often causes malignant tumor cells to resist chemotherapeutic treatment. Uridine phosphorylase is the key enzyme of pyrimidine metabolism and catalyzes the reversible phosphorylation of uridine with the formation of uracil and ribose-1-phosphate. High-selectivity anticancer agents based on uridine phosphorylase inhibitors are promising for treating both oncological and infection diseases. New medicinal preparations can be predicted and rationally developed only on the basis of detailed biomedical, structural, and functional knowledge about the biomacromolecular target enzyme-drug complex.

  12. Activation of Phosphorylase Kinase by Physiological Temperature.

    PubMed

    Herrera, Julio E; Thompson, Jackie A; Rimmer, Mary Ashley; Nadeau, Owen W; Carlson, Gerald M

    2015-12-29

    In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.

  13. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa)

    USDA-ARS?s Scientific Manuscript database

    In cereal seeds mutations in one or more starch synthases lead to decreased amylopectin and increased amylose content. Here, the impact of starch synthase IIa (SSIIa or SGP-1) mutations upon durum starch was investigated. A screen of durum accessions identified two lines lacking SGP-A1, the A geno...

  14. Mechanism of activation of glycogen phosphorylase by fructose in the liver. Stimulation of phosphorylase kinase related to the consumption of adenosine triphosphate.

    PubMed Central

    Van de Werve, G; Hers, H G

    1979-01-01

    1. A dose-dependent activation of phosphorylase and consumption of ATP was observed in isolated hepatocytes incubated in the presence of fructose; histone kinase and phosphorylase kinase activities were unchanged at doses of this sugar that were fully effective on phosphorylase. The activation of phosphorylase by fructose was also observed in cells incubated in a Ca2+-free medium as well as in the livers of rats in vivo. 2. In a liver high-speed supernatant, fructose, tagatose and sorbose stimulated the activity of phosphorylase kinase; this effect was dependent on the presence of K+ ions, which are required for the activity of fructokinase; it was accompanied by the transformation of ATP into ADP. In the presence of hexokinase, glucose also stimulated phosphorylase kinase, both in an Na+ or a K+ medium. 3. The activities of partially purified muscle or liver phosphorylase kinase were unchanged in the presence of fructose. 4. Some properties of liver phosphorylase kinase are described, including a high molecular weight and an inhibition at ATP/Mg ratios above 0.5, as well as an effect of ATP concentration on the hysteretic behaviour of this enzyme. 5. The effect of fructose on the activation of phosphorylase is discussed in relation to the comsumption of ATP. PMID:435271

  15. Starch Degradation Metabolism towards Sucrose Synthesis in Germinating Araucaria araucana Seeds 1

    PubMed Central

    Cardemil, Liliana; Varner, Joseph E.

    1984-01-01

    As starch is the main seed reserve material in both species of Araucaria of South America, A. araucana and A. angustifolia, it is important to understand starch breakdown in both embryo and megagametophyte tissues of Araucaria seeds. Sugar analysis by thin layer chromatography indicates that sucrose is the main sugar produced in both tissues. Enzyme reactions coupled to benzidine oxidation indicate that sucrose is the main sugar moved from the megagametophyte to the growing regions of the embryo via the cotyledons. Phosphorylase was detected in both embryo and megagametophyte tissues by the formation of [32P]glucose-1-P and by formation of [14C] amylopectin from [14C]glucose-1-P. The enzyme activity increases 5-fold in both embryo and gametophyte to a peak 18 hours after the start of imbibition. Debranching enzyme, α-glucosidase, and hexokinase are also present in both embryonic and megagametophytic tissues. Branched glucan oligosaccharides accumulate during this time, reaching a maximum 40 hours after imbibition starts, and decline after germination occurs. The pattern of activity of the enzymes studied in this work suggests that starch degradation is initiated by α-amylase and phosphorylase in the embryo and by phosphorylase mainly in the megagametophyte. Sucrose-P synthase seems to be the enzyme responsible for sucrose synthesis in both tissues. Images Fig. 1 Fig. 9 PMID:16663947

  16. Nicotinamide riboside phosphorylase from beef liver: purification and characterization.

    PubMed

    Imai, T; Anderson, B M

    1987-04-01

    Nicotinamide riboside phosphorylase (NR phosphorylase) from beef liver has been purified to apparent homogeneity at 300-fold purification with a 35% yield. Kinetic constants for the enzyme-catalyzed phosphorolysis were as follows Knicotinamide riboside, 2.5 +/- 0.4 mM; Kinorganic phosphate, 0.50 +/- 0.12 mM; Vmax, 410 +/- 30 X 10(-6) mol min-1 mg protein-1, respectively. The molecular weights of the native enzyme and subunit structure were determined to be 131,000 and 32,000, respectively, suggesting the beef liver NR phosphorylase to be tetrameric in structure and consistent with the presence of identical subunits. The amino acid composition was shown to be very similar to that reported for human erythrocyte purine-nucleoside phosphorylase but differing considerably from that found for rat liver purine-nucleoside phosphorylase. In addition to catalytic activity with nicotinamide riboside, the beef liver enzyme catalyzed a phosphorolytic reaction with inosine and guanosine exhibiting activity ratios, nicotinamide riboside:inosine: guanosine of 1.00:0.35:0.29, respectively. These ratios of activity remained constant throughout purification of the beef liver enzyme and no separation of these activities was detected. Phosphorolysis of nicotinamide riboside was inhibited competitively by inosine (Ki = 75 microM) and guanosine (Ki = 75 microM). Identical rates of thermal denaturation of the beef liver enzyme were observed when determined for the phosphorolysis of either nicotinamide riboside or inosine. These observations coupled with studies of pH and specific buffer effects indicate the phosphorolysis of nicotinamide riboside, inosine, and guanosine to be catalyzed by the same enzyme.

  17. In Vitro Biosynthesis of Phosphorylated Starch in Intact Potato Amyloplasts1

    PubMed Central

    Wischmann, Bente; Hamborg Nielsen, Tom; Lindberg Møller, Birger

    1999-01-01

    Intact amyloplasts from potato (Solanum tuberosum L.) were used to study starch biosynthesis and phosphorylation. Assessed by the degree of intactness and by the level of cytosolic and vacuolar contamination, the best preparations were selected by searching for amyloplasts containing small starch grains. The isolated, small amyloplasts were 80% intact and were free from cytosolic and vacuolar contamination. Biosynthetic studies of the amyloplasts showed that [1-14C]glucose-6-phosphate (Glc-6-P) was an efficient precursor for starch synthesis in a manner highly dependent on amyloplast integrity. Starch biosynthesis from [1-14C]Glc-1-P in small, intact amyloplasts was 5-fold lower and largely independent of amyloplast intactness. When [33P]Glc-6-P was administered to the amyloplasts, radiophosphorylated starch was produced. Isoamylase treatment of the starch followed by high-performance anion-exchange chromatography with pulsed amperometric detection revealed the separated phosphorylated α-glucans. Acid hydrolysis of the phosphorylated α-glucans and high-performance anion-exchange chromatography analyses showed that the incorporated phosphate was preferentially positioned at C-6 of the Glc moiety. The incorporation of radiolabel from Glc-1-P into starch in preparations of amyloplasts containing large grains was independent of intactness and most likely catalyzed by starch phosphorylase bound to naked starch grains. PMID:9952440

  18. Experiment 9: ASTROCULTURE: Growth and Starch Accumulation of Potato Tuber

    NASA Technical Reports Server (NTRS)

    Tibbitts, Theodore W.; Brown, Christopher S.; Croxdale, Judith G.; Wheeler, Raymond M.

    1998-01-01

    Potato explants (leaf, small stem section, and axillary bud) flown on STS-73 developed tubers of 1.5 cm diameter and 1.7 g mass during the 16-day period of space flight. The experiment was undertaken in the ASTROCULTURE(TM) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers that formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was similar in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in space flight and ground controls, but activity of ADP-glucose pyrophosphorylase was reduced in the space flight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in space flight as on the ground. Thus, this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  19. Space Experiment on Tuber Development and Starch Accumulation for CELSS

    NASA Technical Reports Server (NTRS)

    Tibbitts,Theodore W.; Croxdale, Judith C.; Brown, Christopher S.

    1997-01-01

    Potato explants (leaf, small stem section, and axillary bud), flown on STS-73, developed tubers of 1.5 cm diameter and 1.7 g mass during the 16 day period of spaceflight. The experiment was undertaken in the ASTROCULTURE(Trademark) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was singular in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in spaceflight and ground controls but activity of ADP-glucose pyrophosphorylase was reduced in the spaceflight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in spaceflight as on the ground and thus this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  20. New Starch Phenotypes Produced by TILLING in Barley

    PubMed Central

    Sparla, Francesca; Falini, Giuseppe; Botticella, Ermelinda; Pirone, Claudia; Talamè, Valentina; Bovina, Riccardo; Salvi, Silvio; Tuberosa, Roberto; Sestili, Francesco; Trost, Paolo

    2014-01-01

    Barley grain starch is formed by amylose and amylopectin in a 1∶3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications. PMID:25271438

  1. Purification and characterization of purine nucleoside phosphorylase from Proteus vulgaris.

    PubMed Central

    Surette, M; Gill, T; MacLean, S

    1990-01-01

    Purine nucleoside phosphorylase was isolated and purified from cell extracts of Proteus vulgaris recovered from spoiling cod fish (Gadus morhua). The molecular weight and isoelectric point of the enzyme were 120,000 +/- 2,000 and pH 6.8. The Michaelis constant for inosine as substrate was 3.9 x 10(-5). Guanosine also served as a substrate (Km = 2.9 x 10(-5). However, the enzyme was incapable of phosphorylizing adenosine. Adenosine proved to be useful as a competitive inhibitor and was used as a ligand for affinity chromatography of purine nucleoside phosphorylase following initial purification steps of gel filtration and ion-exchange chromatography. PMID:2111121

  2. Stimulating effect of phosphatidic acid on autophosphorylation of phosphorylase kinase.

    PubMed

    Negami, A I; Sasaki, H; Yamamura, H

    1985-09-16

    Autophosphorylation of phosphorylase kinase from rabbit skeletal muscle was stimulated by acidic phospholipids such as phosphatidic acid (PA), phosphatidylinositol, and phosphatidyl-serine. PA stimulated an initial velocity of autophosphorylation 3.8-fold. When fully autophosphorylated, about 11 mol of phosphate per tetramer (alpha beta gamma delta) were incorporated in the presence of PA and about 6.5 mol in the absence of PA. In the presence of PA (100 micrograms/ml), there was a concomitant enhancement of its kinase activity about 25-fold at pH 6.8. PA (100 micrograms/ml) sharply decreased an apparent Ka for Ca2+ on autophosphorylation from 4.0 X 10(-5) M to 1.0 X 10(-6) M. Available evidence indicates that the Ca2+-activated, PA-dependent autophosphorylation of phosphorylase kinase shows an ability to stimulate glycogen breakdown.

  3. Phosphorylase kinase isoenzymes in deficient ICR/IAn mice.

    PubMed

    Daegelen-Proux, D; Alexandre, Y; Dreyfus, J C

    1978-10-01

    ICR/IAn mice present a deficiency in phosphorylase kinase activity; the extent of this deficiency is less in some tissues [Lyon, S.B. Biochem. Genet. 4, 169--185 (1970)] than in skeletal muscle, where enzyme activity is 0.3% of normal [Cohen, P.T. W & Cohen, P. FEBS Lett. 29, 113--115 (1973)]. New-born mice of this strain were also reported (Lyon, 1970) to reveal a small amount of skeletal muscle enzyme activity. The properties of these residual phosphorylase kinases were compared to those of control C57 BL mice, with reference to control muscle and liver enzymes which were shown to be of different molecular species [Daegelen-Proux et al. Biochim. Biophys Acta, 452, 398--405 (1976)]. The properties investigated were the immunological reactivity against an antiserum raised against muscle phosphorylase kinase, the thermal stability and the Ca2+ dependency. The results suggest that the muscle enzyme from the new-born ICR/IAn mice and the heart enzyme from adult deficient mice are different to the muscle enzyme from adult normal mice, but they have properties in common with normal adult liver enzyme. These results lead to the conclusion that there exists in the muscle of I strain a "foetal form" of phosphorylase kinase, the activity of which decreases progressively after birth. Out work also confirmed the observations made by Cohen et al. [Eur. J. Biochem. 66, 347--356 (1976)] which showed that there is no evidence for the existence of a cross-reacting material in the muscle of adult deficient mice.

  4. Glycoside phosphorylases: structure, catalytic properties and biotechnological potential.

    PubMed

    Puchart, Vladimír

    2015-01-01

    Glycoside phosphorylases (GPs) are the enzymes that reversibly phosphorolytically process glycosidic bond in sucrose (6'-phosphate), α-1,4-glucan and maltodextrins, α-glucobioses, α-1,3-oligoglucan, β-glucobioses and β-glucodextrins, chitobiose, β-galactosides and β-mannosides, and transfer non-reducing end terminal glycosyl residue to inorganic phosphate. They are modular enzymes that form biologically active homooligomers. From a mechanistic as well as structural point of view, they are similar to glycoside hydrolases or glycosyltransferases. Regardless the stereochemical outcome of the phosphorylase-catalyzed reaction (inversion or retention) the phosphorolytic cleavage of glycosidic bond is reversible, therefore glycosyl phosphates may efficiently be used for oligosaccharide synthesis. Although majority of GPs show very high substrate and positional selectivity, they might be employed for a green, inexpensive and often one-pot conversion of one sugar (cheap) to another one (expensive). This fascinating capability is due to the fact that pathways of several GPs share the same glycosyl phosphate, i.e. a product of one phosphorylase is simultaneously consumed as a substrate by another one, or even the same enzyme in a second step if the phosphorylase possesses a relaxed acceptor specificity. In some cases glycosyl phosphates may be interconverted using other auxiliary carbohydrate-active enzymes, achieving for example galactoside synthesis from gluco-configured sugar donors, thus widening synthetic potential of these biocatalysts. In comparison with common hydrolysis, the energy of glycosidic bond is not annihilated during phosphorolysis. This energetic aspect of the reactions catalyzed by GPs and their physiological role is discussed in relation to often concurrently occurring glycoside hydrolases. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature

    PubMed Central

    Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin

    2012-01-01

    Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-14C]glucose 1-phosphate, [U-14C]sucrose, [U-14C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-14C]sucrose plus unlabelled equimolar glucose 1-phosphate. 14C-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced 14C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-14C]glucose 1-phosphate or adenosine-[U-14C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro 14C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells. PMID

  6. Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature.

    PubMed

    Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin

    2012-05-01

    Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-¹⁴C]glucose 1-phosphate, [U-¹⁴C]sucrose, [U-¹⁴C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-¹⁴C]sucrose plus unlabelled equimolar glucose 1-phosphate. C¹⁴-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced ¹⁴C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-¹⁴C]glucose 1-phosphate or adenosine-[U-¹⁴C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C¹⁴C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional

  7. Distribution of branches in whole starches from maize mutants deficient in starch synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Seetharaman, Koushik

    2014-05-21

    An earlier study explored the possibility of analyzing the distribution of branches directly in native, whole starch without isolating the amylopectin component. The aim of this study was to explore if this approach can be extended to include starch mutants. Whole starches from du1 maize mutants deficient in starch synthase III (SSIII) with amylose content of ∼30-40% were characterized and compared with the wild type of the common genetic background W64A. Clusters were produced from whole starch by hydrolysis with α-amylase of Bacillus amyloliquefaciens. Their compositions of building blocks and chains were analyzed further by complete α-amylolysis and by debranching, respectively, whereafter the products were subjected to gel permeation and anion exchange chromatography. The size and structure of the clusters were compared with those of their isolated amylopectin component. Whereas the whole starch of the wild type sample had a branched structure similar to that of its amylopectin component, the results showed that the du1 mutation resulted in more singly branched building blocks in the whole starch compared to the isolated amylopectin. This suggested that amylose and/or intermediate materials in whole du1 starches likely contributed to the composition of branches. This study explored an alternative procedure to characterize the composition of branches in the whole starch without fractionating the components.

  8. Thermal properties of barley starch and its relation to starch characteristics.

    PubMed

    Källman, Anna; Vamadevan, Varatharajan; Bertoft, Eric; Koch, Kristine; Seetharaman, Koushik; Åman, Per; Andersson, Roger

    2015-11-01

    Amylopectin fine structure and starch gelatinization and retrogradation were studied in 10 different barley cultivars/breeding lines. Clusters and building blocks were isolated from the amylopectin by α-amylase from Bacillus amyloliquefaciens and their structure was characterized. Gelatinization was studied at a starch:water ratio of 1:3, and retrogradation was studied on gelatinized starch at starch:water ratio of 1:2, by differential scanning calorimetry. Three barley cultivars/breeding lines possessed the amo1 mutation, and they all had a lower molar proportion of chains of DP ≥38 and more of large building blocks. The amo1 mutation also resulted in a higher gelatinization temperature and a broader temperature interval during gelatinization. Overall, small clusters with a dense structure resulted in a higher gelatinization temperature while retrogradation was promoted by short chains in the amylopectin and many large building blocks. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase.

    PubMed

    Ye, Xinhao; Zhang, Chenming; Zhang, Y-H Percival

    2012-06-01

    The Clostridium thermocellum cellobiose phosphorylase (CtCBP) is a large protein consisting of 812 amino acids and has great potential in the production of sugar phosphates, novel glycosides, and biofuels. It is relatively stable at 50 °C, but is rapidly inactivated at 70 °C. To stabilize CtCBP at elevated temperatures, two protein-engineering approaches were applied, i.e. site-directed mutagenesis based on structure-guided homology analysis and random mutagenesis at various mutation rates. The former chose substitutions by comparison of the protein sequences of CBP homologs, utilized structural information to identify key amino acid residues responsible for enhanced stability, and then created a few variants accurately. The latter constructed large libraries of random mutants at different mutagenesis frequencies. A novel combinational selection/screening strategy was employed to quickly isolate thermostability-enhanced and active variants. Several stability-enhanced mutants were obtained by both methods. Manually combining the stabilizing mutations identified from both rational and random approaches led to the best mutant (CM3) with the halftime of inactivation at 70 °C extended from 8.3 to 24.6 min. The temperature optimum of CM3 was increased from 60 to 80 °C. These results suggested that a combination of rational design and random mutagenesis could have a solid basis for engineering large proteins.

  10. A deoxyadenylate kinase activity associated with polynucleotide phosphorylase from Micrococcus luteus

    PubMed Central

    Craine, Jonathan E.; Klee, Claude B.

    1976-01-01

    We report here the presence of two enzymatic activities associated with highly purified preparations of polynucleotide phosphorylase from Micrococcus luteus. The first, a nuclease activity, which is not separated from the phosphorylase on hydroxylapatite, may be due to substitution of H2O for phosphate in the phosphorolysis reaction. The second ac tivity, a deoxyadenylate kinase, the bulk of which is not resolved from the phosphorylase using gel filtration, sucrose density gradient centrifugation, DEAE-Sephadex, or hydroxylapatite chromatography, may represent a new activity of polynucleotide phosphorylase or be due to an enzyme which is tightly bound to the phosphorylase. Several properties of the kinase are described and its possible significance with respect to the overall enzyme mechanism is discussed. PMID:188014

  11. Dietary starch types affect liver nutrient metabolism of finishing pigs.

    PubMed

    Xie, Chen; Li, Yanjiao; Li, Jiaolong; Zhang, Lin; Zhou, Guanghong; Gao, Feng

    2017-09-01

    This study aimed to evaluate the effect of different starch types on liver nutrient metabolism of finishing pigs. In all ninety barrows were randomly allocated to three diets with five replicates of six pigs, containing purified waxy maize starch (WMS), non-waxy maize starch (NMS) and pea starch (PS) (the amylose to amylopectin ratios were 0·07, 0·19 and 0·28, respectively). After 28 d of treatments, two per pen (close to the average body weight of the pen) were weighed individually, slaughtered and liver samples were collected. Compared with the WMS diet, the PS diet decreased the activities of glycogen phosphorylase, phosphoenolpyruvate carboxykinase and the expression of phosphoenolpyruvate carboxykinase 1 in liver (P0·05). Compared with the WMS diet, the PS diet reduced the expressions of glutamate dehydrogenase and carbamoyl phosphate synthetase 1 in liver (P<0·05). PS diet decreased the expression of the insulin receptor, and increased the expressions of mammalian target of rapamycin complex 1 and ribosomal protein S6 kinase β-1 in liver compared with the WMS diet (P<0·05). These findings indicated that the diet with higher amylose content could down-regulate gluconeogenesis, and cause less fat deposition and more protein deposition by affecting the insulin/PI3K/protein kinase B signalling pathway in liver of finishing pigs.

  12. Thermodynamics of the Purine Nucleoside Phosphorylase Reaction Revealed by Computer Simulations.

    PubMed

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2017-01-10

    Enzymes are able to catalyze chemical reactions by reducing the activation free energy, yielding significant increases in the reaction rates. This can thermodynamically be accomplished by either reducing the activation enthalpy or increasing the activation entropy. The effect of remote mutations on the thermodynamic activation parameters of human purine nucleoside phosphorylase is examined using extensive molecular dynamics and free energy simulations. More than 2700 independent reaction free energy profiles for six different temperatures have been calculated to obtain high-precision computational Arrhenius plots. On the basis of these, the activation enthalpies and entropies were computed from linear regression of the plots with ΔG(⧧) as a function of 1/T, and the obtained thermodynamic activation parameters are in very good agreement with those from experiments. The Arrhenius plots immediately show that the 6-oxopurines (INO and GUO) have identical slopes, whereas the 6-aminopurine (ADO) has a significantly different slope, indicating that the substrate specificity is related to the difference in thermodynamic activation parameters. Furthermore, the calculations show that the human PNP specificity for 6-oxopurines over 6-aminopurines originates from significant differences in electrostatic preorganization. The effect of the remote double mutation, K22E and H104R (E:R), has also been examined, as it alters human PNP toward the bovine PNP. These residues are situated on the protein surface, 28-35 Å from the active site, and the mutation alters the enthalpy-entropy balance with little effect on the catalytic rates. It is thus quite remarkable that the empirical valence bond method can reproduce the enthalpies and entropies induced by these long-range mutations.

  13. Degradation of Glucan Primers in the Absence of Starch Synthase 4 Disrupts Starch Granule Initiation in Arabidopsis*

    PubMed Central

    Lu, Kuan-Jen; Stettler, Michaela; Streb, Sebastian

    2016-01-01

    Arabidopsis leaf chloroplasts typically contain five to seven semicrystalline starch granules. It is not understood how the synthesis of each granule is initiated or how starch granule number is determined within each chloroplast. An Arabidopsis mutant lacking the glucosyl-transferase, STARCH SYNTHASE 4 (SS4) is impaired in its ability to initiate starch granules; its chloroplasts rarely contain more than one large granule, and the plants have a pale appearance and reduced growth. Here we report that the chloroplastic α-amylase AMY3, a starch-degrading enzyme, interferes with granule initiation in the ss4 mutant background. The amy3 single mutant is similar in phenotype to the wild type under normal growth conditions, with comparable numbers of starch granules per chloroplast. Interestingly, the ss4 mutant displays a pleiotropic reduction in the activity of AMY3. Remarkably, complete abolition of AMY3 (in the amy3 ss4 double mutant) increases the number of starch granules produced in each chloroplast, suppresses the pale phenotype of ss4, and nearly restores normal growth. The amy3 mutation also restores starch synthesis in the ss3 ss4 double mutant, which lacks STARCH SYNTHASE 3 (SS3) in addition to SS4. The ss3 ss4 line is unable to initiate any starch granules and is thus starchless. We suggest that SS4 plays a key role in granule initiation, allowing it to proceed in a way that avoids premature degradation of primers by starch hydrolases, such as AMY3. PMID:27458017

  14. Computer-generated Model of Purine Nucleoside Phosphorylase (PNP)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Purine Nucleoside Phosphorylase (PNP) is an important target enzyme for the design of anti-cancer and immunosuppressive drugs. Bacterial PNP, which is slightly different from the human enzyme, is used to synthesize chemotherapuautic agents. Knowledge of the three-dimensional structure of the bacterial PNP molecule is useful in efforts to engineer different types of PNP enzymes, that can be used to produce new chemotherapeutic agents. This picture shows a computer model of bacterial PNP, which looks a lot like a display of colorful ribbons. Principal Investigator was Charles Bugg.

  15. Computer-generated Model of Purine Nucleoside Phosphorylase (PNP)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Purine Nucleoside Phosphorylase (PNP) is an important target enzyme for the design of anti-cancer and immunosuppressive drugs. Bacterial PNP, which is slightly different from the human enzyme, is used to synthesize chemotherapuautic agents. Knowledge of the three-dimensional structure of the bacterial PNP molecule is useful in efforts to engineer different types of PNP enzymes, that can be used to produce new chemotherapeutic agents. This picture shows a computer model of bacterial PNP, which looks a lot like a display of colorful ribbons. Principal Investigator was Charles Bugg.

  16. Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Prokofev, I. I.; Gabdulkhakov, A. G.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-09-01

    Pyrimidine nucleoside phosphorylases, which are widely used in the biotechnological production of nucleosides, have different substrate specificity for pyrimidine nucleosides. An interesting feature of these enzymes is that the three-dimensional structure of thymidine-specific nucleoside phosphorylase is similar to the structure of nonspecific pyrimidine nucleoside phosphorylase. The three-dimensional structures of thymidine phosphorylase from Salmonella typhimurium and nonspecific pyrimidine nucleoside phosphorylase from Bacillus subtilis in complexes with a sulfate anion were determined for the first time by X-ray crystallography. An analysis of the structural differences between these enzymes demonstrated that Lys108, which is involved in the phosphate binding in pyrimidine nucleoside phosphorylase, corresponds to Met111 in thymidine phosphorylases. This difference results in a decrease in the charge on one of the hydroxyl oxygens of the phosphate anion in thymidine phosphorylase and facilitates the catalysis through SN2 nucleophilic substitution. Based on the results of X-ray crystallography, the virtual screening was performed for identifying a potent inhibitor (anticancer agent) of nonspecific pyrimidine nucleoside phosphorylase, which does not bind to thymidine phosphorylase. The molecular dynamics simulation revealed the stable binding of the discovered compound—2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid—to the active site of pyrimidine nucleoside phosphorylase.

  17. Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion

    PubMed Central

    Crumpton-Taylor, Matilda; Pike, Marilyn; Lu, Kuan-Jen; Hylton, Christopher M; Feil, Regina; Eicke, Simona; Lunn, John E; Zeeman, Samuel C; Smith, Alison M

    2013-01-01

    Arabidopsis thaliana mutants lacking the SS4 isoform of starch synthase have strongly reduced numbers of starch granules per chloroplast, suggesting that SS4 is necessary for the normal generation of starch granules. To establish whether it plays a direct role in this process, we investigated the circumstances in which granules are formed in ss4 mutants. Starch granule numbers and distribution and the accumulation of starch synthase substrates and products were investigated during ss4 leaf development, and in ss4 mutants carrying mutations or transgenes that affect starch turnover or chloroplast volume. We found that immature ss4 leaves have no starch granules, but accumulate high concentrations of the starch synthase substrate ADPglucose. Granule numbers are partially restored by elevating the capacity for glucan synthesis (via expression of bacterial glycogen synthase) or by increasing the volumes of individual chloroplasts (via introduction of arc mutations). However, these granules are abnormal in distribution, size and shape. SS4 is an essential component of a mechanism that coordinates granule formation with chloroplast division during leaf expansion and determines the abundance and the flattened, discoid shape of leaf starch granules. PMID:23952675

  18. Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus tokodaii.

    PubMed

    Cheng, Kun; Zhang, Fei; Sun, Fangfang; Chen, Hongge; Percival Zhang, Y-H

    2015-08-20

    Biobattery, a kind of enzymatic fuel cells, can convert organic compounds (e.g., glucose, starch) to electricity in a closed system without moving parts. Inspired by natural starch metabolism catalyzed by starch phosphorylase, isoamylase is essential to debranch alpha-1,6-glycosidic bonds of starch, yielding linear amylodextrin - the best fuel for sugar-powered biobattery. However, there is no thermostable isoamylase stable enough for simultaneous starch gelatinization and enzymatic hydrolysis, different from the case of thermostable alpha-amylase. A putative isoamylase gene was mined from megagenomic database. The open reading frame ST0928 from a hyperthermophilic archaeron Sulfolobus tokodaii was cloned and expressed in E. coli. The recombinant protein was easily purified by heat precipitation at 80 (o)C for 30 min. This enzyme was characterized and required Mg(2+) as an activator. This enzyme was the most stable isoamylase reported with a half lifetime of 200 min at 90 (o)C in the presence of 0.5 mM MgCl2, suitable for simultaneous starch gelatinization and isoamylase hydrolysis. The cuvett-based air-breathing biobattery powered by isoamylase-treated starch exhibited nearly doubled power outputs than that powered by the same concentration starch solution, suggesting more glucose 1-phosphate generated.

  19. Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus tokodaii

    PubMed Central

    Cheng, Kun; Zhang, Fei; Sun, Fangfang; Chen, Hongge; Percival Zhang, Y-H

    2015-01-01

    Biobattery, a kind of enzymatic fuel cells, can convert organic compounds (e.g., glucose, starch) to electricity in a closed system without moving parts. Inspired by natural starch metabolism catalyzed by starch phosphorylase, isoamylase is essential to debranch alpha-1,6-glycosidic bonds of starch, yielding linear amylodextrin – the best fuel for sugar-powered biobattery. However, there is no thermostable isoamylase stable enough for simultaneous starch gelatinization and enzymatic hydrolysis, different from the case of thermostable alpha-amylase. A putative isoamylase gene was mined from megagenomic database. The open reading frame ST0928 from a hyperthermophilic archaeron Sulfolobus tokodaii was cloned and expressed in E. coli. The recombinant protein was easily purified by heat precipitation at 80 oC for 30 min. This enzyme was characterized and required Mg2+ as an activator. This enzyme was the most stable isoamylase reported with a half lifetime of 200 min at 90 oC in the presence of 0.5 mM MgCl2, suitable for simultaneous starch gelatinization and isoamylase hydrolysis. The cuvett-based air-breathing biobattery powered by isoamylase-treated starch exhibited nearly doubled power outputs than that powered by the same concentration starch solution, suggesting more glucose 1-phosphate generated. PMID:26289411

  20. Starch metabolism in leaves.

    PubMed

    Orzechowski, Sławomir

    2008-01-01

    Starch is the most abundant storage carbohydrate produced in plants. The initiation of transitory starch synthesis and degradation in plastids depends mainly on diurnal cycle, post-translational regulation of enzyme activity and starch phosphorylation. For the proper structure of starch granule the activities of all starch synthase isoenzymes, branching enzymes and debranching enzymes are needed. The intensity of starch biosynthesis depends mainly on the activity of AGPase (adenosine 5'-diphosphate glucose pyrophosphorylase). The key enzymes in starch degradation are beta-amylase, isoamylase 3 and disproportionating enzyme. However, it should be underlined that there are some crucial differences in starch metabolism between heterotrophic and autotrophic tissues, e.g. is the ability to build multiprotein complexes responsible for biosynthesis and degradation of starch granules in chloroplasts. The observed huge progress in understanding of starch metabolism was possible mainly due to analyses of the complete Arabidopsis and rice genomes and of numerous mutants with altered starch metabolism in leaves. The aim of this paper is to review current knowledge on transient starch metabolism in higher plants.

  1. The structure of brain glycogen phosphorylase-from allosteric regulation mechanisms to clinical perspectives.

    PubMed

    Mathieu, Cécile; Dupret, Jean-Marie; Rodrigues Lima, Fernando

    2017-02-01

    Glycogen phosphorylase (GP) is the key enzyme that regulates glycogen mobilization in cells. GP is a complex allosteric enzyme that comprises a family of three isozymes: muscle GP (mGP), liver GP (lGP), and brain GP (bGP). Although the three isozymes display high similarity and catalyze the same reaction, they differ in their sensitivity to the allosteric activator adenosine monophosphate (AMP). Moreover, inactivating mutations in mGP and lGP have been known to be associated with glycogen storage diseases (McArdle and Hers disease, respectively). The determination, decades ago, of the structure of mGP and lGP have allowed to better understand the allosteric regulation of these two isoforms and the development of specific inhibitors. Despite its important role in brain glycogen metabolism, the structure of the brain GP had remained elusive. Here, we provide an overview of the human brain GP structure and its relationship with the two other members of this key family of the metabolic enzymes. We also summarize how this structure provides valuable information to understand the regulation of bGP and to design specific ligands of potential pharmacological interest. © 2016 Federation of European Biochemical Societies.

  2. A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding.

    PubMed

    Carzaniga, Thomas; Mazzantini, Elisa; Nardini, Marco; Regonesi, Maria Elena; Greco, Claudio; Briani, Federica; De Gioia, Luca; Dehò, Gianni; Tortora, Paolo

    2014-02-01

    Polynucleotide phosphorylase (PNPase) reversibly catalyzes RNA phosphorolysis and polymerization of nucleoside diphosphates. Its homotrimeric structure forms a central channel where RNA is accommodated. Each protomer core is formed by two paralogous RNase PH domains: PNPase1, whose function is largely unknown, hosts a conserved FFRR loop interacting with RNA, whereas PNPase2 bears the putative catalytic site, ∼20 Å away from the FFRR loop. To date, little is known regarding PNPase catalytic mechanism. We analyzed the kinetic properties of two Escherichia coli PNPase mutants in the FFRR loop (R79A and R80A), which exhibited a dramatic increase in Km for ADP/Pi binding, but not for poly(A), suggesting that the two residues may be essential for binding ADP and Pi. However, both mutants were severely impaired in shifting RNA electrophoretic mobility, implying that the two arginines contribute also to RNA binding. Additional interactions between RNA and other PNPase domains (such as KH and S1) may preserve the enzymatic activity in R79A and R80A mutants. Inspection of enzyme structure showed that PNPase has evolved a long-range acting hydrogen bonding network that connects the FFRR loop with the catalytic site via the F380 residue. This hypothesis was supported by mutation analysis. Phylogenetic analysis of PNPase domains and RNase PH suggests that such network is a unique feature of PNPase1 domain, which coevolved with the paralogous PNPase2 domain.

  3. Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases.

    PubMed

    Zhu, Fan; Bertoft, Eric; Szydlowski, Nicolas; d'Hulst, Christophe; Seetharaman, Koushik

    2015-01-12

    This is the first report on the cluster structure of transitory starch from Arabidopsis leaves. In addition to wild type, the molecular structures of leaf starch from mutants deficient in starch synthases (SS) including single enzyme mutants ss1-, ss2-, or ss3-, and also double mutants ss1-ss2- and ss1-ss3- were characterized. The mutations resulted in increased amylose content. Clusters from whole starch were isolated by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens. The clusters were then further hydrolyzed with concentrated α-amylase of B. amyloliquefaciens to produce building blocks (α-limit dextrins). Structures of the clusters and their building blocks were characterized by chromatography of samples before and after debranching treatment. While the mutations increased the size of clusters, the reasons were different as reflected by the composition of their unit chains and building blocks. In general, all mutants contained more of a-chains that preferentially increased the number of small building blocks with only two chains. The clusters of the double mutant ss1-ss3- were very large and possessed also more of large building blocks with four or more chains. The results from transitory starch are compared with those from agriculturally important crops in the context that to what extent the Arabidopsis can be a true biotechnological reflection for starch modifications through genetic means. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. PROTEIN TARGETING TO STARCH Is Required for Localising GRANULE-BOUND STARCH SYNTHASE to Starch Granules and for Normal Amylose Synthesis in Arabidopsis

    PubMed Central

    Seung, David; Soyk, Sebastian; Coiro, Mario; Maier, Benjamin A.; Eicke, Simona; Zeeman, Samuel C.

    2015-01-01

    The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved

  5. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    PubMed

    Seung, David; Soyk, Sebastian; Coiro, Mario; Maier, Benjamin A; Eicke, Simona; Zeeman, Samuel C

    2015-02-01

    The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved

  6. Leaf carbohydrates influence transcriptional and post-transcriptional regulation of nocturnal carboxylation and starch degradation in the facultative CAM plant, Mesembryanthemum crystallinum.

    PubMed

    Taybi, Tahar; Cushman, John C; Borland, Anne M

    2017-08-05

    Nocturnal degradation of transitory starch is a limiting factor for the optimal function of crassulacean acid metabolism and must be coordinated with phosphoenolypyruvate carboxylase (PEPC)-mediated CO2 uptake to optimise carbon gain over the diel cycle. The aim of this study was to test the hypothesis that nocturnal carboxylation is coordinated with starch degradation in CAM via a mechanism whereby the products of these pathways regulate diel transcript abundance and enzyme activities for both processes. To test this hypothesis, a starch and CAM-deficient mutant of Mesembryanthemum crystallinum was compared with wild type plants under well-watered and saline (CAM-inducing) conditions. Exposure to salinity increased the transcript abundance of genes required for nocturnal carboxylation, starch and sucrose degradation in both wild type and mutant, but the transcript abundance of several of these genes was not sustained over the dark period in the low-carbohydrate, CAM-deficient mutant. The diel pattern of transcript abundance for PEPC mirrored that of PEPC protein, as did the transcripts, protein, and activity of chloroplastic starch phosphorylase in both wild type and mutant, suggesting robust diel coordination of these metabolic processes. Activities of several amylase isoforms were low or lacking in the mutant, whilst the activity of a cytosolic isoform of starch phosphorylase was significantly elevated, indicating contrasting modes of metabolic regulation for the hydrolytic and phosphorylytic routes of starch degradation. Externally supplied sucrose resulted in an increase in nocturnal transcript abundance of genes required for nocturnal carboxylation and starch degradation. These results demonstrate that carbohydrates impact on transcriptional and post-transcriptional regulation of nocturnal carboxylation and starch degradation in CAM. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside.

    PubMed

    Wei, Xiao-Kun; Ding, Qing-Bao; Zhang, Lu; Guo, Yong-Li; Ou, Lin; Wang, Chang-Lu

    2008-07-01

    Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5'-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells of Enterobacter aerogenes DGO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.

  8. Genetic pathways of 'de novo' colorectal carcinomas with reference to fetal-type glycogen phosphorylase positive foci.

    PubMed

    Shiomori, Kenji; Shimada, Shinya; Marutsuka, Takashi; Hatayama, Ichiro; Ogawa, Michio

    2003-01-01

    'De novo' carcinogenesis has been advocated besides 'adenoma carcinoma sequence' as another dominant pathway leading to the colorectal carcinoma. Our previous study demonstrated that brain (fetal)-type glycogen phosphorylase (BGP) positive foci in the transitional mucosa (BGP foci) have frequent p53 mutations and that the distribution of BGP foci has a close relationship with the location of 'de novo' carcinoma. The aims of the present study were to investigate further genetic alterations in the BGP foci and to clarify the mechanism of 'de novo' carcinogenesis. Twenty-eight colorectal carcinomas with invasion into submucosa or superficial muscularis propria without any adenoma component expressing immunoreactive p53 protein were selected from 168 resected specimens. Investigations of the p53, K-ras and APC mutations was performed in the BGP foci, BGP negative colorectal mucosa and 'de novo' carcinoma using PCR-SSCP and DNA squencing. In all 28 cases, immunoreactive BGP was positive in the carcinomas and the BGP foci were observed sporadically in the mucosa adjacent to the carcinoma. No K-ras mutation was observed in either carcinoma or BGP foci in any of the cases. Mutations of p53 and APC were 14 (50.0%) and 9 (32.1%) in 'de novo' carcinomas, and 11 (39.3%) and 1 (3.6%) in BGP foci, respectively. Both p53 and APC mutations were detected in 8 and 1, p53 mutation alone in 6 and 10, APC mutation alone in 1 and 0 out of 28 carcinomas and BGP positive foci, respectively. These results suggest that the BGP foci may play a very important role in the 'de novo' colorectal carcinogenesis from the frequent genetic alterations of p53, and that there may be two major pathways, i.e., the p53-APC pathway and the p53 alone pathway, from the chain of genetic alterations between BGP foci and 'de novo' carcinoma.

  9. Thymidine Phosphorylase Gene Expression in Stage III Colorectal Cancer

    PubMed Central

    Lindskog, Elinor B.; Wettergren, Yvonne; Odin, Elisabeth; Gustavsson, Bengt; Derwinger, Kristoffer

    2012-01-01

    Background The thymidine phosphorylase (TP) enzyme has several tumor-promoting functions. The aim of this study was to explore TP gene expression in relation to clinical and histopathological data obtained from patients with stage III colorectal cancer. Methods and results TP gene expression was analyzed by real-time quantitative PCR in tumor and mucosa samples from 254 patients. TP gene expression in tumors correlated with lymph node staging, with higher expression relating to a higher number of positive nodes and a worse N-stage. Higher TP expression was also associated with a worse histological tumor grade. Patients with rectal cancer had significantly higher TP expression in mucosa and tumors compared with patients having colon cancer. Conclusion Higher intratumoral TP expression appears to be related to a worse N stage, and thus, with a worse prognosis. TP gene expression measured in a preoperative biopsy could be of interest in preoperative staging. PMID:23115484

  10. Activation of glycogen phosphorylase in rat pheochromocytoma PC12 cells and isolated hepatocytes by organophosphates.

    PubMed

    Kauffman, F C; Davis, L H; Whittaker, M

    1990-01-15

    Several organophosphates including diisopropylfluorophosphonate (DPF) and a variety of compounds used as chemical warfare agents produced dose- and time-dependent increases in phosphorylase-a, the phosphorylated form of glycogen phosphorylase in rat pheochromocytoma cells, PC12, and isolated hepatocytes. Increases in phosphorylase-a did not occur in cells exposed to the carbamates, physostigmine or pyridostigmine, or to O-ethyl S-2-diisopropylaminoethylmethyl-phosphonathiolate (VX), an organophosphate which is protonated at physiological pH. When extracellular pH was increased to pH 8, VX acted like the other organophosphates and increased phosphorylase-a activity. The possibility that organophosphates increase phosphorylase-a in intact cells by releasing Ca2+ from intracellular binding sites is supported by the following findings: organophosphate-induced increases in phosphorylase-a did not correlate with changes in cyclic AMP in the two cell types studied; in PC12 cells, increases in this activity occurred in the absence of extracellular calcium and were not inhibited by the calcium channel blocker, verapamil; fluorescence of the calcium sensitive dye, Quin-2, in PC12 cells preloaded with the acetoxymethyl ester of the dye was increased by soman; finally, addition of the calcium ionophore, A23187, to PC12 cells maintained in calcium-free medium caused sarin-stimulated phosphorylase-a activity to return rapidly to basal levels. Collectively, these data argue strongly that organophosphates increase phosphorylase-a activity in intact cells via a novel mechanism involving release of calcium from intracellular binding sites.

  11. Nucleic acid enzymology of extremely halophilic bacteria. Halobacterium cutirubrum polynucleotide phosphorylase

    PubMed Central

    Peterkin, Pearl I.; Fitt, P. S.

    1971-01-01

    1. Polynucleotide phosphorylase was purified 200-fold from Halobacterium cutirubrum. 2. It is membrane-associated and can be solubilized by sonication. 3. The purified enzyme requires a high ionic strength for both stability and activity. 4. It is Mn2+-dependent, has all three typical polynucleotide phosphorylase activities and is specific for nucleoside diphosphates. 5. The enzyme is of low molecular weight. PMID:5114973

  12. The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes.

    PubMed Central

    Kirk, C J; Rodrigues, L M; Hems, D A

    1979-01-01

    The relative abilities of seven vasopressin-like peptides to activate hepatic glycogen phosphorylase and stimulate phosphate incorporation into phosphatidylinositol were compared. Although the individual peptides differed in their potencies, the concentrations required to stimulate phosphatidylinositol metabolism were always greater (about 10 times) than those needed to activate phosphorylase. The molecular specificity of the hepatic vasopressin receptor and the role of vasopressin-stimulated phosphatidylinositol turnover are discussed. PMID:444224

  13. C-Glucopyranosyl-1,2,4-triazoles As New Potent Inhibitors of Glycogen Phosphorylase

    PubMed Central

    2013-01-01

    Glycogen phosphorylase inhibitors are considered as potential antidiabetic agents. 3-(β-d-Glucopyranosyl)-5-substituted-1,2,4-triazoles were prepared by acylation of O-perbenzoylated N1-tosyl-C-β-d-glucopyranosyl formamidrazone and subsequent removal of the protecting groups. The best inhibitor was 3-(β-d-glucopyranosyl)-5-(2-naphthyl)-1,2,4-triazole (Ki = 0.41 μM against rabbit muscle glycogen phosphorylase b). PMID:24900719

  14. Polynucleotide phosphorylase has an impact on cell biology of Campylobacter jejuni

    PubMed Central

    Haddad, Nabila; Tresse, Odile; Rivoal, Katell; Chevret, Didier; Nonglaton, Quentin; Burns, Christopher M.; Prévost, Hervé; Cappelier, Jean M.

    2012-01-01

    Polynucleotide phosphorylase (PNPase), encoded by the pnp gene, is known to degrade mRNA, mediating post-transcriptional regulation and may affect cellular functions. The role of PNPase is pleiotropic. As orthologs of the two major ribonucleases (RNase E and RNase II) of Escherichia coli are missing in the Campylobacter jejuni genome, in the current study the focus has been on the C. jejuni ortholog of PNPase. The effect of PNPase mutation on C. jejuni phenotypes and proteome was investigated. The inactivation of the pnp gene reduced significantly the ability of C. jejuni to adhere and to invade Ht-29 cells. Moreover, the pnp mutant strain exhibited a decrease in C. jejuni swimming ability and chick colonization. To explain effects of PNPase on C. jejuni 81-176 phenotype, the proteome of the pnp mutant and parental strains were compared. Overall, little variation in protein production was observed. Despite the predicted role of PNPase in mRNA regulation, the pnp mutation did not induce profound proteomic changes suggesting that other ribonucleases in C. jejuni might ensure this biological function in the absence of PNPase. Nevertheless, synthesis of proteins which are involved in virulence (LuxS, PEB3), motility (N-acetylneuraminic acid synthetase), stress-response (KatA, DnaK, Hsp90), and translation system (EF-Tu, EF-G) were modified in the pnp mutant strain suggesting a more specific role of PNPase in C. jejuni. In conclusion, PNPase deficiency induces limited but important consequences on C. jejuni biology that could explain swimming limitation, chick colonization delay, and the decrease of cell adhesion/invasion ability. PMID:22919622

  15. Thymidine phosphorylase expression in normal and hyperplastic endometrium

    PubMed Central

    Sivridis, E.; Giatromanolaki, A.; Koukourakis, M.; Bicknell, R.; Harris, A.; Gatter, K.

    2000-01-01

    Aims—To investigate the expression of thymidine phosphorylase (TP), a known angiogenic factor for endothelial cells, in normally cycling endometrium and various forms of endometrial hyperplasia. Methods—TP expression was assessed with the P-GF.44C monoclonal antibody, using the alkaline phosphatase anti-alkaline phosphatase method. Ninety two normal and hyperplastic endometria were studied. Results—In normal proliferative endometrium, TP is found exclusively in the basal layer and the inner third of the functionalis; expression is cytoplasmic in glandular epithelium and nuclear in stromal cells. It is invariably patchy. This immunohistochemical picture remains almost unaltered during the early and mid secretory phase of the normal menstrual cycle but, most impressively, TP is expressed uniformly in the epithelium of all endometrial glands towards the end of the cycle. At this stage, expression is mixed nuclear/cytoplasmic and there is very little stromal nuclear staining. In simple endometrial hyperplasia, the staining pattern for TP is identical to normal proliferative endometrium, with a distribution that is usually limited to a few rather weakly proliferating glands and to the adjacent periglandular stroma of the deep endometrium. The distribution is more extensive in complex and atypical endometrial hyperplasias, where a mixed nuclear/cytoplasmic pattern usually prevails over the pure cytoplasmic reaction. Conclusions—TP is expressed consistently in normal and hyperplastic endometrium, suggesting a role in physiological and pathological angiogenesis. In normal endometrium, TP has a definite pattern of distribution, which is dependent on the phase of the menstrual cycle, whereas in all forms of endometrial hyperplasia the enzyme is randomly distributed and lacks an orderly pattern. Key Words: thymidine phosphorylase • normal endometrium • hyperplastic endometrium PMID:11041061

  16. Electrophoretic analysis of liver glycogen phosphorylase activation in the freeze-tolerant wood frog.

    PubMed

    Crerar, M M; David, E S; Storey, K B

    1988-08-19

    As an adaptation for overwinter survival, the wood frog, Rana sylvatica is able to tolerate the freezing of extracellular body fluids. Tolerance is made possible by the production of very high amounts of glucose in liver which is then sent to other organs where it acts as a cryoprotectant. Cryoprotectant synthesis is under the control of glycogen phosphorylase which in turn is activated in response to ice formation. To determine the mechanism of phosphorylase activation, a quantitative analysis of phosphorylase protein concentration and enzymatic activity in liver was carried out following separation of the phosphorylated a and nonphosphorylated b forms of the enzyme on native polyacrylamide gels. The results suggest that in gels, the b form is completely inactive, even in the presence of AMP and sodium sulfate, whereas the a form is active and stimulated 3-fold by these substances. Further, phosphorylase activation appears to arise solely from conversion of the b to a form of the enzyme without an increase in phosphorylase concentration or activation of a second isozyme. The quantitative analysis presented here should prove generally useful as a simple and rapid method for examining the physiological and genetic regulation of phosphorylase in animal cells.

  17. X-ray structures of uridine phosphorylase from Vibrio cholerae in complexes with uridine, thymidine, uracil, thymine, and phosphate anion: Substrate specificity of bacterial uridine phosphorylases

    NASA Astrophysics Data System (ADS)

    Prokofev, I. I.; Lashkov, A. A.; Gabdulkhakov, A. G.; Balaev, V. V.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-11-01

    In many types of human tumor cells and infectious agents, the demand for pyrimidine nitrogen bases increases during the development of the disease, thus increasing the role of the enzyme uridine phosphorylase in metabolic processes. The rational use of uridine phosphorylase and its ligands in pharmaceutical and biotechnology industries requires knowledge of the structural basis for the substrate specificity of the target enzyme. This paper summarizes the results of the systematic study of the three-dimensional structure of uridine phosphorylase from the pathogenic bacterium Vibrio cholerae in complexes with substrates of enzymatic reactions—uridine, phosphate anion, thymidine, uracil, and thymine. These data, supplemented with the results of molecular modeling, were used to consider in detail the structural basis for the substrate specificity of uridine phosphorylases. It was shown for the first time that the formation of a hydrogen-bond network between the 2'-hydroxy group of uridine and atoms of the active-site residues of uridine phosphorylase leads to conformational changes of the ribose moiety of uridine, resulting in an increase in the reactivity of uridine compared to thymidine. Since the binding of thymidine to residues of uridine phosphorylase causes a smaller local strain of the β-N1-glycosidic bond in this the substrate compared to the uridine molecule, the β-N1-glycosidic bond in thymidine is more stable and less reactive than that in uridine. It was shown for the first time that the phosphate anion, which is the second substrate bound at the active site, interacts simultaneously with the residues of the β5-strand and the β1-strand through hydrogen bonding, thus securing the gate loop in a conformation

  18. Interaction of muscle glycogen phosphorylase b reconstituted from apoenzyme and analogs of pyridoxal-5'-phosphate with specific ligands.

    PubMed

    Chebotareva, N A; Sugrobova, N P; Bulanova, L N; Poznanskaya, A A; Kurganov, B I; Gunar, V I

    1996-04-01

    Phosphorylase b from rabbit skeletal muscles was reconstituted with analogs of PLP containing residues -CH(2)-CH(2)-COOH, trans-CH=CH-COOH or -C=-COOH at position 5. Replacing native coenzyme in the phosphorylase molecule with any PLP analog tested leads to the decrease in the enzyme affinity for the allosteric inhibitor, FMN. Phosphorylase b reconstituted with analogs of PLP shows the greater ability for association in tetramers in the presence of 1 mM AMP than native enzyme.

  19. Plasma modification of starch.

    PubMed

    Zhu, Fan

    2017-10-01

    Plasma is a medium of unbound negative and positive particles with the overall electrical charge being roughly zero. Non-thermal plasma processing is an emerging green technology with great potential to improve the quality and microbial safety of various food materials. Starch is a major component of many food products and is an important ingredient for food and other industries. There has been increasing interest in utilizing plasma to modify the functionalities of starch through interactions with reactive species. This mini-review summarises the impact of plasma on composition, chemical and granular structures, physicochemical properties, and uses of starch. Structure-function relationships of starch components as affected by plasma modifications are discussed. Effect of plasma on the properties of wheat flour, which is a typical example of starch based complex food systems, is also reviewed. Future research directions on how to better utilise plasma to improve the functionalities of starch are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Studies on responsiveness of hepatoma cells to catecholamines. IV. Lack of adrenergic activation of phosphorylase in rat ascites hepatoma cells.

    PubMed

    Miyamoto, K; Yanaoka, T; Sanae, F; Wakusawa, S; Koshiura, R

    1986-10-01

    Glycogen phosphorylase a activity in 7 rat ascites hepatoma cell lines treated with adrenergic agents, phenylephrine, epinephrine and isoproterenol, was investigated as compared with that in freshly isolated rat hepatocytes. Basal phosphorylase activities in hepatoma cells except AH7974 cells were lower than that in hepatocytes. Phosphorylase in hepatoma cells was not activated by any of the agents, while the enzyme activity in hepatocytes was clearly increased in a dose- and time-dependent manner. Phosphorylase in hepatocytes was sensitive to glucagon, but it was found to be insensitive to glucagon in all hepatoma cells. The present results suggest that rat ascites hepatoma cells may escape the glycogenolytic regulation by catecholamines and glucagon.

  1. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes.

    PubMed

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-07-24

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes.

  2. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes*

    PubMed Central

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-01-01

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes. PMID:26041776

  3. Starch nanoparticles: a review.

    PubMed

    Le Corre, Déborah; Bras, Julien; Dufresne, Alain

    2010-05-10

    Starch is a natural, renewable, and biodegradable polymer produced by many plants as a source of stored energy. It is the second most abundant biomass material in nature. The starch structure has been under research for years, and because of its complexity, an universally accepted model is still lacking (Buleon, A.; et al. Int. J. Biol. Macromol. 1998, 23, 85-112). However, the predominant model for starch is a concentric semicrystalline multiscale structure that allows the production of new nanoelements: (i) starch nanocrystals resulting from the disruption of amorphous domains from semicrystalline granules by acid hydrolysis and (ii) starch nanoparticles produced from gelatinized starch. This paper intends to give a clear overview of starch nanoparticle preparation, characterization, properties, and applications. Recent studies have shown that they could be used as fillers to improve mechanical and barrier properties of biocomposites. Their use for industrial packaging, continuously looking for innovative solutions for efficient and sustainable systems, is being investigated. Therefore, recently, starch nanoparticles have been the focus of an exponentially increasing number of works devoted to develop biocomposites by blending starch nanoparticles with different biopolymeric matrices. To our knowledge, this topic has never been reviewed, despite several published strategies and conclusions.

  4. Blue maize: morphology and starch synthase characterization of starch granule.

    PubMed

    Utrilla-Coello, Rubi G; Agama-Acevedo, Edith; de la Rosa, Ana Paulina Barba; Martinez-Salgado, Jose L; Rodriguez-Ambriz, Sandra L; Bello-Perez, Luis A

    2009-03-01

    The use of pigmented maize varieties has increased due to their high anthocyanins content, but very few studies are reported about the starch properties of these grains. The aim of this work was to isolate the starch granules from pigmented blue maize and carry out the morphological, physicochemical, and biochemical characterization studies. The proximate composition of starch granules showed high protein contents, after purification, the blue maize starch presented lower protein amount than starch from white maize (control). Although the purity of starch granules was increased, the damaged starch (determined for the Maltase cross absence) was also increased. Scanning electron microscopy showed the presence of some pores and channels in the blue maize starch. The electrophoretic protein profiles showed differences in the bands that correspond to the enzymes involved in the starch biosynthesis; these differences could explain the variation in morphological characteristics of blue maize starches against starch from white maize.

  5. Amyloplast Membrane Protein SUBSTANDARD STARCH GRAIN6 Controls Starch Grain Size in Rice Endosperm1

    PubMed Central

    Matsushima, Ryo; Maekawa, Masahiko; Kusano, Miyako; Tomita, Katsura; Kondo, Hideki; Nishimura, Hideki; Crofts, Naoko; Fujita, Naoko; Sakamoto, Wataru

    2016-01-01

    Starch is a biologically and commercially important polymer of glucose. Starch is organized into starch grains (SGs) inside amyloplasts. The SG size differs depending on the plant species and is one of the most important factors for industrial applications of starch. There is limited information on genetic factors regulating SG sizes. In this study, we report the rice (Oryza sativa) mutant substandard starch grain6 (ssg6), which develops enlarged SGs in endosperm. Enlarged SGs are observed starting at 3 d after flowering. During endosperm development, a number of smaller SGs appear and coexist with enlarged SGs in the same cells. The ssg6 mutation also affects SG morphologies in pollen. The SSG6 gene was identified by map-based cloning and microarray analysis. SSG6 encodes a protein homologous to aminotransferase. SSG6 differs from other rice homologs in that it has a transmembrane domain. SSG6-green fluorescent protein is localized in the amyloplast membrane surrounding SGs in rice endosperm, pollen, and pericarp. The results of this study suggest that SSG6 is a novel protein that controls SG size. SSG6 will be a useful molecular tool for future starch breeding and applications. PMID:26792122

  6. Analysis of cytosolic heteroglycans from leaves of transgenic potato (Solanum tuberosum L.) plants that under- or overexpress the Pho 2 phosphorylase isozyme.

    PubMed

    Fettke, Joerg; Poeste, Simon; Eckermann, Nora; Tiessen, Axel; Pauly, Markus; Geigenberger, Peter; Steup, Martin

    2005-12-01

    During starch degradation, chloroplasts export neutral sugars into the cytosol where they appear to enter a complex glycan metabolism. Interactions between glycans and glucosyl transferases residing in the cytosol were studied by analyzing transgenic potato (Solanum tuberosum L.) plants that possess either decreased or elevated levels of the cytosolic (Pho 2) phosphorylase isoform. Water-soluble heteroglycans (SHGs) were isolated from these plants and were characterized. SHG contains, as major constituents, arabinose, rhamnose, galactose and glucose. Non-aqueous fractionation combined with other separation techniques revealed a distinct pool of the SHG that is located in the cytosol. Under in vitro conditions, the cytosolic heteroglycans act as glucosyl acceptor selectively for Pho 2. Acceptor sites were characterized by a specific hydrolytic degradation following the Pho 2-catalyzed glucosyl transfer. The size distribution of the cytosolic SHG increased during the dark period, indicating a distinct metabolic activity related to net starch degradation. Antisense inhibition of Pho 2 resulted in increased glucosyl and rhamnosyl contents of the glycans. Overexpression of Pho 2 decreased the content of both residues. Compared with the wild type, in both types of transgenic plants the size of the cytosolic glycans was increased.

  7. Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis.

    PubMed

    Hamura, Ken; Saburi, Wataru; Matsui, Hirokazu; Mori, Haruhide

    2013-09-20

    Cellobiose phosphorylase (EC 2.4.1.20, CBP) catalyzes the reversible phosphorolysis of cellobiose to α-D-glucose 1-phosphate (Glc1P) and d-glucose. Cys485, Tyr648, and Glu653 of CBP from Ruminococcus albus, situated at the +1 subsite, were mutated to modulate acceptor specificity. C485A, Y648F, and Y648V were active enough for analysis. Their acceptor specificities were compared with the wild type based on the apparent kinetic parameters determined in the presence of 10 mM Glc1P. C485A showed higher preference for D-glucosamine than the wild type. Apparent kcat/Km values of Y648F for D-mannose and 2-deoxy-D-glucose were 8.2- and 4.0-fold higher than those of the wild type, respectively. Y648V had synthetic activity toward N-acetyl-D-glucosamine, while the other variants did not. The oligosaccharide production in the presence of the same concentrations of wild type and each mutant was compared. C485A produced 4-O-β-D-glucopyranosyl-D-glucosamine from 10 mM Glc1P and D-glucosamine at a rate similar to the wild type. Y648F and Y648V produced 4-O-β-D-glucopyranosyl-D-mannose and 4-O-β-D-glucopyranosyl-N-acetyl-D-glucosamine much more rapidly than the wild type when D-mannose and N-acetyl-D-glucosamine were used as acceptors, respectively. After a 4h reaction, the amounts of 4-O-β-D-glucopyranosyl-D-mannose and 4-O-β-D-glucopyranosyl-N-acetyl-D-glucosamine produced by Y648F and Y648V were 5.9- and 12-fold higher than the wild type, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Large-scale isolation, fractionation, and purification of soluble starch-synthesizing enzymes: starch synthase and branching enzyme from potato tubers.

    PubMed

    Mukerjea, Rupendra; Falconer, Daniel J; Yoon, Seung-Heon; Robyt, John F

    2010-07-19

    Soluble starch-synthesizing enzymes, starch synthase (SSS) and starch-branching enzyme (SBE), were isolated, fractionated, and purified from white potato tubers (Solanum tuberosum) on a large scale. Five steps were used: potato tuber extract from 2 kg of peeled potatoes, two acetone precipitations, and two fractionations on a large ultrafiltration polysulfone hollow fiber 100 kDa cartridge. Three kinds of fractions were obtained: (1) mixtures of SSS and SBE; (2) SSS, free of SBE; and (3) SBE, free of SSS. Contaminating enzymes (amylase, phosphorylase, and disproportionating enzyme) and carbohydrates were absent from the 2nd acetone precipitate and from the column fractions, as judged by the Molisch test and starch triiodide test. Activity yields of 122% (300,000-400,000 units) of SSS fractions and 187% (40,000-50,000 units) of SBE fractions were routinely obtained from the cartridge. Addition of 0.04% (w/v) polyvinyl alcohol 50K and 1 mM dithiothreitol to the glycine buffer (pH 8.4) gave long-term stability and higher yields of SSS and SBE, due to activation of inactive enzymes. Several SSS and SBE fractions from the two fractionations had very high specific activities, indicating high degrees of purification. Polyacrylamide gel electrophoresis of selected SSS and SBE fractions gave two to five SSS and/or SBE activity bands, corresponding to the one to five protein bands present in the 2nd acetone precipitate. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Glycal Formation in Crystals of Uridine Phosphorylase †‖‡

    PubMed Central

    Paul, Debamita; O'Leary, Seán E.; Rajashankar, Kanagalaghatta; Bu, Weiming; Toms, Angela; Settembre, Ethan C.; Sanders, Jennie M.; Begley, Tadhg P.; Ealick, Steven E.

    2010-01-01

    Uridine phosphorylase is a key enzyme in the pyrimidine salvage pathway. This enzyme catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate (or 2′-deoxyuridine to 2′-deoxyribose 1-phosphate). Here we report the structure of hexameric Escherichia coli uridine phosphorylase treated with 5-fluorouridine and sulfate and dimeric bovine uridine phosphorylase treated with 5-fluoro-2′-deoxyuridine or uridine, plus sulfate. In each case the electron density shows three separate species corresponding to the pyrimidine base, sulfate and a ribosyl species, which can be modeled as a glycal. In the structures of the glycal complexes, the fluorouracil O2 atom is appropriately positioned to act as the base required for glycal formation via deprotonation at C2′. Crystals of bovine uridine phosphorylase treated with 2′-deoxyuridine and sulfate show intact nucleoside. NMR time course studies demonstrate that uridine phosphorylase can catalyze the hydrolysis of the fluorinated nucleosides in the absence of phosphate or sulfate, without the release of intermediates or enzyme inactivation. These results add a previously-unencountered motif to the body of information on glycal formation by enzymes catalyzing the cleavage of glycosyl bonds. PMID:20364833

  10. [Purine and pyrimidine nucleoside phosphorylases - remarkable enzymes still not fully understood].

    PubMed

    Bzowska, Agnieszka

    2015-01-01

    Purine and pyrimidine nucleoside phosphorylases catalyze the reversible phosphorolytic cleavage of the glycosidic bond of purine and pyrimidine nucleosides, and are key enzymes of the nucleoside salvage pathway. This metabolic route is the less costly alternative to the de novo synthesis of nucleosides and nucleotides, supplying cells with these important building blocks. Interest in nucleoside phosphorylases is not only due to their important role in metabolism of nucleosides and nucleotides, but also due to the potential medical use of the enzymes (all phosphorylases in activating prodrugs - nucleoside and nucleic base analogs, high-molecular mass purine nucleoside phosphorylases in gene therapy of some solid tumors) and their inhibitors (as selective immunosuppressive, anticancer and antiparasitic agents, and preventing inactivation of other nucleoside drugs). Phosphorylases are also convenient tools for efficient enzymatic synthesis of otherwise inaccessible nucleoside analogues. In this paper the contribution of Professor David Shugar and some of his colleagues and coworkers in studies of these remarkable enzymes carried out over nearly 40 years is discussed on the background of global research in this field.

  11. Maltose phosphorylase from Lactobacillus brevis: purification, characterization, and application in a biosensor for ortho-phosphate.

    PubMed

    Hüwel, S; Haalck, L; Conrath, N; Spener, F

    1997-11-01

    With the goal to obtain maltose phosphorylase as a tool to determine ortho-phosphate, the enzyme from Lactobacillus brevis was purified to 98% by an expeditious FPLC-aided procedure which included anion exchange chromatography, gel filtration, and hydroxyapatite chromatography. The native maltose phosphorylase had a molecular mass of 196 kDa and consisted of two 88 kDa subunits. In isoelectric focusing two isoforms with pI values of 4.2 and 4.6 were observed. Maximum enzyme activity was obtained at 36 degrees C and pH 6.5 and was independent of pyridoxal 5'-phosphate. The apparent K(m) values with maltose and phosphate as substrates were 0.9 mmol l-1 and 1.8 mmol l-1, respectively. Maltose phosphorylase could be stored in 10 mM phosphate buffer pH 6.5 at 4 degrees C with a loss of activity of only 7% up to 6 months. The stability of the enzyme at high temperatures was enhanced significantly using additives like phosphate, citrate, and imidazole. The purified maltose phosphorylase was used as key enzyme in a phosphate sensor consisting of maltose phosphorylase and glucose oxidase. A detection limit of 0.1 microM phosphate was observed and the sensor response was linear in the range between 0.5 and 10 microM.

  12. The barley amo1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes

    PubMed Central

    Li, Zhongyi; Li, Dehong; Du, Xihua; Wang, Hong; Larroque, Oscar; Jenkins, Colin L. D.; Jobling, Stephen A.; Morell, Matthew K.

    2011-01-01

    In this study of barley starch synthesis, the interaction between mutations at the sex6 locus and the amo1 locus has been characterized. Four barley genotypes, the wild type, sex6, amo1, and the amo1sex6 double mutant, were generated by backcrossing the sex6 mutation present in Himalaya292 into the amo1 ‘high amylose Glacier’. The wild type, amo1, and sex6 genotypes gave starch phenotypes consistent with previous studies. However, the amo1sex6 double mutant yielded an unexpected phenotype, a significant increase in starch content relative to the sex6 phenotype. Amylose content (as a percentage of starch) was not increased above the level observed for the sex6 mutation alone; however, on a per seed basis, grain from lines containing the amo1 mutation (amo1 mutants and amo1sex6 double mutants) synthesize significantly more amylose than the wild-type lines and sex6 mutants. The level of granule-bound starch synthase I (GBSSI) protein in starch granules is increased in lines containing the amo1 mutation (amo1 and amo1sex6). In the amo1 genotype, starch synthase I (SSI), SSIIa, starch branching enzyme IIa (SBEIIa), and SBEIIb also markedly increased in the starch granules. Genetic mapping studies indicate that the ssIIIa gene is tightly linked to the amo1 locus, and the SSIIIa protein from the amo1 mutant has a leucine to arginine residue substitution in a conserved domain. Zymogram analysis indicates that the amo1 phenotype is not a consequence of total loss of enzymatic activity although it remains possible that the amo1 phenotype is underpinned by a more subtle change. It is therefore proposed that amo1 may be a negative regulator of other genes of starch synthesis. PMID:21813797

  13. Inhibition and Structure of Toxoplasma gondii Purine Nucleoside Phosphorylase

    PubMed Central

    Donaldson, Teraya M.; Cassera, María B.; Ho, Meng-Chiao; Zhan, Chenyang; Merino, Emilio F.; Evans, Gary B.; Tyler, Peter C.; Almo, Steven C.; Schramm, Vern L.

    2014-01-01

    The intracellular pathogen Toxoplasma gondii is a purine auxotroph that relies on purine salvage for proliferation. We have optimized T. gondii purine nucleoside phosphorylase (TgPNP) stability and crystallized TgPNP with phosphate and immucillin-H, a transition-state analogue that has high affinity for the enzyme. Immucillin-H bound to TgPNP with a dissociation constant of 370 pM, the highest affinity of 11 immucillins selected to probe the catalytic site. The specificity for transition-state analogues indicated an early dissociative transition state for TgPNP. Compared to Plasmodium falciparum PNP, large substituents surrounding the 5′-hydroxyl group of inhibitors demonstrate reduced capacity for TgPNP inhibition. Catalytic discrimination against large 5′ groups is consistent with the inability of TgPNP to catalyze the phosphorolysis of 5′-methylthioinosine to hypoxanthine. In contrast to mammalian PNP, the 2′-hydroxyl group is crucial for inhibitor binding in the catalytic site of TgPNP. This first crystal structure of TgPNP describes the basis for discrimination against 5′-methylthioinosine and similarly 5′-hydroxy-substituted immucillins; structural differences reflect the unique adaptations of purine salvage pathways of Apicomplexa. PMID:24585883

  14. The essential role of methylthioadenosine phosphorylase in prostate cancer

    PubMed Central

    Foster, Barbara A.; Karasik, Ellen; Gillard, Bryan; Morrison, Carl; Mohler, James; Phillips, James G.; Smiraglia, Dominic J.

    2016-01-01

    Prostatic epithelial cells secrete high levels of acetylated polyamines into the prostatic lumen. This distinctive characteristic places added strain on the connected pathways, which are forced to increase metabolite production to maintain pools. The methionine salvage pathway recycles the one-carbon unit lost to polyamine biosynthesis back to the methionine cycle, allowing for replenishment of SAM pools providing a mechanism to help mitigate metabolic stress associated with high flux through these pathways. The rate-limiting enzyme involved in this process is methylthioadenosine phosphorylase (MTAP), which, although commonly deleted in many cancers, is protected in prostate cancer. We report near universal retention of MTAP expression in a panel of human prostate cancer cell lines as well as patient samples. Upon metabolic perturbation, prostate cancer cell lines upregulate MTAP and this correlates with recovery of SAM levels. Furthermore, in a mouse model of prostate cancer we find that both normal prostate and diseased prostate maintain higher SAM levels than other tissues, even under increased metabolic stress. Finally, we show that knockdown of MTAP, both genetically and pharmacologically, blocks androgen sensitive prostate cancer growth in vivo. Our findings strongly suggest that the methionine salvage pathway is a major player in homeostatic regulation of metabolite pools in prostate cancer due to their high level of flux through the polyamine biosynthetic pathway. Therefore, this pathway, and specifically the MTAP enzyme, is an attractive therapeutic target for prostate cancer. PMID:26910893

  15. Thymidine phosphorylase, 2-deoxy-D-ribose and angiogenesis.

    PubMed Central

    Brown, N S; Bicknell, R

    1998-01-01

    Angiogenesis is the term used to describe the formation of new blood vessels from the existing vasculature. In order to attract new vessels, a tissue must release an endothelial-cell chemoattractant. 2-Deoxy-D-ribose is produced in vivo by the catalytic action of thymidine phosphorylase (TP) on thymidine and has recently been identified as an endothelial-cell chemoattractant and angiogenesis-inducing factor. TP, previously known only for its role in nucleotide salvage, is now known to be angiogenic. TP expression is elevated in many solid tumours and in chronically inflamed tissues, both known areas of active angiogenesis. There is evidence that TP is also involved in physiological angiogenesis such as endometrial angiogenesis during the menstrual cycle. The majority of known endothelial-cell chemoattractants are polypeptides that bind to endothelial-cell-surface receptors. In contrast, 2-deoxy-D-ribose appears to lack a cell-surface receptor. Glucose is another sugar that acts as an endothelial-cell chemoattractant. The migratory activity of glucose is blocked by ouabain. It is possible that 2-deoxy-D-ribose and glucose stimulate endothelial-cell migration via a similar mechanistic pathway. PMID:9693094

  16. Localization of thymidine phosphorylase in advanced gastric and colorectal cancer.

    PubMed

    Kobayashi, Michiya; Okamoto, Ken; Akimori, Toyokazu; Tochika, Naoshige; Yoshimoto, Tadashi; Okabayashi, Takehiro; Sugimoto, Takeki; Araki, Keijiro

    2004-01-01

    Thymidine phosphorylase (TP) is known to be more concentrated in human cancer tissues than in adjacent normal tissue based on findings using enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. However, the ultrastructural localization of TP in cancer tissues has not previously been demonstrated. We investigated the localization of TP in gastric cancer and colorectal cancer tissue by ELISA, immunohistochemistry, and immunoelectron microscopy. Between April 1997 and May 2000, we obtained surgically resected specimens from 42, 46, and 36 cases of advanced gastric, colon, and rectal cancer, respectively. ELISA demonstrated that the TP level was higher in cancer tissues than in adjacent normal tissue. Immunohistochemically, cancer cells were positive for the enzyme in some cases. However, in a number of cases immunopositive inflammatory cells were also present in cancerous tissues. At the electron microscope level, TP was diffusely distributed in the cytoplasm of cancer cells and in the mitochondria of the neutrophil in gastric cancer tissue. In rectal cancer tissues, cytoplasmic granules in macrophages in cancer tissues were immunoreactive for the TP. These findings suggest that TP is produced by macrophages and exists in neutrophils and cancer cells.

  17. Polynucleotide Phosphorylase Protects Escherichia coli against Oxidative Stress†

    PubMed Central

    Wu, Jinhua; Jiang, Zhe; Liu, Min; Gong, Xin; Wu, Shaohui; Burns, Christopher M.; Li, Zhongwei

    2009-01-01

    Escherichia coli polynucleotide phosphorylase (PNPase) primarily functions in RNA degradation. It is an exoribonuclease and integral component of the multienzyme RNA degradosome complex [Carpousis et al. (1994) Cell 76, 889]. PNPase was previously shown to specifically bind a synthetic RNA containing the oxidative lesion 8-hydroxyguanine (8-oxoG) [Hayakawa et al. (2001) Biochemistry 40, 9977], suggesting a possible role in removing oxidatively damaged RNA. Here we show that PNPase binds to RNA molecules of natural sequence that were oxidatively damaged by treatment with hydrogen peroxide (H2O2) postsynthetically. PNPase bound oxidized RNA with higher affinity than untreated RNA of the same sequence, raising the possibility that it may act against a wide variety of lesions. The importance of such a protective role is illustrated by the observation that, under conditions known to cause oxidative damage to cytoplasmic components, PNPase-deficient cells are less viable than wild-type cells. Further, when challenged with H2O2, PNPase-deficient cells accumulate 8-oxoG in cellular RNA to a greater extent than wild-type cells, suggesting that this RNase functions in minimizing oxidized RNA in vivo. Introducing the pnp gene encoding PNPase rescues defects in growth and RNA quality of the pnp mutant cells. Our results also suggest that protection against oxidative stress is an intrinsic function of PNPase because association with the RNA degradosome or with RNA helicase B (RhlB) is not required. PMID:19219992

  18. Influence of oxidized starch on the properties of thermoplastic starch.

    PubMed

    Zhang, Yu-Rong; Wang, Xiu-Li; Zhao, Guo-Ming; Wang, Yu-Zhong

    2013-07-01

    Thermoplastic starch was prepared by adding oxidized starches and glycerol together into starch. The addition of oxidized starch improved the rheological properties and also increased the toughness of thermoplastic starch. Compared with TPS30, the elongation at break increased from 126.8% to 152.5% when 5wt% OS 117% was added. Good compatibility of thermoplastic starch between the matrix and oxidized starch was confirmed by SEM. The addition of oxidized starch lowered the storage modulus and glass transition temperature (Tg) of thermoplastic starch, decreasing Tg from 34.1 to 30°C when 10 wt% OS117% was added. The thermal stability of blending was improved by adding oxidized starches, i.e. when 5 wt% OS70% was added, T5% increased from 134 to 156°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Assignment of human genes for phosphorylase kinase subunits alpha (PHKA) to Xq12-q13 and beta (PHKB) to 16q12-q13.

    PubMed Central

    Francke, U; Darras, B T; Zander, N F; Kilimann, M W

    1989-01-01

    Phosphorylase kinase (PHK), the enzyme that activates glycogen phosphorylases in muscle, liver, and other tissues, is composed of four different subunits. Recently isolated rabbit muscle cDNAs for the larger two subunits, alpha and beta, have been used to map the location of their cognate sequences on human chromosomes. Southern blot analysis of rodent x human somatic cell hybrid panels, as well as in situ chromosomal hybridization, have provided evidence of single sites for both genes. The alpha subunit gene (PHKA) is located on the proximal long arm of the X chromosome in region Xq12-q13 near the locus for phosphoglycerate kinase (PGK1). X-linked mutations leading to PHK deficiency, known to exist in humans and mice, are likely to involve this locus. This hypothesis is consistent with the proximity of the Phk and Pgk-1 loci on the mouse X chromosome. In contrast, the beta subunit gene (PHKB) was found to be autosomal and was mapped to chromosome 16, region q12-q13 on the proximal long arm. Several different autosomally inherited forms of PHK deficiency for which the PHKB could be a candidate gene have been described in humans and rats. PMID:2757032

  20. Localization of a new type of X-linked liver glycogenosis to the chromosomal region Xp22 containing the liver {alpha}-subunit of phosphorylase kinase (PHKA2)

    SciTech Connect

    Hendrickx, J.; Coucke, P.; Willems, P.J.

    1994-06-01

    The authors describe here a new type of X-linked liver glycogen storage disease. The main symptoms include liver enlargement and growth retardation. The clinical and biochemical abnormalities of this glycogenosis are similar to those of classical X-linked liver glycogenosis due to phosphorylase kinase deficiency (XLG). However, in constrast to patients with XLG, the patients described here have no reduced phosphorylase kinase activity in erythrocytes and leukocytes, and no enzyme deficiency could be found. Linkage analysis of four families with this X-linked type of liver glycogenosis assigned the disease gene to Xp22. Lod scores obtained with the markers DXS987, DXS207, and DXS999 were 3.97, 2.71, and 2.40, respectively, all at 0% recombination. Multipoint linkage analysis localized the disease gene between DXS143 and DXS989 with a maximum lod score of 4.70 at {theta}=0, relative to DXS987. As both the classical XLG gene and the liver {alpha}-subunit of PHK (PHKA2) are also located in Xp22, this variant type of XLG may be allelic to classical XLG, and both diseases may be caused by mutations in PHKA2. Therefore, they propose to classify XLG as XLG type I (the classical type of XLG) and XLG type II (the variant type of XLG). 28 refs., 2 figs., 3 tabs.

  1. Starch Metabolism in Arabidopsis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2012-01-01

    Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions. PMID:23393426

  2. Characterization of starch nanoparticles

    NASA Astrophysics Data System (ADS)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  3. Synthesis, screening and docking of small heterocycles as glycogen phosphorylase inhibitors.

    PubMed

    Schweiker, Stephanie S; Loughlin, Wendy A; Lohning, Anna S; Petersson, Maria J; Jenkins, Ian D

    2014-09-12

    A series of morpholine substituted amino acids (phenylalanine, leucine, lysine and glutamic acid) was synthesized. A fragment-based screening approach was then used to evaluate a series of small heterocycles, including morpholine, oxazoline, dihydro-1,3-oxazine, tetrahydro-1,3-oxazepine, thiazoline, tetrahydro-1,3-pyrimidine, tetrahydro-1,3-diazepine and hexahydro-1H-benzimidazole, as potential inhibitors of Glycogen Phosphorylase a. Thiazoline 7 displayed an improved potency (IC50 of 25 μM) and had good LE and LELP values, as compared to heterocycles 1, 5, 9-13 and 19 (IC50 values of 1.1 mM-23.9 mM). A docking study using the crystal structure of human liver Glycogen Phosphorylase, provided insight into the interactions of heterocycles 5, 7, 9-13 and 19 with Glycogen Phosphorylase.

  4. Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis

    SciTech Connect

    Grenha, Rosa; Levdikov, Vladimir M.; Fogg, Mark J.; Blagova, Elena V.; Brannigan, James A. Wilkinson, Anthony J.; Wilson, Keith S.

    2005-05-01

    The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis was solved by X-ray crystallography using molecular replacement and refined at a resolution of 2.24 Å. Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium.

  5. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5’-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway

    PubMed Central

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-01-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. PMID:27935959

  6. X-linked dominant inheritance of partial phosphorylase kinase deficiency in mice.

    PubMed

    Varsányi, M; Vrbica, A; Heilmeyer, L M

    1980-04-01

    A new mouse strain, the V strain, with a partial deficiency of phosphorylase kinase has been established. The deficiency is caused by an X-linked dominant gene (PhKc). Muscle extracts of homozygous and heterozygous females and hemizygous males have about 25% of the activity found in extracts of normal (C3H/HeHan) mice. This dominant phosphorylase kinase deficiency of the new V strain is different from that of the I-strain mice with the X-linked recessive deficiency of skeletal muscle phosphorylase kinase. The muscle extracts of V-strain and normal mice contain the same phosphorylase phosphatase activity of about 1 U/mg. Heart and liver extracts from V mice contained about 50% and 66%, respectively, of the phosphorylase kinase activity compared to that found in the same organs from the normal mice. The glycogen content of the skeletal muscle of the V strain was normal, i.e., 0.9 mg/g. Phosphorylase kinase was purified from the skeletal muscle of the V strain by (a) hydrophobic chromatography on methylamine Sepharose, (b) ammonium sulfate precipitation, and (c) gel filtration of Sepharose 4B. The enzyme has a similar structure to the normal murine and rabbit skeletal muscle enzyme, except that the proportion of the subunits differs. The molar ratio of the subunits of the V strain mice is (alpha + alpha'):beta:gamma=0.54:1:1.169, in comparison with that of the rabbit (alpha + alpha'):beta:gamma=1.1:1.0:1.0 and that of normal murine enzyme 0.9:1.0:0.7.

  7. Structure of a mutant human purine nucleoside phosphorylase with the prodrug, 2-fluoro-2-deoxyadenosine and the cytotoxic drug, 2-fluoroadenine

    SciTech Connect

    Afshar, Sepideh; Sawaya, Michael R.; Morrison, Sherie L.

    2009-06-30

    A double mutant of human purine nucleoside phosphorylase (hDM) with the amino acid mutations Glu201Gln:Asn243Asp cleaves adenosine-based prodrugs to their corresponding cytotoxic drugs. When fused to an anti-tumor targeting component, hDM is targeted to tumor cells, where it effectively catalyzes phosphorolysis of the prodrug, 2-fluoro-2'-deoxyadenosine (F-dAdo) to the cytotoxic drug, 2-fluoroadenine (F-Ade). This cytotoxicity should be restricted only to the tumor microenvironment, because the endogenously expressed wild type enzyme cannot use adenosine-based prodrugs as substrates. To gain insight into the interaction of hDM with F-dAdo, we have determined the crystal structures of hDM with F-dAdo and F-Ade. The structures reveal that despite the two mutations, the overall fold of hDM is nearly identical to the wild type enzyme. Importantly, the residues Gln201 and Asp243 introduced by the mutation form hydrogen bond contacts with F-dAdo that result in its binding and catalysis. Comparison of substrate and product complexes suggest that the side chains of Gln201 and Asp243 as well as the purine base rotate during catalysis possibly facilitating cleavage of the glycosidic bond. The two structures suggest why hDM, unlike the wild-type enzyme, can utilize F-dAdo as substrate. More importantly, they provide a critical foundation for further optimization of cleavage of adenosine-based prodrugs, such as F-dAdo by mutants of human purine nucleoside phosphorylase.

  8. In situ enzymatic removal of orthophosphate by the nucleoside phosphorylase catalyzed phosphorolysis of nicotinamide riboside.

    PubMed

    Shriver, J W; Sykes, B D

    1982-09-01

    An enzymatic orthophosphate removal system is described which can be effectively used to continuously remove orthophosphate from biochemical samples. The phosphorolysis of nicotinamide riboside is catalyzed by calf spleen nucleoside phosphorylase to give ribose-1-PO4 and nicotinamide along with a proton. At pH 8 the production of ribose-1-PO4 from orthophosphate is essentially quantitative. This reaction can be monitored optically or by 31P nuclear magnetic resonance (NMR). Equations are given for determining the time required to remove a given amount of phosphate from a typical NMR sample with a known amount of nucleoside phosphorylase. The effects of a competing orthophosphate-producing reaction are considered.

  9. Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase Expression Revisited▿ †

    PubMed Central

    Carzaniga, Thomas; Briani, Federica; Zangrossi, Sandro; Merlino, Giuseppe; Marchi, Paolo; Dehò, Gianni

    2009-01-01

    The Escherichia coli polynucleotide phosphorylase (PNPase; encoded by pnp), a phosphorolytic exoribonuclease, posttranscriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double-strand cleavage about in the middle of a long stem-loop in the 5′-untranslated region. The processed pnp mRNA is then rapidly degraded in a PNPase-dependent manner. Two non-mutually exclusive models have been proposed to explain PNPase autogenous regulation. The earlier one suggested that PNPase impedes translation of the RNase III-processed pnp mRNA, thus exposing the transcript to degradative pathways. More recently, this has been replaced by the current model, which maintains that PNPase would simply degrade the promoter proximal small RNA generated by the RNase III endonucleolytic cleavage, thus destroying the double-stranded structure at the 5′ end that otherwise stabilizes the pnp mRNA. In our opinion, however, the first model was not completely ruled out. Moreover, the RNA decay pathway acting upon the pnp mRNA after disruption of the 5′ double-stranded structure remained to be determined. Here we provide additional support to the current model and show that the RNase III-processed pnp mRNA devoid of the double-stranded structure at its 5′ end is not translatable and is degraded by RNase E in a PNPase-independent manner. Thus, the role of PNPase in autoregulation is simply to remove, in concert with RNase III, the 5′ fragment of the cleaved structure that both allows translation and prevents the RNase E-mediated PNPase-independent degradation of the pnp transcript. PMID:19136586

  10. Autogenous regulation of Escherichia coli polynucleotide phosphorylase expression revisited.

    PubMed

    Carzaniga, Thomas; Briani, Federica; Zangrossi, Sandro; Merlino, Giuseppe; Marchi, Paolo; Dehò, Gianni

    2009-03-01

    The Escherichia coli polynucleotide phosphorylase (PNPase; encoded by pnp), a phosphorolytic exoribonuclease, posttranscriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double-strand cleavage about in the middle of a long stem-loop in the 5'-untranslated region. The processed pnp mRNA is then rapidly degraded in a PNPase-dependent manner. Two non-mutually exclusive models have been proposed to explain PNPase autogenous regulation. The earlier one suggested that PNPase impedes translation of the RNase III-processed pnp mRNA, thus exposing the transcript to degradative pathways. More recently, this has been replaced by the current model, which maintains that PNPase would simply degrade the promoter proximal small RNA generated by the RNase III endonucleolytic cleavage, thus destroying the double-stranded structure at the 5' end that otherwise stabilizes the pnp mRNA. In our opinion, however, the first model was not completely ruled out. Moreover, the RNA decay pathway acting upon the pnp mRNA after disruption of the 5' double-stranded structure remained to be determined. Here we provide additional support to the current model and show that the RNase III-processed pnp mRNA devoid of the double-stranded structure at its 5' end is not translatable and is degraded by RNase E in a PNPase-independent manner. Thus, the role of PNPase in autoregulation is simply to remove, in concert with RNase III, the 5' fragment of the cleaved structure that both allows translation and prevents the RNase E-mediated PNPase-independent degradation of the pnp transcript.

  11. The Starch Granule-Associated Protein EARLY STARVATION1 Is Required for the Control of Starch Degradation in Arabidopsis thaliana Leaves[OPEN

    PubMed Central

    Feike, Doreen; Seung, David; Graf, Alexander; Bischof, Sylvain; Ellick, Tamaryn; Coiro, Mario; Soyk, Sebastian; Eicke, Simona; Mettler-Altmann, Tabea; Lu, Kuan Jen; Trick, Martin; Zeeman, Samuel C.

    2016-01-01

    To uncover components of the mechanism that adjusts the rate of leaf starch degradation to the length of the night, we devised a screen for mutant Arabidopsis thaliana plants in which starch reserves are prematurely exhausted. The mutation in one such mutant, named early starvation1 (esv1), eliminates a previously uncharacterized protein. Starch in mutant leaves is degraded rapidly and in a nonlinear fashion, so that reserves are exhausted 2 h prior to dawn. The ESV1 protein and a similar uncharacterized Arabidopsis protein (named Like ESV1 [LESV]) are located in the chloroplast stroma and are also bound into starch granules. The region of highest similarity between the two proteins contains a series of near-repeated motifs rich in tryptophan. Both proteins are conserved throughout starch-synthesizing organisms, from angiosperms and monocots to green algae. Analysis of transgenic plants lacking or overexpressing ESV1 or LESV, and of double mutants lacking ESV1 and another protein necessary for starch degradation, leads us to propose that these proteins function in the organization of the starch granule matrix. We argue that their misexpression affects starch degradation indirectly, by altering matrix organization and, thus, accessibility of starch polymers to starch-degrading enzymes. PMID:27207856

  12. Amylose-lipid complexes as controlled lipid release agents during starch gelatinization and pasting.

    PubMed

    Gelders, Greta G; Goesaert, Hans; Delcour, Jan A

    2006-02-22

    The effect of amylose-lipid (AM-L) complexes consisting of amylose populations with different peak degrees of polymerization (DP) and complexed with glyceryl monostearate (GMS) or docosanoic acid (C22) on the pasting properties of wheat and rice starches was evaluated with a rapid visco analyzer (RVA). AM-L complexes were formed by both (i) addition of lipids to amylose fractions with peak DP 20, 60, 400, or 950 at 60 degrees C or (ii) potato phosphorylase-catalyzed amylose synthesis in the presence of lipids. All AM-L complexes affected pasting properties in line with their dissociation characteristics. AM-L complexes therefore have potential as "controlled lipid release agents" with effects markedly different from those observable with emulsifier addition in starch pasting. More in particular, short chain AM-L complexes resulted in a starch pasting behavior comparable to that of cross-linked starch, as evidenced by reduced granule swelling, good viscosity stability in conditions of high temperature and shear, and a stable cold paste viscosity.

  13. Molecular properties and activities of tuber proteins from starch potato cv. Kuras.

    PubMed

    Jørgensen, Malene; Bauw, Guy; Welinder, Karen G

    2006-12-13

    Potato starch production leaves behind a huge amount of juice. This juice is rich in protein, which might be exploited for food, biotechnological, and pharmaceutical applications. In northern Europe cv. Kuras is dominant for industrial starch production, and juice protein of freshly harvested mature tubers was fractionated by Superdex 200 gel filtration. The fractions were subjected to selected activity assays (patatin, peroxidase, glyoxalases I and II, alpha-mannosidase, inhibition of trypsin, Fusarium protease, and alcalase) and protein subunit size determination by SDS-PAGE and mass spectrometry. Proteins present in SDS-PAGE bands were identified by tryptic peptide mass fingerprinting. Protein complexes such as ribosomes and proteasomes eluted with the void volume of the gel filtration. Large proteins were enzymes of starch synthesis dominated by starch phosphorylase L-1 (ca. 4% of total protein). Five identified dimeric patatin variants (25%) coeluted with four monomeric lipoxygenase variants (10%) at 97 kDa. Protease inhibitor I variants (4%) at 46 kDa (hexamer) inhibited alcalase. Fourteen Kunitz protease inhibitor variants (30%) at 19 kDa inhibited trypsin and Fusarium protease. Carboxypeptidase inhibitor variants (5%) and defensins (5%) coeluted with phenolics. The native sizes and molecular properties were determined for 43 different potato tuber proteins, several for the first time.

  14. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    PubMed

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  15. Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity.

    PubMed

    Wu, Yuanyuan; Mao, Guotao; Fan, Haiyan; Song, Andong; Zhang, Yi-Heng Percival; Chen, Hongge

    2017-07-07

    A hypothetic gene (THA_1941) encoding a putative cellobiose phosphorylase (CBP) from Thermosipho africanus TCF52B has very low amino acid identities (less than 12%) to all known GH94 enzymes. This gene was cloned and over-expressed in Escherichia coli BL21(DE3). The recombinant protein was hypothesized to be a CBP enzyme and it showed an optimum temperature of 75 °C and an optimum pH of 7.5. Beyond its CBP activity, this enzyme can use cellobiose and long-chain cellodextrins with a degree of polymerization of greater than two as a glucose acceptor, releasing phosphate from glucose 1-phosphate. The catalytic efficiencies (k cat/K m) indicated that cellotetraose and cellopentaose were the best substrates for the phosphorolytic and reverse synthetic reactions, respectively. These results suggested that this enzyme was the first enzyme having both cellodextrin and cellobiose phosphorylases activities. Because it preferred cellobiose and cellodextrins to glucose in the synthetic direction, it was categorized as a cellodextrin phosphorylase (CDP). Due to its unique ability of the reverse synthetic reaction, this enzyme could be a potential catalyst for the synthesis of various oligosaccharides. The speculative function of this CDP in the carbohydrate metabolism of T. africanus TCF52B was also discussed.

  16. Metabolism of the reserve polysaccharide of Streptococcus mitior (mitis): is there a second alpha-1,4-glucan phosphorylase?

    PubMed Central

    Pulkownik, A; Walker, G J

    1976-01-01

    The alpha-1,4-glucan phosphorylase (alpha-1,4-glucan: orthophosphate glucosyltransferase; EC 2.4.1.1) associated with the particulate cell fraction of Streptococcus mitior strain S3 was compared with the soluble maltodextrin phosphorylase that had been previously isolated from the same organism (Walker et al., 1969). The particulate enzyme was more sensitive to the glycogen content of the cell than the soluble euzyme; its activity was highest when the cells were grown under conditions favoring high glycogen storage. Substrate specificities of the two high activity towards endogenous glycogen, whereas low-molecular-weight maltodextrins were the preferred substrates for the soluble phosphorylase. The purification of the particulate phosphorylase included incubation of the particulate fraction in 160 mM sodium phosphate-10 mM sodium citrate-0.1% (wt/vol) Triton X-100 buffer (pH 6.7) and ion-exchange chromatography on diethylamino-ethyl- Sephadex A-50. The purified enzyme was fully soluble. The value for the purification factor was variable and depended on (i) the substrate used and (ii) whether the synthetic or the degradative reaction was being measured. The solubilization resulted in considerable changes in the properties of the phosphorylase: the pH optimum for activity was raised from 6.0 to 7.0-7.5 and the substrate specificity was altered. Consequently, the purified enzyme bore greater similarity to the soluble maltodextrin phosphorylase. The reported results are best explained in terms of a single phosphorylase, the specificity which is determind by its binding state in the cell. The enzyme acts as a glycogen phosphorylase in the particulate state and as a maltodextrin phosphorylase when soluble. The equilibrium between the two forms is related to the glycogen content of the cells. PMID:6434

  17. Hormonal stimulation of cyclic AMP accumulation and glycogen phosphorylase activity in calcium-depleted hepatocytes from euthyroid and hypothyroid rats.

    PubMed Central

    Malbon, C C; Gilman, H R; Fain, J N

    1980-01-01

    Activation of glycogen phosphorylase by hormones was examined in hepatocytes isolated from euthyroid and hypothyroid female rats and incubated by Ca2+-free buffer containing 1 mM-EGTA. Basal glycogen phosphorylase activity was decreased in Ca2+-free buffer. However, the activation of hepatocyte glycogen phosphorylase, in the absence of extracellular Ca2+, in response to adrenaline, glucagon or phenylephrine was slightly lower, whereas that by vasopressin was abolished. The activation of glycogen phosphorylase by phenylephrine, adrenaline or isoproterenol (isoprenaline) in hepatocytes from euthyroid rats incubated in the absence of Ca2+ was not accompanied by any detectable increase in total cyclic AMP. The log-dose/response curves for activation of phosphorylase by phenylephrine or low concentrations of adrenaline were the same in hepatocytes from hypothyroid as compared wit euthyroid rats, whereas the response to isoproterenol was greater in hepatocytes from hypothyroid rats. However, the increases in total cyclic AMP accumulation caused by adrenaline or isoproterenol were greater in hepatocytes from hypothyroid rats than in hepatocytes from euthyroid rats. The increases in cyclic AMP accumulation caused by adrenaline or isoproterenol in Ca2+-depleted hepatocytes from hypothyroid rats were blocked by propranolol, a beta-adrenergic antagonist. In contrast, propranolol was only partially effective asan inhibitor of the activation of glycogen phosphorylase by phenylephrine or adrenaline in hepatocytes from hypothyroid rats and ineffective on phosphorylase activation in cells from euthyroid rats. These data indicate that the alpha-adrenergic activation of glycogen phosphorylase is not affected by the absence of extracellular Ca2+, and the extent to which total cyclic AMP was increased by adrenergic amines did not correlate with glycogen phosphorylase activation. PMID:6258557

  18. 13C and 31P NMR for the diagnosis of muscular phosphorylase-kinase deficiency

    NASA Astrophysics Data System (ADS)

    Jehenson, P.; Duboc, D.; Laforet, P.; Eymard, B.; Lombès, A.; Fardeau, M.; Brunet, P.; Syrota, A.

    1998-02-01

    To further develop and specify the range of medical applications of in vivo NMR spectroscopy for the study of myopathies, it is ncessary to study the largest number of well characterized cases. We here report on the 31P and 13C NMR study of a purely muscular form of phosphorylase-kinase (PK) deficiency. Abnormalities were observed that agree with and increase our pathophysiological knowledge, in particular on the activation of phosphorylase and PK. Also, the abnormalities are different from those found in other clinically similar metabolic myopathies and could be used for the differential diagnosis. Afin de continuer à développer et préciser les applications médicales de la spectroscopie RMN in vivo, il faut étudier le plus grand nombre possible de cas bien caractérisés. Nous avons étudié ici une forme purement musculaire de déficit en phosphorylase-kinase (PK) par RMN du phosphore 31 et du carbone 13. Les altérations observées sont en accord avec et augmentent nos connaissances physiopathologiques, par exemple concernant l'activation de la phosphorylase et PK. Par ailleurs, la combinaison d'altérations observées en 31P et 13C est différente de celle retrouvée dans d'autres myopathies métaboliques cliniquement semblables et pourrait être utilisée pour le diagnostic différentiel.

  19. Polymer phosphorylases: clues to the emergence of non-replicative and replicative polymers.

    PubMed

    Freire, Miguel Angel

    2011-12-01

    Polymer formation is arguably one of the essential factors that allowed the emergence, stabilisation and spread of life on Earth. Consequently, studies concerning biopolymers could shed light on the origins of life itself. Of particular interest are RNA and polysaccharide polymers, the archetypes of the contrasting proposed evolutionary scenarios and their respective polymerases. Nucleic acid polymerases were hypothesised, before their discovery, to have a functional similarity with glycogen phosphorylase. Further identification and characterisation of nucleic acid polymerases; particularly of polynucleotide phosphorylase (PNPase), provided experimental evidence for the initial premise. Once discovered, frequent similarities were found between PNPase and glycogen phosphorylase, in terms of catalytic features and biochemical properties. As a result, PNPase was seen as a model of primitive polymerase and used in laboratory precellular systems. Paradoxically, however, these similarities were not sufficient as an argument in favour of an ancestral common polymerisation mechanism prior to polysaccharides and polyribonucleotides. Here we present an overview of the common features shared by polymer phosphorylases, with new proposals for the emergence of polysaccharide and RNA polymers.

  20. Effects of commonly used cryoprotectants on glycogen phosphorylase activity and structure.

    PubMed Central

    Tsitsanou, K. E.; Oikonomakos, N. G.; Zographos, S. E.; Skamnaki, V. T.; Gregoriou, M.; Watson, K. A.; Johnson, L. N.; Fleet, G. W.

    1999-01-01

    The effects of a number of cryoprotectants on the kinetic and structural properties of glycogen phosphorylase b have been investigated. Kinetic studies showed that glycerol, one of the most commonly used cryoprotectants in X-ray crystallographic studies, is a competitive inhibitor with respect to substrate glucose-1-P with an apparent Ki value of 3.8% (v/v). Cryogenic experiments, with the enzyme, have shown that glycerol binds at the catalytic site and competes with glucose analogues that bind at the catalytic site, thus preventing the formation of complexes. This necessitated a change in the conditions for cryoprotection in crystallographic binding experiments with glycogen phosphorylase. It was found that 2-methyl-2,4-pentanediol (MPD), polyethylene glycols (PEGs) of various molecular weights, and dimethyl sulfoxide (DMSO) activated glycogen phosphorylase b to different extents, by stabilizing its most active conformation, while sucrose acted as a noncompetitive inhibitor and ethylene glycol as an uncompetitive inhibitor with respect to glucose-1-P. A parallel experimental investigation by X-ray crystallography showed that, at 100 K, both MPD and DMSO do not bind at the catalytic site, do not induce any significant conformational change on the enzyme molecule, and hence, are more suitable cryoprotectants than glycerol for binding studies with glycogen phosphorylase. PMID:10211820

  1. Centrifugally spun starch-based fibers from amylopectin rich starches.

    PubMed

    Li, Xianglong; Chen, Huanhuan; Yang, Bin

    2016-02-10

    Centrifugal spinning and electrospinning have proved to be effective techniques for fabricating micro-to-nanofibers. However, starches of amylopectin content above 65% cannot be fabricated to fiber by electrospinning. This paper is focus on the centrifugal spinnability of amylopectin rich starches. We investigated the amylopectin content of starches by Dual-wavelength colorimetry, studied the rheological properties of starch dopes to determine entanglement concentration (ce) by rotary rheometer. Results indicated that amylopectin rich native corn and potato starches, which with amylopectin content higher than 65%, were suitable for centrifugal spinning to micro-to-nanofibers. Additionally, starch-based fibers were successfully fabricated from the amylose rich corn starch as well. Rheological studies showed that the entanglement concentration (ce) of starch solution was crucial for successful centrifugal spinning. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Protein Phosphorylation in Amyloplasts Regulates Starch Branching Enzyme Activity and Protein–Protein Interactions

    PubMed Central

    Tetlow, Ian J.; Wait, Robin; Lu, Zhenxiao; Akkasaeng, Rut; Bowsher, Caroline G.; Esposito, Sergio; Kosar-Hashemi, Behjat; Morell, Matthew K.; Emes, Michael J.

    2004-01-01

    Protein phosphorylation in amyloplasts and chloroplasts of Triticum aestivum (wheat) was investigated after the incubation of intact plastids with γ-32P-ATP. Among the soluble phosphoproteins detected in plastids, three forms of starch branching enzyme (SBE) were phosphorylated in amyloplasts (SBEI, SBEIIa, and SBEIIb), and both forms of SBE in chloroplasts (SBEI and SBEIIa) were shown to be phosphorylated after sequencing of the immunoprecipitated 32P-labeled phosphoproteins using quadrupole-orthogonal acceleration time of flight mass spectrometry. Phosphoamino acid analysis of the phosphorylated SBE forms indicated that the proteins are all phosphorylated on Ser residues. Analysis of starch granule–associated phosphoproteins after incubation of intact amyloplasts with γ-32P-ATP indicated that the granule-associated forms of SBEII and two granule-associated forms of starch synthase (SS) are phosphorylated, including SSIIa. Measurement of SBE activity in amyloplasts and chloroplasts showed that phosphorylation activated SBEIIa (and SBEIIb in amyloplasts), whereas dephosphorylation using alkaline phosphatase reduced the catalytic activity of both enzymes. Phosphorylation and dephosphorylation had no effect on the measurable activity of SBEI in amyloplasts and chloroplasts, and the activities of both granule-bound forms of SBEII in amyloplasts were unaffected by dephosphorylation. Immunoprecipitation experiments using peptide-specific anti-SBE antibodies showed that SBEIIb and starch phosphorylase each coimmunoprecipitated with SBEI in a phosphorylation-dependent manner, suggesting that these enzymes may form protein complexes within the amyloplast in vivo. Conversely, dephosphorylation of immunoprecipitated protein complex led to its disassembly. This article reports direct evidence that enzymes of starch metabolism (amylopectin synthesis) are regulated by protein phosphorylation and indicate a wider role for protein phosphorylation and protein

  3. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    SciTech Connect

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  4. New starch methodology to measure both soluble and insoluble starch

    USDA-ARS?s Scientific Manuscript database

    Starch is a natural sugarcane juice impurity that greatly influences raw sugar quality and affects factory and refinery processing. Since the advent of the USDA Starch Research method, the mechanisms in which starch concentration and physical form affects sugar crop processing, conversion, and end-g...

  5. Food microstructure and starch digestion.

    PubMed

    Singh, Jaspreet; Kaur, Lovedeep; Singh, Harjinder

    2013-01-01

    Microstructural characteristics of starch-based natural foods such as parenchyma or cotyledon cell shape, cell size and composition, and cell wall composition play a key role in influencing the starch digestibility during gastrointestinal digestion. The stability of cell wall components and the arrangement of starch granules in the cells may affect the free access of amylolytic enzymes during digestion. Commonly used food processing techniques such as thermal processing, extrusion cooking, and post-cooking refrigerated storage alter the physical state of starch (gelatinization, retrogradation, etc.) and its digestibility. Rheological characteristics (viscosity) of food affect the water availability during starch hydrolysis and, consequently, the absorption of digested carbohydrates in the gastrointestinal tract. The nonstarch ingredients and other constituents present in food matrix, such as proteins and lipids interact with starch during processing, which leads to an alteration in the overall starch digestibility and physicochemical characteristics of digesta. Starch digestibility can be controlled by critically manipulating the food microstructure, processing techniques, and food composition.

  6. [Hydroxyethyl starch solutions].

    PubMed

    Reingardiene, Dagmara

    2005-01-01

    Hypovolemia is common among surgical, trauma, and intensive care unit patients. It can occur in the absence of obvious fluid loss secondary to vasodilatation or during generalized alterations of the endothelial barrier resulting in increased capillary permeability. Hydroxyethyl starch solutions are increasingly used for the volume replacement therapy. Hydroxyethyl starch solutions are synthetic colloids with the pharmacological properties that are the closest to natural colloids. Important characteristics for these products are molecular weight, their concentration, the degree of molar substitution, and the substitution pattern. In this review article a large variety of hydroxyethyl starch solutions, their physical and chemical characteristics, pharmacokinetics and metabolism, the main route of elimination, mechanism of action, effect on blood plasma volume, safety, tolerability and side effects (the risk of adverse effects on hemostasis, platelet function, frequency of pruritus, anaphylactoid reaction, incidence of rise in serum amylase) are presented.

  7. Physicochemical properties of kiwifruit starch.

    PubMed

    Li, Dongxing; Zhu, Fan

    2017-04-01

    Three varieties of golden kiwifruit (Actinidia chinensis) (Gold3, Gold9 and Hort16A) were collected at the commercial harvesting time, and physicochemical properties of starches from core and outer pericarp were studied. Starch contents (dry weight basis) in outer pericarp and core tissues ranged from 38.6 to 51.8% and 34.6 to 40.7%, respectively. All the kiwifruit starches showed B-type polymorph. Compared to the outer pericarp starches, amylose content and enzyme susceptibility of core starches were higher, and the degree of crystallinity, granule size and gelatinization parameters of core starches were somewhat lower. This suggests different biosynthetic properties between these two starches. The enthalpy changes of gelatinization of outer pericarp starches were high (∼21J/g). Rheological properties of outer pericarp starches were compared with normal maize and potato starches showed high yield stress of flow properties. This study revealed the unique properties of kiwifruit starch among various types of starches.

  8. Comparison of pasting and gel stabilities of waxy and normal starches from potato, maize, and rice with those of a novel waxy cassava starch under thermal, chemical, and mechanical stress.

    PubMed

    Sánchez, Teresa; Dufour, Dominique; Moreno, Isabel Ximena; Ceballos, Hernán

    2010-04-28

    Functional properties of normal and waxy starches from maize, rice, potato, and cassava as well as the modified waxy maize starch COLFLO 67 were compared. The main objective of this study is to position the recently discovered spontaneous mutation for amylose-free cassava starch in relation to the other starches with well-known characteristics. Paste clarity, wavelength of maximum absorption (lambda(max)), pasting properties, swelling power, solubility, and dispersed volume fraction measurements and gel stability (acid and alkaline resistance, shear, refrigeration, and freeze/thaw stability) were evaluated in the different types and sources of starch included in this study. lambda(max) in the waxy cassava starch was reduced considerably in comparison with that of normal cassava starch (535 vs 592 nm). RVA peak viscosity of waxy cassava starch was larger than in normal cassava starch (1119 vs 937 cP) and assumed a position intermediate between the waxy potato and maize starches. Acid, alkaline, and shear stability of waxy cassava starch were similar to normal cassava except for alkaline pH, at which it showed a low effect. Gels from normal root and tuber starches after refrigeration and freeze/thaw had lower syneresis than cereal starches. Gels from waxy starches (except for potato) did not present any syneresis after 5 weeks of storage at 4 degrees C. Waxy cassava starch was the only one not showing any syneresis after 5 weeks of storage at -20 degrees C. Natural waxy cassava starch is, therefore, a promising ingredient to formulate refrigerated or frozen food.

  9. Structure of the homodimer of uridine phosphorylase from Salmonella typhimurium in the native state at 1.9 Å resolution

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Pavlyuk, B. F.; Lashkov, A. A.; Seregina, T. A.; Gabdulkhakov, A. G.; Vaĭnshteĭn, B. K.; Mikhaĭlov, A. M.

    2007-11-01

    Uridine phosphorylase ( UPh) belongs to pyrimidine nucleoside phosphorylases. This enzyme catalyzes cleavage of the C-N glycoside bond in uridine to form uracil and ribose-1’-phosphate. Uridine phosphorylase supplies cells with nucleotide precursors by catalyzing the phosphorolysis of purine and pyrimidine nucleosides. This is an alternative to de novo nucleotide synthesis. The three-dimensional structure of native uridine phosphorylase from Salmonella typhimurium ( StUPh) in a new crystal form was solved and refined at 1.90 Å resolution ( R st = 20.37%; R free = 24.69%; the rmsd of bond lengths and bond angles are 0.009 Å and 1.223°, respectively). A homodimer containing two asynchronously functioning active sites was demonstrated to be the minimum structural unit necessary for function of the hexameric StUPh molecule ( L 33 L 2). Each active site is formed by amino acid residues of both subunits.

  10. Starch biosynthesis: experiments on how starch granules grow in vivo.

    PubMed

    Mukerjea, Romila; Mukerjea, Rupendra; Robyt, John F

    2009-01-05

    Four varieties of starch granules from potato, wheat, maize, and rice were fractionated into homogeneous 10-microm-sized ranges. The size with the largest amount of granules was reacted with ADP-[(14)C]Glc, washed, and peeled into 7-9 layers, using a controlled peeling process, involving 90:10 volume proportions of Me(2)SO-H(2)O at 10 degrees C. All of the starches showed biosynthesis of starch throughout the granules. Starch synthase activities were determined for each of the layers. Three of the starches had a relatively large amount of synthase activity in the second layer, with only a small amount in the first layer. Potato starch had the largest amount of activity in the first layer. Starch synthase activity was found to alternate between higher and lower activities throughout all of the varieties of granules, showing that the synthesis was not uniform and also was not exclusively occurring at the surface of the starch granules, which had previously been hypothesized. From these results and our previous studies on the mechanism of starch chain elongation by the addition of d-glucose to the reducing end of a growing chain that is covalently attached to the active site of starch synthase, a hypothesis is proposed for how starch granules grow in vivo.

  11. Thermoplastic starch-waxy maize starch nanocrystals nanocomposites.

    PubMed

    Angellier, Hélène; Molina-Boisseau, Sonia; Dole, Patrice; Dufresne, Alain

    2006-02-01

    Waxy maize starch nanocrystals obtained by hydrolysis of native granules were used as a reinforcing agent in a thermoplastic waxy maize starch matrix plasticized with glycerol. Compared to our previous studies on starch nanocrystals reinforced natural rubber (NR) [Macromolecules 2005, 38, 3783; 2005, 38, 9161], the present system presents two particularities: (i) thermoplastic starch is a polar matrix, contrarily to NR, and (ii) the chemical structures of the matrix and the filler are similar. The influence of the glycerol content, filler content, and aging on the reinforcing properties of waxy maize starch nanocrystals (tensile tests, DMA) and crystalline structure (X-ray diffraction) of materials were studied. It was shown that the reinforcing effect of starch nanocrystals can be attributed to strong filler/filler and filler/matrix interactions due to the establishment of hydrogen bonding. The presence of starch nanocrystals leads to a slowing down of the recrystallization of the matrix during aging in humid atmosphere.

  12. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4

    PubMed Central

    Ho, Shih-Hsin; Nakanishi, Akihito; Kato, Yuichi; Yamasaki, Hiroaki; Chang, Jo-Shu; Misawa, Naomi; Hirose, Yuu; Minagawa, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-01-01

    Biodiesel production using microalgae would play a pivotal role in satisfying future global energy demands. Understanding of lipid metabolism in microalgae is important to isolate oleaginous strain capable of overproducing lipids. It has been reported that reducing starch biosynthesis can enhance lipid accumulation. However, the metabolic mechanism controlling carbon partitioning from starch to lipids in microalgae remains unclear, thus complicating the genetic engineering of algal strains. We here used “dynamic” metabolic profiling and essential transcription analysis of the oleaginous green alga Chlamydomonas sp. JSC4 for the first time to demonstrate the switching mechanisms from starch to lipid synthesis using salinity as a regulator, and identified the metabolic rate-limiting step for enhancing lipid accumulation (e.g., pyruvate-to-acetyl-CoA). These results, showing salinity-induced starch-to-lipid biosynthesis, will help increase our understanding of dynamic carbon partitioning in oleaginous microalgae. Moreover, we successfully determined the changes of several key lipid-synthesis-related genes (e.g., acetyl-CoA carboxylase, pyruvate decarboxylase, acetaldehyde dehydrogenase, acetyl-CoA synthetase and pyruvate ferredoxin oxidoreductase) and starch-degradation related genes (e.g., starch phosphorylases), which could provide a breakthrough in the marine microalgal production of biodiesel. PMID:28374798

  13. One-Pot Biosynthesis of High-Concentration α-Glucose 1-Phosphate from Starch by Sequential Addition of Three Hyperthermophilic Enzymes.

    PubMed

    Zhou, Wei; You, Chun; Ma, Hongwu; Ma, Yanhe; Zhang, Y-H Percival

    2016-03-02

    α-Glucose 1-phosphate (G1P) is synthesized from 5% (w/v) corn starch and 1 M phosphate mediated by α-glucan phosphorylase (αGP) from the thermophilic bacterium Thermotoga maritima at pH 7.2 and 70 °C. To increase G1P yield from corn starch containing branched amylopectin, a hyper-thermostable isoamylase from Sulfolobus tokodaii was added for simultaneous starch gelatinization and starch-debranching hydrolysis at 85 °C and pH 5.5 before αGP use. The pretreatment of isoamylase increased G1P titer from 120 mM to 170 mM. To increase maltose and maltotriose utilization, the third thermostable enzyme, 4-glucanotransferase (4GT) from Thermococcus litoralis, was added during the late stage of G1P biotransformation, further increasing G1P titer to 200 mM. This titer is the highest G1P level obtained on starch or its derived products (maltodextrin and soluble starch). This study suggests that in vitro multienzyme biotransformation has an advantage of great engineering flexibility in terms of space and time compared with microbial fermentation.

  14. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4.

    PubMed

    Ho, Shih-Hsin; Nakanishi, Akihito; Kato, Yuichi; Yamasaki, Hiroaki; Chang, Jo-Shu; Misawa, Naomi; Hirose, Yuu; Minagawa, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-04-04

    Biodiesel production using microalgae would play a pivotal role in satisfying future global energy demands. Understanding of lipid metabolism in microalgae is important to isolate oleaginous strain capable of overproducing lipids. It has been reported that reducing starch biosynthesis can enhance lipid accumulation. However, the metabolic mechanism controlling carbon partitioning from starch to lipids in microalgae remains unclear, thus complicating the genetic engineering of algal strains. We here used "dynamic" metabolic profiling and essential transcription analysis of the oleaginous green alga Chlamydomonas sp. JSC4 for the first time to demonstrate the switching mechanisms from starch to lipid synthesis using salinity as a regulator, and identified the metabolic rate-limiting step for enhancing lipid accumulation (e.g., pyruvate-to-acetyl-CoA). These results, showing salinity-induced starch-to-lipid biosynthesis, will help increase our understanding of dynamic carbon partitioning in oleaginous microalgae. Moreover, we successfully determined the changes of several key lipid-synthesis-related genes (e.g., acetyl-CoA carboxylase, pyruvate decarboxylase, acetaldehyde dehydrogenase, acetyl-CoA synthetase and pyruvate ferredoxin oxidoreductase) and starch-degradation related genes (e.g., starch phosphorylases), which could provide a breakthrough in the marine microalgal production of biodiesel.

  15. Sensitivity of glycogen phosphorylase isoforms to indole site inhibitors is markedly dependent on the activation state of the enzyme

    PubMed Central

    Freeman, S; Bartlett, J B; Convey, G; Hardern, I; Teague, J L; Loxham, S J G; Allen, J M; Poucher, S M; Charles, A D

    2006-01-01

    Background and purpose: Inhibition of hepatic glycogen phosphorylase is a potential treatment for glycaemic control in type 2 diabetes. Selective inhibition of the liver phosphorylase isoform could minimize adverse effects in other tissues. We investigated the potential selectivity of two indole site phosphorylase inhibitors, GPi688 and GPi819. Experimental approach: The activity of glycogen phosphorylase was modulated using the allosteric effectors glucose or caffeine to promote the less active T state, and AMP to promote the more active R state. In vitro potency of indole site inhibitors against liver and muscle glycogen phosphorylase a was examined at different effector concentrations using purified recombinant enzymes. The potency of GPi819 was compared with its in vivo efficacy at raising glycogen concentrations in liver and muscle of Zucker (fa/fa) rats. Key results: In vitro potency of indole site inhibitors depended upon the activity state of phosphorylase a. Both inhibitors showed selectivity for liver phosphorylase a when the isoform specific activities were equal. After 5 days dosing of GPi819 (37.5 μmol kg−1), where free compound levels in plasma and tissue were at steady state, glycogen elevation was 1.5-fold greater in soleus muscle than in liver (P<0.05). Conclusions and implications: The in vivo selectivity of GPi819 did not match that seen in vitro when the specific activities of phosphorylase a isoforms are equal. This suggests T state promoters may be important physiological regulators in skeletal muscle. The greater efficacy of indole site inhibitors in skeletal muscle has implications for the overall safety profile of such drugs. PMID:17016495

  16. Biological Implications in Cassava for the Production of Amylose-Free Starch: Impact on Root Yield and Related Traits

    PubMed Central

    Karlström, Amanda; Calle, Fernando; Salazar, Sandra; Morante, Nelson; Dufour, Dominique; Ceballos, Hernán

    2016-01-01

    Cassava (Manihot esculenta, Crantz) is an important food security crop, but it is becoming an important raw material for different industrial applications. Cassava is the second most important source of starch worldwide. Novel starch properties are of interest to the starch industry, and one them is the recently identified amylose-free (waxy) cassava starch. Waxy mutants have been found in different crops and have been often associated with a yield penalty. There are ongoing efforts to develop commercial cassava varieties with amylose-free starch. However, little information is available regarding the biological and agronomic implications of starch mutations in cassava, nor in other root and tuber crops. In this study, siblings from eight full-sib families, segregating for the waxy trait, were used to determine if the mutation has implications for yield, dry matter content (DMC) and harvest index in cassava. A total of 87 waxy and 87 wild-type starch genotypes from the eight families were used in the study. The only significant effect of starch type was on DMC (p < 0.01), with waxy clones having a 0.8% lower content than their wild type counterparts. There was no effect of starch type on fresh root yield (FRY), adjusted FRY and harvest index. It is not clear if lower DMC is a pleiotropic effect of the waxy starch mutation or else the result of linked genes introgressed along with the mutation. It is expected that commercial waxy cassava varieties will have competitive FRYs but special efforts will be required to attain adequate DMCs. This study contributes to the limited knowledge available of the impact of starch mutations on the agronomic performance of root and tuber crops. PMID:27242813

  17. The Characterization of Modified Starch Branching Enzymes: Toward the Control of Starch Chain-Length Distributions

    PubMed Central

    Li, Cheng; Wu, Alex Chi; Go, Rob Marc; Malouf, Jacob; Turner, Mark S.; Malde, Alpeshkumar K.; Mark, Alan E.; Gilbert, Robert G.

    2015-01-01

    Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality. PMID:25874689

  18. The characterization of modified starch branching enzymes: toward the control of starch chain-length distributions.

    PubMed

    Li, Cheng; Wu, Alex Chi; Go, Rob Marc; Malouf, Jacob; Turner, Mark S; Malde, Alpeshkumar K; Mark, Alan E; Gilbert, Robert G

    2015-01-01

    Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality.

  19. Starches, resistant starches, the gut microflora and human health.

    PubMed

    Bird, A R; Brown, I L; Topping, D L

    2000-03-01

    Starches are important as energy sources for humans and also for their interactions with the gut microflora throughout the digestive tact. Largely, those interactions promote human health. In the mouth, less gelatinised starches may lower risk of cariogensis. In the large bowel, starches which have escaped small intestinal digestion (resistant starch), together with proteins, other undigested carbohydrates and endogenous secretions are fermented by the resident microflora. The resulting short chain fatty acids contribute substantially to the normal physiological functions of the viscera. Specific types of resistant starch (e.g. the chemically modified starches used in the food industry) may be used to manipulate the gut bacteria and their products (including short chain fatty acids) so as to optimise health. In the upper gut, these starches may assist in the transport of probiotic organisms thus promoting the immune response and suppressing potential pathogens. However, it appears unlikely that current probiotic organisms can be used to modulate large bowel short chain fatty acids in adults although resistant starch and other prebiotics can do so. Suggestions that starch may exacerbate certain conditions (such as ulcerative colitis) through stimulating the growth of certain pathogenic organisms appear to be unfounded. Short chain fatty acids may modulate tissue levels and effects of growth factors in the gut and so modify gut development and risk of serious disease, including colo-rectal cancer. However, information on the relationship between starches and the microflora is relatively sparse and substantial opportunities exist both for basic research and food product development.

  20. Characterization of Arenga starch in comparison with sago starch.

    PubMed

    Adawiyah, Dede R; Sasaki, Tomoko; Kohyama, Kaoru

    2013-02-15

    The aim of this research was to characterize the composition and physical properties of palm starch obtained from Arenga pinnata in comparison with another palm starch from Metroxylon sago. The amylose contents of both starches were not significantly different. Peak gelatinization temperature was also similar at approximately 67 °C, but arenga starch showed a narrower range of gelatinization temperature than sago. The crystallinity and swelling power capacity of arenga starch were lower than those of sago. Arenga and sago starch paste at low concentrations showed shear thinning behavior, and sago formed a more viscous sol/paste than arenga. The sol-gel transition concentration of sago starch paste was found at a lower concentration than arenga starch. At high concentrations, gel from arenga starch was more rigid than that of sago. The breaking properties and texture profile of both starch gels were also clearly different, suggesting that they are suited for different applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    SciTech Connect

    Abramchik, Yu. A. Timofeev, V. I. Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2015-07-15

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  2. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    NASA Astrophysics Data System (ADS)

    Abramchik, Yu. A.; Timofeev, V. I.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2015-07-01

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P21 and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  3. Kinetic properties of tetrameric glycogen phosphorylase b in solution and in the crystalline state.

    PubMed Central

    Leonidas, D. D.; Oikonomakos, N. G.; Papageorgiou, A. C.; Sotiroudis, T. G.

    1992-01-01

    R-state monoclinic P2(1) crystals of phosphorylase have been shown to be catalytically active in the presence of an oligosaccharide primer and glucose-1-phosphate in 0.9 M ammonium sulfate, 10 mM beta-glycerophosphate, 0.5 mM EDTA, and 1 mM dithiothreitol, the medium in which the crystals are grown or equilibrated for crystallographic studies (Barford, D. & Johnson, L.N., 1989, Nature 360, 609-616; Barford, D., Hu, S.-H., & Johnson, L.N., 1991, J. Mol. Biol. 218, 233-260). Kinetic data suggest that the activity of crystalline tetrameric phosphorylase is similar to that determined in solution for the enzyme tetramer. However, large differences were found in the maximal velocities for both oligosaccharide or glucose-1-phosphate substrates between the soluble dimeric and crystalline tetrameric enzyme. PMID:1304391

  4. Three-dimensional structure of E. Coli purine nucleoside phosphorylase at 0.99 Å resolution

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2016-03-01

    Purine nucleoside phosphorylases (PNPs) catalyze the reversible phosphorolysis of nucleosides and are key enzymes involved in nucleotide metabolism. They are essential for normal cell function and can catalyze the transglycosylation. Crystals of E. coli PNP were grown in microgravity by the capillary counterdiffusion method through a gel layer. The three-dimensional structure of the enzyme was determined by the molecular-replacement method at 0.99 Å resolution. The structural features are considered, and the structure of E. coli PNP is compared with the structures of the free enzyme and its complexes with purine base derivatives established earlier. A comparison of the environment of the purine base in the complex of PNP with formycin A and of the pyrimidine base in the complex of uridine phosphorylase with thymidine revealed the main structural features of the base-binding sites. Coordinates of the atomic model determined with high accuracy were deposited in the Protein Data Bank (PDB_ID: 4RJ2).

  5. Peroxisome proliferator-activated receptor gamma coactivator-1alpha enhances antiproliferative activity of 5'-deoxy-5-fluorouridine in cancer cells through induction of uridine phosphorylase.

    PubMed

    Kong, Xingxing; Fan, Heng; Liu, Xiaojun; Wang, Rui; Liang, Jichao; Gupta, Nishith; Chen, Yong; Fang, Fude; Chang, Yongsheng

    2009-10-01

    Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is capable of coactivating several nuclear receptors and transcription factors that participate in the regulation of multiple metabolic processes, including gluconeogenesis, mitochondrial biogenesis, and adaptive thermogenesis. Uridine phosphorylase (UPase) catalyzes the reversible conversion of uridine into uracil and contributes to the antineoplastic activity of 5'-deoxy-5-fluorouridine (5'-DFUR) and homeostasis of uridine levels in plasma and tissues. This study demonstrates uridine phosphorylase as a novel target gene of PGC-1alpha, which induces the transcription and enzymatic activity of UPase in various cancer cells and thus augments their susceptibility to 5'-DFUR. PGC-1alpha-induced activation of UPase expression occurs at its transcription level that is mediated by an estrogen-related receptor (ERR) binding site (-1078 to -1070 base pairs) mapped in the promoter region of UPase gene. Our mutational studies using luciferase reporter construct together with electrophoretic mobility shift assays confirm the binding of ERR to PGC-1alpha-responsive element. Moreover, the inhibition of PGC-1alpha/ERRalpha-dependent signaling by 3-[4-(2,4-bis-trifluoromethylbenzyloxy)-3-methoxyphenyl]-2-cyano-N-(5-trifluoromethyl-1,3,4-thiadiazol-2-yl)acrylamide (XCT790) compromises the ability of PGC-1alpha to induce the transcript of UPase, indicating PGC-1alpha-dependent and ERRalpha-mediated up-regulation of UPase. Finally, the overexpression of PGC-1alpha sensitizes breast and colon cancer cells to growth inhibition by 5'-DFUR presumably by inducing apoptosis in tumor cells and XCT790 can inhibit the process. Taken together, our results corroborate the regulatory function of PGC-1alpha in uridine homeostasis and imply its links with the energy metabolism. The mechanistic elucidation of this association between both cellular pathways should advance the clinical use of 5-fluorouracil

  6. Engineering the specificity of trehalose phosphorylase as a general strategy for the production of glycosyl phosphates.

    PubMed

    Chen, Chao; Van der Borght, Jef; De Vreese, Rob; D'hooghe, Matthias; Soetaert, Wim; Desmet, Tom

    2014-07-25

    A two-step process is reported for the anomeric phosphorylation of galactose, using trehalose phosphorylase as biocatalyst. The monosaccharide enters this process as acceptor but can subsequently be released from the donor side, thanks to the non-reducing nature of the disaccharide intermediate. A key development was the creation of an optimized enzyme variant that displays a strict specificity (99%) for β-galactose 1-phosphate as product.

  7. L-Enantiomers of Transition State Analogue Inhibitors Bound to Human Purine Nucleoside Phosphorylase

    SciTech Connect

    Rinaldo-Matthis,A.; Murkin, A.; Ramagopal, U.; Clinch, K.; Mee, S.; Evans, G.; Tyler, P.; Furneaux, R.; Almo, S.; Schramm, v.

    2008-01-01

    Human purine nucleoside phosphorylase (PNP) was crystallized with transition-state analogue inhibitors Immucillin-H and DADMe-Immucillin-H synthesized with ribosyl mimics of l-stereochemistry. The inhibitors demonstrate that major driving forces for tight binding of these analogues are the leaving group interaction and the cationic mimicry of the transition state, even though large geometric changes occur with d-Immucillins and l-Immucillins bound to human PNP.

  8. Effect of 5-Fluorouracil on Thymidine Phosphorylase Activity in Model Experiment.

    PubMed

    Stashkevich, M A; Khomutov, E V; Dumanskii, Yu V; Matvienko, A G; Zinkovich, I I

    2016-03-01

    Variations in thymidine phosphorylase activity in rat liver were studied in 1, 3, 6, 12, and 24 h after intraperitoneal bolus injection of 5-fluorouracil. Enzyme activity was measured by HPLC. A 2-fold decrease in enzyme activity was observed 3 h after 5-fluorouracil administration and persisted for 12 h. This additional effect of the cytostatic should be taken into account in choosing chemotherapy protocol.

  9. Understanding and influencing starch biochemistry.

    PubMed

    Kossmann, J; Lloyd, J

    2000-01-01

    Starch is one of the most important products synthesized by plants that is used in industrial processes. If it were possible to increase production or modify starches in vivo, using combinations or either genetically altered or mutant plants, it may make them cheaper for use by industry, or open up new markets for the modified starches. The conversion of sucrose to starch in storage organs is, therefore, discussed. In particular the roles of the different enzymes directly involved in synthesizing the starch molecules on altering starch structure are reviewed, as well as the different models for the production of the fine structure of amylopectin. In addition, the process of starch phosphorylation, which is also important in determining the physical properties of starches, is reviewed. It is hoped that detailed knowledge of these processes will lead to the rational design of tailored starches. Starch degradation is also an important process, for example, in the cold-sweetening of potato tubers, but outside of cereal endosperm little is known about the processes involved. The enzymes thought to be involved and the evidence for this are discussed.

  10. [Properties of sucrose phosphorylase from recombinant Escherichia coli and enzymatic synthesis of alpha-arbutin].

    PubMed

    Wan, Yuejia; Ma, Jiangfeng; Xu, Rong; He, Aiyong; Jiang, Min; Chen, Kequan; Jiang, Yin

    2012-12-01

    Sucrose phosphorylase (EC 2.4.1.7, Sucrose phosphorylase, SPase) can be produced by recombinant strain Escherichia coli Rosetta(DE3)/Pet-SPase. Crude enzyme was obtained from the cells by the high pressure disruption and centrifugation. Sucrose phosphorylase was purified by Ni-NTA affinity column chromatography and desalted by ultrafiltration. The specific enzyme activity was 1.1-fold higher than that of the crude enzyme, and recovery rate was 82.7%. The purified recombinant SPase had a band of 59 kDa on SDS-PAGE. Thermostability of the enzyme was shown at temperatures up to 37 degrees C, and pH stability between pH 6.0 and 6.7. The optimum temperature and pH were 37 degrees C and 6.7, respectively. The K(m) of SPase for sucrose was 7.3 mmol/L, and Vmax was 0.2 micromol/(min x mg). Besides, alpha-arbutin was synthesized from sucrose and hydroquinone by transglucosylation with recombinant SPase. The optimal conditions for synthesis of alpha-arbutin were 200 U/mL of recombinant SPase, 20% of sucrose, and 1.6% hydroquinone at pH 6-6.5 and 25 degrees C for 21 h. Under these conditions, alpha-arbutin was obtained with a 78.3% molar yield with respect to hydroquinone, and the concentration of alpha-arbutin was about 31 g/L.

  11. Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization

    PubMed Central

    Kadokawa, Jun-ichi

    2013-01-01

    This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether), and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran) (PTHF) in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactide)s, also appeared in the vine-twining polymerization. PMID:24970172

  12. Single tryptophan of disordered loop from Plasmodium falciparum purine nucleoside phosphorylase: involvement in catalysis and microenvironment.

    PubMed

    Suthar, Manish Kumar; Verma, Anita; Doharey, Pawan Kumar; Singh, Shiv Vardan; Saxena, Jitendra Kumar

    2013-06-01

    Among various tropical diseases, malaria is a major life-threatening disease caused by Plasmodium parasite. Plasmodium falciparum is responsible for the deadliest form of malaria, so-called cerebral malaria. Purine nucleoside phosphorylase from P. falciparum is a homohexamer containing single tryptophan residue per subunit that accepts inosine and guanosine but not adenosine for its activity. This enzyme has been exploited as drug target against malaria disease. It is important to draw together significant knowledge about inherent properties of this enzyme which will be helpful in better understanding of this drug target. The enzyme shows disorder to order transition during catalysis. The single tryptophan residue residing in conserved region of transition loop is present in purine nucleoside phosphorylases throughout the Plasmodium genus. This active site loop motif is conserved among nucleoside phosphorylases from apicomplexan parasites. Modification of tryptophan residue by N-bromosuccinamide resulted in complete loss of activity showing its importance in catalysis. Inosine was not able to protect enzyme against N-bromosuccinamide modification. Extrinsic fluorescence studies revealed that tryptophan might not be involved in substrate binding. The tryptophan residue localised in electronegative environment showed collisional and static quenching in the presence of quenchers of different polarities.

  13. 1, 4-alpha-Glucan phosphorylase from Klebsiella pneumoniae purification, subunit structure and amino acid composition.

    PubMed

    Linder, D; Kurz, G; Bender, H; Wallenfels, K

    1976-11-01

    1. A 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae has been purified about 80-fold with an over-all yield greater than 35%. The purified enzyme has been shown to be homogeneous by gel electrophoresis at different pH-values, by isoelectric focusing, by dodecylsulfate electrophoresis and by ultracentrifugation. 2. The molecular weight of the native enzyme has been determined to be 180 000 by ultra-centrifugation studies, in good agreement with the value of 189 000 estimated by gel permeation chromatography. 3. The enzyme dissociates in the presence of 0.1% dodecylsulfate or 5 M guanidine hydrochloride into polypeptide chains. The molecular weight of these polypeptide chains has been found to be 88 000 by dodecylsulfate polyacrylamide gel electrophoresis and 99 000 by sedimentation equilibrium studies, indicating that the native enzyme is composed of two polypeptide chains. 4. The enzyme contains pyridoxalphosphate with a stoichiometry of two moles per 180 000 g protein, confirming that the 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae is a dimeric enzyme. 5. The amino acid composition of the enzyme has been determined, and its correspondence to that of 1,4-alpha-glucan phosphorylases from other sources is discussed. 6. The pI of the enzyme has been shown to be 5.3 and its pH-optimum to be about pH 5.9. The enzyme is stable in the range from pH 5.9 to 10.5.

  14. 1,4-alpha-Glucan phosphorylase form Klebsiella pneumoniae covalently couple on porous glass.

    PubMed

    Wengenmayer, F; Linder, D; Wallenfels, K

    1977-09-01

    A simplified procedure for the preparation of 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae is described. An 80-fold purification is achieved in two steps with an overall yield of about 50%. The specific activity of the homogeneous enzyme protein is 17.7 units/mg. Compared with glycogen phosphorylase from rabbit muscle the enzyme from K. pneumoniae shows a markedly higher stability against deforming and chaotropic agents. The 1,4-alpha-glucan phosphorylase was covalently bound to porous glass particles by three different methods. Coupling with glutaraldehyde gave the highest specific activity, i.e., 5.6 units/mg of bound protein or 133 units/g of glass with maltodextrin as substrate. This corresponds to about 30% of the specific activity of the soluble enzyme. With substrates of higher molecular weight, such as glycogen or amylopectin, lower relative activity was observed. The immobilized enzyme preparations showed pH activity profiles which were slightly displaced to higher values and exhibited an increased temperature stability.

  15. Enzymatic synthesis of nucleosides by nucleoside phosphorylase co-expressed in Escherichia coli.

    PubMed

    Ding, Qing-bao; Ou, Ling; Wei, Dong-zhi; Wei, Xiao-kun; Xu, Yan-mei; Zhang, Chun-yan

    2010-11-01

    Nucleoside phosphorylase is an important enzyme involved in the biosynthesis of nucleosides. In this study, purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase were co-expressed in Escherichia coli and the intact cells were used as a catalyst for the biosynthesis of nucleosides. For protein induction, lactose was used in place of isopropyl β-D-1-thiogalactopyranoside (IPTG). When the concentration of lactose was above 0.5 mmol/L, the ability to induce protein expression was similar to that of IPTG. We determined that the reaction conditions of four bacterial strains co-expressing these genes (TUD, TAD, DUD, and DAD) were similar for the biosyntheses of 2,6-diaminopurine nucleoside and 2,6-diaminopurine deoxynucleoside. When the substrate concentration was 30 mmol/L and 0.5% of the recombinant bacterial cell volume was used as the catalyst (pH 7.5), a greater than 90% conversion yield was reached after a 2-h incubation at 50 °C. In addition, several other nucleosides and nucleoside derivatives were efficiently synthesized using bacterial strains co-expressing these recombinant enzymes.

  16. Enzymatic synthesis of nucleosides by nucleoside phosphorylase co-expressed in Escherichia coli

    PubMed Central

    Ding, Qing-bao; Ou, Ling; Wei, Dong-zhi; Wei, Xiao-kun; Xu, Yan-mei; Zhang, Chun-yan

    2010-01-01

    Nucleoside phosphorylase is an important enzyme involved in the biosynthesis of nucleosides. In this study, purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase were co-expressed in Escherichia coli and the intact cells were used as a catalyst for the biosynthesis of nucleosides. For protein induction, lactose was used in place of isopropyl β-D-1-thiogalactopyranoside (IPTG). When the concentration of lactose was above 0.5 mmol/L, the ability to induce protein expression was similar to that of IPTG. We determined that the reaction conditions of four bacterial strains co-expressing these genes (TUD, TAD, DUD, and DAD) were similar for the biosyntheses of 2,6-diaminopurine nucleoside and 2,6-diaminopurine deoxynucleoside. When the substrate concentration was 30 mmol/L and 0.5% of the recombinant bacterial cell volume was used as the catalyst (pH 7.5), a greater than 90% conversion yield was reached after a 2-h incubation at 50 °C. In addition, several other nucleosides and nucleoside derivatives were efficiently synthesized using bacterial strains co-expressing these recombinant enzymes. PMID:21043057

  17. Influence of substrates on in vitro dephosphorylation of glycogen phosphorylase a by protein phosphatase-1.

    PubMed Central

    Wang, Z X

    1999-01-01

    The kinetic theory of the substrate reaction during modification of enzyme activity has been applied to a study of the dephosphorylation of phosphorylase a by protein phosphatase-1 (ppase-1). On the basis of the kinetic equation of the substrate reaction in the presence of ppase-1, all the inactivation rate constants for the free enzyme and the enzyme-substrate(s) complexes have been determined. Binding of the allosteric substrate, glucose 1-phosphate, to one subunit of phosphorylase a protects completely against ppase-1 action on either the same subunit or the adjacent subunit, whereas binding of the non-allosteric substrate, glycogen, to one subunit protects this subunit partially, but has no effect on the modification on the neighbouring subunit. Analysis of the data suggests that the allosteric behaviour of phosphorylase a can be interpreted in terms of a modified concerted model. The present method also provides a novel approach for studying dephosphorylation reactions. Since the experimental conditions used resemble more closely the in vivo situation where the substrate is constantly being turned over while the enzyme is being modified, this new method would be particularly useful when the regulatory mechanism of the reversible phosphorylation reaction toward certain enzymes is being assessed. PMID:10417316

  18. Re-Evaluation of the Role of Starch in Gravitropic Sensing

    NASA Technical Reports Server (NTRS)

    Sack, Fred D.

    1998-01-01

    Plant organs grow toward or away from gravity as a way to orient those organs for optimizing growth. Starch has long been thought to be important in sensing the direction of the g-vector in gravitropism, but that hypothesis has also evoked controversy. We have previously shown that starch-deficient mutants of Arabidopsis (TC7) and Nicotiana (NS458) are impaired in their gravitropism. While this suggests that starch is not necessary for reduced gravitropism, it also indicates that the mass of the starch contributes to sensing when present and thus is necessary for full gravitropic sensitivity. The research supported by this grant focused on three related projects, (1) the effect of light on hypocotyl gravitropism in NS458, (2) the effects of root phototropism on measurements of gravitropic sensitivity, and (3) the effects of starch overproduction on sedimentation and gravitropism. Collectively, our results provide additional strong support for the importance of starch in gravitropic sensing. First, by accounting for negative phototropism in roots of two starchless mutants of Arabidopsis we have established that these mutants are much less sensitive to gravity than previously thought. This work also demonstrates the importance of designing experimental protocols that remove the influence of root phototropism on measuring root gravitropism. Second, light apparently promotes gravitropism in starch-deficient Nicotiana hypocotyls by increasing the trace amounts of starch in the plastids, by inducing limited plastid sedimentation and thus by presumably increasing the signal provided by plastid mass. And finally, we show that excess starch in Arabidopsis seedlings has little effect on gravitropic sensitivity implying that the sensing system is already saturated. However, in light-grown stems where this mutation results in starch accumulation and where the wild-type practically lacks starch in the sensing cells, the mutant is much more sensitive than the wild-type again

  19. Starch Biorefinery Enzymes.

    PubMed

    Läufer, Albrecht

    2017-03-07

    Nature uses enzymes to build and convert biomass; mankind uses the same enzymes and produces them on a large scale to make optimum use of biomass in biorefineries. Bacterial α-amylases and fungal glucoamylases have been the workhorses of starch biorefineries for many decades. Pullulanases were introduced in the 1980s. Proteases, cellulases, hemicellulases, and phytases have been on the market for a few years as process aids, improving yields, performance, and costs. Detailed studies of the complex chemical structures of biomass and of the physicochemical limitations of industrial biorefineries have led enzyme developers to produce novel tailor-made solutions for improving yield and profitability in the industry. This chapter reviews the development of enzyme applications in the major starch biorefining processes.

  20. Molecular and supra-molecular structure of waxy starches developed from cassava (Manihot esculenta Crantz).

    PubMed

    Rolland-Sabaté, Agnès; Sanchez, Teresa; Buléon, Alain; Colonna, Paul; Ceballos, Hernan; Zhao, Shan-Shan; Zhang, Peng; Dufour, Dominique

    2013-02-15

    The aim of this work was to characterize the amylopectin of low amylose content cassava starches obtained from transgenesis comparatively with a natural waxy cassava starch (WXN) discovered recently in CIAT (International Center for Tropical Agriculture). Macromolecular features, starch granule morphology, crystallinity and thermal properties of these starches were determined. M¯(w) of amylopectin from the transgenic varieties are lower than WXN. Branched and debranched chain distributions analyses revealed slight differences in the branching degree and structure of these amylopectins, principally on DP 6-9 and DP>37. For the first time, a deep structural characterization of a series of transgenic lines of waxy cassava was carried out and the link between structural features and the mutated gene expression approached. The transgenesis allows to silenced partially or totally the GBSSI, without changing deeply the starch granule ultrastructure and allows to produce clones with similar amylopectin as parental cassava clone.

  1. Starch digestion capacity of poultry.

    PubMed

    Svihus, B

    2014-09-01

    Starch is quantitatively the most important nutrient in poultry diets and will to a large extent be present as intact starch granules due to very limited extent of gelatinization during pelleting. Although native starch is difficult to digest due to a semi-crystalline structure, even fast-growing broiler chickens appears to be able to digest this starch more or less completely during passage through the jejunum. However, reduced starch digestibility has been observed, particularly in pelleted diets containing large quantities of wheat. Although properties of the starch granule such as size and components on the granule surface may affect digestibility, the entrapment of starch granules in cell walls and a protein matrix may be even more important factors impeding starch digestion. In that case, this and the fact that amylase secretion is normally very high in poultry may explain the lack of convincing effects of exogenous α-amylase added to the diet. However, few well-designed experiments assessing mechanisms of starch digestion and the effect of α-amylase supplementation have been carried out, and thus more research is needed in this important area. © 2014 Poultry Science Association Inc.

  2. STARCH HYDROLYSIS BY STREPTOCOCCUS EQUINUS

    PubMed Central

    Dunican, Lawrence K.; Seeley, Harry W.

    1962-01-01

    Dunican, Lawrence K. (Cornell University, Ithaca, N. Y.) and Harry W. Seeley. Starch hydrolysis by Streptococcus equinus. J. Bacteriol. 82:264–269. 1962.—In a study of starch hydrolysis by strains of Streptococcus equinus, 52 isolates were obtained and their amylolytic abilities determined. It was found that all the strains could hydrolyze starch to some extent when grown in the presence of an easily fermentable carbohydrate, viz., glucose. Without this carbohydrate the organisms did not hydrolyze starch. The hydrolysis of starch was inhibited when the organisms were grown in an atmosphere of 5% CO2 and 95% N2, even if grown in the presence of a fermentable monosaccharide. S. bovis, which was used as a reference organism, readily hydrolyzed starch in the absence of monosaccharides and in atmospheres containing CO2. In no instance did S. equinus hydrolyze the starch to the level of reducing sugars. Negligible amounts of reducing sugars were recovered when the cell-free filtrates of S. equinus were incubated with starch. With S. bovis, the yield of reducing sugars under such conditions was almost quantitative. These facts extend further the differences between these related organisms. The ability to synthesize an internal starchlike polysaccharide was noted in most of the strains of S. equinus. Synthesis was found when the organisms were grown on maltose or on a starch medium containing a small amount of fermentable monosaccharide. PMID:13888473

  3. Interaction of Bacillus subtilis Polynucleotide Phosphorylase and RNase Y: STRUCTURAL MAPPING AND EFFECT ON mRNA TURNOVER.

    PubMed

    Salvo, Elizabeth; Alabi, Shanique; Liu, Bo; Schlessinger, Avner; Bechhofer, David H

    2016-03-25

    Polynucleotide phosphorylase (PNPase), a 3'-to-5' phosphorolytic exoribonuclease, is thought to be the primary enzyme responsible for turnover ofBacillus subtilismRNA. The role of PNPase inB. subtilismRNA decay has been analyzed previously by comparison of mRNA profiles in a wild-type strainversusa strain that is deleted forpnpA, the gene encoding PNPase. Recent studies have provided evidence for a degradosome-like complex inB. subtilisthat is built around the major decay-initiating endonuclease, RNase Y, and there is ample evidence for a strong interaction between PNPase and RNase Y. The role of the PNPase-RNase Y interaction in the exonucleolytic function of PNPase needs to be clarified. We sought to construct aB. subtilisstrain containing a catalytically active PNPase that could not interact with RNase Y. Mapping studies of the PNPase-RNase Y interaction were guided by a homology model ofB. subtilisPNPase based on the known structure of theEscherichia coliPNPase in complex with an RNase E peptide. Mutations inB. subtilisresidues predicted to be involved in RNase Y binding showed a loss of PNPase-RNase Y interaction. Two mRNAs whose decay is dependent on RNase Y and PNPase were examined in strains containing full-length PNPase that was either catalytically active but unable to interact with RNase Y, or catalytically inactive but able to interact with RNase Y. At least for these two mRNAs, disruption of the PNPase-RNase Y interaction did not appear to affect mRNA turnover. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Domestication and the storage starch biosynthesis pathway: signatures of selection from a whole sorghum genome sequencing strategy.

    PubMed

    Campbell, Bradley C; Gilding, Edward K; Mace, Emma S; Tai, Shuaishuai; Tao, Yongfu; Prentis, Peter J; Thomelin, Pauline; Jordan, David R; Godwin, Ian D

    2016-12-01

    Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either 'Landraces' or 'Wild and Weedy' genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Isolation, crystallization and preliminary crystallographic analysis of Salmonella typhimurium uridine phosphorylase crystallized with 2,2′-anhydrouridine

    SciTech Connect

    Timofeev, Vladimir I.; Lashkov, Alexander A.; Gabdoulkhakov, Azat G.; Pavlyuk, Bogdan Ph.; Kachalova, Galina S.; Betzel, Christian

    2007-10-01

    S. typhimurium uridine phosphorylase has been isolated and crystallized in the presence of ligand. Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C—N glycoside bond of uridine, with the formation of ribose 1-phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding the catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2′-anhydrouridine. X-ray diffraction data were collected to 2.15 Å. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 Å. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit.

  6. Determination of expression and activity of genes involved in starch metabolism in Lactobacillus plantarum A6 during fermentation of a cereal-based gruel.

    PubMed

    Humblot, Christèle; Turpin, Williams; Chevalier, François; Picq, Christian; Rochette, Isabelle; Guyot, Jean-Pierre

    2014-08-18

    Traditional fermented gruels prepared from cereals are widely used for complementary feeding of young children in Africa and usually have a low energy density. The amylase activity of some lactic acid bacteria (LAB) helps increase the energy content of gruels through partial hydrolysis of starch, thus enabling the incorporation of more starchy material while conserving the desired semi-liquid consistency for young children. Even if this ability is mainly related to the production of alpha-amylase (E.C. 3.2.1.1), in a recent molecular screening, genes coding for enzymes involved in starch metabolism were detected in the efficient amylolytic LAB Lactobacillus plantarum A6: alpha-glucosidase (E.C. 3.2.1.20), neopullulanase (E.C. 3.2.1.135), amylopectin phosphorylase (E.C. 2.4.1.1) and maltose phosphorylase (E.C. 2.4.1.8). The objective of this study was to investigate the expression of these genes in a model of starchy fermented food made from pearl millet (Pennisetum glaucum). Transcriptional and enzymatic analyses were performed during the 18-h fermentation period. Liquefaction was mainly caused by an extracellular alpha amylase encoded by the amyA gene specific to the A6 strain among L. plantarum species and found in both Lactobacillus amylovorus and Lactobacillus manihotivorans. The second most active enzyme was neopullulanase. Other starch metabolizing enzymes were less often detected. The dynamic detection of transcripts of gene during starch fermentation in pearl millet porridge suggests that the set of genes we investigated was not expressed continuously but transiently.

  7. Kernel composition, starch structure, and enzyme digestibility of opaque-2 maize and quality protein maize.

    PubMed

    Hasjim, Jovin; Srichuwong, Sathaporn; Scott, M Paul; Jane, Jay-Lin

    2009-03-11

    Objectives of this study were to understand how opaque-2 (o2) mutation and quality protein maize (QPM) affect maize kernel composition and starch structure, property, and enzyme digestibility. Kernels of o2 maize contained less protein (9.6-12.5%) than those of the wild-type (WT) counterparts (12.7-13.3%). Kernels of a severe o2 mutant B46o2 also contained less starch (66.9%) than those of B46wt (73.0%). B46o2 and QPM starches contained less amylose (28.0 and 26.0%, respectively) than others (31.9-33.7%). The B46o2 starch also consisted of amylopectin with the fewest branch chains of DP 13-24. Thus, the B46o2 starch was the most susceptible to porcine pancreatic alpha-amylase (PPA) hydrolysis. Starches of the dry-ground o2 maize and QPM were hydrolyzed faster than that of the dry-ground WT maize, resulting from the reduced protein content of the o2-maize kernels and the reduced amylose content of the B46o2 and QPM starch. Starch in the dry-ground maize sample was hydrolyzed faster by PPA (85-91%) than was the isolated starch (62-71%), which could be attributed to the presence of mechanically damaged starch granules and endogenous amylases in the dry-ground maize samples. These results showed that o2 maize and QPM had highly digestible starch and could be desirable for feed and ethanol production.

  8. Molecular Evolution and Functional Divergence of Soluble Starch Synthase Genes in Cassava (Manihot Esculenta Crantz)

    PubMed Central

    Yang, Zefeng; Wang, Yifan; Xu, Shuhui; Xu, Chenwu; Yan, Changjie

    2013-01-01

    Soluble starch synthases (SSs) are major enzymes involved in starch biosynthesis in plants. Cassava starch has many remarkable characteristics, which should be influenced by the evolution of SS genes in this starchy root crop. In this work, we performed a comprehensive phylogenetic and evolutionary analysis of the soluble starch synthases in cassava. Genome-wide identification showed that there are 9 genes encoding soluble starch synthases in cassava. All of the soluble starch synthases encoded by these genes contain both Glyco_transf_5 and Glycos_transf_1 domains, and a correlation analysis showed evidence of coevolution between these 2 domains in cassava SS genes. The SS genes in land plants can be divided into 6 subfamilies that were formed before the origin of seed plants, and species-specific expansion has contributed to the evolution of this family in cassava. A functional divergence analysis for this family provided statistical evidence for shifted evolutionary rates between the subfamilies of land plant soluble starch synthases. Although the main selective pressure acting on land plant SS genes was purifying selection, our results also revealed that point mutation with positive selection contributed to the evolution of 2 SS genes in cassava. The remarkable cassava starch characteristics might be the result of both the duplication and adaptive selection of SS genes. PMID:23888108

  9. Starch-filled polymer composites

    USDA-ARS?s Scientific Manuscript database

    This report describes the development of degradable polymer composites that can be made at room temperature without special equipments. The developed composites are made from ethyl cyanoacrylate and starch. The polymer composites produced by this procedure contain 60 wt% of starch with compressive s...

  10. Responsive starch-based materials

    USDA-ARS?s Scientific Manuscript database

    Starch, a low-cost, annually renewable resource, is naturally hydrophilic and its properties change with relative humidity. Starch’s hygroscopic nature can be used to develop materials which change shape or volume in response to environmental changes (e.g. humidity). For example, starch-based graf...

  11. Physicochemical properties of maca starch.

    PubMed

    Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan

    2017-03-01

    Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications.

  12. Starch Applications for Delivery Systems

    NASA Astrophysics Data System (ADS)

    Li, Jason

    2013-03-01

    Starch is one of the most abundant and economical renewable biopolymers in nature. Starch molecules are high molecular weight polymers of D-glucose linked by α-(1,4) and α-(1,6) glycosidic bonds, forming linear (amylose) and branched (amylopectin) structures. Octenyl succinic anhydride modified starches (OSA-starch) are designed by carefully choosing a proper starch source, path and degree of modification. This enables emulsion and micro-encapsulation delivery systems for oil based flavors, micronutrients, fragrance, and pharmaceutical actives. A large percentage of flavors are encapsulated by spray drying in today's industry due to its high throughput. However, spray drying encapsulation faces constant challenges with retention of volatile compounds, oxidation of sensitive compound, and manufacturing yield. Specialty OSA-starches were developed suitable for the complex dynamics in spray drying and to provide high encapsulation efficiency and high microcapsule quality. The OSA starch surface activity, low viscosity and film forming capability contribute to high volatile retention and low active oxidation. OSA starches exhibit superior performance, especially in high solids and high oil load encapsulations compared with other hydrocolloids. The submission is based on research and development of Ingredion

  13. Characterization of potato leaf starch.

    PubMed

    Santacruz, Stalin; Koch, Kristine; Andersson, Roger; Aman, Per

    2004-04-07

    The starch accumulation-degradation process as well as the structure of leaf starch are not completely understood. To study this, starch was isolated from potato leaves collected in the early morning and late afternoon in July and August, representing different starch accumulation rates. The starch content of potato leaves varied between 2.9 and 12.9% (dry matter basis) over the night and day in the middle of July and between 0.6 and 1.5% in August. Scanning electron microscopy analyses of the four isolated starch samples showed that the granules had either an oval or a round shape and did not exceed 5 microm in size. Starch was extracted by successive washing steps with dimethyl sulfoxide and precipitated with ethanol. An elution profile on Sepharose CL-6B of debranched starch showed the presence of a material with a chain length distribution between that generally found for amylose and amylopectin. Amylopectin unit chains of low molecular size were present in a higher amount in the afternoon than in the morning samples. What remains at the end of the night is depleted in specific chain lengths, mainly between DP 15 and 24 and above DP 35, relative to the end of the day.

  14. Brucite nanoplate reinforced starch bionanocomposites

    USDA-ARS?s Scientific Manuscript database

    In this paper the mechanical reinforcement in a series of bionanocomposites films based on starch and nano-sized brucite, Mg(OH)2, was investigated. Brucite nanoplates with an aspect ratio of 9.25 were synthesized by wet precipitation and incorporated into starch matrices at different concentrations...

  15. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway.

    PubMed

    Nougué, Odrade; Corbi, Jonathan; Ball, Steven G; Manicacci, Domenica; Tenaillon, Maud I

    2014-05-15

    Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called "Escape from Adaptive Conflict" (EAC) model. Because none of the

  16. Preliminary investigation of the three-dimensional structure of Salmonella typhimurium uridine phosphorylase in the crystalline state.

    PubMed

    Dontsova, Maria V; Gabdoulkhakov, Azat G; Molchan, Olga K; Lashkov, Alexandr A; Garber, Maria B; Mironov, Alexandr S; Zhukhlistova, Nadegda E; Morgunova, Ekaterina Yu; Voelter, Wolfgang; Betzel, Christian; Zhang, Yang; Ealick, Steven E; Mikhailov, Al'bert M

    2005-04-01

    Uridine phosphorylase (UPh) catalyzes the phosphorolytic cleavage of the C-N glycosidic bond of uridine to ribose 1-phosphate and uracil in the pyrimidine-salvage pathway. The crystal structure of the Salmonella typhimurium uridine phosphorylase (StUPh) has been determined at 2.5 A resolution and refined to an R factor of 22.1% and an Rfree of 27.9%. The hexameric StUPh displays 32 point-group symmetry and utilizes both twofold and threefold non-crystallographic axes. A phosphate is bound at the active site and forms hydrogen bonds to Arg91, Arg30, Thr94 and Gly26 of one monomer and Arg48 of an adjacent monomer. The hexameric StUPh model reveals a close structural relationship to Escherichia coli uridine phosphorylase (EcUPh).

  17. Preliminary investigation of the three-dimensional structure of Salmonella typhimurium uridine phosphorylase in the crystalline state

    PubMed Central

    Dontsova, Maria V.; Gabdoulkhakov, Azat G.; Molchan, Olga K.; Lashkov, Alexandr A.; Garber, Maria B.; Mironov, Alexandr S.; Zhukhlistova, Nadegda E.; Morgunova, Ekaterina Yu.; Voelter, Wolfgang; Betzel, Christian; Zhang, Yang; Ealick, Steven E.; Mikhailov, Al’bert M.

    2005-01-01

    Uridine phosphorylase (UPh) catalyzes the phosphorolytic cleavage of the C—­N glycosidic bond of uridine to ribose 1-phosphate and uracil in the pyrimidine-salvage pathway. The crystal structure of the Salmonella typhimurium uridine phosphorylase (StUPh) has been determined at 2.5 Å resolution and refined to an R factor of 22.1% and an R free of 27.9%. The hexameric StUPh displays 32 point-group symmetry and utilizes both twofold and threefold non-crystallographic axes. A phosphate is bound at the active site and forms hydrogen bonds to Arg91, Arg30, Thr94 and Gly26 of one monomer and Arg48 of an adjacent monomer. The hexameric StUPh model reveals a close structural relationship to Escherichia coli uridine phosphorylase (EcUPh). PMID:16511035

  18. X-ray structure of Salmonella typhimurium uridine phosphorylase complexed with 5-fluorouracil and molecular modelling of the complex of 5-fluorouracil with uridine phosphorylase from Vibrio cholerae.

    PubMed

    Lashkov, Alexander A; Sotnichenko, Sergey E; Prokofiev, Igor I; Gabdulkhakov, Azat G; Agapov, Igor I; Shtil, Alexander A; Betzel, Christian; Mironov, Alexander S; Mikhailov, Al'bert M

    2012-08-01

    Uridine phosphorylase (UPh), which is a key enzyme in the reutilization pathway of pyrimidine nucleoside metabolism, is a validated target for the treatment of infectious diseases and cancer. A detailed analysis of the interactions of UPh with the therapeutic ligand 5-fluorouracil (5-FUra) is important for the rational design of pharmacological inhibitors of these enzymes in prokaryotes and eukaryotes. Expanding on the preliminary analysis of the spatial organization of the active centre of UPh from the pathogenic bacterium Salmonella typhimurium (StUPh) in complex with 5-FUra [Lashkov et al. (2009), Acta Cryst. F65, 601-603], the X-ray structure of the StUPh-5-FUra complex was analysed at atomic resolution and an in silico model of the complex formed by the drug with UPh from Vibrio cholerae (VchUPh) was generated. These results should be considered in the design of selective inhibitors of UPhs from various species.

  19. Microbial starch-binding domain.

    PubMed

    Rodríguez-Sanoja, Romina; Oviedo, Norma; Sánchez, Sergio

    2005-06-01

    Glucosidic bonds from different non-soluble polysaccharides such as starch, cellulose and xylan are hydrolyzed by amylases, cellulases and xylanases, respectively. These enzymes are produced by microorganisms. They have a modular structure that is composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. Starch-binding modules are present in microbial enzymes that are involved in starch metabolism; these are classified into several different families on the basis of their amino acid sequence similarities. Such binding domains promote attachment to the substrate and increase its concentration at the active site of the enzyme, which allows microorganisms to degrade non-soluble starch. Fold similarities are better conserved than sequences; nevertheless, it is possible to notice two evolutionary clusters of microbial starch-binding domains. These domains have enormous potential as tags for protein immobilization, as well as for the tailoring of enzymes that play a part in polysaccharide metabolism.

  20. The cyclin-dependent kinase (CDK) inhibitor flavopiridol inhibits glycogen phosphorylase.

    PubMed

    Kaiser, A; Nishi, K; Gorin, F A; Walsh, D A; Bradbury, E M; Schnier, J B

    2001-02-15

    Flavopiridol has been shown to induce cell cycle arrest and apoptosis in various tumor cells in vitro and in vivo. Using immobilized flavopiridol, we identified glycogen phosphorylases (GP) from liver and brain as flavopiridol binding proteins from HeLa cell extract. Purified rabbit muscle GP also bound to the flavopiridol affinity column. GP is the rate-limiting enzyme in intracellular glycogen breakdown. Flavopiridol significantly inhibited the AMP-activated GP-b form of the purified rabbit muscle isoenzyme (IC50 of 1 microM at 0.8 mM AMP), but was less inhibitory to the active phosphorylated form of GP, GP-a (IC50 of 2.5 microM). The AMP-bound GP-a form was poorly inhibited by flavopiridol (40% at 10 microM). Increasing concentrations of the allosteric effector AMP resulted in a linear decrease in the GP-inhibitory activity of flavopiridol suggesting interference between flavopiridol and AMP. In contrast the GP inhibitor caffeine had no effect on the relative GP inhibition by flavopiridol, suggesting an additive effect of caffeine. Flavopiridol also inhibited the phosphorylase kinase-catalyzed phosphorylation of GP-b by inhibiting the kinase in vitro. Flavopiridol thus is able to interfere with both activating modifications of GP-b, AMP activation and phosphorylation. In A549 NSCLC cells flavopiridol treatment caused glycogen accumulation despite of an increase in GP activity, suggesting direct GP inhibition in vivo rather than inhibition of GP activation by phosphorylase kinase. These results suggest that the cyclin-dependent kinase inhibitor flavopiridol interferes with glycogen degradation, which may be responsible for flavopiridol's cytotoxicity and explain its resistance in some cell lines.

  1. Thymidine esters as substrate analogue inhibitors of angiogenic enzyme thymidine phosphorylase in vitro.

    PubMed

    Javaid, Sumaira; Ishtiaq, Marium; Shaikh, Muniza; Hameed, Abdul; Choudhary, M Iqbal

    2017-02-01

    Thymidine phosphorylase (TP) catalyzes the cleavage of thymidine into thymine and 2-deoxy-α-d-ribose-1-phosphate. Elevated activity of TP prevents apoptosis, and induces angiogenesis which ultimately leads to tumor growth and metastasis. Critical role of TP in cancer progression makes it a valid target in anti-cancer research. Discovery of small molecules as TP inhibitors is vigorously pursued in cancer therapy. In the present study, we functionalized thymidine as benzoyl ester to synthesize compounds 3-16. In vitro evaluation of thymidine esters for their thymidine phosphorylase inhibition activity was subsequently carried out. Compounds 4, 10, 14, and 15 showed good activities with lower IC50 values than the standard, 7-deazaxanthine (IC50=41.0±1.63μM). Among them, compound 14 showed five folds higher activity (IC50=7.5±0.8μM), while 4 (IC50=18.5±1.0μM) and 10 (IC50=18.8±1.2μM) showed two folds higher activity than the standard. Compound 15 showed slightly better activity (IC50=33.3±1.5μM) to the standard. Potent compounds were further subjected to kinetic and molecular docking studies to identify their mode of inhibition, and to study their interactions with the protein at atomic level, respectively. All active compounds were non-cytotoxic to mouse fibroblast 3T3 cell line. These results identify thymidine esters as substrate analogue (substrate-like) inhibitors of angiogenic enzyme thymidine phosphorylase for further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Recombinant purine nucleoside phosphorylases from thermophiles: preparation, properties and activity towards purine and pyrimidine nucleosides.

    PubMed

    Zhou, Xinrui; Szeker, Kathleen; Janocha, Bernd; Böhme, Thomas; Albrecht, Dirk; Mikhailopulo, Igor A; Neubauer, Peter

    2013-03-01

    Thermostable nucleoside phosphorylases are attractive biocatalysts for the synthesis of modified nucleosides. Hence we report on the recombinant expression of three 'high molecular mass' purine nucleoside phosphorylases (PNPs) derived from the thermophilic bacteria Deinococcus geothermalis, Geobacillus thermoglucosidasius and from the hyperthermophilic archaeon Aeropyrum pernix (5'-methythioadenosine phosphorylase; ApMTAP). Thermostability studies, kinetic analysis and substrate specificities are reported. The PNPs were stable at their optimal temperatures (DgPNP, 55 °C; GtPNP, 70 °C; ApMTAP, activity rising to 99 °C). Substrate properties were investigated for natural purine nucleosides [adenosine, inosine and their C2'-deoxy counterparts (activity within 50-500 U·mg(-1))], analogues with 2'-amino modified 2'-deoxy-adenosine and -inosine (within 0.1-3 U·mg(-1)) as well as 2'-deoxy-2'-fluoroadenosine (9) and its C2'-arabino diastereomer (10, within 0.01-0.03 U·mg(-1)). Our results reveal that the structure of the heterocyclic base (e.g. adenine or hypoxanthine) can play a critical role in the phosphorolysis reaction. The implications of this finding may be helpful for reaction mechanism studies or optimization of reaction conditions. Unexpectedly, the diastereomeric 2'-deoxyfluoro adenine ribo- and arabino-nucleosides displayed similar substrate properties. Moreover, cytidine and 2'-deoxycytidine were found to be moderate substrates of the prepared PNPs, with substrate activities in a range similar to those determined for 2'-deoxyfluoro adenine nucleosides 9 and 10. C2'-modified nucleosides are accepted as substrates by all recombinant enzymes studied, making these enzymes promising biocatalysts for the synthesis of modified nucleosides. Indeed, the prepared PNPs performed well in preliminary transglycosylation reactions resulting in the synthesis of 2'-deoxyfluoro adenine ribo- and arabino- nucleosides in moderate yield (24%). © 2013 The Authors Journal

  3. 4(5)-Aryl-2-C-glucopyranosyl-imidazoles as New Nanomolar Glucose Analogue Inhibitors of Glycogen Phosphorylase

    PubMed Central

    2015-01-01

    Inhibition of glycogen phosphorylases may lead to pharmacological treatments of diseases in which glycogen metabolism plays an important role: first of all in diabetes, but also in cardiovascular and tumorous disorders. C-(β-d-Glucopyranosyl) isoxazole, pyrazole, thiazole, and imidazole type compounds were synthesized, and the latter showed the strongest inhibition against rabbit muscle glycogen phosphorylase b. Most efficient was 2-(β-d-glucopyranosyl)-4(5)-(2-naphthyl)-imidazole (11b, Ki = 31 nM) representing the best nanomolar glucose derived inhibitor of the enzyme. PMID:26713107

  4. Starches, Sugars and Obesity

    PubMed Central

    Aller, Erik E. J. G.; Abete, Itziar; Astrup, Arne; Martinez, J. Alfredo; van Baak, Marleen A.

    2011-01-01

    The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages. PMID:22254101

  5. Compositions and methods involving methyladenosine phosphorylase in the diagnosis and treatment of proliferative disorders

    DOEpatents

    Olopade, Olufunmilayo I.

    2007-03-20

    Disclosed are novel nucleic acid and peptide compositions comprising methylthioadenosine phosphorylase (MTAP) and methods of use for MTAP amino acid sequences and DNA segments comprising MTAP in the diagnosis of human cancers and development of MTAP-specific antibodies. Also disclosed are methods for the diagnosis and treatment of tumors and other proliferative cell disorders, and identification of tumor suppressor genes and gene products from the human 9p21-p22 chromosome region. Such methods are useful in the diagnosis of multiple tumor types such as bladder cancer, lung cancer, breast cancer, pancreatic cancer, brain tumors, lymphomas, gliomas, melanomas, and leukemias.

  6. Methylthioadenosine phosphorylase compositions and methods of use in the diagnosis and treatment of proliferative disorders

    DOEpatents

    Olopade, Olufunmilayo I.

    2005-03-22

    Disclosed are novel nucleic acid and peptide compositions comprising methythlioadenosine phosphorylase (MTAP) and methods of use for MTAP amino acid sequences and DNA segments comprising MTAP in the diagnosis of human cancers and development of MTAP-specific antibodies. Also disclosed are methods for the diagnosis and treatment of tumors and other proliferative cell disorders, and idenification tumor suppressor genes and gene products from the human 9p21-p22 chromosome region. Such methods are useful in the diagnosis of multiple tumor types such as bladder cancer, lung cancer, breast cancer, pancreatic cancer, brain tumors, lymphomas, gliomas, melanomas, and leukemias.

  7. Synthesis of (benzimidazol-2-yl)aniline derivatives as glycogen phosphorylase inhibitors.

    PubMed

    Galal, Shadia A; Khattab, Muhammad; Andreadaki, Fotini; Chrysina, Evangelia D; Praly, Jean-Pierre; Ragab, Fatma A F; El Diwani, Hoda I

    2016-11-01

    A series of (benzimidazol-2-yl)-aniline (1) derivatives has been synthesized and evaluated as glycogen phosphorylase (GP) inhibitors. Kinetics studies revealed that compounds displaying a lateral heterocyclic residue with several heteroatoms (series 3 and 5) exhibited modest inhibitory properties with IC50 values in the 400-600μM range. Arylsulfonyl derivatives 7 (Ar: phenyl) and 9 (Ar: o-nitrophenyl) of 1 exhibited the highest activity (series 2) among the studied compounds (IC50 324μM and 357μM, respectively) with stronger effect than the p-tolyl analogue 8.

  8. Facile enzymatic synthesis of sugar 1-phosphates as substrates for phosphorylases using anomeric kinases.

    PubMed

    Liu, Yuan; Nishimoto, Mamoru; Kitaoka, Motomitsu

    2015-01-12

    Three sugar 1-phosphates that are donor substrates for phosphorylases were produced at the gram scale from phosphoenolpyruvic acid and the corresponding sugars by the combined action of pyruvate kinase and the corresponding anomeric kinases in good yields. These sugar 1-phosphates were purified through two electrodialysis steps. α-D-Galactose 1-phosphate was finally isolated as crystals of dipotassium salts. α-D-Mannose 1-phosphate and 2-acetamido-2-deoxy-α-D-glucose 1-phosphate were isolated as crystals of bis(cyclohexylammonium) salts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Discovery of novel dual-action antidiabetic agents that inhibit glycogen phosphorylase and activate glucokinase.

    PubMed

    Zhang, Lei; Chen, Xiaojie; Liu, Jun; Zhu, Qingzhang; Leng, Ying; Luo, Xiaomin; Jiang, Hualiang; Liu, Hong

    2012-12-01

    Dual-target-directed agents simultaneously inhibiting glycogen phosphorylase (GP) and activating glucokinase (GK) could decelerate the inflow of glucose from glycogenolysis and accelerate the outflow of glucose in the liver, therefore allow for a better control over hyperglycaemia in a synergetic manner. A series of hybrid compounds were designed by structure-assisted and ligand-based strategies. In vitro bioassays found two novel compounds (1j, 6g) worthy of further optimization on balance of dual action to GP and GK. In addition, for single-target activity, two compounds exhibited more potent GP inhibitory activity and four compounds showed better GK activation than their corresponding references.

  10. Mixed biopolymer systems based on starch.

    PubMed

    Abd Elgadir, M; Akanda, Md Jahurul Haque; Ferdosh, Sahena; Mehrnoush, Amid; Karim, Alias A; Noda, Takahiro; Sarker, Md Zaidul Islam

    2012-01-09

    A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch.

  11. Sago starch and its utilisation.

    PubMed

    Abd-Aziz, Suraini

    2002-01-01

    The importance and development of industrial biotechnology processing has led to the utilisation of microbial enzymes in various applications. One of the important enzymes is amylase, which hydrolyses starch to glucose. In Malaysia, the use of sago starch has been increasing, and it is presently being used for the production of glucose. Sago starch represents an alternative cheap carbon source for fermentation processes that is attractive out of both economic and geographical considerations. Production of fermentable sugars from the hydrolysis of starches is normally carried out by an enzymatic processes that involves two reaction steps, liquefaction and saccharification, each of which has different temperature and pH optima with respect to the maximum reaction rate. This method of starch hydrolysis requires the use of an expensive temperature control system and a complex mixing device. Our laboratory has investigated the possibility of using amylolytic enzyme-producing microorganisms in the continuous single-step biological hydrolysis of sago flour for the production of a generic fermentation medium. The ability of a novel DNA-recombinated yeast, Saccharomyces cerevisiae strain YKU 107 (expressing alpha-amylase production) to hydrolyse gelatinised sago starch production has been studied with the aim of further utilizing sago starch to obtain value-added products.

  12. Starch Synthesis in Potato Tubers Is Regulated by Post-Translational Redox Modification of ADP-Glucose Pyrophosphorylase

    PubMed Central

    Tiessen, Axel; Hendriks, Janneke H. M.; Stitt, Mark; Branscheid, Anja; Gibon, Yves; Farré, Eva M.; Geigenberger, Peter

    2002-01-01

    Transcriptional and allosteric regulation of ADP-Glc pyrophosphorylase (AGPase) plays a major role in the regulation of starch synthesis. Analysis of the response after detachment of growing potato tubers from the mother plant revealed that this concept requires extension. Starch synthesis was inhibited within 24 h of tuber detachment, even though the catalytic subunit of AGPase (AGPB) and overall AGPase activity remained high, the substrates ATP and Glc-1-P increased, and the glycerate-3-phosphate/inorganic orthophosphate (the allosteric activator and inhibitor, respectively) ratio increased. This inhibition was abolished in transformants in which a bacterial AGPase replaced the potato AGPase. Measurements of the subcellular levels of each metabolite between Suc and starch established AGPase as the only step whose substrates increase and mass action ratio decreases after detachment of wild-type tubers. Separation of extracts on nonreducing SDS gels revealed that AGPB is present as a mixture of monomers and dimers in growing tubers and becomes dimerized completely in detached tubers. Dimerization led to inactivation of the enzyme as a result of a marked decrease of the substrate affinity and sensitivity to allosteric effectors. Dimerization could be reversed and AGPase reactivated in vitro by incubating extracts with DTT. Incubation of tuber slices with DTT or high Suc levels reduced dimerization, increased AGPase activation, and stimulated starch synthesis in vivo. In intact tubers, the Suc content correlated strongly with AGPase activation across a range of treatments, including tuber detachment, aging of the mother plant, heterologous overexpression of Suc phosphorylase, and antisense inhibition of endogenous AGPase activity. Furthermore, activation of AGPase resulted in a stimulation of starch synthesis and decreased levels of glycolytic intermediates. PMID:12215515

  13. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme.

    PubMed

    Li, Zhaofeng; Cai, Liming; Gu, Zhengbiao; Shi, Yong-Cheng

    2014-08-13

    The effects of granule swelling on enzymatic saccharification of normal corn starch by granular starch hydrolyzing enzyme were investigated. After swelling, Km values for the saccharification of granular starch decreased compared with native granular starch, indicating that granule swelling caused granular starch hydrolyzing enzyme to have higher affinity for starch granules. The partial swelling of starch granules enhanced starch saccharification. Furthermore, the enhancement at an earlier stage of enzymatic reaction was much more significant than that at later stages. For granular starch pretreated at 67.5 °C for 30 min, conversions to glucose after incubation with the enzyme at 32 °C for 4 and 24 h were approximately 3-fold and 26% higher than for native granular starch, respectively. As a result, proper heat pretreatment of granular starch before simultaneous saccharification and fermentation has great potential to facilitate industrial production of ethanol by use of granular starch hydrolyzing enzyme.

  14. Structural basis for the mechanism of inhibition of uridine phosphorylase from Salmonella typhimurium

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Zhukhlistova, N. E.; Sotnichenko, S. E.; Gabdulkhakov, A. G.; Mikhailov, A. M.

    2010-01-01

    The three-dimensional structures of three complexes of Salmonella typhimurium uridine phosphorylase with the inhibitor 2,2'-anhydrouridine, the substrate PO4, and with both the inhibitor 2,2'-anhydrouridine and the substrate PO4 (a binary complex) were studied in detail by X-ray diffraction. The structures of the complexes were refined at 2.38, 1.5, and 1.75 Å resolution, respectively. Changes in the three-dimensional structure of the subunits in different crystal structures are considered depending on the presence or absence of the inhibitor molecule and (or) the phosphate ion in the active site of the enzyme. The presence of the phosphate ion in the phosphate-binding site was found to substantially change the orientations of the side chains of the amino-acid residues Arg30, Arg91, and Arg48 coordinated to this ion. A comparison showed that the highly flexible loop L9 is unstable. The atomic coordinates of the refined structures of the complexes and the corresponding structure factors were deposited in the Protein Data Bank (their PDB ID codes are 3DD0 and 3C74). The experimental data on the spatial reorganization of the active site caused by changes in its functional state from the unligated to the completely inhibited state suggest the structural basis for the mechanism of inhibition of Salmonella typhimurium uridine phosphorylase.

  15. Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors.

    PubMed

    Aerts, Dirk; Verhaeghe, Tom F; Roman, Bart I; Stevens, Christian V; Desmet, Tom; Soetaert, Wim

    2011-09-27

    In this study, the transglucosylation potential of six sucrose phosphorylase (SP) enzymes has been compared using eighty putative acceptors from different structural classes. To increase the solubility of hydrophobic acceptors, the addition of various co-solvents was first evaluated. All enzymes were found to retain at least 50% of their activity in 25% dimethylsulfoxide, with the enzymes from Bifidobacterium adolescentis and Streptococcus mutans being the most stable. Screening of the enzymes' specificity then revealed that the vast majority of acceptors are transglucosylated very slowly by SP, at a rate that is comparable to the contaminating hydrolytic reaction. The enzyme from S. mutans displayed the narrowest acceptor specificity and the one from Leuconostoc mesenteroides NRRL B1355 the broadest. However, high activity could only be detected on l-sorbose and l-arabinose, besides the native acceptors d-fructose and phosphate. Improving the affinity for alternative acceptors by means of enzyme engineering will, therefore, be a major challenge for the commercial exploitation of the transglucosylation potential of sucrose phosphorylase.

  16. Structural basis for the mechanism of inhibition of uridine phosphorylase from Salmonella typhimurium

    SciTech Connect

    Lashkov, A. A.; Zhukhlistova, N. E.; Sotnichenko, S. E.; Gabdulkhakov, A. G.; Mikhailov, A. M.

    2010-01-15

    The three-dimensional structures of three complexes of Salmonella typhimurium uridine phosphorylase with the inhibitor 2,2'-anhydrouridine, the substrate PO{sub 4}, and with both the inhibitor 2,2'-anhydrouridine and the substrate PO{sub 4} (a binary complex) were studied in detail by X-ray diffraction. The structures of the complexes were refined at 2.38, 1.5, and 1.75 A resolution, respectively. Changes in the three-dimensional structure of the subunits in different crystal structures are considered depending on the presence or absence of the inhibitor molecule and (or) the phosphate ion in the active site of the enzyme. The presence of the phosphate ion in the phosphate-binding site was found to substantially change the orientations of the side chains of the amino-acid residues Arg30, Arg91, and Arg48 coordinated to this ion. A comparison showed that the highly flexible loop L9 is unstable. The atomic coordinates of the refined structures of the complexes and the corresponding structure factors were deposited in the Protein Data Bank (their PDB ID codes are 3DD0 and 3C74). The experimental data on the spatial reorganization of the active site caused by changes in its functional state from the unligated to the completely inhibited state suggest the structural basis for the mechanism of inhibition of Salmonella typhimurium uridine phosphorylase.

  17. Partial Purification and Characterization of Glycogen Phosphorylase from Dictyostelium discoideum1

    PubMed Central

    Jones, Theodore H. D.; Wright, Barbara E.

    1970-01-01

    Glycogen phosphorylase was isolated from cells of Dictyostelium discoideum in the culmination stage of development and purified 35-fold. The enzyme had a pH optimum of 6.9 and contained sulfhydryl groups essential for activity. The Km values for phosphate and glycogen were 3 mm and 0.06% (w/v), respectively. No dependence on, or stimulation by, any nucleotide was observed and a wide variety of nucleotides and glycolytic intermediates did not inhibit the enzyme. Nucleotide sugars competitively inhibited the enzyme. Guanosine diphosphoglucose and adenosine diphosphoglucose were the most effective, and uridine diphosphoglucose was the least effective of the nucleotide sugars tested. The specific activity of glycogen phosphorylase increased from about 0.004 unit per mg of protein in aggregating cells to about 0.024 unit per mg in culminating cells, and then decreased during sorocarp formation. This increase in enzyme specific activity during the starvation and aging of the system can account for the increased rate of glycogen degradation during this period of development. Amylase specific activity, measured at pH 4.8 and 6.9, varied between 0.005 and 0.013 unit per mg of protein during all stages of development. PMID:5530813

  18. ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters.

    PubMed

    Chen, Jiang; Yi, Qiang; Cao, Yao; Wei, Bin; Zheng, Lanjie; Xiao, Qianling; Xie, Ying; Gu, Yong; Li, Yangping; Huang, Huanhuan; Wang, Yongbin; Hou, Xianbin; Long, Tiandan; Zhang, Junjie; Liu, Hanmei; Liu, Yinghong; Yu, Guowu; Huang, Yubi

    2016-03-01

    Starch synthesis is a key process that influences crop yield and quality, though little is known about the regulation of this complex metabolic pathway. Here, we present the identification of ZmbZIP91 as a candidate regulator of starch synthesis via co-expression analysis in maize (Zea mays L.). ZmbZIP91 was strongly associated with the expression of starch synthesis genes. Reverse tanscription-PCR (RT-PCR) and RNA in situ hybridization indicated that ZmbZIP91 is highly expressed in maize endosperm, with less expression in leaves. Particle bombardment-mediated transient expression in maize endosperm and leaf protoplasts demonstrated that ZmbZIP91 could positively regulate the expression of starch synthesis genes in both leaves and endosperm. Additionally, the Arabidopsis mutant vip1 carried a mutation in a gene (VIP1) that is homologous to ZmbZIP91, displayed altered growth with less starch in leaves, and ZmbZIP91 was able to complement this phenotype, resulting in normal starch synthesis. A yeast one-hybrid experiment and EMSAs showed that ZmbZIP91 could directly bind to ACTCAT elements in the promoters of starch synthesis genes (pAGPS1, pSSI, pSSIIIa, and pISA1). These results demonstrate that ZmbZIP91 acts as a core regulatory factor in starch synthesis by binding to ACTCAT elements in the promoters of starch synthesis genes.

  19. The biosynthesis of starch granules.

    PubMed

    Smith, A M

    2001-01-01

    Although composed simply of glucose polymers, the starch granule is a complex, semicrystalline structure. Much of this complexity arises from the fact that the two primary enzymes of synthesis-starch synthase and starch-branching enzyme-exist as multiple isoforms. Each form has distinct properties and plays a unique role in the synthesis of the two starch polymers, amylose and amylopectin. The debranching enzyme isoamylase also has a profound influence on the synthesis of amylopectin. Despite much speculation, no acceptable model to explain the interactions of all of these enzymes to produce amylose and amylopectin has thus far emerged. The organization of newly synthesized amylopectin to form the semicrystalline matrix of the granule appears to be a physical process, implying the existence of complex interactions between biological and physical processes at the surface of the growing granule. The synthesis of the amylose component occurs within the amylopectin matrix.

  20. Starch granules: structure and biosynthesis.

    PubMed

    Buléon, A; Colonna, P; Planchot, V; Ball, S

    1998-08-01

    The emphasis of this review is on starch structure and its biosynthesis. Improvements in understanding have been brought about during the last decade through the development of new physicochemical and biological techniques, leading to real scientific progress. All this literature needs to be kept inside the general literature about biopolymers, despite some confusing results or discrepancies arising from the biological variability of starch. However, a coherent picture of starch over all the different structural levels can be presented, in order to obtain some generalizations about its structure. In this review we will focus first on our present understanding of the structures of amylose and amylopectin and their organization within the granule, and we will then give insights on the biosynthetic mechanisms explaining the biogenesis of starch in plants.

  1. Mechanistic insight into the substrate specificity of 1,2-β-oligoglucan phosphorylase from Lachnoclostridium phytofermentans

    PubMed Central

    Nakajima, Masahiro; Tanaka, Nobukiyo; Furukawa, Nayuta; Nihira, Takanori; Kodutsumi, Yuki; Takahashi, Yuta; Sugimoto, Naohisa; Miyanaga, Akimasa; Fushinobu, Shinya; Taguchi, Hayao; Nakai, Hiroyuki

    2017-01-01

    Glycoside phosphorylases catalyze the phosphorolysis of oligosaccharides into sugar phosphates. Recently, we found a novel phosphorylase acting on β-1,2-glucooligosaccharides with degrees of polymerization of 3 or more (1,2-β-oligoglucan phosphorylase, SOGP) in glycoside hydrolase family (GH) 94. Here, we characterized SOGP from Lachnoclostridium phytofermentans (LpSOGP) and determined its crystal structure. LpSOGP is a monomeric enzyme that contains a unique β-sandwich domain (Ndom1) at its N-terminus. Unlike the dimeric GH94 enzymes possessing catalytic pockets at their dimer interface, LpSOGP has a catalytic pocket between Ndom1 and the catalytic domain. In the complex structure of LpSOGP with sophorose, sophorose binds at subsites +1 to +2. Notably, the Glc moiety at subsite +1 is flipped compared with the corresponding ligands in other GH94 enzymes. This inversion suggests the great distortion of the glycosidic bond between subsites −1 and +1, which is likely unfavorable for substrate binding. Compensation for this disadvantage at subsite +2 can be accounted for by the small distortion of the glycosidic bond in the sophorose molecule. Therefore, the binding mode at subsites +1 and +2 defines the substrate specificity of LpSOGP, which provides mechanistic insights into the substrate specificity of a phosphorylase acting on β-1,2-glucooligosaccharides. PMID:28198470

  2. Activation of phosphorylase by anoxia and dinitrophenol in rabbit colon smooth muscle: relation to release of calcium from mitochondria.

    PubMed

    Pettersson, G

    1983-05-01

    The effect of anoxia or 2,4-dinitrophenol (DNP) on the phosphorylase a activity and the calcium content in subcellular fractions from rabbit colon smooth muscle was studied. Anoxia for 15 min. as well as DNP (6.6 X 10(-5) M) for 5 min. increased the phosphorylase a activity. The calcium content in the mitochondrial subfraction, prepared from the anoxic- or DNP-treated intact muscle and determined by atomic absorption spectroscopy, was reduced. The calcium content in the nuclear and the microsomal fractions was not changed in preparations with a normal Ca-content. When the muscle was incubated for 60 min. in a Ca2+-free medium containing 2.0 mM EGTA, the calcium content in the mitochondrial fraction was reduced to 38% of the control. This calcium level was still further reduced and the phosphorylase a activity was increased by DNP in this "Ca-poor" muscle. In these preparations the Ca-content of the microsomal + supernatant fraction increased. Only when the muscle was incubated, initially, in an anoxic medium containing 0.1 mM Ca2+ for 120 min. and, subsequently, in an oxygenated medium containing 0.1 mM Ca2+ for 20 min., DNP failed to activate phosphorylase and to decrease the calcium content in the mitochondrial fraction. These results indicate that mitochondrial Ca2+ release is one of the regulatory factors of the anoxic-induced glycogenolysis.

  3. Isolation, crystallization and preliminary crystallographic analysis of Salmonella typhimurium uridine phosphorylase crystallized with 2,2'-anhydrouridine.

    PubMed

    Timofeev, Vladimir I; Lashkov, Alexander A; Gabdoulkhakov, Azat G; Pavlyuk, Bogdan Ph; Kachalova, Galina S; Betzel, Christian; Morgunova, Ekaterina Yu; Zhukhlistova, Nadezhda E; Mikhailov, Al'bert M

    2007-10-01

    Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C-N glycoside bond of uridine, with the formation of ribose 1-phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding the catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2'-anhydrouridine. X-ray diffraction data were collected to 2.15 A. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 A. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit.

  4. Multiple phosphate positions in the catalytic site of glycogen phosphorylase: structure of the pyridoxal-5'-pyrophosphate coenzyme-substrate analog.

    PubMed Central

    Sprang, S. R.; Madsen, N. B.; Withers, S. G.

    1992-01-01

    The three-dimensional structure of an R-state conformer of glycogen phosphorylase containing the coenzyme-substrate analog pyridoxal-5'-diphosphate at the catalytic site (PLPP-GPb) has been refined by X-ray crystallography to a resolution of 2.87 A. The molecule comprises four subunits of phosphorylase related by approximate 222 symmetry. Whereas the quaternary structure of R-state PLPP-GPb is similar to that of phosphorylase crystallized in the presence of ammonium sulfate (Barford, D. & Johnson, L.N., 1989, Nature 340, 609-616), the tertiary structures differ in that the two domains of the PLPP-GPb subunits are rotated apart by 5 degrees relative to the T-state conformation. Global differences among the four subunits suggest that the major domains of the phosphorylase subunit are connected by a flexible hinge. The two different positions observed for the terminal phosphate of the PLPP are interpreted as distinct phosphate subsites that may be occupied at different points along the reaction pathway. The structural basis for the unique ability of R-state dimers to form tetramers results from the orientation of subunits with respect to the dyad axis of the dimer. Residues in opposing dimers are in proper registration to form tetramers only in the R-state. PMID:1304389

  5. Isolation, crystallization and preliminary crystallographic analysis of Salmonella typhimurium uridine phosphorylase crystallized with 2,2′-anhydrouridine

    PubMed Central

    Timofeev, Vladimir I.; Lashkov, Alexander A.; Gabdoulkhakov, Azat G.; Pavlyuk, Bogdan Ph.; Kachalova, Galina S.; Betzel, Christian; Morgunova, Ekaterina Yu.; Zhukhlistova, Nadezhda E.; Mikhailov, Al’bert M.

    2007-01-01

    Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C—N glycoside bond of uridine, with the formation of ribose 1-­phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding the catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2′-anhydrouridine. X-ray diffraction data were collected to 2.15 Å. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P212121, with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 Å. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit. PMID:17909287

  6. Slow digestion property of native cereal starches.

    PubMed

    Zhang, Genyi; Ao, Zihua; Hamaker, Bruce R

    2006-11-01

    The slow digestion property of native cereal starches, represented by normal maize starch, was investigated. The in vitro Englyst test showed that 53.0% of the maize starch is slowly digestible starch (SDS), and scanning electron microscopy (SEM) revealed that SDS starts from an increase of pore size until almost complete fragmentation of starch granules. However, similar amounts of SDS ( approximately 50%) were shown for partially digested fragmented starch residuals, which would normally be considered resistant to digestion based on the Englyst assay. Molecularly, both amylopectin (AP) and amylose (AM) contributed to the amount of SDS as evidenced by a similar ratio of AP to AM at different digestion times. Consistently, similar degrees of crystallinity, comparable gelatinization behavior, and similar debranched profiles of starch residuals following different digestion times indicated that the crystalline and amorphous regions of starch granules were evenly digested through a mechanism of side-by-side digestion of concentric layers of semicrystalline shells of native starch granules.

  7. A Forward Genetic Approach in Chlamydomonas reinhardtii as a Strategy for Exploring Starch Catabolism

    PubMed Central

    Duchêne, Thierry; Cogez, Virginie; Cousin, Charlotte; Peltier, Gilles; Ball, Steven G.; Dauvillée, David

    2013-01-01

    A screen was recently developed to study the mobilization of starch in the unicellular green alga Chlamydomonas reinhardtii. This screen relies on starch synthesis accumulation during nitrogen starvation followed by the supply of nitrogen and the switch to darkness. Hence multiple regulatory networks including those of nutrient starvation, cell cycle control and light to dark transitions are likely to impact the recovery of mutant candidates. In this paper we monitor the specificity of this mutant screen by characterizing the nature of the genes disrupted in the selected mutants. We show that one third of the mutants consisted of strains mutated in genes previously reported to be of paramount importance in starch catabolism such as those encoding β-amylases, the maltose export protein, and branching enzyme I. The other mutants were defective for previously uncharacterized functions some of which are likely to define novel proteins affecting starch mobilization in green algae. PMID:24019981

  8. Starch digestibility of foods: a nutritional perspective.

    PubMed

    Dreher, M L; Dreher, C J; Berry, J W

    1984-01-01

    Dietary starch varies greatly in digestibility and its effects on the utilization of other nutrients. The variation appears to be due to differences in starch components and their crystallinity. Processing treatments, storage conditions, chemical modification, and genetic breeding influence the digestibility of starch. Cereal starches are generally more digestible than root/tuber and legume starches. Although cooking often significantly improves the digestibility of poor and intermediately digestible starches, some foods such as bananas with starches of these types are consumed uncooked. The efficient digestion of starch is especially important to specific groups of people such as infants under 6 months of age. Ruminants must also be provided with highly digestible starch to assure maximum production efficiency. Poor digestibility of starch may have negative effects on the utilization of protein and minerals but is likely to have positive effects on the availability of certain vitamins. Decreases in the rate of starch digestion may have therapeutic application. Most clinical studies have reported that starch blockers do not elicit a significant decrease in the digestion of starch in humans. Much remains to be learned, clarified, and understood about starch digestion and its effects on diabetes and weight control.

  9. Physicochemical and functional characteristics of lentil starch.

    PubMed

    Joshi, M; Aldred, P; McKnight, S; Panozzo, J F; Kasapis, S; Adhikari, R; Adhikari, B

    2013-02-15

    The physicochemical properties of lentil starch were measured and linked up with its functional properties and compared with those of corn and potato starches. The amylose content of lentil starch was the highest among these starches. The crystallinity and gelatinization enthalpy of lentil starch were the lowest among these starches. The high amylose: amylopectin ratio in lentil starch resulted into low crystallinity and gelatinization enthalpy. Gelatinization and pasting temperatures of lentil starch were in between those of corn and potato starches. Lentil starch gels showed the highest storage modulus, gel strength and pasting viscosity than corn and potato starch gels. Peleg's model was able to predict the stress relaxation data of these starches well (R(2)>0.98). The elastic modulus of lentil starch gel was less frequency dependent and higher in magnitude at high temperature (60 °C) than at lower temperature (10 °C). Lentil starch is suitable where higher gel strengthened pasting viscosity are desired. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The experimental type 2 diabetes therapy glycogen phosphorylase inhibition can impair aerobic muscle function during prolonged contraction.

    PubMed

    Baker, David J; Greenhaff, Paul L; MacInnes, Alan; Timmons, James A

    2006-06-01

    Glycogen phosphorylase inhibition represents a promising strategy to suppress inappropriate hepatic glucose output, while muscle glycogen is a major source of fuel during contraction. Glycogen phosphorylase inhibitors (GPi) currently being investigated for the treatment of type 2 diabetes do not demonstrate hepatic versus muscle glycogen phosphorylase isoform selectivity and may therefore impair patient aerobic exercise capabilities. Skeletal muscle energy metabolism and function are not impaired by GPi during high-intensity contraction in rat skeletal muscle; however, it is unknown whether glycogen phosphorylase inhibitors would impair function during prolonged lower-intensity contraction. Utilizing a novel red cell-perfused rodent gastrocnemius-plantaris-soleus system, muscle was pretreated for 60 min with either 3 micromol/l free drug GPi (n=8) or vehicle control (n=7). During 60 min of aerobic contraction, GPi treatment resulted in approximately 35% greater fatigue. Muscle glycogen phosphorylase a form (P<0.01) and maximal activity (P<0.01) were reduced in the GPi group, and postcontraction glycogen (121.8 +/- 16.1 vs. 168.3 +/- 8.5 mmol/kg dry muscle, P<0.05) was greater. Furthermore, lower muscle lactate efflux and glucose uptake (P<0.01), yet higher muscle Vo(2), support the conclusion that carbohydrate utilization was impaired during contraction. Our data provide new confirmation that muscle glycogen plays an essential role during submaximal contraction. Given the critical role of exercise prescription in the treatment of type 2 diabetes, it will be important to monitor endurance capacity during the clinical evaluation of nonselective GPi. Alternatively, greater effort should be devoted toward the discovery of hepatic-selective GPi, hepatic-specific drug delivery strategies, and/or alternative strategies for controlling excess hepatic glucose production in type 2 diabetes.

  11. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    PubMed Central

    2011-01-01

    Background Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited. PMID:21599988

  12. Improving starch for food and industrial applications.

    PubMed

    Jobling, Steve

    2004-04-01

    Progress in understanding starch biosynthesis, and the isolation of many of the genes involved in this process, has enabled the genetic modification of crops in a rational manner to produce novel starches with improved functionality. For example, potato starches have been created that contain unprecedented levels of amylose and phosphate. Amylose-free short-chain amylopectin starches have also been developed; these starches have excellent freeze-thaw stability without the need for chemical modification. These developments highlight the potential to create even more modified starches in the future.

  13. Isolation, characterization, and inactivation of the APA1 gene encoding yeast diadenosine 5',5'''-P1,P4-tetraphosphate phosphorylase.

    PubMed Central

    Plateau, P; Fromant, M; Schmitter, J M; Buhler, J M; Blanquet, S

    1989-01-01

    The gene encoding diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) phosphorylase from yeast was isolated from a lambda gt11 library. The DNA sequence of the coding region was determined, and more than 90% of the deduced amino acid sequence was confirmed by peptide sequencing. The Ap4A phosphorylase gene (APA1) is unique in the yeast genome. Disruption experiments with this gene, first, supported the conclusion that, in vivo, Ap4A phosphorylase catabolizes the Ap4N nucleotides (where N is A, C, G, or U) and second, revealed the occurrence of a second Ap4A phosphorylase activity in yeast cells. Finally, evidence is provided that the APA1 gene product is responsible for most of the ADP sulfurylase activity in yeast extracts. Images PMID:2556364

  14. Rheological properties of reactive extrusion modified waxy starch and waxy starch-polyacrylamide copolymer gels

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of modified waxy starch and waxy starch-polyacrylamide graft copolymers prepared by reactive extrusion were investigated. Both materials can absorb huge amount of water and form gels. The modified waxy starch and waxy starch-polyacrylamide graft copolymer gels all exhibite...

  15. Comparison of Cationic and Unmodified Starches in Reactive Extrusion of Starch-Polyacrylamide Graft Copolymers

    USDA-ARS?s Scientific Manuscript database

    Graft copolymers of starch and polyacrylamide (PAAm) were prepared using reactive extrusion in a corotating twin screw extruder. The effect of cationic starch modification was examined using unmodified and cationic dent starch (approximately 23% amylose) and waxy maize starch (approximately 2% amyl...

  16. Kernel Composition, Starch Structure, and Enzyme Digestibility of Opaque-2 Maize and Quality Protein Maize

    USDA-ARS?s Scientific Manuscript database

    Objectives of this study were to understand how opaque-2 (o2) mutation and quality protein maize (QPM) affect maize kernel composition and starch structure, property, and enzyme digestibility. Kernels of o2 maize contained less protein (9.6−12.5%) than those of the wild-type (WT) counterparts (12...

  17. Impact of Waxy, Partial Waxy, and Wildtype Wheat Starch Fraction Properties on Hearth Bread Characteristics

    USDA-ARS?s Scientific Manuscript database

    Thirteen different wheat (Triticum aestivum L.)cultivars were selected to represent GBSS mutations: three each of wildtype, axnull, and bxnull, and two each of 2xnull and waxy. Starch and A- and B-granules were purified from wheat flour. Hearth bread loaves were produced from the flours using a smal...

  18. cDNA cloning and complete primary structure of skeletal muscle phosphorylase kinase (alpha subunit).

    PubMed Central

    Zander, N F; Meyer, H E; Hoffmann-Posorske, E; Crabb, J W; Heilmeyer, L M; Kilimann, M W

    1988-01-01

    We have isolated and sequenced a cDNA encoding the alpha subunit of phosphorylase kinase from rabbit fast-twitch skeletal muscle. The cDNA molecule consists of 388 nucleotides of 5'-nontranslated sequence, the complete coding sequence of 3711 nucleotides, and 342 nucleotides of 3'-nontranslated sequence followed by a poly(dA) tract. It encodes a polypeptide of 1237 amino acids and a deduced molecular mass of 138,422 Da. Nearly half of the deduced amino acid sequence is confirmed by peptide sequencing. Seven positions of endogenously phosphorylated serine residues and autophosphorylation sites, identified by peptide sequencing, could be assigned. They cluster in a segment of only 60 amino acids. RNA blot hybridization analysis demonstrates a predominant RNA species of approximately equal to 4500 nucleotides and a less abundant RNA of 8700 nucleotides. Images PMID:3362857

  19. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters.

    PubMed

    Ha, Suk-Jin; Galazka, Jonathan M; Joong Oh, Eun; Kordić, Vesna; Kim, Heejin; Jin, Yong-Su; Cate, Jamie H D

    2013-01-01

    Anaerobic bacteria assimilate cellodextrins from plant biomass by using a phosphorolytic pathway to generate glucose intermediates for growth. The yeast Saccharomyces cerevisiae can also be engineered to ferment cellobiose to ethanol using a cellodextrin transporter and a phosphorolytic pathway. However, strains with an intracellular cellobiose phosphorylase initially fermented cellobiose slowly relative to a strain employing an intracellular β-glucosidase. Fermentations by the phosphorolytic strains were greatly improved by using cellodextrin transporters with elevated rates of cellobiose transport. Furthermore under stress conditions, these phosphorolytic strains had higher biomass and ethanol yields compared to hydrolytic strains. These observations suggest that, although cellobiose phosphorolysis has energetic advantages, phosphorolytic strains are limited by the thermodynamics of cellobiose phosphorolysis (ΔG°=+3.6kJmol(-1)). A thermodynamic "push" from the reaction immediately upstream (transport) is therefore likely to be necessary to achieve high fermentation rates and energetic benefits of phosphorolysis pathways in engineered S. cerevisiae.

  20. Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate

    SciTech Connect

    Bianchetti, Christopher M.; Elsen, Nathaniel L.; Fox, Brian G.; Phillips, Jr., George N.

    2012-03-27

    Clostridium thermocellum is a cellulosome-producing bacterium that is able to efficiently degrade and utilize cellulose as a sole carbon source. Cellobiose phosphorylase (CBP) plays a critical role in cellulose degradation by catalyzing the reversible phosphate-dependent hydrolysis of cellobiose, the major product of cellulose degradation, into -D-glucose 1-phosphate and D-glucose. CBP from C. thermocellum is a modular enzyme composed of four domains [N-terminal domain, helical linker, (/)6-barrel domain and C-terminal domain] and is a member of glycoside hydrolase family 94. The 2.4 {angstrom} resolution X-ray crystal structure of C. thermocellum CBP reveals the residues involved in coordinating the catalytic phosphate as well as the residues that are likely to be involved in substrate binding and discrimination.

  1. Evaluation of capillary chromatographic supports for immobilized human purine nucleoside phosphorylase in frontal affinity chromatography studies.

    PubMed

    de Moraes, Marcela Cristina; Temporini, Caterina; Calleri, Enrica; Bruni, Giovanna; Ducati, Rodrigo Gay; Santos, Diógenes Santiago; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Massolini, Gabriella

    2014-04-18

    The aim of this work was to optimize the preparation of a capillary human purine nucleoside phosphorylase (HsPNP) immobilized enzyme reactor (IMER) for characterization and affinity screening studies of new inhibitors by frontal affinity chromatography coupled to mass spectrometry (FAC-MS). For this purpose two monolithic supports, a Chromolith Speed Rod (0.1mm I.D.×5cm) and a methacrylate-based monolithic epoxy polymeric capillary column (0.25mm I.D.×5cm) with epoxy reactive groups were considered and compared to an IMER previously developed using an open fused silica capillary. Each HsPNP-IMER was characterized in terms of catalytic activity using Inosine as standard substrate. Furthermore, they were also explored for affinity ranking experiments. Kd determination was carried out with the based fused silica HsPNP-IMER and the results are herein discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Cloning and expression of the sucrose phosphorylase gene from Leuconostoc mesenteroides in Escherichia coli.

    PubMed

    Lee, Jin-Ha; Moon, Young-Hwan; Kim, Nahyun; Kim, Young-Min; Kang, Hee-Kyoung; Jung, Ji-Yeon; Abada, Emad; Kang, Seong-Soo; Kim, Doman

    2008-04-01

    The gene encoding sucrose phosphorylase (742sp) in Leuconostoc mesenteroides NRRL B-742 was cloned and expressed in Escherichia coli. The nucleotide sequence of the transformed 742sp comprised an ORF of 1,458 bp giving a protein with calculated molecular mass of 55.3 kDa. 742SPase contains a C-terminal amino acid sequence that is significantly different from those of other Leu. mesenteroides SPases. The purified 742SPase had a specific activity of 1.8 U/mg with a K (m) of 3 mM with sucrose as a substrate; optimum activity was at 37 degrees C and pH 6.7. The purified 742SPase transferred the glucosyl moiety of sucrose to cytosine monophosphate (CMP).

  3. Purification, crystallization and preliminary X-ray analysis of uridine phosphorylase from Salmonella typhimurium.

    PubMed

    Dontsova, Mariya V; Savochkina, Yulia A; Gabdoulkhakov, Azat G; Baidakov, Sergey N; Lyashenko, Andrey V; Zolotukhina, Maria; Errais Lopes, Liubov; Garber, Mariya B; Morgunova, Ekaterina Yu; Nikonov, Stanislav V; Mironov, Alexandr S; Ealick, Steven E; Mikhailov, Al 'Bert M

    2004-04-01

    The structural udp gene encoding uridine phosphorylase (UPh) was cloned from the Salmonella typhimurium chromosome and overexpressed in Escherichia coli cells. S. typhimurium UPh (StUPh) was purified to apparent homogeneity and crystallized. The primary structure of StUPh has high homology to the UPh from E. coli, but the enzymes differ substantially in substrate specificity and sensitivity to the polarity of the medium. Single crystals of StUPh were grown using hanging-drop vapor diffusion with PEG 8000 as the precipitant. X-ray diffraction data were collected to 2.9 A resolution. Preliminary analysis of the diffraction data indicated that the crystal belonged to space group P6(1(5)), with unit-cell parameters a = 92.3, c = 267.5 A. The solvent content is 37.7% assuming the presence of one StUPh hexamer per asymmetric unit.

  4. Structural characterization of purine nucleoside phosphorylase from human pathogen Helicobacter pylori.

    PubMed

    Štefanić, Zoran; Mikleušević, Goran; Luić, Marija; Bzowska, Agnieszka; Leščić Ašler, Ivana

    2017-08-01

    Microaerophilic bacterium Helicobacer pylori is a well known human pathogen involved in the development of many diseases. Due to the evergrowing infection rate and increase of H. pylori antibiotic resistence, it is of utmost importance to find a new way to attack and eradicate H. pylori. The purine metabolism in H. pylori is solely dependant on the salvage pathway and one of the key enzymes in this pathway is purine nucleoside phosphorylase (PNP). In this timely context, we report here the basic biochemical and structural characterization of recombinant PNP from the H. pylori clinical isolate expressed in Escherichia coli. Structure of H. pylori PNP is typical for high molecular mass PNPs. However, its activity towards adenosine is very low, thus resembling more that of low molecular mass PNPs. Understanding the molecular mechanism of this key enzyme may lead to the development of new drug strategies and help in the eradication of H. pylori. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Biogenesis and Degradation of Starch

    PubMed Central

    Ohad, Itzhak; Friedberg, Ilan; Ne'Eman, Zvi; Schramm, Michael

    1971-01-01

    Storage of mature or developing potato tubers (Solanum tuberosum “Up-to-Date” variety) at 4 C causes a reduction in the starch content and the elevation in the level of free sugars. This phenomenon is not observed when the tubers are stored at 25 C. Changes in the morphology of cells from developing or mature tubers after storage at 4 or 25 C have been followed by electron microscopy. During all stages of the tuber development the starch granules are surrounded by a membrane derived from the plastid envelope. Storage in the cold induces disintegration of this membrane. A membrane fraction isolated from starch granules of tubers stored at 4 C has a lower buoyant density, and the electrophoretic pattern of its proteins is different from that of a similar membrane fraction obtained from tubers stored at 25 C. It is suggested that the cold-induced changes in the starch and sugar content during storage of potato tubers might be correlated with damage to the membranes surrounding the starch granules and changes in their permeability to degradative enzymes and substrates. Images PMID:16657644

  6. Starch phosphorylation: insights and perspectives.

    PubMed

    Mahlow, Sebastian; Orzechowski, Sławomir; Fettke, Joerg

    2016-07-01

    During starch metabolism, the phosphorylation of glucosyl residues of starch, to be more precise of amylopectin, is a repeatedly observed process. This phosphorylation is mediated by dikinases, the glucan, water dikinase (GWD) and the phosphoglucan, water dikinase (PWD). The starch-related dikinases utilize ATP as dual phosphate donor transferring the terminal γ-phosphate group to water and the β-phosphate group selectively to either C6 position or C3 position of a glucosyl residue within amylopectin. By the collaborative action of both enzymes, the initiation of a transition of α-glucans from highly ordered, water-insoluble state to a less order state is realized and thus the initial process of starch degradation. Consequently, mutants lacking either GWD or PWD reveal a starch excess phenotype as well as growth retardation. In this review, we focus on the increased knowledge collected over the last years related to enzymatic properties, the precise definition of the substrates, the physiological implications, and discuss ongoing questions.

  7. Electrostatic changes in phosphorylase kinase induced by its obligatory allosteric activator Ca2+

    PubMed Central

    Priddy, Timothy S.; Middaugh, C. Russell; Carlson, Gerald M.

    2007-01-01

    Skeletal muscle phosphorylase kinase (PhK) is a 1.3-MDa hexadecameric complex that catalyzes the phosphorylation and activation of glycogen phosphorylase b. PhK has an absolute requirement for Ca2+ ions, which couples the cascade activation of glycogenolysis with muscle contraction. Ca2+ activates PhK by binding to its nondissociable calmodulin subunits; however, specific changes in the structure of the PhK complex associated with its activation by Ca2+ have been poorly understood. We present herein the first comparative investigation of the physical characteristics of highly purified hexadecameric PhK in the absence and presence of Ca2+ ions using a battery of biophysical probes as a function of temperature. Ca2+-induced differences in the tertiary and secondary structure of PhK measured by fluorescence, UV absorption, FTIR, and CD spectroscopies as low resolution probes of PhK's structure were subtle. In contrast, the surface electrostatic properties of solvent accessible charged and polar groups were altered upon the binding of Ca2+ ions to PhK, which substantially affected both its diffusion rate and electrophoretic mobility, as measured by dynamic light scattering and zeta potential analyses, respectively. Overall, the observed physicochemical effects of Ca2+ binding to PhK were numerous, including a decrease in its electrostatic surface charge that reduced particle mobility without inducing a large alteration in secondary structure content or hydrophobic tertiary interactions. Without exception, for all analyses in which the temperature was varied, the presence of Ca2+ rendered the enzyme increasingly labile to thermal perturbation. PMID:17322534

  8. Role of Glycoside Phosphorylases in Mannose Foraging by Human Gut Bacteria*

    PubMed Central

    Ladevèze, Simon; Tarquis, Laurence; Cecchini, Davide A.; Bercovici, Juliette; André, Isabelle; Topham, Christopher M.; Morel, Sandrine; Laville, Elisabeth; Monsan, Pierre; Lombard, Vincent; Henrissat, Bernard; Potocki-Véronèse, Gabrielle

    2013-01-01

    To metabolize both dietary fiber constituent carbohydrates and host glycans lining the intestinal epithelium, gut bacteria produce a wide range of carbohydrate-active enzymes, of which glycoside hydrolases are the main components. In this study, we describe the ability of phosphorylases to participate in the breakdown of human N-glycans, from an analysis of the substrate specificity of UhgbMP, a mannoside phosphorylase of the GH130 protein family discovered by functional metagenomics. UhgbMP is found to phosphorolyze β-d-Manp-1,4-β-d-GlcpNAc-1,4-d-GlcpNAc and is also a highly efficient enzyme to catalyze the synthesis of this precious N-glycan core oligosaccharide by reverse phosphorolysis. Analysis of sequence conservation within family GH130, mapped on a three-dimensional model of UhgbMP and supported by site-directed mutagenesis results, revealed two GH130 subfamilies and allowed the identification of key residues responsible for catalysis and substrate specificity. The analysis of the genomic context of 65 known GH130 sequences belonging to human gut bacteria indicates that the enzymes of the GH130_1 subfamily would be involved in mannan catabolism, whereas the enzymes belonging to the GH130_2 subfamily would rather work in synergy with glycoside hydrolases of the GH92 and GH18 families in the breakdown of N-glycans. The use of GH130 inhibitors as therapeutic agents or functional foods could thus be considered as an innovative strategy to inhibit N-glycan degradation, with the ultimate goal of protecting, or restoring, the epithelial barrier. PMID:24043624

  9. Structural basis for non-competitive product inhibition in human thymidine phosphorylase: implications for drug design.

    PubMed

    El Omari, Kamel; Bronckaers, Annelies; Liekens, Sandra; Pérez-Pérez, Maria-Jésus; Balzarini, Jan; Stammers, David K

    2006-10-15

    HTP (human thymidine phosphorylase), also known as PD-ECGF (platelet-derived endothelial cell growth factor) or gliostatin, has an important role in nucleoside metabolism. HTP is implicated in angiogenesis and apoptosis and therefore is a prime target for drug design, including antitumour therapies. An HTP structure in a closed conformation complexed with an inhibitor has previously been solved. Earlier kinetic studies revealed an ordered release of thymine followed by ribose phosphate and product inhibition by both ligands. We have determined the structure of HTP from crystals grown in the presence of thymidine, which, surprisingly, resulted in bound thymine with HTP in a closed dead-end complex. Thus thymine appears to be able to reassociate with HTP after its initial ordered release before ribose phosphate and induces the closed conformation, hence explaining the mechanism of non-competitive product inhibition. In the active site in one of the four HTP molecules within the crystal asymmetric unit, additional electron density is present. This density has not been previously seen in any pyrimidine nucleoside phosphorylase and it defines a subsite that may be exploitable in drug design. Finally, because our crystals did not require proteolysed HTP to grow, the structure reveals a loop (residues 406-415), disordered in the previous HTP structure. This loop extends across the active-site cleft and appears to stabilize the dimer interface and the closed conformation by hydrogen-bonding. The present study will assist in the design of HTP inhibitors that could lead to drugs for anti-angiogenesis as well as for the potentiation of other nucleoside drugs.

  10. Elevated thymidine phosphorylase activity in psoriatic lesions accounts for the apparent presence of an epidermal growth inhibitor, but is not in itself growth inhibitory

    SciTech Connect

    Hammerberg, C.; Fisher, G.J.; Voorhees, J.J.; Cooper, K.D. )

    1991-08-01

    An apparent tissue-specific growth inhibitor, or chalone, obtained from psoriatic lesions was tentatively identified in the 100-kDa fraction based upon inhibition of DNA synthesis, as measured by (3H)-thymidine uptake by a squamous cell carcinoma cell line, SCC 38. This fraction, however, failed to inhibit SCC 38 cell growth when assessed directly in a neutral red uptake assay. Characterization of the inhibitor of (3H)-thymidine uptake revealed it to have biochemical properties identical to thymidine phosphorylase: (1) molecular weight close to 100 kDa, (2) isoelectric point of 4.2, and (3) thymidine phosphorylase enzyme activity. Thus, the authors conclude that its ability to inhibit (3H)-thymidine uptake was due to thymidine catabolism rather than inhibition of DNA synthesis or growth inhibition. Examination of thymidine phosphorylase activity in keratome biopsies from psoriatic and normal skin demonstrated a twentyfold increase in activity in psoriatic lesions relative to non-lesional or normal skin. This increase in metabolism of thymidine was due to thymidine phosphorylase rather than uridine phosphorylase activity. The correlation between increased thymidine phosphorylase activity and increased keratinocyte proliferation in vitro (cultured) and in vivo (psoriasis), suggests that this enzyme may play a critical role in providing the thymidine necessary for keratinocyte proliferation.

  11. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.

    PubMed

    Belenky, Peter; Christensen, Kathryn C; Gazzaniga, Francesca; Pletnev, Alexandre A; Brenner, Charles

    2009-01-02

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification.

  12. [Reconstruction of muscle glycogen phosphorylase b from an apoenzyme and pyridoxal-5'-phosphate and its analogs. Interaction of apophosphorylase and the reconstructed enzyme with specific ligands].

    PubMed

    Chebotareva, N A; Sugrobova, N P; Bulanova, L N; Poznanskaia, A A; Kurganov, B I; Gunar, V I

    1995-12-01

    Sedimentation methods were used to study the effects of modification of the pyridoxal-5'-phosphate (PLP) molecule at the 5th position on the affinity of reconstituted muscle glycogen phosphorylase b for the substrate (glycogen) and the allosteric inhibitor (FMN) as well as on the enzyme capacity to association induced by AMP. Reconstituted phosphorylase b was obtained with PLP analogs containing at the 5th position -CH2-CH2-COOH (analog I), trans-CH=CH-COOH (analog II) or -C identical to COOH (analog III) residues. Reconstitution of phosphorylase b is accompanied by the recovery of the enzyme quaternary structure. Phosphorylase b reconstituted with PLP or analogs I, II and III is not distinguished practically from the native enzyme in its affinity for glycogen. Substitution of the native coenzyme in the phosphorylase molecule with any tested PLP analog leads to lower enzyme affinity for FMN. Microscopic dissociation constants of the FMN-enzyme complexes increase in the following order: enzyme.I < enzyme.II < enzyme.III. Phosphorylase b reconstituted with analogs I, II and III differs substantially from the native enzyme in its capacity to association in the presence of 1 mM AMP: the reconstituted enzyme is represented practically by only the tetrameric form.

  13. Production and Characteristics of Raw-Starch-Digesting α-Amylase from a Protease-Negative Aspergillus ficum Mutant

    PubMed Central

    Hayashida, Shinsaku; Teramoto, Yuji

    1986-01-01

    Mutational experiments were carried out to decrease the protease productivity of Aspergillus ficum IFO 4320 by using N-methyl-N′-nitro-N-nitrosoguanidine. A protease-negative mutant, M-33, exhibited higher α-amylaseactivity than the parent strain under submerged culture at 30°C for 24 h. About 70% of the total α-amylase activity in the M-33 culture filtrate was adsorbed onto starch granules. The electrophoretically homogeneous preparation of raw-starch-adsorbable α-amylase (molecular weight, 88,000), acid stable at pH 2, showed intensive raw-starch-digesting activity, dissolving corn starch granules completely. The preparation also exhibited a high synergistic effect with glucoamylase I. A mutant, M-72, with higher protease activity produced a raw cornstarch-unadsorbable α-amylase. The purified enzyme (molecular weight, 54,000), acid unstable, showed no digesting activity on raw corn starch and a lower synergistic effect with glucoamylase I in the hydrolysis of raw corn starch. The fungal α-amylase was therefore divided into two types, a novel type of raw-starch-digesting enzyme and a conventional type of raw-starch-nondigesting enzyme. Images PMID:16347204

  14. Comparative binding and disintegrating property of Echinochloa colona starch (difra starch) against maize, sorghum, and cassava starch.

    PubMed

    Abdallah, Daud Baraka; Charoo, Naseem Ahmad; Elgorashi, Abubakr Suliman

    2014-08-01

    Starch obtained from different botanical sources exhibit different characteristics due to variation in amylase-amylopectin ratio, which results in different binder substrate interactions. The present study characterized Echinochloa colona (L.) Link (Poaceae) starch and evaluated its compressional characteristics for use as tablet excipient against commonly used maize, sorghum, and cassava starch. Three experimental design studies were performed to determine the effects of the maize starch and povidone on physical properties of paracetamol (250 mg) tablets. The effect of superdisintegrants sodium starch glycolate and croscarmellose sodium on the optimized composition obtained in the preceding experiments was evaluated in two factorial experimental studies. The maize starch in the optimum formulations was replaced with difra, sorghum, and cassava starch, and tablets prepared from these starches were compared for their compressional characteristics, lubrication sensitivity, moisture uptake, and drug release. Tablets prepared from maize starch and povidone (30:9, w/w) blend which was previously mixed for 8 min disintegrated (DT) in 10 min. Superdisintegrants decreased DT of tablets significantly (p < 0.05) to 2.2 min. The Hausner ratios of co-processed mixtures containing sorghum, maize, and difra starch were 1.19, 1.21, and 1.26, respectively, with equilibrium moisture content of 8-9%. The DT of sorghum and difra starch formulations which related directly to their higher hydration capacity (difra > sorghum > maize starch) and swelling property was 1.5 min and 2.5 min, respectively, with a friability of 0.32%. The effect of lubrication on the DT and friability of tablets containing maize and difra starch was significant (p < 0.05). However, more than 90% drug was released in vitro dissolution studies. Difra starch can replace maize and sorghum starch as tablet excipient.

  15. Structural and physicochemical characterisation of rye starch.

    PubMed

    Gomand, S V; Verwimp, T; Goesaert, H; Delcour, J A

    2011-12-13

    The gelatinisation, pasting and retrogradation properties of three rye starches isolated using a proteinase-based procedure were investigated and compared to those of wheat starch isolated in a comparable way. On an average, the rye starch granules were larger than those of wheat starch. The former had very comparable gelatinisation temperatures and enthalpies, but slightly lower gelatinisation temperatures than wheat starch. Under standardised conditions, they retrograded to a lesser extent than wheat starch. The lower gelatinisation temperatures and tendencies of the rye starches to retrograde originated probably from their higher levels of short amylopectin (AP) chains [degree of polymerisation (DP) 6-12] and their lower levels of longer chains (DP 13-24) than observed for wheat starch. The rapid visco analysis differences in peak and end viscosities between the rye starches as well as between rye and wheat starches were at least partly attributable to differences in the levels of AP short chains and in average amylose molecular weight. The AP average chain lengths and exterior chain lengths were slightly lower for rye starches, while the interior chain lengths were slightly higher than those for wheat starch.

  16. Starch Granule Variability in Wild Solanum Species

    USDA-ARS?s Scientific Manuscript database

    Because most of the dry matter of potato tubers is starch, an understanding of starch properties is important in potato improvement programs. Starch granule size is considered to influence tuber processing quality parameters such as gelatinization temperature, viscosity, and water holding capacity. ...

  17. Studies of Amylose Content in Potato Starch

    USDA-ARS?s Scientific Manuscript database

    Potato starch is typically low in amylose (~20-25%), but high amylose starch has superior nutritional qualities. The ratio between amylose and amylopectin is the most important property influencing the physical properties of starch. There is a strong case to be made for the development of food crops...

  18. Esterification of Starch in Ionic Liquids

    USDA-ARS?s Scientific Manuscript database

    We shall discuss the use of various ionic liquids in the preparation of starch esters. Starch was reacted with vinyl acetate in different 1-butyl-3-methylimidazolium (bmim) salts as solvents in an effort to produce starches with different acetylation patterns. Overall degree of substitution (DS) w...

  19. Cloning of the maltose phosphorylase gene from Bacillus sp. strain RK-1 and efficient production of the cloned gene and the trehalose phosphorylase gene from Bacillus stearothermophilus SK-1 in Bacillus subtilis.

    PubMed

    Inoue, Yasushi; Yasutake, Nozomu; Oshima, Yoshie; Yamamoto, Yoshie; Tomita, Tetsuji; Miyoshi, Shinsuke; Yatake, Tsuneya

    2002-12-01

    The maltose phosphorylase (MPase) gene of Bacillus sp. strain RK-1 was cloned by PCR with oligonucleotide primers designed on the basis of a partial N-terminal amino acid sequence of the purified enzyme. The MPase gene consisted of 2,655 bp encoding a theoretical protein with a Mr of 88,460, and had no secretion signal sequence, although most of the MPase activity was detected in the culture supernatant of RK-1. This cloned MPase gene and the trehalose phosphorylase (TPase) gene from Bacillus stearothermophilus SK-1 were efficiently expressed intracellularly under the control of the Bacillus amyloliquefaciens alpha-amylase promoter in Bacillus subtilis. The production yields were estimated to be more than 2 g of enzyme per liter of medium, about 250 times the production of the original strains, in a simple shake flask. About 60% of maltose was converted into trehalose by the simultaneous action of both enzymes produced in B. subtilis.

  20. Starch gelatinization under thermal stress.

    PubMed

    Faroongsarng, D; Wongpoowarak, W; Mitrevej, A

    1999-01-01

    The behavior under thermal stress of starch dispersed in water was studied by differential scanning calorimetry (DSC) to estimate the heat transported through the aqueous medium in gelatinization, and to characterize the range of gelatinization temperatures. In DSC scanning mode, the endotherm of 10% starch in aqueous dispersion showed the tracing of gelatinization at between 67 and 80 degrees C, having an onset at approximately 69 degrees C. In the isothermal mode, characteristically distinct isothermal heat flow profiles were revealed. It was hypothesized that the thermal influx proposed as being analogous to the diffusion process may affect the profiles. The profiles were transformed and nonlinearly fitted according to the square root of time model to characterize a so-called t-parameter, which was related to mean square displacement of molecular distribution. The t-parameter of starch in excess of water decreased compared to that of water only. The plot of difference in these t-parameters, expressed as delta, against temperature showed a dramatically decreased delta at the temperature between 66.7 and 75.2 degrees C, which coincided with the findings from scanning mode DSC. It was further hypothesized that the decreased delta may be due to the gelatinizing process. According to the theory of polymer solution, the critical temperature (theta) at 75.2 degrees C, where the free energy became theoretically negative, i.e., the starch became spontaneously dissolved, was drawn. This theta was located within the range of gelatinizing temperatures. It was deduced that starch polymer may have dissolved during gelatinization. The dissolution from acetaminophen tablets prepared by starch paste was lower compared with that of negative controls (without paste). Moreover, the paste prepared at gelatinizing temperature (70 degrees C) seemed to inhibit acetaminophen dissolution from tablet matrices more than that prepared at subgelatinizing temperature (50 degrees C).

  1. Physicochemical properties of starches isolated from pumpkin compared with potato and corn starches.

    PubMed

    Przetaczek-Rożnowska, Izabela

    2017-08-01

    The aim of the study was to characterize the selected physicochemical, thermal and rheological properties of pumpkin starches and compared with the properties of potato and corn starches used as control samples. Pumpkin starches could be used in the food industry as a free gluten starch. Better thermal and rheological properties could contribute to reduce the costs of food production. The syneresis of pumpkin starches was similar to that of potato starch but much lower than that for corn starch. Pasting temperatures of pumpkin starches were lower by 17-21.7°C and their final viscosities were over 1000cP higher than corn paste, but were close to the values obtained for potato starch. The thermodynamic characteristic showed that the transformation temperatures of pumpkin starches were lower than those measured for control starches. A level of retrogradation was much lower in pumpkin starch pastes (32-48%) than was in the case of corn (59%) or potato (77%) starches. The pumpkin starches gels were characterized by a much greater hardness, cohesiveness and chewiness, than potato or corn starches gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Polymer grafting onto starch nanocrystals.

    PubMed

    Labet, Marianne; Thielemans, Wim; Dufresne, Alain

    2007-09-01

    Monocrystalline starch nanoparticles were successfully grafted with poly(tetrahydrofuran), poly(caprolactone), and poly(ethylene glycol) monobutyl ether chains using toluene 2,4-diisocyanate as a linking agent. Surface grafting was confirmed using Fourier transform infrared and X-ray photoelectron spectroscopies, differential scanning calorimetry, elemental analysis, and contact angle measurements. Transmission electron microscopy observations of modified starch nanocrystals showed either the individualization of nanoparticles or the formation of a film, depending on the polymer used. It was shown that grafting efficiency decreased with the length of the polymeric chains, as expected. The resulting modified nanoparticles can find applications in the field of co-continuous nanocomposite materials.

  3. Starch characteristics influencing resistant starch content of cooked buckwheat groats

    USDA-ARS?s Scientific Manuscript database

    Enzyme resistant starch (RS), owing to its health benefits such as colon cancer inhibition, reduced glycemic response, reduced cholesterol level, prevention of gall stone formation and obesity, has received an increasing attention from consumers and food manufacturers, whereas intrinsic and extrinsi...

  4. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation.

    PubMed

    Cockburn, Darrell; Nielsen, Morten M; Christiansen, Camilla; Andersen, Joakim M; Rannes, Julie B; Blennow, Andreas; Svensson, Birte

    2015-04-01

    Carbohydrate converting enzymes often possess extra substrate binding regions that enhance their activity. These can be found either on separate domains termed carbohydrate binding modules or as so-called surface binding sites (SBSs) situated on the catalytic domain. SBSs are common in starch degrading enzymes and critically important for their function. The affinity towards a variety of starch granules as well as soluble poly- and oligosaccharides of barley α-amylase 1 (AMY1) wild-type and mutants of two SBSs (SBS1 and SBS2) was investigated using Langmuir binding analysis, confocal laser scanning microscopy, affinity gel electrophoresis and surface plasmon resonance to unravel functional roles of the SBSs. SBS1 was critical for binding to different starch types as Kd increased by 7-62-fold or was not measurable upon mutation. By contrast SBS2 was particularly important for binding to soluble polysaccharides and oligosaccharides with α-1,6 linkages, suggesting that branch points are key structural elements in recognition by SBS2. Mutation at both SBS1 and SBS2 eliminated binding to all starch granule types tested. Taken together, the findings indicate that the two SBSs act in concert to localize AMY1 to the starch granule surface and that SBS2 works synergistically with the active site in the degradation of amylopectin.

  5. Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes.

    PubMed

    Hennen-Bierwagen, Tracie A; Liu, Fushan; Marsh, Rebekah S; Kim, Seungtaek; Gan, Qinglei; Tetlow, Ian J; Emes, Michael J; James, Martha G; Myers, Alan M

    2008-04-01

    Mutations affecting specific starch biosynthetic enzymes commonly have pleiotropic effects on other enzymes in the same metabolic pathway. Such genetic evidence indicates functional relationships between components of the starch biosynthetic system, including starch synthases (SSs), starch branching enzymes (BEs), and starch debranching enzymes; however, the molecular explanation for these functional interactions is not known. One possibility is that specific SSs, BEs, and/or starch debranching enzymes associate physically with each other in multisubunit complexes. To test this hypothesis, this study sought to identify stable associations between three separate SS polypeptides (SSI, SSIIa, and SSIII) and three separate BE polypeptides (BEI, BEIIa, and BEIIb) from maize (Zea mays) amyloplasts. Detection methods included in vivo protein-protein interaction tests in yeast (Saccharomyces cerevisiae) nuclei, immunoprecipitation, and affinity purification using recombinant proteins as the solid phase ligand. Eight different instances were detected of specific pairs of proteins associating either directly or indirectly in the same multisubunit complex, and direct, pairwise interactions were indicated by the in vivo test in yeast. In addition, SSIIa, SSIII, BEIIa, and BEIIb all comigrated in gel permeation chromatography in a high molecular mass form of approximately 600 kD, and SSIIa, BEIIa, and BEIIb also migrated in a second high molecular form, lacking SSIII, of approximately 300 kD. Monomer forms of all four proteins were also detected by gel permeation chromatography. The 600- and 300-kD complexes were stable at high salt concentration, suggesting that hydrophobic effects are involved in the association between subunits.

  6. Pullulanase and Starch Synthase III Are Associated with Formation of Vitreous Endosperm in Quality Protein Maize

    PubMed Central

    Wu, Hao; Clay, Kasi; Thompson, Stephanie S.; Hennen-Bierwagen, Tracie A.; Andrews, Bethany J.; Zechmann, Bernd; Gibbon, Bryan C.

    2015-01-01

    The opaque-2 (o2) mutation of maize increases lysine content, but the low seed density and soft texture of this type of mutant are undesirable. Lines with modifiers of the soft kernel phenotype (mo2) called “Quality Protein Maize” (QPM) have high lysine and kernel phenotypes similar to normal maize. Prior research indicated that the formation of vitreous endosperm in QPM might involve changes in starch granule structure. In this study, we focused on analysis of two starch biosynthetic enzymes that may influence kernel vitreousness. Analysis of recombinant inbred lines derived from a cross of W64Ao2 and K0326Y revealed that pullulanase activity had significant positive correlation with kernel vitreousness. We also found that decreased Starch Synthase III abundance may decrease the pullulanase activity and average glucan chain length given the same Zpu1 genotype. Therefore, Starch Synthase III could indirectly influence the kernel vitreousness by affecting pullulanase activity and coordinating with pullulanase to alter the glucan chain length distribution of amylopectin, resulting in different starch structural properties. The glucan chain length distribution had strong positive correlation with the polydispersity index of glucan chains, which was positively associated with the kernel vitreousness based on nonlinear regression analysis. Therefore, we propose that pullulanase and Starch Synthase III are two important factors responsible for the formation of the vitreous phenotype of QPM endosperms. PMID:26115014

  7. Starch Biosynthetic Enzymes from Developing Maize Endosperm Associate in Multisubunit Complexes1[OA

    PubMed Central

    Hennen-Bierwagen, Tracie A.; Liu, Fushan; Marsh, Rebekah S.; Kim, Seungtaek; Gan, Qinglei; Tetlow, Ian J.; Emes, Michael J.; James, Martha G.; Myers, Alan M.

    2008-01-01

    Mutations affecting specific starch biosynthetic enzymes commonly have pleiotropic effects on other enzymes in the same metabolic pathway. Such genetic evidence indicates functional relationships between components of the starch biosynthetic system, including starch synthases (SSs), starch branching enzymes (BEs), and starch debranching enzymes; however, the molecular explanation for these functional interactions is not known. One possibility is that specific SSs, BEs, and/or starch debranching enzymes associate physically with each other in multisubunit complexes. To test this hypothesis, this study sought to identify stable associations between three separate SS polypeptides (SSI, SSIIa, and SSIII) and three separate BE polypeptides (BEI, BEIIa, and BEIIb) from maize (Zea mays) amyloplasts. Detection methods included in vivo protein-protein interaction tests in yeast (Saccharomyces cerevisiae) nuclei, immunoprecipitation, and affinity purification using recombinant proteins as the solid phase ligand. Eight different instances were detected of specific pairs of proteins associating either directly or indirectly in the same multisubunit complex, and direct, pairwise interactions were indicated by the in vivo test in yeast. In addition, SSIIa, SSIII, BEIIa, and BEIIb all comigrated in gel permeation chromatography in a high molecular mass form of approximately 600 kD, and SSIIa, BEIIa, and BEIIb also migrated in a second high molecular form, lacking SSIII, of approximately 300 kD. Monomer forms of all four proteins were also detected by gel permeation chromatography. The 600- and 300-kD complexes were stable at high salt concentration, suggesting that hydrophobic effects are involved in the association between subunits. PMID:18281416

  8. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase.

    PubMed

    Kawahara, Ryosuke; Saburi, Wataru; Odaka, Rei; Taguchi, Hidenori; Ito, Shigeaki; Mori, Haruhide; Matsui, Hirokazu

    2012-12-07

    Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-D-glucosyl-D-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-D-mannosyl-D-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-D-mannosyl 1-phosphate (Man1P) and D-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward D-glucose and 6-deoxy-D-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on D-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N'-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than D-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose.

  9. Design of an adenosine phosphorylase by active-site modification of murine purine nucleoside phosphorylase. Enzyme kinetics and molecular dynamics simulation of Asn-243 and Lys-244 substitutions of purine nucleoside phosphorylase.

    PubMed

    Maynes, J T; Yam, W; Jenuth, J P; Gang Yuan, R; Litster, S A; Phipps, B M; Snyder, F F

    1999-12-01

    Our objective was to alter the substrate specificity of purine nucleoside phosphorylase such that it would catalyse the phosphorolysis of 6-aminopurine nucleosides. We modified both Asn-243 and Lys-244 in order to promote the acceptance of the C6-amino group of adenosine. The Asn-243-Asp substitution resulted in an 8-fold increase in K(m) for inosine from 58 to 484 microM and a 1000-fold decrease in k(cat)/K(m). The Asn-243-Asp construct catalysed the phosphorolysis of adenosine with a K(m) of 45 microM and a k(cat)/K(m) 8-fold that with inosine. The Lys-244-Gln construct showed only marginal reduction in k(cat)/K(m), 83% of wild type, but had no activity with adenosine. The Asn-243-Asp;Lys-244-Gln construct had a 14-fold increase in K(m) with inosine and 7-fold decrease in k(cat)/K(m) as compared to wild type. This double substitution catalysed the phosphorolysis of adenosine with a K(m) of 42 microM and a k(cat)/K(m) twice that of the single Asn-243-Asp substitution. Molecular dynamics simulation of the engineered proteins with adenine as substrate revealed favourable hydrogen bond distances between N7 of the purine ring and the Asp-243 carboxylate at 2.93 and 2.88 A, for Asn-243-Asp and the Asn-243-Asp;Lys-244-Gln constructs respectively. Simulation also supported a favourable hydrogen bond distance between the purine C6-amino group and Asp-243 at 2.83 and 2.88 A for each construct respectively. The Asn-243-Thr substitution did not yield activity with adenosine and simulation gave unfavourable hydrogen bond distances between Thr-243 and both the C6-amino group and N7 of the purine ring. The substitutions were not in the region of phosphate binding and the apparent S(0.5) for phosphate with wild type and the Asn-243-Asp enzymes were 1.35+/-0.01 and 1.84+/-0.06 mM, respectively. Both proteins exhibited positive co-operativity with phosphate giving Hill coefficients of 7.9 and 3.8 respectively.

  10. Design of an adenosine phosphorylase by active-site modification of murine purine nucleoside phosphorylase. Enzyme kinetics and molecular dynamics simulation of Asn-243 and Lys-244 substitutions of purine nucleoside phosphorylase.

    PubMed Central

    Maynes, J T; Yam, W; Jenuth, J P; Gang Yuan, R; Litster, S A; Phipps, B M; Snyder, F F

    1999-01-01

    Our objective was to alter the substrate specificity of purine nucleoside phosphorylase such that it would catalyse the phosphorolysis of 6-aminopurine nucleosides. We modified both Asn-243 and Lys-244 in order to promote the acceptance of the C6-amino group of adenosine. The Asn-243-Asp substitution resulted in an 8-fold increase in K(m) for inosine from 58 to 484 microM and a 1000-fold decrease in k(cat)/K(m). The Asn-243-Asp construct catalysed the phosphorolysis of adenosine with a K(m) of 45 microM and a k(cat)/K(m) 8-fold that with inosine. The Lys-244-Gln construct showed only marginal reduction in k(cat)/K(m), 83% of wild type, but had no activity with adenosine. The Asn-243-Asp;Lys-244-Gln construct had a 14-fold increase in K(m) with inosine and 7-fold decrease in k(cat)/K(m) as compared to wild type. This double substitution catalysed the phosphorolysis of adenosine with a K(m) of 42 microM and a k(cat)/K(m) twice that of the single Asn-243-Asp substitution. Molecular dynamics simulation of the engineered proteins with adenine as substrate revealed favourable hydrogen bond distances between N7 of the purine ring and the Asp-243 carboxylate at 2.93 and 2.88 A, for Asn-243-Asp and the Asn-243-Asp;Lys-244-Gln constructs respectively. Simulation also supported a favourable hydrogen bond distance between the purine C6-amino group and Asp-243 at 2.83 and 2.88 A for each construct respectively. The Asn-243-Thr substitution did not yield activity with adenosine and simulation gave unfavourable hydrogen bond distances between Thr-243 and both the C6-amino group and N7 of the purine ring. The substitutions were not in the region of phosphate binding and the apparent S(0.5) for phosphate with wild type and the Asn-243-Asp enzymes were 1.35+/-0.01 and 1.84+/-0.06 mM, respectively. Both proteins exhibited positive co-operativity with phosphate giving Hill coefficients of 7.9 and 3.8 respectively. PMID:10567244

  11. Synthesis, thymidine phosphorylase inhibition and molecular modeling studies of 1,3,4-oxadiazole-2-thione derivatives.

    PubMed

    Shahzad, Sohail Anjum; Yar, Muhammad; Bajda, Marek; Shahzadi, Lubna; Khan, Zulfiqar Ali; Naqvi, Syed Ali Raza; Mutahir, Sadaf; Mahmood, Nasir; Khan, Khalid Mohammed

    2015-06-01

    Thymidine phosphorylase (TP) inhibitors have attracted great attention due to their ability to suppress the tumors formation. In our ongoing research, a series of 1,3,4-oxadiazole-2-thione (1-12) has been synthesized under simple reaction conditions in good to excellent yields (86-98%) and their TP inhibition potential has also been evaluated. The majority of synthesized compounds showed moderate thymidine phosphorylase inhibitory activity with IC50 values ranging from 38.24±1.28 to 258.43±0.43μM, and 7-deazaxanthine (7DX) was used as a reference compound (IC50 38.68±4.42). The TP activity was very much dependent on the C-5 substituents; among this series the compound 6 bearing 4-hydroxyphenyl group was found to be the most active with IC50 38.24±1.28μM. Molecular docking studies revealed their binding mode.

  12. Purification, crystallization and preliminary X-ray diffraction study on pyrimidine nucleoside phosphorylase TTHA1771 from Thermus thermophilus HB8

    SciTech Connect

    Shimizu, Katsumi; Kunishima, Naoki

    2007-04-01

    The pyrimidine nucleoside phosphorylase TTHA1771 from T. thermophilus HB8 has been overexpressed, purified and crystallized. The crystals diffract X-rays to 1.8 Å resolution using synchrotron radiation. Pyrimidine nucleoside phosphorylase (PYNP) catalyzes the reversible phosphorolysis of pyrimidines in the nucleotide-synthesis salvage pathway. In order to study the structure–thermostability relationship of this enzyme, PYNP from the extreme thermophile Thermus thermophilus HB8 (TTHA1771) has been cloned, overexpressed and purified. The TTHA1771 protein was crystallized at 291 K using the oil-microbatch method with PEG 4000 as a precipitant. A native data set was collected to 1.8 Å resolution using synchrotron radiation. The crystal belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 58.83, b = 76.23, c = 103.86 Å, β = 91.3°.

  13. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability.

    PubMed

    Dowdle, John; Ishikawa, Takahiro; Gatzek, Stephan; Rolinski, Susanne; Smirnoff, Nicholas

    2007-11-01

    Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose via L-galactose/L-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts GDP-L-galactose to L-galactose 1-P. We show that a GDP-L-galactose phosphorylase, encoded by the Arabidopsis thaliana VTC2 gene, catalyses this step in the ascorbate biosynthetic pathway. Furthermore, a homologue of VTC2, At5g55120, encodes a second GDP-L-galactose phosphorylase with similar properties to VTC2. Two At5g55120 T-DNA insertion mutants (vtc5-1 and vtc5-2) have 80% of the wild-type ascorbate level. Double mutants were produced by crossing the loss-of-function vtc2-1 mutant with each of the two vtc5 alleles. These show growth arrest immediately upon germination and the cotyledons subsequently bleach. Normal growth was restored by supplementation with ascorbate or L-galactose, indicating that both enzymes are necessary for ascorbate generation. vtc2-1 leaves contain more mannose 6-P than wild-type. We conclude that the GDP-mannose pathway is the only significant source of ascorbate in A. thaliana seedlings, and that ascorbate is essential for seedling growth. A. thaliana leaves accumulate more ascorbate after acclimatization to high light intensity. VTC2 expression and GDP-L-galactose phosphorylase activity rapidly increase on transfer to high light, but the activity of other enzymes in the GDP-mannose pathway is little affected. VTC2 and At5g55120 (VTC5) expression also peak in at the beginning of the light cycle and are controlled by the circadian clock. The GDP-L-galactose phosphorylase step may therefore play an important role in controlling ascorbate biosynthesis.

  14. Resistant starch: promise for improving human health.

    PubMed

    Birt, Diane F; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J; Rowling, Matthew; Schalinske, Kevin; Scott, M Paul; Whitley, Elizabeth M

    2013-11-01

    Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized.

  15. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    PubMed

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Solvent effects on starch dissolution and gelatinization.

    PubMed

    Koganti, Nagamani; Mitchell, John R; Ibbett, Roger N; Foster, Tim J

    2011-08-08

    The disruption of starch granular structure during dissolution in varying concentrations of N-methyl morpholine N-oxide (NMMO) has been studied using three maize starches with varying ratios of amylose and amylopectin. Behavior in NMMO has been characterized by differential scanning calorimetry (DSC), microscopy, rapid viscosity analysis (RVA), and rheometry. Exothermic transitions were observed for the three starches in both 78 and 70% NMMO; the transition changed to an endotherm at 60 and 50% NMMO. Consistent with DSC, hot stage microscopy showed that starch granules dissolved at NMMO concentrations of 78 and 70%, whereas in 60 and 50% NMMO, gelatinization behavior similar to that found for starch in water was observed. Mechanical spectroscopy revealed the dominant viscous behavior (G″ > G') of starch at NMMO concentrations of 70 and 78% and more elastic behavior (G' > G″) at lower concentrations. Starch solutions in 78% NMMO obey the Cox-Merz rule, suggesting that the solutions are homogeneous on a molecular level.

  17. Preparation, characterization and utilization of starch nanoparticles.

    PubMed

    Kim, Hee-Young; Park, Sung Soo; Lim, Seung-Taik

    2015-02-01

    Starch is one of the most abundant biopolymers in nature and is typically isolated from plants in the form of micro-scale granules. Recent studies reported that nano-scale starch particles could be readily prepared from starch granules, which have unique physical properties. Because starch is environmentally friendly, starch nanoparticles are suggested as one of the promising biomaterials for novel utilization in foods, cosmetics, medicines as well as various composites. An overview of the most up-to-date information regarding the starch nanoparticles including the preparation processes and physicochemical characterization will be presented in this review. Additionally, the prospects and outlooks for the industrial utilization of starch nanoparticles will be discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Measurement of the turnover of glycogen phosphorylase by GC/MS using stable isotope derivatives of pyridoxine (vitamin B6).

    PubMed Central

    Beynon, R J; Leyland, D M; Evershed, R P; Edwards, R H; Coburn, S P

    1996-01-01

    The majority of vitamin B6 in the body is in skeletal muscle, bound as the cofactor pyridoxal 5'-phosphate to one abundant protein, glycogen phosphorylase. Previous work has established that radiolabelled vitamin B6 can be used as a turnover label for glycogen phosphorylase. In this study, a stable isotope derivative of pyridoxine ¿dideuterated pyridoxine; 3-hydroxy-4-(hydroxymethyl) -5-[hydroxymethyl-2H2]-2-methylpyridine¿ ([2H2]PN) has been used as a metabolic tracer to study the kinetics of labelling of the body pools of vitamin B6 in mice. A non-invasive method was developed in which the isotope abundance of the urinary excretory product of vitamin B6 metabolism, 4-pyridoxic acid, was analysed by GC/MS. The change in isotope abundance of urinary 4-pyridoxic acid following administration of [2H2]PN reflects the kinetics of labelling of the body pools of vitamin B6, and yields, non-invasively, the rate of degradation of glycogen phosphorylase. PMID:8713093

  19. Cooperative behavior in the thiol oxidation of rabbit muscle glycogen phosphorylase in cysteamine/cystamine redox buffers

    SciTech Connect

    Cappel, R.E.; Gilbert, H.F.

    1986-11-25

    Glycogen phosphorylase a and b are irreversibly inactivated by oxidation with the disulfide cystamine. The mechanism is complex and involves oxidation of at least two classes of sulfhydryl groups. The oxidation of one or more of the first class of 4 +/- 1 sulfhydryl groups is reversible, but the equilibrium constant for the oxidation is so unfavorable (1 X 10(-4)) that the micromolar concentrations of cysteamine released stoichiometrically with enzyme oxidation are sufficient to prevent complete oxidation even in the presence of 100 mM cystamine. The rapid phase of inactivation of phosphorylase b, which is first order in cystamine (k = 2.9 +/- 0.3 M-1 min-1), is followed by the oxidation of 5 +/- 1 groups in an irreversible process that is second order in cystamine concentration (k = 3.9 +/- M-2 min-1). Similar behavior is observed for phosphorylase a, although the behavior is complicated by association/dissociation equilibrium. The second-order dependence of the rate of irreversible inactivation on cystamine concentration is interpreted in terms of a cooperative model in which a rapidly reversible thermodynamically unfavorable equilibrium oxidation of one or more sulfhydryl groups must precede the irreversible oxidation of one or more additional sulfhydryl groups. The thiol/disulfide oxidation equilibrium constant for the initial reversible reaction is estimated to be at least 10(4) less favorable than that for the reversible oxidation of phosphofructokinase.

  20. A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy.

    PubMed

    Bromley, Jennifer R; Warnes, Barbara J; Newell, Christine A; Thomson, Jamie C P; James, Celia M; Turnbull, Colin G N; Hanke, David E

    2014-03-01

    StCKP1 (Solanum tuberosum cytokinin riboside phosphorylase) catalyses the interconversion of the N9-riboside form of the plant hormone CK (cytokinin), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as a CK-binding activity in extracts of tuberizing potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide and motifs for purine nucleoside phosphorylase activity. The expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted into ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted into their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.

  1. An Isozyme-specific Redox Switch in Human Brain Glycogen Phosphorylase Modulates Its Allosteric Activation by AMP.

    PubMed

    Mathieu, Cécile; Duval, Romain; Cocaign, Angélique; Petit, Emile; Bui, Linh-Chi; Haddad, Iman; Vinh, Joelle; Etchebest, Catherine; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-11-11

    Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The binding of D-gluconohydroximo-1,5-lactone to glycogen phosphorylase. Kinetic, ultracentrifugation and crystallographic studies.

    PubMed Central

    Papageorgiou, A C; Oikonomakos, N G; Leonidas, D D; Bernet, B; Beer, D; Vasella, A

    1991-01-01

    Combined kinetic, ultracentrifugation and X-ray-crystallographic studies have characterized the effect of the beta-glucosidase inhibitor gluconohydroximo-1,5-lactone on the catalytic and structural properties of glycogen phosphorylase. In the direction of glycogen synthesis, gluconohydroximo-1,5-lactone was found to competitively inhibit both the b (Ki 0.92 mM) and the alpha form of the enzyme (Ki 0.76 mM) with respect to glucose 1-phosphate in synergism with caffeine. In the direction of glycogen breakdown, gluconohydroximo-1,5-lactone was found to inhibit phosphorylase b in a non-competitive mode with respect to phosphate, and no synergism with caffeine could be demonstrated. Ultracentrifugation and crystallization experiments demonstrated that gluconohydroximo-1,5-lactone was able to induce dissociation of tetrameric phosphorylase alpha and stabilization of the dimeric T-state conformation. A crystallographic binding study with 100 mM-gluconohydroximo-1,5-lactone at 0.24 nm (2.4 A) resolution showed a major peak at the catalytic site, and no significant conformational changes were observed. Analysis of the electron-density map indicated that the ligand adopts a chair conformation. The results are discussed with reference to the ability of the catalytic site of the enzyme to distinguish between two or more conformations of the glucopyranose ring. PMID:1900987

  3. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends.

    PubMed

    Pornsuksomboon, Kanlaya; Holló, Berta Barta; Szécsényi, Katalin Mészáros; Kaewtatip, Kaewta

    2016-01-20

    Starch foams from native cassava starch (NS) and citric acid modified cassava starch (CNS) were prepared using baking processes with blend ratios of 80/20, 60/40, 50/50, 40/60 and 20/80. The density, thickness, morphology, thermal stability and water absorption of the NS, CNS and blended starch foams were determined. The ratio of the two starch components had a significant influence on the density and thickness of the blended starch foams. All blended starch foams showed good water resistance. Moreover, the morphology of the blended starch foam with the NS/CNS ratio of 50/50 showed a more ordered distribution of cell sizes with thicker cell walls than for the NS and CNS foams. The thermal stability of the blended starch foams was somewhat lower than the stability of the NS foam but not to the extent that it affected any potential practical applications.

  4. Physicochemical properties of starches and proteins in alkali-treated mungbean and cassava starch granules.

    PubMed

    Israkarn, Kamolwan; Na Nakornpanom, Nantarat; Hongsprabhas, Parichat

    2014-05-25

    This study explored the influences of envelope integrity of cooked starch granules on physicochemical and thermophysical properties of mungbean and cassava starches. Alkali treatment was used to selectively leach amylose from the amorphous region of both starches and partially fragmented starch molecules into lower-molecular-weight polymers. It was found that despite the loss of 40% of the original content of amylose, both mungbean and cassava starches retained similar crystallinities, gelatinization temperature ranges, and pasting profiles compared to the native starches. However, the loss of granule-bound starch synthases during alkali treatment and subsequent alkali cooking in excess water played significant roles in determining granular disintegration. The alterations in envelope integrity due to the negative charge repulsion among polymers within the envelope of swollen granules, and the fragmentation of starch molecules, were responsible for the alterations in thermophysical properties of mungbean and cassava starches cooked under alkaline conditions.

  5. Starch composites with aconitic acid.

    PubMed

    Gilfillan, William Neil; Doherty, William O S

    2016-05-05

    The aim of this project is to examine the effectiveness of using aconitic acid (AcA), a tricarboxylic acid which contains a carbon/carbon double bond (CC), to enhance the properties of starch-based films. Starch/glycerol cast films were prepared with 0, 2, 5, 10 and 15wt% AcA (starch wt% basis) and the properties analysed. It was shown that AcA acted as both a cross-linking agent and also a strong plasticising agent. The 5wt% AcA derived starch films were the most effectively cross-linked having the lowest solubility (28wt%) and decreased swelling coefficient (35vol.%) by approximately 3 times and 2.4 times respectively compared to the control film submerged in water (23°C). There was also a significant increase in the film elongation at break by approximately 35 times (compared to the control) with the addition of 15wt% AcA, emphasising the plasticising effect of AcA. However, generally there was a reduced tensile strength, softening of the film, and reduced thermal stability with increased amounts of AcA.

  6. Annealing properties of rice starch.

    USDA-ARS?s Scientific Manuscript database

    Thermal properties of starch can be modified by annealing, i.e., a pre-treatment in excessive amounts of water at temperatures below the gelatinization temperatures. This treatment is known to improve the crystalline properties, and is a useful tool to gain a better control of the functional proper...

  7. Hydrothermal modification of rice starches.

    USDA-ARS?s Scientific Manuscript database

    Rice starch of long grain and waxy cultivars were annealed (ANN) in excess water at 50 oC for 4 hrs. They were also modified under heat-moisture treatment (HMT) conditions at 110 oC, and various moisture contents (20%, 30%, and 40%) for 8 hrs. These treatments altered the pasting and gelling prope...

  8. Limiting factors of starch hydrolysis.

    PubMed

    Colonna, P; Leloup, V; Buléon, A

    1992-10-01

    Foods appear as complex structures, in which starch may be present in different forms. These, including the molecular characteristics and the crystalline organization, depend on processing conditions and compositions of ingredients. The main changes in starch macro- and microstructures are the increase of surface area to volume ratio in the solid phase, the modification of the crystallinity as affected by gelatinization and gelation, and the depolymerization of amylose and amylopectin. Starch modification may be estimated by different methodologies, which should be selected according to the level of structure considered. When amylose and amylopectin are in solution, rapid and total hydrolysis leads to the formation of a mixture of linear oligosaccharides and branched alpha-limit dextrins. However, starch usually occurs in foods as solid structures. Structural factors of starchy materials influence their enzymic hydrolysis. A better understanding of the enzymatic process enables the identification of the structural factors limiting hydrolysis: diffusion of enzyme molecules, porosity of solid substrates, adsorption of enzymes onto solid substrates, and the catalytic event. A mechanistic modelling should be possible in the future.

  9. Novel, Starch-Like Polysaccharides Are Synthesized by an Unbound Form of Granule-Bound Starch Synthase in Glycogen-Accumulating Mutants of Chlamydomonas reinhardtii1

    PubMed Central

    Dauvillée, David; Colleoni, Christophe; Shaw, Eudean; Mouille, Gregory; D'Hulst, Christophe; Morell, Matthew; Samuel, Michael S.; Bouchet, Brigitte; Gallant, Daniel J.; Sinskey, Anthony; Ball, Steven

    1999-01-01

    In vascular plants, mutations leading to a defect in debranching enzyme lead to the simultaneous synthesis of glycogen-like material and normal starch. In Chlamydomonas reinhardtii comparable defects lead to the replacement of starch by phytoglycogen. Therefore, debranching was proposed to define a mandatory step for starch biosynthesis. We now report the characterization of small amounts of an insoluble, amylose-like material found in the mutant algae. This novel, starch-like material was shown to be entirely dependent on the presence of granule-bound starch synthase (GBSSI), the enzyme responsible for amylose synthesis in plants. However, enzyme activity assays, solubilization of proteins from the granule, and western blots all failed to detect GBSSI within the insoluble polysaccharide matrix. The glycogen-like polysaccharides produced in the absence of GBSSI were proved to be qualitatively and quantitatively identical to those produced in its presence. Therefore, we propose that GBSSI requires the presence of crystalline amylopectin for granule binding and that the synthesis of amylose-like material can proceed at low levels without the binding of GBSSI to the polysaccharide matrix. Our results confirm that amylopectin synthesis is completely blocked in debranching-enzyme-defective mutants of C. reinhardtii. PMID:9880375

  10. Effect of simultaneous inhibition of starch branching enzymes I and IIb on the crystalline structure of rice starches with different amylose contents.

    PubMed

    Man, Jianmin; Yang, Yang; Huang, Jun; Zhang, Changquan; Chen, Yifang; Wang, Youping; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2013-10-16

    Mutating or inhibiting genes encoding starch branching enzymes (SBEs) can increase the amylose content (AC) of cereals. We analyzed endosperm starches from three rice cultivars with different ACs and from transgenic lines derived from them. The transgenic lines had simultaneously inhibited SBE I and IIb genes. Compared with the starch from their wild-type parents, the starch from transgenic lines showed significantly increased apparent ACs and lamella size and decreased relative crystallinity, double helix content, and lamellar peak scattering intensity, and altered short-range ordered structure in the external region. These changes were more prominent in the line derived from the high-AC cultivar than in those derived from waxy and low-AC cultivars. Inhibiting both SBE I and IIb changed the crystalline structure of starch from A-type to CA-type in lines derived from waxy and low-AC cultivars, and from A-type to C-type in that derived from the high-AC cultivar.

  11. Physicochemical and functional properties of ozone-oxidized starch.

    PubMed

    Chan, Hui T; Bhat, Rajeev; Karim, Alias A

    2009-07-08

    The effects of oxidation by ozone gas on some physicochemical and functional properties of starch (corn, sago, and tapioca) were investigated. Starch in dry powder form was exposed to ozone for 10 min at different ozone generation times (OGTs). Carboxyl and carbonyl contents increased markedly in all starches with increasing OGTs. Oxidation significantly decreased the swelling power of oxidized sago and tapioca starches but increased that of oxidized corn starch. The solubility of tapioca starch decreased and sago starch increased after oxidation. However, there was an insignificant changed in the solubility of oxidized corn starch. Intrinsic viscosity [eta] of all oxidized starches decreased significantly, except for tapioca starch oxidized at 5 min OGT. Pasting properties of the oxidized starches followed different trends as OGTs increased. These results show that under similar conditions of ozone treatment, the extent of starch oxidation varies among different types of starch.

  12. RNase III-Independent Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase via Translational Repression.

    PubMed

    Carzaniga, Thomas; Dehò, Gianni; Briani, Federica

    2015-06-01

    The complex posttranscriptional regulation mechanism of the Escherichia coli pnp gene, which encodes the phosphorolytic exoribonuclease polynucleotide phosphorylase (PNPase), involves two endoribonucleases, namely, RNase III and RNase E, and PNPase itself, which thus autoregulates its own expression. The models proposed for pnp autoregulation posit that the target of PNPase is a mature pnp mRNA previously processed at its 5' end by RNase III, rather than the primary pnp transcript (RNase III-dependent models), and that PNPase activity eventually leads to pnp mRNA degradation by RNase E. However, some published data suggest that pnp expression may also be regulated through a PNPase-dependent, RNase III-independent mechanism. To address this issue, we constructed isogenic Δpnp rnc(+) and Δpnp Δrnc strains with a chromosomal pnp-lacZ translational fusion and measured β-galactosidase activity in the absence and presence of PNPase expressed by a plasmid. Our results show that PNPase also regulates its own expression via a reversible RNase III-independent pathway acting upstream from the RNase III-dependent branch. This pathway requires the PNPase RNA binding domains KH and S1 but not its phosphorolytic activity. We suggest that the RNase III-independent autoregulation of PNPase occurs at the level of translational repression, possibly by competition for pnp primary transcript between PNPase and the ribosomal protein S1. In Escherichia coli, polynucleotide phosphorylase (PNPase, encoded by pnp) posttranscriptionally regulates its own expression. The two models proposed so far posit a two-step mechanism in which RNase III, by cutting the leader region of the pnp primary transcript, creates the substrate for PNPase regulatory activity, eventually leading to pnp mRNA degradation by RNase E. In this work, we provide evidence supporting an additional pathway for PNPase autogenous regulation in which PNPase acts as a translational repressor independently of RNase III

  13. RNase III-Independent Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase via Translational Repression

    PubMed Central

    Carzaniga, Thomas; Dehò, Gianni

    2015-01-01

    ABSTRACT The complex posttranscriptional regulation mechanism of the Escherichia coli pnp gene, which encodes the phosphorolytic exoribonuclease polynucleotide phosphorylase (PNPase), involves two endoribonucleases, namely, RNase III and RNase E, and PNPase itself, which thus autoregulates its own expression. The models proposed for pnp autoregulation posit that the target of PNPase is a mature pnp mRNA previously processed at its 5′ end by RNase III, rather than the primary pnp transcript (RNase III-dependent models), and that PNPase activity eventually leads to pnp mRNA degradation by RNase E. However, some published data suggest that pnp expression may also be regulated through a PNPase-dependent, RNase III-independent mechanism. To address this issue, we constructed isogenic Δpnp rnc+ and Δpnp Δrnc strains with a chromosomal pnp-lacZ translational fusion and measured β-galactosidase activity in the absence and presence of PNPase expressed by a plasmid. Our results show that PNPase also regulates its own expression via a reversible RNase III-independent pathway acting upstream from the RNase III-dependent branch. This pathway requires the PNPase RNA binding domains KH and S1 but not its phosphorolytic activity. We suggest that the RNase III-independent autoregulation of PNPase occurs at the level of translational repression, possibly by competition for pnp primary transcript between PNPase and the ribosomal protein S1. IMPORTANCE In Escherichia coli, polynucleotide phosphorylase (PNPase, encoded by pnp) posttranscriptionally regulates its own expression. The two models proposed so far posit a two-step mechanism in which RNase III, by cutting the leader region of the pnp primary transcript, creates the substrate for PNPase regulatory activity, eventually leading to pnp mRNA degradation by RNase E. In this work, we provide evidence supporting an additional pathway for PNPase autogenous regulation in which PNPase acts as a translational repressor

  14. Laue and monochromatic diffraction studies on catalysis in phosphorylase b crystals.

    PubMed Central

    Duke, E. M.; Wakatsuki, S.; Hadfield, A.; Johnson, L. N.

    1994-01-01

    The conversion of substrate, heptenitol, to product, beta-1-C-methyl, alpha-D-glucose-1-phosphate (heptulose-2-P), in crystals of glycogen phosphorylase b has been studied by Laue and monochromatic diffraction methods. The phosphorolysis reaction in the crystal was started following liberation of phosphate from a caged phosphate compound, 3,5-dinitrophenyl phosphate (DNPP). The photolysis of DNPP, stimulated by flashes from a xenon flash lamp, was monitored in the crystal with a diode array spectrophotometer. In the Laue diffraction experiments, data to 2.8 A resolution were collected and the first time shot was obtained at 3 min from the start of reaction, and data collection comprised three 800-ms exposures. Careful data processing of Laue photographs for the large enzyme resulted in electron density maps of almost comparable quality to those produced by monochromatic methods. The difference maps obtained from the Laue measurements showed that very little catalysis had occurred 3 min and 1 h after release of phosphate, and a distinct peak consistent with the position expected for phosphate, in the attacking position was observed. Data collection times with monochromatic crystallographic methods on a home source took 16 h for data to 2.3 A resolution. Sufficient phosphate was released from the caged phosphate in the crystal from 5 flashes with a xenon flashlamp within 1 min for the reaction to go to completion within the time scale of the monochromatic data collection procedures. The heptulose-2-P product complex has been refined and the model agrees with that obtained previously with the major difference that the interchange of an aspartic acid (Asp 283) by an arginine (Arg 569) was not observed at the catalytic site. This change is part of the activation process of glycogen phosphorylase and may not have taken place in the current experiments because the caged compound binds weakly at the inhibitor site, restricting conformational change, and because activators

  15. Physicochemical Properties of Starch Isolated from Bracken (Pteridium aquilinim) Rhizome.

    PubMed

    Yu, Xurun; Wang, Jin; Zhang, Jing; Wang, Leilei; Wang, Zhong; Xiong, Fei

    2015-12-01

    Bracken (Pteridium aquilinum) is an important wild plant starch resource worldwide. In this work, starch was separated from bracken rhizome, and the physicochemical properties of this starch were systematically investigated and compared with 2 other common starches, that is, starches from waxy maize and potato. There were significant differences in shape, birefringence patterns, size distribution, and amylose content between bracken and the 2 other starches. X-ray diffraction analysis revealed that bracken starch exhibited a typical C-type crystalline structure. Bracken starch presented, respectively, lower and higher relative degree of crystallinity than waxy maize and potato starches. Ordered structures in particle surface differed among these 3 starches. The swelling power tendency of bracken starch in different temperature intervals was very similar to that of potato starch. The viscosity parameters during gelatinization were the lowest in waxy maize, followed by bracken and potato starches. The contents of 3 nutritional components, that is, rapidly digestible, slowly digestible, and resistant starches in native, gelatinized, and retrograded starch from bracken rhizome presented more similarities with potato starch than waxy maize starch. These finding indicated that physicochemical properties of bracken starch showed more similarities with potato starch than waxy maize starch. © 2015 Institute of Food Technologists®

  16. 21 CFR 178.3520 - Industrial starch-modified.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Industrial starch-modified. 178.3520 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3520 Industrial starch-modified. Industrial starch... provisions of this section. (a) Industrial starch-modified is identified as follows: (1) A food starch...

  17. 21 CFR 178.3520 - Industrial starch-modified.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Industrial starch-modified. 178.3520 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3520 Industrial starch-modified. Industrial starch... provisions of this section. (a) Industrial starch-modified is identified as follows: (1) A food starch...

  18. 21 CFR 178.3520 - Industrial starch-modified.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Industrial starch-modified. 178.3520 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3520 Industrial starch-modified. Industrial starch... provisions of this section. (a) Industrial starch-modified is identified as follows: (1) A food starch...

  19. Rheological and textural properties of pulse starch gels

    USDA-ARS?s Scientific Manuscript database

    The properties of starch gels from black beans, chickpeas, lentils and navy beans were investigated. Differences were shown between starch sources, and effect of starch concentration was studied. Navy bean starch had the highest peak and final viscosities in pasting tests, while black bean starch h...

  20. Thermal and rheological properties of breadfruit starch.

    PubMed

    Wang, Xueyu; Chen, Ling; Li, Xiaoxi; Xie, Fengwei; Liu, Hongshen; Yu, Long

    2011-01-01

    The thermal and rheological properties of breadfruit starch were studied using DSC and 2 different rheometers. It was found that the gelatinization temperature of starch with excess moisture content (>70%) was at approximately 75 °C. A new endotherm was detected at about 173 °C when the moisture content was lower than required for full gelatinization of the starch. A detailed examination revealed that this endotherm represented the melting of amylose-lipid complexes. Breadfruit starch paste exhibited shear-thinning fluid characteristics, and good thermal and pH stability. The setback viscosity of the breadfruit starch was lower than that of potato and corn starches. The rheological properties of the breadfruit starch paste was well described by the Herschel-Bulkley model at a shear rate of 0 to 100 s(-1), where R(2) is greater than 0.95, and it behaved like a yield-pseudoplastic fluid. Both the storage modulus and loss modulus of the paste initially increased sharply, then dropped after reaching the gelatinization peak. Breadfruit starch gel showed both flexibility and viscosity. Suspension with 6% starch content exhibited very weak gel rigidity; however, this increased significantly at starch contents above 20%.

  1. Physical association of starch biosynthetic enzymes with starch granules of maize endosperm. Granule-associated forms of starch synthase I and starch branching enzyme II.

    PubMed Central

    Mu-Forster, C; Huang, R; Powers, J R; Harriman, R W; Knight, M; Singletary, G W; Keeling, P L; Wasserman, B P

    1996-01-01

    Antibodies were used to probe the degree of association of starch biosynthetic enzymes with starch granules isolated from maize (Zea mays) endosperm. Graded washings of the starch granule, followed by release of polypeptides by gelatinization in 2% sodium dodecyl sulfate, enables distinction between strongly and loosely adherent proteins. Mild aqueous washing of granules resulted in near-complete solubilization of ADP-glucose pyrophosphorylase, indicating that little, if any, ADP-glucose pyrophosphorylase is granule associated. In contrast, all of the waxy protein plus significant levels of starch synthase I and starch branching enzyme II (BEII) remained granule associated. Stringent washings using protease and detergent demonstrated that the waxy protein, more than 85% total endosperm starch synthase I protein, and more than 45% of BEII protein were strongly associated with starch granules. Rates of polypeptide accumulation within starch granules remained constant during endosperm development. Soluble and granule-derived forms of BEII yielded identical peptide maps and overlapping tryptic fragments closely aligned with deduced amino acid sequences from BEII cDNA clones. These observations provide direct evidence that BEII exits as both soluble and granule-associated entities. We conclude that each of the known starch biosynthetic enzymes in maize endosperm exhibits a differential propensity to associate with, or to become irreversibly entrapped within, the starch granule. PMID:8754683

  2. The Simultaneous Abolition of Three Starch Hydrolases Blocks Transient Starch Breakdown in Arabidopsis*

    PubMed Central

    Streb, Sebastian; Eicke, Simona; Zeeman, Samuel C.

    2012-01-01

    In this study, we investigated which enzymes are involved in debranching amylopectin during transient starch degradation. Previous studies identified two debranching enzymes, isoamylase 3 (ISA3) and limit dextrinase (LDA), involved in this process. However, plants lacking both enzymes still degrade substantial amounts of starch. Thus, other enzymes/mechanisms must contribute to starch breakdown. We show that the chloroplastic α-amylase 3 (AMY3) also participates in starch degradation and provide evidence that all three enzymes can act directly at the starch granule surface. The isa3 mutant has a starch excess phenotype, reflecting impaired starch breakdown. In contrast, removal of AMY3, LDA, or both enzymes together has no impact on starch degradation. However, removal of AMY3 or LDA in addition to ISA3 enhances the starch excess phenotype. In plants lacking all three enzymes, starch breakdown is effectively blocked, and starch accumulates to the highest levels observed so far. This provides indirect evidence that the heteromultimeric debranching enzyme ISA1-ISA2 is not involved in starch breakdown. However, we illustrate that ISA1-ISA2 can hydrolyze small soluble branched glucans that accumulate when ISA3 and LDA are missing, albeit at a slow rate. Starch accumulation in the mutants correlates inversely with plant growth. PMID:23019330

  3. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review.

    PubMed

    Wang, Shujun; Copeland, Les

    2013-11-01

    Starch is the most important glycemic carbohydrate in foods. The relationship between the rate and extent of starch digestion to produce glucose for absorption into the bloodstream and risk factors for diet-related diseases is of considerable nutritional interest. Native starch is attacked slowly by enzymes, but after hydrothermal processing its susceptibility to enzymatic breakdown is greatly increased. Most starch consumed by humans has undergone some form of processing or cooking, which causes native starch granules to gelatinize, followed by retrogradation on cooling. The extent of gelatinization and retrogradation are major determinants of the susceptibility of starch to enzymatic digestion and its functional properties for food processing. The type and extent of changes that occur in starch as a result of gelatinization, pasting and retrogradation are determined by the type of the starch, processing and storage conditions. A mechanistic understanding of the molecular disassembly of starch granules during gelatinization is critical to explaining the effects of processing or cooking on starch digestibility. This review focuses on the molecular disassembly of starch granules during starch gelatinization over a wide range of water levels, and its consequential effect on in vitro starch digestibility and in vivo glycemic index.

  4. Protein-protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B granules.

    PubMed

    Ahmed, Zaheer; Tetlow, Ian J; Ahmed, Regina; Morell, Matthew K; Emes, Michael J

    2015-04-01

    The present study investigated the role of protein phosphorylation, and protein complex formation between key enzymes of amylopectin synthesis, in barley genotypes exhibiting "high amylose" phenotypes. Starch branching enzyme (SBE) down-regulated lines (ΔSBEIIa and ΔSBEIIb), starch synthase (SS)IIa (ssiia(-), sex6) and SSIII (ssiii(-), amo1) mutants were compared to a reference genotype, OAC Baxter. Down-regulation of either SBEIIa or IIb caused pleiotropic effects on SSI and starch phosphorylase (SP) and resulted in formation of novel protein complexes in which the missing SBEII isoform was substituted by SBEI and SP. In the ΔSBEIIb down-regulated line, soluble SP activity was undetectable. Nonetheless, SP was incorporated into a heteromeric protein complex with SBEI and SBEIIa and was readily detected in starch granules. In amo1, unlike other mutants, the data suggest that both SBEIIa and SBEIIb are in a protein complex with SSI and SSIIa. In the sex6 mutant no protein complexes involving SBEIIa or SBEIIb were detected in amyloplasts. Studies with Pro-Q Diamond revealed that GBSS, SSI, SSIIa, SBEIIb and SP are phosphorylated in their granule bound state. Alteration in the granule proteome in ΔSBEIIa and ΔSBEIIb lines, suggests that different protein complexes are involved in the synthesis of A and B granules. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Kinetics of enhanced ethanol productivity using raw starch hydrolyzing glucoamylase from Aspergillus niger mutant produced in solid state fermentation.

    PubMed

    Rajoka, M I; Yasmin, A; Latif, F

    2004-01-01

    The present investigation deals with the effect of raw starch hydrolyzing glucoamylase by a derepressed mutant of Aspergillus niger on enhanced productivity of ethanol from uncooked starch under non-aseptic conditions. The parental culture of Aspergillus niger was improved using gamma-ray treatment. One derepressed mutant was isolated after extensive screening and optimization and grown on corn cobs, maize starch, soluble starch and wheat bran solid media moistened with Vogel's salts solution and corn steep liquor. The mutant was 2.5-fold improved over its parent with respect to enzyme productivity, product yield and specific activity. The enzyme from mutated culture was also improved for enzyme properties and could effectively hydrolyze raw starch without the aid of alpha-amylase. Starch hydrolyzed with mutant-derived glucoamylase supported higher volumetric and product yields of ethanol than those of parental and other strains. The results of the present study are of commercial value. Ethanol product yield coefficient, and volumetric productivity revealed the hyper-productivity of ethanol from raw starch hydrolyzate obtained with mutant-derived glucoamylase without addition of liquefying alpha-amylase under non-aseptic conditions.

  6. 75 FR 879 - National Starch and Chemical Company Specialty Starches Division Including On-Site Leased Workers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... Employment and Training Administration National Starch and Chemical Company Specialty Starches Division..., applicable to workers of National Starch and Chemical Company, Specialty Starches Division, Island Falls.... The workers were engaged in the production of drum dried and modified food starches. New information...

  7. Structure of a complex of uridine phosphorylase from Yersinia pseudotuberculosis with the modified bacteriostatic antibacterial drug determined by X-ray crystallography and computer analysis

    SciTech Connect

    Balaev, V. V.; Lashkov, A. A. Gabdoulkhakov, A. G.; Seregina, T. A.; Dontsova, M. V.; Mikhailov, A. M.

    2015-03-15

    Pseudotuberculosis and bubonic plague are acute infectious diseases caused by the bacteria Yersinia pseudotuberculosis and Yersinia pestis. These diseases are treated, in particular, with trimethoprim and its modified analogues. However, uridine phosphorylases (pyrimidine nucleoside phosphorylases) that are present in bacterial cells neutralize the action of trimethoprim and its modified analogues on the cells. In order to reveal the character of the interaction of the drug with bacterial uridine phosphorylase, the atomic structure of the unligated molecule of uridine-specific pyrimidine nucleoside phosphorylase from Yersinia pseudotuberculosis (YptUPh) was determined by X-ray diffraction at 1.7 Å resolution with high reliability (R{sub work} = 16.2, R{sub free} = 19.4%; r.m.s.d. of bond lengths and bond angles are 0.006 Å and 1.005°, respectively; DPI = 0.107 Å). The atoms of the amino acid residues of the functionally important secondary-structure elements—the loop L9 and the helix H8—of the enzyme YptUPh were located. The three-dimensional structure of the complex of YptUPh with modified trimethoprim—referred to as 53I—was determined by the computer simulation. It was shown that 53I is a pseudosubstrate of uridine phosphorylases, and its pyrimidine-2,4-diamine group is located in the phosphate-binding site of the enzyme YptUPh.

  8. Structure of a complex of uridine phosphorylase from Yersinia pseudotuberculosis with the modified bacteriostatic antibacterial drug determined by X-ray crystallography and computer analysis

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Gabdoulkhakov, A. G.; Seregina, T. A.; Dontsova, M. V.; Mikhailov, A. M.

    2015-03-01

    Pseudotuberculosis and bubonic plague are acute infectious diseases caused by the bacteria Yersinia pseudotuberculosis and Yersinia pestis. These diseases are treated, in particular, with trimethoprim and its modified analogues. However, uridine phosphorylases (pyrimidine nucleoside phosphorylases) that are present in bacterial cells neutralize the action of trimethoprim and its modified analogues on the cells. In order to reveal the character of the interaction of the drug with bacterial uridine phosphorylase, the atomic structure of the unligated molecule of uridine-specific pyrimidine nucleoside phosphorylase from Yersinia pseudotuberculosis ( YptUPh) was determined by X-ray diffraction at 1.7 Å resolution with high reliability ( R work = 16.2, R free = 19.4%; r.m.s.d. of bond lengths and bond angles are 0.006 Å and 1.005°, respectively; DPI = 0.107 Å). The atoms of the amino acid residues of the functionally important secondary-structure elements—the loop L9 and the helix H8—of the enzyme YptUPh were located. The three-dimensional structure of the complex of YptUPh with modified trimethoprim—referred to as 53I—was determined by the computer simulation. It was shown that 53I is a pseudosubstrate of uridine phosphorylases, and its pyrimidine-2,4-diamine group is located in the phosphate-binding site of the enzyme YptUPh.

  9. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    PubMed Central

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-01-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose. PMID:27748409

  10. Troponins, heat shock proteins and glycogen phosphorylase BB in umbilical cord blood of complicated pregnancies.

    PubMed

    Mrkaic, Ana; Rosenn, Barak; Stojanovic, Ivana; Tivari, Samir

    2017-12-01

    Heat shock proteins (Hsp) are evolutionary conserved molecules with a chaperone role in cell survival. We hypothesized that cord blood concentrations of molecules reflecting fetal cardiac muscle insult, including Hsp, troponins cTnI and cTnT, and glycol-phosphorylase BB (GP-BB) would be elevated in pregnancies complicated by gestational diabetes (GDM) or preeclampsia (PIH) compared to healthy controls. Pregnant women admitted for delivery at >28 weeks were divided into four groups: healthy patients delivered vaginally (VAG), healthy patients delivered by c-section (CS), patients with PIH, and patients with GDM. Demographics, clinical characteristics, and cord blood concentrations of Hsp, troponins cTnI and cTnT, and GP-BB were compared between groups. Statistical analyses included t-test, Chi square, and Wilcoxon rank sum as appropriate. cTnI concentrations were significantly higher in the PIH group compared to the GDM and VAG groups and they were higher in the CS group compared to the VAG group. Concentrations of Hsp70 were higher in the GDM group compared to the VAG and CS groups. Concentration of GP-BB was higher in the PIH group compared to the VAG group. GP-BB and cTNI are the most sensitive markers for PIH-related fetal myocyte injury as is Hsp70 in pregnancies complicated by GDM.

  11. Kinetics and mechanistic study of competitive inhibition of thymidine phosphorylase by 5-fluoruracil derivatives.

    PubMed

    Petaccia, Manuela; Gentili, Patrizia; Bešker, Neva; D'Abramo, Marco; Giansanti, Luisa; Leonelli, Francesca; La Bella, Angela; Gradella Villalva, Denise; Mancini, Giovanna

    2016-04-01

    In a previous investigation, cationic liposomes formulated with new 5-FU derivatives, differing for the length of the polyoxyethylenic spacer that links the N(3) position of 5-FU to an alkyl chain of 12 carbon atoms, showed a higher cytotoxicity compared to free 5-FU, the cytotoxic effect being directly related to the length of the spacer. To better understand the correlation of the spacer length with toxicity, we carried out initial rate studies to determine inhibition, equilibrium and kinetic constants (KI, KM, kcat), and get inside inhibition activity of the 5-FU derivatives and their mechanism of action, a crucial information to design structural variations for improving the anticancer activity. The experimental investigation was supported by docking simulations based on the X-ray structure of thymidine phosphorylase (TP) from Escherichia coli complexed with 3'-azido-2'-fluoro-dideoxyuridin. Theoretical and experimental results showed that all the derivatives exert the same inhibition activity of 5-FU either as monomer and when embedded in lipid bilayer. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Surface Induced Dissociation Yields Quaternary Substructure of Refractory Noncovalent Phosphorylase B and Glutamate Dehydrogenase Complexes

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.

    2014-03-01

    Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.

  13. Multiple disulfide bridges modulate conformational stability and flexibility in hyperthermophilic archaeal purine nucleoside phosphorylase.

    PubMed

    Bagarolo, Maria Libera; Porcelli, Marina; Martino, Elisa; Feller, Georges; Cacciapuoti, Giovanna

    2015-10-01

    5'-Deoxy-5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus is a hexameric hyperthermophilic protein containing in each subunit two pairs of disulfide bridges, a CXC motif, and one free cysteine. The contribution of each disulfide bridge to the protein conformational stability and flexibility has been assessed by comparing the thermal unfolding and the limited proteolysis of the wild-type enzyme and its variants obtained by site-directed mutagenesis of the seven cysteine residues. All variants catalyzed efficiently MTA cleavage with specific activity similar to the wild-type enzyme. The elimination of all cysteine residues caused a substantial decrease of ΔHcal (850 kcal/mol) and Tmax (39°C) with respect to the wild-type indicating that all cysteine pairs and especially the CXC motif significantly contribute to the enzyme thermal stability. Disulfide bond Cys200-Cys262 and the CXC motif weakly affected protein flexibility while the elimination of the disulfide bond Cys138-Cys205 lead to an increased protease susceptibility. Experimental evidence from limited proteolysis, differential scanning calorimetry, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions also allowed to propose a stabilizing role for the free Cys164. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Thymidine phosphorylase gene variant, platelet counts and survival in gastrointestinal cancer patients treated by fluoropyrimidines

    PubMed Central

    Huang, Liu; Chen, Fengju; Chen, Yangyang; Yang, Xiaomei; Xu, Sanpeng; Ge, Shuwang; Fu, Shengling; Chao, Tengfei; Yu, Qianqian; Liao, Xin; Hu, Guangyuan; Zhang, Peng; Yuan, Xianglin

    2014-01-01

    The predictive value of thymidine phosphorylase gene variants (TP, also called platelet-derived endothelial cell growth factor) and thrombocytosis were controversial and worthy of further study in gastrointestinal cancer (GIC) patients. We screened all of the common missense single nucleotide polymorphisms (MAF ≥ 0.1) in fluoropyrimidines (FU) pathway genes (including TP, TS, ENOSF1 and DPD). Three of them were selected and genotyped using Sequenom MassARRAY in 141 GIC patients. TP expression was assessed by immunohistochemistry. Our aim was to evaluate the prognostic significance of studied genes and platelet counts in GIC patients. Multivariate analyses indicated in rs11479-T allele carriers, platelet counts negatively correlated to overall survival. In addition, T allele of TP: rs11479 was associated with higher TP expression in cancer tissues. We suggest TP: rs11479 variant combined with platelet counts may be useful prognostic makers in GIC patients receiving first-line FU chemotherapy and thrombopoietin factor should be used with caution in the rs11479 T allele bearing patients. PMID:25027354

  15. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    NASA Astrophysics Data System (ADS)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-10-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  16. [Purification and characterization of a uridine phosphorylase from Enterobacter aerogenes EAM-Z1].

    PubMed

    Ruan, Qiping; Zhou, Changlin; Xu, Xudong; Wu, Wutong

    2003-06-01

    A uridine phosphorylase(UPase) was isolation from Enterobacter aerogenes EAM-Z1 and purified by means of ammonium sulfate precipitation, DEAE-cellulose, Phenyl-Sepharose, DEAE-Sepharose, FPLC ion exchange, and Sephacryl S-200 column chromatography. The purified UPase showed homogeneity on the native polacrylamide gel electrophoresis. The UPase is a trimer of 43 kD subunits. Fifteen residues from the amino terminal end of UPase were identified as MRMVDLIATKRDGGE. The isoelectric point was pH 4.46. Michaelis constant for uridine was 0.29 mmol/L. The UPase has a maximal activity at a pH value of 7.8 and 50 degrees C. The UPase could catalyses the phosphorolysis of uridine, thymidine, 5-Fluorouridine, 5-Fluoro-2'-deoxyuridine, uracil-beta-D-arbinofuranoside, and could also catalyse the synthesis of 5-Fluorouridine, a better prodrug form of the anticancer drug 5-fluorouracil, from 5-fluorouracil and uridine, and 47% uridine was converted to 5-Fluoro-uridine.

  17. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides.

    PubMed

    Devendran, Saravanan; Abdel-Hamid, Ahmed M; Evans, Anton F; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I; Cann, Isaac

    2016-10-17

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  18. Dual-action hypoglycemic and hypocholesterolemic agents that inhibit glycogen phosphorylase and lanosterol demethylase.

    PubMed

    Harwood, H James; Petras, Stephen F; Hoover, Dennis J; Mankowski, Dayna C; Soliman, Victor F; Sugarman, Eliot D; Hulin, Bernard; Kwon, Younggil; Gibbs, E Michael; Mayne, James T; Treadway, Judith L

    2005-03-01

    Diabetic dyslipidemia requires simultaneous treatment with hypoglycemic agents and lipid-modulating drugs. We recently described glycogen phosphorylase inhibitors that reduce glycogenolysis in cells and lower plasma glucose in ob/ob mice (J. Med. Chem., 41: 2934, 1998). In evaluating the series prototype, CP-320626, in dogs, up to 90% reduction in plasma cholesterol was noted after 2 week treatment. Cholesterol reductions were also noted in ob/ob mice and in rats. In HepG2 cells, CP-320626 acutely and dose-dependently inhibited cholesterolgenesis without affecting fatty acid synthesis. Inhibition occurred together with a dose-dependent increase in the cholesterol precursor, lanosterol, suggesting that cholesterolgenesis inhibition was due to lanosterol 14alpha-demethylase (CYP51) inhibition. In ob/ob mice, acute treatment with CP-320626 resulted in a decrease in hepatic cholesterolgenesis with concomitant lanosterol accumulation, further implicating CYP51 inhibition as the mechanism of cholesterol lowering in these animals. CP-320626 and analogs directly inhibited rhCYP51, and this inhibition was highly correlated with HepG2 cell cholesterolgenesis inhibition (R2 = 0.77). These observations indicate that CP-320626 inhibits cholesterolgenesis via direct inhibition of CYP51, and that this is the mechanism whereby CP-320626 lowers plasma cholesterol in experimental animals. Dual-action glycogenolysis and cholesterolgenesis inhibitors therefore have the potential to favorably affect both the hyperglycemia and the dyslipidemia of type 2 diabetes.

  19. Transition state analysis of the arsenolytic depyrimidination of thymidine by human thymidine phosphorylase.

    PubMed

    Schwartz, Phillip A; Vetticatt, Mathew J; Schramm, Vern L

    2011-03-01

    Human thymidine phosphorylase (hTP) is responsible for thymidine (dT) homeostasis, promotes angiogenesis, and is involved in metabolic inactivation of antiproliferative agents that inhibit thymidylate synthase. Understanding its transition state structure is on the path to design transition state analogues. Arsenolysis of dT by hTP permits kinetic isotope effect (KIE) analysis of the reaction by forming thymine and the chemically unstable 2-deoxyribose 1-arsenate. The transition state for the arsenolytic reaction was characterized using multiple KIEs and computational analysis. Transition state analysis revealed a concerted bimolecular (A(N)D(N)) mechanism. A transition state constrained to match the intrinsic KIE values was found using density functional theory (B3LYP/6-31G*). An active site histidine is implicated as the catalytic base responsible for activation of the arsenate nucleophile and stabilization of the thymine leaving group during the isotopically sensitive step. At the transition state, the deoxyribose ring exhibits significant oxocarbenium ion character with bond breaking (r(C-N) = 2.45 Å) nearly complete and minimal bond making to the attacking nucleophile (r(C-O) = 2.95 Å). The transition state model predicts a deoxyribose conformation with a 2'-endo ring geometry. Transition state structure for the slow hydrolytic reaction of hTP involves a stepwise mechanism [Schwartz, P. A., Vetticatt, M. J., and Schramm, V. L. (2010) J. Am. Chem. Soc. 132, 13425-13433], in contrast to the concerted mechanism described here for arsenolysis.

  20. Antisense-mediated depletion of tomato GDP-L-galactose phosphorylase increases susceptibility to chilling stress.

    PubMed

    Wang, Li-Yan; Li, Dong; Deng, Yong-Sheng; Lv, Wei; Meng, Qing-Wei

    2013-02-15

    The GDP-L-galactose phosphorylase (GGP), which converts GDP-l-galactose to l-Gal-1-phosphate, is generally considered to be a key enzyme of the major ascorbate biosynthesis pathways in higher plants, but experimental evidence for its role in tomato is lacking. In the present study, the GGP gene was isolated from tomato (Solanum lycopersicum) and transient expression of SlGGP-GFP (green fluorescent protein) fusion protein in onion cells revealed the cytoplasmic and nucleus localization of the protein. Antisense transgenic tomato lines with only 50-75% ascorbate level of the wild type (WT) were obtained. Chilling treatment induced lower increase in AsA levels and redox ratio of ascorbate in antisense transgenic plants compared with WT plants. Under chilling stress, transgenic plants accumulated more malendialdehyde (MDA) and more O(2)(·-), leaked more electrolytes and showed lower maximal photochemical efficiency of PSII (Fv/Fm), net photosynthetic rate (Pn), and oxidizable P700 compared with WT plants. Furthermore, the antisense transgenic plants exhibited significantly higher H(2)O(2) level and lower ascorbate peroxidase (APX) activity. Our results suggested that GGP plays an important role in protecting plants against chilling stress by maintaining ascorbate pool and ascorbate redox state.

  1. The ribonuclease polynucleotide phosphorylase can interact with small regulatory RNAs in both protective and degradative modes

    PubMed Central

    Bandyra, Katarzyna J.; Sinha, Dhriti; Syrjanen, Johanna; Luisi, Ben F.; De Lay, Nicholas R.

    2016-01-01

    In all bacterial species examined thus far, small regulatory RNAs (sRNAs) contribute to intricate patterns of dynamic genetic regulation. Many of the actions of these nucleic acids are mediated by well-characterized chaperones such as the Hfq protein, but genetic screens have also recently identified the 3′-to-5′ exoribonuclease polynucleotide phosphorylase (PNPase) as an unexpected stabilizer and facilitator of sRNAs in vivo. To understand how a ribonuclease might mediate these effects, we tested the interactions of PNPase with sRNAs and found that the enzyme can readily degrade these nucleic acids in vitro but, nonetheless, copurifies from cell extracts with the same sRNAs without discernible degradation or modification to their 3′ ends, suggesting that the associated RNA is protected against the destructive activity of the ribonuclease. In vitro, PNPase, Hfq, and sRNA can form a ternary complex in which the ribonuclease plays a nondestructive, structural role. Such ternary complexes might be formed transiently in vivo, but could help to stabilize particular sRNAs and remodel their population on Hfq. Taken together, our results indicate that PNPase can be programmed to act on RNA in either destructive or stabilizing modes in vivo and may form complex, protective ribonucleoprotein assemblies that shape the landscape of sRNAs available for action. PMID:26759452

  2. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083.

    PubMed

    van den Broek, L A M; van Boxtel, E L; Kievit, R P; Verhoef, R; Beldman, G; Voragen, A G J

    2004-08-01

    Clones of a genomic library of Bifidobacterium adolescentis were grown in minimal medium with sucrose as sole carbon source. An enzymatic fructose dehydrogenase assay was used to identify sucrose-degrading enzymes. Plasmids were isolated from the positive colonies and sequence analysis revealed that two types of insert were present, which only differed with respect to their orientation in the plasmid. An open reading frame of 1,515 nucleotides with high homology for sucrose phosphorylases was detected on these inserts. The gene was designated SucP and encoded a protein of 56,189 Da. SucP was heterologously expressed in Escherichia coli, purified, and characterized. The molecular mass of SucP was 58 kDa, as estimated by SDS-PAGE, while 129 kDa was found with gel permeation, suggesting that the native enzyme was a dimer. The enzyme showed high activity towards sucrose and a lower extent towards alpha-glucose-1-phosphate. The transglucosylation properties were investigated using a broad range of monomeric sugars as acceptor substrate for the recombinant enzyme, while alpha-glucose-1-phosphate served as donor. D- and L-arabinose, D- and L-arabitol, and xylitol showed the highest production of transglucosylation products. The investigated disaccharides and trisaccharides were not suitable as acceptors. The structure of the transglucosylation product obtained with D-arabinose as acceptor was elucidated by NMR. The structure of the synthesized non-reducing dimer was alpha-Glcp(1-->1)beta-Araf.

  3. The kinetic mechanism of Human Thymidine Phosphorylase - a molecular target for cancer drug development.

    PubMed

    Deves, Candida; Rostirolla, Diana Carolina; Martinelli, Leonardo Kras Borges; Bizarro, Cristiano Valim; Santos, Diogenes Santiago; Basso, Luiz Augusto

    2014-03-04

    Human Thymidine Phosphorylase (HTP), also known as the platelet-derived endothelial cell growth factor (PD-ECGF) or gliostatin, catalyzes the reversible phosphorolysis of thymidine (dThd) to thymine and 2-deoxy-α-d-ribose-1-phosphate (2dR1P). HTP is a key enzyme in the pyrimidine salvage pathway involved in dThd homeostasis in cells. HTP is a target for anticancer drug development as its enzymatic activity promotes angiogenesis. Here, we describe cloning, expression, and purification to homogeneity of recombinant TYMP-encoded HTP. Peptide fingerprinting and the molecular mass value of the homogenous protein confirmed its identity as HTP assessed by mass spectrometry. Size exclusion chromatography showed that HTP is a dimer in solution. Kinetic studies revealed that HTP displayed substrate inhibition for dThd. Initial velocity and isothermal titration calorimetry (ITC) studies suggest that HTP catalysis follows a rapid-equilibrium random bi-bi kinetic mechanism. ITC measurements also showed that dThd and Pi binding are favorable processes. The pH-rate profiles indicated that maximal enzyme activity was achieved at low pH values. Functional groups with apparent pK values of 5.2 and 9.0 are involved in dThd binding and groups with pK values of 6.1 and 7.8 are involved in phosphate binding.

  4. Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorylase.

    PubMed

    Kato, Atsushi; Nasu, Norio; Takebayashi, Kenji; Adachi, Isao; Minami, Yasuhiro; Sanae, Fujiko; Asano, Naoki; Watson, Alison A; Nash, Robert J

    2008-06-25

    Flavonoids are ubiquitous components in vegetables, fruits, tea, and wine. Therefore, they are often consumed in large quantities in our daily diet. Several flavonoids have been shown to have potential as antidiabetic agents. In the present study, we focused on inhibition of glycogen phosphorylase (GP) by flavonoids. 6-Hydroxyluteolin, hypolaetin, and quercetagetin were identified as good inhibitors of dephosphorylated GP (GPb), with IC 50 values of 11.6, 15.7, and 9.7 microM, respectively. Furthermore, a structure-activity relationship study revealed that the presence of the 3' and 4' OH groups in the B-ring and double bonds between C2 and C3 in flavones and flavonols are important factors for enzyme recognition and binding. Quercetagetin inhibited GPb in a noncompetitive manner, with a K i value of 3.5 microM. Multiple inhibition studies by Dixon plots suggested that quercetagetin binds to the allosteric site. In primary cultured rat hepatocytes, quercetagetin and quercetin suppressed glucagon-stimulated glycogenolysis, with IC 50 values of 66.2 and 68.7 microM, respectively. These results suggested that as a group of novel GP inhibitors, flavonoids have potential to contribute to the protection or improvement of control of diabetes type II.

  5. Mitochondrial Neurogastrointestinal Encephalomyopathy Caused by Thymidine Phosphorylase Enzyme Deficiency: From Pathogenesis to Emerging Therapeutic Options

    PubMed Central

    Yadak, Rana; Sillevis Smitt, Peter; van Gisbergen, Marike W.; van Til, Niek P.; de Coo, Irenaeus F. M.

    2017-01-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive metabolic disorder caused by thymidine phosphorylase (TP) enzyme deficiency. The lack of TP results in systemic accumulation of deoxyribonucleosides thymidine (dThd) and deoxyuridine (dUrd). In these patients, clinical features include mental regression, ophthalmoplegia, and fatal gastrointestinal complications. The accumulation of nucleosides also causes imbalances in mitochondrial DNA (mtDNA) deoxyribonucleoside triphosphates (dNTPs), which may play a direct or indirect role in the mtDNA depletion/deletion abnormalities, although the exact underlying mechanism remains unknown. The available therapeutic approaches include dialysis and enzyme replacement therapy, both can only transiently reverse the biochemical imbalance. Allogeneic hematopoietic stem cell transplantation is shown to be able to restore normal enzyme activity and improve clinical manifestations in MNGIE patients. However, transplant related complications and disease progression result in a high mortality rate. New therapeutic approaches, such as adeno-associated viral vector and hematopoietic stem cell gene therapy have been tested in Tymp-/-Upp1-/- mice, a murine model for MNGIE. This review provides background information on disease manifestations of MNGIE with a focus on current management and treatment options. It also outlines the pre-clinical approaches toward future treatment of the disease. PMID:28261062

  6. Phosphorylase kinase β affects colorectal cancer cell growth and represents a novel prognostic biomarker.

    PubMed

    Wang, Guanghui; Shen, Wenbin; Liu, Chen-Ying; Liu, Yun; Wu, Tingyu; Cui, Ximao; Yu, Tong; Zhu, Yilian; Song, Jinglue; Du, Peng; Cui, Long

    2017-06-01

    To study the expression and intracellular localization of phosphorylase kinase β (PHKβ) protein in colorectal cancers (CRCs), analyze its correlation with clinicopathological features and prognosis, and study the biological roles and mechanism-of-action of PHKβ in CRC cell lines. Quantitative polymerase chain reaction (qPCR) and western blot assays were performed to compare the expressions of PHKβ mRNA and protein in CRC tissues and matched normal mucosa. Tissue microarrays and immunohistochemical staining were performed to detect the expression and intracellular location of PHKβ protein and analyze its correlation with the clinicopathological characteristics and prognosis in CRC patients. Proliferation, cell cycle, wound healing, and xenograft models were used to elucidate the potential role of PHKβ in vitro and in vivo. PHKβ mRNA and protein were found to be overexpressed in CRC tissue compared to the levels in normal mucosa. Positive expression of PHKβ was significantly correlated with TNM stage and distal metastasis, and elevated expression of PHKβ was an independent prognostic factor in patients with CRC. PHKβ knockdown impaired proliferation of CRC in vitro and in vivo and induced cell cycle arrest. PHKβ affects CRC cell growth and represents a novel prognostic biomarker.

  7. Recent discovery of non-nucleobase thymidine phosphorylase inhibitors targeting cancer.

    PubMed

    Bera, Hriday; Chigurupati, Sridevi

    2016-11-29

    Thymidine phosphorylase (TP, EC 2.4.2.4), an enzyme involved in pyrimidine salvage pathway, is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is extremely upregulated in a variety of solid tumours. The TP amplification is associated with concomitant overexpression of many angiogenic factors such as matrix metalloproteases (MMPs), interleukins (ILs), vascular endothelial growth factor (VEGF) etc., resulting in promotion of angiogenesis and cancer metastasis. In addition, overshooting TP level protects tumour cells from apoptosis and helps cell survival. Thus, TP is identified as a prime target for developing novel anticancer therapies. Pioneering research activities investigated a large number of TP inhibitors, most of which are pyrimidine or purine analogues. Recently, an array of structurally diverse non-nucleobase derivatives was designed, synthesized and established as promising TP inhibitors. This review, following an outline on the TP structure and functions, gives an overview of the recent advancement of various non-nucleobase TP inhibitors as novel anti-cancer agents.

  8. Novel anomeric sugar phosphodiesters synthesis, hydrolytic mechanism, structure and interaction with purine nucleoside phosphorylase

    SciTech Connect

    Fathi, R.

    1988-01-01

    Some five-membered ring ribofuranosyl-1,2-cyclic phosphates were synthesized, purified, and characterized for the purpose of employing them as stereoselective electrophilic substrate analogs with a potential to trap enzymic nucleophiles on the purine salvage pathway. The purine salvage enzyme purine nucleoside phosphorylase from mammalian sources was irreversibly inactivated at its catalytic center by ..cap alpha..-D-ribofuranosyl-1,2-cyclic monophosphate. The product distribution and kinetics of hydronium and hydroxide catalyzed hydrolysis of cyclic phosphates were monitored by /sup 31/P NMR. Alkaline hydrolysis was demonstrated to proceed exclusively by O-P bond cleavage by employing a specifically /sup 18/O-labelled substrate. Acid hydrolysis proceeded by C-O bond cleavage. The high rates of alkaline hydrolysis were similar to those reported for ethylene phosphate, presumably due to the presence of a strained cyclic phosphate ring. Extensive NMR (/sup 1/H, /sup 13/C, and /sup 31/P) data on the cyclic phosphates were consistent with a C3-endo ribofuranosyl conformation.

  9. Analysis of global changes in gene expression induced by human polynucleotide phosphorylase (hPNPaseold-35)

    PubMed Central

    Sokhi, Upneet K.; Bacolod, Manny D.; Emdad, Luni; Das, Swadesh K.; Dumur, Catherine I.; Miles, Michael F.; Sarkar, Devanand; Fisher, Paul B.

    2014-01-01

    As a strategy to identify gene expression changes affected by human polynucleotide phosphorylase (hPNPaseold-35), we performed gene expression analysis of HeLa cells in which hPNPaseold-35 was overexpressed. The observed changes were then compared to those of HO-1 melanoma cells in which hPNPaseold-35 was stably knocked down. Through this analysis, 90 transcripts, which positively or negatively correlated with hPNPaseold-35 expression, were identified. The majority of these genes were associated with cell communication, cell cycle and chromosomal organization gene ontology categories. For a number of these genes, the positive or negative correlations with hPNPaseold-35 expression were consistent with transcriptional data extracted from the TCGA (The Cancer Genome Atlas) expression datasets for colon adenocarcinoma (COAD), skin cutaneous melanoma (SKCM), ovarian serous cyst adenocarcinoma (OV), and prostate adenocarcinoma (PRAD). Further analysis comparing the gene expression changes between Ad.hPNPaseold-35 infected HO-1 melanoma cells and HeLa cells overexpressing hPNPaseold-35 under the control of a doxycycline-inducible promoter, revealed global changes in genes involved in cell cycle and mitosis. Overall, this study provides further evidence that hPNPaseold-35 is associated with global changes in cell cycle-associated genes and identifies potential gene targets for future investigation. PMID:24729470

  10. Clinicopathological significance of vascular endothelial growth factor, thymidine phosphorylase and microvessel density in colorectal cancer

    PubMed Central

    KIMURA, YUTAKA; MOROHASHI, SATOKO; YOSHIZAWA, TADASHI; SUZUKI, TAKAHIRO; MOROHASHI, HAJIME; SAKAMOTO, YOSHIYUKI; KOYAMA, MOTOI; MURATA, AKIHIKO; KIJIMA, HIROSHI; HAKAMADA, KENICHI

    2016-01-01

    Colorectal cancer is a common malignant disease, the incidence of which is increasing worldwide, therefore, identifying novel prognostic factors to improve adjuvant therapeutic strategies or postoperative monitoring is required. Angiogenesis, which is assessed by microvessel density (MVD), is significant in tumor growth and metastasis. However, the association between angiogenesis and clinical outcome remains controversial. In the present study, 84 surgically resected cases of colorectal cancer were examined to clarify the clinicopathological significance of vascular endothelial growth factor (VEGF), thymidine phosphorylase (TP) and cluster of differentiation (CD)34 expression levels. VEGF expression was identified to be significantly correlated with TP expression (r=0.45; P<0.0001) and MVD in the high VEGF expression group was observed to be significantly greater than that in the low VEGF expression group (P=0.0194). In the Dukes' stage D group, the MVD in the high TP expression group was significantly greater than that in the low TP expression group (P=0.0149). High VEGF expression was subsequently correlated with a short overall survival rate for patients exhibiting lymph node metastasis (P=0.0128); however, there was no significant difference in overall survival rate regarding the expression levels of TP and CD34. The results of the present study indicate that VEGF expression may serve as a prognostic factor for colorectal cancer patients exhibiting lymph node metastasis. Furthermore, angiogenesis, as assessed by MVD, is an important prognostic factor for tumor growth at the primary site. PMID:26676225

  11. Hexokinase 2, Glycogen Synthase and Phosphorylase Play a Key Role in Muscle Glycogen Supercompensation

    PubMed Central

    Irimia, José M.; Rovira, Jordi; Nielsen, Jakob N.; Guerrero, Mario; Wojtaszewski, Jørgen F. P.; Cussó, Roser

    2012-01-01

    Background Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood. Methods Using chronic low-frequency stimulation (CLFS) as an exercise model, the tibialis anterior muscle of rabbits was stimulated for either 1 or 24 hours, inducing a reduction in glycogen of 90% and 50% respectively. Glycogen recovery was subsequently monitored during 24 hours of rest. Results In muscles stimulated for 1 hour, glycogen recovered basal levels during the rest period. However, in those stimulated for 24 hours, glycogen was supercompensated and its levels remained 50% higher than basal levels after 6 hours of rest, although the newly synthesized glycogen had fewer branches. This increase in glycogen correlated with an increase in hexokinase-2 expression and activity, a reduction in the glycogen phosphorylase activity ratio and an increase in the glycogen synthase activity ratio, due to dephosphorylation of site 3a, even in the presence of elevated glycogen stores. During supercompensation there was also an increase in 5′-AMP-activated protein kinase phosphorylation, correlating with a stable reduction in ATP and total purine nucleotide levels. Conclusions Glycogen supercompensation requires a coordinated chain of events at two levels in the context of decreased cell energy balance: First, an increase in the glucose phosphorylation capacity of the muscle and secondly, control of the enzymes directly involved in the synthesis and degradation of the glycogen molecule. However, supercompensated glycogen has fewer branches. PMID:22860128

  12. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma

    PubMed Central

    Liu, Huan; Liu, Zhiqiang; Du, Juan; He, Jin; Lin, Pei; Amini, Behrang; Starbuck, Michael W.; Novane, Nora; Shah, Jatin J.; Davis, Richard E.; Hou, Jian; Gagel, Robert F.; Yang, Jing

    2016-01-01

    Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP upregulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP upregulated the methylation of IRF8, thereby enhanced expression of NFATc1, leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2DDR. Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K/Akt signaling, and increased DNMT3A expression, resulting in hypermethylation of RUNX2, osterix, and IRF8. This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. As TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications. PMID:27559096

  13. Starch gelatinization in coiled heaters.

    PubMed

    Kelder, J D H; Ptasinski, K J; Kerkhof, P J A M

    2004-01-01

    A gelatinizing model food derived from a 5% w/w cross-linked waxy maize starch suspension was simulated in coiled heaters to assess the impact of centrifugal forces on flow and heat transfer. For four coil diameters (D = 0.25, 1, 2.5, and infinity m) and three flow rates (w = 0.5, 1, and 2 m/s), heat transfer, viscous development, and the severity of channeling were evaluated. Increasing curvature proved to suppress channeling as a result of more uniform heating and gelatinization. The maximum attainable viscosity was also higher, implying a lower starch consumption for a target viscosity. Higher flow rates necessitated longer heaters, and the maximum viscosity decreased. Moderate product velocities are therefore recommended.

  14. Potential of Starch Nanocomposites for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  15. Characterisation and disintegration properties of irradiated starch.

    PubMed

    De Kerf, M; Mondelaers, W; Lahorte, P; Vervaet, C; Remon, J P

    2001-06-19

    Irradiation treatment could provide a quick and simple way to modify the physical, chemical and pharmaceutical properties of biopolymers such as starch. Corn, potato and drum dried corn starch were exposed to X-ray and electron beam (e-beam) irradiation treatment at doses of 10, 50 and 100 kGy. The disintegration properties of these starches were compared using alpha-lactose monohydrate tablets containing 5% (w/w) starch as disintegrant. Starch solubility increased, while its swelling capacity decreased with increasing irradiation dose. The irradiation treatment caused fragmentation of the amylopectin fraction. Irradiation modified the different starches thoroughly, showing remarkable differences in disintegration properties after X-ray treatment and e-beam modification. The e-beam modification resulted in significantly higher disintegration times of the tablets.

  16. Formation of nanoporous aerogels from wheat starch.

    PubMed

    Ubeyitogullari, Ali; Ciftci, Ozan N

    2016-08-20

    Biodegradable nanoporous aerogels were obtained from wheat starch using a simple and green method based on supercritical carbon dioxide (SC-CO2) drying. Effects of processing parameters (temperature, wheat starch concentration and mixing rate during gelatinization; temperature, pressure, and flow rate of CO2, during SC-CO2 drying) on the aerogel formation were investigated, and optimized for the highest surface area and smallest pore size of the aerogels. At the optimized conditions, wheat starch aerogels had surface areas between 52.6-59.7m(2)/g and densities ranging between 0.05-0.29g/cm(3). The average pore size of the starch aerogels was 20nm. Starch aerogels were stable up to 280°C. Due to high surface area and nanoporous structure, wheat starch aerogels are promising carrier systems for bioactives and drugs in food and pharmaceutical industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The effects of starches on mechanical properties of paracetamol tablet formulations. I. Pregelatinization of starch binders.

    PubMed

    Alebiowu, Gbenga; Itiola, Oludele Adelanwa

    2003-09-01

    A study has been made of the effects of pregelatinization of native sorghum and plantain starches on the mechanical properties of a paracetamol tablet formulation in comparison with corn starch BP. The mechanical properties tested, viz. tensile strength (T) and brittle fracture index (BFI) of the paracetamol tablets were affected by pregelatinization of the starch. The results suggest that pregelatinized starches may be useful as binders when a particular degree of bond strength and brittleness is desired.

  18. [SGP polymorphism in cultivated naked barley from Qinghai-Tibet plateau in China and the relationship between SGPs and starch content].

    PubMed

    Pan, Zhi-Fen; Zhou, Yi-Xing; Zhao, Tao; Deng, Guang-Bing; Zhai, Xu-Guang; Wu, Fang; Yu, Mao-Qun

    2007-05-01

    Starch granule proteins (SGPs) are minor components bound with starch granule, which mutation may be related to starch properties. This study investigated the variation of SGPs in cultivated naked barley from Qinghai-Tibet Plateau in China for the first time, and the relationship between SGPs and starch content was preliminarily done. Ten major SGPs and 16 types of patterns were present in 66 cultivated naked varieties, indicating SGPs in cultivated naked barley from Qinghai-Tibet Plateau in China are polymorphic. SGPs in Tibet and Sichuan naked barley were greatly different and SGPs were specific to origin of site. Significance test analysis demonstrates SGPs described in this study except for SGP1 may be related with the variation of starch content in different naked barley.

  19. The diurnal metabolism of leaf starch.

    PubMed

    Zeeman, Samuel C; Smith, Steven M; Smith, Alison M

    2007-01-01

    Starch is a primary product of photosynthesis in leaves. In most plants, a large fraction of the carbon assimilated during the day is stored transiently in the chloroplast as starch for use during the subsequent night. Photosynthetic partitioning into starch is finely regulated, and the amount of carbohydrate stored is dependent on the environmental conditions, particularly day length. This regulation is applied at several levels to control the flux of carbon from the Calvin cycle into starch biosynthesis. Starch is composed primarily of branched glucans with an architecture that allows the formation of a semi-crystalline insoluble granule. Biosynthesis has been most intensively studied in non-photosynthetic starch-storing organs, such as developing seeds and tubers. Biosynthesis in leaves has received less attention, but recent reverse-genetic studies of Arabidopsis (thale cress) have produced data generally consistent with what is known for storage tissues. The pathway involves starch synthases, which elongate the glucan chains, and branching enzymes. Remarkably, enzymes that partially debranch glucans are also required for normal amylopectin synthesis. In the last decade, our understanding of starch breakdown in leaves has advanced considerably. Starch is hydrolysed to maltose and glucose at night via a pathway that requires recently discovered proteins in addition to well-known enzymes. These sugars are exported from the plastid to support sucrose synthesis, respiration and growth. In the present review we provide an overview of starch biosynthesis, starch structure and starch degradation in the leaves of plants. We focus on recent advances in each area and highlight outstanding questions.

  20. Structural and functional properties of C-type starches.

    PubMed

    Cai, Jinwen; Cai, Canhui; Man, Jianmin; Zhou, Weidong; Wei, Cunxu

    2014-01-30

    This study investigated the structural and functional properties of C-type starches from pea seeds, faba bean seeds, yam rhizomes and water chestnut corms. These starches were mostly oval in shape with significantly different sizes and contents of amylose, damaged starch and phosphorus. Pea, faba bean and water chestnut starches had central hila, and yam starch had eccentric hilum. Water chestnut and yam starches had higher amylopectin short and long chain, respectively. Water chestnut and faba bean starches showed CA-type crystallinities, and pea and yam starches had C-type crystallinities. Water chestnut starch had the highest swelling power, granule swelling and pasting viscosity, lowest gelatinization temperatures and enthalpy. Faba bean starch had the lowest pasting viscosity, whereas yam starch had the highest gelatinization temperatures. Water chestnut and yam starches possessed significantly higher and lower susceptibility to acid and enzyme hydrolysis, the highest and lowest RDS contents, and the lowest and highest RS contents, respectively.

  1. Issues of Starch in Sugarcane Processing and Prospects of Breeding for Low Starch Content in Sugarcane

    USDA-ARS?s Scientific Manuscript database

    Starch is a sugarcane impurity that adversely affects the quantity and quality of sugar processes and products. The increased production of combine and green harvested sugarcane has increased delivery of starch to sugarcane factories. Starch occurs as granules composed of amylose and amylopectin p...

  2. Starch-Soybean Oil Composites with High Oil: Starch Ratios Prepared by Steam Jet Cooking

    USDA-ARS?s Scientific Manuscript database

    Aqueous mixtures of soybean oil and starch were jet cooked at oil:starch ratios ranging from 0.5:1 to 4:1 to yield dispersions of micron-sized oil droplets that were coated with a thin layer of starch at the oil-water interface. The jet cooked dispersions were then centrifuged at 2060 and 10,800 x ...

  3. Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate

    USDA-ARS?s Scientific Manuscript database

    Starch aerogels are a class of low density highly porous renewable materials currently prepared from retrograded starch gels and are of interest for their good surface area, porosity, biocompatibility, and biodegradability. Recently, we have reported on starches containing amylose-fatty acid salt h...

  4. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    PubMed

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch.

    PubMed

    Bai, Yanjie; Kaufman, Rhett C; Wilson, Jeff D; Shi, Yong-Cheng

    2014-06-15

    Octenylsuccinic anhydride (OSA)-modified starches with a low (0.018) and high (0.092) degree of substitution (DS) were prepared from granular native waxy maize starch in aqueous slurry. The position of OS substituents along the starch chains was investigated by enzyme hydrolysis followed by chromatographic analysis. Native starch and two OS starches with a low and high DS had β-limit values of 55.9%, 52.8%, and 34.4%, respectively. The weight-average molecular weight of the β-limit dextrin from the OS starch with a low DS was close to that of the β-limit dextrin from native starch but lower than that of the β-limit dextrin from the OS starch with a high DS. Debranching of OS starches was incomplete compared with native starch. OS groups in the OS starch with a low DS were located on the repeat units near the branching points, whereas the OS substituents in the OS starch with a high DS occurred both near the branching points and the non-reducing ends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Functions of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm.

    PubMed

    Kubo, Akiko; Colleoni, Christophe; Dinges, Jason R; Lin, Qiaohui; Lappe, Ryan R; Rivenbark, Joshua G; Meyer, Alexander J; Ball, Steven G; James, Martha G; Hennen-Bierwagen, Tracie A; Myers, Alan M

    2010-07-01

    Functions of isoamylase-type starch-debranching enzyme (ISA) proteins and complexes in maize (Zea mays) endosperm were characterized. Wild-type endosperm contained three high molecular mass ISA complexes resolved by gel permeation chromatography and native-polyacrylamide gel electrophoresis. Two complexes of approximately 400 kD contained both ISA1 and ISA2, and an approximately 300-kD complex contained ISA1 but not ISA2. Novel mutations of sugary1 (su1) and isa2, coding for ISA1 and ISA2, respectively, were used to develop one maize line with ISA1 homomer but lacking heteromeric ISA and a second line with one form of ISA1/ISA2 heteromer but no homomeric enzyme. The mutations were su1-P, which caused an amino acid substitution in ISA1, and isa2-339, which was caused by transposon insertion and conditioned loss of ISA2. In agreement with the protein compositions, all three ISA complexes were missing in an ISA1-null line, whereas only the two higher molecular mass forms were absent in the ISA2-null line. Both su1-P and isa2-339 conditioned near-normal starch characteristics, in contrast to ISA-null lines, indicating that either homomeric or heteromeric ISA is competent for starch biosynthesis. The homomer-only line had smaller, more numerous granules. Thus, a function of heteromeric ISA not compensated for by homomeric enzyme affects granule initiation or growth, which may explain evolutionary selection for ISA2. ISA1 was required for the accumulation of ISA2, which is regulated posttranscriptionally. Quantitative polymerase chain reaction showed that the ISA1 transcript level was elevated in tissues where starch is synthesized and low during starch degradation, whereas ISA2 transcript was relatively abundant during periods of either starch biosynthesis or catabolism.

  7. Alterations in Cytosolic Glucose-Phosphate Metabolism Affect Structural Features and Biochemical Properties of Starch-Related Heteroglycans1[W

    PubMed Central

    Fettke, Joerg; Nunes-Nesi, Adriano; Alpers, Jessica; Szkop, Michal; Fernie, Alisdair R.; Steup, Martin

    2008-01-01

    The cytosolic pools of glucose-1-phosphate (Glc-1-P) and glucose-6-phosphate are essential intermediates in several biosynthetic paths, including the formation of sucrose and cell wall constituents, and they are also linked to the cytosolic starch-related heteroglycans. In this work, structural features and biochemical properties of starch-related heteroglycans were analyzed as affected by the cytosolic glucose monophosphate metabolism using both source and sink organs from wild-type and various transgenic potato (Solanum tuberosum) plants. In leaves, increased levels of the cytosolic phosphoglucomutase (cPGM) did affect the cytosolic heteroglycans, as both the glucosyl content and the size distribution were diminished. By contrast, underexpression of cPGM resulted in an unchanged size distribution and an unaltered or even increased glucosyl content of the heteroglycans. Heteroglycans prepared from potato tubers were found to be similar to those from leaves but were not significantly affected by the level of cPGM activity. However, external glucose or Glc-1-P exerted entirely different effects on the cytosolic heteroglycans when added to tuber discs. Glucose was directed mainly toward starch and cell wall material, but incorporation into the constituents of the cytosolic heteroglycans was very low and roughly reflected the relative monomeric abundance. By contrast, Glc-1-P was selectively taken up by the tuber discs and resulted in a fast increase in the glucosyl content of the heteroglycans that quantitatively reflected the level of the cytosolic phosphorylase activity. Based on 14C labeling experiments, we propose that in the cytosol, glucose and Glc-1-P are metabolized by largely separated paths. PMID:18805950

  8. Improved method for detection of starch hydrolysis

    SciTech Connect

    Ohawale, M.R.; Wilson, J.J.; Khachatourians, G.G.; Ingledew, W.M.

    1982-09-01

    A new starch hydrolysis detection method which does not rely on iodine staining or the use of color-complexed starch is described. A linear relationship was obtained with agar-starch plates when net clearing zones around colonies of yeasts were plotted against enzyme levels (semilogarithm scale) produced by the same yeast strains in liquid medium. A similar relationship between starch clearing zones and alpha-amylase levels from three different sources was observed. These observations suggest that the method is useful in mutant isolations, strain improvement programs, and the prediction of alpha-amylase activities in culture filtrates or column effluents. (Refs. 18).

  9. Physical modification of food starch functionalities.

    PubMed

    BeMiller, James N; Huber, Kerry C

    2015-01-01

    Because, in general, native starches do not have properties that make them ideally suited for applications in food products, most starch is modified by dervatization to improve its functionality before use in processed food formulations, and because food processors would prefer not to have to use the modified food starch label designation required when chemically modified starches are used, there is considerable interest in providing starches with desired functionalities that have not been chemically modified. One investigated approach is property modification via physical treatments, that is, modifications of starches imparted by physical treatments that do not result in any chemical modification of the starch. Physical treatments are divided into thermal and nonthermal treatments. Thermal treatments include those that produce pregelatinized and granular cold-water-swelling starches, heat-moisture treatments, annealing, microwave heating, so-called osmotic pressure treatment, and heating of dry starch. Nonthermal treatments include ultrahigh-pressure treatments, instantaneous controlled pressure drop, use of high-pressure homogenizers, dynamic pulsed pressure, pulsed electric field, and freezing and thawing.

  10. Photosynthate Partitioning into Starch in Soybean Leaves

    PubMed Central

    Chatterton, N. Jerry; Silvius, John E.

    1979-01-01

    Photosynthesis, photosynthate partitioning into foliar starch, and translocation were investigated in soybean plants (Glycine max (L.) Merr. cv. Amsoy 71), grown under different photoperiods and photosynthetic periods to determine the controls of leaf starch accumulation. Starch accumulation rates in soybean leaves were inversely related to the length of the daily photosynthetic period under which the plants were grown. Photosynthetic period and not photoperiod per se appears to be the important factor. Plants grown in a 14-hour photosynthetic period partitioned approximately 60% of the daily foliar accumulation into starch whereas 7-hour plants partitioned about 90% of their daily foliar accumulation into starch. The difference in starch accumulation resulted from a change in photosynthate partitioning between starch and leaf residual dry weight. Residual dry weight is defined as leaf dry weight minus the weight of total nonstructural carbohydrates. Differences in photosynthate partitioning into starch were also associated with changes in photosynthetic and translocation rates, as well as with leaf and whole plant morphology. It is concluded that leaf starch accumulation is a programmed process and not simply the result of a limitation in translocation. PMID:16661047

  11. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Guisinger, M. M.; Miller, A. J.; Stackhouse, K. S.

    1997-01-01

    Gravitropism was examined in dark- and light-grown hypocotyls of wild-type (WT), two reduced starch mutants (ACG 20 and ACG 27), and a starchless mutant (ACG 21) of Arabidopsis. In addition, the starch content of these four strains was studied with light and electron microscopy. Based on time course of curvature and orientation studies, the graviresponse in hypocotyls is proportional to the amount of starch in a genotype. Furthermore, starch mutations seem to primarily affect gravitropism rather than differential growth since both phototropic curvature and growth rates among the four genotypes are approximately equal. Our results suggest that gravity perception may require a greater plastid mass in hypocotyls compared to roots. The kinetics of gravitropic curvature also was compared following reorientation at 45 degrees, 90 degrees, and 135 degrees. As has been reported for other plant species, the optimal angle of reorientation is 135 degrees for WT Arabidopsis and the two reduced starch mutants, but the magnitude of curvature of the starchless mutant appears to be independent of the initial angle of displacement. Taken together, the results of the present study and our previous experiments with roots of the same four genotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] support a plastid-based hypothesis for gravity perception in plants.

  12. A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen.

    PubMed Central

    Zeeman, S C; Umemoto, T; Lue, W L; Au-Yeung, P; Martin, C; Smith, A M; Chen, J

    1998-01-01

    In this study, our goal was to evaluate the role of starch debranching enzymes in the determination of the structure of amylopectin. We screened mutant populations of Arabidopsis for plants with alterations in the structure of leaf starch by using iodine staining. The leaves of two mutant lines stained reddish brown, whereas wild-type leaves stained brownish black, indicating that a more highly branched polyglucan than amylopectin was present. The mutants were allelic, and the mutation mapped to position 18.8 on chromosome 1. One mutant line lacked the transcript for a gene with sequence similarity to higher plant debranching enzymes, and both mutants lacked a chloroplastic starch-hydrolyzing enzyme. This enzyme was identified as a debranching enzyme of the isoamylase type. The loss of this isoamylase resulted in a 90% reduction in the accumulation of starch in this mutant line when compared with the wild type and in the accumulation of the highly branched water-soluble polysaccharide phytoglycogen. Both normal starch and phytoglycogen accumulated simultaneously in the same chloroplasts in the mutant lines, suggesting that isoamylase has an indirect rather than a direct role in determining amylopectin structure. PMID:9761796

  13. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Guisinger, M. M.; Miller, A. J.; Stackhouse, K. S.

    1997-01-01

    Gravitropism was examined in dark- and light-grown hypocotyls of wild-type (WT), two reduced starch mutants (ACG 20 and ACG 27), and a starchless mutant (ACG 21) of Arabidopsis. In addition, the starch content of these four strains was studied with light and electron microscopy. Based on time course of curvature and orientation studies, the graviresponse in hypocotyls is proportional to the amount of starch in a genotype. Furthermore, starch mutations seem to primarily affect gravitropism rather than differential growth since both phototropic curvature and growth rates among the four genotypes are approximately equal. Our results suggest that gravity perception may require a greater plastid mass in hypocotyls compared to roots. The kinetics of gravitropic curvature also was compared following reorientation at 45 degrees, 90 degrees, and 135 degrees. As has been reported for other plant species, the optimal angle of reorientation is 135 degrees for WT Arabidopsis and the two reduced starch mutants, but the magnitude of curvature of the starchless mutant appears to be independent of the initial angle of displacement. Taken together, the results of the present study and our previous experiments with roots of the same four genotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] support a plastid-based hypothesis for gravity perception in plants.

  14. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis.

    PubMed

    Kiss, J Z; Guisinger, M M; Miller, A J; Stackhouse, K S

    1997-05-01

    Gravitropism was examined in dark- and light-grown hypocotyls of wild-type (WT), two reduced starch mutants (ACG 20 and ACG 27), and a starchless mutant (ACG 21) of Arabidopsis. In addition, the starch content of these four strains was studied with light and electron microscopy. Based on time course of curvature and orientation studies, the graviresponse in hypocotyls is proportional to the amount of starch in a genotype. Furthermore, starch mutations seem to primarily affect gravitropism rather than differential growth since both phototropic curvature and growth rates among the four genotypes are approximately equal. Our results suggest that gravity perception may require a greater plastid mass in hypocotyls compared to roots. The kinetics of gravitropic curvature also was compared following reorientation at 45 degrees, 90 degrees, and 135 degrees. As has been reported for other plant species, the optimal angle of reorientation is 135 degrees for WT Arabidopsis and the two reduced starch mutants, but the magnitude of curvature of the starchless mutant appears to be independent of the initial angle of displacement. Taken together, the results of the present study and our previous experiments with roots of the same four genotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] support a plastid-based hypothesis for gravity perception in plants.

  15. Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation

    PubMed Central

    Spielbauer, Gertraud; Li, Li; Römisch-Margl, Lilla; Do, Phuc Thi; Fouquet, Romain; Fernie, Alisdair R.; Eisenreich, Wolfgang; Gierl, Alfons; Settles, A. Mark

    2013-01-01

    Plants have duplicate versions of the oxidative pentose phosphate pathway (oxPPP) enzymes with a subset localized to the chloroplast. The chloroplast oxPPP provides NADPH and pentose sugars for multiple metabolic pathways. This study identified two loss-of-function alleles of the Zea mays (maize) chloroplast-localized oxPPP enzyme 6-phosphogluconate dehydrogenase (6PGDH). These mutations caused a rough endosperm seed phenotype with reduced embryo oil and endosperm starch. Genetic translocation experiments showed that pgd3 has separate, essential roles in both endosperm and embryo development. Endosperm metabolite profiling experiments indicated that pgd3 shifts redox-related metabolites and increases reducing sugars similar to starch-biosynthetis mutants. Heavy isotope-labelling experiments indicates that carbon flux into starch is altered in pgd3 mutants. Labelling experiments with a loss of cytosolic 6PGDH did not affect flux into starch. These results support the known role for plastid-localized oxPPP in oil synthesis and argue that amyloplast-localized oxPPP reactions are integral to endosperm starch accumulation in maize kernels. PMID:23530131

  16. Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation.

    PubMed

    Spielbauer, Gertraud; Li, Li; Römisch-Margl, Lilla; Do, Phuc Thi; Fouquet, Romain; Fernie, Alisdair R; Eisenreich, Wolfgang; Gierl, Alfons; Settles, A Mark

    2013-05-01

    Plants have duplicate versions of the oxidative pentose phosphate pathway (oxPPP) enzymes with a subset localized to the chloroplast. The chloroplast oxPPP provides NADPH and pentose sugars for multiple metabolic pathways. This study identified two loss-of-function alleles of the Zea mays (maize) chloroplast-localized oxPPP enzyme 6-phosphogluconate dehydrogenase (6PGDH). These mutations caused a rough endosperm seed phenotype with reduced embryo oil and endosperm starch. Genetic translocation experiments showed that pgd3 has separate, essential roles in both endosperm and embryo development. Endosperm metabolite profiling experiments indicated that pgd3 shifts redox-related metabolites and increases reducing sugars similar to starch-biosynthetis mutants. Heavy isotope-labelling experiments indicates that carbon flux into starch is altered in pgd3 mutants. Labelling experiments with a loss of cytosolic 6PGDH did not affect flux into starch. These results support the known role for plastid-localized oxPPP in oil synthesis and argue that amyloplast-localized oxPPP reactions are integral to endosperm starch accumulation in maize kernels.

  17. Structural and molecular basis of starch viscosity in hexaploid wheat.

    PubMed

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  18. N-acetyl-beta-D-glucopyranosylamine: a potent T-state inhibitor of glycogen phosphorylase. A comparison with alpha-D-glucose.

    PubMed Central

    Oikonomakos, N. G.; Kontou, M.; Zographos, S. E.; Watson, K. A.; Johnson, L. N.; Bichard, C. J.; Fleet, G. W.; Acharya, K. R.

    1995-01-01

    Structure-based drug design has led to the discovery of a number of glucose analogue inhibitors of glycogen phosphorylase that have an increased affinity compared to alpha-D-glucose (Ki = 1.7 mM). The best inhibitor in the class of N-acyl derivatives of beta-D-glucopyranosylamine, N-acetyl-beta-D-glucopyranosylamine (1-GlcNAc), has been characterized by kinetic, ultracentrifugation, and crystallographic studies. 1-GlcNAc acts as a competitive inhibitor for both the b (Ki = 32 microM) and the a (Ki = 35 microM) forms of the enzyme with respect to glucose 1-phosphate and in synergism with caffeine, mimicking the binding of glucose. Sedimentation velocity experiments demonstrated that 1-GlcNAc was able to induce dissociation of tetrameric phosphorylase a and stabilization of the dimeric T-state conformation. Co-crystals of the phosphorylase b-1-GlcNAc-IMP complex were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the complex structure has been refined to give a crystallographic R factor of 18.1%, for data between 8 and 2.3 A resolution. 1-GlcNAc binds tightly at the catalytic site of T-state phosphorylase b at approximately the same position as that of alpha-D-glucose. The ligand can be accommodated in the catalytic site with very little change in the protein structure and stabilizes the T-state conformation of the 280s loop by making several favorable contacts to Asn 284 of this loop. Structural comparisons show that the T-state phosphorylase b-1-GlcNAc-IMP complex structure is overall similar to the T-state phosphorylase b-alpha-D-glucose complex structure. The structure of the 1-GlcNAc complex provides a rational for the biochemical properties of the inhibitor. PMID:8580837

  19. A Novel GDP-d-glucose Phosphorylase Involved in Quality Control of the Nucleoside Diphosphate Sugar Pool in Caenorhabditis elegans and Mammals*

    PubMed Central

    Adler, Lital N.; Gomez, Tara A.; Clarke, Steven G.; Linster, Carole L.

    2011-01-01

    The plant VTC2 gene encodes GDP-l-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C by a distinct metabolic pathway, and in the nematode worm Caenorhabditis elegans where vitamin C biosynthesis has not been demonstrated. We have now expressed cDNAs of the human and worm VTC2 homolog genes (C15orf58 and C10F3.4, respectively) and found that the purified proteins also display GDP-hexose phosphorylase activity. However, as opposed to the plant enzyme, the major reaction catalyzed by these enzymes is the phosphorolysis of GDP-d-glucose to GDP and d-glucose 1-phosphate. We detected activities with similar substrate specificity in worm and mouse tissue extracts. The highest expression of GDP-d-glucose phosphorylase was found in the nervous and male reproductive systems. A C. elegans C10F3.4 deletion strain was found to totally lack GDP-d-glucose phosphorylase activity; this activity was also found to be decreased in human HEK293T cells transfected with siRNAs against the human C15orf58 gene. These observations confirm the identification of the worm C10F3.4 and the human C15orf58 gene expression products as the GDP-d-glucose phosphorylases of these organisms. Significantly, we found an accumulation of GDP-d-glucose in the C10F3.4 mutant worms, suggesting that the GDP-d-glucose phosphorylase may function to remove GDP-d-glucose formed by GDP-d-mannose pyrophosphorylase, an enzyme that has previously been shown to lack specificity for its physiological d-mannose 1-phosphate substrate. We propose that such removal may prevent the misincorporation of glucosyl residues for mannosyl residues into the glycoconjugates of worms and mammals. PMID:21507950

  20. A novel GDP-D-glucose phosphorylase involved in quality control of the nucleoside diphosphate sugar pool in Caenorhabditis elegans and mammals.

    PubMed

    Adler, Lital N; Gomez, Tara A; Clarke, Steven G; Linster, Carole L

    2011-06-17

    The plant VTC2 gene encodes GDP-L-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C by a distinct metabolic pathway, and in the nematode worm Caenorhabditis elegans where vitamin C biosynthesis has not been demonstrated. We have now expressed cDNAs of the human and worm VTC2 homolog genes (C15orf58 and C10F3.4, respectively) and found that the purified proteins also display GDP-hexose phosphorylase activity. However, as opposed to the plant enzyme, the major reaction catalyzed by these enzymes is the phosphorolysis of GDP-D-glucose to GDP and D-glucose 1-phosphate. We detected activities with similar substrate specificity in worm and mouse tissue extracts. The highest expression of GDP-D-glucose phosphorylase was found in the nervous and male reproductive systems. A C. elegans C10F3.4 deletion strain was found to totally lack GDP-D-glucose phosphorylase activity; this activity was also found to be decreased in human HEK293T cells transfected with siRNAs against the human C15orf58 gene. These observations confirm the identification of the worm C10F3.4 and the human C15orf58 gene expression products as the GDP-D-glucose phosphorylases of these organisms. Significantly, we found an accumulation of GDP-D-glucose in the C10F3.4 mutant worms, suggesting that the GDP-D-glucose phosphorylase may function to remove GDP-D-glucose formed by GDP-D-mannose pyrophosphorylase, an enzyme that has previously been shown to lack specificity for its physiological D-mannose 1-phosphate substrate. We propose that such removal may prevent the misincorporation of glucosyl residues for mannosyl residues into the glycoconjugates of worms and mammals.

  1. The gene coding for polynucleotide phosphorylase in Photorhabdus sp. strain K122 is induced at low temperatures.

    PubMed Central

    Clarke, D J; Dowds, B C

    1994-01-01

    Photorhabdus sp. strain K122 was found to produce higher levels of the protein CAP87K when cultured at 9 degrees C than when cultured at 28 degrees C. NH2-terminal sequencing of this protein revealed homology with the NH2 terminus of Escherichia coli polynucleotide phosphorylase. A 4.5-kb DNA fragment from strain K122 was cloned and sequenced and found to have 75% identity to the E. coli rpsO-pnp operon coding for ribosomal protein S15 and polynucleotide phosphorylase, respectively. Predicted proteins encoded by this sequence were found to have 86% identity with ribosomal protein S15 and polynucleotide phosphorylase from E. coli, and the genes were called rpsO and pnp, respectively. Quantitation of rpsO and pnp mRNA transcripts from K122 revealed that there was a 2.4-fold increase in the level of pnp mRNA and a 1.9-fold decrease in the level of rpsO mRNA at 9 degrees C relative to 28 degrees C. Primer extension analysis revealed the positions of possible promoters controlling the expression of rpsO and pnp in K122, suggesting that the genes are expressed independently. The increase in the level of pnp mRNA at 9 degrees C was not due to any relative increase in its stability compared with that of the rpsO transcript. However, there was evidence to suggest that it may be a result of a cold-inducible promoter, P2, in the intergenic region between rpsO and pnp. Several features of P2 support the suggestion that it may be cold inducible. Images PMID:8206856

  2. Structures of yeast Apa2 reveal catalytic insights into a canonical AP₄A phosphorylase of the histidine triad superfamily.

    PubMed

    Hou, Wen-Tao; Li, Wen-Zhe; Chen, Yuxing; Jiang, Yong-Liang; Zhou, Cong-Zhao

    2013-08-09

    The homeostasis of intracellular diadenosine 5',5″'-P(1),P(4)-tetraphosphate (Ap4A) in the yeast Saccharomyces cerevisiae is maintained by two 60% sequence-identical paralogs of Ap4A phosphorylases (Apa1 and Apa2). Enzymatic assays show that, compared to Apa1, Apa2 has a relatively higher phosphorylase activity towards Ap3A (5',5″'-P(1),P(3)-tetraphosphate), Ap4A, and Ap5A (5',5″'-P(1),P(5)-tetraphosphate), and Ap4A is the favorable substrate for both enzymes. To decipher the catalytic insights, we determined the crystal structures of Apa2 in the apo-, AMP-, and Ap4A-complexed forms at 2.30, 2.80, and 2.70Å resolution, respectively. Apa2 is an α/β protein with a core domain of a twisted eight-stranded antiparallel β-sheet flanked by several α-helices, similar to the galactose-1-phosphate uridylyltransferase (GalT) members of the histidine triad (HIT) superfamily. However, a unique auxiliary domain enables an individual Apa2 monomer to possess an intact substrate-binding cleft, which is distinct from previously reported dimeric GalT proteins. This cleft is perfectly complementary to the favorable substrate Ap4A, the AMP and ATP moieties of which are perpendicular to each other, leaving the α-phosphate group exposed at the sharp turn against the catalytic residue His161. Structural comparisons combined with site-directed mutagenesis and activity assays enable us to define the key residues for catalysis. Furthermore, multiple-sequence alignment reveals that Apa2 and homologs represent canonical Ap4A phosphorylases, which could be grouped as a unique branch in the GalT family. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Enzymatic synthesis and phosphorolysis of 4(2)-thioxo- and 6(5)-azapyrimidine nucleosides by E. coli nucleoside phosphorylases.

    PubMed

    Stepchenko, Vladimir A; Miroshnikov, Anatoly I; Seela, Frank; Mikhailopulo, Igor A

    2016-01-01

    The trans-2-deoxyribosylation of 4-thiouracil ((4S)Ura) and 2-thiouracil ((2S)Ura), as well as 6-azauracil, 6-azathymine and 6-aza-2-thiothymine was studied using dG and E. coli purine nucleoside phosphorylase (PNP) for the in situ generation of 2-deoxy-α-D-ribofuranose-1-phosphate (dRib-1P) followed by its coupling with the bases catalyzed by either E. coli thymidine (TP) or uridine (UP) phosphorylases. (4S)Ura revealed satisfactory substrate activity for UP and, unexpectedly, complete inertness for TP; no formation of 2'-deoxy-2-thiouridine ((2S)Ud) was observed under analogous reaction conditions in the presence of UP and TP. On the contrary, (2S)U, (2S)Ud, (4S)Td and (2S)Td are good substrates for both UP and TP; moreover, (2S)U, (4S)Td and 2'-deoxy-5-azacytidine (Decitabine) are substrates for PNP and the phosphorolysis of the latter is reversible. Condensation of (2S)Ura and 5-azacytosine with dRib-1P (Ba salt) catalyzed by the accordant UP and PNP in Tris∙HCl buffer gave (2S)Ud and 2'-deoxy-5-azacytidine in 27% and 15% yields, respectively. 6-Azauracil and 6-azathymine showed good substrate properties for both TP and UP, whereas only TP recognizes 2-thio-6-azathymine as a substrate. 5-Phenyl and 5-tert-butyl derivatives of 6-azauracil and its 2-thioxo derivative were tested as substrates for UP and TP, and only 5-phenyl- and 5-tert-butyl-6-azauracils displayed very low substrate activity. The role of structural peculiarities and electronic properties in the substrate recognition by E. coli nucleoside phosphorylases is discussed.

  4. Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference.

    PubMed

    Lorenzo-Morales, Jacob; Kliescikova, Jarmila; Martinez-Carretero, Enrique; De Pablos, Luis Miguel; Profotova, Bronislava; Nohynkova, Eva; Osuna, Antonio; Valladares, Basilio

    2008-03-01

    Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer.

  5. Enzymatic synthesis and phosphorolysis of 4(2)-thioxo- and 6(5)-azapyrimidine nucleosides by E. coli nucleoside phosphorylases

    PubMed Central

    Stepchenko, Vladimir A; Miroshnikov, Anatoly I; Seela, Frank

    2016-01-01

    The trans-2-deoxyribosylation of 4-thiouracil (4SUra) and 2-thiouracil (2SUra), as well as 6-azauracil, 6-azathymine and 6-aza-2-thiothymine was studied using dG and E. coli purine nucleoside phosphorylase (PNP) for the in situ generation of 2-deoxy-α-D-ribofuranose-1-phosphate (dRib-1P) followed by its coupling with the bases catalyzed by either E. coli thymidine (TP) or uridine (UP) phosphorylases. 4SUra revealed satisfactory substrate activity for UP and, unexpectedly, complete inertness for TP; no formation of 2’-deoxy-2-thiouridine (2SUd) was observed under analogous reaction conditions in the presence of UP and TP. On the contrary, 2SU, 2SUd, 4STd and 2STd are good substrates for both UP and TP; moreover, 2SU, 4STd and 2’-deoxy-5-azacytidine (Decitabine) are substrates for PNP and the phosphorolysis of the latter is reversible. Condensation of 2SUra and 5-azacytosine with dRib-1P (Ba salt) catalyzed by the accordant UP and PNP in Tris∙HCl buffer gave 2SUd and 2’-deoxy-5-azacytidine in 27% and 15% yields, respectively. 6-Azauracil and 6-azathymine showed good substrate properties for both TP and UP, whereas only TP recognizes 2-thio-6-azathymine as a substrate. 5-Phenyl and 5-tert-butyl derivatives of 6-azauracil and its 2-thioxo derivative were tested as substrates for UP and TP, and only 5-phenyl- and 5-tert-butyl-6-azauracils displayed very low substrate activity. The role of structural peculiarities and electronic properties in the substrate recognition by E. coli nucleoside phosphorylases is discussed. PMID:28144328

  6. Glycogen Phosphorylase in Acanthamoeba spp.: Determining the Role of the Enzyme during the Encystment Process Using RNA Interference▿

    PubMed Central

    Lorenzo-Morales, Jacob; Kliescikova, Jarmila; Martinez-Carretero, Enrique; De Pablos, Luis Miguel; Profotova, Bronislava; Nohynkova, Eva; Osuna, Antonio; Valladares, Basilio

    2008-01-01

    Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer. PMID:18223117

  7. alpha-Glucan synthesis on a protein primer, uridine diphosphoglucose: protein transglucosylase I. Separation from starch synthetase and phosphorylase and a study of its properties.

    PubMed

    Moreno, S; Cardini, C E; Tandecarz, J S

    1986-06-16

    It was found that the DEAE-cellulose-treated UDP-Glc:protein transglucosylase I catalyzing the first step (reaction 1) in the formation of alpha-glucan bound to protein in potato tuber is not only specific for the glucosyl donor but also for the endogenous acceptor. A single radioactive 38-kDa macromolecular component appeared during denaturing polyacrylamide gel electrophoresis of reaction 1 product. The labeled component is probably the polypeptide subunit of the endogenous acceptor which is being glucosylated. The radioactivity incorporated in reaction 1 product was isolated from a protease digest as a low-molecular-mass glucopeptide fraction. A beta-elimination reaction carried out in the presence of a reducing agent demonstrated that only one glucosyl moiety is transferred from UDP-Glc to the aminoacyl residue, thus forming an O-glucosidic linkage. 3H-labeled sodium borohydride showed that serine and threonine are involved in the peptide bond to glucose. Ion-exchange chromatography on DEAE-cellulose, affinity chromatography on concanavalin-A--Sepharose, gel filtration on Sephacryl S-300 and sucrose density gradient centrifugation failed to separate the enzyme catalyzing reaction 1 from the endogenous acceptor.

  8. Phytogenic Polyphenols as Glycogen Phosphorylase Inhibitors: The Potential of Triterpenes and Flavonoids for Glycaemic Control in Type 2 Diabetes.

    PubMed

    Leonidas, Demetres D; Hayes, Joseph M; Kato, Atsushi; Skamnaki, Vassiliki T; Chatzileontiadou, Demetra S M; Kantsadi, Anastassia L; Kyriakis, Efthimios; Chetter, Ben A; Stravodimos, George A

    2017-01-01

    Glycogen phosphorylase (GP) is a validated pharmaceutical target for the development of antihyperglycaemic agents. Phytogenic polyphenols, mainly flavonoids and pentacyclic triterpenes, have been found to be potent inhibitors of GP. These compounds have both pharmaceutical and nutraceutical potential for glycemic control in diabetes type 2. This review focuses mainly on the most successful (potent) of these compounds discovered to date. The protein-ligand interactions that form the structural basis of their potencies are discussed, highlighting the potential for exploitation of their scaffolds in the future design of new GP inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm.

    PubMed

    Peng, M; Gao, M; Båga, M; Hucl, P; Chibbar, R N

    2000-09-01

    Two starch granule-bound proteins (SGP), SGP-140 and SGP-145, were preferentially associated with A-type starch granules (>10 microm) in developing and mature wheat (Triticum aestivum) kernels. Immunoblotting and N-terminal sequencing suggested that the two proteins were different variants of SBEIc, a 152-kD isoform of wheat starch-branching enzyme. Both SGP-140 and SGP-145 were localized to the endosperm starch granules but were not found in the endosperm soluble fraction or pericarp starch granules younger than 15 d post anthesis (DPA). Small-size starch granules (<10 microm) initiated before 15 DPA incorporated SGP-140 and SGP-145 throughout endosperm development and grew into full-size A-type starch granules (>10 microm). In contrast, small-size starch granules harvested after 15 DPA contained only low amounts of SGP-140 and SGP-145 and developed mainly into B-type starch granules (<10 microm). Polypeptides of similar mass and immunologically related to SGP-140 and/or SGP-145 were also preferentially incorporated into A-type starch granules of barley (Hordeum vulgare), rye (Secale cereale), and triticale (x Triticosecale Wittmack) endosperm, which like wheat endosperm have a bimodal starch granule size distribution.

  10. Proteomic approach reveals that starch degradation contributes to anthocyanin accumulation in tuberous root of purple sweet potato.

    PubMed

    Wang, Shaoqing; Pan, Dezhuo; Lv, Xiaojie; Song, Xiaomin; Qiu, Zhimin; Huang, Chunmei; Huang, Ronghui; Chen, Wei

    2016-06-30

    A comparative proteomic approach was carried out to investigate anthocyanin biosynthesis in the tuberous roots of yellow sweet potato (YSP) and purple sweet potato (PSP) cultivars. More than 800 proteins were reproducibly detected through two-dimensional electrophoresis (2-DE), of which 50 proteins with 39 more and 11 less accumulated in PSP were identified through matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF-MS). Most of the analyzed proteins are annotated to be involved in starch metabolism and glycolysis. The more abundant starch phosphorylase (SP) and phosphoglucomutase (PGM) in PSP promoted the synthesis of precursors for anthocyanin synthesis. The results implied that starch degradation provided abundant substrates for anthocyanin biosynthesis in tuberous roots of PSP. 24kDa vacuolar protein (VP24) is related to anthocyanin transport and accumulation in vacuoles. Vacuole-associated annexin protein, VCaB42, is correlated with tonoplast biogenesis. Synergistic action of the two proteins is probably involved in the microautophagy and the intravacuolar trapping of anthocyanins. Interestingly, both VCaB42 and VP24 were more accumulated in PSP, suggesting that anthocyanins generated in the cytosol were transported into and became stored in the vacuoles of PSP. The present study provides new insights into the mechanism of tuberous root-specific anthocyanin accumulation in PSP. Sweet potato ranks as the seventh most important crop worldwide. Purple sweet potato, a special sweet potato cultivar, has been extensively investigated because large amounts of anthocyanin accumulate in its tuberous roots. Anthocyanin is well known for its free radical-scavenging activity and beneficial effects on human health. Its biosynthetic pathway has been well characterized in model plants. Although large-scale systematic studies have been performed to identify the proteins present in sweet potato, information on the

  11. Production and physicochemical characterization of resistant starch type III derived from pea starch.

    PubMed

    Lehmann, Undine; Rössler, Christine; Schmiedl, Detlef; Jacobasch, Gisela

    2003-02-01

    Smooth pea starch was used for the production of physiological important resistant starch type III. For reduction of the molecular weight of the starch, different strategies including enzymatic debranching and acid hydrolysis (lintnerization), were tested to obtain an optimal starting material for retrogradation. The resulting polymer chain lengths were analyzed by high-performance anion-exchange chromatography. Temperature regimes and starch concentrations in gel were optimized during the retrogradation with the aim to obtain a high yield of resistant starch. Optimal conditions led to resistant starch contents up to 74%. The products were thermostable and showed no loss of resistant structures after autoclaving. The peak temperatures of the thermal transition were at approximately 147 degrees C. The resulting resistant starch products are suitable for the generation of functional foods.

  12. Characterisation of corn starch-based films reinforced with taro starch nanoparticles.

    PubMed

    Dai, Lei; Qiu, Chao; Xiong, Liu; Sun, Qingjie

    2015-05-01

    Taro starch nanoparticles (TSNPs) obtained by hydrolysis with pullulanase and the recrystallisation of gelatinised starch were used as reinforcing agents in corn starch films. The influence of TSNPs contents (0.5-15%) on the physical, mechanical, thermal, and structural properties of starch films was investigated. An increase in the concentration of TSNPs led to a significant decrease in the water vapour permeability (WVP) of films. The addition of TSNPs increased the tensile strength (TS) of films from 1.11 MPa to 2.87 MPa. Compared with pure starch films, the surfaces of nanocomposite films became uneven. The onset temperature (To) and melting temperature (Tm) of films containing TSNPs were higher than those of pure starch films. The addition of TSNPs improved the thermal stability of starch films.

  13. Evidence for purine nucleoside phosphorylase (PNP) release from rat C6 glioma cells.

    PubMed

    Giuliani, Patricia; Zuccarini, Mariachiara; Buccella, Silvana; Peña-Altamira, Luis Emiliano; Polazzi, Elisabetta; Virgili, Marco; Monti, Barbara; Poli, Alessandro; Rathbone, Michel P; Di Iorio, Patrizia; Ciccarelli, Renata; Caciagli, Francesco

    2017-04-01

    Intracellular purine turnover is mainly oriented to preserving the level of triphosphate nucleotides, fundamental molecules in vital cell functions that, when released outside cells, act as receptor signals. Conversely, high levels of purine bases and uric acid are found in the extracellular milieu, even in resting conditions. These compounds could derive from nucleosides/bases that, having escaped to cell reuptake, are metabolized by extracellular enzymes similar to the cytosolic ones. Focusing on purine nucleoside phosphorylase (PNP) that catalyzes the reversible phosphorolysis of purine (deoxy)-nucleosides/bases, we found that it is constitutively released from cultured rat C6 glioma cells into the medium, and has a molecular weight and enzyme activity similar to the cytosolic enzyme. Cell exposure to 10 μM ATP or guanosine triphosphate (GTP) increased the extracellular amount of all corresponding purines without modifying the levels/activity of released PNP, whereas selective activation of ATP P2Y1 or adenosine A2A metabotropic receptors increased PNP release and purine base formation. The reduction to 1% in oxygen supply (2 h) to cells decreased the levels of released PNP, leading to an increased presence of extracellular nucleosides and to a reduced formation of xanthine and uric acid. Conversely, 2 h cell re-oxygenation enhanced the extracellular amounts of both PNP and purine bases. Thus, hypoxia and re-oxygenation modulated in opposite manner the PNP release/activity and, thereby, the extracellular formation of purine metabolism end-products. In conclusion, extracellular PNP and likely other enzymes deputed to purine base metabolism are released from cells, contributing to the purinergic system homeostasis and exhibiting an important pathophysiological role. © 2017 International Society for Neurochemistry.

  14. Polynucleotide phosphorylase hinders mRNA degradation upon ribosomal protein S1 overexpression in Escherichia coli

    PubMed Central

    Briani, Federica; Curti, Serena; Rossi, Francesca; Carzaniga, Thomas; Mauri, Pierluigi; Dehò, Gianni

    2008-01-01

    The exoribonuclease polynucleotide phosphorylase (PNPase, encoded by pnp) is a major player in bacterial RNA decay. In Escherichia coli, PNPase expression is post-transcriptionally regulated at the level of mRNA stability. The primary transcript is very efficiently processed by the endonuclease RNase III at a specific site and the processed pnp mRNA is rapidly degraded in a PNPase-dependent manner. While investigating the PNPase autoregulation mechanism we found, by UV-cross-linking experiments, that the ribosomal protein S1 in crude extracts binds to the pnp-mRNA leader region. We assayed the potential role of S1 protein in pnp gene regulation by modulating S1 expression from depletion to overexpression. We found that S1 depletion led to a sharp decrease of the amount of pnp and other tested mRNAs, as detected by Northern blotting, whereas S1 overexpression caused a strong stabilization of pnp and the other transcripts. Surprisingly, mRNA stabilization depended on PNPase, as it was not observed in a pnp deletion strain. PNPase-dependent stabilization, however, was not detected by chemical decay assay of bulk mRNA. Overall, our data suggest that PNPase exonucleolytic activity may be modulated by the translation potential of the target mRNAs and that, upon ribosomal protein S1 overexpression, PNPase protects from degradation a set of full-length mRNAs. It thus appears that a single mRNA species may be differentially targeted to either decay or PNPase-dependent stabilization, thus preventing its depletion in conditions of fast turnover. PMID:18824515

  15. Polynucleotide phosphorylase hinders mRNA degradation upon ribosomal protein S1 overexpression in Escherichia coli.

    PubMed

    Briani, Federica; Curti, Serena; Rossi, Francesca; Carzaniga, Thomas; Mauri, Pierluigi; Dehò, Gianni

    2008-11-01

    The exoribonuclease polynucleotide phosphorylase (PNPase, encoded by pnp) is a major player in bacterial RNA decay. In Escherichia coli, PNPase expression is post-transcriptionally regulated at the level of mRNA stability. The primary transcript is very efficiently processed by the endonuclease RNase III at a specific site and the processed pnp mRNA is rapidly degraded in a PNPase-dependent manner. While investigating the PNPase autoregulation mechanism we found, by UV-cross-linking experiments, that the ribosomal protein S1 in crude extracts binds to the pnp-mRNA leader region. We assayed the potential role of S1 protein in pnp gene regulation by modulating S1 expression from depletion to overexpression. We found that S1 depletion led to a sharp decrease of the amount of pnp and other tested mRNAs, as detected by Northern blotting, whereas S1 overexpression caused a strong stabilization of pnp and the other transcripts. Surprisingly, mRNA stabilization depended on PNPase, as it was not observed in a pnp deletion strain. PNPase-dependent stabilization, however, was not detected by chemical decay assay of bulk mRNA. Overall, our data suggest that PNPase exonucleolytic activity may be modulated by the translation potential of the target mRNAs and that, upon ribosomal protein S1 overexpression, PNPase protects from degradation a set of full-length mRNAs. It thus appears that a single mRNA species may be differentially targeted to either decay or PNPase-dependent stabilization, thus preventing its depletion in conditions of fast turnover.

  16. Molecular Mechanisms of Allosteric Inhibition of Brain Glycogen Phosphorylase by Neurotoxic Dithiocarbamate Chemicals.

    PubMed

    Mathieu, Cécile; Bui, Linh-Chi; Petit, Emile; Haddad, Iman; Agbulut, Onnik; Vinh, Joelle; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2017-02-03

    Dithiocarbamates (DTCs) are important industrial chemicals used extensively as pesticides and in a variety of therapeutic applications. However, they have also been associated with neurotoxic effects and in particular with the development of Parkinson-like neuropathy. Although different pathways and enzymes (such as ubiquitin ligases or the proteasome) have been identified as potential targets of DTCs in the brain, the molecular mechanisms underlying their neurotoxicity remain poorly understood. There is increasing evidence that alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. Interestingly, recent studies with N,N-diethyldithiocarbamate suggest that brain glycogen phosphorylase (bGP) and glycogen metabolism could be altered by DTCs. Here, we provide molecular and mechanistic evidence that bGP is a target of DTCs. To examine this system, we first tested thiram, a DTC pesticide known to display neurotoxic effects, observing that it can react rapidly with bGP and readily inhibits its glycogenolytic activity (kinact = 1.4 × 10(5) m(-1) s(-1)). Using cysteine chemical labeling, mass spectrometry, and site-directed mutagenesis approaches, we show that thiram (and certain of its metabolites) alters the activity of bGP through the formation of an intramolecular disulfide bond (Cys(318)-Cys(326)), known to act as a redox switch that precludes the allosteric activation of bGP by AMP. Given the key role of glycogen metabolism in brain functions and neurodegeneration, impairment of the glycogenolytic activity of bGP by DTCs such as thiram may be a new mechanism by which certain DTCs exert their neurotoxic effects.

  17. Physicochemical changes in phosphorylase kinase induced by its cationic activator Mg2+

    PubMed Central

    Liu, Weiya; Nadeau, Owen W; Sage, Jessica; Carlson, Gerald M

    2013-01-01

    For over four decades free Mg2+ ions, that is, those in excess of MgATP, have been reported to affect a wide variety of properties of phosphorylase kinase (PhK), including its affinity for other molecules, proteolysis, chemical crosslinking, phosphorylation, binding to certain monoclonal antibodies, and activity, which is stimulated. Additionally, for over three decades Mg2+ has been known to act synergistically with Ca2+, another divalent activator of PhK, to affect even more properties of the enzyme. During all of this time, however, no study has been performed to determine the overall effects of free Mg2+ ions on the physical properties of PhK, even though the effects of Ca2+ ions on PhK's properties are well documented. In this study, changes in the physicochemical properties of PhK induced by Mg2+ under nonactivating (pH 6.8) and activating (pH 8.2) conditions were investigated by circular dichroism spectroscopy, zeta potential analyses, dynamic light scattering, second derivative UV absorption, negative stain electron microscopy, and differential chemical crosslinking. The effects of the activator Mg2+ on some of the properties of PhK measured by these techniques were found to be quite different at the two pH values, and displayed both differences and similarities with the effects previously reported to be induced by the activator Ca2+ (Liu et al., Protein Sci 2008;17:2111–2119). The similarities may reflect the fact that both cations are activators, and foremost among their similarities is the dramatically less negative zeta potential induced by their binding to PhK. PMID:23359552

  18. Polynucleotide phosphorylase is implicated in homologous recombination and DNA repair in Escherichia coli.

    PubMed

    Carzaniga, Thomas; Sbarufatti, Giulia; Briani, Federica; Dehò, Gianni

    2017-04-04

    Polynucleotide phosphorylase (PNPase, encoded by pnp) is generally thought of as an enzyme dedicated to RNA metabolism. The pleiotropic effects of PNPase deficiency is imputed to altered processing and turnover of mRNAs and small RNAs, which in turn leads to aberrant gene expression. However, it has long since been known that this enzyme may also catalyze template-independent polymerization of dNDPs into ssDNA and the reverse phosphorolytic reaction. Recently, PNPase has been implicated in DNA recombination, repair, mutagenesis and resistance to genotoxic agents in diverse bacterial species, raising the possibility that PNPase may directly, rather than through control of gene expression, participate in these processes. In this work we present evidence that in Escherichia coli PNPase enhances both homologous recombination upon P1 transduction and error prone DNA repair of double strand breaks induced by zeocin, a radiomimetic agent. Homologous recombination does not require PNPase phosphorolytic activity and is modulated by its RNA binding domains whereas error prone DNA repair of zeocin-induced DNA damage is dependent on PNPase catalytic activity and cannot be suppressed by overexpression of RNase II, the other major enzyme (encoded by rnb) implicated in exonucleolytic RNA degradation. Moreover, E. coli pnp mutants are more sensitive than the wild type to zeocin. This phenotype depends on PNPase phosphorolytic activity and is suppressed by rnb, thus suggesting that zeocin detoxification may largely depend on RNA turnover. Our data suggest that PNPase may participate both directly and indirectly through regulation of gene expression to several aspects of DNA metabolism such as recombination, DNA repair and resistance to genotoxic agents.

  19. Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells

    PubMed Central

    Das, Swadesh K.; Sokhi, Upneet K.; Bhutia, Sujit K.; Azab, Belal; Su, Zhao-zhong; Sarkar, Devanand; Fisher, Paul B.

    2010-01-01

    MicroRNAs (miRNA), small noncoding RNAs, affect a broad range of biological processes, including tumorigenesis, by targeting gene products that directly regulate cell growth. Human polynucleotide phosphorylase (hPNPaseold-35), a type I IFN-inducible 3′-5′ exoribonuclease, degrades specific mRNAs and small noncoding RNAs. The present study examined the effect of this enzyme on miRNA expression in human melanoma cells. miRNA microarray analysis of human melanoma cells infected with empty adenovirus or with an adenovirus expressing hPNPaseold-35 identified miRNAs differentially and specifically regulated by hPNPaseold-35. One of these, miR-221, a regulator of the cyclin-dependent kinase inhibitor p27kip1, displayed robust down-regulation with ensuing up-regulation of p27kip1 by expression of hPNPaseold-35, which also occurred in multiple human melanoma cells upon IFN-β treatment. Using both in vivo immunoprecipitation followed by Northern blotting and RNA degradation assays, we confirm that mature miR-221 is the target of hPNPaseold-35. Inhibition of hPNPaseold-35 by shRNA or stable overexpression of miR-221 protected melanoma cells from IFN-β–mediated growth inhibition, accentuating the importance of hPNPaseold-35 induction and miR-221 down-regulation in mediating IFN-β action. Moreover, we now uncover a mechanism of miRNA regulation involving selective enzymatic degradation. Targeted overexpression of hPNPaseold-35 might provide an effective therapeutic strategy for miR-221–overexpressing and IFN-resistant tumors, such as melanoma. PMID:20547861

  20. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase.

    PubMed

    Firestone, Ross S; Cameron, Scott A; Karp, Jerome M; Arcus, Vickery L; Schramm, Vern L

    2017-02-17

    Human 5'-methylthioadenosine phosphorylase (MTAP) catalyzes the phosphorolysis of 5'-methylthioadenosine (MTA). Its action regulates cellular MTA and links polyamine synthesis to S-adenosylmethionine (AdoMet) salvage. Transition state analogues with picomolar dissociation constants bind to MTAP in an entropically driven process at physiological temperatures, suggesting increased hydrophobic character or dynamic structure for the complexes. Inhibitor binding exhibits a negative heat capacity change (-ΔCp), and thus the changes in enthalpy and entropy upon binding are strongly temperature-dependent. The ΔCp of inhibitor binding by isothermal titration calorimetry does not follow conventional trends and is contrary to that expected from the hydrophobic effect. Thus, ligands of increasing hydrophobicity bind with increasing values of ΔCp. Crystal structures of MTAP complexed to transition-state analogues MT-DADMe-ImmA, BT-DADMe-ImmA, PrT-ImmA, and a substrate analogue, MT-tubercidin, reveal similar active site contacts and overall protein structural parameters, despite large differences in ΔCp for binding. In addition, ΔCp values are not correlated with Kd values. Temperature dependence of presteady state kinetics revealed the chemical step for the MTAP reaction to have a negative heat capacity for transition state formation (-ΔCp(‡)). A comparison of the ΔCp(‡) for MTAP presteady state chemistry and ΔCp for inhibitor binding revealed those transition-state analogues most structurally and thermodynamically similar to the transition state. Molecular dynamics simulations of MTAP apoenzyme and complexes with MT-DADMe-ImmA and MT-tubercidin show small, but increased dynamic motion in the inhibited complexes. Variable temperature CD spectroscopy studies for MTAP-inhibitor complexes indicate remarkable protein thermal stability (to Tm = 99 °C) in complexes with transition-state analogues.

  1. Possible role of thymidine phosphorylase in gynecological tumors as an individualized treatment strategy

    PubMed Central

    Shida, Masako; Yasuda, Masanori; Fujita, Mariko; Miyazawa, Masaki; Kajiwara, Hiroshi; Hirasawa, Takeshi; Ikeda, Masae; Matsui, Naruaki; Muramatsu, Toshinari; Mikami, Mikio

    2016-01-01

    Thymidine phosphorylase (TP) is structurally similar to platelet-derived endothelial cell growth factor, and it activates 5-fluorouracil (5-FU) prodrugs and also promotes angiogenesis. In the present study, the possibility of using TP expression as a biomarker for 5-FU prodrugs, and the significance of TP as an angiogenic factor, were investigated in patients with gynecological tumors. The subjects enrolled in the study were 188 patients with gynecological tumors who provided informed consent and underwent tumor resection at the Department of Obstetrics and Gynecology of Tokai University Hospital between February 2002 and January 2010. Measurement of the enzymatic activity of TP and dihydropyrimidine dehydrogenase (DPD) was performed by enzyme-linked immunosorbent assay. In addition, immunohistochemistry (IHC) analysis of microvessels by monochrome imaging, western blotting and reverse transcription-polymerase chain reaction were performed. The mean TP activity and the TP/DPD ratio were increased in squamous cell carcinoma of the cervix (306.9 and 2.2 U/mg protein, respectively) and adenosquamous carcinoma (317.6 and 1.4 U/mg protein, respectively) compared with benign tumors and other malignancies, including endometrial (uterine) carcinoma, ovarian serous adenocarcinoma and ovarian mucinous adenocarcinoma. However, these parameters were also elevated in other histological types of cancer such as clear cell adenocarcinoma of the ovary (115.2 and 2.1 U/mg protein, respectively), in which the microvessel area was the largest of all the histological types analyzed. Since high TP expression and a high TP/DPD ratio were identified in other tumors besides cervical cancer, it is possible that patients for whom 5-FU prodrugs are indicated could be selected appropriately if their TP activity is determined and their TP expression is analyzed by IHC prior to initiation of the treatment. PMID:27899985

  2. The exoribonuclease Polynucleotide Phosphorylase influences the virulence and stress responses of yersiniae and many other pathogens.

    PubMed

    Rosenzweig, Jason A; Chopra, Ashok K

    2013-01-01

    Microbes are incessantly challenged by both biotic and abiotic stressors threatening their existence. Therefore, bacterial pathogens must possess mechanisms to successfully subvert host immune defenses as well as overcome the stress associated with host-cell encounters. To achieve this, bacterial pathogens typically experience a genetic re-programming whereby anti-host/stress factors become expressed and eventually translated into effector proteins. In that vein, the bacterial host-cell induced stress-response is similar to any other abiotic stress to which bacteria respond by up-regulating specific stress-responsive genes. Following the stress encounter, bacteria must degrade unnecessary stress responsive transcripts through RNA decay mechanisms. The three pathogenic yersiniae (Yersinia pestis, Y. pseudo-tuberculosis, and Y. enterocolitica) are all psychrotropic bacteria capable of growth at 4°C; however, cold growth is dependent on the presence of an exoribonuclease, polynucleotide phosphorylase (PNPase). PNPase has also been implicated as a virulence factor in several notable pathogens including the salmonellae, Helicobacter pylori, and the yersiniae [where it typically influences the type three secretion system (TTSS)]. Further, PNPase has been shown to associate with ribonuclease E (endoribonuclease), RhlB (RNA helicase), and enolase (glycolytic enzyme) in several Gram-negative bacteria forming a large, multi-protein complex known as the RNA degradosome. This review will highlight studies demonstrating the influence of PNPase on the virulence potentials and stress responses of various bacterial pathogens as well as focusing on the degradosome-dependent and -independent roles played by PNPase in yersiniae stress responses.

  3. Nicotinamide riboside, an unusual, non-typical, substrate of purified purine-nucleoside phosphorylases.

    PubMed

    Wielgus-Kutrowska, B; Kulikowska, E; Wierzchowski, J; Bzowska, A; Shugar, D

    1997-01-15

    Nicotinamide 1-beta-D-riboside (Nir), the cationic, reducible moiety of the coenzyme NAD+, has been confirmed as an unusual substrate for purified purine-nucleoside phosphorylase (PNP) from a mammalian source (calf spleen). It is also a substrate of the enzyme from Escherichia coli. The Km values at pH 7, 1.48 mM and 0.62 mM, respectively, were 1-2 orders of magnitude higher than for the natural substrate inosine, but the Vmax values were comparable, 96% and 35% that for Ino. The pseudo first-order rate constants, Vmax/Km, were 1.1% and 2.5% for the calf spleen and E. coli enzymes. The aglycon, nicotinamide, was neither a substrate nor an inhibitor of PNP. Nir was a weak inhibitor of inosine phosphorolysis catalyzed by both enzymes, with Ki values close to the Km for its phosphorolysis, consistent with simple competitive inhibition; this was further confirmed by Dixon plots. Phosphorolysis of the fluorescent positively charged substrate 7-methylguanosine was also inhibited in a competitive manner by both Ino and Nir. Phosphorolysis of Nir by both enzymes was inhibited competitively by several specific inhibitors of calf spleen and E. coli PNP, with Ki values similar to those for inhibition of other natural substrates. The pH dependence of the kinetic constants for the phosphorolysis of Nir and of a variety of other substrates, was extensively investigated, particularly in the alkaline pH range, where Nir exhibited abnormally high substrate activity relative to the reduced reaction rates of both enzymes towards other anionic or neutral substrates. The overall results are discussed in relation to present concepts regarding binding and phosphorolysis of substrates by PNP based on crystallographic data of enzyme-inhibitor complexes, and current studies on enzymatic and nonenzymatic mechanisms of the cleavage of the Nir glycosidic bond.

  4. Affinity crystallography reveals the bioactive compounds of industrial juicing byproducts of Punica granatum for glycogen phosphorylase.

    PubMed

    Stravodimos, George A; Kantsadi, Anastassia L; Apostolou, Anna; Kyriakis, Efthimios; Kafaski-Kanelli, Vassiliki-Nafsika; Solovou, Theodora G A; Gatzona, Pagona; Liggri, Panagiota Cv; Theofanous, Stavroula; Gorgogietas, Vyron A; Kissa, Apostolia; Psachoula, Chariklia; Chatzileontiadou, Demetra S M; Lemonakis, Angelos; Psarra, Anna-Maria G; Skamnaki, Vassiliki T; Haroutounian, Serkos; Leonidas, Demetres D

    2017-06-18

    Glycogen phosphorylase (GP) is a pharmaceutical target for the discovery of new antihyperglycaemic agents. Punica granatum is a well-known plant for its potent antioxidant and antimicrobial activities but so far has not been examined for antihyperglycaemic activity. To examine the inhibitory potency of eighteen polyphenolic extracts obtained from Punica granatum fruits and industrial juicing byproducts against GP and discover their most bioactive ingredients. Kinetic experiments were conducted to measure the IC50 values of the extracts while affinity crystallography was used to identify the most bioactive ingredient. The inhibitory effect of one of the polyphenolic extracts was also verified ex vivo, in HepG2 cells. All extracts exhibit significant in vitro inhibitory potency (IC50 values in the range of low μg/mL). Affinity crystallography revealed that the most bioactive ingredients of the extracts were chlorogenic and ellagic acids, found bound in the active and the inhibitor site of GP, respectively. While ellagic acid is an established GP inhibitor, the inhibition of chlorogenic acid is reported for the first time. Kinetic analysis indicated that chlorogenic acid is an inhibitor with Ki=2.5 x 10-3 M that acts synergistically with ellagic acid. Our study provides the first evidence for a potential antidiabetic usage of Punica granatum extracts as antidiabetic food supplements. Although, more in vivo studies have to be performed before these extracts reach the stage of antidiabetic food supplements our study provides a first positive step towards this process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Four Generations of Transition State Analogues for Human Purine Nucleoside Phosphorylase

    SciTech Connect

    Ho, M.; Shi, W; Rinaldo-Mathis, A; Tyler, P; Evans, G; Almo, S; Schramm, V

    2010-01-01

    Inhibition of human purine nucleoside phosphorylase (PNP) stops growth of activated T-cells and the formation of 6-oxypurine bases, making it a target for leukemia, autoimmune disorders, and gout. Four generations of ribocation transition-state mimics bound to PNP are structurally characterized. Immucillin-H (K*{sub i} = 58 pM, first-generation) contains an iminoribitol cation with four asymmetric carbons. DADMe-Immucillin-H (K*{sub i} = 9 pM, second-generation), uses a methylene-bridged dihydroxypyrrolidine cation with two asymmetric centers. DATMe-Immucillin-H (K*{sub i} = 9 pM, third-generation) contains an open-chain amino alcohol cation with two asymmetric carbons. SerMe-ImmH (K*{sub i} = 5 pM, fourth-generation) uses achiral dihydroxyaminoalcohol seramide as the ribocation mimic. Crystal structures of PNPs establish features of tight binding to be; (1) ion-pair formation between bound phosphate (or its mimic) and inhibitor cation, (2) leaving-group interactions to N1, O6, and N7 of 9-deazahypoxanthine, (3) interaction between phosphate and inhibitor hydroxyl groups, and (4) His257 interacting with the 5{prime}-hydroxyl group. The first generation analogue is an imperfect fit to the catalytic site with a long ion pair distance between the iminoribitol and bound phosphate and weaker interactions to the leaving group. Increasing the ribocation to leaving-group distance in the second- to fourth-generation analogues provides powerful binding interactions and a facile synthetic route to powerful inhibitors. Despite chemical diversity in the four generations of transition-state analogues, the catalytic site geometry is almost the same for all analogues. Multiple solutions in transition-state analogue design are available to convert the energy of catalytic rate enhancement to binding energy in human PNP.

  7. Acetylation and characterization of banana (Musa paradisiaca) starch.

    PubMed

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  8. Functional properties of yam bean (Pachyrhizus erosus) starch.

    PubMed

    Mélo, E A; Stamford, T L M; Silva, M P C; Krieger, N; Stamford, N P

    2003-08-01

    The study was carried out in order to determine and establish the functional characters of starch extracted from yam bean (Pachyrhizus erosus (L) Urban) compared with cassava starch. Yam bean is a tropical tuber legume easily grown and holds a great potential as a new source of starch. Yam bean starch shows functional properties which are peculiar to those of most starch root crops. Gelatinization temperature (53-63 degrees C) and the pasting temperature (64.5 degrees C) are less than those of cereal starch, however, the swelling power is high (54.4 g gel/g dried starch). Yam bean starch paste presents a high viscosity profile, high retrogradation tendency and low stability on cooking. The functional properties of yam bean starch, similar to those of cassava starch, allows yam bean to be used as a potential new source of starch.

  9. Sources and intake of resistant starch in the Chinese diet.

    PubMed

    Chen, Liyong; Liu, Ruiping; Qin, Chengyong; Meng, Yan; Zhang, Jie; Wang, Yun; Xu, Guifa

    2010-01-01

    Resistant starch (RS) escapes digestion in the small intestine and may ferment in the large intestine. The purpose of this study was to determine the resistant starch content in typical starchy foods and to estimate the daily resistant starch intake and identify key sources of dietary resistant starch in the Chinese diets. The resistant starch contents of 121 foods were determined using a method that mimicked gastrointestinal conditions. Tubers and legumes had high resistant starch contents. Rough food processing retained large amounts of resistant starch. In general, the content of RS decreased when foods were cooked. Deep fried and roasted foods had higher levels of resistant starch than braised foods. The average resistant starch intake in the Chinese population was estimated to be 14.9 g per day based on a dietary survey. The main resistant starch sources in the Chinese diet were cereal and tuber products. Based on dietary habits, however, the resistant starch intake varies considerably among individuals.

  10. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M. Kristina; Rust, Bret; Raybould, Helen E.; Newman, John W.; Martin, Roy; Dubcovsky, Jorge

    2016-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch. PMID:27134286

  11. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats.

    PubMed

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M Kristina; Rust, Bret; Raybould, Helen E; Newman, John W; Martin, Roy; Dubcovsky, Jorge

    2015-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch.

  12. Antimicrobial nanostructured starch based films for packaging.

    PubMed

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Properties of corn starch subjected hydrothermal modification

    NASA Astrophysics Data System (ADS)

    Gryszkin, Artur; Zięba, Tomasz; Kapelko-Żeberska, Małgorzata

    2017-01-01

    The objective of this study was to determine the effect of heating a water dispersion of corn starch to various temperatures, followed by its freezing and defrosting, on selected properties of re-formed starch pastes. A suspension of starch was heated to various temperatures ranging from 59 to 94°C, and afterwards frozen and defrosted. The differential scanning calorimetry (Mettler Toledo, 822E) thermal characteristics of starch pre-heated to temperatures not inducing complete pasting revealed transitions of: (I) retrograded amylopectin, (II) non-pasted starch, (III) amylose-lipid complexes, (IV) retrograded amylose, and (V) highly thermostable starch structures. The application of higher temperatures during heating caused disappearance of transitions II and V. The increase of pre-heating temperature induced firstly a decrease and then stabilization of the swelling power as well as a successive decrease in starch solubility. Pastes pre-heated to temperatures over 79°C contained large macroparticles that were increasing viscosity of the re-formed starch paste (their size was positively correlated with viscosity value).

  14. Production of PLA-Starch Fibers

    USDA-ARS?s Scientific Manuscript database

    Composites of polylactic acid (PLA) with starch have been prepared previously in an effort to reduce cost as well as to modify other properties such as biodegradation rate. However, strength and elongation both decrease on addition of starch due to poor adhesion and stress concentration at the inte...

  15. Pasting characteristics of starch-lipid composites

    USDA-ARS?s Scientific Manuscript database

    Starch-lipid composites (SLC) have been used as fat replacers and stabilizers in beef patties, dairy products, and baked goods. The SLC are produced by mixing aqueous starch slurry with a lipid source, and steam jet-cooking. The SLC may be dried using a drum drier and then milled in a Retch mill. ...

  16. Factors affecting the digestibility of raw and gelatinized potato starches.

    PubMed

    Noda, T; Takigawa, S; Matsuura-Endo, C; Suzuki, T; Hashimoto, N; Kottearachchi, N S; Yamauchi, H; Zaidul, I S M

    2008-09-15

    The enzymatic digestibilities of raw and gelatinized starches in various potato starches, as well as sweet potato, cassava, and yam starches, were estimated, along with other starch properties, such as the phosphorus content, median granule size, and rapid visco analyzer (RVA) pasting properties. Furthermore, correlation coefficients were calculated between the hydrolysis rates (HR) by amylase and other starch quality parameters. A larger granule size was closely associated with a lower HR in raw starch, while the HR in gelatinized starch did not correlate with the median granule size. An increase in phosphorus content resulted in a definitely lower HR in raw starch and tended to decrease the HR in gelatinized starch for the composite of potato and other starches. In contrast, no correlation coefficients of the phosphorus content with the HRs in raw and gelatinized starches were observed within potato starches. Starches with higher peak viscosity and breakdown showed a lower HR in raw starch, while few or no effects of these RVA parameters on the HR in gelatinized starch were observed for the composite of potato and other starches or among potato starches, respectively. Copyright © 2008 Elsevier Ltd. All rights reserved.

  17. Starch nanoparticles formation via high power ultrasonication.

    PubMed

    Bel Haaj, Sihem; Magnin, Albert; Pétrier, Christian; Boufi, Sami

    2013-02-15

    Nano-sized starch particles (NSP) were prepared from starch granules using a purely physical method of high-intensity ultrasonication. Particle size distribution, Field Effect Scanning Electron Microscopy (FE-SEM), Raman spectroscopy, and Wide-Angle X-ray Diffraction (WAXD) were used to characterize the morphology and crystal structure of the ensuing nanoparticles. The results revealed that ultrasound treatment of the starch suspension in water and at low temperature for 75 min results in the formation of starch nanoparticles between 30 and 100 nm in size. An attempt to explain the generation of starch nanoparticles was made on the basis of WAXD, Raman analysis and FE-SEM observation. Compared to acid hydrolysis, which is the most commonly adopted process, the present approach has the advantage of being quite rapid, presenting a higher yield and not requiring any chemical treatment.

  18. Preparation and characterization of octenylsuccinylated plantain starch.

    PubMed

    Bello-Flores, Christopher A; Nuñez-Santiago, Maria C; San Martín-Gonzalez, María F; BeMiller, James N; Bello-Pérez, Luis A

    2014-09-01

    Plantain starch was esterified with octenylsuccinic anhydride (OSA) at two concentrations (3 and 15% w/w) of OSA. The morphology, granule size distribution, pasting, gelatinization, swelling, and solubility of granules and structural features of the starch polymers were evaluated. Granules of the OSA-modified starches increased in size during cooking more than did the granules of the native starch, and the effect was greater at the higher OSA concentration. Pasting viscosities also increased, but gelatinization and pasting temperatures and enthalpy of gelatinization decreased in the OSA-modified starches. It was concluded that insertion of OS groups effected disorder in the granular structure. Solubility, weight average molar mass, Mw¯, and z-average radius of gyration, RGz, of the amylopectin decreased as the OSA concentration increased, indicating a decrease in molecular size.

  19. Understanding starch gelatinization: The phase diagram approach.

    PubMed

    Carlstedt, Jonas; Wojtasz, Joanna; Fyhr, Peter; Kocherbitov, Vitaly

    2015-09-20

    By constructing a detailed phase diagram for the potato starch-water system based on data from optical microscopy, synchrotron X-ray scattering and differential scanning calorimetry, we show that gelatinization can be interpreted in analogy with a eutectic transition. The phase rule explains why the temperature of the gelatinization transition (G) is independent on water content. Furthermore, the melting (M1) endotherm observed in DSC represents a liquidus line; the temperature for this event increases with increasing starch concentration. Both the lamellar spacing and the inter-helix distance were observed to decrease with increasing starch content for starch concentrations between approximately 65 wt% and 75 wt%, while the inter-helix distance continued decreasing upon further dehydration. Understanding starch gelatinization has been a longstanding challenge. The novel approach presented here shows interpretation of this phenomenon from a phase equilibria perspective.

  20. Characterization of the maize gene sugary1, a determinant of starch composition in kernels.

    PubMed Central

    James, M G; Robertson, D S; Myers, A M

    1995-01-01

    In maize kernels, mutations in the gene sugary1 (su1) result in (1) increased sucrose concentration; (2) decreased concentration of amylopectin, the branched component of starch; and (3) accumulation of the highly branched glucopolysaccharide phytoglycogen. To investigate further the mechanisms of storage carbohydrate synthesis in maize, part of the su1 gene locus and a cDNA copy of the su1 transcript were characterized. Five new su1 mutations were isolated in a Mutator background, and the mutant allele su1-R4582::Mu1 was isolated by transposon tagging. The identity of the cloned element as the su1 gene locus was confirmed by the cosegregation of restriction fragment length polymorphisms in the same or nearby genomic intervals with three additional, independent su1 mutations. Pedigree analysis was also used to confirm the identity of su1. A 2.8-kb mRNA that is homologous to the cloned gene was detected in maize kernels, and a 2.7-kb cDNA clone was isolated based on hybridization to the genomic DNA. Specific portions of the cDNA hybridized with multiple segments of the maize genome, suggesting that su1 is part of a multigene family. The cDNA sequence specified a polypeptide of at least 742 amino acids, which is highly similar in amino acid sequence to bacterial enzymes that hydrolyze alpha-(1-->6) glucosyl linkages of starch. Therefore, debranching of glucopolysaccharides is seemingly part of the normal process of starch biosynthesis, and the final degree of branch linkages in starch most likely arises from the combined actions of branching and debranching enzymes. PMID:7773016

  1. Characterization of the maize gene sugary1, a determinant of starch composition in kernels.

    PubMed

    James, M G; Robertson, D S; Myers, A M

    1995-04-01

    In maize kernels, mutations in the gene sugary1 (su1) result in (1) increased sucrose concentration; (2) decreased concentration of amylopectin, the branched component of starch; and (3) accumulation of the highly branched glucopolysaccharide phytoglycogen. To investigate further the mechanisms of storage carbohydrate synthesis in maize, part of the su1 gene locus and a cDNA copy of the su1 transcript were characterized. Five new su1 mutations were isolated in a Mutator background, and the mutant allele su1-R4582::Mu1 was isolated by transposon tagging. The identity of the cloned element as the su1 gene locus was confirmed by the cosegregation of restriction fragment length polymorphisms in the same or nearby genomic intervals with three additional, independent su1 mutations. Pedigree analysis was also used to confirm the identity of su1. A 2.8-kb mRNA that is homologous to the cloned gene was detected in maize kernels, and a 2.7-kb cDNA clone was isolated based on hybridization to the genomic DNA. Specific portions of the cDNA hybridized with multiple segments of the maize genome, suggesting that su1 is part of a multigene family. The cDNA sequence specified a polypeptide of at least 742 amino acids, which is highly similar in amino acid sequence to bacterial enzymes that hydrolyze alpha-(1-->6) glucosyl linkages of starch. Therefore, debranching of glucopolysaccharides is seemingly part of the normal process of starch biosynthesis, and the final degree of branch linkages in starch most likely arises from the combined actions of branching and debranching enzymes.

  2. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility.

    PubMed

    Lee, Sang-Kyu; Eom, Joon-Seob; Hwang, Seon-Kap; Shin, Dongjin; An, Gynheung; Okita, Thomas W; Jeon, Jong-Seong

    2016-10-01

    To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4 Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of self-pollinated heterozygous lines carrying the OspPGM mutant alleles, osppgm-1 and osppgm-2, or the OsAGPL4 mutant allele, osagpl4-1, as well as reciprocal crosses between the wild type (WT) and heterozygotes revealed that loss of OspPGM or OsAGPL4 caused male sterility, with the former condition rescued by the introduction of the WT OspPGM gene. While iodine staining and transmission electron microscopy analyses of pollen grains from homozygous osppgm-1 lines produced by anther culture confirmed the starch null phenotype, pollen from homozygous osagpl4 mutant lines, osagpl4-2 and osagpl4-3, generated by the CRISPR/Cas system, accumulated small amounts of starch which were sufficient to produce viable seed. Such osagpl4 mutant pollen, however, was unable to compete against WT pollen successfully, validating the important role of this reserve in fertilization. Our results demonstrate that starch is mainly polymerized from ADP-Glc synthesized from plastidic hexose phosphates in rice pollen and that starch is an essential requirement for successful fertilization in rice.

  3. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility

    PubMed Central

    Lee, Sang-Kyu; Eom, Joon-Seob; Hwang, Seon-Kap; Shin, Dongjin; An, Gynheung; Okita, Thomas W.; Jeon, Jong-Seong

    2016-01-01

    To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4. Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of self-pollinated heterozygous lines carrying the OspPGM mutant alleles, osppgm-1 and osppgm-2, or the OsAGPL4 mutant allele, osagpl4-1, as well as reciprocal crosses between the wild type (WT) and heterozygotes revealed that loss of OspPGM or OsAGPL4 caused male sterility, with the former condition rescued by the introduction of the WT OspPGM gene. While iodine staining and transmission electron microscopy analyses of pollen grains from homozygous osppgm-1 lines produced by anther culture confirmed the starch null phenotype, pollen from homozygous osagpl4 mutant lines, osagpl4-2 and osagpl4-3, generated by the CRISPR/Cas system, accumulated small amounts of starch which were sufficient to produce viable seed. Such osagpl4 mutant pollen, however, was unable to compete against WT pollen successfully, validating the important role of this reserve in fertilization. Our results demonstrate that starch is mainly polymerized from ADP-Glc synthesized from plastidic hexose phosphates in rice pollen and that starch is an essential requirement for successful fertilization in rice. PMID:27588462

  4. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies.

    PubMed

    Ye, Yuxin; Saburi, Wataru; Odaka, Rei; Kato, Koji; Sakurai, Naofumi; Komoda, Keisuke; Nishimoto, Mamoru; Kitaoka, Motomitsu; Mori, Haruhide; Yao, Min

    2016-03-01

    In Ruminococcus albus, 4-O-β-D-mannosyl-D-glucose phosphorylase (RaMP1) and β-(1,4)-mannooligosaccharide phosphorylase (RaMP2) belong to two subfamilies of glycoside hydrolase family 130. The two enzymes phosphorolyze β-mannosidic linkages at the nonreducing ends of their substrates, and have substantially diverse substrate specificity. The differences in their mechanism of substrate binding have not yet been fully clarified. In the present study, we report the crystal structures of RaMP1 with/without 4-O-β-D-mannosyl-d-glucose and RaMP2 with/without β-(1→4)-mannobiose. The structures of the two enzymes differ at the +1 subsite of the substrate-binding pocket. Three loops are proposed to determine the different substrate specificities. One of these loops is contributed from the adjacent molecule of the oligomer structure. In RaMP1, His245 of loop 3 forms a hydrogen-bond network with the substrate through a water molecule, and is indispensible for substrate binding. © 2016 Federation of European Biochemical Societies.

  5. Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves.

    PubMed Central

    Donoso, J; Muñoz, F; Garcia Blanco, F

    1993-01-01

    The absorption spectra of the coenzyme [pyridoxal 5'-phosphate (PLP)] in glycogen phosphorylase a (GPha), glycogen phosphorylase b (GPhb) and of the latter bound to various effectors and substrates were analysed on the basis of log-normal distribution curves. The results obtained showed that the ionization state of the PLP and GPha environment differs from that of GPhb. This divergence was interpreted in terms of tautomeric equilibria between some forms of the Schiff base of PLP and enzymic Lys-679. The ionic forms are slightly more predominant in GPha than they are in GPhb, so ionic and/or hydrogen-bonding interactions between the aromatic ring of PLP and GPha must be stronger than with GPhb. This confirms the purely structural role of the aromatic ring of the coenzyme. Binding of GPhb to AMP and Mg2+ results in the coenzyme adopting a similar state as in GPha. On the other hand, binding to IMP gives rise to no detectable changes in the tautomeric equilibrium of the coenzyme. PMID:8503849

  6. Purine nucleoside phosphorylase from Pseudoalteromonas sp. Bsi590: molecular cloning, gene expression and characterization of the recombinant protein.

    PubMed

    Li, Xiaohui; Jiang, Xinyin; Li, Huirong; Ren, Daming

    2008-05-01

    The gene encoding purine nucleoside phosphorylase (PNP) from the cold-adapted marine bacterium Pseudoalteromonas sp. Bsi590 was identified, cloned and expressed in Escherichia coli. The gene encodes a polypeptide of 233 amino acids with a calculated molecular weight of 25,018 Da. Pseudoalteromonas sp. Bsi590 PNP (PiPNP) shares 60% amino sequence identity and conservation of amino acid residues involved in catalysis with mesophilic Escherichia coli deoD-encoded purine nucleoside phosphorylase (EcPNP). N-terminal his-tagged PiPNP and EcPNP were purified to apparent homogeneity using Ni2+-chelating column. Compared with EcPNP, PiPNP possessed a lower temperature optimum and thermal stability. As for PNP enzymes in general, PiPNP and EcPNP displayed complicated kinetic properties; PiPNP possessed higher Km and catalytic efficiency (kcat/Km) compared to EcPNP at 37 degrees C. Substrate specificity results showed PiPNP catalyzed the phosphorolytic cleavage of 6-oxopurine and 6-aminopurine nucleosides (or 2-deoxynucleosides), and to a lesser extent purine arabinosides. PiPNP showed a better activity with inosine while no activity toward pyrimidine nucleosides. The protein conformation was analyzed by temperature perturbation difference spectrum. Results showed that PiPNP had lower conformation transition point temperature than EcPNP; phosphate buffer and KCl had significant influence on PiPNP protein conformation stability and thermostability.

  7. Molecular disassembly of rice and lotus starches during thermal processing and its effect on starch digestibility.

    PubMed

    Wang, Shujun; Sun, Yue; Wang, Jinrong; Wang, Shuo; Copeland, Les

    2016-02-01

    The molecular disassembly of starch during thermal processing is a major determinant for the susceptibility of starch to enzymatic digestion. In the present study, the effects of thermal processing on the disassembly of the granular structure and the in vitro enzymatic digestibility of rice and lotus starches were investigated. After heating at 50 °C, rice and lotus starches did not show significant changes in granular morphology, long-range crystallinity and short-range molecular order. As the temperature increased to 60 °C, rice starch underwent a partial gelatinization followed by an incomplete disruption of granular morphology, crystallites and molecular order. In contrast, lotus starch was almost completely gelatinized at 60 °C. At 70 °C or higher, both starches were fully gelatinized with complete disruption of the micro and macro structures. Our results show that gelatinization greatly increased the in vitro enzymatic digestibility of both starches, but that the degree of disassembly of the starch structure during thermal processing was not a major determinant of the digestibility of gelatinized starch.

  8. Screening of seeds prepared from retrograded potato starch to increase retrogradation rate of maize starch.

    PubMed

    Lian, Xijun; Liu, Lizeng; Guo, Junjie; Li, Lin; Wu, Changyan

    2013-09-01

    In this paper, retrograded potato starches treated by oxalic, hydrochloric and citric acids and/with amylase respectively, as seed crystals, are added into maize starch paste to increase maize starch retrogradation rate. The results show that addition of seed accelerates maize starch retrogradation greatly. Seed prepared from retrograded potato starch treated by oxalic acid increases maize starch retrogradation rate most, from 1.5% to 49%. The results of IR spectra of retrograded maize starch derived from different seeds show that double helix, not hydrogen bond, probably forms at stage of seed growth during retrogradation. The results of IR spectra, X-ray and SEM indicate that treatment of retrograded potato starch with oxalic acid leads to formation of more hydrogen bonds and an increase of seed crystal planes, which markedly promotes the growth of the seed. Retrogradation of maize starch by seeding method surely includes a stage of crystal growth through double helix in a way different from normal maize starch retrogradation. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Encapsulation altered starch digestion: toward developing starch-based delivery systems.

    PubMed

    Janaswamy, Srinivas

    2014-01-30

    Starch is an abundant biomaterial that forms a vital energy source for humans. Altering its digestion, e.g. increasing the proportions of slowly digestible starch (SDS) and resistant starch (RS), would revolutionize starch utility in addressing a number of health issues related to glucose absorption, glycemic index and colon health. The research reported in this article is based on my hypothesis that water channels present in the B-type starch crystalline matrix, particularly in tuber starches, can embed guest molecules such as nutraceuticals, drugs, flavor compounds and vitamins leading to altered starch digestion. Toward this goal, potato starch has been chosen as the model tuber starch, and ibuprofen, benzocaine, sulfapyridine, curcumin, thymol and ascorbic acid as model guest molecules. X-ray powder diffraction and FT-IR analyses clearly suggest the incorporation of guest molecules in the water channels of potato starch. Furthermore, the in vitro digestion profiles of complexes are intriguing with major variations occurring after 60 min of starch digestion and finally at 120 min. These changes are concomitantly reflected in the SDS and RS amounts, with about 24% decrease in SDS for benzocaine complex and 6% increase in RS for ibuprofen complex, attesting the ability of guest molecule encapsulation in modulating the digestion properties of potato starch. Overall, this research provides an elegant opportunity for the design and development of novel starch-based stable carriers that not only bestow tailored glucose release rates but could also transport health promoting and disease preventing compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Paraformaldehyde-Resistant Starch-Fermenting Bacteria in “Starch-Base” Drilling Mud

    PubMed Central

    Myers, G. E.

    1962-01-01

    Starch-fermenting bacteria were found in each of 12 samples of nonfermenting starch-base drilling mud examined. Of the 12 samples, 3 contained very active starch-fermenting gram-positive spore-bearing bacilli closely resembling Bacillus subtilis. Similar active starch-fermenting bacteria were found in fermenting starch-base drilling mud and in corn starch and slough water used to prepare such mud. The active starch-fermenting microorganisms completely hydrolyzed 1% (w/v) corn starch within 24 hr at 37.5 C. The active starch-fermenting bacteria isolated from fermenting drilling mud were capable of surviving 12 hr of continuous exposure to 0.1% (w/w) paraformaldehyde or 1 hr of continuous exposure to 0.5% (w/w) paraformaldehyde, with no diminution in starch-fermenting ability. The same organisms fermented starch after 3 hr of continuous exposure to 0.5% (w/w) paraformaldehyde, but not after 4 hr of exposure. The phenomenon of rapid disappearance of paraformaldehyde from fermenting drilling mud was observed in the laboratory using a modified sodium sulfite test. Paraformaldehyde, initially present in a concentration of 0.192 lb per barrel of mud, completely disappeared in 9 hr at 22 to 23 C. A significant decrease in paraformaldehyde concentration was detected 0.5 hr after preparation of the mud. It is suggested that the presence of relatively high concentrations of ammonia and chloride in the mud may facilitate the disappearance of paraformaldehyde. The failure of 0.1% (w/w) paraformaldehyde to inhibit the strong starch-fermenting microorganisms isolated from fermenting drilling mud, and the rapid disappearance of paraformaldehyde from the mud, explains the fermentation of starch which occurred in this mud, despite the addition of paraformaldehyde. PMID:13936949

  11. 21 CFR 178.3520 - Industrial starch-modified.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Industrial starch-modified. 178.3520 Section 178... § 178.3520 Industrial starch-modified. Industrial starch-modified may be safely used as a component of..., transporting, or holding food, subject to the provisions of this section. (a) Industrial starch-modified is...

  12. Formation of Elongated Starch Granules in High-amylose Maize

    USDA-ARS?s Scientific Manuscript database

    GEMS-0067 maize starch contains up to 32% elongated starch granules much higher than amylose-extender (ae) single-mutant maize starch (~7%) and normal (non-mutant) maize starch (0%). These elongated granules are highly resistant to enzymatic hydrolysis at 95-100 C, which function as resistant starc...

  13. Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase.

    PubMed

    Wang, Hong; Brautigan, David L

    2006-11-01

    Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.

  14. Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes: 1. Identification of 1-amino-1-cycloalkyl carboxylic acid headgroups

    SciTech Connect

    Sparks, Steven M.; Banker, Pierette; Bickett, David M.; Carter, H. Luke; Clancy, Daphne C.; Dickerson, Scott H.; Dwornik, Kate A.; Garrido, Dulce M.; Golden, Pamela L.; Nolte, Robert T.; Peat, Andrew J.; Sheckler, Lauren R.; Tavares, Francis X.; Thomson, Stephen A.; Wang, Liping; Weiel, James E.

    2009-05-15

    Optimization of the amino acid residue within a series of anthranilimide-based glycogen phosphorylase inhibitors is described. These studies culminated in the identification of anthranilimides 16 and 22 which displayed potent in vitro inhibition of GPa in addition to reduced inhibition of CYP2C9 and excellent pharmacokinetic properties.

  15. 2-O-α-D-Glucosylglycerol Phosphorylase from Bacillus selenitireducens MLS10 Possessing Hydrolytic Activity on β-D-Glucose 1-Phosphate

    PubMed Central

    Nihira, Takanori; Saito, Yuka; Ohtsubo, Ken’ichi; Nakai, Hiroyuki; Kitaoka, Motomitsu

    2014-01-01

    The glycoside hydrolase family (GH) 65 is a family of inverting phosphorylases that act on α-glucosides. A GH65 protein (Bsel_2816) from Bacillus selenitireducens MLS10 exhibited inorganic phosphate (Pi)-dependent hydrolysis of kojibiose at the rate of 0.43 s−1. No carbohydrate acted as acceptor for the reverse phosphorolysis using β-d-glucose 1-phosphate (βGlc1P) as donor. During the search for a suitable acceptor, we found that Bsel_2816 possessed hydrolytic activity on βGlc1P with a kcat of 2.8 s−1; moreover, such significant hydrolytic activity on sugar 1-phosphate had not been reported for any inverting phosphorylase. The H218O incorporation experiment and the anomeric analysis during the hydrolysis of βGlc1P revealed that the hydrolysis was due to the glucosyl-transferring reaction to a water molecule and not a phosphatase-type reaction. Glycerol was found to be the best acceptor to generate 2-O-α-d-glucosylglycerol (GG) at the rate of 180 s−1. Bsel_2816 phosphorolyzed GG through sequential Bi-Bi mechanism with a kcat of 95 s−1. We propose 2-O-α-d-glucopyranosylglycerol: phosphate β-d-glucosyltransferase as the systematic name and 2-O-α-d-glucosylglycerol phosphorylase as the short name for Bsel_2816. This is the first report describing a phosphorylase that utilizes polyols, and not carbohydrates, as suitable acceptor substrates. PMID:24466148

  16. Three-dimensional structure of thymidine phosphorylase from E. coli in complex with 3'-azido-2'-fluoro-2',3'-dideoxyuridine

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Fateev, I. V.; Zhukhlistova, N. E.; Murav'eva, T. I.; Kuranova, I. P.; Esipov, R. S.

    2013-11-01

    The three-dimensional structures of thymidine phosphorylase from E. coli containing the bound sulfate ion in the phosphate-binding site and of the complex of thymidine phosphorylase with sulfate in the phosphate-binding site and the inhibitor 3'-azido-2'-fluoro-2',3'-dideoxyuridine (N3F-ddU) in the nucleoside-binding site were determined at 1.55 and 1.50 Å resolution, respectively. The amino-acid residues involved in the ligand binding and the hydrogen-bond network in the active site occupied by a large number of bound water molecules are described. A comparison of the structure of thymidine phosphorylase in complex with N3F-ddU with the structure of pyrimidine nucleoside phosphorylase from St. Aureus in complex with the natural substrate thymidine (PDB_ID: 3H5Q) shows that the substrate and the inhibitor in the nucleoside-binding pocket have different orientations. It is suggested that the position of N3F-ddU can be influenced by the presence of the azido group, which prefers a hydrophobic environment. In both structures, the active sites of the subunits are in the open conformation.

  17. Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes: 1. Identification of 1-amino-1-cycloalkyl carboxylic acid headgroups.

    PubMed

    Sparks, Steven M; Banker, Pierette; Bickett, David M; Carter, H Luke; Clancy, Daphne C; Dickerson, Scott H; Dwornik, Kate A; Garrido, Dulce M; Golden, Pamela L; Nolte, Robert T; Peat, Andrew J; Sheckler, Lauren R; Tavares, Francis X; Thomson, Stephen A; Wang, Liping; Weiel, James E

    2009-02-01

    Optimization of the amino acid residue within a series of anthranilimide-based glycogen phosphorylase inhibitors is described. These studies culminated in the identification of anthranilimides 16 and 22 which displayed potent in vitro inhibition of GPa in addition to reduced inhibition of CYP2C9 and excellent pharmacokinetic properties.

  18. Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of Type 2 diabetes: 2. Optimization of serine and threonine ether amino acid residues.

    PubMed

    Sparks, Steven M; Banker, Pierette; Bickett, David M; Clancy, Daphne C; Dickerson, Scott H; Garrido, Dulce M; Golden, Pamela L; Peat, Andrew J; Sheckler, Lauren R; Tavares, Francis X; Thomson, Stephen A; Weiel, James E

    2009-02-01

    Optimization of the amino acid residue of a series of anthranilimide-based glycogen phosphorylase inhibitors is described leading to the identification of serine and threonine ether analogs. t-Butylthreonine analog 20 displayed potent in vitro inhibition of GPa, low potential for P450 inhibition, and excellent pharmacokinetic properties.

  19. Native starch in tablet formulations: properties on compaction.

    PubMed

    Bos, C E; Bolhuis, G K; Van Doorne, H; Lerk, C F

    1987-10-16

    Maize, potato, rice and tapioca (cassava) starch were evaluated with respect to their properties on direct compression. Rice starch showed much better compactibility as compared to maize, potato and tapioca starch. Moreover, its binding capacity proved to be almost insensitive to mixing with magnesium stearate. This in contrast to the dramatic decrease in crushing strength of potato starch tablets containing the lubricant. The compactibility of the starches was found to be strongly affected by the equilibrium moisture content of the starches, which is dependent on the relative humidity of the atmosphere under which the powders were stored. All starches showed adequate capacity for water uptake to act as a disintegrant. Rice starch exhibited worst flowability, caused by its fine particle size as compared to the other starches. Granulation of rice starch changed it into a potential filler-binder in tablets prepared by direct compression.

  20. Model approach to starch functionality in bread making.

    PubMed

    Goesaert, Hans; Leman, Pedro; Delcour, Jan A

    2008-08-13

    We used modified wheat starches in gluten-starch flour models to study the role of starch in bread making. Incorporation of hydroxypropylated starch in the recipe reduced loaf volume and initial crumb firmness and increased crumb gas cell size. Firming rate and firmness after storage increased for loaves containing the least hydroxypropylated starch. Inclusion of cross-linked starch had little effect on loaf volume or crumb structure but increased crumb firmness. The firming rate was mostly similar to that of control samples. Presumably, the moment and extent of starch gelatinization and the concomitant water migration influence the structure formation during baking. Initial bread firmness seems determined by the rigidity of the gelatinized granules and leached amylose. Amylopectin retrogradation and strengthening of a long-range network by intensifying the inter- and intramolecular starch-starch and possibly also starch-gluten interactions (presumably because of water incorporation in retrograded amylopectin crystallites) play an important role in firming.

  1. Plant-crafted starches for bioplastics production.

    PubMed

    Sagnelli, Domenico; Hebelstrup, Kim H; Leroy, Eric; Rolland-Sabaté, Agnès; Guilois, Sophie; Kirkensgaard, Jacob J K; Mortensen, Kell; Lourdin, Denis; Blennow, Andreas

    2016-11-05

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO samples displayed Vh- and B-type crystalline structures, the B-type polymorph being the dominant one. The AO prototypes demonstrated a 6-fold higher mechanical stress at break and 2.5-fold higher strain at break compared to control starch. Dynamic mechanical analysis showed a significant increase in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers.

  2. Permeation of volatile compounds through starch films.

    PubMed

    Yilmaz, Gülden; Jongboom, Remy O J; Feil, Herman; van Dijk, Cees; Hennink, Wim E

    2004-01-01

    The aim of this study was to gain insight into the factors that affect the permeation of volatiles through starch films. These films were obtained by casting gelatinized starch/water/glycerol mixtures. The films were dried and conditioned under different conditions (temperature and relative humidity) resulting in films that vary in the degree of starch crystallinity and glycerol and water content. The permeation of two model volatiles (carvone and diacetyl) at 20 degrees C and at 30, 60, or 90% relative humidity (RH) was analyzed gravimetrically. Further, the solubility of the two model compounds (under conditions where the permeation experiments were carried out) was determined. From the obtained permeation and solubility data, the diffusion coefficients of these compounds in the different starch films were calculated. The crystallinity in the starch films increased with increasing water content of the films during preparation. The water content of the resulting films in turn increased with increasing glycerol and when the films were exposed to a higher RH during drying or conditioning. For films with the same composition, the flux for diacetyl was greater than for carvone. The solubilities of diacetyl and carvone were slightly dependent on the properties of the films. It was found that with increasing starch crystallinity the diffusion coefficient for both compounds decreases, which is probably due to the impermeability of starch crystallites. Interestingly, in films with about the same extent of crystallinity, the diffusion can be described with the free volume model, with water and glycerol determining the amount of free volume.

  3. Adhesion of Vibrio cholerae to granular starches.

    PubMed

    Gancz, Hanan; Niderman-Meyer, Orly; Broza, Meir; Kashi, Yechezkel; Shimoni, Eyal

    2005-08-01

    Cholera is a severe diarrheal disease caused by specific serogroups of Vibrio cholerae that are pathogenic to humans. Cholera can become epidemic and deadly without adequate medical care. Appropriate rehydration therapy can reduce the mortality rate from as much as 50% of the affected individuals to <1%. Thus, oral rehydration therapy (ORT) is an important measure in the treatment of this disease. To further reduce the symptoms associated with cholera, improvements in oral rehydration solution (ORS) by starch incorporation were suggested. Here, we report that V. cholerae adheres to starch granules incorporated in ORS. Adhesion of 98% of the cells was observed within 2 min when cornstarch granules were used. Other starches showed varied adhesion rates, indicating that starch source and composition play an important role in the interaction of V. cholerae and starch granules. Sugars metabolized by V. cholerae showed a repressive effect on the adhesion process. The possible mechanisms involved are discussed. Comparing V. cholerae adhesion with the adhesion of other pathogens suggests the involvement of starch degradation capabilities. This adhesion to granular starch can be used to improve ORT.

  4. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch.

    PubMed

    Wang, Wei; Zhou, Hongxian; Yang, Hong; Zhao, Siming; Liu, Youming; Liu, Ru

    2017-01-01

    The objective of this study was to evaluate the effects of salts on the gelatinization and retrogradation of maize and waxy maize starch. Experimental results showed that the salting-out or structure-making ions, such as F(-) and SO4(2-), decreased the swelling power, solubility and transparency of both starches, but increased the gelatinization temperature, enthalpy, and syneresis, due to the tendency of these ions to protect the hydrogen bond links among starch molecules. On the other hand, the salting-in or structure-breaking ions, such as I(-) and SCN(-), exhibited the opposite effects. Microscopic observations confirmed such effects of salts on both starches. Furthermore, the effects of salts were more significant on waxy maize and on normal maize starch. Generally, salts could significantly influence on the gelatinization and retrogradation of maize and waxy maize starch, following the order of the Hofmeister series. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of pressure and temperature on the gelatinization of starch at various starch concentrations.

    PubMed

    Baks, Tim; Bruins, Marieke E; Janssen, Anja E M; Boom, Remko M

    2008-01-01

    The effects of pressure, temperature, and treatment time on the degree of gelatinization were determined with differential scanning calorimetry measurements for wheat starch-water mixtures with starch concentrations varying between 5 and 80 w/w %. Although simple models could be used to describe the degree of starch gelatinization as a function of pressure or temperature, a more complex model based on the Gibbs energy difference had to be used to describe the degree of gelatinization as a function of both pressure and temperature. The experimental and model data were used to construct a phase diagram for 5, 30, and 60 w/w % wheat starch-water mixtures. Data obtained from literature were in accordance with our phase diagrams. These phase diagrams can be used to estimate the degree of gelatinisation after applying a certain pressure and temperature on a starch-water mixture with starch concentrations in the range of 5 and 60 w/w %.

  6. Applicability, Commercial Utility and Recent Patents on Starch and Starch Derivative as Pharmaceutical Drug Delivery Carrier.

    PubMed

    Pandey, Shreya; Malviya, Rishabha; Sharma, Pramod K

    2015-01-01

    Natural polymers are widely utilized in pharmaceutical and food industries. Starch, a major carbohydrate is a staple food in human and animal diets which is simply extractable from various sources, like potato, maize, corn, wheat, etc. It is widely used as a raw material in various food and non food industries as well as in paper, textile and other industries. This article summarizes the starch and modification of starch and to produce a novel molecule with various applications in industries including number of advances in pharmaceutical industry. The unique characteristics of starch and their modified form can be successfully used as drug delivery carriers in various pharmaceutical preparations. It is widely used as controlled and sustained release polymer, tablet disintegrant, drug delivery carrier, plasma volume expander and also finds its applicability in bone tissue engineering and in artificial red cells. It also includes the patents related to starch and modified starch based products and their commercial utility.

  7. Scanning probe acoustic microscopy of extruded starch materials: direct visual evidence of starch crystal.

    PubMed

    Liu, Zhongdong; Liu, Boxiang; Li, Mengxing; Wei, Min; Li, Hua; Liu, Peng; Wan, Tuo

    2013-10-15

    Scanning probe acoustic microscopy (SPAM) has been successfully used to study inorganic and keratin biomaterials. However, few studies have attempted to apply SPAM to structural study of non-keratin organic materials such as starch based materials. This study investigated hardness and surface finish to establish sample preparation method suitable for SPAM imaging and acquired clear acoustic images of extruded starch materials. Acquired acoustic images directly exhibited certain structure of starch materials and provided visual evidence of starch material components and aggregates. In addition, through correlating acoustic images with X-ray diffraction data, crystal-structural information in nano-scale was obtained and acoustic image contrast showed a linear relationship with starch amylose content in extruded starch materials.

  8. Characterization of the Butyrivibrio fibrisolvens glgB gene, which encodes a glycogen-branching enzyme with starch-clearing activity.

    PubMed Central

    Rumbak, E; Rawlings, D E; Lindsey, G G; Woods, D R

    1991-01-01

    A Butyrivibrio fibrisolvens H17c glgB gene, was isolated by direct selection for colonies that produced clearing on starch azure plates. The gene was expressed in Escherichia coli from its own promoter. The glgB gene consisted of an open reading frame of 1,920 bp encoding a protein of 639 amino acids (calculated Mr, 73,875) with 46 to 50% sequence homology with other branching enzymes. A limited region of 12 amino acids showed sequence similarity to amylases and glucanotransferases. The B. fibrisolvens branching enzyme was not able to hydrolyze starch but stimulated phosphorylase alpha-mediated incorporation of glucose into alpha-1,4-glucan polymer 13.4-fold. The branching enzyme was purified to homogeneity by a simple two-step procedure; N-terminal sequence and amino acid composition determinations confirmed the deduced translational start and amino acid sequence of the open reading frame. The enzymatic properties of the purified enzyme were investigated. The enzyme transferred chains of 5 to 10 (optimum, 7) glucose units, using amylose and amylopetin as substrates, to produce a highly branched polymer. Images FIG. 1 FIG. 4 FIG. 7 PMID:1938880

  9. Microwave-accelerated methylation of starch.

    PubMed

    Singh, Vandana; Tiwari, Ashutosh

    2008-01-14

    A novel microwave-accelerated method for methylating soluble starch is described. Soluble starch could be fully methylated in 72% yield within 4.66 min using iodomethane and 30% potassium hydroxide under microwave irradiation. The completely methylated starch thus obtained was hydrolyzed with 60% HCO(2)H for 1.5 min under 80% MW power, followed by 0.05 M H(2)SO(4) for 2.0 min under 100% MW power. The partially methylated monosaccharides were separated by preparative paper chromatography and identified by their melting points and optical rotations.

  10. Evidence for the Location of the Allosteric Activation Switch in the Multisubunit Phosphorylase Kinase Complex from Mass Spectrometric Identification of Chemically Crosslinked Peptides*

    PubMed Central

    Nadeau, Owen W.; Anderson, David W.; Yang, Qing; Artigues, Antonio; Paschall, Justin E.; Wyckoff, Gerald J.; McClintock, Jennifer L.; Carlson, Gerald M.

    2007-01-01

    Phosphorylase kinase (PhK), an (αβγδ)4 complex, regulates glycogenolysis. Its activity, catalyzed by the γ subunit, is tightly controlled by phosphorylation and activators acting through allosteric sites on its regulatory α, β and δ subunits. Activation of the catalytic γ subunit in the PhK complex by phosphorylation is known to be predominantly mediated by the regulatory β subunit, which undergoes a conformational change that is structurally linked with the γ subunit and that is characterized by the ability to form β-β dimers using a short chemical crosslinker. To determine potential regions of interaction of the β and γ subunits, we have used chemical crosslinking and 2-hybrid screening. The β and γ subunits were chemically crosslinked to each other in phosphorylated PhK, and crosslinked peptides were identified in digests of the kinase by Fourier transform mass spectrometry in combination with a search engine developed ‘in house’ that generates a hypothetical list of crosslinked peptides. Such a conjugate between β and γ was identified, verified by MS/MS and shown to correspond to crosslinking between K303 in the C-terminal regulatory domain of γ (γCRD) and R18 in the N-terminal regulatory region of β (β1-31), which contains the phosphorylatable serines 11 and 26. A synthetic peptide corresponding to residues 1-22 of β inhibited the crosslinking between β and γ in the complex, and was itself crosslinked to K303 of γ. Through the use of 2-hybrid screening, the β1-31 region was also shown to control β subunit self-interactions, which were favored by truncation of this region or by mutation of the phosphorylatable serines 11 and 26, thus providing structural evidence for a phosphorylation-dependent subunit communication network in the PhK complex involving at least these two regulatory regions of the β and γ subunits. The sum of our results considered together with previous findings implicates the γCRD as being an allosteric

  11. Evidence for the location of the allosteric activation switch in the multisubunit phosphorylase kinase complex from mass spectrometric identification of chemically crosslinked peptides.

    PubMed

    Nadeau, Owen W; Anderson, David W; Yang, Qing; Artigues, Antonio; Paschall, Justin E; Wyckoff, Gerald J; McClintock, Jennifer L; Carlson, Gerald M

    2007-02-02

    Phosphorylase kinase (PhK), an (alphabetagammadelta)(4) complex, regulates glycogenolysis. Its activity, catalyzed by the gamma subunit, is tightly controlled by phosphorylation and activators acting through allosteric sites on its regulatory alpha, beta and delta subunits. Activation by phosphorylation is predominantly mediated by the regulatory beta subunit, which undergoes a conformational change that is structurally linked with the gamma subunit and that is characterized by the ability of a short chemical crosslinker to form beta-beta dimers. To determine potential regions of interaction of the beta and gamma subunits, we have used chemical crosslinking and two-hybrid screening. The beta and gamma subunits were crosslinked to each other in phosphorylated PhK, and crosslinked peptides from digests were identified by Fourier transform mass spectrometry, beginning with a search engine developed "in house" that generates a hypothetical list of crosslinked peptides. A conjugate between beta and gamma that was verified by MS/MS corresponded to crosslinking between K303 in the C-terminal regulatory domain of gamma (gammaCRD) and R18 in the N-terminal regulatory region of beta (beta1-31), which contains the phosphorylatable serines 11 and 26. A synthetic peptide corresponding to residues 1-22 of beta inhibited the crosslinking between beta and gamma, and was itself crosslinked to K303 of gamma. In two-hybrid screening, the beta1-31 region controlled beta subunit self-interactions, in that they were favored by truncation of this region or by mutation of the phosphorylatable serines 11 and 26, thus providing structural evidence for a phosphorylation-dependent subunit communication network in the PhK complex involving at least these two regulatory regions of the beta and gamma subunits. The sum of our results considered together with previous findings implicates the gammaCRD as being an allosteric activation switch in PhK that interacts with all three of the enzyme

  12. Dilute solution properties of canary seed (Phalaris canariensis) starch in comparison to wheat starch.

    PubMed

    Irani, Mahdi; Razavi, Seyed M A; Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann

    2016-06-01

    Dilute solution properties of an unknown starch are important to understand its performance and applications in food and non-food industries. In this paper, rheological and molecular properties (intrinsic viscosity, molecular weight, shape factor, voluminosity, conformation and coil overlap parameters) of the starches from two hairless canary seed varieties (CO5041 & CDC Maria) developed for food use were evaluated in the dilute regime (Starch dispersions in DMSO (0.5g/dl)) and compared with wheat starch (WS). The results showed that Higiro model is the best among five applied models for intrinsic viscosity determination of canary seed starch (CSS) and WS on the basis of coefficient of determination (R(2)) and root mean square error (RMSE). WS sample showed higher intrinsic viscosity value (1.670dl/g) in comparison to CSS samples (1.325-1.397dl/g). Berry number and the slope of master curve demonstrated that CSS and WS samples were in dilute domain without entanglement occurrence. The shape factor suggested spherical and ellipsoidal structure for CO5041 starch and ellipsoidal for CDC Maria starch and WS. The molecular weight, coil radius and coil volume of CSSs were smaller than WS. The behavior and molecular characterization of canary seed starch showed its unique properties compared with wheat starch.

  13. Electron microscopy and composition of raw acorn starch in relation to in vivo starch digestibility.

    PubMed

    Cappai, Maria Grazia; Alesso, Giuseppe Andrea; Nieddu, Giuseppa; Sanna, Marina; Pinna, Walter

    2013-06-01

    The structure and composition of starch play an important role as co-factors affecting raw starch digestibility: such features were investigated in raw acorn starch from the most diffused oak trees in the Mediterranean basin. A total of 620 whole ripe acorns from Holm (Quercus ilex L., n = 198), Downy (Quercus pubescens Willd., n = 207) and Cork (Quercus suber L., n = 215) oaks sampled on the Sardinia Isle (40° 56' 0'' N; 9° 4' 0'' E; 545 m above the mean sea level) in the same geographical area, were analyzed for their chemical composition. The starch contents ranged between 51.2% and 53.5% of dry matter. The starch granules displayed a spheroid/ovoid and cylindrical shape; on scanning electron microscopic (SEM) analyses, a bimodal distribution of starch granule size was observed both for Holm and Cork oak acorns, whereas the starch granules of Downy oak acorns showed diameters between 10.2 and 13.8 μm. The specific amylose to amylopectin ratio of acorn starch was 25.8%, 19.5% and 34.0% in the Holm, Downy and Cork oaks, respectively. The (13)C Nuclear Magnetic Resonance (NMR) signal analysis displayed a pivotal spectrum for the identification of the amylose peaks in raw acorn starch, as a basis for the amylose to amylopectin ratio determination.

  14. In vitro analyses of resistant starch in retrograded waxy and normal corn starches.

    PubMed

    Zhou, Xing; Chung, Hyun-Jung; Kim, Jong-Yea; Lim, Seung-Taik

    2013-04-01

    Gelatinized waxy and normal corn starches (40% starch) were subjected to temperature cycling between 4 and 30°C (1 day at each temperature) or isothermal storage (4°C) to induce retrogradation. The in vitro analysis methods that are currently used for the measurement of resistant starch (RS), i.e. Englyst, AACC 32-40 and Goni methods, were compared with homogenized retrograded starch gels and freeze-dried powders of the gels. RS contents obtained by the three analysis methods were in the following order: Goni>Englyst>AACC. Although different RS values were obtained among the analysis methods, similar trends in regards to the starch type and storage conditions could be observed. Little or no RS was found in freeze-dried powders of the retrograded starch gels and storage conditions had no effect, indicating that the physical state for RS analysis is important. More RS was found in normal corn starch gels than in waxy corn starch gels under identical storage conditions and in the gels stored under temperature cycling than those under isothermal storage (4°C), indicating that the presence of amylose inhibits starch digestion and the level of crystalline structure of re-crystallized amylopectin also affects the RS formation during retrogradation.

  15. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

    PubMed

    Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

    2016-01-15

    The effects of a combination of acid and heat-moisture treatment on formation of resistant sta